From ad24d954aaed82608fe6c578f6b6dcc184289ae9 Mon Sep 17 00:00:00 2001 From: Gerwin Klein Date: Fri, 6 Oct 2023 14:59:27 +1100 Subject: [PATCH] word lib: fix broken style introduced from AFP Signed-off-by: Gerwin Klein --- lib/Word_Lib/Word_Lemmas.thy | 30 +++++++++++------------------- 1 file changed, 11 insertions(+), 19 deletions(-) diff --git a/lib/Word_Lib/Word_Lemmas.thy b/lib/Word_Lib/Word_Lemmas.thy index 20c522c2ce..965ace53e7 100644 --- a/lib/Word_Lib/Word_Lemmas.thy +++ b/lib/Word_Lib/Word_Lemmas.thy @@ -496,7 +496,7 @@ next ultimately show ?thesis using \y < LENGTH('a)\ by (auto simp add: drop_bit_eq_div word_less_nat_alt unat_div unat_word_ariths - shiftr_def shiftl_def) + shiftr_def shiftl_def) next case False with \y < n\ have *: \unat x \ 2 ^ n div 2 ^ y\ @@ -508,8 +508,9 @@ next also have \\ \ unat x < 2 ^ n div 2 ^ y\ using * by (simp add: less_le) finally show ?thesis - using that \x \ 0\ by (simp flip: push_bit_eq_mult drop_bit_eq_div - add: shiftr_def shiftl_def unat_drop_bit_eq word_less_iff_unsigned [where ?'a = nat]) + using that \x \ 0\ + by (simp flip: push_bit_eq_mult drop_bit_eq_div + add: shiftr_def shiftl_def unat_drop_bit_eq word_less_iff_unsigned [where ?'a = nat]) qed qed qed @@ -716,7 +717,8 @@ lemma word_and_notzeroD: lemma shiftr_le_0: "unat (w::'a::len word) < 2 ^ n \ w >> n = (0::'a::len word)" by (auto simp add: take_bit_word_eq_self_iff word_less_nat_alt shiftr_def - simp flip: take_bit_eq_self_iff_drop_bit_eq_0 intro: ccontr) + simp flip: take_bit_eq_self_iff_drop_bit_eq_0 + intro: ccontr) lemma of_nat_shiftl: "(of_nat x << n) = (of_nat (x * 2 ^ n) :: ('a::len) word)" @@ -1466,12 +1468,9 @@ lemma mask_shift_sum: "\ a \ b; unat n = unat (p AND mask b) \ \ (p AND NOT(mask a)) + (p AND mask a >> b) * (1 << b) + n = (p :: 'a :: len word)" apply (simp add: shiftl_def shiftr_def flip: push_bit_eq_mult take_bit_eq_mask word_unat_eq_iff) - apply (subst disjunctive_add) - apply (auto simp add: bit_simps) - apply (subst disjunctive_add) - apply (auto simp add: bit_simps) - apply (rule bit_word_eqI) - apply (auto simp add: bit_simps) + apply (subst disjunctive_add, fastforce simp: bit_simps)+ + apply (rule bit_word_eqI) + apply (fastforce simp: bit_simps)[1] done lemma is_up_compose: @@ -1586,10 +1585,7 @@ next apply (rule impI) apply (subst bit_eq_iff) apply (simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def) - apply (auto simp add: Suc_le_eq) - using less_imp_le_nat apply blast - using less_imp_le_nat apply blast - done + by (auto simp add: Suc_le_eq) (meson dual_order.strict_iff_not)+ qed lemma scast_ucast_mask_compare: @@ -1823,11 +1819,7 @@ proof (rule classical) apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] apply (clarsimp simp: word_size) apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1] - apply auto - apply (cases \size a\) - apply simp_all - apply (smt (z3) One_nat_def diff_Suc_1 signed_word_eqI sint_int_min sint_range_size wsst_TYs(3)) - done + by (smt (verit, best) One_nat_def signed_word_eqI sint_greater_eq sint_int_min sint_less wsst_TYs(3)) have result_range_simple: "(sint a sdiv sint b \ ?range) \ ?thesis" apply (insert sdiv_int_range [where a="sint a" and b="sint b"])