-
Notifications
You must be signed in to change notification settings - Fork 0
/
vae_pro.py
164 lines (140 loc) · 5.39 KB
/
vae_pro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
VAE with PyTorch. Compared with vae.py, it uses conv2d.
Everything in one file.
"""
##################################################################################################################################
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, latent):
super(Encoder, self).__init__()
self.encode = nn.Sequential(
nn.Conv2d(1, 2, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.Conv2d(2, 4, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.Conv2d(4, 8, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.Conv2d(8, 16, kernel_size=3, stride=3, padding=1),
nn.LeakyReLU(),
)
self.calc_mean = nn.Linear(16, latent)
self.calc_logvar = nn.Linear(16, latent)
def forward(self, x):
x = self.encode(x) # [N, 16, 1, 1]
x = x.view(x.shape[0], -1) # [N, 16]
return self.calc_mean(x), self.calc_logvar(x)
class Decoder(nn.Module):
def __init__(self, latent):
super(Decoder, self).__init__()
self.map_back = nn.Linear(latent, 16)
self.decode = nn.Sequential(
nn.ConvTranspose2d(16, 8, kernel_size=3, stride=3, padding=0),
nn.LeakyReLU(),
nn.ConvTranspose2d(8, 4, kernel_size=5, stride=2, padding=1),
nn.LeakyReLU(),
nn.ConvTranspose2d(4, 2, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
nn.ConvTranspose2d(2, 1, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(),
)
def forward(self, x):
# x: [N, latent]
x = self.map_back(x) # [N, 16]
x = x.view(-1, 16, 1, 1)
x = self.decode(x) # [N, 1, 28, 28]
return x
class VAE(nn.Module):
def __init__(self, latent):
super(VAE, self).__init__()
self.latent = latent
self.encoder = Encoder(latent)
self.decoder = Decoder(latent)
def sampling(self, mean, logvar):
sample = torch.randn(mean.shape).to(mean.device)
stdvar = torch.exp(0.5 * logvar)
return mean + sample * stdvar
def forward(self, x):
mean, logvar = self.encoder(x)
z = self.sampling(mean, logvar)
return self.decoder(z), mean, logvar
def generate(self, batch_size = 1):
model_device = next(self.parameters()).device
z = torch.randn((batch_size, self.latent)).to(model_device)
return self.decoder(z)
##################################################################################################################################
import torchvision
import tqdm
def get_dataloader():
tf = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
dataset = torchvision.datasets.MNIST(
"./data",
train=True,
download=True,
transform=tf,
)
return torch.utils.data.DataLoader(dataset, batch_size=128, shuffle=True, num_workers=8)
def get_device():
device = 'cpu'
if torch.backends.mps.is_available():
device = 'mps:0'
if torch.cuda.is_available():
device = 'cuda'
return device
def loss(x_target, x_actual, mean, logvar):
reconstruction_loss = nn.functional.mse_loss(x_actual, x_target, reduction='sum')
KL_divergence = 0.5 * torch.sum(-1 - logvar + torch.exp(logvar) + mean**2)
return reconstruction_loss + KL_divergence
def train(net, dataloader, device):
optimizer = torch.optim.AdamW(net.parameters())
net.train()
with tqdm.tqdm(dataloader, ncols=64) as pbar:
for x, _ in pbar:
x = x.to(device)
x_actual, mean, logvar = net(x)
l = loss(x, x_actual, mean, logvar).to(device)
optimizer.zero_grad()
l.backward()
optimizer.step()
pbar.set_description(f"Loss {l.cpu().item():.4f}")
##################################################################################################################################
from matplotlib import pyplot as plt
def predict(net):
net.eval() # disable drop-out and batch-normalization
with torch.no_grad():
x = net.generate(16)
images = x.cpu()
fig, axes = plt.subplots(4, 4, figsize=(4, 4))
for i, ax in enumerate(axes.flat):
ax.imshow(images[i].squeeze(0).numpy(), cmap='gray')
ax.axis("off")
plt.tight_layout()
plt.show()
##################################################################################################################################
from absl import flags
from absl import app
def main(unused_args):
"""
Samples:
python vae_pro.py --train --predict
"""
device = get_device()
if FLAGS.train:
print('Train')
dataloader = get_dataloader()
net = VAE(latent=FLAGS.latent).to(device)
for i in range(FLAGS.epochs):
train(net, dataloader, device)
torch.save(net.state_dict(), 'vae_pro.pth')
if FLAGS.predict:
print('Predict')
net = VAE(latent=FLAGS.latent).to(device)
net.load_state_dict(torch.load('vae_pro.pth'))
predict(net)
if __name__ == '__main__':
FLAGS = flags.FLAGS
flags.DEFINE_bool("train", False, "Train the model")
flags.DEFINE_bool("predict", False, "Predict")
flags.DEFINE_integer("epochs", 3, "Epochs to train")
flags.DEFINE_integer("latent", 8, "Epochs to train")
app.run(main)