-
Notifications
You must be signed in to change notification settings - Fork 149
/
main.swift
56 lines (47 loc) · 1.92 KB
/
main.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Datasets
import TensorFlow
import TrainingLoop
let epochCount = 12
let batchSize = 128
// Until https://github.com/tensorflow/swift-apis/issues/993 is fixed, default to the eager-mode
// device on macOS instead of X10.
#if os(macOS)
let device = Device.defaultTFEager
#else
let device = Device.defaultXLA
#endif
let dataset = MNIST(batchSize: batchSize, on: device)
// The LeNet-5 model, equivalent to `LeNet` in `ImageClassificationModels`.
var classifier = Sequential {
Conv2D<Float>(filterShape: (5, 5, 1, 6), padding: .same, activation: relu)
AvgPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
Conv2D<Float>(filterShape: (5, 5, 6, 16), activation: relu)
AvgPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
Flatten<Float>()
Dense<Float>(inputSize: 400, outputSize: 120, activation: relu)
Dense<Float>(inputSize: 120, outputSize: 84, activation: relu)
Dense<Float>(inputSize: 84, outputSize: 10)
}
var optimizer = SGD(for: classifier, learningRate: 0.1)
var trainingLoop = TrainingLoop(
training: dataset.training,
validation: dataset.validation,
optimizer: optimizer,
lossFunction: softmaxCrossEntropy,
metrics: [.accuracy],
callbacks: [try! CSVLogger().log])
trainingLoop.statisticsRecorder!.setReportTrigger(.endOfEpoch)
try! trainingLoop.fit(&classifier, epochs: epochCount, on: device)