-
Notifications
You must be signed in to change notification settings - Fork 3
/
evaluate_files.py
474 lines (410 loc) · 27.5 KB
/
evaluate_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import os
import plotly.express as px
import time
from argparse import FileType, ArgumentParser
import tempfile
import numpy as np
import pandas as pd
import wandb
from Bio.PDB import PDBParser
from biopandas.pdb import PandasPdb
from rdkit import Chem
from tqdm import tqdm
from datasets.pdbbind import read_mol
from datasets.process_mols import read_molecule
from utils.utils import read_strings_from_txt, get_symmetry_rmsd
from datasets.steric_clash import get_steric_clash_atom_pairs, get_rec_elements, get_ligand_elements, \
get_steric_clash_per_flexble_sidechain_atom
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--run_name', type=str, default='gnina_results', help='')
parser.add_argument('--complex_names_path', type=str, default='data/splits/timesplit_test', help='')
parser.add_argument('--data_dir', type=str, default='data/PDBBIND_atomCorrected', help='')
parser.add_argument('--results_path', type=str, help='The output directory of gnina')
parser.add_argument('--file_suffix', type=str, default='_baseline_ligand.pdb', help='')
parser.add_argument('--project', type=str, default='ligbind_inf', help='')
parser.add_argument('--wandb', action='store_true', default=False, help='')
parser.add_argument('--file_to_exclude', type=str, default='rank1.sdf', help='')
parser.add_argument('--all_dirs_in_results', action='store_true', default=False,
help='Evaluate all directories in the results path instead of using directly looking for the names')
parser.add_argument('--num_predictions', type=int, default=10, help='')
parser.add_argument('--no_id_in_filename', action='store_true', default=False, help='')
parser.add_argument('--skip_complexes_path', type=str, default=None, help='')
parser.add_argument('--results_path_flex', type=str,
help='The output directory of get_orig_flex.py (i.e., processed gnina results). Will also be used to store the results.')
# Parameters for rigid
parser.add_argument('--protein_file', type=str, default='', help='Protein file suffix')
# Parameters for flex
parser.add_argument('--full_pdb_suffix', type=str, default='_full', help='The suffix of the full pdb file to insert the flex predictions into, so that we can compute the steric clashes.')
parser.add_argument('--orig_rec_suffix', type=str, default='_orig', help='')
parser.add_argument('--flex', action='store_true', default=False, help='If flexible residues have been produced')
parser.add_argument('--orig_rec_suffix_before', type=str, default=None, help='The before suffix to compare the orig_rec_suffix to. For example, to compare apo with holo use _gnina')
parser.add_argument('--flex_rec_suffix', default='', type=str, help='The suffix of the flexible resiudes')
args = parser.parse_args()
N = args.num_predictions
def load_pdb_with_models(path):
with open(path, 'r') as file:
content = file.read()
model_text = ['MODEL' + model for model in content.split('MODEL') if len(model) > 0]
models = []
parser = PDBParser()
for model in model_text:
with tempfile.NamedTemporaryFile() as tmp:
tmp.write(model.encode())
tmp.flush()
models.append(parser.get_structure('random_id', tmp.name)[0])
return models
print('Reading paths and names.')
names = read_strings_from_txt(args.complex_names_path)
names_no_rec_overlap = read_strings_from_txt(f'data/splits/timesplit_test_no_rec_overlap')
skips = [] if args.skip_complexes_path is None else read_strings_from_txt(args.skip_complexes_path)
if len(skips) > 0:
print('Skipping', len(skips), 'complexes.')
results_path_containments = os.listdir(args.results_path)
if args.wandb:
wandb.init(
entity='coarse-graining-mit',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
all_times = []
successful_names_list = []
rmsds_list = []
holo_apo_sc_rmsds_before_list = []
sc_rmsds_list = []
rec_lig_steric_clashes = []
centroid_distances_list = []
min_cross_distances_list = []
min_self_distances_list = []
without_rec_overlap_list = []
start_time = time.time()
errors = 0
for i, name in enumerate(tqdm(names)):
if name in skips:
print('Skipping', name, 'because it is in the skip list.')
continue
try:
try:
mol = read_mol(args.data_dir, name, remove_hs=True)
mol = Chem.RemoveAllHs(mol)
orig_ligand_pos = np.array(mol.GetConformer().GetPositions())
orig_ligand_elements = [a.GetSymbol() for a in mol.GetAtoms()]
except Exception as e:
print('Could not read', name, 'because of', e)
errors += 1
continue
if args.all_dirs_in_results:
directory_with_name = [directory for directory in results_path_containments if name in directory][0]
ligand_pos = []
debug_paths = []
for i in range(args.num_predictions):
file_paths = sorted(os.listdir(os.path.join(args.results_path, directory_with_name)))
if args.file_to_exclude is not None:
file_paths = [path for path in file_paths if not args.file_to_exclude in path]
file_path = [path for path in file_paths if f'rank{i + 1}_' in path][0]
mol_pred = read_molecule(os.path.join(args.results_path, directory_with_name, file_path), remove_hs=True,
sanitize=True)
mol_pred = Chem.RemoveAllHs(mol_pred)
ligand_pos.append(mol_pred.GetConformer().GetPositions())
debug_paths.append(file_path)
ligand_pos = np.asarray(ligand_pos)
else:
if not os.path.exists(
os.path.join(args.results_path, name, f'{"" if args.no_id_in_filename else name}{args.file_suffix}')):
print('skipping because path did not exists:',
os.path.join(args.results_path, name, f'{"" if args.no_id_in_filename else name}{args.file_suffix}'))
continue
mol_pred = read_molecule(
os.path.join(args.results_path, name, f'{"" if args.no_id_in_filename else name}{args.file_suffix}'),
remove_hs=True, sanitize=True)
if mol_pred == None:
print("Skipping ", name, ' because RDKIT could not read it.')
continue
mol_pred = Chem.RemoveAllHs(mol_pred)
ligand_pos = np.asarray(
[np.array(mol_pred.GetConformer(i).GetPositions()) for i in range(args.num_predictions)])
try:
rmsd = get_symmetry_rmsd(mol, orig_ligand_pos, [l for l in ligand_pos], mol_pred)
except Exception as e:
print("Using non corrected RMSD because of the error:", e)
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=2).mean(axis=1))
if args.flex:
rec_path = os.path.join(args.results_path_flex, name, f'{name}{args.orig_rec_suffix}.pdb')
if not os.path.exists(rec_path):
raise FileNotFoundError(rec_path)
rec = load_pdb_with_models(rec_path)
rec_atoms = [list(model.get_atoms()) for model in rec]
rec_atoms_names = [[atom.get_name() for atom in model.get_atoms()] for model in rec]
rec_atoms_coords = np.array([[atom.get_coord() for atom in model.get_atoms()] for model in rec])
rec_path_flex = os.path.join(args.results_path_flex, name, f'{name}{args.flex_rec_suffix}.pdb')
if not os.path.exists(rec_path_flex):
raise FileNotFoundError(rec_path_flex)
rec_flex = load_pdb_with_models(rec_path_flex)
rec_flex_atoms = [list(model.get_atoms()) for model in rec_flex]
rec_flex_atoms_names = [[atom.get_name() for atom in model.get_atoms()] for model in rec_flex]
rec_flex_atoms_coords = np.array([[atom.get_coord() for atom in model.get_atoms()] for model in rec_flex])
assert rec_atoms_coords.shape == rec_flex_atoms_coords.shape
assert rec_atoms_names == rec_flex_atoms_names
filterSCHs = np.array(
[[atom.element != 'H' and atom.name not in {"CA", "N", "C", "O", "OXT"} for atom in model.get_atoms()] for model
in rec_flex])
filtered_rec_atom_coords = rec_atoms_coords[filterSCHs].reshape(filterSCHs.shape[0], -1, 3)
filtered_rec_flex_atom_coords = rec_flex_atoms_coords[filterSCHs].reshape(filterSCHs.shape[0], -1, 3)
if args.orig_rec_suffix_before is not None:
rec_path_before = os.path.join(args.results_path_flex, name, f'{name}{args.orig_rec_suffix_before}.pdb')
if not os.path.exists(rec_path_before):
raise FileNotFoundError(rec_path_before)
rec_before = load_pdb_with_models(rec_path_before)
rec_before_atoms = [list(model.get_atoms()) for model in rec_before]
rec_before_atoms_names = [[atom.get_name() for atom in model.get_atoms()] for model in rec_before]
rec_before_atoms_coords = np.array([[atom.get_coord() for atom in model.get_atoms()] for model in rec_before])
assert rec_atoms_coords.shape == rec_before_atoms_coords.shape
assert rec_atoms_names == rec_before_atoms_names
holo_apo_sc_rmsds_before = np.sqrt(((rec_atoms_coords - rec_before_atoms_coords) ** 2).sum(axis=2).mean(axis=1))
assert all(holo_apo_sc_rmsds_before == holo_apo_sc_rmsds_before[0])
holo_apo_sc_rmsds_before = holo_apo_sc_rmsds_before[0]
holo_apo_sc_rmsds_before_list.append(holo_apo_sc_rmsds_before)
full_rec_path = os.path.join(args.results_path_flex, name, f'{name}{args.full_pdb_suffix}.pdb')
if not os.path.exists(full_rec_path):
raise FileNotFoundError(full_rec_path)
full_rec_flex = load_pdb_with_models(full_rec_path)
full_rec_flex_atoms = [list(model.get_atoms()) for model in full_rec_flex]
full_rec_flex_atoms_elements = np.array([[atom.element for atom in model.get_atoms()] for model in full_rec_flex])
full_rec_flex_atoms_coords = np.array([[atom.get_coord() for atom in model.get_atoms()] for model in full_rec_flex])
rec_lig_steric_clash = np.sum(
get_steric_clash_atom_pairs(full_rec_flex_atoms_coords, ligand_pos,
full_rec_flex_atoms_elements[0], orig_ligand_elements,
filter1=full_rec_flex_atoms_elements[0] != 'H'), axis=(1, 2))
rec_lig_steric_clashes.append(rec_lig_steric_clash)
sc_rmsds = np.sqrt(((filtered_rec_atom_coords - filtered_rec_flex_atom_coords) ** 2).sum(axis=2).mean(axis=1))
sc_rmsds_list.append(sc_rmsds)
else:
rec_path = os.path.join(args.data_dir, name, f'{name}_{args.protein_file}.pdb')
if not os.path.exists(rec_path):
raise FileNotFoundError(rec_path)
parser = PDBParser(QUIET=True)
rec = parser.get_structure('random_id', rec_path)[0]
rec_atoms_elements = np.array([atom.element for atom in rec.get_atoms()])
rec_atoms_coords = np.array([atom.get_coord() for atom in rec.get_atoms()])
rec_atoms_coords = rec_atoms_coords[None, :]
rec_lig_steric_clash = np.sum(
get_steric_clash_atom_pairs(np.broadcast_to(rec_atoms_coords, (
args.num_predictions, rec_atoms_coords.shape[1], rec_atoms_coords.shape[2])), ligand_pos,
rec_atoms_elements, orig_ligand_elements,
filter1=rec_atoms_elements != 'H'), axis=(1, 2))
rec_lig_steric_clashes.append(rec_lig_steric_clash)
cross_distances = np.linalg.norm(rec_atoms_coords[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
self_distances = np.linalg.norm(ligand_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
self_distances = np.where(np.eye(self_distances.shape[2]), np.inf, self_distances)
min_cross_distances_list.append(np.min(cross_distances, axis=(1, 2)))
min_self_distances_list.append(np.min(self_distances, axis=(1, 2)))
rmsds_list.append(rmsd)
centroid_distances_list.append(
np.linalg.norm(ligand_pos.mean(axis=1) - orig_ligand_pos[None, :].mean(axis=1), axis=1))
successful_names_list.append(name)
without_rec_overlap_list.append(1 if name in names_no_rec_overlap else 0)
except Exception as e:
print('Error while processing', name)
raise e
print(errors, "of the complexes failed")
performance_metrics = {}
for overlap in ['', 'no_overlap_']:
if 'no_overlap_' == overlap:
without_rec_overlap = np.array(without_rec_overlap_list, dtype=bool)
rmsds = np.array(rmsds_list)[without_rec_overlap]
if args.flex:
sc_rmsds = np.array(sc_rmsds_list)[without_rec_overlap]
if len(holo_apo_sc_rmsds_before_list) > 0:
holo_apo_sc_rmsds_before = np.array(holo_apo_sc_rmsds_before_list)[without_rec_overlap]
centroid_distances = np.array(centroid_distances_list)[without_rec_overlap]
min_cross_distances = np.array(min_cross_distances_list)[without_rec_overlap]
min_self_distances = np.array(min_self_distances_list)[without_rec_overlap]
successful_names = np.array(successful_names_list)[without_rec_overlap]
rec_lig_steric_clashes = np.array(rec_lig_steric_clashes)[without_rec_overlap]
else:
rmsds = np.array(rmsds_list)
sc_rmsds = np.array(sc_rmsds_list)
holo_apo_sc_rmsds_before = np.array(holo_apo_sc_rmsds_before_list)
centroid_distances = np.array(centroid_distances_list)
min_cross_distances = np.array(min_cross_distances_list)
min_self_distances = np.array(min_self_distances_list)
successful_names = np.array(successful_names_list)
rec_lig_steric_clashes = np.array(rec_lig_steric_clashes)
np.save(os.path.join(args.results_path_flex, f'{overlap}rmsds.npy'), rmsds)
np.save(os.path.join(args.results_path_flex, f'{overlap}sc_rmsds.npy'), sc_rmsds)
if len(holo_apo_sc_rmsds_before) > 0:
np.save(os.path.join(args.results_path_flex, f'{overlap}holo_apo_sc_rmsds_before.npy'), holo_apo_sc_rmsds_before)
np.save(os.path.join(args.results_path_flex, f'{overlap}names.npy'), successful_names)
np.save(os.path.join(args.results_path_flex, f'{overlap}min_cross_distances.npy'), np.array(min_cross_distances))
np.save(os.path.join(args.results_path_flex, f'{overlap}min_self_distances.npy'), np.array(min_self_distances))
np.save(os.path.join(args.results_path_flex, f'{overlap}complex_names.npy'), np.array(successful_names))
np.save(os.path.join(args.results_path_flex, f'{overlap}rec_lig_steric_clashes.npy'), np.array(successful_names))
performance_metrics.update({
f'{overlap}steric_clash_fraction': (100 * (min_cross_distances < 0.4).sum() / len(
min_cross_distances) / args.num_predictions).__round__(2),
f'{overlap}self_intersect_fraction': (
100 * (min_self_distances < 0.4).sum() / len(min_self_distances) / args.num_predictions).__round__(
2),
f'{overlap}top1_mean_rmsd': rmsds[:, 0].mean().round(2),
f'{overlap}top1_rmsds_below_2': (100 * (rmsds[:, 0] < 2).sum() / len(rmsds[:, 0])).round(2),
f'{overlap}top1_rmsds_below_5': (100 * (rmsds[:, 0] < 5).sum() / len(rmsds[:, 0])).round(2),
f'{overlap}top1_rmsds_percentile_25': np.percentile(rmsds[:, 0], 25).round(2),
f'{overlap}top1_rmsds_percentile_50': np.percentile(rmsds[:, 0], 50).round(2),
f'{overlap}top1_rmsds_percentile_75': np.percentile(rmsds[:, 0], 75).round(2),
f'{overlap}mean_rmsd': rmsds.mean().round(2),
f'{overlap}rmsds_below_2': (100 * (rmsds < 2).sum() / len(rmsds) / N).round(2),
f'{overlap}rmsds_below_5': (100 * (rmsds < 5).sum() / len(rmsds) / N).round(2),
f'{overlap}rmsds_percentile_25': np.percentile(rmsds, 25).round(2),
f'{overlap}rmsds_percentile_50': np.percentile(rmsds, 50).round(2),
f'{overlap}rmsds_percentile_75': np.percentile(rmsds, 75).round(2),
f'{overlap}mean_centroid': centroid_distances[:, 0].mean().__round__(2),
f'{overlap}centroid_below_2': (
100 * (centroid_distances[:, 0] < 2).sum() / len(centroid_distances[:, 0])).__round__(2),
f'{overlap}centroid_below_5': (
100 * (centroid_distances[:, 0] < 5).sum() / len(centroid_distances[:, 0])).__round__(2),
f'{overlap}centroid_percentile_25': np.percentile(centroid_distances[:, 0], 25).round(2),
f'{overlap}centroid_percentile_50': np.percentile(centroid_distances[:, 0], 50).round(2),
f'{overlap}centroid_percentile_75': np.percentile(centroid_distances[:, 0], 75).round(2),
})
if args.flex:
performance_metrics.update({
f'{overlap}mean_sidechain_rmsd': sc_rmsds.mean(),
f'{overlap}sidechain_rmsds_below_0.25': (100 * (sc_rmsds < 0.25).sum() / len(sc_rmsds) / N).round(2),
f'{overlap}sidechain_rmsds_below_0.5': (100 * (sc_rmsds < 0.5).sum() / len(sc_rmsds) / N).round(2),
f'{overlap}sidechain_rmsds_below_1': (100 * (sc_rmsds < 1).sum() / len(sc_rmsds) / N).round(2),
f'{overlap}sidechain_rmsds_below_2': (100 * (sc_rmsds < 2).sum() / len(sc_rmsds) / N).round(2),
f'{overlap}sidechain_rmsds_percentile_25': np.percentile(sc_rmsds, 25).round(2),
f'{overlap}sidechain_rmsds_percentile_50': np.percentile(sc_rmsds, 50).round(2),
f'{overlap}sidechain_rmsds_percentile_75': np.percentile(sc_rmsds, 75).round(2),
f'{overlap}top1_mean_sidechain_rmsd': sc_rmsds[:, 0].mean(),
f'{overlap}top1_sidechain_rmsds_below_0.25': (100 * (sc_rmsds[:, 0] < 0.25).sum() / len(sc_rmsds)).round(2),
f'{overlap}top1_sidechain_rmsds_below_0.5': (100 * (sc_rmsds[:, 0] < 0.5).sum() / len(sc_rmsds)).round(2),
f'{overlap}top1_sidechain_rmsds_below_1': (100 * (sc_rmsds[:, 0] < 1).sum() / len(sc_rmsds)).round(2),
f'{overlap}top1_sidechain_rmsds_below_2': (100 * (sc_rmsds[:, 0] < 2).sum() / len(sc_rmsds)).round(2),
f'{overlap}top1_sidechain_rmsds_percentile_25': np.percentile(sc_rmsds[:, 0], 25).round(2),
f'{overlap}top1_sidechain_rmsds_percentile_50': np.percentile(sc_rmsds[:, 0], 50).round(2),
f'{overlap}top1_sidechain_rmsds_percentile_75': np.percentile(sc_rmsds[:, 0], 75).round(2),
})
performance_metrics.update({
f'{overlap}top1_rec_lig_steric_clashes_fraction': (
100 * (rec_lig_steric_clashes[:, 0] > 0).sum() / len(rec_lig_steric_clashes)).round(2),
f'{overlap}top1_rec_lig_steric_clashes_mean': (rec_lig_steric_clashes[:, 0]).mean().round(2),
f'{overlap}top1_rec_lig_steric_clashes_mean_if_clash': rec_lig_steric_clashes[:, 0][
rec_lig_steric_clashes[:, 0] > 0].mean().round(2),
})
top5_rmsds = np.min(rmsds[:, :5], axis=1)
top5_centroid_distances = centroid_distances[np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][
:, 0]
top5_min_cross_distances = min_cross_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
top5_min_self_distances = min_self_distances[np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][
:, 0]
performance_metrics.update({
f'{overlap}top5_steric_clash_fraction': (
100 * (top5_min_cross_distances < 0.4).sum() / len(top5_min_cross_distances)).__round__(2),
f'{overlap}top5_self_intersect_fraction': (
100 * (top5_min_self_distances < 0.4).sum() / len(top5_min_self_distances)).__round__(2),
f'{overlap}top5_rmsds_below_2': (100 * (top5_rmsds < 2).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_below_5': (100 * (top5_rmsds < 5).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_percentile_25': np.percentile(top5_rmsds, 25).round(2),
f'{overlap}top5_rmsds_percentile_50': np.percentile(top5_rmsds, 50).round(2),
f'{overlap}top5_rmsds_percentile_75': np.percentile(top5_rmsds, 75).round(2),
f'{overlap}top5_centroid_below_2': (
100 * (top5_centroid_distances < 2).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_below_5': (
100 * (top5_centroid_distances < 5).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_percentile_25': np.percentile(top5_centroid_distances, 25).round(2),
f'{overlap}top5_centroid_percentile_50': np.percentile(top5_centroid_distances, 50).round(2),
f'{overlap}top5_centroid_percentile_75': np.percentile(top5_centroid_distances, 75).round(2),
})
if args.flex:
top5_sc_rmsds = np.min(sc_rmsds[:, :5], axis=1)
performance_metrics.update({
f'{overlap}top5_mean_sidechain_rmsd': top5_sc_rmsds.mean().round(2),
f'{overlap}top5_sidechain_rmsds_below_0.25': (100 * (top5_sc_rmsds < 0.25).sum() / len(sc_rmsds)).round(2),
f'{overlap}top5_sidechain_rmsds_below_0.5': (100 * (top5_sc_rmsds < 0.5).sum() / len(sc_rmsds)).round(2),
f'{overlap}top5_sidechain_rmsds_below_1': (100 * (top5_sc_rmsds < 1).sum() / len(sc_rmsds)).round(2),
f'{overlap}top5_sidechain_rmsds_below_2': (100 * (top5_sc_rmsds < 2).sum() / len(sc_rmsds)).round(2),
f'{overlap}top5_sidechain_rmsds_percentile_25': np.percentile(top5_sc_rmsds, 25).round(2),
f'{overlap}top5_sidechain_rmsds_percentile_50': np.percentile(top5_sc_rmsds, 50).round(2),
f'{overlap}top5_sidechain_rmsds_percentile_75': np.percentile(top5_sc_rmsds, 75).round(2),
})
top10_rmsds = np.min(rmsds[:, :10], axis=1)
top10_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_cross_distances = min_cross_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_self_intersect_fraction': (
100 * (top10_min_self_distances < 0.4).sum() / len(top10_min_self_distances)).__round__(2),
f'{overlap}top10_steric_clash_fraction': (
100 * (top10_min_cross_distances < 0.4).sum() / len(top10_min_cross_distances)).__round__(2),
f'{overlap}top10_rmsds_below_2': (100 * (top10_rmsds < 2).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_below_5': (100 * (top10_rmsds < 5).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_percentile_25': np.percentile(top10_rmsds, 25).round(2),
f'{overlap}top10_rmsds_percentile_50': np.percentile(top10_rmsds, 50).round(2),
f'{overlap}top10_rmsds_percentile_75': np.percentile(top10_rmsds, 75).round(2),
f'{overlap}top10_centroid_below_2': (
100 * (top10_centroid_distances < 2).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_below_5': (
100 * (top10_centroid_distances < 5).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_percentile_25': np.percentile(top10_centroid_distances, 25).round(2),
f'{overlap}top10_centroid_percentile_50': np.percentile(top10_centroid_distances, 50).round(2),
f'{overlap}top10_centroid_percentile_75': np.percentile(top10_centroid_distances, 75).round(2),
})
if args.flex:
top10_sc_rmsds = np.min(sc_rmsds[:, :10], axis=1)
performance_metrics.update({
f'{overlap}top10_mean_sidechain_rmsd': top10_sc_rmsds.mean(),
f'{overlap}top10_sidechain_rmsds_below_0.25': (100 * (top10_sc_rmsds < 0.25).sum() / len(sc_rmsds)).round(2),
f'{overlap}top10_sidechain_rmsds_below_0.5': (100 * (top10_sc_rmsds < 0.5).sum() / len(sc_rmsds)).round(2),
f'{overlap}top10_sidechain_rmsds_below_1': (100 * (top10_sc_rmsds < 1).sum() / len(sc_rmsds)).round(2),
f'{overlap}top10_sidechain_rmsds_below_2': (100 * (top10_sc_rmsds < 2).sum() / len(sc_rmsds)).round(2),
f'{overlap}top10_sidechain_rmsds_percentile_25': np.percentile(top10_sc_rmsds, 25).round(2),
f'{overlap}top10_sidechain_rmsds_percentile_50': np.percentile(top10_sc_rmsds, 50).round(2),
f'{overlap}top10_sidechain_rmsds_percentile_75': np.percentile(top10_sc_rmsds, 75).round(2),
})
for k in performance_metrics:
print(k, performance_metrics[k])
if args.wandb:
wandb.log(performance_metrics)
histogram_metrics_list = [('rmsd', rmsds[:, 0]),
('sc_rmsd', sc_rmsds[:]),
('centroid_distance', centroid_distances[:, 0]),
('mean_rmsd', rmsds[:, 0]),
('mean_sc_rmsd', sc_rmsds[:]),
('mean_centroid_distance', centroid_distances[:, 0])]
histogram_metrics_list.append(('top5_rmsds', top5_rmsds))
histogram_metrics_list.append(('top5_sc_rmsds', top5_sc_rmsds))
histogram_metrics_list.append(('top5_centroid_distances', top5_centroid_distances))
histogram_metrics_list.append(('top10_rmsds', top10_rmsds))
histogram_metrics_list.append(('top10_sc_rmsds', top10_sc_rmsds))
histogram_metrics_list.append(('top10_centroid_distances', top10_centroid_distances))
os.makedirs(f'.plotly_cache/baseline_cache', exist_ok=True)
images = []
for metric_name, metric in histogram_metrics_list:
d = {args.results_path: metric}
df = pd.DataFrame(data=d)
fig = px.ecdf(df, width=900, height=600, range_x=[0, 40])
fig.add_vline(x=2, annotation_text='2 A;', annotation_font_size=20, annotation_position="top right",
line_dash='dash', line_color='firebrick', annotation_font_color='firebrick')
fig.add_vline(x=5, annotation_text='5 A;', annotation_font_size=20, annotation_position="top right",
line_dash='dash', line_color='green', annotation_font_color='green')
fig.update_xaxes(title=f'{metric_name} in Angstrom', title_font={"size": 20}, tickfont={"size": 20})
fig.update_yaxes(title=f'Fraction of predictions with lower error', title_font={"size": 20},
tickfont={"size": 20})
fig.update_layout(autosize=False, margin={'l': 0, 'r': 0, 't': 0, 'b': 0}, plot_bgcolor='white',
paper_bgcolor='white', legend_title_text='Method', legend_title_font_size=17,
legend=dict(yanchor="bottom", y=0.1, xanchor="right", x=0.99, font=dict(size=17), ), )
fig.update_xaxes(showgrid=True, gridcolor='lightgrey')
fig.update_yaxes(showgrid=True, gridcolor='lightgrey')
fig.write_image(os.path.join(f'.plotly_cache/baseline_cache', f'{metric_name}.png'))
wandb.log({metric_name: wandb.Image(os.path.join(f'.plotly_cache/baseline_cache', f'{metric_name}.png'),
caption=f"{metric_name}")})
images.append(
wandb.Image(os.path.join(f'.plotly_cache/baseline_cache', f'{metric_name}.png'), caption=f"{metric_name}"))
wandb.log({'images': images})