From 725866a2183f887eb7cd91ad34dfa06f7a434c53 Mon Sep 17 00:00:00 2001 From: dmitryduev Date: Tue, 16 Mar 2021 00:44:25 -0700 Subject: [PATCH] correct difference photometry for reference flux --- kowalski/alert_broker_ztf.py | 80 ++++++++++++++++++++++++++++++++---- 1 file changed, 73 insertions(+), 7 deletions(-) diff --git a/kowalski/alert_broker_ztf.py b/kowalski/alert_broker_ztf.py index 2eb8e4c7..8a29b243 100644 --- a/kowalski/alert_broker_ztf.py +++ b/kowalski/alert_broker_ztf.py @@ -33,6 +33,7 @@ from typing import Mapping, Optional, Sequence from utils import ( + ccd_quad_to_rc, deg2dms, deg2hms, great_circle_distance, @@ -88,12 +89,15 @@ def __str__(self): return self.message -def make_photometry(alert: dict, jd_start: float = None): +def make_photometry( + alert: dict, jd_start: float = None, include_reference_flux: bool = True, **kwargs +): """ Make a de-duplicated pandas.DataFrame with photometry of alert['objectId'] :param alert: ZTF alert packet/dict :param jd_start: + :param include_reference_flux: correct for candidate.magnr? :return: """ alert = deepcopy(alert) @@ -121,6 +125,12 @@ def make_photometry(alert: dict, jd_start: float = None): .sort_values(by=["mjd"]) ) + match_radius_arcsec = kwargs.get("match_radius_arcsec", 1.5) + star_galaxy_threshold = kwargs.get("star_galaxy_threshold", 0.4) + is_star = (alert["candidate"]["distpsnr1"] < match_radius_arcsec) and ( + alert["candidate"]["sgscore1"] > star_galaxy_threshold + ) + # filter out bad data: mask_good_diffmaglim = df_light_curve["diffmaglim"] > 0 df_light_curve = df_light_curve.loc[mask_good_diffmaglim] @@ -130,21 +140,67 @@ def make_photometry(alert: dict, jd_start: float = None): # step 1: calculate the coefficient that determines whether the # flux should be negative or positive coeff = df_light_curve["isdiffpos"].apply( - lambda x: 1.0 if x in [True, 1, "y", "Y"] else -1.0 + lambda x: 1.0 if x in [True, 1, "y", "Y", "t", "1"] else -1.0 ) # step 2: calculate the flux normalized to an arbitrary AB zeropoint of # 23.9 (results in flux in uJy) df_light_curve["flux"] = coeff * 10 ** (-0.4 * (df_light_curve["magpsf"] - 23.9)) - # step 3: separate detections from non detections + # step 3: compute corrections if flux is present in reference image + if include_reference_flux and is_star: + # fix very old alerts: + df_light_curve.replace("None", np.nan, inplace=True) + + # prior to 2018-11-12, candidate.field and candidate.rcid were not reported for non-detections, + # which makes inferring upper limits more difficult. + # attempt fixing this using pdiffimfilename, e.g. ztf_20210309547431_000690_zr_c01_o_q4_scimrefdiffimg.fits: + mask_null_rcid = df_light_curve.rcid.isnull() + if any(mask_null_rcid): + df_light_curve.loc[mask_null_rcid, "rcid"] = df_light_curve.loc[ + mask_null_rcid, "pdiffimfilename" + ].apply( + lambda x: ccd_quad_to_rc( + ccd=int(os.path.basename(x).split("_")[4][1:]), + quad=int(os.path.basename(x).split("_")[6][1:]), + ) + ) + df_light_curve.loc[mask_null_rcid, "field"] = df_light_curve.loc[ + mask_null_rcid, "pdiffimfilename" + ].apply(lambda x: int(os.path.basename(x).split("_")[2][1:])) + + grouped_light_curves = df_light_curve.groupby(["fid", "field", "rcid"]) + impute_magnr = grouped_light_curves["magnr"].agg( + lambda x: np.median(x[np.isfinite(x)]) + ) + impute_sigmagnr = grouped_light_curves["sigmagnr"].agg( + lambda x: np.median(x[np.isfinite(x)]) + ) + + for idx, light_curve_group in grouped_light_curves: + mask_nan_magnr_group = np.isnan(light_curve_group["magnr"]) + mask_nan_magnr = light_curve_group[mask_nan_magnr_group].index + df_light_curve.loc[mask_nan_magnr, "magnr"] = impute_magnr[idx] + df_light_curve.loc[mask_nan_magnr, "sigmagnr"] = impute_sigmagnr[idx] + + df_light_curve["reference_flux"] = 10 ** ( + -0.4 * (df_light_curve["magnr"] - 23.9) + ) + df_light_curve["reference_fluxerr"] = np.abs( + df_light_curve["sigmagnr"] + * df_light_curve["reference_flux"] + * np.log(10) + / 2.5 + ) + + # step 4: separate detections from non-detections detected = np.isfinite(df_light_curve["magpsf"]) undetected = ~detected - # step 4: calculate the flux error + # step 5: calculate the flux error df_light_curve["fluxerr"] = None # initialize the column - # step 4a: calculate fluxerr for detections using sigmapsf + # step 5a: calculate fluxerr for detections using sigmapsf df_light_curve.loc[detected, "fluxerr"] = np.abs( df_light_curve.loc[detected, "sigmapsf"] * df_light_curve.loc[detected, "flux"] @@ -152,12 +208,22 @@ def make_photometry(alert: dict, jd_start: float = None): / 2.5 ) - # step 4b: calculate fluxerr for non detections using diffmaglim + # step 5b: calculate fluxerr for non-detections using diffmaglim df_light_curve.loc[undetected, "fluxerr"] = ( 10 ** (-0.4 * (df_light_curve.loc[undetected, "diffmaglim"] - 23.9)) / 5.0 ) # as diffmaglim is the 5-sigma depth - # step 5: set the zeropoint and magnitude system + # step 6: correct for reference flux + if include_reference_flux and is_star: + df_light_curve["flux"] = ( + df_light_curve["flux"] + df_light_curve["reference_flux"] + ) + df_light_curve.loc[detected, "fluxerr"] = np.sqrt( + df_light_curve.loc[detected, "fluxerr"] ** 2 + + df_light_curve.loc[detected, "reference_flux"] ** 2 + ) + + # step 7: set the zeropoint and magnitude system df_light_curve["zp"] = 23.9 df_light_curve["zpsys"] = "ab"