-
Notifications
You must be signed in to change notification settings - Fork 49
/
corrector.py
286 lines (260 loc) · 10.5 KB
/
corrector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# -*- coding: utf-8 -*-
# Author: XuMing <[email protected]>
# Brief: corrector with spell and stroke
import codecs
import operator
import os
from pypinyin import lazy_pinyin
import config
from detector import Detector, ErrorType
from utils.logger import logger
from utils.math_utils import edit_distance_word
from utils.text_utils import is_chinese_string, convert_to_unicode
class Corrector(Detector):
def __init__(self, common_char_path=config.common_char_path,
same_pinyin_path=config.same_pinyin_path,
same_stroke_path=config.same_stroke_path,
language_model_path=config.language_model_path,
word_freq_path=config.word_freq_path,
custom_word_freq_path=config.custom_word_freq_path,
custom_confusion_path=config.custom_confusion_path,
person_name_path=config.person_name_path,
place_name_path=config.place_name_path,
stopwords_path=config.stopwords_path):
super(Corrector, self).__init__(language_model_path=language_model_path,
word_freq_path=word_freq_path,
custom_word_freq_path=custom_word_freq_path,
custom_confusion_path=custom_confusion_path,
person_name_path=person_name_path,
place_name_path=place_name_path,
stopwords_path=stopwords_path)
self.name = 'corrector'
self.common_char_path = common_char_path
self.same_pinyin_text_path = same_pinyin_path
self.same_stroke_text_path = same_stroke_path
self.initialized_corrector = False
self.cn_char_set = None
self.same_pinyin = None
self.same_stroke = None
@staticmethod
def load_set_file(path):
words = set()
with codecs.open(path, 'r', encoding='utf-8') as f:
for w in f:
w = w.strip()
if w.startswith('#'):
continue
if w:
words.add(w)
return words
@staticmethod
def load_same_pinyin(path, sep='\t'):
"""
加载同音字
:param path:
:param sep:
:return:
"""
result = dict()
if not os.path.exists(path):
logger.warn("file not exists:" + path)
return result
with codecs.open(path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line.startswith('#'):
continue
parts = line.split(sep)
if parts and len(parts) > 2:
key_char = parts[0]
same_pron_same_tone = set(list(parts[1]))
same_pron_diff_tone = set(list(parts[2]))
value = same_pron_same_tone.union(same_pron_diff_tone)
if key_char and value:
result[key_char] = value
return result
@staticmethod
def load_same_stroke(path, sep='\t'):
"""
加载形似字
:param path:
:param sep:
:return:
"""
result = dict()
if not os.path.exists(path):
logger.warn("file not exists:" + path)
return result
with codecs.open(path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line.startswith('#'):
continue
parts = line.split(sep)
if parts and len(parts) > 1:
for i, c in enumerate(parts):
result[c] = set(list(parts[:i] + parts[i + 1:]))
return result
def _initialize_corrector(self):
# chinese common char
self.cn_char_set = self.load_set_file(self.common_char_path)
# same pinyin
self.same_pinyin = self.load_same_pinyin(self.same_pinyin_text_path)
# same stroke
self.same_stroke = self.load_same_stroke(self.same_stroke_text_path)
self.initialized_corrector = True
def check_corrector_initialized(self):
if not self.initialized_corrector:
self._initialize_corrector()
def get_same_pinyin(self, char):
"""
取同音字
:param char:
:return:
"""
self.check_corrector_initialized()
return self.same_pinyin.get(char, set())
def get_same_stroke(self, char):
"""
取形似字
:param char:
:return:
"""
self.check_corrector_initialized()
return self.same_stroke.get(char, set())
def known(self, words):
"""
取得词序列中属于常用词部分
:param words:
:return:
"""
self.check_detector_initialized()
return set(word for word in words if word in self.word_freq)
def _confusion_char_set(self, c):
return self.get_same_pinyin(c).union(self.get_same_stroke(c))
def _confusion_word_set(self, word):
confusion_word_set = set()
candidate_words = list(self.known(edit_distance_word(word, self.cn_char_set)))
for candidate_word in candidate_words:
if lazy_pinyin(candidate_word) == lazy_pinyin(word):
# same pinyin
confusion_word_set.add(candidate_word)
return confusion_word_set
def _confusion_custom_set(self, word):
confusion_word_set = set()
if word in self.custom_confusion:
confusion_word_set = {self.custom_confusion[word]}
return confusion_word_set
def generate_items(self, word, fragment=1):
"""
生成纠错候选集
:param word:
:param fragment: 分段
:return:
"""
self.check_corrector_initialized()
# 1字
candidates_1 = []
# 2字
candidates_2 = []
# 多于2字
candidates_3 = []
# same pinyin word
candidates_1.extend(self._confusion_word_set(word))
# custom confusion word
candidates_1.extend(self._confusion_custom_set(word))
# same pinyin char
if len(word) == 1:
# same one char pinyin
confusion = [i for i in self._confusion_char_set(word[0]) if i]
candidates_1.extend(confusion)
if len(word) == 2:
# same first char pinyin
confusion = [i + word[1:] for i in self._confusion_char_set(word[0]) if i]
candidates_2.extend(confusion)
# same last char pinyin
confusion = [word[:-1] + i for i in self._confusion_char_set(word[-1]) if i]
candidates_2.extend(confusion)
if len(word) > 2:
# same mid char pinyin
confusion = [word[0] + i + word[2:] for i in self._confusion_char_set(word[1])]
candidates_3.extend(confusion)
# same first word pinyin
confusion_word = [i + word[-1] for i in self._confusion_word_set(word[:-1])]
candidates_3.extend(confusion_word)
# same last word pinyin
confusion_word = [word[0] + i for i in self._confusion_word_set(word[1:])]
candidates_3.extend(confusion_word)
# add all confusion word list
confusion_word_set = set(candidates_1 + candidates_2 + candidates_3)
confusion_word_list = [item for item in confusion_word_set if is_chinese_string(item)]
confusion_sorted = sorted(confusion_word_list, key=lambda k: self.word_frequency(k), reverse=True)
return confusion_sorted[:len(confusion_word_list) // fragment + 1]
def get_lm_correct_item(self, cur_item, candidates, before_sent, after_sent, threshold=57):
"""
通过语言模型纠正字词错误
:param cur_item: 当前词
:param candidates: 候选词
:param before_sent: 前半部分句子
:param after_sent: 后半部分句子
:param threshold: ppl阈值, 原始字词替换后大于ppl则是错误
:return: str, correct item, 正确的字词
"""
result = cur_item
if cur_item not in candidates:
candidates.append(cur_item)
ppl_scores = {i: self.ppl_score(list(before_sent + i + after_sent)) for i in candidates}
sorted_ppl_scores = sorted(ppl_scores.items(), key=lambda d: d[1])
# 增加正确字词的修正范围,减少误纠
top_items = []
top_score = 0.0
for i, v in enumerate(sorted_ppl_scores):
v_word = v[0]
v_score = v[1]
if i == 0:
top_score = v_score
top_items.append(v_word)
# 通过阈值修正范围
elif v_score < top_score + threshold:
top_items.append(v_word)
else:
break
if cur_item not in top_items:
result = top_items[0]
return result
def correct(self, text):
"""
句子改错
:param text: 文本
:return: 改正后的句子, list(wrong, right, begin_idx, end_idx)
"""
text_new = ''
details = []
self.check_corrector_initialized()
# 编码统一,utf-8 to unicode
text = convert_to_unicode(text)
# 长句切分为短句
blocks = self.split_2_short_text(text, include_symbol=True)
for blk, idx in blocks:
maybe_errors = self.detect_short(blk, idx)
for cur_item, begin_idx, end_idx, err_type in maybe_errors:
# 纠错,逐个处理
before_sent = blk[:(begin_idx - idx)]
after_sent = blk[(end_idx - idx):]
# 困惑集中指定的词,直接取结果
if err_type == ErrorType.confusion:
corrected_item = self.custom_confusion[cur_item]
else:
# 取得所有可能正确的词
candidates = self.generate_items(cur_item)
if not candidates:
continue
corrected_item = self.get_lm_correct_item(cur_item, candidates, before_sent, after_sent)
# output
if corrected_item != cur_item:
blk = before_sent + corrected_item + after_sent
detail_word = [cur_item, corrected_item, begin_idx, end_idx]
details.append(detail_word)
text_new += blk
details = sorted(details, key=operator.itemgetter(2))
return text_new, details