-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.c
209 lines (209 loc) · 6.09 KB
/
test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//#define _CRT_SECURE_NO_WARNINGS
//#include <stdio.h>
//#include <time.h>
//#include <math.h>
//#include <stdlib.h>
//
//#include "util.h"
//#include "bitmapStruct.h"
//#include "fileManage.h"
//#include "preprocess.h"
//
//#define SAMPLE_CNT 2 //用来表示已经知道的数据样本的数量,也就是训练样本的数量
//#define OUTPUT_CNT 34 //表示输出层的输出个数
//#define NEURON_CNT 20 // 表示隐藏层神经元的数量
//#define TRAIN_CNT 500 //来表示训练的次数
//#define A 0.2
//#define B 0.4
//#define a 0.2
//#define b 0.3
//
//double sampleInput[SAMPLE_CNT][FEATURES_CNT], //存储SAMPLE_CNT个样本的特征值
//sampleOutput[SAMPLE_CNT][OUTPUT_CNT] = { 0 }, //存储SAMPLE_CNT个样本车牌号的实际值的概率,只有一个元素为1,其余为0
//inputLayerWeight[NEURON_CNT][FEATURES_CNT], // 表示某个输入对某个神经元的权重
//outputLayerWeight[OUTPUT_CNT][NEURON_CNT], // 来表示某个神经元对某个输出的权重
//activationValue[NEURON_CNT], // 隐含层的激活值
//networkOutput[OUTPUT_CNT], //存储BP神经网络的输出
//maxIn[FEATURES_CNT], minIn[FEATURES_CNT],
//maxOut[OUTPUT_CNT], minOut[OUTPUT_CNT],
//outputLayerWeightDiff[OUTPUT_CNT][NEURON_CNT], //某个神经元对某个输出的权重的修正量
//inputLayerWeightDiff[NEURON_CNT][FEATURES_CNT]; //输入对某个神经元的权重的修正量
//double e; //误差
//int realNumIndex[SAMPLE_CNT] = { 0 }; //指定sampleOutput元素为1时的下标
//
//
// //读取所有样本的特征值和实际输出对应的编号
//void readData(char* fileName, int mode) {
// FILE *fpFeatures, *fpCarNum, *fpWeight;
// int i, j;
// double temp;
//
// //fpFeatures = openTextFile(TRAIN_FEATRUES_PATH, "r");
// fpFeatures = openTextFile(fileName, "r");
// for (i = 0;i<SAMPLE_CNT;i++) //读入所有样本的特征值
// for (j = 0; j<FEATURES_CNT; j++)
// fscanf(fpFeatures, "%lf", &sampleInput[i][j]);
// fclose(fpFeatures);
//
// if (mode == TRAIN_MODE) { //训练模式
// fpCarNum = openTextFile(CAR_NUM_PATH, "r");
// //for(i=0;i<SAMPLE_CNT;i++) //读入所有样本的特征值
// // for(j=0; j<FEATURES_CNT; j++)
// // sampleOutput[i][j] = 0;
// for (i = 0;i<SAMPLE_CNT;i++) { //读入所有样本的实际值对应的编号
// fscanf(fpCarNum, "%d", &realNumIndex[i]);
// sampleOutput[i][realNumIndex[i]] = 1;
// }
// fclose(fpCarNum);
// }
// else if (mode == TEST_MODE) {
// //权重
// fpWeight = openTextFile(WEIGHT_PATH, "r");
// for (i = 0; i < NEURON_CNT; ++i) {
// for (j = 0; j < FEATURES_CNT; ++j) {
// fscanf(fpWeight, "%lf", &temp);
// inputLayerWeight[i][j] = temp;
// }
// }
//
// for (i = 0; i < NEURON_CNT; ++i) {
// for (j = 0; j < OUTPUT_CNT; ++j) {
// fscanf(fpWeight, "%lf", &temp);
// outputLayerWeight[j][i] = temp;
// }
// }
// }
//}
//
////初始化神经网络,包括输入层特征值的归一化和权重的随机初始化
//void initBPNework(int mode) {
// int i, j;
// for (i = 0; i<FEATURES_CNT; i++) {
// minIn[i] = maxIn[i] = sampleInput[0][i];
// for (j = 0; j<SAMPLE_CNT; j++)
// {
// maxIn[i] = maxIn[i]>sampleInput[j][i] ? maxIn[i] : sampleInput[j][i];
// minIn[i] = minIn[i]<sampleInput[j][i] ? minIn[i] : sampleInput[j][i];
// }
// }
// // 归一化处理
// for (i = 0; i < FEATURES_CNT; i++)
// for (j = 0; j < SAMPLE_CNT; j++)
// sampleInput[j][i] = (sampleInput[j][i] - minIn[i] + 1) / (maxIn[i] - minIn[i] + 1);
//
// /*for(i = 0; i < SAMPLE_CNT; i++)
// sampleOutput[i] /= OUTPUT_CNT;*/
//
// if (mode == TRAIN_MODE) {
// //权重随机初始化
// for (i = 0; i < NEURON_CNT; ++i) {
// for (j = 0; j < FEATURES_CNT; ++j) {
// inputLayerWeight[i][j] = (rand()*2.0 / RAND_MAX - 1) / 2;
// inputLayerWeightDiff[i][j] = 0;
// }
// }
//
// for (i = 0; i < NEURON_CNT; ++i) {
// for (j = 0; j < OUTPUT_CNT; ++j) {
// outputLayerWeight[j][i] = (rand()*2.0 / RAND_MAX - 1) / 2;
// outputLayerWeightDiff[j][i] = 0;
// }
// }
// }
//
//}
//
//void computO(int var) {
// int i, j;
// double sum;
// //输入层到隐含层的输出
// for (i = 0; i < NEURON_CNT; ++i) {
// sum = 0;
// for (j = 0; j < FEATURES_CNT; ++j)
// sum += inputLayerWeight[i][j] * sampleInput[var][j];
// activationValue[i] = 1 / (1 + exp(-1 * sum));
// }
// /* 隐藏层到输出层输出 */
// for (i = 0; i < OUTPUT_CNT; ++i) {
// sum = 0;
// for (j = 0; j < NEURON_CNT; ++j)
// sum += outputLayerWeight[i][j] * activationValue[j];
//
// networkOutput[i] = sum;
// }
// printArrDbe(networkOutput, OUTPUT_CNT);
//}
//
//void backUpdate(int var)
//{
// int i, j;
// double t;
// for (i = 0; i < NEURON_CNT; ++i)
// {
// t = 0;
// for (j = 0; j < OUTPUT_CNT; ++j) {
// t += (networkOutput[j] - sampleOutput[var][j])*outputLayerWeight[j][i];
//
// outputLayerWeightDiff[j][i] = A*outputLayerWeightDiff[j][i] + B*(networkOutput[j] - sampleOutput[var][j])*activationValue[i];
// outputLayerWeight[j][i] -= outputLayerWeightDiff[j][i];
// }
//
// for (j = 0; j < FEATURES_CNT; ++j) {
// inputLayerWeightDiff[i][j] = a*inputLayerWeightDiff[i][j] + b*t*activationValue[i] * (1 - activationValue[i])*sampleInput[var][j];
// inputLayerWeight[i][j] -= inputLayerWeightDiff[i][j];
// }
// }
//}
//
//void writeNeuron()
//{
// FILE *fpNeuron;
// int i, j;
// fpNeuron = openTextFile(WEIGHT_PATH, "w");
// for (i = 0; i < NEURON_CNT; ++i)
// for (j = 0; j < FEATURES_CNT; ++j)
// fprintf(fpNeuron, "%lf ", inputLayerWeight[i][j]);
//
// fprintf(fpNeuron, "\n\n\n\n");
//
// for (i = 0; i < NEURON_CNT; ++i)
// for (j = 0; j < OUTPUT_CNT; ++j)
// fprintf(fpNeuron, "%lf ", outputLayerWeight[j][i]);
//
// fclose(fpNeuron);
//}
//
//void trainNetwork() {
// int i, c = 0;
// do {
// e = 0;
// for (i = 0; i < SAMPLE_CNT; ++i) {
// computO(i);
// //for (j = 0; j < OUTPUT_CNT; ++j)
// e += fabs(networkOutput[realNumIndex[i]] - sampleOutput[i][realNumIndex[i]]);
// backUpdate(i);
// }
// printf("%d %lf\n", c, e / SAMPLE_CNT);
// c++;
// } while (c<TRAIN_CNT && e / SAMPLE_CNT>0.01);
// printArrDbe(networkOutput, FEATURES_CNT);
//}
//
////void trainNetworkMain()
////{
//// int mode = 1, i;
//// readData(TRAIN_FEATRUES_PATH, mode);
//// initBPNework(mode);
//// if (mode == TRAIN_MODE) {
//// trainNetwork();
//// writeNeuron();
//// }
//// else if (mode == TEST_MODE) {
//// for (i = 0; i<SAMPLE_CNT; ++i) {
//// computO(i);
//// printf("%d \n", getExtremumIndex(networkOutput, OUTPUT_CNT, 1));
//// }
//// }
////}
//
//