diff --git a/build/executorch-wheel-config.cmake b/build/executorch-wheel-config.cmake new file mode 100644 index 0000000000..239fff67c1 --- /dev/null +++ b/build/executorch-wheel-config.cmake @@ -0,0 +1,40 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the BSD-style license found in the +# LICENSE file in the root directory of this source tree. + +# Config defining how CMake should find ExecuTorch package. CMake will search +# for this file and find ExecuTorch package if it is installed. Typical usage +# is: +# +# find_package(executorch REQUIRED) +# ------- +# +# Finds the ExecuTorch library +# +# This will define the following variables: +# +# EXECUTORCH_FOUND -- True if the system has the ExecuTorch library +# EXECUTORCH_INCLUDE_DIRS -- The include directories for ExecuTorch +# EXECUTORCH_LIBRARIES -- Libraries to link against +# +cmake_minimum_required(VERSION 3.19) + +# Find prebuilt _portable_lib.so. This file should be installed under +# /executorch/share/cmake +find_library(_portable_lib_LIBRARY _portable_lib.so PATHS "${CMAKE_CURRENT_LIST_DIR}/../../extension/pybindings/") +set(EXECUTORCH_LIBRARIES) +set(EXECUTORCH_FOUND OFF) +if(_portable_lib_LIBRARY) + set(EXECUTORCH_FOUND ON) + message(STATUS "ExecuTorch portable library is found at ${_portable_lib_LIBRARY}") + list(APPEND EXECUTORCH_LIBRARIES _portable_lib) + add_library(_portable_lib STATIC IMPORTED) + set(EXECUTORCH_INCLUDE_DIRS ${CMAKE_CURRENT_LIST_DIR}/../../include) + set_target_properties(_portable_lib PROPERTIES + IMPORTED_LOCATION "${_portable_lib_LIBRARY}" + INTERFACE_INCLUDE_DIRECTORIES "${EXECUTORCH_INCLUDE_DIRS}" + CXX_STANDARD 17 + ) +endif() diff --git a/extension/pybindings/TARGETS b/extension/pybindings/TARGETS index ecf23e4658..17ccbb2477 100644 --- a/extension/pybindings/TARGETS +++ b/extension/pybindings/TARGETS @@ -67,6 +67,7 @@ runtime.python_library( srcs = ["portable_lib.py"], visibility = [ "//executorch/exir/...", + "//executorch/runtime/...", "@EXECUTORCH_CLIENTS", ], deps = [":_portable_lib"], diff --git a/extension/pybindings/portable_lib.py b/extension/pybindings/portable_lib.py index d094710e67..25624ad60c 100644 --- a/extension/pybindings/portable_lib.py +++ b/extension/pybindings/portable_lib.py @@ -45,6 +45,8 @@ _reset_profile_results, # noqa: F401 BundledModule, # noqa: F401 ExecuTorchModule, # noqa: F401 + MethodMeta, # noqa: F401 + Verification, # noqa: F401 ) # Clean up so that `dir(portable_lib)` is the same as `dir(_portable_lib)` diff --git a/extension/pybindings/pybindings.cpp b/extension/pybindings/pybindings.cpp index d674f2fe58..19d4d09596 100644 --- a/extension/pybindings/pybindings.cpp +++ b/extension/pybindings/pybindings.cpp @@ -24,6 +24,7 @@ #include #include #include +#include #include #include #include @@ -55,6 +56,16 @@ } \ }) +#define THROW_INDEX_IF_ERROR(error, message, ...) \ + ({ \ + if ((error) != Error::Ok) { \ + char msg_buf[128]; \ + snprintf(msg_buf, sizeof(msg_buf), message, ##__VA_ARGS__); \ + /* pybind will convert this to a python exception. */ \ + throw std::out_of_range(msg_buf); \ + } \ + }) + // Our logs work by writing to stderr. By default this is done through fprintf // (as defined in posix.cpp) which then does not show up in python environments. // Here we override the pal to use std::cerr which can be properly redirected by @@ -157,13 +168,15 @@ class Module final { explicit Module( std::unique_ptr loader, std::unique_ptr tracer = nullptr, - size_t debug_buffer_size = 0) + size_t debug_buffer_size = 0, + Program::Verification program_verification = + Program::Verification::InternalConsistency) : loader_(std::move(loader)), event_tracer_(std::move(tracer)), debug_buffer_size_(debug_buffer_size) { ::executorch::runtime::runtime_init(); - Result program = Program::load( - loader_.get(), Program::Verification::InternalConsistency); + Result program = + Program::load(loader_.get(), program_verification); THROW_IF_ERROR( program.error(), "loading program failed with error: 0x%" PRIx32, @@ -238,10 +251,10 @@ class Module final { const std::vector& args, const std::optional>>& output_storages = std::nullopt) { - auto& method = methods_[method_name]; + auto& method = get_method(method_name); exec_aten::ArrayRef input_evalue_list(args.data(), args.size()); - Error set_inputs_status = method->set_inputs(input_evalue_list); + Error set_inputs_status = method.set_inputs(input_evalue_list); THROW_IF_ERROR( set_inputs_status, "method->set_inputs() for method '%s' failed with error 0x%" PRIx32, @@ -262,9 +275,9 @@ class Module final { c10::autograd_dispatch_keyset); #endif if (output_storages) { - setup_output_storage(*method, *output_storages); + setup_output_storage(method, *output_storages); } - Error execute_status = method->execute(); + Error execute_status = method.execute(); THROW_IF_ERROR( execute_status, "method->execute() failed with error 0x%" PRIx32, @@ -291,11 +304,22 @@ class Module final { Method& get_method(const std::string& method_name) { if (methods_.count(method_name) == 0) { THROW_IF_ERROR( - Error(), "no such method in program: %s", method_name.c_str()); + Error::InvalidArgument, + "no such method in program: %s", + method_name.c_str()); } return *methods_[method_name].get(); } + /// Returns the names of all methods in the program. + std::vector method_names() const { + std::vector names; + for (const auto& method : methods_) { + names.push_back(method.first); + } + return names; + } + bool has_etdump() { return static_cast(event_tracer_); } @@ -375,19 +399,22 @@ inline std::unique_ptr load_module_from_buffer( const void* ptr, size_t ptr_len, bool enable_etdump, - size_t debug_buffer_size) { + size_t debug_buffer_size, + Program::Verification program_verification) { EXECUTORCH_SCOPE_PROF("load_module_from_buffer"); auto loader = std::make_unique(ptr, ptr_len); return std::make_unique( std::move(loader), enable_etdump ? std::make_unique() : nullptr, - debug_buffer_size); + debug_buffer_size, + program_verification); } inline std::unique_ptr load_module_from_file( const std::string& path, bool enable_etdump, - size_t debug_buffer_size) { + size_t debug_buffer_size, + Program::Verification program_verification) { EXECUTORCH_SCOPE_PROF("load_module_from_file"); Result res = MmapDataLoader::from( @@ -402,7 +429,8 @@ inline std::unique_ptr load_module_from_file( return std::make_unique( std::move(loader), enable_etdump ? std::make_unique() : nullptr, - debug_buffer_size); + debug_buffer_size, + program_verification); } static constexpr size_t kDEFAULT_BUNDLED_INPUT_POOL_SIZE = 16 * 1024U; @@ -448,34 +476,158 @@ struct PyBundledModule final { size_t program_len_; }; +/// Expose a subset of TensorInfo information to python. +struct PyTensorInfo final { + explicit PyTensorInfo( + std::shared_ptr module, + torch::executor::TensorInfo info) + : module_(std::move(module)), info_(info) {} + + py::tuple sizes() const { + const auto shape = info_.sizes(); + py::tuple tup(shape.size()); + for (size_t i = 0; i < shape.size(); ++i) { + tup[i] = py::cast(shape[i]); + } + return tup; + } + + int8_t dtype() const { + return static_cast::type>( + info_.scalar_type()); + } + + bool is_memory_planned() const { + return info_.is_memory_planned(); + } + + size_t nbytes() const { + return info_.nbytes(); + } + + std::string repr() const { + std::string size_str = "["; + for (const auto& d : info_.sizes()) { + size_str.append(std::to_string(d)); + size_str.append(", "); + } + if (size_str.length() >= 2) { + // Pop the last two characters (command and space) and add close bracket. + size_str.pop_back(); + size_str.pop_back(); + } + size_str.append("]"); + return "TensorInfo(sizes=" + size_str + ", dtype=" + + std::string(executorch::runtime::toString(info_.scalar_type())) + + ", is_memory_planned=" + + (info_.is_memory_planned() ? "True" : "False") + + ", nbytes=" + std::to_string(info_.nbytes()) + ")"; + } + + private: + // TensorInfo relies on module to be alive. + std::shared_ptr module_; + torch::executor::TensorInfo info_; +}; + +/// Expose a subset of MethodMeta information to python. +struct PyMethodMeta final { + explicit PyMethodMeta( + std::shared_ptr module, + torch::executor::MethodMeta meta) + : module_(std::move(module)), meta_(meta) {} + + const char* name() const { + return meta_.name(); + } + + size_t num_inputs() const { + return meta_.num_inputs(); + } + + std::unique_ptr input_tensor_meta(size_t index) const { + const auto result = meta_.input_tensor_meta(index); + THROW_INDEX_IF_ERROR( + result.error(), "Cannot get input tensor meta at %zu", index); + return std::make_unique(module_, result.get()); + } + + size_t num_outputs() const { + return meta_.num_outputs(); + } + + std::unique_ptr output_tensor_meta(size_t index) const { + const auto result = meta_.output_tensor_meta(index); + THROW_INDEX_IF_ERROR( + result.error(), "Cannot get output tensor meta at %zu", index); + return std::make_unique(module_, result.get()); + } + + py::str repr() const { + py::list input_meta_strs; + for (size_t i = 0; i < meta_.num_inputs(); ++i) { + input_meta_strs.append(py::str(input_tensor_meta(i)->repr())); + } + py::list output_meta_strs; + for (size_t i = 0; i < meta_.num_outputs(); ++i) { + output_meta_strs.append(py::str(output_tensor_meta(i)->repr())); + } + // Add quotes to be more similar to Python's repr for strings. + py::str format = + "MethodMeta(name='{}', num_inputs={}, input_tensor_meta={}, num_outputs={}, output_tensor_meta={})"; + return format.format( + std::string(meta_.name()), + std::to_string(meta_.num_inputs()), + input_meta_strs, + std::to_string(meta_.num_outputs()), + output_meta_strs); + } + + private: + // Must keep the Module object alive or else the meta object is invalidated. + std::shared_ptr module_; + torch::executor::MethodMeta meta_; +}; + struct PyModule final { explicit PyModule( const py::bytes& buffer, bool enable_etdump, - size_t debug_buffer_size = 0) + size_t debug_buffer_size = 0, + Program::Verification program_verification = + Program::Verification::InternalConsistency) : module_(load_module_from_buffer( buffer.cast().data(), py::len(buffer), enable_etdump, - debug_buffer_size)) {} + debug_buffer_size, + program_verification)) {} explicit PyModule( const void* ptr, size_t ptr_len, bool enable_etdump, - size_t debug_buffer_size = 0) + size_t debug_buffer_size = 0, + Program::Verification program_verification = + Program::Verification::InternalConsistency) : module_(load_module_from_buffer( ptr, ptr_len, enable_etdump, - debug_buffer_size)) {} + debug_buffer_size, + program_verification)) {} explicit PyModule( const std::string& path, bool enable_etdump, - size_t debug_buffer_size = 0) - : module_(load_module_from_file(path, enable_etdump, debug_buffer_size)) { - } + size_t debug_buffer_size = 0, + Program::Verification program_verification = + Program::Verification::InternalConsistency) + : module_(load_module_from_file( + path, + enable_etdump, + debug_buffer_size, + program_verification)) {} PyModule(const PyModule&) = delete; PyModule& operator=(const PyModule&) = delete; @@ -486,14 +638,20 @@ struct PyModule final { static std::unique_ptr load_from_buffer( const py::bytes& buffer, bool enable_etdump, - size_t debug_buffer_size = 0) { - return std::make_unique(buffer, enable_etdump, debug_buffer_size); + size_t debug_buffer_size = 0, + Program::Verification program_verification = + Program::Verification::InternalConsistency) { + return std::make_unique( + buffer, enable_etdump, debug_buffer_size, program_verification); } static std::unique_ptr load_from_file( const std::string& path, bool enable_etdump, - size_t debug_buffer_size = 0) { - return std::make_unique(path, enable_etdump, debug_buffer_size); + size_t debug_buffer_size = 0, + Program::Verification program_verification = + Program::Verification::InternalConsistency) { + return std::make_unique( + path, enable_etdump, debug_buffer_size, program_verification); } static std::unique_ptr load_from_bundled_program( @@ -751,8 +909,17 @@ struct PyModule final { return list; } + std::unique_ptr method_meta(const std::string method_name) { + auto& method = module_->get_method(method_name); + return std::make_unique(module_, method.method_meta()); + } + + std::vector method_names() { + return module_->method_names(); + } + private: - std::unique_ptr module_; + std::shared_ptr module_; // Need to keep-alive output storages until they can be compared in case of // bundled programs. std::vector> output_storages_; @@ -805,12 +972,20 @@ PYBIND11_MODULE(EXECUTORCH_PYTHON_MODULE_NAME, m) { // Redirects cout and cerr for function calls this guards to the python env. auto call_guard = py:: call_guard(); + + // Bind the verification enum to python. + py::enum_(m, "Verification") + .value("Minimal", Program::Verification::Minimal) + .value("InternalConsistency", Program::Verification::InternalConsistency); + m.def( "_load_for_executorch", PyModule::load_from_file, py::arg("path"), py::arg("enable_etdump") = false, py::arg("debug_buffer_size") = 0, + py::arg("program_verification") = + Program::Verification::InternalConsistency, call_guard); m.def( "_load_for_executorch_from_buffer", @@ -818,6 +993,8 @@ PYBIND11_MODULE(EXECUTORCH_PYTHON_MODULE_NAME, m) { py::arg("buffer"), py::arg("enable_etdump") = false, py::arg("debug_buffer_size") = 0, + py::arg("program_verification") = + Program::Verification::InternalConsistency, call_guard); m.def( "_load_for_executorch_from_bundled_program", @@ -866,6 +1043,12 @@ PYBIND11_MODULE(EXECUTORCH_PYTHON_MODULE_NAME, m) { py::arg("method_name"), py::arg("clone_outputs") = true, call_guard) + .def( + "method_meta", + &PyModule::method_meta, + py::arg("method_name"), + call_guard) + .def("method_names", &PyModule::method_names, call_guard) .def( "run_method", &PyModule::run_method, @@ -900,6 +1083,27 @@ PYBIND11_MODULE(EXECUTORCH_PYTHON_MODULE_NAME, m) { call_guard); py::class_(m, "BundledModule"); + py::class_(m, "TensorInfo") + .def("sizes", &PyTensorInfo::sizes, call_guard) + .def("dtype", &PyTensorInfo::dtype, call_guard) + .def("is_memory_planned", &PyTensorInfo::is_memory_planned, call_guard) + .def("nbytes", &PyTensorInfo::nbytes, call_guard) + .def("__repr__", &PyTensorInfo::repr, call_guard); + py::class_(m, "MethodMeta") + .def("name", &PyMethodMeta::name, call_guard) + .def("num_inputs", &PyMethodMeta::num_inputs, call_guard) + .def("num_outputs", &PyMethodMeta::num_outputs, call_guard) + .def( + "input_tensor_meta", + &PyMethodMeta::input_tensor_meta, + py::arg("index"), + call_guard) + .def( + "output_tensor_meta", + &PyMethodMeta::output_tensor_meta, + py::arg("index"), + call_guard) + .def("__repr__", &PyMethodMeta::repr, call_guard); } } // namespace pybindings diff --git a/extension/pybindings/pybindings.pyi b/extension/pybindings/pybindings.pyi index 14e8ec13e1..818df1f760 100644 --- a/extension/pybindings/pybindings.pyi +++ b/extension/pybindings/pybindings.pyi @@ -5,10 +5,24 @@ # LICENSE file in the root directory of this source tree. # pyre-strict -from typing import Any, Dict, List, Optional, Sequence, Tuple +from __future__ import annotations + +from typing import Any, Dict, Enum, List, Optional, Sequence, Tuple from executorch.exir._warnings import experimental +@experimental("This API is experimental and subject to change without notice.") +class Verification(Enum): + """Verification maps C++ Program::Verification to Python. + + .. warning:: + + This API is experimental and subject to change without notice. + """ + + Minimal: ... + InternalConsistency: ... + @experimental("This API is experimental and subject to change without notice.") class ExecuTorchModule: """ExecuTorchModule is a Python wrapper around a C++ ExecuTorch program. @@ -43,6 +57,8 @@ class ExecuTorchModule: def write_etdump_result_to_file( self, path: str, debug_buffer_path: Optional[str] = None ) -> None: ... + def method_meta(self, method_name: str) -> MethodMeta: ... + def method_names(self) -> List[str]: ... @experimental("This API is experimental and subject to change without notice.") class BundledModule: @@ -54,9 +70,78 @@ class BundledModule: ... +@experimental("This API is experimental and subject to change without notice.") +class TensorInfo: + """Metadata about a tensor such as the shape and dtype. + + .. warning:: + + This API is experimental and subject to change without notice. + """ + + def sizes(self) -> Tuple[int, ...]: + """Shape of the tensor as a tuple""" + ... + + def dtype(self) -> int: + """The data type of the elements inside the tensor. + See documentation for ScalarType in executorch/runtime/core/portable_type/scalar_type.h + for the values these integers can take.""" + ... + + def is_memory_planned(self) -> bool: + """True if the tensor is already memory planned, meaning no allocation + needs to be provided. False otherwise""" + ... + + def nbytes(self) -> int: + """Number of bytes in the tensor. Not the same as numel if the dtype is + larger than 1 byte wide""" + ... + + def __repr__(self) -> str: ... + +@experimental("This API is experimental and subject to change without notice.") +class MethodMeta: + """Metadata about a method such as the number of inputs and outputs. + + .. warning:: + + This API is experimental and subject to change without notice. + """ + + def name(self) -> str: + """The name of the method, such as 'forward'""" + ... + + def num_inputs(self) -> int: + """The number of user inputs to the method. This does not include any + internal buffers or weights, which don't need to be provided by the user""" + ... + + def num_outputs(self) -> int: + """The number of outputs from the method. This does not include any mutated + internal buffers""" + ... + + def input_tensor_meta(self, index: int) -> TensorInfo: + """The tensor info for the 'index'th input. Index must be in the interval + [0, num_inputs()). Raises an IndexError if the index is out of bounds""" + ... + + def output_tensor_meta(self, index: int) -> TensorInfo: + """The tensor info for the 'index'th output. Index must be in the interval + [0, num_outputs()). Raises an IndexError if the index is out of bounds""" + ... + + def __repr__(self) -> str: ... + @experimental("This API is experimental and subject to change without notice.") def _load_for_executorch( - path: str, enable_etdump: bool = False, debug_buffer_size: int = 0 + path: str, + enable_etdump: bool = False, + debug_buffer_size: int = 0, + program_verification: Verification = Verification.InternalConsistency, ) -> ExecuTorchModule: """Load an ExecuTorch Program from a file. @@ -79,7 +164,10 @@ def _load_for_executorch( @experimental("This API is experimental and subject to change without notice.") def _load_for_executorch_from_buffer( - buffer: bytes, enable_etdump: bool = False, debug_buffer_size: int = 0 + buffer: bytes, + enable_etdump: bool = False, + debug_buffer_size: int = 0, + program_verification: Verification = Verification.InternalConsistency, ) -> ExecuTorchModule: """Same as _load_for_executorch, but takes a byte buffer instead of a file path. diff --git a/extension/pybindings/test/TARGETS b/extension/pybindings/test/TARGETS index feb4779a05..41f2c84dcc 100644 --- a/extension/pybindings/test/TARGETS +++ b/extension/pybindings/test/TARGETS @@ -11,7 +11,10 @@ runtime.python_library( srcs = [ "make_test.py", ], - visibility = ["//executorch/extension/pybindings/..."], + visibility = [ + "//executorch/extension/pybindings/...", + "//executorch/runtime/...", + ], deps = [ "//caffe2:torch", "//caffe2:torch_fx", diff --git a/extension/pybindings/test/make_test.py b/extension/pybindings/test/make_test.py index 44e41ed443..e8d23fd44e 100644 --- a/extension/pybindings/test/make_test.py +++ b/extension/pybindings/test/make_test.py @@ -7,6 +7,7 @@ # pyre-unsafe import unittest +from types import ModuleType from typing import Any, Callable, Optional, Tuple import torch @@ -15,117 +16,122 @@ from torch.export import export -def make_test( # noqa: C901 - tester: unittest.TestCase, - load_fn: Callable, -) -> Callable[[unittest.TestCase], None]: - """ - Returns a function that operates as a test case within a unittest.TestCase class. +class ModuleAdd(torch.nn.Module): + """The module to serialize and execute.""" - Used to allow the test code for pybindings to be shared across different pybinding libs - which will all have different load functions. In this case each individual test case is a - subfunction of wrapper. - """ + def __init__(self): + super(ModuleAdd, self).__init__() - def wrapper(tester: unittest.TestCase) -> None: - class ModuleAdd(torch.nn.Module): - """The module to serialize and execute.""" + def forward(self, x, y): + return x + y - def __init__(self): - super(ModuleAdd, self).__init__() + def get_methods_to_export(self): + return ("forward",) - def forward(self, x, y): - return x + y + def get_inputs(self): + return (torch.ones(2, 2), torch.ones(2, 2)) - def get_methods_to_export(self): - return ("forward",) - def get_inputs(self): - return (torch.ones(2, 2), torch.ones(2, 2)) +class ModuleMulti(torch.nn.Module): + """The module to serialize and execute.""" - class ModuleMulti(torch.nn.Module): - """The module to serialize and execute.""" + def __init__(self): + super(ModuleMulti, self).__init__() - def __init__(self): - super(ModuleMulti, self).__init__() + def forward(self, x, y): + return x + y - def forward(self, x, y): - return x + y + def forward2(self, x, y): + return x + y + 1 - def forward2(self, x, y): - return x + y + 1 + def get_methods_to_export(self): + return ("forward", "forward2") - def get_methods_to_export(self): - return ("forward", "forward2") + def get_inputs(self): + return (torch.ones(2, 2), torch.ones(2, 2)) - def get_inputs(self): - return (torch.ones(2, 2), torch.ones(2, 2)) - class ModuleAddSingleInput(torch.nn.Module): - """The module to serialize and execute.""" +class ModuleAddSingleInput(torch.nn.Module): + """The module to serialize and execute.""" - def __init__(self): - super(ModuleAddSingleInput, self).__init__() + def __init__(self): + super(ModuleAddSingleInput, self).__init__() - def forward(self, x): - return x + x + def forward(self, x): + return x + x - def get_methods_to_export(self): - return ("forward",) + def get_methods_to_export(self): + return ("forward",) - def get_inputs(self): - return (torch.ones(2, 2),) + def get_inputs(self): + return (torch.ones(2, 2),) - class ModuleAddConstReturn(torch.nn.Module): - """The module to serialize and execute.""" - def __init__(self): - super(ModuleAddConstReturn, self).__init__() - self.state = torch.ones(2, 2) +class ModuleAddConstReturn(torch.nn.Module): + """The module to serialize and execute.""" - def forward(self, x): - return x + self.state, self.state + def __init__(self): + super(ModuleAddConstReturn, self).__init__() + self.state = torch.ones(2, 2) - def get_methods_to_export(self): - return ("forward",) + def forward(self, x): + return x + self.state, self.state - def get_inputs(self): - return (torch.ones(2, 2),) + def get_methods_to_export(self): + return ("forward",) - def create_program( - eager_module: torch.nn.Module, - et_config: Optional[ExecutorchBackendConfig] = None, - ) -> Tuple[ExecutorchProgramManager, Tuple[Any, ...]]: - """Returns an executorch program based on ModuleAdd, along with inputs.""" + def get_inputs(self): + return (torch.ones(2, 2),) - # Trace the test module and create a serialized ExecuTorch program. - inputs = eager_module.get_inputs() - input_map = {} - for method in eager_module.get_methods_to_export(): - input_map[method] = inputs - class WrapperModule(torch.nn.Module): - def __init__(self, fn): - super().__init__() - self.fn = fn +def create_program( + eager_module: torch.nn.Module, + et_config: Optional[ExecutorchBackendConfig] = None, +) -> Tuple[ExecutorchProgramManager, Tuple[Any, ...]]: + """Returns an executorch program based on ModuleAdd, along with inputs.""" - def forward(self, *args, **kwargs): - return self.fn(*args, **kwargs) + # Trace the test module and create a serialized ExecuTorch program. + inputs = eager_module.get_inputs() + input_map = {} + for method in eager_module.get_methods_to_export(): + input_map[method] = inputs - exported_methods = {} - # These cleanup passes are required to convert the `add` op to its out - # variant, along with some other transformations. - for method_name, method_input in input_map.items(): - wrapped_mod = WrapperModule( # pyre-ignore[16] - getattr(eager_module, method_name) - ) - exported_methods[method_name] = export(wrapped_mod, method_input) + class WrapperModule(torch.nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + + def forward(self, *args, **kwargs): + return self.fn(*args, **kwargs) + + exported_methods = {} + # These cleanup passes are required to convert the `add` op to its out + # variant, along with some other transformations. + for method_name, method_input in input_map.items(): + wrapped_mod = WrapperModule(getattr(eager_module, method_name)) + exported_methods[method_name] = export(wrapped_mod, method_input) + + exec_prog = to_edge(exported_methods).to_executorch(config=et_config) - exec_prog = to_edge(exported_methods).to_executorch(config=et_config) + # Create the ExecuTorch program from the graph. + exec_prog.dump_executorch_program(verbose=True) + return (exec_prog, inputs) - # Create the ExecuTorch program from the graph. - exec_prog.dump_executorch_program(verbose=True) - return (exec_prog, inputs) + +def make_test( # noqa: C901 + tester: unittest.TestCase, + runtime: ModuleType, +) -> Callable[[unittest.TestCase], None]: + """ + Returns a function that operates as a test case within a unittest.TestCase class. + + Used to allow the test code for pybindings to be shared across different pybinding libs + which will all have different load functions. In this case each individual test case is a + subfunction of wrapper. + """ + load_fn: Callable = runtime._load_for_executorch_from_buffer + + def wrapper(tester: unittest.TestCase) -> None: ######### TEST CASES ######### @@ -236,6 +242,7 @@ def test_quantized_ops(tester): from executorch.exir import EdgeCompileConfig from executorch.exir.passes.quant_fusion_pass import QuantFusionPass + from executorch.kernels import quantized # noqa: F401 from torch.ao.quantization import get_default_qconfig_mapping from torch.ao.quantization.backend_config.executorch import ( get_executorch_backend_config, @@ -297,6 +304,84 @@ def test_constant_output_not_memory_planned(tester): ######### RUN TEST CASES ######### + def test_method_meta(tester) -> None: + exported_program, inputs = create_program(ModuleAdd()) + + # Use pybindings to load the program and query its metadata. + executorch_module = load_fn(exported_program.buffer) + meta = executorch_module.method_meta("forward") + + # Ensure that all these APIs work even if the module object is destroyed. + del executorch_module + tester.assertEqual(meta.name(), "forward") + tester.assertEqual(meta.num_inputs(), 2) + tester.assertEqual(meta.num_outputs(), 1) + # Common string for all these tensors. + tensor_info = "TensorInfo(sizes=[2, 2], dtype=Float, is_memory_planned=True, nbytes=16)" + float_dtype = 6 + tester.assertEqual( + str(meta), + "MethodMeta(name='forward', num_inputs=2, " + f"input_tensor_meta=['{tensor_info}', '{tensor_info}'], " + f"num_outputs=1, output_tensor_meta=['{tensor_info}'])", + ) + + input_tensors = [meta.input_tensor_meta(i) for i in range(2)] + output_tensor = meta.output_tensor_meta(0) + # Check that accessing out of bounds raises IndexError. + with tester.assertRaises(IndexError): + meta.input_tensor_meta(2) + # Test that tensor metadata can outlive method metadata. + del meta + tester.assertEqual([t.sizes() for t in input_tensors], [(2, 2), (2, 2)]) + tester.assertEqual( + [t.dtype() for t in input_tensors], [float_dtype, float_dtype] + ) + tester.assertEqual( + [t.is_memory_planned() for t in input_tensors], [True, True] + ) + tester.assertEqual([t.nbytes() for t in input_tensors], [16, 16]) + tester.assertEqual(str(input_tensors), f"[{tensor_info}, {tensor_info}]") + + tester.assertEqual(output_tensor.sizes(), (2, 2)) + tester.assertEqual(output_tensor.dtype(), float_dtype) + tester.assertEqual(output_tensor.is_memory_planned(), True) + tester.assertEqual(output_tensor.nbytes(), 16) + tester.assertEqual(str(output_tensor), tensor_info) + + def test_bad_name(tester) -> None: + # Create an ExecuTorch program from ModuleAdd. + exported_program, inputs = create_program(ModuleAdd()) + + # Use pybindings to load and execute the program. + executorch_module = load_fn(exported_program.buffer) + # Invoke the callable on executorch_module instead of calling module.forward. + with tester.assertRaises(RuntimeError): + executorch_module.run_method("not_a_real_method", inputs) + + def test_verification_config(tester) -> None: + # Create an ExecuTorch program from ModuleAdd. + exported_program, inputs = create_program(ModuleAdd()) + Verification = runtime.Verification + + # Use pybindings to load and execute the program. + for config in [Verification.Minimal, Verification.InternalConsistency]: + executorch_module = load_fn( + exported_program.buffer, + enable_etdump=False, + debug_buffer_size=0, + program_verification=config, + ) + + executorch_output = executorch_module.forward(inputs)[0] + + # The test module adds the two inputs, so its output should be the same + # as adding them directly. + expected = inputs[0] + inputs[1] + + tester.assertEqual(str(expected), str(executorch_output)) + + ######### RUN TEST CASES ######### test_e2e(tester) test_multiple_entry(tester) test_output_lifespan(tester) @@ -305,5 +390,8 @@ def test_constant_output_not_memory_planned(tester): test_stderr_redirect(tester) test_quantized_ops(tester) test_constant_output_not_memory_planned(tester) + test_method_meta(tester) + test_bad_name(tester) + test_verification_config(tester) return wrapper diff --git a/extension/pybindings/test/test_pybindings.py b/extension/pybindings/test/test_pybindings.py index d4ce2af039..d7a1cf4ca0 100644 --- a/extension/pybindings/test/test_pybindings.py +++ b/extension/pybindings/test/test_pybindings.py @@ -10,24 +10,19 @@ kernel_mode = None # either aten mode or portable mode try: - from executorch.extension.pybindings.portable_lib import ( - _load_for_executorch_from_buffer, - ) + from executorch.extension.pybindings import portable_lib as runtime kernel_mode = "portable" except Exception: print("can't load portable lib") -try: - from executorch.extension.pybindings.aten_lib import ( # noqa: F811 - _load_for_executorch_from_buffer, - ) - - assert kernel_mode is None +if kernel_mode is None: + try: + from executorch.extension.pybindings import aten_lib as runtime # noqa: F811 - kernel_mode = "aten" -except Exception: - print("can't load aten lib") + kernel_mode = "aten" + except Exception: + print("can't load aten lib") assert kernel_mode is not None @@ -37,4 +32,4 @@ class PybindingsTest(unittest.TestCase): def test(self): - make_test(self, _load_for_executorch_from_buffer)(self) + make_test(self, runtime)(self) diff --git a/pytest.ini b/pytest.ini index 701c0187ec..49f46ff6e3 100644 --- a/pytest.ini +++ b/pytest.ini @@ -34,6 +34,8 @@ addopts = backends/xnnpack/test # extension/ extension/pybindings/test + # Runtime + runtime # test test/end2end/test_end2end.py --ignore=backends/xnnpack/test/ops/linear.py diff --git a/runtime/TARGETS b/runtime/TARGETS new file mode 100644 index 0000000000..b9b0fc2c30 --- /dev/null +++ b/runtime/TARGETS @@ -0,0 +1,14 @@ +load("@fbsource//xplat/executorch/build:runtime_wrapper.bzl", "runtime") + +oncall("executorch") + +runtime.python_library( + name = "runtime", + srcs = ["__init__.py"], + deps = [ + "//executorch/extension/pybindings:portable_lib", + ], + visibility = [ + "//executorch/runtime/...", + ], +) diff --git a/runtime/__init__.py b/runtime/__init__.py new file mode 100644 index 0000000000..80ffeeba03 --- /dev/null +++ b/runtime/__init__.py @@ -0,0 +1,198 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the BSD-style license found in the +# LICENSE file in the root directory of this source tree. + +"""Interface to the native C++ ExecuTorch runtime. + +Example usage: +.. code-block:: text + + from pathlib import Path + + import torch + from executorch.runtime import Verification, Runtime + + et_runtime: Runtime = Runtime.get() + program: Program = et_runtime.load_program( + Path("/tmp/program.pte"), + verification=Verification.Minimal, + ) + print("Program methods:", program.method_names) + forward: Method = program.load_method("forward") + + inputs = (torch.ones(2, 2), torch.ones(2, 2)) + outputs = forward.execute(inputs) + print(f"Ran forward({inputs})") + print(f" outputs: {outputs}") + +Example output: +.. code-block:: text + + Program methods: ('forward', 'forward2') + Ran forward((tensor([[1., 1.], + [1., 1.]]), tensor([[1., 1.], + [1., 1.]]))) + outputs: [tensor([[1., 1.], + [1., 1.]])] +""" + +import functools +from pathlib import Path +from types import ModuleType +from typing import Any, BinaryIO, Dict, Optional, Sequence, Set, Union + +try: + from executorch.extension.pybindings.portable_lib import ( + ExecuTorchModule, + MethodMeta, + Verification, + ) +except ModuleNotFoundError as e: + raise ModuleNotFoundError( + "Prebuilt /extension/pybindings/_portable_lib.so " + "is not found. Please reinstall ExecuTorch from pip." + ) from e + + +class Method: + """An ExecuTorch method, loaded from a Program. + This can be used to execute the method with inputs. + """ + + def __init__(self, method_name: str, module: ExecuTorchModule) -> None: + # TODO: This class should be pybind to the C++ counterpart instead of hosting ExecuTorchModule. + self._method_name = method_name + self._module = module + + def execute(self, inputs: Sequence[Any]) -> Sequence[Any]: + """Executes the method with the given inputs. + + Args: + inputs: The inputs to the method. + + Returns: + The outputs of the method. + """ + return self._module.run_method(self._method_name, inputs) + + @property + def metadata(self) -> MethodMeta: + """Gets the metadata for the method. + + Returns: + The metadata for the method. + """ + return self._module.method_meta(self._method_name) + + +class Program: + """An ExecuTorch program, loaded from binary PTE data. + + This can be used to load the methods/models defined by the program. + """ + + def __init__(self, module: ExecuTorchModule, data: Optional[bytes]) -> None: + # Hold the data so the program is not freed. + self._data = data + self._module = module + self._methods: Dict[str, Method] = {} + # ExecuTorchModule already pre-loads all Methods when created, so this + # doesn't do any extra work. TODO: Don't load a given Method until + # load_method() is called. Create a separate Method instance each time, + # to allow multiple independent instances of the same model. + for method_name in self._module.method_names(): + self._methods[method_name] = Method(method_name, self._module) + + @property + def method_names(self) -> Set[str]: + return set(self._methods.keys()) + + def load_method(self, name: str) -> Optional[Method]: + """Loads a method from the program. + + Args: + name: The name of the method to load. + + Returns: + The loaded method. + """ + return self._methods.get(name, None) + + +class OperatorRegistry: + """The registry of operators that are available to the runtime.""" + + def __init__(self, legacy_module: ModuleType) -> None: + # TODO: Expose the kernel callables to Python. + self._legacy_module = legacy_module + + @property + def operator_names(self) -> Set[str]: + """The names of all registered operators.""" + return set(self._legacy_module._get_operator_names()) + + +class Runtime: + """An instance of the ExecuTorch runtime environment. + + This can be used to concurrently load and execute any number of ExecuTorch + programs and methods. + """ + + @staticmethod + @functools.lru_cache(maxsize=1) + def get() -> "Runtime": + """Gets the Runtime singleton.""" + import executorch.extension.pybindings.portable_lib as legacy_module + + return Runtime(legacy_module=legacy_module) + + def __init__(self, *, legacy_module: ModuleType) -> None: + # Public attributes. + self.operator_registry = OperatorRegistry(legacy_module) + # Private attributes. + self._legacy_module = legacy_module + + def load_program( + self, + data: Union[bytes, bytearray, BinaryIO, Path, str], + *, + verification: Verification = Verification.InternalConsistency, + ) -> Program: + """Loads an ExecuTorch program from a PTE binary. + + Args: + data: The binary program data to load; typically PTE data. + verification: level of program verification to perform. + + Returns: + The loaded program. + """ + if isinstance(data, (Path, str)): + m = self._legacy_module._load_for_executorch( + str(data), + enable_etdump=False, + debug_buffer_size=0, + program_verification=verification, + ) + return Program(m, data=None) + elif isinstance(data, BinaryIO): + data_bytes = data.read() + elif isinstance(data, bytearray): + data_bytes = bytes(data) + elif isinstance(data, bytes): + data_bytes = data + else: + raise TypeError( + f"Expected data to be bytes, bytearray, a path to a .pte file, or a file-like object, but got {type(data).__name__}." + ) + m = self._legacy_module._load_for_executorch_from_buffer( + data_bytes, + enable_etdump=False, + debug_buffer_size=0, + program_verification=verification, + ) + + return Program(m, data=data_bytes) diff --git a/runtime/test/TARGETS b/runtime/test/TARGETS new file mode 100644 index 0000000000..728de01b01 --- /dev/null +++ b/runtime/test/TARGETS @@ -0,0 +1,12 @@ +load("@fbsource//xplat/executorch/build:runtime_wrapper.bzl", "runtime") + +oncall("executorch") + +runtime.python_test( + name = "test_runtime", + srcs = ["test_runtime.py"], + deps = [ + "//executorch/extension/pybindings/test:make_test", + "//executorch/runtime:runtime", + ], +) diff --git a/runtime/test/test_runtime.py b/runtime/test/test_runtime.py new file mode 100644 index 0000000000..f0722f357e --- /dev/null +++ b/runtime/test/test_runtime.py @@ -0,0 +1,78 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the BSD-style license found in the +# LICENSE file in the root directory of this source tree. + +import tempfile +import unittest +from pathlib import Path + +import torch + +from executorch.extension.pybindings.test.make_test import ( + create_program, + ModuleAdd, + ModuleMulti, +) +from executorch.runtime import Runtime, Verification + + +class RuntimeTest(unittest.TestCase): + def test_smoke(self): + ep, inputs = create_program(ModuleAdd()) + runtime = Runtime.get() + # Demonstrate that get() returns a singleton. + runtime2 = Runtime.get() + self.assertTrue(runtime is runtime2) + program = runtime.load_program(ep.buffer, verification=Verification.Minimal) + method = program.load_method("forward") + outputs = method.execute(inputs) + self.assertTrue(torch.allclose(outputs[0], inputs[0] + inputs[1])) + + def test_module_with_multiple_method_names(self): + ep, inputs = create_program(ModuleMulti()) + runtime = Runtime.get() + + program = runtime.load_program(ep.buffer, verification=Verification.Minimal) + self.assertEqual(program.method_names, set({"forward", "forward2"})) + method = program.load_method("forward") + outputs = method.execute(inputs) + self.assertTrue(torch.allclose(outputs[0], inputs[0] + inputs[1])) + + method = program.load_method("forward2") + outputs = method.execute(inputs) + self.assertTrue(torch.allclose(outputs[0], inputs[0] + inputs[1] + 1)) + + def test_print_operator_names(self): + ep, inputs = create_program(ModuleAdd()) + runtime = Runtime.get() + + operator_names = runtime.operator_registry.operator_names + self.assertGreater(len(operator_names), 0) + + self.assertIn("aten::add.out", operator_names) + + def test_load_program_with_path(self): + ep, inputs = create_program(ModuleAdd()) + runtime = Runtime.get() + + def test_add(program): + method = program.load_method("forward") + outputs = method.execute(inputs) + self.assertTrue(torch.allclose(outputs[0], inputs[0] + inputs[1])) + + with tempfile.NamedTemporaryFile() as f: + f.write(ep.buffer) + f.flush() + # filename + program = runtime.load_program(f.name) + test_add(program) + # pathlib.Path + path = Path(f.name) + program = runtime.load_program(path) + test_add(program) + # BytesIO + with open(f.name, "rb") as f: + program = runtime.load_program(f.read()) + test_add(program) diff --git a/setup.py b/setup.py index f6adb4f86c..3bc5f703ff 100644 --- a/setup.py +++ b/setup.py @@ -423,6 +423,11 @@ def run(self): "devtools/bundled_program/schema/scalar_type.fbs", "devtools/bundled_program/serialize/scalar_type.fbs", ), + # Install executorch-wheel-config.cmake to pip package. + ( + "build/executorch-wheel-config.cmake", + "share/cmake/executorch-config.cmake", + ), ] for src, dst in src_to_dst: dst = os.path.join(dst_root, dst) @@ -663,6 +668,10 @@ def get_ext_modules() -> List[Extension]: return ext_modules +# Override extension suffix to be ".so", skipping package info such as +# "cpython-311-darwin" +os.environ["SETUPTOOLS_EXT_SUFFIX"] = ".so" + setup( version=Version.string(), # TODO(dbort): Could use py_modules to restrict the set of modules we @@ -680,6 +689,7 @@ def get_ext_modules() -> List[Extension]: "executorch/schema": "schema", "executorch/devtools": "devtools", "executorch/devtools/bundled_program": "devtools/bundled_program", + "executorch/runtime": "runtime", "executorch/util": "util", # Note: This will install a top-level module called "serializer", # which seems too generic and might conflict with other pip packages.