-
Notifications
You must be signed in to change notification settings - Fork 93
/
compute_stereo.py
250 lines (223 loc) · 11.3 KB
/
compute_stereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright 2020 Google LLC, University of Victoria, Czech Technical University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import os
import numpy as np
from joblib import Parallel, delayed
from tqdm import tqdm
from config import get_config, print_usage
from utils.io_helper import load_h5, save_h5
from utils.load_helper import load_calib
from utils.match_helper import compute_image_pairs
from utils.path_helper import (
get_data_path, get_fullpath_list, get_item_name_list, get_kp_file,
get_match_file, get_geom_file, get_geom_inl_file, get_filter_match_file,
get_stereo_depth_projection_pre_match_file,
get_stereo_depth_projection_refined_match_file,
get_stereo_depth_projection_final_match_file,
get_stereo_epipolar_pre_match_file, get_stereo_epipolar_refined_match_file,
get_stereo_epipolar_final_match_file, get_stereo_path,
get_stereo_pose_file, get_pairs_per_threshold,
get_repeatability_score_file)
from utils.stereo_helper import (compute_stereo_metrics_from_E,
is_stereo_complete)
def main(cfg):
'''Main function to compute matches.
Parameters
----------
cfg: Namespace
Configurations for running this part of the code.
'''
# Get data directory
data_dir = get_data_path(cfg)
try:
pairwise_keypoints = cfg.method_dict['config_common']['pairwise_keypoints']
except:
pairwise_keypoints = False
# Load pre-computed pairs with the new visibility criteria
pairs_per_th = get_pairs_per_threshold(data_dir)
# Check if all files exist
if is_stereo_complete(cfg):
print(' -- already exists, skipping stereo eval')
return
# Load keypoints and matches
keypoints_dict = load_h5(get_kp_file(cfg))
matches_dict = load_h5(get_match_file(cfg))
geom_dict = load_h5(get_geom_file(cfg))
geom_inl_dict = load_h5(get_geom_inl_file(cfg))
filter_matches_dict = load_h5(get_filter_match_file(cfg))
# Load visiblity and images
images_list = get_fullpath_list(data_dir, 'images')
vis_list = get_fullpath_list(data_dir, 'visibility')
if cfg.dataset != 'googleurban':
depth_maps_list = get_fullpath_list(data_dir, 'depth_maps')
image_names = get_item_name_list(images_list)
# Load camera information
calib_list = get_fullpath_list(data_dir, 'calibration')
calib_dict = load_calib(calib_list)
# Generate all possible pairs
print('Generating list of all possible pairs')
pairs = compute_image_pairs(vis_list, len(image_names), cfg.vis_th)
print('Old pairs with the point-based visibility threshold: {} '
'(for compatibility)'.format(len(pairs)))
for k, v in pairs_per_th.items():
print('New pairs at visibility threshold {}: {}'.format(k, len(v)))
# Evaluate each stereo pair in parallel
# Compute it for all pairs (i.e. visibility threshold 0)
print('Compute stereo metrics for all pairs')
#num_cores = int(multiprocessing.cpu_count() * 0.9)
num_cores = int(len(os.sched_getaffinity(0)) * 0.9)
if pairwise_keypoints: # picks keypoints per pair
result = Parallel(n_jobs=num_cores)(delayed(compute_stereo_metrics_from_E)(
images_list[image_names.index(pair.split('-')[0])], images_list[
image_names.index(pair.split('-')[1])],
depth_maps_list[image_names.index(pair.split('-')[0])] if cfg.
dataset != 'googleurban' else None, depth_maps_list[image_names.index(
pair.split('-')[1])] if cfg.dataset != 'googleurban' else None,
np.asarray(keypoints_dict[pair.split('-')[0]+'-'+pair.split('-')[1]]),
np.asarray(keypoints_dict[pair.split('-')[1]+'-'+pair.split('-')[0]]),
calib_dict[pair.split(
'-')[0]], calib_dict[pair.split('-')
[1]], geom_dict[pair], matches_dict[pair],
filter_matches_dict[pair], geom_inl_dict[pair], cfg)
for pair in tqdm(pairs_per_th['0.0']))
else:
result = Parallel(n_jobs=num_cores)(delayed(compute_stereo_metrics_from_E)(
images_list[image_names.index(pair.split('-')[0])], images_list[
image_names.index(pair.split('-')[1])],
depth_maps_list[image_names.index(pair.split('-')[0])] if cfg.
dataset != 'googleurban' else None, depth_maps_list[image_names.index(
pair.split('-')[1])] if cfg.dataset != 'googleurban' else None,
np.asarray(keypoints_dict[pair.split('-')[0]]),
np.asarray(keypoints_dict[pair.split('-')[1]]), calib_dict[pair.split(
'-')[0]], calib_dict[pair.split('-')
[1]], geom_dict[pair], matches_dict[pair],
filter_matches_dict[pair], geom_inl_dict[pair], cfg)
for pair in tqdm(pairs_per_th['0.0']))
# Convert previous visibility list to strings
old_keys = []
for pair in pairs:
old_keys.append('{}-{}'.format(image_names[pair[0]],
image_names[pair[1]]))
# Extract scores, err_q, err_t from results
all_keys = pairs_per_th['0.0']
err_dict, rep_s_dict = {}, {}
geo_s_dict_pre_match, geo_s_dict_refined_match, \
geo_s_dict_final_match = {}, {}, {}
true_s_dict_pre_match, true_s_dict_refined_match, \
true_s_dict_final_match = {}, {}, {}
for i in range(len(result)):
if all_keys[i] in old_keys:
if result[i][5]:
geo_s_dict_pre_match[
all_keys[i]] = result[i][0][0] if result[i][0] else None
geo_s_dict_refined_match[
all_keys[i]] = result[i][0][1] if result[i][0] else None
geo_s_dict_final_match[
all_keys[i]] = result[i][0][2] if result[i][0] else None
true_s_dict_pre_match[
all_keys[i]] = result[i][1][0] if result[i][1] else None
true_s_dict_refined_match[
all_keys[i]] = result[i][1][1] if result[i][1] else None
true_s_dict_final_match[
all_keys[i]] = result[i][1][2] if result[i][1] else None
err_q = result[i][2]
err_t = result[i][3]
rep_s_dict[all_keys[i]] = result[i][4]
err_dict[all_keys[i]] = [err_q, err_t]
print('Aggregating results for the old visibility constraint: '
'{}/{}'.format(len(geo_s_dict_pre_match), len(result)))
# Repeat with the new visibility threshold
err_dict_th, rep_s_dict_th = {}, {}
geo_s_dict_pre_match_th, geo_s_dict_refined_match_th, \
geo_s_dict_final_match_th = {}, {}, {}
true_s_dict_pre_match_th, true_s_dict_refined_match_th, \
true_s_dict_final_match_th = {}, {}, {}
for th, cur_pairs in pairs_per_th.items():
_err_dict, _rep_s_dict = {}, {}
_geo_s_dict_pre_match, _geo_s_dict_refined_match, \
_geo_s_dict_final_match = {}, {}, {}
_true_s_dict_pre_match, _true_s_dict_refined_match, \
_true_s_dict_final_match = {}, {}, {}
for i in range(len(all_keys)):
if len(cur_pairs) > 0 and all_keys[i] in cur_pairs:
if result[i][5]:
_geo_s_dict_pre_match[all_keys[
i]] = result[i][0][0] if result[i][0] else None
_geo_s_dict_refined_match[all_keys[
i]] = result[i][0][1] if result[i][0] else None
_geo_s_dict_final_match[all_keys[
i]] = result[i][0][2] if result[i][0] else None
_true_s_dict_pre_match[all_keys[
i]] = result[i][1][0] if result[i][1] else None
_true_s_dict_refined_match[all_keys[
i]] = result[i][1][1] if result[i][1] else None
_true_s_dict_final_match[all_keys[
i]] = result[i][1][2] if result[i][1] else None
err_q = result[i][2]
err_t = result[i][3]
_rep_s_dict[
all_keys[i]] = result[i][4] if result[i][4] else []#None
_err_dict[all_keys[i]] = [err_q, err_t]
geo_s_dict_pre_match_th[th] = _geo_s_dict_pre_match
geo_s_dict_refined_match_th[th] = _geo_s_dict_refined_match
geo_s_dict_final_match_th[th] = _geo_s_dict_final_match
true_s_dict_pre_match_th[th] = _true_s_dict_pre_match
true_s_dict_refined_match_th[th] = _true_s_dict_refined_match
true_s_dict_final_match_th[th] = _true_s_dict_final_match
err_dict_th[th] = _err_dict
rep_s_dict_th[th] = _rep_s_dict
print('Aggregating results for threshold "{}": {}/{}'.format(
th, len(geo_s_dict_pre_match_th[th]), len(result)))
# Create results folder if it does not exist
if not os.path.exists(get_stereo_path(cfg)):
os.makedirs(get_stereo_path(cfg))
# Finally, save packed scores and errors
if cfg.dataset != 'googleurban':
save_h5(geo_s_dict_pre_match, get_stereo_epipolar_pre_match_file(cfg))
save_h5(geo_s_dict_refined_match,
get_stereo_epipolar_refined_match_file(cfg))
save_h5(geo_s_dict_final_match,
get_stereo_epipolar_final_match_file(cfg))
save_h5(true_s_dict_pre_match,
get_stereo_depth_projection_pre_match_file(cfg))
save_h5(true_s_dict_refined_match,
get_stereo_depth_projection_refined_match_file(cfg))
save_h5(true_s_dict_final_match,
get_stereo_depth_projection_final_match_file(cfg))
save_h5(rep_s_dict, get_repeatability_score_file(cfg))
save_h5(err_dict, get_stereo_pose_file(cfg))
for th in pairs_per_th:
if cfg.dataset != 'googleurban':
save_h5(geo_s_dict_pre_match_th[th],
get_stereo_epipolar_pre_match_file(cfg, th))
save_h5(geo_s_dict_refined_match_th[th],
get_stereo_epipolar_refined_match_file(cfg, th))
save_h5(geo_s_dict_final_match_th[th],
get_stereo_epipolar_final_match_file(cfg, th))
save_h5(true_s_dict_pre_match_th[th],
get_stereo_depth_projection_pre_match_file(cfg, th))
save_h5(true_s_dict_refined_match_th[th],
get_stereo_depth_projection_refined_match_file(cfg, th))
save_h5(true_s_dict_final_match_th[th],
get_stereo_depth_projection_final_match_file(cfg, th))
save_h5(rep_s_dict_th[th], get_repeatability_score_file(cfg, th))
save_h5(err_dict_th[th], get_stereo_pose_file(cfg, th))
if __name__ == '__main__':
cfg, unparsed = get_config()
# If we have unparsed arguments, print usage and exit
if len(unparsed) > 0:
print_usage()
exit(1)
main(cfg)