-
Notifications
You must be signed in to change notification settings - Fork 46
/
inference_mmu.py
187 lines (152 loc) · 8.96 KB
/
inference_mmu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# coding=utf-8
# Copyright 2024 NUS Show Lab.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
import wandb
from models import Showo, MAGVITv2, CLIPVisionTower
from training.prompting_utils import UniversalPrompting, create_attention_mask_for_mmu, create_attention_mask_for_mmu_vit
from training.utils import get_config, flatten_omega_conf, image_transform
from transformers import AutoTokenizer
from transformers import CLIPImageProcessor
from llava.llava import conversation as conversation_lib
conversation_lib.default_conversation = conversation_lib.conv_templates["phi1.5"]
SYSTEM_PROMPT = "A chat between a curious user and an artificial intelligence assistant. " \
"The assistant gives helpful, detailed, and polite answers to the user's questions."
SYSTEM_PROMPT_LEN = 28
def get_vq_model_class(model_type):
if model_type == "magvitv2":
return MAGVITv2
else:
raise ValueError(f"model_type {model_type} not supported.")
if __name__ == '__main__':
config = get_config()
resume_wandb_run = config.wandb.resume
run_id = config.wandb.get("run_id", None)
if run_id is None:
resume_wandb_run = False
run_id = wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb.init(
project="demo",
name=config.experiment.name + '_mmu',
config=wandb_config,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left")
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob)
vq_model = get_vq_model_class(config.model.vq_model.type)
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()
vision_tower_name = "openai/clip-vit-large-patch14-336"
vision_tower = CLIPVisionTower(vision_tower_name).to(device)
clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device)
model.eval()
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = 1 # retain only the top_k most likely tokens, clamp others to have 0 probability
file_list = os.listdir(config.mmu_image_root)
responses = ['' for i in range(len(file_list))]
images = []
config.question = config.question.split(' *** ')
for i, file_name in enumerate(tqdm(file_list)):
image_path = os.path.join(config.mmu_image_root, file_name)
image_ori = Image.open(image_path).convert("RGB")
image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device)
image = image.unsqueeze(0)
images.append(image)
pixel_values = clip_image_processor.preprocess(image_ori, return_tensors="pt")["pixel_values"][0]
image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer)
batch_size = 1
for question in config.question:
if config.model.showo.w_clip_vit:
conv = conversation_lib.default_conversation.copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
question_input = []
question_input.append(prompt_question.strip())
input_ids_system = [uni_prompting.text_tokenizer(SYSTEM_PROMPT, return_tensors="pt", padding="longest").input_ids
for _ in range(batch_size)]
input_ids_system = torch.stack(input_ids_system, dim=0)
assert input_ids_system.shape[-1] == 28
input_ids_system = input_ids_system.to(device)
input_ids_system = input_ids_system[0]
input_ids = [uni_prompting.text_tokenizer(prompt, return_tensors="pt", padding="longest").input_ids
for prompt in question_input]
input_ids = torch.stack(input_ids)
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=uni_prompting.text_tokenizer.pad_token_id
)
input_ids = torch.tensor(input_ids).to(device).squeeze(0)
# import pdb; pdb.set_trace()
input_ids_llava = torch.cat([
(torch.ones(input_ids.shape[0], 1) *uni_prompting.sptids_dict['<|mmu|>']).to(device),
input_ids_system,
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
# place your img embedding here
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
input_ids,
], dim=1).long()
images_embeddings = vision_tower(pixel_values[None])
images_embeddings = model.mm_projector(images_embeddings)
text_embeddings = model.showo.model.embed_tokens(input_ids_llava)
# Full input seq
part1 = text_embeddings[:, :2 + SYSTEM_PROMPT_LEN, :]
part2 = text_embeddings[:, 2 + SYSTEM_PROMPT_LEN:, :]
input_embeddings = torch.cat((part1, images_embeddings, part2), dim=1)
attention_mask_llava = create_attention_mask_for_mmu_vit(input_embeddings,
system_prompt_len=SYSTEM_PROMPT_LEN)
cont_toks_list = model.mmu_generate(input_embeddings=input_embeddings,
attention_mask=attention_mask_llava[0].unsqueeze(0),
max_new_tokens=config.max_new_tokens,
top_k=top_k,
eot_token=tokenizer.eos_token_id
)
else:
input_ids = uni_prompting.text_tokenizer(['USER: \n' + question + ' ASSISTANT:'])[
'input_ids']
input_ids = torch.tensor(input_ids).to(device)
input_ids = torch.cat([
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
image_tokens,
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
input_ids
], dim=1).long()
attention_mask = create_attention_mask_for_mmu(input_ids.to(device),
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']))
cont_toks_list = model.mmu_generate(input_ids, attention_mask=attention_mask,
max_new_tokens=config.max_new_tokens, top_k=top_k,
eot_token=uni_prompting.sptids_dict['<|eot|>'])
cont_toks_list = torch.stack(cont_toks_list).squeeze()[None]
text = uni_prompting.text_tokenizer.batch_decode(cont_toks_list, skip_special_tokens=True)
print(text)
responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n'
images = torch.cat(images, dim=0)
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = [Image.fromarray(image) for image in images]
wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)]
wandb.log({"multimodal understanding": wandb_images}, step=0)