From 873eb4b1e7b608bc692bc02083b8a5319742d8c9 Mon Sep 17 00:00:00 2001 From: Matias Laporte Date: Thu, 17 Oct 2024 07:15:24 +0200 Subject: [PATCH] Update parametric.py - fix typo (#448) --- src/pingouin/parametric.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/pingouin/parametric.py b/src/pingouin/parametric.py index f8f87c9f..e97063bb 100644 --- a/src/pingouin/parametric.py +++ b/src/pingouin/parametric.py @@ -1262,7 +1262,7 @@ def welch_anova(data=None, dv=None, between=None): it is best to use the Welch ANOVA that better controls for type I error (Liu 2015). The homogeneity of variances can be measured with the `homoscedasticity` function. The two other assumptions of - normality and independance remain. + normality and independence remain. The main idea of Welch ANOVA is to use a weight :math:`w_i` to reduce the effect of unequal variances. This weight is calculated using the sample