diff --git a/src/pingouin/nonparametric.py b/src/pingouin/nonparametric.py index 32bef39e..19c1a7ce 100644 --- a/src/pingouin/nonparametric.py +++ b/src/pingouin/nonparametric.py @@ -172,7 +172,7 @@ def mwu(x, y, alternative="two-sided", **kwargs): ------- stats : :py:class:`pandas.DataFrame` - * ``'U-val'``: U-value + * ``'U-val'``: U-value corresponding with sample x * ``'alternative'``: tail of the test * ``'p-val'``: p-value * ``'RBC'`` : rank-biserial correlation @@ -193,7 +193,8 @@ def mwu(x, y, alternative="two-sided", **kwargs): The rank biserial correlation [2]_ is the difference between the proportion of favorable evidence minus the proportion of unfavorable - evidence. + evidence. Values range from -1 to 1, with negative values indicating that `y > x`, and + positive values indicating `x > y`. The common language effect size is the proportion of pairs where ``x`` is higher than ``y``. It was first introduced by McGraw and Wong (1992) [3]_. @@ -238,8 +239,8 @@ def mwu(x, y, alternative="two-sided", **kwargs): >>> x = np.random.uniform(low=0, high=1, size=20) >>> y = np.random.uniform(low=0.2, high=1.2, size=20) >>> pg.mwu(x, y, alternative='two-sided') - U-val alternative p-val RBC CLES - MWU 97.0 two-sided 0.00556 0.515 0.2425 + U-val alternative p-val RBC CLES + MWU 97.0 two-sided 0.00556 -0.515 0.2425 Compare with SciPy @@ -250,18 +251,24 @@ def mwu(x, y, alternative="two-sided", **kwargs): One-sided test >>> pg.mwu(x, y, alternative='greater') - U-val alternative p-val RBC CLES - MWU 97.0 greater 0.997442 0.515 0.2425 + U-val alternative p-val RBC CLES + MWU 97.0 greater 0.997442 -0.515 0.2425 >>> pg.mwu(x, y, alternative='less') - U-val alternative p-val RBC CLES - MWU 97.0 less 0.00278 0.515 0.7575 + U-val alternative p-val RBC CLES + MWU 97.0 less 0.00278 -0.515 0.7575 Passing keyword arguments to :py:func:`scipy.stats.mannwhitneyu`: >>> pg.mwu(x, y, alternative='two-sided', method='exact') - U-val alternative p-val RBC CLES - MWU 97.0 two-sided 0.004681 0.515 0.2425 + U-val alternative p-val RBC CLES + MWU 97.0 two-sided 0.004681 -0.515 0.2425 + + Reversing the order of `x` and `y`. + + >>> pg.mwu(y, x) + U-val alternative p-val RBC CLES + MWU 303.0 two-sided 0.00556 0.515 0.7575 """ x = np.asarray(x) y = np.asarray(y) @@ -279,7 +286,7 @@ def mwu(x, y, alternative="two-sided", **kwargs): raise ValueError( "Since Pingouin 0.4.0, the 'tail' argument has been renamed to 'alternative'." ) - uval, pval = scipy.stats.mannwhitneyu(x, y, alternative=alternative, **kwargs) + uval_x, pval = scipy.stats.mannwhitneyu(x, y, alternative=alternative, **kwargs) # Effect size 1: Common Language Effect Size # CLES is tail-specific and calculated according to the formula given in @@ -292,11 +299,12 @@ def mwu(x, y, alternative="two-sided", **kwargs): cles = 1 - cles if alternative == "less" else cles # Effect size 2: rank biserial correlation (Wendt 1972) - rbc = 1 - (2 * uval) / diff.size # diff.size = x.size * y.size + uval_y = x.shape[0] * y.shape[0] - uval_x + rbc = 1 - (2 * uval_y) / diff.size # diff.size = x.size * y.size # Fill output DataFrame stats = pd.DataFrame( - {"U-val": uval, "alternative": alternative, "p-val": pval, "RBC": rbc, "CLES": cles}, + {"U-val": uval_x, "alternative": alternative, "p-val": pval, "RBC": rbc, "CLES": cles}, index=["MWU"], ) return _postprocess_dataframe(stats)