-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
372 lines (315 loc) · 16.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import argparse
import os
import time
from torch.utils.data import DataLoader
from tqdm import tqdm
import numpy
import random
import numpy as np
import copy
from model import *
from datasets import load_dataset
from transformers import (AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup, set_seed)
from transformers import T5Config
import torch.nn.functional as F
import pdb
from datasets import Dataset, DatasetDict
from random import randrange
from torch.nn.functional import cosine_similarity
import string
from transformers import AutoModelForCausalLM, AutoTokenizer
from evaluate import load
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
bertscore = load("bertscore")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='t5-base', help="Model path. Supports T5/UL2 models")
parser.add_argument('--load_path', type=str, default='sample_ul2_ckpt/debug')
parser.add_argument('--save_path', type=str, default='../logs_text_wm/cross_wiki')
parser.add_argument("--input_max_length", type=int, default=496, help="Maximum input length to use for generation")
parser.add_argument("--target_max_length", type=int, default=496, help="Maximum target length to use for generation")
parser.add_argument('--dataset', type=str, default='NicolaiSivesind/ChatGPT-Research-Abstracts')
parser.add_argument("--extract_layer", type=int, default=-1, help="layers to extract wm")
parser.add_argument("--message_max_length", type=int, default=16, help="Maximum message length to use for generation")
parser.add_argument("--attack", type=int, default=0, help="attack type")
parser.add_argument("--wm_embed_model", type=str, default="t5", help="wm embed model")
args = parser.parse_known_args()
return args
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def add_gumbel_noise(model, logits, input_idx, temperature):
logits_prob = F.gumbel_softmax(logits, tau=temperature)
cur_logit = F.gumbel_softmax(logits, tau=temperature)
#logits_prob = F.softmax(logits, dim=-1)
#cur_logit = F.softmax(logits, dim=-1)
return cur_logit, logits_prob # decode
def beam_search_with_gumbel(model, input_ids, logits_seq, length, beam_width, temperature=1.0):
# Start with an empty sequence and score of 1.0
sequences = [(torch.tensor([]).long().to(device), 0.0)] # 0.0 here since we'll be summing log probs
logits_seq = logits_seq[0]
count = 0
for logits in logits_seq:
all_candidates = []
log_noise_probs, log_probs = add_gumbel_noise(model, logits, input_ids[0][count], temperature)
#pdb.set_trace()
for seq, seq_log_probs in sequences:
#top_ix = torch.multinomial(log_noise_probs, beam_width)
top_log_probs, top_ix = torch.topk(log_noise_probs, beam_width)
#top_log_probs = log_probs[top_ix]
#pdb.set_trace()
for i in range(beam_width):
next_seq = torch.cat([seq, top_ix[i].unsqueeze(0).long()], dim=-1)
new_log_prob = seq_log_probs + top_log_probs[i]
all_candidates.append((next_seq, new_log_prob))
# Sort all candidates by the sum of their log probabilities and keep top beam_width sequences
sorted_candidates = sorted(all_candidates, key=lambda x: x[1].sum(), reverse=True)
sequences = sorted_candidates[:beam_width]
if len(sequences[0][0]) == length:
break
count += 1
sequences = [sequences[i][0] for i in range(len(sequences))]
return sequences # Return the top sequence
def get_sample(model, input_ids, logits, attention, noise, sentence=2):
length = attention.sum(dim=1)
decoded_ids = []
#print("start sampling")
for i in range(sentence):
model_output = beam_search_with_gumbel(model, input_ids, logits, length=length, beam_width=5, temperature=noise)
decoded_ids.extend(model_output)
decoded_ids = torch.stack(decoded_ids, dim=0)
return decoded_ids
def mask_input_ids(ids, tokenizer, args, mask_per, seed):
random.seed(seed)
mask_token = tokenizer.unk_token_id
new_idx = copy.deepcopy(ids)
non_zero_idx = torch.nonzero(ids)
random_idx = random.sample(range(non_zero_idx.shape[0]), int(mask_per * non_zero_idx.shape[0]))
new_idx[non_zero_idx[random_idx, 0], non_zero_idx[random_idx, 1]] = mask_token
return new_idx
def compute_bleu4(reference, candidate):
# Reference and candidate should be lists of tokens
# Reference can be a list of lists if you have multiple reference translations
smooth = SmoothingFunction().method1
return sentence_bleu([reference], candidate, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth)
def inference(args, val_dataloader, model, tokenizer, mapper, extractor, config, target_max_length, batch_size):
total_acc = []
input_match_bit_list = []
total_bert_score = []
wm_texts = []
print("save to ", args.load_path)
save_dir = args.dataset.split("/")[-1]
if "abstract" in args.dataset:
mask_per = 0.5
elif "wiki" in args.dataset:
mask_per = 0.5
else:
mask_per = 0.5
blue4 = []
for step, batch in enumerate(tqdm(val_dataloader)):
message_base, message_all, input_ids_original, attention_mask, labels = batch['message_base'], batch['message_all'], batch['input_ids'], batch['attention_mask'], batch['labels']
message_base, message_all, input_ids_original, attention_mask, labels = message_base.to(device), message_all.to(device), input_ids_original.to(device), attention_mask.to(device), labels.to(device)
input_token = tokenizer.decode(input_ids_original[0], skip_special_tokens=True)
input_dist = F.one_hot(input_ids_original, num_classes=config.vocab_size).float()
with torch.no_grad():
input_ebd = mapper(input_dist)
input_logits = extractor(input_ebd)
input_logits = input_logits > 0.5
input_match_bit = torch.sum(input_logits == message_base, dim=1)/(args.message_max_length)
input_match_bit_list.append(input_match_bit.item())
best_acc = 0
decode_token = None
c = 0
noise_list = [1, 1.5, 2, 2.5, 3]
if "wiki" in args.dataset:
noise_list = [1.5, 2, 2.5, 3, 5]
while best_acc < 1:
input_ids = mask_input_ids(input_ids_original, tokenizer, args, mask_per=mask_per, seed=100*int(c/5))
#pdb.set_trace()
with torch.no_grad():
ids = model(input_ids=input_ids, message=message_base, message_embed_method="addition_same", labels=input_ids_original, attention_mask=attention_mask)
logits = ids.logits
noise_idx = c % len(noise_list)
token_ids = get_sample(model, input_ids, logits, attention_mask, noise=noise_list[int(c/5)])
match_bit_list = []
for token_id in token_ids:
#token_id = token_id[0][token_id[0] != 0]
token_id = token_id.unsqueeze(0)
dist = F.one_hot(token_id, num_classes=config.vocab_size).float()
with torch.no_grad():
outputs_ebd = mapper(dist)
wm_logits = extractor(outputs_ebd)
bit_logits = wm_logits > 0.5
match_bit = torch.sum(bit_logits == message_base, dim=1)/(args.message_max_length)
match_bit_list.append(match_bit.item())
c = c+1
if best_acc < max(match_bit_list):
best_acc = max(match_bit_list)
decode_token = token_ids[match_bit_list.index(best_acc)].unsqueeze(0)
if best_acc == 1:
break
decode_token_test = token_ids[match_bit_list.index(max(match_bit_list))].unsqueeze(0)
decode_token_test = tokenizer.decode(decode_token_test[0][decode_token_test[0] != 0], skip_special_tokens=True)
if c > 20:
break
total_acc.append(best_acc)
#print("current best acc",best_acc, token_ids.size())
decode_token = tokenizer.decode(decode_token[0][decode_token[0] != 0], skip_special_tokens=True)
blue4_score = compute_bleu4(input_token.split(), decode_token.split())
print("input:", input_token)
print("decode:", decode_token)
if len(total_bert_score)> 0:
print("cur_acc", best_acc, "total_acc", sum(total_acc)/len(total_acc),
"blue4", sum(blue4)/len(blue4), "Bert score: ", sum(total_bert_score)/len(total_bert_score))
blue4.append(blue4_score)
# get bert score
bert_score = bertscore.compute(predictions=[decode_token], references=[input_token], lang="en")
total_bert_score.append(bert_score['f1'][0])
wm_texts.append(decode_token)
with open(os.path.join(args.save_path, save_dir+'wm_human.txt'), 'a') as f:
f.write(decode_token)
f.write("\n")
f.write(str(best_acc))
f.write("\n")
f.write(str(bert_score['f1'][0]))
f.write("\n")
if step > 1000:
break
print("Accuracy: ", sum(total_acc)/len(total_acc))
print("Bert score: ", sum(total_bert_score)/len(total_bert_score))
print("Blue4 score: ", sum(blue4)/len(blue4))
print("Input match bit: ", sum(input_match_bit_list)/len(input_match_bit_list))
return
def main():
args, _ = parse_args()
print("args", args)
d_model = 512
nhead = 8
num_layers = 3
dim_feedforward = 2048
batch_size = 1
extract_layer = args.extract_layer
num_classes = args.message_max_length
target_max_length = args.target_max_length
source_max_length = args.input_max_length
# seed random seed
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Load the dataset
if args.dataset == 'wiki':
dataset = load_dataset('wikitext', 'wikitext-2-v1', data_dir="./nlp_dataset")
dataset_df = dataset["train"].to_pandas()
dataset_df = dataset_df[dataset_df["text"].str.len() > 50]
dataset["train"] = Dataset.from_pandas(dataset_df)
dataset_df = dataset["validation"].to_pandas()
dataset_df = dataset_df[dataset_df["text"].str.len() > 50]
dataset["validation"] = Dataset.from_pandas(dataset_df)
text_column = "text"
label_column = "text"
elif args.dataset == "NicolaiSivesind/ChatGPT-Research-Abstracts":
dataset = load_dataset("NicolaiSivesind/ChatGPT-Research-Abstracts")
dataset_df = dataset["train"].to_pandas()
index = dataset_df.index
index = list(index)
with open("./nlp_dataset/ChatGPT-Research-Abstracts/index_train.txt", "r") as f:
index_train = f.read().split(",")
index_train = [int(i) for i in index_train]
index_val = list(set(index) - set(index_train))
dataset["train_tmp"] = dataset["train"].select(index_train)
dataset["validation"] = dataset["train"].select(index_val)
dataset["train"] = dataset["train_tmp"]
text_column = "generated_abstract"
label_column = "generated_abstract"
elif args.dataset == "Hello-SimpleAI/HC3-gpt": # max_length = 639
dataset = load_dataset("Hello-SimpleAI/HC3", "all")
dataset_df = dataset["train"].to_pandas()
dataset_df['mask'] = dataset_df.apply(lambda x: len(x["chatgpt_answers"]) > 0, axis=1)
# remove dataset_df with mask = False
dataset_df = dataset_df[dataset_df['mask'] == True]
dataset_df = dataset_df.reset_index(drop=True)
index = dataset_df.index
index = list(index)
dataset = DatasetDict({"train": Dataset.from_pandas(dataset_df)})
with open("./nlp_dataset/HC3-gpt/index_train.txt", "r") as f:
index_train = f.read().split(",")
index_train = [int(i) for i in index_train]
index_val = list(set(index) - set(index_train))
dataset["train_tmp"] = dataset["train"].select(index_train)
dataset["validation"] = dataset["train"].select(index_val)
dataset["train"] = dataset["train_tmp"]
text_column = "chatgpt_answers"
label_column = "chatgpt_answers"
elif args.dataset == "NicolaiSivesind/ChatGPT-Research-Abstracts-human": # max=584
dataset = load_dataset("NicolaiSivesind/ChatGPT-Research-Abstracts")
# filter dataset with word count > 100
dataset_df = dataset["train"].to_pandas()
index = dataset_df.index
index = list(index)
with open("./nlp_dataset/ChatGPT-Research-Abstracts-human/index_train.txt", "r") as f:
index_train = f.read().split(",")
index_train = [int(i) for i in index_train]
index_val = list(set(index) - set(index_train))
dataset["train_tmp"] = dataset["train"].select(index_train)
dataset["validation"] = dataset["train"].select(index_val)
dataset["train"] = dataset["train_tmp"]
text_column = "real_abstract"
label_column = "real_abstract"
# Load the model from args.load_path
model_name_or_path = args.model_path
config = T5Config.from_pretrained(model_name_or_path)
config.message_max_length = args.message_max_length
config.wm_embed_model = "t5"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path, config=config)
#model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path, config=config)
model.load_state_dict(torch.load(os.path.join(args.load_path, 'model.pt')))
extractor = TransformerClassifier(d_model, nhead, num_layers, num_classes)
extractor.load_state_dict(torch.load(os.path.join(args.load_path, 'extractor.pt')))
mapper = Mapping(config.vocab_size, d_model)
mapper.load_state_dict(torch.load(os.path.join(args.load_path, 'mapper.pt')))
model, extractor, mapper = model.to(device), extractor.to(device), mapper.to(device)
def str_convert(example):
example[label_column] = str(example[label_column])
message = numpy.random.randint(0, 2, size=(args.message_max_length))
message = torch.tensor(message, dtype=torch.float)
example['message_all'] = message.repeat(args.input_max_length, 1)
example['message_base'] = message
return example
def preprocess_function(sample, padding="max_length"):
inputs = sample[text_column]
model_inputs = tokenizer(inputs, max_length=source_max_length, padding=padding, truncation=True)
labels = tokenizer(text_target=sample[label_column], max_length=target_max_length, padding=padding, truncation=True)
if padding == "max_length":
labels["input_ids"] = [[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]]
model_inputs["labels"] = labels["input_ids"]
attention_mask = model_inputs["attention_mask"]
attention_mask = torch.tensor(attention_mask)
message_mask = copy.deepcopy(attention_mask)
message_mask_sum = message_mask.sum(1)
eos_index = (message_mask_sum - 1).long()
message_mask[:,0] = 0
message_mask = message_mask.scatter(1, eos_index.unsqueeze(1), 0)
message_all = torch.tensor(sample['message_all'])* message_mask.unsqueeze(2)
model_inputs["message_all"] = message_all.numpy()
model_inputs["message_base"] = sample['message_base']
return model_inputs
# embed message into the model
dataset['validation'] = dataset['validation'].map(str_convert)
val_dataset = dataset['validation'].map(
preprocess_function,
batched=True,
num_proc=1,
remove_columns=dataset["validation"].column_names,
load_from_cache_file=True,
desc="Running tokenizer on dataset",
)
def collate_fn(examples):
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
val_dataloader = DataLoader(
val_dataset, shuffle=True, collate_fn=collate_fn,
batch_size=batch_size, pin_memory=True
)
inference(args, val_dataloader, model, tokenizer, mapper, extractor, config, target_max_length, batch_size)
if __name__ == "__main__":
main()