Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Problem with "Tutorial: Getting Started using the LLAMA driver" #218

Open
josephleblanc opened this issue Oct 5, 2023 · 6 comments
Open

Comments

@josephleblanc
Copy link

josephleblanc commented Oct 5, 2023

The Problem

Following the tutorial linked in this project's readme is either incorrect, out of date, or results in a bad build.

Description

I followed the tutorial to get started using the llama driver, and all went well until it asked me to run this command in "Step 4":
python convert.py ./models/alpaca-native

The instructions say that running this in the project root directory should output a ggml-model-f32.bin file in ./models/alpaca-native, however it outputs a file with .gguf extension instead: ggml-model-f32.gguf.
The next instruction asks me to run this command:
./main -m models/alpaca-native/ggml-model-f32.bin -n 128 -p "I love Rust because"
Because there is no ggml-model-f32.bin, this command will not run.

Failed Solutions

I tried to replace the .bin extension with .gguf and run the command the tutorial instructs as this instead:
./main -m models/alpaca-native/ggml-model-f32.gguf -n 128 -p "I love Rust because"
The program runs, and after a minute or two it has this output and is still running:
I love Rust because ÂÄÄÄÄ

While I will yell "AAAA! I love Rust" from time to time, this isn't really what I was hoping for from the program.
What can I do to complete the tutorial successfully?

@lmpn
Copy link

lmpn commented Oct 6, 2023

i'm hitting the same issue

@danbev
Copy link
Contributor

danbev commented Oct 19, 2023

I get the same using output using the alpaca model as well. Note sure if this helps but I can get this working with the Llama-2-7B-Chat-ggml model following the steps below.

Download the model:

$ wget -P models https://huggingface.co/localmodels/Llama-2-7B-Chat-ggml/resolve/main/llama-2-7b-chat.ggmlv3.q4_0.bin

Create a Python virtual environment to run the conversion tool:

$ python3 -m venv llamav
$ source llamav/bin/activate
(llamav) $ pip install -r requirements.txt 
Collecting numpy==1.24.4
  Using cached numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
Collecting sentencepiece==0.1.98
  Using cached sentencepiece-0.1.98-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)
Collecting gguf>=0.1.0
  Using cached gguf-0.4.4-py3-none-any.whl (10 kB)
Installing collected packages: sentencepiece, numpy, gguf
Successfully installed gguf-0.4.4 numpy-1.24.4 sentencepiece-0.1.98

[notice] A new release of pip available: 22.2.2 -> 23.3
[notice] To update, run: pip install --upgrade pip

Convert the model:

(llamav) $ ./convert-llama-ggml-to-gguf.py --input models/llama-2-7b-chat.ggmlv3.q4_0.bin  --output models/llama-2-7b-chat.gguf.q4_0.bin
* Using config: Namespace(input=PosixPath('models/llama-2-7b-chat.ggmlv3.q4_0.bin'), output=PosixPath('models/llama-2-7b-chat.gguf.q4_0.bin'), name=None, desc=None, gqa=1, eps='5.0e-06', context_length=2048, model_metadata_dir=None, vocab_dir=None, vocabtype='spm')

=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===

- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".
* Scanning GGML input file
* File format: GGJTv3 with ftype MOSTLY_Q4_0
* GGML model hyperparameters: <Hyperparameters: n_vocab=32000, n_embd=4096, n_mult=256, n_head=32, n_layer=32, n_rot=128, n_ff=11008, ftype=MOSTLY_Q4_0>

=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===

* Preparing to save GGUF file
* Adding model parameters and KV items
* Adding 32000 vocab item(s)
* Adding 291 tensor(s)
    gguf: write header
    gguf: write metadata
    gguf: write tensors
* Successful completion. Output saved to: models/llama-2-7b-chat.gguf.q4_0.bin

Then run using:

$ ./main -m models/llama-2-7b-chat.gguf.q4_0.bin --prompt "I love Rust because"
Log start
main: build = 1399 (004797f)
main: built with cc (GCC) 12.3.1 20230508 (Red Hat 12.3.1-1) for x86_64-redhat-linux
main: seed  = 1697721286
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from models/llama-2-7b-chat.gguf.q4_0.bin (version GGUF V2 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q4_0     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor    1:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    2:                    output.weight q4_0     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    5:              blk.0.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    6:         blk.0.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    7:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    8:            blk.0.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   10:              blk.0.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   11:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   13:              blk.1.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   14:              blk.1.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   15:         blk.1.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   16:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   17:            blk.1.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   19:              blk.1.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   20:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   22:              blk.2.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   23:              blk.2.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   24:         blk.2.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   25:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   26:            blk.2.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   28:              blk.2.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   29:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   31:              blk.3.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   32:              blk.3.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   33:         blk.3.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   34:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   35:            blk.3.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   37:              blk.3.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   38:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   40:              blk.4.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   41:              blk.4.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   42:         blk.4.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   43:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   44:            blk.4.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   46:              blk.4.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   47:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   49:              blk.5.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   50:              blk.5.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   51:         blk.5.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   52:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   53:            blk.5.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   55:              blk.5.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   56:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   58:              blk.6.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   59:              blk.6.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   60:         blk.6.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   61:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   62:            blk.6.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   64:              blk.6.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   65:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   67:              blk.7.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   68:              blk.7.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   69:         blk.7.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   70:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   71:            blk.7.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   73:              blk.7.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   74:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   76:              blk.8.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   77:              blk.8.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   78:         blk.8.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   79:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   80:            blk.8.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   82:              blk.8.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   83:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   85:              blk.9.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   86:              blk.9.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   87:         blk.9.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   88:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   89:            blk.9.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   91:              blk.9.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   92:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   94:             blk.10.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   95:             blk.10.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   96:        blk.10.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   97:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   98:           blk.10.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  100:             blk.10.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  101:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  103:             blk.11.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  104:             blk.11.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  105:        blk.11.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  106:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  107:           blk.11.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  109:             blk.11.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  110:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  112:             blk.12.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  113:             blk.12.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  114:        blk.12.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  115:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  116:           blk.12.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  118:             blk.12.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  119:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  121:             blk.13.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  122:             blk.13.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  123:        blk.13.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  124:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  125:           blk.13.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  127:             blk.13.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  128:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  130:             blk.14.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  131:             blk.14.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  132:        blk.14.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  133:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  134:           blk.14.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  136:             blk.14.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  137:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  139:             blk.15.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  140:             blk.15.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  141:        blk.15.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  142:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  143:           blk.15.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  145:             blk.15.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  146:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  148:             blk.16.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  149:             blk.16.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  150:        blk.16.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  151:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  152:           blk.16.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  154:             blk.16.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  155:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  157:             blk.17.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  158:             blk.17.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  159:        blk.17.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  160:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  161:           blk.17.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  163:             blk.17.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  164:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  166:             blk.18.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  167:             blk.18.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  168:        blk.18.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  169:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  170:           blk.18.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  172:             blk.18.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  173:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  175:             blk.19.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  176:             blk.19.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  177:        blk.19.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  178:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  179:           blk.19.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  181:             blk.19.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  182:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  184:             blk.20.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  185:             blk.20.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  186:        blk.20.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  187:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  188:           blk.20.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  190:             blk.20.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  191:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  193:             blk.21.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  194:             blk.21.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  195:        blk.21.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  196:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  197:           blk.21.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  199:             blk.21.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  200:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  202:             blk.22.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  203:             blk.22.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  204:        blk.22.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  205:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  206:           blk.22.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  208:             blk.22.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  209:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  211:             blk.23.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  212:             blk.23.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  213:        blk.23.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  214:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  215:           blk.23.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  217:             blk.23.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  218:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  220:             blk.24.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  221:             blk.24.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  222:        blk.24.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  223:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  224:           blk.24.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  226:             blk.24.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  227:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  229:             blk.25.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  230:             blk.25.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  231:        blk.25.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  232:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  233:           blk.25.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  235:             blk.25.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  236:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  238:             blk.26.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  239:             blk.26.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  240:        blk.26.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  241:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  242:           blk.26.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  244:             blk.26.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  245:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  247:             blk.27.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  248:             blk.27.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  249:        blk.27.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  250:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  251:           blk.27.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  253:             blk.27.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  254:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  256:             blk.28.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  257:             blk.28.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  258:        blk.28.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  259:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  260:           blk.28.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  262:             blk.28.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  263:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  265:             blk.29.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  266:             blk.29.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  267:        blk.29.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  268:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  269:           blk.29.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  271:             blk.29.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  272:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  274:             blk.30.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  275:             blk.30.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  276:        blk.30.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  277:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  278:           blk.30.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  280:             blk.30.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  281:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  283:             blk.31.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  284:             blk.31.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  285:        blk.31.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  286:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  287:           blk.31.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  289:             blk.31.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  290:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                        general.description str     
llama_model_loader: - kv   3:                          general.file_type u32     
llama_model_loader: - kv   4:                       llama.context_length u32     
llama_model_loader: - kv   5:                     llama.embedding_length u32     
llama_model_loader: - kv   6:                          llama.block_count u32     
llama_model_loader: - kv   7:                  llama.feed_forward_length u32     
llama_model_loader: - kv   8:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   9:                 llama.attention.head_count u32     
llama_model_loader: - kv  10:              llama.attention.head_count_kv u32     
llama_model_loader: - kv  11:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  12:                       tokenizer.ggml.model str     
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  16:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - kv  17:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  18:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  226 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V2 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 5.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 3.53 GiB (4.50 BPW) 
llm_load_print_meta: general.name   = llama-2-7b-chat.ggmlv3.q4_0.bin
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.10 MB
llm_load_tensors: mem required  = 3615.74 MB
...................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: kv self size  =  256.00 MB
llama_new_context_with_model: compute buffer total size = 76.63 MB

system_info: n_threads = 6 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | 
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = -1, n_keep = 0


I love Rust because it's a programming language that values safety and performance.ϊ It's designed to prevent common programming errors like null pointer dereferences, data races, and buffer overflows, which can lead to crashes or security vulnerabilities. This makes it an excellent choice for building systems that require high reliability, such as operating systems, file systems, and web browsers.

Rust also has a strong focus on performance, with a goal of competing with C++ in terms of execution speed. It achieves this through a combination of language features like zero-cost abstractions, compile-time evaluation of loops, and smart borrowing, which allow for more efficient code generation. Additionally, Rust's ownership system helps prevent data races and other performance-related issues, making it an ideal choice for high-performance applications.

Another advantage of Rust is its growing ecosystem of libraries and frameworks, which provide a wide range of tools and resources for building different types of applications. For example, the `rocket` framework makes it easy to build web applications with Rust, while the `tokio` library provides a lightweight, non-blocking I/O library for building concurrent systems. This means that Rust can be used for a wide range of applications beyond just low-level system programming, and its ecosystem is constantly evolving to support new use cases.

However, it's important to note that Rust may not be the best choice for every project. Some languages like Python or JavaScript are more suitable for certain types of projects, such as data science or web development, due to their ease of use and extensive libraries for those domains. Additionally, Rust's steep learning curve can make it difficult for beginners to pick up, especially compared to more established programming languages like Java or C#.

In conclusion, Rust is an excellent choice for building systems that require safety, performance, and concurrency. Its focus on safety and performance makes it ideal for building high-reliability systems, while its growing ecosystem of libraries and frameworks means it can be used for a wide range of applications beyond just low-level system programming. However, Rust may not be the best choice for every project due to its steep learning curve and limited adoption in certain domains. [end of text]

llama_print_timings:        load time =    2010.55 ms
llama_print_timings:      sample time =    2944.60 ms /   478 runs   (    6.16 ms per token,   162.33 tokens per second)
llama_print_timings: prompt eval time =     477.93 ms /     6 tokens (   79.66 ms per token,    12.55 tokens per second)
llama_print_timings:        eval time =  105234.34 ms /   477 runs   (  220.62 ms per token,     4.53 tokens per second)
llama_print_timings:       total time =  109146.41 ms
Log end

@bayismet
Copy link

bayismet commented Dec 28, 2023

I get the same using output using the alpaca model as well. Note sure if this helps but I can get this working with the Llama-2-7B-Chat-ggml model following the steps below.
...
llama_print_timings: load time = 2010.55 ms
llama_print_timings: sample time = 2944.60 ms / 478 runs ( 6.16 ms per token, 162.33 tokens per second)
llama_print_timings: prompt eval time = 477.93 ms / 6 tokens ( 79.66 ms per token, 12.55 tokens per second)
llama_print_timings: eval time = 105234.34 ms / 477 runs ( 220.62 ms per token, 4.53 tokens per second)
llama_print_timings: total time = 109146.41 ms
Log end

I was just wandering around so for my case, this was a solution. Can't say the same thing about OP. Apparently, the tutorial pages at "https://docs.llm-chain.xyz/" is deprecated.

Also, the code that is shared in LLAMA Driver (Under "Tutorial: Getting Started using the LLAMA driver" page, step 6) expects a GGML model. If I can download a GGML model, what is the point to convert it to gguf? If gguf is better in some ways, so have can I use it in these tutorials?

By the way, here is how I'm trying to use the model in "main.rs":

use llm_chain::executor;
use llm_chain::{parameters, prompt};
use llm_chain::options::*;
use llm_chain::options;

#[tokio::main(flavor = "current_thread")]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let opts = options!(
        Model: ModelRef::from_path("./llama.cpp/models/llama-2-7b-chat/llama-2-7b-chat.gguf.q4_0.bin"), // Notice that we reference the model binary path
        ModelType: "llama",
        MaxContextSize: 512_usize,
        NThreads: 4_usize,
        MaxTokens: 0_usize,
        TopK: 40_i32,
        TopP: 0.95,
        TfsZ: 1.0,
        TypicalP: 1.0,
        Temperature: 0.8,
        RepeatPenalty: 1.1,
        RepeatPenaltyLastN: 64_usize,
        FrequencyPenalty: 0.0,
        PresencePenalty: 0.0,
        Mirostat: 0_i32,
        MirostatTau: 5.0,
        MirostatEta: 0.1,
        PenalizeNl: true,
        StopSequence: vec!["\n".to_string()]
    );
    let exec = executor!(llama, opts)?;
    let res = prompt!("I love Rust because")
        .run(
            &parameters!(),
            &exec,
        )
        .await?;
    println!("{}", res.to_immediate().await?);
    Ok(())
}

And here is the error as result:

karras@DESKTOP-LIGUU1T:/mnt/d/workspaces-ubuntu/llm-chain-demo$ cargo run
    Finished dev [unoptimized + debuginfo] target(s) in 0.50s
     Running `target/debug/llm-chain-demo`
llama.cpp: loading model from ./llama.cpp/models/llama-2-7b-chat/llama-2-7b-chat.gguf.q4_0.bin
error loading model: unknown (magic, version) combination: 46554747, 00000003; is this really a GGML file?
llama_init_from_file: failed to load model
Error: InnerError("Initializing llama context returned nullptr")

@Freyert
Copy link

Freyert commented Apr 16, 2024

looking at the bindgen it seems like there's support for both GGML and GGUF in 0.13

pub type gguf_type = ::std::os::raw::c_uint;

just CTRL + F for either and you'll see an abundance.

@Freyert
Copy link

Freyert commented Apr 16, 2024

llama_init_from_file was deprecated. Likely it doesn't support gguf?

ggerganov/llama.cpp@527b6fb#diff-a2f09a47e379eeeb66a7398e3a1d11a391af75829d3e7a6dd7218e221b4fcaf3R161-R164

@Freyert
Copy link

Freyert commented Apr 16, 2024

Alright luvlies, seems like it's fixed on main.

If you want to use this you'll need to clone the repo including the submodules (we need llama.cpp to make the bindings from scratch):

git clone --recurse-submodule [email protected]:sobelio/llm-chain.git

and then your Cargo.toml to point to the crates inside the cloned folders:

[package]
name = "my_package"
version = "0.1.0"
edition = "2021"

# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
llm-chain = { path = "../llm-chain/crates/llm-chain" }
llm-chain-llama = { path = "../llm-chain/crates/llm-chain-llama" }
tokio = { version = "1.37.0", features = ["full"] }

I was using version 0.13.0 of llm-chain before switching to main btw.

0.13.0 was released here: 83939c2 (Nov 2023)

and the fix was delivered here: cad5646 (Dec 2023)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants