-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssim.m
318 lines (278 loc) · 11.4 KB
/
ssim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
function [ssimval, ssimmap] = ssim(varargin)
%SSIM Structural Similarity Index for measuring image quality
% SSIMVAL = SSIM(A, REF) calculates the Structural Similarity Index
% (SSIM) value for image A, with the image REF as the reference. A and
% REF can be 2D grayscale or 3D volume images, and must be of the same
% size and class.
%
% [SSIMVAL, SSIMMAP] = SSIM(A, REF) also returns the local SSIM value for
% each pixel in SSIMMAP. SSIMMAP has the same size as A.
%
% [SSIMVAL, SSIMMAP] = SSIM(A, REF, NAME1, VAL1,...) calculates the SSIM
% value using name-value pairs to control aspects of the computation.
% Parameter names can be abbreviated.
%
% Parameters include:
%
% 'Radius' - Specifies the standard deviation of
% isotropic Gaussian function used for
% weighting the neighborhood pixels around a
% pixel for estimating local statistics. This
% weighting is used to avoid blocking
% artifacts in estimating local statistics.
% The default value is 1.5.
%
% 'DynamicRange' - Positive scalar, L, that specifies the
% dynamic range of the input image. By
% default, L is chosen based on the class of
% the input image A, as L =
% diff(getrangefromclass(A)). Note that when
% class of A is single or double, L = 1 by
% default.
%
% 'RegularizationConstants'- Three-element vector, [C1 C2 C3], of
% non-negative real numbers that specifies the
% regularization constants for the luminance,
% contrast, and structural terms (see [1]),
% respectively. The regularization constants
% are used to avoid instability for image
% regions where the local mean or standard
% deviation is close to zero. Therefore, small
% non-zero values should be used for these
% constants. By default, C1 = (0.01*L).^2, C2
% = (0.03*L).^2, and C3 = C2/2, where L is the
% specified 'DynamicRange' value. If a value
% of 'DynamicRange' is not specified, the
% default value is used (see name-value pair
% 'DynamicRange').
%
% 'Exponents' - Three-element vector [alpha beta gamma],
% of non-negative real numbers that specifies
% the exponents for the luminance, contrast,
% and structural terms (see [1]),
% respectively. By default, all the three
% exponents are 1, i.e. the vector is [1 1
% 1].
%
% Notes
% -----
% 1. A and REF can be arrays of upto three dimensions. All 3D arrays
% are considered 3D volumetric images. RGB images will also be
% processed as 3D volumetric images.
%
% 2. Input image A and reference image REF are converted to
% floating-point type for internal computation.
%
% 3. For signed-integer images (int16), an offset is applied to bring the
% gray values in the non-negative range before computing the SSIM
% index.
%
% Example
% ---------
% This example shows how to compute SSIM value for a blurred image given
% the original reference image.
%
% ref = imread('pout.tif');
% H = fspecial('Gaussian',[11 11],1.5);
% A = imfilter(ref,H,'replicate');
%
% subplot(1,2,1); imshow(ref); title('Reference Image');
% subplot(1,2,2); imshow(A); title('Blurred Image');
%
% [ssimval, ssimmap] = ssim(A,ref);
%
% fprintf('The SSIM value is %0.4f.\n',ssimval);
%
% figure, imshow(ssimmap,[]);
% title(sprintf('SSIM Index Map - Mean SSIM Value is %0.4f',ssimval));
%
% Class Support
% -------------
% Input arrays A and REF must be one of the following classes: uint8,
% int16, uint16, single, or double. Both A and REF must be of the same
% class. They must be nonsparse. SSIMVAL is a scalar and SSIMMAP is an
% array of the same size as A. Both SSIMVAL and SSIMMAP are of class
% double, unless A and REF are of class single in which case SSIMVAL and
% SSIMMAP are of class single.
%
% References:
% -----------
% [1] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
% Quality Assessment: From Error Visibility to Structural
% Similarity," IEEE Transactions on Image Processing, Volume 13,
% Issue 4, pp. 600- 612, 2004.
%
% See also IMMSE, MEAN, MEDIAN, PSNR, SUM, VAR.
% Copyright 2013-2014 The MathWorks, Inc.
narginchk(2,10);
[A, ref, C, exponents, radius] = parse_inputs(varargin{:});
if isempty(A)
ssimval = zeros(0, 'like', A);
ssimmap = A;
return;
end
if isa(A,'int16') % int16 is the only allowed signed-integer type for A and ref.
% Add offset for signed-integer types to bring values in the
% non-negative range.
A = double(A) - double(intmin('int16'));
ref = double(ref) - double(intmin('int16'));
elseif isinteger(A)
A = double(A);
ref = double(ref);
end
% Gaussian weighting function
gaussFilt = getGaussianWeightingFilter(radius,ndims(A));
% Weighted-mean and weighted-variance computations
mux2 = imfilter(A, gaussFilt,'conv','replicate');
muy2 = imfilter(ref, gaussFilt,'conv','replicate');
muxy = mux2.*muy2;
mux2 = mux2.^2;
muy2 = muy2.^2;
sigmax2 = imfilter(A.^2,gaussFilt,'conv','replicate') - mux2;
sigmay2 = imfilter(ref.^2,gaussFilt,'conv','replicate') - muy2;
sigmaxy = imfilter(A.*ref,gaussFilt,'conv','replicate') - muxy;
% Compute SSIM index
if (C(3) == C(2)/2) && isequal(exponents(:),ones(3,1))
% Special case: Equation 13 from [1]
num = (2*muxy + C(1)).*(2*sigmaxy + C(2));
den = (mux2 + muy2 + C(1)).*(sigmax2 + sigmay2 + C(2));
if (C(1) > 0) && (C(2) > 0)
ssimmap = num./den;
else
% Need to guard against divide-by-zero if either C(1) or C(2) is 0.
isDenNonZero = (den ~= 0);
ssimmap = ones(size(A));
ssimmap(isDenNonZero) = num(isDenNonZero)./den(isDenNonZero);
end
else
% General case: Equation 12 from [1]
% Luminance term
if (exponents(1) > 0)
num = 2*muxy + C(1);
den = mux2 + muy2 + C(1);
ssimmap = guardedDivideAndExponent(num,den,C(1),exponents(1));
else
ssimmap = ones(size(A), 'like', A);
end
% Contrast term
sigmaxsigmay = [];
if (exponents(2) > 0)
sigmaxsigmay = sqrt(sigmax2.*sigmay2);
num = 2*sigmaxsigmay + C(2);
den = sigmax2 + sigmay2 + C(2);
ssimmap = ssimmap.*guardedDivideAndExponent(num,den,C(2),exponents(2));
end
% Structure term
if (exponents(3) > 0)
num = sigmaxy + C(3);
if isempty(sigmaxsigmay)
sigmaxsigmay = sqrt(sigmax2.*sigmay2);
end
den = sigmaxsigmay + C(3);
ssimmap = ssimmap.*guardedDivideAndExponent(num,den,C(3),exponents(3));
end
end
ssimval = mean(ssimmap(:));
end
% -------------------------------------------------------------------------
function component = guardedDivideAndExponent(num, den, C, exponent)
if C > 0
component = num./den;
else
component = ones(size(num),'like',num);
isDenNonZero = (den ~= 0);
component(isDenNonZero) = num(isDenNonZero)./den(isDenNonZero);
end
if (exponent ~= 1)
component = component.^exponent;
end
end
function gaussFilt = getGaussianWeightingFilter(radius,N)
% Get 2D or 3D Gaussian weighting filter
filtRadius = ceil(radius*3); % 3 Standard deviations include >99% of the area.
filtSize = 2*filtRadius + 1;
if (N < 3)
% 2D Gaussian mask can be used for filtering even one-dimensional
% signals using imfilter.
gaussFilt = fspecial('gaussian',[filtSize filtSize],radius);
else
% 3D Gaussian mask
[x,y,z] = ndgrid(-filtRadius:filtRadius,-filtRadius:filtRadius, ...
-filtRadius:filtRadius);
arg = -(x.*x + y.*y + z.*z)/(2*radius*radius);
gaussFilt = exp(arg);
gaussFilt(gaussFilt<eps*max(gaussFilt(:))) = 0;
sumFilt = sum(gaussFilt(:));
if (sumFilt ~= 0)
gaussFilt = gaussFilt/sumFilt;
end
end
end
function [A, ref, C, exponents, radius] = parse_inputs(varargin)
validImageTypes = {'uint8','uint16','int16','single','double'};
A = varargin{1};
validateattributes(A,validImageTypes,{'nonsparse','real'},mfilename,'A',1);
ref = varargin{2};
validateattributes(ref,validImageTypes,{'nonsparse','real'},mfilename,'REF',2);
if ~isa(A,class(ref))
error(message('images:validate:differentClassMatrices','A','REF'));
end
if ~isequal(size(A),size(ref))
error(message('images:validate:unequalSizeMatrices','A','REF'));
end
if (ndims(A) > 3)
error(message('images:validate:tooManyDimensions','A and REF',3));
end
% Default values for parameters
dynmRange = diff(getrangefromclass(A));
C = [];
exponents = [1 1 1];
radius = 1.5;
args_names = {'dynamicrange', 'regularizationconstants','exponents',...
'radius'};
for i = 3:2:nargin
arg = varargin{i};
if ischar(arg)
idx = find(strncmpi(arg, args_names, numel(arg)));
if isempty(idx)
error(message('images:validate:unknownInputString', arg))
elseif numel(idx) > 1
error(message('images:validate:ambiguousInputString', arg))
elseif numel(idx) == 1
if (i+1 > nargin)
error(message('images:validate:missingParameterValue'));
end
if idx == 1
dynmRange = varargin{i+1};
validateattributes(dynmRange,{'numeric'},{'positive', ...
'finite', 'real', 'nonempty','scalar'}, mfilename, ...
'DynamicRange',i);
dynmRange = double(dynmRange);
elseif idx == 2
C = varargin{i+1};
validateattributes(C,{'numeric'},{'nonnegative','finite', ...
'real','nonempty','vector', 'numel', 3}, mfilename, ...
'RegularizationConstants',i);
C = double(C);
elseif idx == 3
exponents = varargin{i+1};
validateattributes(exponents,{'numeric'},{'nonnegative', ...
'finite', 'real', 'nonempty','vector', 'numel', 3}, ...
mfilename,'Exponents',i);
exponents = double(exponents);
elseif idx == 4
radius = varargin{i+1};
validateattributes(radius,{'numeric'},{'positive','finite', ...
'real', 'nonempty','scalar'}, mfilename,'Radius',i);
radius = double(radius);
end
end
else
error(message('images:validate:mustBeString'));
end
end
% If 'RegularizationConstants' is not specified, choose default C.
if isempty(C)
C = [(0.01*dynmRange).^2 (0.03*dynmRange).^2 ((0.03*dynmRange).^2)/2];
end
end