From 362493e4b33db51e154b235742d627d649e4a5ae Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Maximilian=20St=C3=B6lzle?= Date: Thu, 21 Nov 2024 16:02:06 -0500 Subject: [PATCH] Update `sweep_actuation_mapping` --- examples/simulate_pneumatic_planar_pcs.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/examples/simulate_pneumatic_planar_pcs.py b/examples/simulate_pneumatic_planar_pcs.py index 01a20b7..a26b876 100644 --- a/examples/simulate_pneumatic_planar_pcs.py +++ b/examples/simulate_pneumatic_planar_pcs.py @@ -99,15 +99,21 @@ def sweep_actuation_mapping(): A = actuation_mapping_fn(params, B_xi, q) print("Evaluating actuation matrix for straight backbone: A =\n", A) - kappa_be_pts = jnp.linspace(-jnp.pi, jnp.pi, 500) + kappa_be_pts = jnp.linspace(-3*jnp.pi, 3*jnp.pi, 500) sigma_ax_pts = jnp.zeros_like(kappa_be_pts) q_pts = jnp.stack([kappa_be_pts, sigma_ax_pts], axis=-1) A_pts = vmap(actuation_mapping_fn, in_axes=(None, None, 0))(params, B_xi, q_pts) + # mark the points that are not controllable as the u1 and u2 terms share the same sign + non_controllable_selector = A_pts[..., 0, 0] * A_pts[..., 0, 1] >= 0.0 + non_controllable_indices = jnp.where(non_controllable_selector)[0] + non_controllable_boundary_indices = jnp.where(non_controllable_selector[:-1] != non_controllable_selector[1:])[0] # plot the mapping on the bending strain for various bending strains fig, ax = plt.subplots(num="pneumatic_planar_pcs_actuation_mapping_bending_torque_vs_bending_strain") plt.title(r"Actuation mapping from $u$ to $\tau_\mathrm{be}$") - # shade the region where the actuation mapping is negative as we are not able to bend the robot further - ax.axhspan(A_pts[:, 0, 0:2].min(), 0.0, facecolor='red', alpha=0.2) + # # shade the region where the actuation mapping is negative as we are not able to bend the robot further + # ax.axhspan(A_pts[:, 0, 0:2].min(), 0.0, facecolor='red', alpha=0.2) + for idx in non_controllable_indices: + ax.axvspan(kappa_be_pts[idx], kappa_be_pts[idx+1], facecolor='red', alpha=0.2) ax.plot(kappa_be_pts, A_pts[:, 0, 0], linewidth=2, label=r"$\frac{\partial \tau_\mathrm{be}}{\partial u_1}$") ax.plot(kappa_be_pts, A_pts[:, 0, 1], linewidth=2, label=r"$\frac{\partial \tau_\mathrm{ax}}{\partial u_2}$") ax.set_xlabel(r"$\kappa_\mathrm{be}$ [rad/m]")