forked from RAIJM/AIMeterReader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
template_matcher.py
83 lines (52 loc) · 2 KB
/
template_matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Read the main image
img_rgb = cv2.imread('analog_full2.jpeg')
# Convert it to grayscale
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
# Read the template
template = cv2.imread('analog_template2.jpeg',0)
# Store width and heigth of template in w and h
w, h = template.shape[::-1]
# Perform match operations.
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
# Specify a threshold
threshold = 0.8
# Store the coordinates of matched area in a numpy array
loc = np.where( res >= threshold)
# Draw a rectangle around the matched region.
for pt in zip(*loc[::-1]):
cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,255,255), 2)
# Show the final image with the matched area.
plt.imshow(img_rgb)
plt.show()
# import cv2
# import numpy as np
# from matplotlib import pyplot as plt
# img = cv2.imread('analog2.jpg',0)
# img2 = img.copy()
# template = cv2.imread('analog_template.jpeg',0)
# w, h = template.shape[::-1]
# # All the 6 methods for comparison in a list
# methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
# 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
# for meth in methods:
# img = img2.copy()
# method = eval(meth)
# # Apply template Matching
# res = cv2.matchTemplate(img,template,method)
# min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
# if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
# top_left = min_loc
# else:
# top_left = max_loc
# bottom_right = (top_left[0] + w, top_left[1] + h)
# cv2.rectangle(img,top_left, bottom_right, 255, 2)
# plt.subplot(121),plt.imshow(res,cmap = 'gray')
# plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
# plt.subplot(122),plt.imshow(img,cmap = 'gray')
# plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
# plt.suptitle(meth)
# plt.show()