-
Notifications
You must be signed in to change notification settings - Fork 17
/
RepeaterCriterion.lua
60 lines (50 loc) · 1.61 KB
/
RepeaterCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
------------------------------------------------------------------------
--[[ RepeaterCriterion ]]--
-- Applies a criterion to each of the inputs in a Table using the
-- same target (the target is repeated).
-- Useful for nn.Repeater and nn.Sequencer.
------------------------------------------------------------------------
local RepeaterCriterion, parent = torch.class('nn.RepeaterCriterion', 'nn.AbstractSequencerCriterion')
function RepeaterCriterion:updateOutput(input, target)
self.output = 0
local seqlen
if torch.isTensor(input) then
seqlen = input:size(1)
else
seqlen = #input
end
for i=1,seqlen do
local criterion = self:getStepCriterion(i)
self.output = self.output + criterion:forward(input[i], target)
end
if self.sizeAverage then
self.output = self.output / seqlen
end
return self.output
end
function RepeaterCriterion:updateGradInput(input, target)
self.gradInput = {}
if torch.isTensor(input) then
seqlen = input:size(1)
else
seqlen = #input
end
local tableGradInput = {}
for i=1,seqlen do
local criterion = self:getStepCriterion(i)
tableGradInput[i] = criterion:backward(input[i], target)
end
if self.sizeAverage then
nn.utils.recursiveDiv(tableGradInput[i], seqlen)
end
if torch.isTensor(input) then
self.gradInput = tableGradInput[1].new()
self.gradInput:resize(seqlen, unpack(tableGradInput[1]:size():totable()))
for step=1,seqlen do
self.gradInput[step]:copy(tableGradInput[step])
end
else
self.gradInput = tableGradInput
end
return self.gradInput
end