Skip to content

Latest commit

 

History

History
657 lines (490 loc) · 24.3 KB

README.md

File metadata and controls

657 lines (490 loc) · 24.3 KB

👋 join us on Discord and WeChat

Important

Star Us, You will receive all release notifications from GitHub without any delay ~ ⭐️

📣 OpenCompass 2.0

We are thrilled to introduce OpenCompass 2.0, an advanced suite featuring three key components: CompassKit, CompassHub, and CompassRank. oc20

CompassRank has been significantly enhanced into the leaderboards that now incorporates both open-source benchmarks and proprietary benchmarks. This upgrade allows for a more comprehensive evaluation of models across the industry.

CompassHub presents a pioneering benchmark browser interface, designed to simplify and expedite the exploration and utilization of an extensive array of benchmarks for researchers and practitioners alike. To enhance the visibility of your own benchmark within the community, we warmly invite you to contribute it to CompassHub. You may initiate the submission process by clicking here.

CompassKit is a powerful collection of evaluation toolkits specifically tailored for Large Language Models and Large Vision-language Models. It provides an extensive set of tools to assess and measure the performance of these complex models effectively. Welcome to try our toolkits for in your research and products.

Star History

🧭 Welcome

to OpenCompass!

Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models.

🚩🚩🚩 Explore opportunities at OpenCompass! We're currently hiring full-time researchers/engineers and interns. If you're passionate about LLM and OpenCompass, don't hesitate to reach out to us via email. We'd love to hear from you!

🔥🔥🔥 We are delighted to announce that the OpenCompass has been recommended by the Meta AI, click Get Started of Llama for more information.

Attention
We launch the OpenCompass Collaboration project, welcome to support diverse evaluation benchmarks into OpenCompass! Clike Issue for more information. Let's work together to build a more powerful OpenCompass toolkit!

🚀 What's New

  • [2024.09.05] We now support answer extraction through model post-processing to provide a more accurate representation of the model's capabilities. As part of this update, we have integrated XFinder as our first post-processing model. For more detailed information, please refer to the documentation, and give it a try! 🔥🔥🔥
  • [2024.08.20] OpenCompass now supports the SciCode: A Research Coding Benchmark Curated by Scientists. 🔥🔥🔥
  • [2024.08.16] OpenCompass now supports the brand new long-context language model evaluation benchmark — RULER. RULER provides an evaluation of long-context including retrieval, multi-hop tracing, aggregation, and question answering through flexible configurations. Check out the RULER evaluation config now! 🔥🔥🔥
  • [2024.08.09] We have released the example data and configuration for the CompassBench-202408, welcome to CompassBench for more details. 🔥🔥🔥
  • [2024.08.01] We supported the Gemma2 models. Welcome to try! 🔥🔥🔥
  • [2024.07.23] We supported the ModelScope datasets, you can load them on demand without downloading all the data to your local disk. Welcome to try! 🔥🔥🔥
  • [2024.07.17] We are excited to announce the release of NeedleBench's technical report. We invite you to visit our support documentation for detailed evaluation guidelines. 🔥🔥🔥
  • [2024.07.04] OpenCompass now supports InternLM2.5, which has outstanding reasoning capability, 1M Context window and and stronger tool use, you can try the models in OpenCompass Config and InternLM .🔥🔥🔥.
  • [2024.06.20] OpenCompass now supports one-click switching between inference acceleration backends, enhancing the efficiency of the evaluation process. In addition to the default HuggingFace inference backend, it now also supports popular backends LMDeploy and vLLM. This feature is available via a simple command-line switch and through deployment APIs. For detailed usage, see the documentation.🔥🔥🔥.
  • [2024.05.08] We supported the evaluation of 4 MoE models: Mixtral-8x22B-v0.1, Mixtral-8x22B-Instruct-v0.1, Qwen1.5-MoE-A2.7B, Qwen1.5-MoE-A2.7B-Chat. Try them out now!
  • [2024.04.30] We supported evaluating a model's compression efficiency by calculating its Bits per Character (BPC) metric on an external corpora (official paper). Check out the llm-compression evaluation config now! 🔥🔥🔥
  • [2024.04.29] We report the performance of several famous LLMs on the common benchmarks, welcome to documentation for more information! 🔥🔥🔥.
  • [2024.04.26] We deprecated the multi-madality evaluating function from OpenCompass, related implement has moved to VLMEvalKit, welcome to use! 🔥🔥🔥.
  • [2024.04.26] We supported the evaluation of ArenaHard welcome to try!🔥🔥🔥.
  • [2024.04.22] We supported the evaluation of LLaMA3LLaMA3-Instruct, welcome to try! 🔥🔥🔥
  • [2024.02.29] We supported the MT-Bench, AlpacalEval and AlignBench, more information can be found here
  • [2024.01.30] We release OpenCompass 2.0. Click CompassKit, CompassHub, and CompassRank for more information !

More

✨ Introduction

image

OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Its main features include:

  • Comprehensive support for models and datasets: Pre-support for 20+ HuggingFace and API models, a model evaluation scheme of 70+ datasets with about 400,000 questions, comprehensively evaluating the capabilities of the models in five dimensions.

  • Efficient distributed evaluation: One line command to implement task division and distributed evaluation, completing the full evaluation of billion-scale models in just a few hours.

  • Diversified evaluation paradigms: Support for zero-shot, few-shot, and chain-of-thought evaluations, combined with standard or dialogue-type prompt templates, to easily stimulate the maximum performance of various models.

  • Modular design with high extensibility: Want to add new models or datasets, customize an advanced task division strategy, or even support a new cluster management system? Everything about OpenCompass can be easily expanded!

  • Experiment management and reporting mechanism: Use config files to fully record each experiment, and support real-time reporting of results.

📊 Leaderboard

We provide OpenCompass Leaderboard for the community to rank all public models and API models. If you would like to join the evaluation, please provide the model repository URL or a standard API interface to the email address [email protected].

🔝Back to top

🛠️ Installation

Below are the steps for quick installation and datasets preparation.

💻 Environment Setup

We highly recommend using conda to manage your python environment.

  • Create your virtual environment

    conda create --name opencompass python=3.10 -y
    conda activate opencompass
  • Install OpenCompass via pip

      pip install -U opencompass
    
      ## Full installation (with support for more datasets)
      # pip install "opencompass[full]"
    
      ## Environment with model acceleration frameworks
      ## Manage different acceleration frameworks using virtual environments
      ## since they usually have dependency conflicts with each other.
      # pip install "opencompass[lmdeploy]"
      # pip install "opencompass[vllm]"
    
      ## API evaluation (i.e. Openai, Qwen)
      # pip install "opencompass[api]"
  • Install OpenCompass from source

    If you want to use opencompass's latest features, or develop new features, you can also build it from source

      git clone https://github.com/open-compass/opencompass opencompass
      cd opencompass
      pip install -e .
      # pip install -e ".[full]"
      # pip install -e ".[vllm]"

📂 Data Preparation

You can choose one for the following method to prepare datasets.

Offline Preparation

You can download and extract the datasets with the following commands:

# Download dataset to data/ folder
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip

Automatic Download from OpenCompass

We have supported download datasets automatic from the OpenCompass storage server. You can run the evaluation with extra --dry-run to download these datasets. Currently, the supported datasets are listed in here. More datasets will be uploaded recently.

(Optional) Automatic Download with ModelScope

Also you can use the ModelScope to load the datasets on demand.

Installation:

pip install modelscope[framework]
export DATASET_SOURCE=ModelScope

Then submit the evaluation task without downloading all the data to your local disk. Available datasets include:

humaneval, triviaqa, commonsenseqa, tydiqa, strategyqa, cmmlu, lambada, piqa, ceval, math, LCSTS, Xsum, winogrande, openbookqa, AGIEval, gsm8k, nq, race, siqa, mbpp, mmlu, hellaswag, ARC, BBH, xstory_cloze, summedits, GAOKAO-BENCH, OCNLI, cmnli

Some third-party features, like Humaneval and Llama, may require additional steps to work properly, for detailed steps please refer to the Installation Guide.

🔝Back to top

🏗️ ️Evaluation

After ensuring that OpenCompass is installed correctly according to the above steps and the datasets are prepared. Now you can start your first evaluation using OpenCompass!

  • Your first evaluation with OpenCompass!

    OpenCompass support setting your configs via CLI or a python script. For simple evaluation settings we recommend using CLI, for more complex evaluation, it is suggested using the script way. You can find more example scripts under the configs folder.

    # CLI
    opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen
    
    # Python scripts
    opencompass ./configs/eval_chat_demo.py

    You can find more script examples under configs folder.

  • API evaluation

    OpenCompass, by its design, does not really discriminate between open-source models and API models. You can evaluate both model types in the same way or even in one settings.

    export OPENAI_API_KEY="YOUR_OPEN_API_KEY"
    # CLI
    opencompass --models gpt_4o_2024_05_13 --datasets demo_gsm8k_chat_gen
    
    # Python scripts
    opencompass ./configs/eval_api_demo.py
  • Accelerated Evaluation

    Additionally, if you want to use an inference backend other than HuggingFace for accelerated evaluation, such as LMDeploy or vLLM, you can do so with the command below. Please ensure that you have installed the necessary packages for the chosen backend and that your model supports accelerated inference with it. For more information, see the documentation on inference acceleration backends here. Below is an example using LMDeploy:

    # CLI
    opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy
    
    # Python scripts
    opencompass ./configs/eval_lmdeploy_demo.py
  • Supported Models

    OpenCompass has predefined configurations for many models and datasets. You can list all available model and dataset configurations using the tools.

    # List all configurations
    python tools/list_configs.py
    # List all configurations related to llama and mmlu
    python tools/list_configs.py llama mmlu

    If the model is not on the list but supported by Huggingface AutoModel class, you can also evaluate it with OpenCompass. You are welcome to contribute to the maintenance of the OpenCompass supported model and dataset lists.

    opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat

Tip

configuration with _ppl is designed for base model typically. configuration with _gen can be used for both base model and chat model.

Through the command line or configuration files, OpenCompass also supports evaluating APIs or custom models, as well as more diversified evaluation strategies. Please read the Quick Start to learn how to run an evaluation task.

🔝Back to top

📖 Dataset Support

Language Knowledge Reasoning Examination
Word Definition
  • WiC
  • SummEdits
Idiom Learning
  • CHID
Semantic Similarity
  • AFQMC
  • BUSTM
Coreference Resolution
  • CLUEWSC
  • WSC
  • WinoGrande
Translation
  • Flores
  • IWSLT2017
Multi-language Question Answering
  • TyDi-QA
  • XCOPA
Multi-language Summary
  • XLSum
Knowledge Question Answering
  • BoolQ
  • CommonSenseQA
  • NaturalQuestions
  • TriviaQA
Textual Entailment
  • CMNLI
  • OCNLI
  • OCNLI_FC
  • AX-b
  • AX-g
  • CB
  • RTE
  • ANLI
Commonsense Reasoning
  • StoryCloze
  • COPA
  • ReCoRD
  • HellaSwag
  • PIQA
  • SIQA
Mathematical Reasoning
  • MATH
  • GSM8K
Theorem Application
  • TheoremQA
  • StrategyQA
  • SciBench
Comprehensive Reasoning
  • BBH
Junior High, High School, University, Professional Examinations
  • C-Eval
  • AGIEval
  • MMLU
  • GAOKAO-Bench
  • CMMLU
  • ARC
  • Xiezhi
Medical Examinations
  • CMB
Understanding Long Context Safety Code
Reading Comprehension
  • C3
  • CMRC
  • DRCD
  • MultiRC
  • RACE
  • DROP
  • OpenBookQA
  • SQuAD2.0
Content Summary
  • CSL
  • LCSTS
  • XSum
  • SummScreen
Content Analysis
  • EPRSTMT
  • LAMBADA
  • TNEWS
Long Context Understanding
  • LEval
  • LongBench
  • GovReports
  • NarrativeQA
  • Qasper
Safety
  • CivilComments
  • CrowsPairs
  • CValues
  • JigsawMultilingual
  • TruthfulQA
Robustness
  • AdvGLUE
Code
  • HumanEval
  • HumanEvalX
  • MBPP
  • APPs
  • DS1000

📖 Model Support

Open-source Models API Models
  • OpenAI
  • Gemini
  • Claude
  • ZhipuAI(ChatGLM)
  • Baichuan
  • ByteDance(YunQue)
  • Huawei(PanGu)
  • 360
  • Baidu(ERNIEBot)
  • MiniMax(ABAB-Chat)
  • SenseTime(nova)
  • Xunfei(Spark)
  • ……

🔝Back to top

🔜 Roadmap

  • Subjective Evaluation
    • Release CompassAreana
    • Subjective evaluation.
  • Long-context
    • Long-context evaluation with extensive datasets.
    • Long-context leaderboard.
  • Coding
    • Coding evaluation leaderboard.
    • Non-python language evaluation service.
  • Agent
    • Support various agenet framework.
    • Evaluation of tool use of the LLMs.
  • Robustness
    • Support various attack method

👷‍♂️ Contributing

We appreciate all contributions to improving OpenCompass. Please refer to the contributing guideline for the best practice.




🤝 Acknowledgements

Some code in this project is cited and modified from OpenICL.

Some datasets and prompt implementations are modified from chain-of-thought-hub and instruct-eval.

🖊️ Citation

@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}

🔝Back to top