-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_file2.txt
4224 lines (4023 loc) · 180 KB
/
data_file2.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Searching for incumbent config!
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.001
Epoch: 0. Loss: 0.2891264259815216. Accuracy: 80
Epoch: 1. Loss: 0.2681436836719513. Accuracy: 84
Epoch: 2. Loss: 0.22425276041030884. Accuracy: 86
Epoch: 3. Loss: 0.12473046034574509. Accuracy: 87
Epoch: 4. Loss: 0.047873955219984055. Accuracy: 89
Epoch: 5. Loss: 0.12005382776260376. Accuracy: 89
Epoch: 6. Loss: 0.07660261541604996. Accuracy: 90
Epoch: 7. Loss: 0.10061220079660416. Accuracy: 90
Epoch: 8. Loss: 0.08886595815420151. Accuracy: 90
Epoch: 9. Loss: 0.05263439193367958. Accuracy: 91
Epoch: 10. Loss: 0.0485222153365612. Accuracy: 90
Epoch: 11. Loss: 0.07375369220972061. Accuracy: 91
Epoch: 12. Loss: 0.020627358928322792. Accuracy: 91
Epoch: 13. Loss: 0.053971365094184875. Accuracy: 91
Epoch: 14. Loss: 0.05043112114071846. Accuracy: 91
[ 0.001 128 tensor(91) ]
Loss: 0.05043112114071846
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.028335396973329874
Epoch: 0. Loss: 0.34055793285369873. Accuracy: 76
Epoch: 1. Loss: 0.47504523396492004. Accuracy: 76
Epoch: 2. Loss: 0.2870958149433136. Accuracy: 79
Epoch: 3. Loss: 0.404972106218338. Accuracy: 80
Epoch: 4. Loss: 0.3723088204860687. Accuracy: 77
Epoch: 5. Loss: 0.4216432571411133. Accuracy: 78
Epoch: 6. Loss: 0.3563448190689087. Accuracy: 78
Epoch: 7. Loss: 0.37977662682533264. Accuracy: 76
Epoch: 8. Loss: 0.2195575088262558. Accuracy: 77
Epoch: 9. Loss: 0.3592621386051178. Accuracy: 79
Epoch: 10. Loss: 0.4861237108707428. Accuracy: 78
Epoch: 11. Loss: 0.2810356318950653. Accuracy: 77
Epoch: 12. Loss: 0.4049622714519501. Accuracy: 78
Epoch: 13. Loss: 0.5860717296600342. Accuracy: 79
Epoch: 14. Loss: 0.20357728004455566. Accuracy: 80
[ 0.028335396973329874 128 tensor(80) ]
Loss: 0.20357728004455566
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.01187615930744871
Epoch: 0. Loss: 0.224986270070076. Accuracy: 83
Epoch: 1. Loss: 0.3111792802810669. Accuracy: 83
Epoch: 2. Loss: 0.15817835927009583. Accuracy: 84
Epoch: 3. Loss: 0.2548060119152069. Accuracy: 83
Epoch: 4. Loss: 0.33529651165008545. Accuracy: 84
Epoch: 5. Loss: 0.16754522919654846. Accuracy: 85
Epoch: 6. Loss: 0.16660651564598083. Accuracy: 85
Epoch: 7. Loss: 0.2307066172361374. Accuracy: 85
Epoch: 8. Loss: 0.15300564467906952. Accuracy: 85
Epoch: 9. Loss: 0.12764404714107513. Accuracy: 85
Epoch: 10. Loss: 0.10438057780265808. Accuracy: 85
Epoch: 11. Loss: 0.20051059126853943. Accuracy: 84
Epoch: 12. Loss: 0.19074632227420807. Accuracy: 86
Epoch: 13. Loss: 0.023665040731430054. Accuracy: 86
Epoch: 14. Loss: 0.09178237617015839. Accuracy: 86
[ 0.01187615930744871 32 tensor(86) ]
Loss: 0.09178237617015839
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.025437628994347983
Epoch: 0. Loss: 0.6503061652183533. Accuracy: 68
Epoch: 1. Loss: 0.45515894889831543. Accuracy: 70
Epoch: 2. Loss: 0.4838297665119171. Accuracy: 69
Epoch: 3. Loss: 0.5174617767333984. Accuracy: 71
Epoch: 4. Loss: 0.4386899471282959. Accuracy: 70
Epoch: 5. Loss: 0.40595874190330505. Accuracy: 71
Epoch: 6. Loss: 0.7038387656211853. Accuracy: 71
Epoch: 7. Loss: 0.4906952679157257. Accuracy: 71
Epoch: 8. Loss: 0.4222659766674042. Accuracy: 72
Epoch: 9. Loss: 0.4992126524448395. Accuracy: 73
Epoch: 10. Loss: 0.42082223296165466. Accuracy: 74
Epoch: 11. Loss: 0.37280070781707764. Accuracy: 76
Epoch: 12. Loss: 0.3005296289920807. Accuracy: 76
Epoch: 13. Loss: 0.39127716422080994. Accuracy: 77
Epoch: 14. Loss: 0.3234308660030365. Accuracy: 79
[ 0.025437628994347983 128 tensor(79) ]
Loss: 0.3234308660030365
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.0750817570997284
Epoch: 0. Loss: 2.3080248832702637. Accuracy: 10
Epoch: 1. Loss: 2.3495607376098633. Accuracy: 10
Epoch: 2. Loss: 2.315317392349243. Accuracy: 10
Epoch: 3. Loss: 2.3039045333862305. Accuracy: 10
Epoch: 4. Loss: 2.287003993988037. Accuracy: 10
Epoch: 5. Loss: 2.3451366424560547. Accuracy: 10
Epoch: 6. Loss: 2.3074746131896973. Accuracy: 10
Epoch: 7. Loss: 2.311126232147217. Accuracy: 10
Epoch: 8. Loss: 2.3061208724975586. Accuracy: 10
Epoch: 9. Loss: 2.3093209266662598. Accuracy: 10
Epoch: 10. Loss: 2.336181640625. Accuracy: 10
Epoch: 11. Loss: 2.3240408897399902. Accuracy: 10
Epoch: 12. Loss: 2.272634744644165. Accuracy: 10
Epoch: 13. Loss: 2.2857844829559326. Accuracy: 10
Epoch: 14. Loss: 2.3011181354522705. Accuracy: 10
[ 0.0750817570997284 64 tensor(10) ]
Loss: 2.3011181354522705
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.060040727520174746
Epoch: 0. Loss: 2.3077569007873535. Accuracy: 10
Epoch: 1. Loss: 2.3313422203063965. Accuracy: 10
Epoch: 2. Loss: 2.3011667728424072. Accuracy: 10
Epoch: 3. Loss: 2.307199239730835. Accuracy: 10
Epoch: 4. Loss: 2.31876540184021. Accuracy: 10
Epoch: 5. Loss: 2.2914822101593018. Accuracy: 10
Epoch: 6. Loss: 2.297595977783203. Accuracy: 10
Epoch: 7. Loss: 2.313068389892578. Accuracy: 10
Epoch: 8. Loss: 2.3014626502990723. Accuracy: 10
Epoch: 9. Loss: 2.303609848022461. Accuracy: 10
Epoch: 10. Loss: 2.3071186542510986. Accuracy: 10
Epoch: 11. Loss: 2.30769681930542. Accuracy: 10
Epoch: 12. Loss: 2.297297716140747. Accuracy: 10
Epoch: 13. Loss: 2.3041789531707764. Accuracy: 10
Epoch: 14. Loss: 2.30816388130188. Accuracy: 10
[ 0.060040727520174746 256 tensor(10) ]
Loss: 2.30816388130188
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.0971179659875861
Epoch: 0. Loss: 2.285391092300415. Accuracy: 10
Epoch: 1. Loss: 2.3367514610290527. Accuracy: 10
Epoch: 2. Loss: 2.307213306427002. Accuracy: 10
Epoch: 3. Loss: 2.298060655593872. Accuracy: 10
Epoch: 4. Loss: 2.310924768447876. Accuracy: 10
Epoch: 5. Loss: 2.2906196117401123. Accuracy: 10
Epoch: 6. Loss: 2.326540231704712. Accuracy: 10
Epoch: 7. Loss: 2.272932767868042. Accuracy: 10
Epoch: 8. Loss: 2.334893226623535. Accuracy: 10
Epoch: 9. Loss: 2.38714861869812. Accuracy: 10
Epoch: 10. Loss: 2.3249852657318115. Accuracy: 10
Epoch: 11. Loss: 2.3388936519622803. Accuracy: 10
Epoch: 12. Loss: 2.2841219902038574. Accuracy: 10
Epoch: 13. Loss: 2.2904982566833496. Accuracy: 10
Epoch: 14. Loss: 2.265644073486328. Accuracy: 10
[ 0.0971179659875861 32 tensor(10) ]
Loss: 2.265644073486328
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.08398009583309954
Epoch: 0. Loss: 2.3197529315948486. Accuracy: 10
Epoch: 1. Loss: 2.309924602508545. Accuracy: 10
Epoch: 2. Loss: 2.3183882236480713. Accuracy: 10
Epoch: 3. Loss: 2.308555841445923. Accuracy: 10
Epoch: 4. Loss: 2.2894504070281982. Accuracy: 10
Epoch: 5. Loss: 2.299211263656616. Accuracy: 10
Epoch: 6. Loss: 2.3109991550445557. Accuracy: 10
Epoch: 7. Loss: 2.307711362838745. Accuracy: 10
Epoch: 8. Loss: 2.3084285259246826. Accuracy: 10
Epoch: 9. Loss: 2.303621530532837. Accuracy: 10
Epoch: 10. Loss: 2.3104450702667236. Accuracy: 10
Epoch: 11. Loss: 2.3028695583343506. Accuracy: 10
Epoch: 12. Loss: 2.309159517288208. Accuracy: 10
Epoch: 13. Loss: 2.3104453086853027. Accuracy: 10
Epoch: 14. Loss: 2.303454875946045. Accuracy: 10
[ 0.08398009583309954 128 tensor(10) ]
Loss: 2.303454875946045
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.04271400014145438
Epoch: 0. Loss: 0.6960191130638123. Accuracy: 64
Epoch: 1. Loss: 0.5488080978393555. Accuracy: 65
Epoch: 2. Loss: 0.5514114499092102. Accuracy: 64
Epoch: 3. Loss: 0.6432718634605408. Accuracy: 66
Epoch: 4. Loss: 0.8735461235046387. Accuracy: 62
Epoch: 5. Loss: 0.4583515226840973. Accuracy: 66
Epoch: 6. Loss: 0.5536921620368958. Accuracy: 65
Epoch: 7. Loss: 0.6597165465354919. Accuracy: 65
Epoch: 8. Loss: 0.6378815770149231. Accuracy: 65
Epoch: 9. Loss: 0.3734947144985199. Accuracy: 66
Epoch: 10. Loss: 0.5486288070678711. Accuracy: 66
Epoch: 11. Loss: 0.821378767490387. Accuracy: 66
Epoch: 12. Loss: 0.5079202055931091. Accuracy: 68
Epoch: 13. Loss: 0.5278889536857605. Accuracy: 68
Epoch: 14. Loss: 0.6025542616844177. Accuracy: 65
[ 0.04271400014145438 128 tensor(65) ]
Loss: 0.6025542616844177
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.09272856767489271
Epoch: 0. Loss: 2.3082168102264404. Accuracy: 10
Epoch: 1. Loss: 2.306562662124634. Accuracy: 10
Epoch: 2. Loss: 2.306084632873535. Accuracy: 10
Epoch: 3. Loss: 2.305572271347046. Accuracy: 10
Epoch: 4. Loss: 2.3092024326324463. Accuracy: 10
Epoch: 5. Loss: 2.3261780738830566. Accuracy: 10
Epoch: 6. Loss: 2.3095390796661377. Accuracy: 10
Epoch: 7. Loss: 2.2966296672821045. Accuracy: 10
Epoch: 8. Loss: 2.3051013946533203. Accuracy: 10
Epoch: 9. Loss: 2.3023173809051514. Accuracy: 10
Epoch: 10. Loss: 2.2993199825286865. Accuracy: 10
Epoch: 11. Loss: 2.299898624420166. Accuracy: 10
Epoch: 12. Loss: 2.303675889968872. Accuracy: 10
Epoch: 13. Loss: 2.310933828353882. Accuracy: 10
Epoch: 14. Loss: 2.308246374130249. Accuracy: 10
[ 0.09272856767489271 256 tensor(10) ]
Loss: 2.308246374130249
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.01183144235869823
Epoch: 0. Loss: 0.631161093711853. Accuracy: 85
Epoch: 1. Loss: 0.3883425295352936. Accuracy: 85
Epoch: 2. Loss: 0.3178446292877197. Accuracy: 86
Epoch: 3. Loss: 0.1782691925764084. Accuracy: 87
Epoch: 4. Loss: 0.1356738954782486. Accuracy: 87
Epoch: 5. Loss: 0.17315994203090668. Accuracy: 86
Epoch: 6. Loss: 0.07629172503948212. Accuracy: 88
Epoch: 7. Loss: 0.026460930705070496. Accuracy: 88
Epoch: 8. Loss: 0.35527503490448. Accuracy: 88
Epoch: 9. Loss: 0.007457360625267029. Accuracy: 88
Epoch: 10. Loss: 0.07785609364509583. Accuracy: 88
Epoch: 11. Loss: 0.22464331984519958. Accuracy: 88
Epoch: 12. Loss: 0.06958482414484024. Accuracy: 87
Epoch: 13. Loss: 0.12777721881866455. Accuracy: 87
Epoch: 14. Loss: 0.01626339554786682. Accuracy: 88
[ 0.01183144235869823 64 tensor(88) ]
Loss: 0.01626339554786682
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.02250339274874771
Epoch: 0. Loss: 0.43709152936935425. Accuracy: 66
Epoch: 1. Loss: 0.9863719940185547. Accuracy: 67
Epoch: 2. Loss: 0.921631395816803. Accuracy: 66
Epoch: 3. Loss: 0.3965742588043213. Accuracy: 64
Epoch: 4. Loss: 0.304024338722229. Accuracy: 71
Epoch: 5. Loss: 0.2167285829782486. Accuracy: 75
Epoch: 6. Loss: 0.3830256462097168. Accuracy: 73
Epoch: 7. Loss: 0.24954093992710114. Accuracy: 76
Epoch: 8. Loss: 0.25109243392944336. Accuracy: 78
Epoch: 9. Loss: 0.3680577278137207. Accuracy: 75
Epoch: 10. Loss: 0.4423159956932068. Accuracy: 77
Epoch: 11. Loss: 0.6232344508171082. Accuracy: 75
Epoch: 12. Loss: 0.302774041891098. Accuracy: 76
Epoch: 13. Loss: 0.1637728065252304. Accuracy: 79
Epoch: 14. Loss: 0.23357263207435608. Accuracy: 79
[ 0.02250339274874771 32 tensor(79) ]
Loss: 0.23357263207435608
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.08429888676690869
Epoch: 0. Loss: 2.311431646347046. Accuracy: 10
Epoch: 1. Loss: 2.298811912536621. Accuracy: 10
Epoch: 2. Loss: 2.294318914413452. Accuracy: 10
Epoch: 3. Loss: 2.307572364807129. Accuracy: 10
Epoch: 4. Loss: 2.3073136806488037. Accuracy: 10
Epoch: 5. Loss: 2.3175408840179443. Accuracy: 10
Epoch: 6. Loss: 2.3058316707611084. Accuracy: 10
Epoch: 7. Loss: 2.3096227645874023. Accuracy: 10
Epoch: 8. Loss: 2.3034298419952393. Accuracy: 10
Epoch: 9. Loss: 2.311983108520508. Accuracy: 10
Epoch: 10. Loss: 2.306673526763916. Accuracy: 10
Epoch: 11. Loss: 2.297109365463257. Accuracy: 10
Epoch: 12. Loss: 2.3066976070404053. Accuracy: 10
Epoch: 13. Loss: 2.293048143386841. Accuracy: 10
Epoch: 14. Loss: 2.3056037425994873. Accuracy: 10
[ 0.08429888676690869 256 tensor(10) ]
Loss: 2.3056037425994873
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.007108099497397989
Epoch: 0. Loss: 0.11718547344207764. Accuracy: 87
Epoch: 1. Loss: 0.30289310216903687. Accuracy: 88
Epoch: 2. Loss: 0.04450477659702301. Accuracy: 89
Epoch: 3. Loss: 0.16460254788398743. Accuracy: 89
Epoch: 4. Loss: 0.14171046018600464. Accuracy: 89
Epoch: 5. Loss: 0.08589605987071991. Accuracy: 89
Epoch: 6. Loss: 0.12627841532230377. Accuracy: 88
Epoch: 7. Loss: 0.13971924781799316. Accuracy: 89
Epoch: 8. Loss: 0.04188866913318634. Accuracy: 90
Epoch: 9. Loss: 0.1643451601266861. Accuracy: 90
Epoch: 10. Loss: 0.15307003259658813. Accuracy: 89
Epoch: 11. Loss: 0.04645518958568573. Accuracy: 89
Epoch: 12. Loss: 0.014180049300193787. Accuracy: 89
Epoch: 13. Loss: 0.014451034367084503. Accuracy: 89
Epoch: 14. Loss: 0.0359070748090744. Accuracy: 90
[ 0.007108099497397989 32 tensor(90) ]
Loss: 0.0359070748090744
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.09704368761372752
Epoch: 0. Loss: 2.2950048446655273. Accuracy: 10
Epoch: 1. Loss: 2.3041882514953613. Accuracy: 10
Epoch: 2. Loss: 2.330353021621704. Accuracy: 10
Epoch: 3. Loss: 2.3398618698120117. Accuracy: 10
Epoch: 4. Loss: 2.2831523418426514. Accuracy: 10
Epoch: 5. Loss: 2.2985498905181885. Accuracy: 10
Epoch: 6. Loss: 2.311030387878418. Accuracy: 10
Epoch: 7. Loss: 2.29118013381958. Accuracy: 10
Epoch: 8. Loss: 2.2790796756744385. Accuracy: 10
Epoch: 9. Loss: 2.3351333141326904. Accuracy: 10
Epoch: 10. Loss: 2.2862789630889893. Accuracy: 10
Epoch: 11. Loss: 2.3376412391662598. Accuracy: 10
Epoch: 12. Loss: 2.3419556617736816. Accuracy: 10
Epoch: 13. Loss: 2.301598072052002. Accuracy: 10
Epoch: 14. Loss: 2.4169790744781494. Accuracy: 10
[ 0.09704368761372752 32 tensor(10) ]
Loss: 2.4169790744781494
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.07726386898176812
Epoch: 0. Loss: 2.3498551845550537. Accuracy: 10
Epoch: 1. Loss: 2.282040596008301. Accuracy: 10
Epoch: 2. Loss: 2.3295719623565674. Accuracy: 10
Epoch: 3. Loss: 2.3420019149780273. Accuracy: 10
Epoch: 4. Loss: 2.3251543045043945. Accuracy: 10
Epoch: 5. Loss: 2.2871081829071045. Accuracy: 10
Epoch: 6. Loss: 2.322873115539551. Accuracy: 10
Epoch: 7. Loss: 2.2765657901763916. Accuracy: 10
Epoch: 8. Loss: 2.3129725456237793. Accuracy: 10
Epoch: 9. Loss: 2.2655832767486572. Accuracy: 10
Epoch: 10. Loss: 2.2889564037323. Accuracy: 10
Epoch: 11. Loss: 2.313833475112915. Accuracy: 10
Epoch: 12. Loss: 2.283745050430298. Accuracy: 10
Epoch: 13. Loss: 2.306922197341919. Accuracy: 10
Epoch: 14. Loss: 2.292583465576172. Accuracy: 10
[ 0.07726386898176812 64 tensor(10) ]
Loss: 2.292583465576172
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.0043654988308221765
Epoch: 0. Loss: 0.325311541557312. Accuracy: 87
Epoch: 1. Loss: 0.23693746328353882. Accuracy: 90
Epoch: 2. Loss: 0.04785136133432388. Accuracy: 91
Epoch: 3. Loss: 0.09606172144412994. Accuracy: 91
Epoch: 4. Loss: 0.028149142861366272. Accuracy: 92
Epoch: 5. Loss: 0.04847700148820877. Accuracy: 91
Epoch: 6. Loss: 0.09094451367855072. Accuracy: 91
Epoch: 7. Loss: 0.2051060050725937. Accuracy: 92
Epoch: 8. Loss: 0.012463122606277466. Accuracy: 92
Epoch: 9. Loss: 0.005236715078353882. Accuracy: 91
Epoch: 10. Loss: 0.010847806930541992. Accuracy: 92
Epoch: 11. Loss: 0.0043382346630096436. Accuracy: 92
Epoch: 12. Loss: 0.0027031749486923218. Accuracy: 91
Epoch: 13. Loss: 0.021471768617630005. Accuracy: 91
Epoch: 14. Loss: 0.021435625851154327. Accuracy: 92
[ 0.0043654988308221765 64 tensor(92) ]
Loss: 0.021435625851154327
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.01896780390597324
Epoch: 0. Loss: 0.44500648975372314. Accuracy: 78
Epoch: 1. Loss: 0.2801109850406647. Accuracy: 77
Epoch: 2. Loss: 0.18073612451553345. Accuracy: 79
Epoch: 3. Loss: 0.17424853146076202. Accuracy: 80
Epoch: 4. Loss: 0.258962482213974. Accuracy: 79
Epoch: 5. Loss: 0.2700929343700409. Accuracy: 80
Epoch: 6. Loss: 0.5110812187194824. Accuracy: 79
Epoch: 7. Loss: 0.21068350970745087. Accuracy: 79
Epoch: 8. Loss: 0.4720735549926758. Accuracy: 79
Epoch: 9. Loss: 0.32713958621025085. Accuracy: 80
Epoch: 10. Loss: 0.21948282420635223. Accuracy: 80
Epoch: 11. Loss: 0.29643794894218445. Accuracy: 80
Epoch: 12. Loss: 0.18749575316905975. Accuracy: 81
Epoch: 13. Loss: 0.39354196190834045. Accuracy: 82
Epoch: 14. Loss: 0.21283797919750214. Accuracy: 82
[ 0.01896780390597324 128 tensor(82) ]
Loss: 0.21283797919750214
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.0009337273156990241
Epoch: 0. Loss: 0.2579098641872406. Accuracy: 79
Epoch: 1. Loss: 0.2587909996509552. Accuracy: 83
Epoch: 2. Loss: 0.12190049886703491. Accuracy: 86
Epoch: 3. Loss: 0.20199519395828247. Accuracy: 86
Epoch: 4. Loss: 0.26402145624160767. Accuracy: 87
Epoch: 5. Loss: 0.12243326753377914. Accuracy: 89
Epoch: 6. Loss: 0.10174358636140823. Accuracy: 89
Epoch: 7. Loss: 0.216464564204216. Accuracy: 90
Epoch: 8. Loss: 0.1574496477842331. Accuracy: 90
Epoch: 9. Loss: 0.108029305934906. Accuracy: 90
Epoch: 10. Loss: 0.09450778365135193. Accuracy: 90
Epoch: 11. Loss: 0.05173458531498909. Accuracy: 90
Epoch: 12. Loss: 0.043797265738248825. Accuracy: 91
Epoch: 13. Loss: 0.08698045462369919. Accuracy: 91
Epoch: 14. Loss: 0.092168889939785. Accuracy: 91
[ 0.0009337273156990241 128 tensor(91) ]
Loss: 0.092168889939785
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.001267261962815322
Epoch: 0. Loss: 0.38944754004478455. Accuracy: 85
Epoch: 1. Loss: 0.14118961989879608. Accuracy: 87
Epoch: 2. Loss: 0.13047659397125244. Accuracy: 89
Epoch: 3. Loss: 0.23669545352458954. Accuracy: 90
Epoch: 4. Loss: 0.020953357219696045. Accuracy: 90
Epoch: 5. Loss: 0.03535360097885132. Accuracy: 91
Epoch: 6. Loss: 0.015752650797367096. Accuracy: 91
Epoch: 7. Loss: 0.15860672295093536. Accuracy: 91
Epoch: 8. Loss: 0.01971857249736786. Accuracy: 91
Epoch: 9. Loss: 0.19924573600292206. Accuracy: 91
Epoch: 10. Loss: 0.0654333308339119. Accuracy: 92
Epoch: 11. Loss: 0.008003182709217072. Accuracy: 91
Epoch: 12. Loss: 0.010554846376180649. Accuracy: 91
Epoch: 13. Loss: 0.02728521078824997. Accuracy: 91
Epoch: 14. Loss: 0.03819979727268219. Accuracy: 91
[ 0.001267261962815322 32 tensor(91) ]
Loss: 0.03819979727268219
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.0064434254058602985
Epoch: 0. Loss: 0.13768912851810455. Accuracy: 88
Epoch: 1. Loss: 0.44024306535720825. Accuracy: 90
Epoch: 2. Loss: 0.039545103907585144. Accuracy: 90
Epoch: 3. Loss: 0.04246038198471069. Accuracy: 91
Epoch: 4. Loss: 0.27640628814697266. Accuracy: 91
Epoch: 5. Loss: 0.08064626157283783. Accuracy: 91
Epoch: 6. Loss: 0.1106138825416565. Accuracy: 91
Epoch: 7. Loss: 0.02740176022052765. Accuracy: 91
Epoch: 8. Loss: 0.02631395310163498. Accuracy: 92
Epoch: 9. Loss: 0.04259027540683746. Accuracy: 91
Epoch: 10. Loss: 0.08497937023639679. Accuracy: 91
Epoch: 11. Loss: 0.013407588005065918. Accuracy: 91
Epoch: 12. Loss: 0.04811789095401764. Accuracy: 90
Epoch: 13. Loss: 0.10311757028102875. Accuracy: 91
Epoch: 14. Loss: 0.0011159181594848633. Accuracy: 92
[ 0.0064434254058602985 64 tensor(92) ]
Loss: 0.0011159181594848633
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.01761076261894127
Epoch: 0. Loss: 0.1771250218153. Accuracy: 83
Epoch: 1. Loss: 0.16478818655014038. Accuracy: 85
Epoch: 2. Loss: 0.08433175832033157. Accuracy: 88
Epoch: 3. Loss: 0.03243106231093407. Accuracy: 88
Epoch: 4. Loss: 0.13763545453548431. Accuracy: 89
Epoch: 5. Loss: 0.3446122705936432. Accuracy: 88
Epoch: 6. Loss: 0.08642510324716568. Accuracy: 89
Epoch: 7. Loss: 0.07814037799835205. Accuracy: 89
Epoch: 8. Loss: 0.055039625614881516. Accuracy: 89
Epoch: 9. Loss: 0.18808066844940186. Accuracy: 88
Epoch: 10. Loss: 0.1466337889432907. Accuracy: 89
Epoch: 11. Loss: 0.10091332346200943. Accuracy: 89
Epoch: 12. Loss: 0.22134865820407867. Accuracy: 88
Epoch: 13. Loss: 0.09718707203865051. Accuracy: 88
Epoch: 14. Loss: 0.11310871690511703. Accuracy: 89
[ 0.01761076261894127 256 tensor(89) ]
Loss: 0.11310871690511703
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.0891287331684087
Epoch: 0. Loss: 2.314237356185913. Accuracy: 10
Epoch: 1. Loss: 2.3265013694763184. Accuracy: 10
Epoch: 2. Loss: 2.31315016746521. Accuracy: 10
Epoch: 3. Loss: 2.3108339309692383. Accuracy: 10
Epoch: 4. Loss: 2.3357129096984863. Accuracy: 10
Epoch: 5. Loss: 2.33833384513855. Accuracy: 10
Epoch: 6. Loss: 2.3613574504852295. Accuracy: 10
Epoch: 7. Loss: 2.311089515686035. Accuracy: 10
Epoch: 8. Loss: 2.3076491355895996. Accuracy: 10
Epoch: 9. Loss: 2.338099241256714. Accuracy: 10
Epoch: 10. Loss: 2.3323872089385986. Accuracy: 10
Epoch: 11. Loss: 2.3223936557769775. Accuracy: 10
Epoch: 12. Loss: 2.342108964920044. Accuracy: 10
Epoch: 13. Loss: 2.2706775665283203. Accuracy: 10
Epoch: 14. Loss: 2.3618690967559814. Accuracy: 10
[ 0.0891287331684087 32 tensor(10) ]
Loss: 2.3618690967559814
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.06932423192989814
Epoch: 0. Loss: 0.6898181438446045. Accuracy: 65
Epoch: 1. Loss: 0.5939218401908875. Accuracy: 63
Epoch: 2. Loss: 0.6823113560676575. Accuracy: 66
Epoch: 3. Loss: 0.5721471309661865. Accuracy: 63
Epoch: 4. Loss: 0.9472370743751526. Accuracy: 53
Epoch: 5. Loss: 0.8425659537315369. Accuracy: 57
Epoch: 6. Loss: 0.7911636829376221. Accuracy: 58
Epoch: 7. Loss: 0.9893736839294434. Accuracy: 57
Epoch: 8. Loss: 0.9201338887214661. Accuracy: 59
Epoch: 9. Loss: 0.992821455001831. Accuracy: 59
Epoch: 10. Loss: 1.0661998987197876. Accuracy: 56
Epoch: 11. Loss: 0.8351345062255859. Accuracy: 58
Epoch: 12. Loss: 0.8006790280342102. Accuracy: 58
Epoch: 13. Loss: 0.850351870059967. Accuracy: 58
Epoch: 14. Loss: 0.9327394962310791. Accuracy: 56
[ 0.06932423192989814 128 tensor(56) ]
Loss: 0.9327394962310791
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.0054323669666178675
Epoch: 0. Loss: 0.32304665446281433. Accuracy: 83
Epoch: 1. Loss: 0.17636506259441376. Accuracy: 87
Epoch: 2. Loss: 0.11726313829421997. Accuracy: 89
Epoch: 3. Loss: 0.10735094547271729. Accuracy: 90
Epoch: 4. Loss: 0.11318019032478333. Accuracy: 90
Epoch: 5. Loss: 0.09775402396917343. Accuracy: 91
Epoch: 6. Loss: 0.06655915081501007. Accuracy: 91
Epoch: 7. Loss: 0.0914146900177002. Accuracy: 91
Epoch: 8. Loss: 0.08990409970283508. Accuracy: 92
Epoch: 9. Loss: 0.03858215734362602. Accuracy: 91
Epoch: 10. Loss: 0.07033247500658035. Accuracy: 92
Epoch: 11. Loss: 0.050149813294410706. Accuracy: 92
Epoch: 12. Loss: 0.07088875025510788. Accuracy: 91
Epoch: 13. Loss: 0.04849805310368538. Accuracy: 91
Epoch: 14. Loss: 0.11359746009111404. Accuracy: 91
[ 0.0054323669666178675 256 tensor(91) ]
Loss: 0.11359746009111404
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.046638518102352644
Epoch: 0. Loss: 0.31124377250671387. Accuracy: 77
Epoch: 1. Loss: 0.34459665417671204. Accuracy: 80
Epoch: 2. Loss: 0.453992635011673. Accuracy: 79
Epoch: 3. Loss: 0.48629915714263916. Accuracy: 79
Epoch: 4. Loss: 0.3338252007961273. Accuracy: 81
Epoch: 5. Loss: 0.38727259635925293. Accuracy: 80
Epoch: 6. Loss: 0.4440300166606903. Accuracy: 80
Epoch: 7. Loss: 0.29289934039115906. Accuracy: 81
Epoch: 8. Loss: 0.3107686936855316. Accuracy: 81
Epoch: 9. Loss: 0.33431681990623474. Accuracy: 78
Epoch: 10. Loss: 0.3240932524204254. Accuracy: 79
Epoch: 11. Loss: 0.270918607711792. Accuracy: 80
Epoch: 12. Loss: 0.303352028131485. Accuracy: 82
Epoch: 13. Loss: 0.22555822134017944. Accuracy: 79
Epoch: 14. Loss: 0.3246108591556549. Accuracy: 81
[ 0.046638518102352644 256 tensor(81) ]
Loss: 0.3246108591556549
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.006886690905460307
Epoch: 0. Loss: 0.12064620107412338. Accuracy: 85
Epoch: 1. Loss: 0.155986487865448. Accuracy: 86
Epoch: 2. Loss: 0.10041258484125137. Accuracy: 86
Epoch: 3. Loss: 0.38811272382736206. Accuracy: 87
Epoch: 4. Loss: 0.013251259922981262. Accuracy: 87
Epoch: 5. Loss: 0.0899420827627182. Accuracy: 88
Epoch: 6. Loss: 0.17240019142627716. Accuracy: 88
Epoch: 7. Loss: 0.1547398567199707. Accuracy: 88
Epoch: 8. Loss: 0.2820146381855011. Accuracy: 88
Epoch: 9. Loss: 0.20703794062137604. Accuracy: 87
Epoch: 10. Loss: 0.14464351534843445. Accuracy: 87
Epoch: 11. Loss: 0.029753178358078003. Accuracy: 88
Epoch: 12. Loss: 0.08053568005561829. Accuracy: 88
Epoch: 13. Loss: 0.08202515542507172. Accuracy: 87
Epoch: 14. Loss: 0.1177171915769577. Accuracy: 88
[ 0.006886690905460307 32 tensor(88) ]
Loss: 0.1177171915769577
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.0016429461446766784
Epoch: 0. Loss: 0.09901301562786102. Accuracy: 83
Epoch: 1. Loss: 0.10062504559755325. Accuracy: 88
Epoch: 2. Loss: 0.012627288699150085. Accuracy: 89
Epoch: 3. Loss: 0.03152453899383545. Accuracy: 90
Epoch: 4. Loss: 0.052015021443367004. Accuracy: 90
Epoch: 5. Loss: 0.08269340544939041. Accuracy: 90
Epoch: 6. Loss: 0.07174636423587799. Accuracy: 91
Epoch: 7. Loss: 0.17081916332244873. Accuracy: 91
Epoch: 8. Loss: 0.18326623737812042. Accuracy: 91
Epoch: 9. Loss: 0.008021607995033264. Accuracy: 92
Epoch: 10. Loss: 0.020470604300498962. Accuracy: 91
Epoch: 11. Loss: 0.05381755530834198. Accuracy: 91
Epoch: 12. Loss: 0.02893345057964325. Accuracy: 92
Epoch: 13. Loss: 0.06940669566392899. Accuracy: 92
Epoch: 14. Loss: 0.10667410492897034. Accuracy: 91
[ 0.0016429461446766784 64 tensor(91) ]
Loss: 0.10667410492897034
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.09326947906845177
Epoch: 0. Loss: 0.9280019402503967. Accuracy: 56
Epoch: 1. Loss: 0.6296490430831909. Accuracy: 57
Epoch: 2. Loss: 0.7633035182952881. Accuracy: 58
Epoch: 3. Loss: 0.7633419036865234. Accuracy: 47
Epoch: 4. Loss: 0.7940280437469482. Accuracy: 57
Epoch: 5. Loss: 0.8350418210029602. Accuracy: 58
Epoch: 6. Loss: 0.9506911635398865. Accuracy: 58
Epoch: 7. Loss: 0.9181280136108398. Accuracy: 56
Epoch: 8. Loss: 0.8263747692108154. Accuracy: 58
Epoch: 9. Loss: 0.9169972538948059. Accuracy: 57
Epoch: 10. Loss: 1.233069658279419. Accuracy: 57
Epoch: 11. Loss: 0.8318274617195129. Accuracy: 58
Epoch: 12. Loss: 1.0151046514511108. Accuracy: 58
Epoch: 13. Loss: 0.8186383843421936. Accuracy: 58
Epoch: 14. Loss: 0.6175809502601624. Accuracy: 58
[ 0.09326947906845177 256 tensor(58) ]
Loss: 0.6175809502601624
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.0319833971154068
Epoch: 0. Loss: 0.7853010892868042. Accuracy: 57
Epoch: 1. Loss: 0.5633436441421509. Accuracy: 57
Epoch: 2. Loss: 0.8147817254066467. Accuracy: 55
Epoch: 3. Loss: 0.9043547511100769. Accuracy: 55
Epoch: 4. Loss: 1.1092787981033325. Accuracy: 57
Epoch: 5. Loss: 0.5814051628112793. Accuracy: 56
Epoch: 6. Loss: 0.990411102771759. Accuracy: 56
Epoch: 7. Loss: 0.8352248668670654. Accuracy: 58
Epoch: 8. Loss: 0.9209024906158447. Accuracy: 58
Epoch: 9. Loss: 0.7318889498710632. Accuracy: 56
Epoch: 10. Loss: 0.566332221031189. Accuracy: 57
Epoch: 11. Loss: 1.4157522916793823. Accuracy: 57
Epoch: 12. Loss: 0.7182817459106445. Accuracy: 58
Epoch: 13. Loss: 0.7280099391937256. Accuracy: 58
Epoch: 14. Loss: 0.9010829925537109. Accuracy: 53
[ 0.0319833971154068 32 tensor(53) ]
Loss: 0.9010829925537109
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.06229217407957104
Epoch: 0. Loss: 0.45019903779029846. Accuracy: 70
Epoch: 1. Loss: 0.5402663946151733. Accuracy: 72
Epoch: 2. Loss: 0.41781696677207947. Accuracy: 69
Epoch: 3. Loss: 0.4712434709072113. Accuracy: 71
Epoch: 4. Loss: 0.3770565688610077. Accuracy: 70
Epoch: 5. Loss: 0.3880733549594879. Accuracy: 71
Epoch: 6. Loss: 0.5955314636230469. Accuracy: 70
Epoch: 7. Loss: 0.6304415464401245. Accuracy: 72
Epoch: 8. Loss: 0.42594799399375916. Accuracy: 71
Epoch: 9. Loss: 0.4285860061645508. Accuracy: 70
Epoch: 10. Loss: 0.5525549650192261. Accuracy: 71
Epoch: 11. Loss: 0.5340563654899597. Accuracy: 72
Epoch: 12. Loss: 0.44341909885406494. Accuracy: 72
Epoch: 13. Loss: 0.6387346982955933. Accuracy: 71
Epoch: 14. Loss: 0.539882481098175. Accuracy: 71
[ 0.06229217407957104 256 tensor(71) ]
Loss: 0.539882481098175
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.05150891791154296
Epoch: 0. Loss: 2.31030535697937. Accuracy: 10
Epoch: 1. Loss: 2.310659885406494. Accuracy: 10
Epoch: 2. Loss: 2.308866500854492. Accuracy: 10
Epoch: 3. Loss: 2.311067581176758. Accuracy: 10
Epoch: 4. Loss: 2.310142993927002. Accuracy: 10
Epoch: 5. Loss: 2.30186128616333. Accuracy: 10
Epoch: 6. Loss: 2.301931619644165. Accuracy: 10
Epoch: 7. Loss: 2.3067069053649902. Accuracy: 10
Epoch: 8. Loss: 2.2964985370635986. Accuracy: 10
Epoch: 9. Loss: 2.3115859031677246. Accuracy: 10
Epoch: 10. Loss: 2.298281669616699. Accuracy: 10
Epoch: 11. Loss: 2.3215219974517822. Accuracy: 10
Epoch: 12. Loss: 2.3285446166992188. Accuracy: 10
Epoch: 13. Loss: 2.337181329727173. Accuracy: 10
Epoch: 14. Loss: 2.3071670532226562. Accuracy: 10
[ 0.05150891791154296 32 tensor(10) ]
Loss: 2.3071670532226562
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.0006167009259250069
Epoch: 0. Loss: 0.25835996866226196. Accuracy: 79
Epoch: 1. Loss: 0.17461802065372467. Accuracy: 84
Epoch: 2. Loss: 0.18703149259090424. Accuracy: 86
Epoch: 3. Loss: 0.05057826638221741. Accuracy: 86
Epoch: 4. Loss: 0.07176268845796585. Accuracy: 88
Epoch: 5. Loss: 0.07717429101467133. Accuracy: 88
Epoch: 6. Loss: 0.008545160293579102. Accuracy: 89
Epoch: 7. Loss: 0.07119058072566986. Accuracy: 90
Epoch: 8. Loss: 0.13625448942184448. Accuracy: 89
Epoch: 9. Loss: 0.10023218393325806. Accuracy: 90
Epoch: 10. Loss: 0.008988946676254272. Accuracy: 90
Epoch: 11. Loss: 0.08000488579273224. Accuracy: 90
Epoch: 12. Loss: 0.04701690748333931. Accuracy: 91
Epoch: 13. Loss: 0.012353084981441498. Accuracy: 90
Epoch: 14. Loss: 0.11409322172403336. Accuracy: 90
[ 0.0006167009259250069 64 tensor(90) ]
Loss: 0.11409322172403336
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.05020652989328417
Epoch: 0. Loss: 2.334959030151367. Accuracy: 10
Epoch: 1. Loss: 2.3441600799560547. Accuracy: 10
Epoch: 2. Loss: 2.306638479232788. Accuracy: 10
Epoch: 3. Loss: 2.3022985458374023. Accuracy: 10
Epoch: 4. Loss: 2.317564010620117. Accuracy: 10
Epoch: 5. Loss: 2.3009965419769287. Accuracy: 10
Epoch: 6. Loss: 2.3117642402648926. Accuracy: 10
Epoch: 7. Loss: 2.317167043685913. Accuracy: 10
Epoch: 8. Loss: 2.2976741790771484. Accuracy: 10
Epoch: 9. Loss: 2.3218207359313965. Accuracy: 10
Epoch: 10. Loss: 2.293253183364868. Accuracy: 10
Epoch: 11. Loss: 2.3162548542022705. Accuracy: 10
Epoch: 12. Loss: 2.2987091541290283. Accuracy: 10
Epoch: 13. Loss: 2.2963833808898926. Accuracy: 10
Epoch: 14. Loss: 2.293745279312134. Accuracy: 10
[ 0.05020652989328417 64 tensor(10) ]
Loss: 2.293745279312134
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.05003848513546204
Epoch: 0. Loss: 2.3373470306396484. Accuracy: 10
Epoch: 1. Loss: 2.295870304107666. Accuracy: 10
Epoch: 2. Loss: 2.3432226181030273. Accuracy: 10
Epoch: 3. Loss: 2.30558705329895. Accuracy: 10
Epoch: 4. Loss: 2.298308849334717. Accuracy: 10
Epoch: 5. Loss: 2.3213181495666504. Accuracy: 10
Epoch: 6. Loss: 2.297194004058838. Accuracy: 10
Epoch: 7. Loss: 2.2959694862365723. Accuracy: 10
Epoch: 8. Loss: 2.341641902923584. Accuracy: 10
Epoch: 9. Loss: 2.298112630844116. Accuracy: 10
Epoch: 10. Loss: 2.3367671966552734. Accuracy: 10
Epoch: 11. Loss: 2.2948732376098633. Accuracy: 10
Epoch: 12. Loss: 2.3136086463928223. Accuracy: 10
Epoch: 13. Loss: 2.2933685779571533. Accuracy: 10
Epoch: 14. Loss: 2.3282973766326904. Accuracy: 10
[ 0.05003848513546204 64 tensor(10) ]
Loss: 2.3282973766326904
Running: Configuration:
batch_size, Value: 256
lr, Value: 0.03683820545839452
Epoch: 0. Loss: 0.8992051482200623. Accuracy: 57
Epoch: 1. Loss: 1.0203768014907837. Accuracy: 62
Epoch: 2. Loss: 0.969729483127594. Accuracy: 60
Epoch: 3. Loss: 0.7499963641166687. Accuracy: 62
Epoch: 4. Loss: 0.9030153155326843. Accuracy: 61
Epoch: 5. Loss: 0.7600631713867188. Accuracy: 62
Epoch: 6. Loss: 0.6759252548217773. Accuracy: 60
Epoch: 7. Loss: 0.8037848472595215. Accuracy: 63
Epoch: 8. Loss: 0.6525328755378723. Accuracy: 62
Epoch: 9. Loss: 0.727515459060669. Accuracy: 61
Epoch: 10. Loss: 0.5410107970237732. Accuracy: 65
Epoch: 11. Loss: 0.48641231656074524. Accuracy: 69
Epoch: 12. Loss: 0.532823383808136. Accuracy: 69
Epoch: 13. Loss: 0.5704525709152222. Accuracy: 70
Epoch: 14. Loss: 0.6634883880615234. Accuracy: 71
[ 0.03683820545839452 256 tensor(71) ]
Loss: 0.6634883880615234
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.0152562249640162
Epoch: 0. Loss: 2.300631523132324. Accuracy: 10
Epoch: 1. Loss: 2.3061349391937256. Accuracy: 10
Epoch: 2. Loss: 2.301485776901245. Accuracy: 10
Epoch: 3. Loss: 2.313359498977661. Accuracy: 10
Epoch: 4. Loss: 2.31302809715271. Accuracy: 10
Epoch: 5. Loss: 2.2871952056884766. Accuracy: 10
Epoch: 6. Loss: 2.300525188446045. Accuracy: 10
Epoch: 7. Loss: 2.3174877166748047. Accuracy: 10
Epoch: 8. Loss: 2.2968881130218506. Accuracy: 10
Epoch: 9. Loss: 2.2942023277282715. Accuracy: 10
Epoch: 10. Loss: 2.30057430267334. Accuracy: 10
Epoch: 11. Loss: 2.349121332168579. Accuracy: 10
Epoch: 12. Loss: 2.29471755027771. Accuracy: 10
Epoch: 13. Loss: 2.2976174354553223. Accuracy: 10
Epoch: 14. Loss: 2.299650192260742. Accuracy: 10
[ 0.0152562249640162 32 tensor(10) ]
Loss: 2.299650192260742
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.040186149688562225
Epoch: 0. Loss: 0.8016074299812317. Accuracy: 65
Epoch: 1. Loss: 0.9348552823066711. Accuracy: 67
Epoch: 2. Loss: 0.5238463282585144. Accuracy: 65
Epoch: 3. Loss: 0.5678666830062866. Accuracy: 66
Epoch: 4. Loss: 0.9667677283287048. Accuracy: 66
Epoch: 5. Loss: 0.6028274893760681. Accuracy: 66
Epoch: 6. Loss: 0.9863131046295166. Accuracy: 66
Epoch: 7. Loss: 0.6683639883995056. Accuracy: 65
Epoch: 8. Loss: 0.9260209202766418. Accuracy: 67
Epoch: 9. Loss: 0.5293545126914978. Accuracy: 66
Epoch: 10. Loss: 0.28351837396621704. Accuracy: 67
Epoch: 11. Loss: 1.249374270439148. Accuracy: 63
Epoch: 12. Loss: 0.2579770088195801. Accuracy: 67
Epoch: 13. Loss: 0.7240704298019409. Accuracy: 66
Epoch: 14. Loss: 0.3806403875350952. Accuracy: 64
[ 0.040186149688562225 64 tensor(64) ]
Loss: 0.3806403875350952
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.0408429677283232
Epoch: 0. Loss: 2.304851770401001. Accuracy: 10
Epoch: 1. Loss: 2.2747745513916016. Accuracy: 10
Epoch: 2. Loss: 2.2806236743927. Accuracy: 10
Epoch: 3. Loss: 2.3154666423797607. Accuracy: 10
Epoch: 4. Loss: 2.2981021404266357. Accuracy: 10
Epoch: 5. Loss: 2.3359217643737793. Accuracy: 10
Epoch: 6. Loss: 2.291471004486084. Accuracy: 10
Epoch: 7. Loss: 2.3184707164764404. Accuracy: 10
Epoch: 8. Loss: 2.3298864364624023. Accuracy: 10
Epoch: 9. Loss: 2.325362205505371. Accuracy: 10
Epoch: 10. Loss: 2.289628028869629. Accuracy: 10
Epoch: 11. Loss: 2.315486431121826. Accuracy: 10
Epoch: 12. Loss: 2.3149607181549072. Accuracy: 10
Epoch: 13. Loss: 2.28586483001709. Accuracy: 10
Epoch: 14. Loss: 2.2934648990631104. Accuracy: 10
[ 0.0408429677283232 32 tensor(10) ]
Loss: 2.2934648990631104
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.06635600476352224
Epoch: 0. Loss: 2.309081792831421. Accuracy: 10
Epoch: 1. Loss: 2.3054425716400146. Accuracy: 10
Epoch: 2. Loss: 2.30104660987854. Accuracy: 10
Epoch: 3. Loss: 2.308397054672241. Accuracy: 10
Epoch: 4. Loss: 2.2991116046905518. Accuracy: 10
Epoch: 5. Loss: 2.298903226852417. Accuracy: 10
Epoch: 6. Loss: 2.301903009414673. Accuracy: 10
Epoch: 7. Loss: 2.3161728382110596. Accuracy: 10
Epoch: 8. Loss: 2.303253412246704. Accuracy: 10
Epoch: 9. Loss: 2.308406114578247. Accuracy: 10
Epoch: 10. Loss: 2.3013017177581787. Accuracy: 10
Epoch: 11. Loss: 2.287435531616211. Accuracy: 10
Epoch: 12. Loss: 2.2940077781677246. Accuracy: 10
Epoch: 13. Loss: 2.2958972454071045. Accuracy: 10
Epoch: 14. Loss: 2.3122684955596924. Accuracy: 10
[ 0.06635600476352224 128 tensor(10) ]
Loss: 2.3122684955596924
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.09861027466673157
Epoch: 0. Loss: 2.322608709335327. Accuracy: 10
Epoch: 1. Loss: 2.304835081100464. Accuracy: 10
Epoch: 2. Loss: 2.3248109817504883. Accuracy: 10
Epoch: 3. Loss: 2.313664674758911. Accuracy: 10
Epoch: 4. Loss: 2.3088223934173584. Accuracy: 10
Epoch: 5. Loss: 2.297168731689453. Accuracy: 10
Epoch: 6. Loss: 2.294874668121338. Accuracy: 10
Epoch: 7. Loss: 2.315706491470337. Accuracy: 10
Epoch: 8. Loss: 2.313084363937378. Accuracy: 10
Epoch: 9. Loss: 2.3182690143585205. Accuracy: 10
Epoch: 10. Loss: 2.3174376487731934. Accuracy: 10
Epoch: 11. Loss: 2.3133394718170166. Accuracy: 10
Epoch: 12. Loss: 2.3070261478424072. Accuracy: 10
Epoch: 13. Loss: 2.3196990489959717. Accuracy: 10
Epoch: 14. Loss: 2.3015387058258057. Accuracy: 10
[ 0.09861027466673157 64 tensor(10) ]
Loss: 2.3015387058258057
Running: Configuration:
batch_size, Value: 128
lr, Value: 0.03763082518227249
Epoch: 0. Loss: 0.8646126389503479. Accuracy: 54
Epoch: 1. Loss: 0.9312822818756104. Accuracy: 55
Epoch: 2. Loss: 0.745944082736969. Accuracy: 56
Epoch: 3. Loss: 1.0368815660476685. Accuracy: 56
Epoch: 4. Loss: 0.8367404937744141. Accuracy: 55
Epoch: 5. Loss: 1.1051801443099976. Accuracy: 55
Epoch: 6. Loss: 0.8752356171607971. Accuracy: 53
Epoch: 7. Loss: 1.0212279558181763. Accuracy: 54
Epoch: 8. Loss: 1.0772227048873901. Accuracy: 54
Epoch: 9. Loss: 0.8322155475616455. Accuracy: 54
Epoch: 10. Loss: 0.8088135123252869. Accuracy: 56
Epoch: 11. Loss: 0.8229618072509766. Accuracy: 57
Epoch: 12. Loss: 0.8580871224403381. Accuracy: 55
Epoch: 13. Loss: 1.0609909296035767. Accuracy: 55
Epoch: 14. Loss: 0.9218563437461853. Accuracy: 55
[ 0.03763082518227249 128 tensor(55) ]
Loss: 0.9218563437461853
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.009183309650950919
Epoch: 0. Loss: 0.18354155123233795. Accuracy: 85
Epoch: 1. Loss: 0.151615172624588. Accuracy: 87
Epoch: 2. Loss: 0.056679606437683105. Accuracy: 87
Epoch: 3. Loss: 0.12702378630638123. Accuracy: 87
Epoch: 4. Loss: 0.12168900668621063. Accuracy: 88
Epoch: 5. Loss: 0.11666104197502136. Accuracy: 88
Epoch: 6. Loss: 0.03390650451183319. Accuracy: 88
Epoch: 7. Loss: 0.06902507692575455. Accuracy: 89
Epoch: 8. Loss: 0.06055368483066559. Accuracy: 88
Epoch: 9. Loss: 0.04715330898761749. Accuracy: 87
Epoch: 10. Loss: 0.042866677045822144. Accuracy: 89
Epoch: 11. Loss: 0.1916915774345398. Accuracy: 89
Epoch: 12. Loss: 0.012893930077552795. Accuracy: 88
Epoch: 13. Loss: 0.1471022218465805. Accuracy: 88
Epoch: 14. Loss: 0.014474645256996155. Accuracy: 87
[ 0.009183309650950919 64 tensor(87) ]
Loss: 0.014474645256996155
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.07073930087811373
Epoch: 0. Loss: 2.3085947036743164. Accuracy: 10
Epoch: 1. Loss: 2.3218181133270264. Accuracy: 10
Epoch: 2. Loss: 2.3091819286346436. Accuracy: 10
Epoch: 3. Loss: 2.314206838607788. Accuracy: 10
Epoch: 4. Loss: 2.328061103820801. Accuracy: 10
Epoch: 5. Loss: 2.2867846488952637. Accuracy: 10
Epoch: 6. Loss: 2.3547980785369873. Accuracy: 10
Epoch: 7. Loss: 2.3290886878967285. Accuracy: 10
Epoch: 8. Loss: 2.3154845237731934. Accuracy: 10
Epoch: 9. Loss: 2.345207691192627. Accuracy: 10
Epoch: 10. Loss: 2.291995048522949. Accuracy: 10
Epoch: 11. Loss: 2.324437379837036. Accuracy: 10
Epoch: 12. Loss: 2.272547960281372. Accuracy: 10
Epoch: 13. Loss: 2.2995383739471436. Accuracy: 10
Epoch: 14. Loss: 2.3116562366485596. Accuracy: 10
[ 0.07073930087811373 32 tensor(10) ]
Loss: 2.3116562366485596
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.04050246827273392
Epoch: 0. Loss: 0.8828722238540649. Accuracy: 53
Epoch: 1. Loss: 0.6759345531463623. Accuracy: 53
Epoch: 2. Loss: 0.9263260364532471. Accuracy: 53
Epoch: 3. Loss: 0.8188677430152893. Accuracy: 54
Epoch: 4. Loss: 0.6224344968795776. Accuracy: 55
Epoch: 5. Loss: 0.9465154409408569. Accuracy: 52
Epoch: 6. Loss: 0.9590836763381958. Accuracy: 56
Epoch: 7. Loss: 0.7979682683944702. Accuracy: 56
Epoch: 8. Loss: 0.9881598353385925. Accuracy: 30
Epoch: 9. Loss: 1.06071138381958. Accuracy: 55
Epoch: 10. Loss: 0.9814618229866028. Accuracy: 54
Epoch: 11. Loss: 0.760226309299469. Accuracy: 55
Epoch: 12. Loss: 0.8095319867134094. Accuracy: 54
Epoch: 13. Loss: 0.9654995799064636. Accuracy: 56
Epoch: 14. Loss: 0.7049887180328369. Accuracy: 55
[ 0.04050246827273392 64 tensor(55) ]
Loss: 0.7049887180328369
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.0294214936903096
Epoch: 0. Loss: 2.294480562210083. Accuracy: 10
Epoch: 1. Loss: 2.3072335720062256. Accuracy: 10
Epoch: 2. Loss: 2.2898383140563965. Accuracy: 10
Epoch: 3. Loss: 2.270076036453247. Accuracy: 10
Epoch: 4. Loss: 2.3050665855407715. Accuracy: 10
Epoch: 5. Loss: 2.320563316345215. Accuracy: 10
Epoch: 6. Loss: 2.3184635639190674. Accuracy: 10
Epoch: 7. Loss: 2.295883893966675. Accuracy: 10
Epoch: 8. Loss: 2.299299478530884. Accuracy: 10
Epoch: 9. Loss: 2.3055546283721924. Accuracy: 10
Epoch: 10. Loss: 2.3029985427856445. Accuracy: 10
Epoch: 11. Loss: 2.303936004638672. Accuracy: 10
Epoch: 12. Loss: 2.283717632293701. Accuracy: 10
Epoch: 13. Loss: 2.311643362045288. Accuracy: 10
Epoch: 14. Loss: 2.3067431449890137. Accuracy: 10
[ 0.0294214936903096 32 tensor(10) ]
Loss: 2.3067431449890137
Running: Configuration:
batch_size, Value: 32
lr, Value: 0.015118369813407551
Epoch: 0. Loss: 0.22210511565208435. Accuracy: 81
Epoch: 1. Loss: 0.12631507217884064. Accuracy: 78
Epoch: 2. Loss: 0.21352535486221313. Accuracy: 82
Epoch: 3. Loss: 0.23806200921535492. Accuracy: 80
Epoch: 4. Loss: 0.07469873130321503. Accuracy: 82
Epoch: 5. Loss: 0.4707295298576355. Accuracy: 83
Epoch: 6. Loss: 0.1129469946026802. Accuracy: 84
Epoch: 7. Loss: 0.2775220572948456. Accuracy: 84
Epoch: 8. Loss: 0.22494032979011536. Accuracy: 83
Epoch: 9. Loss: 0.18219627439975739. Accuracy: 84
Epoch: 10. Loss: 0.6695319414138794. Accuracy: 82
Epoch: 11. Loss: 0.08584311604499817. Accuracy: 83
Epoch: 12. Loss: 0.048038169741630554. Accuracy: 84
Epoch: 13. Loss: 0.3212975263595581. Accuracy: 84
Epoch: 14. Loss: 0.47601285576820374. Accuracy: 85
[ 0.015118369813407551 32 tensor(85) ]
Loss: 0.47601285576820374
Running: Configuration:
batch_size, Value: 64
lr, Value: 0.018836371781095013
Epoch: 0. Loss: 0.7244593501091003. Accuracy: 59
Epoch: 1. Loss: 0.7576054930686951. Accuracy: 62
Epoch: 2. Loss: 1.0791093111038208. Accuracy: 61
Epoch: 3. Loss: 0.38662388920783997. Accuracy: 61
Epoch: 4. Loss: 0.6724134683609009. Accuracy: 63
Epoch: 5. Loss: 0.824826717376709. Accuracy: 61
Epoch: 6. Loss: 0.5342406630516052. Accuracy: 61
Epoch: 7. Loss: 0.6759887337684631. Accuracy: 62