-
Notifications
You must be signed in to change notification settings - Fork 5
/
keras_lenet_infer.py
51 lines (46 loc) · 1.69 KB
/
keras_lenet_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
'''
CPU (Intel i7-7500 CPU @ 2.0GHz)
N = [10, 100, 1000, 10000]
latency = [0.0078, 0.00047, 0.000219, 0.000199], acceleration flattens out due to limited memory on a mobile cpu
GPU (GeForce 940MX)
latency = [0.2383,0.0128, 0.00132, 0.0002]
'''
import tensorflow as tf
import keras
from keras.datasets import mnist
from keras.models import Model
from keras.layers import Input, Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.models import model_from_json
import time
import sys
saved_model_dir = 'misc/saved_model.json'
saved_weights_dir = 'misc/saved_weights.h5'
if __name__ == "__main__":
with open(saved_model_dir) as f:
json_str = f.read()
model = model_from_json(json_str)
model.load_weights(saved_weights_dir)
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
num_samples = int(sys.argv[1])
start = time.time()
model.predict(x_test[:num_samples])
end = time.time()
print((end-start)/num_samples)