We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
谢谢大佬分享那么好的成果,想再请教一个问题,我看代码里设置的fusion参数 '--prob_threshold', '0.3', '--disp_threshold', '0.25', '--num_consistent', '3']
然后我看CVP-MVSNet里设置的如下,这个一般是有什么依据的? parser.add_argument('--prob_threshold', type=float, default = '0.8') parser.add_argument('--disp_threshold', type=float, default = '0.13') parser.add_argument('--num_consistent', type=float, default = '3')
The text was updated successfully, but these errors were encountered:
我认为需要依据confidence的生成方式而定,回归方法(CVP)将每个像素点预测深度周围的四个深度假设层的权重之和作为confidence,而分类方法(R-MVSNet)或者我们的统一表示方法是将取所有假设层中的最大概率作为confidence。所以我们认为回归方法自然需要设置更大的prob_threshold来确保准确度。
Sorry, something went wrong.
那么最佳的参数是多少呢?可以复现得到你论文中的结果的值
No branches or pull requests
谢谢大佬分享那么好的成果,想再请教一个问题,我看代码里设置的fusion参数
'--prob_threshold', '0.3',
'--disp_threshold', '0.25',
'--num_consistent', '3']
然后我看CVP-MVSNet里设置的如下,这个一般是有什么依据的?
parser.add_argument('--prob_threshold', type=float, default = '0.8')
parser.add_argument('--disp_threshold', type=float, default = '0.13')
parser.add_argument('--num_consistent', type=float, default = '3')
The text was updated successfully, but these errors were encountered: