Skip to content

Latest commit

 

History

History
77 lines (65 loc) · 1.98 KB

INSTALL.md

File metadata and controls

77 lines (65 loc) · 1.98 KB

Install

# install pytorch 1.1 and torchvision
sudo pip3 install torch==1.1 torchvision

# install apex
cd $INSTALL_DIR
git clone https://github.com/NVIDIA/apex.git
cd apex
sudo python setup.py install --cuda_ext --cpp_ext

# clone Hier-R-CNN
git clone https://github.com/soeaver/Parsing-R-CNN.git

# install other requirements
pip3 install -r requirements.txt

# mask ops
cd Hier-R-CNN
sh make.sh

# make cocoapi
cd Parsing-R-CNN/cocoapi/PythonAPI
mask
cd ../../
ln -s cocoapi/PythonAPI/pycocotools/ ./

Data and Pre-train weights

Make sure to put the files as the following structure:

├─data
│  ├─coco
│  │  ├─images
│  │  │  ├─train2017
│  │  │  ├─val2017
│  │  ├─annotations
│  │  │  ├─DensePoseData
│  │  │  │  ├─densepose_coco_train2017.json
│  │  │  │  ├─densepose_coco_val2017.json
│  │  │  │  ├─densepose_coco_test2017.json
|  |
│  ├─CIHP
│  │  ├─train_img
│  │  │─train_parsing
│  │  │─train_seg
│  │  ├─val_img
│  │  │─val_parsing
│  │  │─val_seg  
│  │  ├─annotations
│  │  │  ├─CIHP_train.json
│  │  │  ├─CIHP_val.json
|  |
│  ├─MHP-v2
│  │  ├─train_img
│  │  │─train_parsing
│  │  │─train_seg
│  │  ├─val_img
│  │  │─val_parsing
│  │  │─val_seg  
│  │  ├─annotations
│  │  │  ├─MHP-v2_train.json
│  │  │  ├─MHP-v2_val.json
|
├─weights
   ├─resnet50_caffe.pth
   ├─resnet101_caffe.pth
   ├─resnext101_32x8d-8ba56ff5.pth

  • Densepose estimation using original coco images.
  • For training and evaluating densepose estimation on Parsing R-CNN, you need fetch DensePose data following original repo