-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
146 lines (109 loc) · 5.3 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import keras.backend as K
from keras.backend.tensorflow_backend import _to_tensor
from keras.losses import binary_crossentropy
def dice_coef_clipped(y_true, y_pred, smooth=1.0):
y_true_f = K.flatten(K.round(y_true))
y_pred_f = K.flatten(K.round(y_pred))
intersection = K.sum(y_true_f * y_pred_f)
return 100. * (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef(y_true, y_pred, smooth=1.0):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def bootstrapped_crossentropy(y_true, y_pred, bootstrap_type='hard', alpha=0.95):
target_tensor = y_true
prediction_tensor = y_pred
_epsilon = _to_tensor(K.epsilon(), prediction_tensor.dtype.base_dtype)
prediction_tensor = K.tf.clip_by_value(prediction_tensor, _epsilon, 1 - _epsilon)
prediction_tensor = K.tf.log(prediction_tensor / (1 - prediction_tensor))
if bootstrap_type == 'soft':
bootstrap_target_tensor = alpha * target_tensor + (1.0 - alpha) * K.tf.sigmoid(prediction_tensor)
else:
bootstrap_target_tensor = alpha * target_tensor + (1.0 - alpha) * K.tf.cast(
K.tf.sigmoid(prediction_tensor) > 0.5, K.tf.float32)
return K.mean(K.tf.nn.sigmoid_cross_entropy_with_logits(
labels=bootstrap_target_tensor, logits=prediction_tensor))
def online_bootstrapping(y_true, y_pred, pixels=512, threshold=0.5):
""" Implements nline Bootstrapping crossentropy loss, to train only on hard pixels,
see https://arxiv.org/abs/1605.06885 Bridging Category-level and Instance-level Semantic Image Segmentation
The implementation is a bit different as we use binary crossentropy instead of softmax
SUPPORTS ONLY MINIBATCH WITH 1 ELEMENT!
# Arguments
y_true: A tensor with labels.
y_pred: A tensor with predicted probabilites.
pixels: number of hard pixels to keep
threshold: confidence to use, i.e. if threshold is 0.7, y_true=1, prediction=0.65 then we consider that pixel as hard
# Returns
Mean loss value
"""
y_true = K.flatten(y_true)
y_pred = K.flatten(y_pred)
difference = K.abs(y_true - y_pred)
values, indices = K.tf.nn.top_k(difference, sorted=True, k=pixels)
min_difference = (1 - threshold)
y_true = K.tf.gather(K.gather(y_true, indices), K.tf.where(values > min_difference))
y_pred = K.tf.gather(K.gather(y_pred, indices), K.tf.where(values > min_difference))
return K.mean(K.binary_crossentropy(y_true, y_pred))
def dice_coef_loss_border(y_true, y_pred):
return (1 - dice_coef_border(y_true, y_pred)) * 0.05 + 0.95 * dice_coef_loss(y_true, y_pred)
def bce_dice_loss_border(y_true, y_pred):
return bce_border(y_true, y_pred) * 0.05 + 0.95 * dice_coef_loss(y_true, y_pred)
def dice_coef_border(y_true, y_pred):
border = get_border_mask((21, 21), y_true)
border = K.flatten(border)
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
y_true_f = K.tf.gather(y_true_f, K.tf.where(border > 0.5))
y_pred_f = K.tf.gather(y_pred_f, K.tf.where(border > 0.5))
return dice_coef(y_true_f, y_pred_f)
def bce_border(y_true, y_pred):
border = get_border_mask((21, 21), y_true)
border = K.flatten(border)
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
y_true_f = K.tf.gather(y_true_f, K.tf.where(border > 0.5))
y_pred_f = K.tf.gather(y_pred_f, K.tf.where(border > 0.5))
return binary_crossentropy(y_true_f, y_pred_f)
def get_border_mask(pool_size, y_true):
negative = 1 - y_true
positive = y_true
positive = K.pool2d(positive, pool_size=pool_size, padding="same")
negative = K.pool2d(negative, pool_size=pool_size, padding="same")
border = positive * negative
return border
def dice_coef_loss(y_true, y_pred):
return 1 - dice_coef(y_true, y_pred)
def dice_coef_loss_bce(y_true, y_pred, dice=0.5, bce=0.5, bootstrapping='hard', alpha=1.):
return bootstrapped_crossentropy(y_true, y_pred, bootstrapping, alpha) * bce + dice_coef_loss(y_true, y_pred) * dice
def make_loss(loss_name):
if loss_name == 'crossentropy':
return K.binary_crossentropy
elif loss_name == 'crossentropy_boot':
def loss(y, p):
return bootstrapped_crossentropy(y, p, 'hard', 0.9)
return loss
elif loss_name == 'dice':
return dice_coef_loss
elif loss_name == 'bce_dice':
def loss(y, p):
return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='soft', alpha=1)
return loss
elif loss_name == 'boot_soft':
def loss(y, p):
return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='soft', alpha=0.95)
return loss
elif loss_name == 'boot_hard':
def loss(y, p):
return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='hard', alpha=0.95)
return loss
elif loss_name == 'online_bootstrapping':
def loss(y, p):
return online_bootstrapping(y, p, pixels=512 * 64, threshold=0.7)
return loss
elif loss_name == 'dice_coef_loss_border':
return dice_coef_loss_border
elif loss_name == 'bce_dice_loss_border':
return bce_dice_loss_border
else:
ValueError("Unknown loss.")