-
Notifications
You must be signed in to change notification settings - Fork 0
/
spi6.py
816 lines (641 loc) · 22.6 KB
/
spi6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
""" SPI - Simple Pascal Interpreter. Part 13. """
###############################################################################
# #
# LEXER #
# #
###############################################################################
# Token types
#
# EOF (end-of-file) token is used to indicate that
# there is no more input left for lexical analysis
INTEGER = 'INTEGER'
REAL = 'REAL'
INTEGER_CONST = 'INTEGER_CONST'
REAL_CONST = 'REAL_CONST'
PLUS = 'PLUS'
MINUS = 'MINUS'
MUL = 'MUL'
INTEGER_DIV = 'INTEGER_DIV'
FLOAT_DIV = 'FLOAT_DIV'
LPAREN = 'LPAREN'
RPAREN = 'RPAREN'
ID = 'ID'
ASSIGN = 'ASSIGN'
BEGIN = 'BEGIN'
END = 'END'
SEMI = 'SEMI'
DOT = 'DOT'
PROGRAM = 'PROGRAM'
VAR = 'VAR'
COLON = 'COLON'
COMMA = 'COMMA'
PROCEDURE = 'PROCEDURE'
EOF = 'EOF'
class Token(object):
def __init__(self, type, value):
self.type = type
self.value = value
def __str__(self):
"""String representation of the class instance.
Examples:
Token(INTEGER, 3)
Token(PLUS, '+')
Token(MUL, '*')
"""
return 'Token({type}, {value})'.format(
type=self.type,
value=repr(self.value)
)
def __repr__(self):
return self.__str__()
RESERVED_KEYWORDS = {
'PROGRAM': Token('PROGRAM', 'PROGRAM'),
'VAR': Token('VAR', 'VAR'),
'DIV': Token('INTEGER_DIV', 'DIV'),
'INTEGER': Token('INTEGER', 'INTEGER'),
'REAL': Token('REAL', 'REAL'),
'BEGIN': Token('BEGIN', 'BEGIN'),
'END': Token('END', 'END'),
'PROCEDURE': Token('PROCEDURE', 'PROCEDURE'),
}
class Lexer(object):
def __init__(self, text):
# client string input, e.g. "4 + 2 * 3 - 6 / 2"
self.text = text
# self.pos is an index into self.text
self.pos = 0
self.current_char = self.text[self.pos]
def error(self):
raise Exception('Invalid character')
def advance(self):
"""Advance the `pos` pointer and set the `current_char` variable."""
self.pos += 1
if self.pos > len(self.text) - 1:
self.current_char = None # Indicates end of input
else:
self.current_char = self.text[self.pos]
def peek(self):
peek_pos = self.pos + 1
if peek_pos > len(self.text) - 1:
return None
else:
return self.text[peek_pos]
def skip_whitespace(self):
while self.current_char is not None and self.current_char.isspace():
self.advance()
def skip_comment(self):
while self.current_char != '}':
self.advance()
self.advance() # the closing curly brace
def number(self):
"""Return a (multidigit) integer or float consumed from the input."""
result = ''
while self.current_char is not None and self.current_char.isdigit():
result += self.current_char
self.advance()
if self.current_char == '.':
result += self.current_char
self.advance()
while (
self.current_char is not None and
self.current_char.isdigit()
):
result += self.current_char
self.advance()
token = Token('REAL_CONST', float(result))
else:
token = Token('INTEGER_CONST', int(result))
return token
def _id(self):
"""Handle identifiers and reserved keywords"""
result = ''
while self.current_char is not None and self.current_char.isalnum():
result += self.current_char
self.advance()
token = RESERVED_KEYWORDS.get(result.upper(), Token(ID, result))
return token
def get_next_token(self):
"""Lexical analyzer (also known as scanner or tokenizer)
This method is responsible for breaking a sentence
apart into tokens. One token at a time.
"""
while self.current_char is not None:
if self.current_char.isspace():
self.skip_whitespace()
continue
if self.current_char == '{':
self.advance()
self.skip_comment()
continue
if self.current_char.isalpha():
return self._id()
if self.current_char.isdigit():
return self.number()
if self.current_char == ':' and self.peek() == '=':
self.advance()
self.advance()
return Token(ASSIGN, ':=')
if self.current_char == ';':
self.advance()
return Token(SEMI, ';')
if self.current_char == ':':
self.advance()
return Token(COLON, ':')
if self.current_char == ',':
self.advance()
return Token(COMMA, ',')
if self.current_char == '+':
self.advance()
return Token(PLUS, '+')
if self.current_char == '-':
self.advance()
return Token(MINUS, '-')
if self.current_char == '*':
self.advance()
return Token(MUL, '*')
if self.current_char == '/':
self.advance()
return Token(FLOAT_DIV, '/')
if self.current_char == '(':
self.advance()
return Token(LPAREN, '(')
if self.current_char == ')':
self.advance()
return Token(RPAREN, ')')
if self.current_char == '.':
self.advance()
return Token(DOT, '.')
self.error()
return Token(EOF, None)
###############################################################################
# #
# PARSER #
# #
###############################################################################
class AST(object):
pass
class BinOp(AST):
def __init__(self, left, op, right):
self.left = left
self.token = self.op = op
self.right = right
class Num(AST):
def __init__(self, token):
self.token = token
self.value = token.value
class UnaryOp(AST):
def __init__(self, op, expr):
self.token = self.op = op
self.expr = expr
class Compound(AST):
"""Represents a 'BEGIN ... END' block"""
def __init__(self):
self.children = []
class Assign(AST):
def __init__(self, left, op, right):
self.left = left
self.token = self.op = op
self.right = right
class Var(AST):
"""The Var node is constructed out of ID token."""
def __init__(self, token):
self.token = token
self.value = token.value
class NoOp(AST):
pass
class Program(AST):
def __init__(self, name, block):
self.name = name
self.block = block
class Block(AST):
def __init__(self, declarations, compound_statement):
self.declarations = declarations
self.compound_statement = compound_statement
class VarDecl(AST):
def __init__(self, var_node, type_node):
self.var_node = var_node
self.type_node = type_node
class Type(AST):
def __init__(self, token):
self.token = token
self.value = token.value
class ProcedureDecl(AST):
def __init__(self, proc_name, block_node):
self.proc_name = proc_name
self.block_node = block_node
class Parser(object):
def __init__(self, lexer):
self.lexer = lexer
# set current token to the first token taken from the input
self.current_token = self.lexer.get_next_token()
def error(self):
raise Exception('Invalid syntax')
def eat(self, token_type):
# compare the current token type with the passed token
# type and if they match then "eat" the current token
# and assign the next token to the self.current_token,
# otherwise raise an exception.
if self.current_token.type == token_type:
self.current_token = self.lexer.get_next_token()
else:
self.error()
def program(self):
"""program : PROGRAM variable SEMI block DOT"""
self.eat(PROGRAM)
var_node = self.variable()
prog_name = var_node.value
self.eat(SEMI)
block_node = self.block()
program_node = Program(prog_name, block_node)
self.eat(DOT)
return program_node
def block(self):
"""block : declarations compound_statement"""
declaration_nodes = self.declarations()
compound_statement_node = self.compound_statement()
node = Block(declaration_nodes, compound_statement_node)
return node
def declarations(self):
"""declarations : VAR (variable_declaration SEMI)+
| (PROCEDURE ID SEMI block SEMI)*
| empty
"""
declarations = []
while True:
if self.current_token.type == VAR:
self.eat(VAR)
while self.current_token.type == ID:
var_decl = self.variable_declaration()
declarations.extend(var_decl)
self.eat(SEMI)
elif self.current_token.type == PROCEDURE:
self.eat(PROCEDURE)
proc_name = self.current_token.value
self.eat(ID)
self.eat(SEMI)
block_node = self.block()
proc_decl = ProcedureDecl(proc_name, block_node)
declarations.append(proc_decl)
self.eat(SEMI)
else:
break
return declarations
def variable_declaration(self):
"""variable_declaration : ID (COMMA ID)* COLON type_spec"""
var_nodes = [Var(self.current_token)] # first ID
self.eat(ID)
while self.current_token.type == COMMA:
self.eat(COMMA)
var_nodes.append(Var(self.current_token))
self.eat(ID)
self.eat(COLON)
type_node = self.type_spec()
var_declarations = [
VarDecl(var_node, type_node)
for var_node in var_nodes
]
return var_declarations
def type_spec(self):
"""type_spec : INTEGER
| REAL
"""
token = self.current_token
if self.current_token.type == INTEGER:
self.eat(INTEGER)
else:
self.eat(REAL)
node = Type(token)
return node
def compound_statement(self):
"""
compound_statement: BEGIN statement_list END
"""
self.eat(BEGIN)
nodes = self.statement_list()
self.eat(END)
root = Compound()
for node in nodes:
root.children.append(node)
return root
def statement_list(self):
"""
statement_list : statement
| statement SEMI statement_list
"""
node = self.statement()
results = [node]
while self.current_token.type == SEMI:
self.eat(SEMI)
results.append(self.statement())
return results
def statement(self):
"""
statement : compound_statement
| assignment_statement
| empty
"""
if self.current_token.type == BEGIN:
node = self.compound_statement()
elif self.current_token.type == ID:
node = self.assignment_statement()
else:
node = self.empty()
return node
def assignment_statement(self):
"""
assignment_statement : variable ASSIGN expr
"""
left = self.variable()
token = self.current_token
self.eat(ASSIGN)
right = self.expr()
node = Assign(left, token, right)
return node
def variable(self):
"""
variable : ID
"""
node = Var(self.current_token)
self.eat(ID)
return node
def empty(self):
"""An empty production"""
return NoOp()
def expr(self):
"""
expr : term ((PLUS | MINUS) term)*
"""
node = self.term()
while self.current_token.type in (PLUS, MINUS):
token = self.current_token
if token.type == PLUS:
self.eat(PLUS)
elif token.type == MINUS:
self.eat(MINUS)
node = BinOp(left=node, op=token, right=self.term())
return node
def term(self):
"""term : factor ((MUL | INTEGER_DIV | FLOAT_DIV) factor)*"""
node = self.factor()
while self.current_token.type in (MUL, INTEGER_DIV, FLOAT_DIV):
token = self.current_token
if token.type == MUL:
self.eat(MUL)
elif token.type == INTEGER_DIV:
self.eat(INTEGER_DIV)
elif token.type == FLOAT_DIV:
self.eat(FLOAT_DIV)
node = BinOp(left=node, op=token, right=self.factor())
return node
def factor(self):
"""factor : PLUS factor
| MINUS factor
| INTEGER_CONST
| REAL_CONST
| LPAREN expr RPAREN
| variable
"""
token = self.current_token
if token.type == PLUS:
self.eat(PLUS)
node = UnaryOp(token, self.factor())
return node
elif token.type == MINUS:
self.eat(MINUS)
node = UnaryOp(token, self.factor())
return node
elif token.type == INTEGER_CONST:
self.eat(INTEGER_CONST)
return Num(token)
elif token.type == REAL_CONST:
self.eat(REAL_CONST)
return Num(token)
elif token.type == LPAREN:
self.eat(LPAREN)
node = self.expr()
self.eat(RPAREN)
return node
else:
node = self.variable()
return node
def parse(self):
"""
program : PROGRAM variable SEMI block DOT
block : declarations compound_statement
declarations : VAR (variable_declaration SEMI)+
| (PROCEDURE ID SEMI block SEMI)*
| empty
variable_declaration : ID (COMMA ID)* COLON type_spec
type_spec : INTEGER
compound_statement : BEGIN statement_list END
statement_list : statement
| statement SEMI statement_list
statement : compound_statement
| assignment_statement
| empty
assignment_statement : variable ASSIGN expr
empty :
expr : term ((PLUS | MINUS) term)*
term : factor ((MUL | INTEGER_DIV | FLOAT_DIV) factor)*
factor : PLUS factor
| MINUS factor
| INTEGER_CONST
| REAL_CONST
| LPAREN expr RPAREN
| variable
variable: ID
"""
node = self.program()
if self.current_token.type != EOF:
self.error()
return node
###############################################################################
# #
# AST visitors (walkers) #
# #
###############################################################################
class NodeVisitor(object):
def visit(self, node):
method_name = 'visit_' + type(node).__name__
visitor = getattr(self, method_name, self.generic_visit)
return visitor(node)
def generic_visit(self, node):
raise Exception('No visit_{} method'.format(type(node).__name__))
###############################################################################
# #
# SYMBOLS, TABLES, SEMANTIC ANALYSIS #
# #
###############################################################################
class Symbol(object):
def __init__(self, name, type=None):
self.name = name
self.type = type
class VarSymbol(Symbol):
def __init__(self, name, type):
super().__init__(name, type)
def __str__(self):
return "<{class_name}(name='{name}', type='{type}')>".format(
class_name=self.__class__.__name__,
name=self.name,
type=self.type,
)
__repr__ = __str__
class BuiltinTypeSymbol(Symbol):
def __init__(self, name):
super().__init__(name)
def __str__(self):
return self.name
def __repr__(self):
return "<{class_name}(name='{name}')>".format(
class_name=self.__class__.__name__,
name=self.name,
)
class SymbolTable(object):
def __init__(self):
self._symbols = {}
self._init_builtins()
def _init_builtins(self):
self.insert(BuiltinTypeSymbol('INTEGER'))
self.insert(BuiltinTypeSymbol('REAL'))
def __str__(self):
symtab_header = 'Symbol table contents'
lines = ['\n', symtab_header, '_' * len(symtab_header)]
lines.extend(
('%7s: %r' % (key, value))
for key, value in self._symbols.items()
)
lines.append('\n')
s = '\n'.join(lines)
return s
__repr__ = __str__
def insert(self, symbol):
print('Insert: %s' % symbol.name)
self._symbols[symbol.name] = symbol
def lookup(self, name):
print('Lookup: %s' % name)
symbol = self._symbols.get(name)
# 'symbol' is either an instance of the Symbol class or None
return symbol
class SemanticAnalyzer(NodeVisitor):
def __init__(self):
self.symtab = SymbolTable()
def visit_Block(self, node):
for declaration in node.declarations:
self.visit(declaration)
self.visit(node.compound_statement)
def visit_Program(self, node):
self.visit(node.block)
def visit_Compound(self, node):
for child in node.children:
self.visit(child)
def visit_NoOp(self, node):
pass
def visit_BinOp(self, node):
self.visit(node.left)
self.visit(node.right)
def visit_VarDecl(self, node):
type_name = node.type_node.value
type_symbol = self.symtab.lookup(type_name)
# We have all the information we need to create a variable symbol.
# Create the symbol and insert it into the symbol table.
var_name = node.var_node.value
var_symbol = VarSymbol(var_name, type_symbol)
# Signal an error if the table alrady has a symbol
# with the same name
if self.symtab.lookup(var_name) is not None:
raise Exception(
"Error: Duplicate identifier '%s' found" % var_name
)
self.symtab.insert(var_symbol)
def visit_Assign(self, node):
# right-hand side
self.visit(node.right)
# left-hand side
self.visit(node.left)
def visit_Var(self, node):
var_name = node.value
var_symbol = self.symtab.lookup(var_name)
if var_symbol is None:
raise Exception(
"Error: Symbol(identifier) not found '%s'" % var_name
)
###############################################################################
# #
# INTERPRETER #
# #
###############################################################################
class Interpreter(NodeVisitor):
def __init__(self, tree):
self.tree = tree
self.GLOBAL_MEMORY = {}
def visit_Program(self, node):
self.visit(node.block)
def visit_Block(self, node):
for declaration in node.declarations:
self.visit(declaration)
self.visit(node.compound_statement)
def visit_VarDecl(self, node):
# Do nothing
pass
def visit_Type(self, node):
# Do nothing
pass
def visit_BinOp(self, node):
if node.op.type == PLUS:
return self.visit(node.left) + self.visit(node.right)
elif node.op.type == MINUS:
return self.visit(node.left) - self.visit(node.right)
elif node.op.type == MUL:
return self.visit(node.left) * self.visit(node.right)
elif node.op.type == INTEGER_DIV:
return self.visit(node.left) // self.visit(node.right)
elif node.op.type == FLOAT_DIV:
return float(self.visit(node.left)) / float(self.visit(node.right))
def visit_Num(self, node):
return node.value
def visit_UnaryOp(self, node):
op = node.op.type
if op == PLUS:
return +self.visit(node.expr)
elif op == MINUS:
return -self.visit(node.expr)
def visit_Compound(self, node):
for child in node.children:
self.visit(child)
def visit_Assign(self, node):
var_name = node.left.value
var_value = self.visit(node.right)
self.GLOBAL_MEMORY[var_name] = var_value
def visit_Var(self, node):
var_name = node.value
var_value = self.GLOBAL_MEMORY.get(var_name)
return var_value
def visit_NoOp(self, node):
pass
def visit_ProcedureDecl(self, node):
pass
def interpret(self):
tree = self.tree
if tree is None:
return ''
return self.visit(tree)
def main():
import sys
text = open(sys.argv[1], 'r').read()
lexer = Lexer(text)
parser = Parser(lexer)
tree = parser.parse()
semantic_analyzer = SemanticAnalyzer()
try:
semantic_analyzer.visit(tree)
except Exception as e:
print(e)
print(semantic_analyzer.symtab)
# interpreter = Interpreter(tree)
# result = interpreter.interpret()
# print('')
# print('Run-time GLOBAL_MEMORY contents:')
# for k, v in sorted(interpreter.GLOBAL_MEMORY.items()):
# print('{} = {}'.format(k, v))
if __name__ == '__main__':
main()