-
Notifications
You must be signed in to change notification settings - Fork 8
/
model.py
412 lines (360 loc) · 13.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# based on https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat
import logging
import os
from functools import partial
from threading import Thread
from typing import Iterator, Optional
import json5
import peft.tuners.lora.layer as lora_layer
import torch
from huggingface_hub import hf_hub_download
from peft import PeftModel
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
TrainerCallback,
TrainerControl,
TrainerState,
TrainingArguments,
)
from trl import SFTTrainer
from create_squad_dataset import NO_RESPONSE, REASONING, config, is_exact_match
from llama_squad import LlamaSquadModel
handler = logging.StreamHandler()
logger = logging.getLogger()
logger.addHandler(handler)
logger.setLevel(logging.INFO)
def add_reasoning_tokens(
num_reasoning_tokens: int,
multiple_reasoning_tokens: bool,
tokenizer: AutoTokenizer,
) -> torch.Tensor:
reasoning_token_ids = torch.tensor([])
# add special <blah> tokens
if num_reasoning_tokens > 0:
reasoning_tokens = (
[f"<blah_{i}>" for i in range(num_reasoning_tokens)]
if multiple_reasoning_tokens
else ["<blah>"]
)
tokenizer.add_special_tokens({"additional_special_tokens": reasoning_tokens})
reasoning_token_ids = torch.tensor(
tokenizer.encode("".join(reasoning_tokens), add_special_tokens=False)
)
return reasoning_token_ids
def get_model_and_tokenizer(
model_name: str,
adapter_name: Optional[str] = None,
tokenizer_name: Optional[str] = None,
quantize: bool = False,
load_in_4bit: bool = True,
bnb_4bit_quant_type: str = "nf4",
bnb_4bit_compute_dtype: torch.dtype = torch.float16,
bnb_4bit_use_double_quant: bool = False,
) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
if quantize:
bnb_config = BitsAndBytesConfig(
load_in_4bit=load_in_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=bnb_4bit_compute_dtype,
bnb_4bit_use_double_quant=bnb_4bit_use_double_quant,
)
else:
bnb_config = None
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name if tokenizer_name else model_name,
trust_remote_code=True,
use_fast=True,
)
tokenizer.pad_token = tokenizer.eos_token
reasoning_tokens = add_reasoning_tokens(
num_reasoning_tokens=config.num_reasoning_tokens,
multiple_reasoning_tokens=config.multiple_reasoning_tokens,
tokenizer=tokenizer,
)
model = LlamaSquadModel.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
use_auth_token=True,
num_new_tokens=reasoning_tokens.shape[0],
)
model.patch_embeddings()
if adapter_name is not None:
if hasattr(model, "new_embedding"):
checkpoint = os.path.join(adapter_name, "embedding.pt")
if not os.path.exists(checkpoint):
checkpoint = hf_hub_download(
adapter_name,
"embedding.pt",
)
model.new_embedding.weight = torch.nn.Parameter(
torch.load(checkpoint, weights_only=True)
.to(model.new_embedding.weight.dtype)
.to(model.new_embedding.weight.device)
)
model = PeftModel.from_pretrained(model, adapter_name, device_map="auto")
return model, tokenizer, reasoning_tokens
def get_prompt(
tokenizer: AutoTokenizer,
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
) -> str:
messages = [{"role": "system", "content": system_prompt}]
for user_message, assistant_message in chat_history:
messages.append({"role": "user", "content": user_message})
messages.append({"role": "assistant", "content": assistant_message})
messages.append({"role": "user", "content": message})
if len(chat_history) == 0:
prompt = tokenizer.apply_chat_template(
messages + [{"role": "assistant", "content": "PLACEHOLDER"}],
tokenize=False,
add_generation_prompt=False,
)
return prompt[: prompt.rfind("PLACEHOLDER")] + REASONING
return tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
def get_input_token_length(
tokenizer: AutoTokenizer,
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
) -> int:
prompt = get_prompt(tokenizer, message, chat_history, system_prompt)
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)[
"input_ids"
]
return input_ids.shape[-1]
def run(
model: AutoModelForCausalLM,
tokenizer: AutoTokenizer,
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
) -> Iterator[str]:
prompt = get_prompt(tokenizer, message, chat_history, system_prompt)
inputs = tokenizer([prompt], return_tensors="pt", add_special_tokens=False).to(
"cuda"
)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def extract_answer(text):
text = text[text.find("{") :]
text = text[: text.find("}") + 1]
try:
# JSON5 is a little less picky than JSON
answer = json5.loads(text)["answer"]
except:
answer = None
return answer
class StopAfterTokens(StoppingCriteria):
def __init__(self, tokens: int):
self.tokens = torch.tensor(tokens)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
self.tokens = self.tokens.to(input_ids.device)
return input_ids[0][-len(self.tokens)] == self.tokens
def get_answer(messages, pipeline, num_beams=None, force_answer=True):
assistant_messages = [
message
for message in range(len(messages))
if messages[message]["role"] == "assistant"
]
for _, assistant_message in enumerate(assistant_messages):
if force_answer:
force = f"{REASONING}\n```json"
prompt = pipeline.tokenizer.apply_chat_template(
messages[:assistant_message]
+ [{"role": "assistant", "content": "PLACEHOLDER"}],
tokenize=False,
)
prompt = prompt[: prompt.rfind("PLACEHOLDER")] + force
stopping_criteria = StoppingCriteriaList(
[
StopAfterTokens(
[
pipeline.tokenizer.vocab.get(
"}Ċ", pipeline.tokenizer.vocab["}"]
)
]
)
]
)
else:
force = ""
prompt = pipeline.tokenizer.apply_chat_template(
messages[:assistant_message], tokenize=False, add_generation_prompt=True
)
stopping_criteria = None
response = pipeline(
prompt,
do_sample=False,
num_beams=num_beams,
num_return_sequences=1,
max_new_tokens=512,
temperature=None,
top_p=None,
stopping_criteria=stopping_criteria,
)[0]["generated_text"]
response = response[len(prompt) :].strip()
messages[assistant_message] = {"role": "assistant", "content": force + response}
return extract_answer(response), response
class LlamaSquadCheckpointCallback(TrainerCallback):
def __init__(self, model: LlamaSquadModel):
self.model = model
def on_save(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
if hasattr(self.model, "new_embedding"):
checkpoint = os.path.join(
args.output_dir, f"checkpoint-{state.global_step}", "embedding.pt"
)
torch.save(self.model.new_embedding.weight, checkpoint)
class LlamaSquadSFTTrainer(SFTTrainer):
def __init__(
self,
answer_start_tokens: torch.Tensor,
answer_end_tokens: torch.Tensor,
num_reasoning_tokens: int,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.answer_start_tokens = answer_start_tokens
self.answer_end_tokens = answer_end_tokens
self.num_reasoning_tokens = num_reasoning_tokens
self.stopping_criteria = StoppingCriteriaList(
[StopAfterTokens(self.answer_end_tokens)]
)
if self.num_reasoning_tokens > 0:
self.model.base_model.model.model.embed_tokens.new_embedding.weight.requires_grad = (
True
)
def load_embedding(self, checkpoint):
if hasattr(self.model.base_model.model.model.embed_tokens, "new_embedding"):
self.model.base_model.model.model.embed_tokens.new_embedding.weight = torch.nn.Parameter(
torch.load(
os.path.join(checkpoint, "embedding.pt"), weights_only=True
).to(
self.model.base_model.model.model.embed_tokens.new_embedding.weight.dtype
)
)
def evaluate(self, **kwargs):
def cast_hook(dtype, module, inputs):
return (inputs[0].to(dtype),)
# NFI why this is necessary here but not during training
hook_handles = []
for _, module in self.model.named_modules():
if isinstance(module, lora_layer.Linear):
hook_handles.append(
module.register_forward_pre_hook(
partial(cast_hook, self.model.dtype)
)
)
padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = "left"
exact_match = 0
has_answer = 0
has_answer_correct = 0
no_answer_correct = 0
answer_start_tokens = self.answer_start_tokens.to(self.model.device)
answer_end_tokens = self.answer_end_tokens.to(self.model.device)
for item in tqdm(self.eval_dataset, desc="Evaluating"):
input_ids = torch.tensor(item["input_ids"]).to(self.model.device)
window = input_ids.unfold(0, answer_start_tokens.shape[0], 1)
answer_starts = (
(window == answer_start_tokens).all(dim=1).nonzero()[:, 0]
+ answer_start_tokens.shape[0]
+ self.num_reasoning_tokens
+ 1
)
window = input_ids.unfold(0, answer_end_tokens.shape[0], 1)
answer_ends = (window == answer_end_tokens).all(dim=1).nonzero()[
:, 0
] + answer_end_tokens.shape[0]
offset = 0
for answer_start in answer_starts:
answer_end = answer_ends[answer_ends > answer_start][0] + offset
answer_start = answer_start + offset
answers = extract_answer(
self.tokenizer.decode(
input_ids[answer_start:], skip_special_tokens=True
)
)
output = self.model.generate(
input_ids=input_ids[:answer_start].unsqueeze(0),
attention_mask=torch.ones_like(input_ids[:answer_start]).unsqueeze(
0
),
do_sample=False,
num_return_sequences=1,
max_new_tokens=512,
temperature=None,
top_p=None,
stopping_criteria=self.stopping_criteria,
pad_token_id=self.tokenizer.pad_token_id,
)
model_answer = extract_answer(
self.tokenizer.decode(
output[0, answer_start - 1 :], skip_special_tokens=True
)
)
input_ids = torch.concat(
[
input_ids[:answer_start],
output[0, answer_start:],
input_ids[answer_end:],
]
)
offset += output.shape[1] - answer_end
if answers is None:
logger.warn("Answer not found in prompt, skipping...")
continue
correct = 1 if is_exact_match(model_answer, answers) else 0
exact_match += correct
if answers != [NO_RESPONSE]:
has_answer += 1
has_answer_correct += correct
else:
no_answer_correct += correct
exact_match /= len(self.eval_dataset)
has_answer_correct /= has_answer
no_answer_correct = (
no_answer_correct / (len(self.eval_dataset) - has_answer)
if len(self.eval_dataset) - has_answer > 0
else 1
)
metrics = {
"eval_exact_match": exact_match,
"eval_has_answer_correct": has_answer_correct,
"eval_no_answer_correct": no_answer_correct,
}
self.tokenizer.padding_side = padding_side
for hook_handle in hook_handles:
hook_handle.remove()
self.log(metrics)
return metrics