forked from mlr-org/mlr3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
182 lines (182 loc) · 4.98 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
Package: mlr3
Title: Machine Learning in R - Next Generation
Version: 0.8.0-9000
Authors@R:
c(person(given = "Michel",
family = "Lang",
role = c("cre", "aut"),
email = "[email protected]",
comment = c(ORCID = "0000-0001-9754-0393")),
person(given = "Bernd",
family = "Bischl",
role = "aut",
email = "[email protected]",
comment = c(ORCID = "0000-0001-6002-6980")),
person(given = "Jakob",
family = "Richter",
role = "aut",
email = "[email protected]",
comment = c(ORCID = "0000-0003-4481-5554")),
person(given = "Patrick",
family = "Schratz",
role = "aut",
email = "[email protected]",
comment = c(ORCID = "0000-0003-0748-6624")),
person(given = "Giuseppe",
family = "Casalicchio",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0001-5324-5966")),
person(given = "Stefan",
family = "Coors",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0002-7465-2146")),
person(given = "Quay",
family = "Au",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0002-5252-8902")),
person(given = "Martin",
family = "Binder",
role = "aut",
email = "[email protected]"),
person(given = "Marc",
family = "Becker",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0002-8115-0400")))
Description: Efficient, object-oriented programming on the
building blocks of machine learning. Provides 'R6' objects for tasks,
learners, resamplings, and measures. The package is geared towards
scalability and larger datasets by supporting parallelization and
out-of-memory data-backends like databases. While 'mlr3' focuses on
the core computational operations, add-on packages provide additional
functionality.
License: LGPL-3
URL: https://mlr3.mlr-org.com, https://github.com/mlr-org/mlr3
BugReports: https://github.com/mlr-org/mlr3/issues
Depends:
R (>= 3.1.0)
Imports:
R6 (>= 2.4.1),
backports,
checkmate (>= 2.0.0),
data.table (>= 1.12.8),
digest,
future.apply (>= 1.5.0),
lgr (>= 0.3.4),
mlbench,
mlr3measures (>= 0.3.0),
mlr3misc (>= 0.5.0),
paradox (>= 0.4.0),
uuid
Suggests:
Matrix,
callr,
datasets,
distr6,
evaluate,
future,
future.callr,
mlr3data,
progressr,
rpart,
testthat
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Roxygen: list(markdown = TRUE, r6 = TRUE)
RoxygenNote: 7.1.1
Collate:
'mlr_reflections.R'
'BenchmarkResult.R'
'DataBackend.R'
'DataBackendCbind.R'
'DataBackendDataTable.R'
'DataBackendMatrix.R'
'DataBackendRbind.R'
'DataBackendRename.R'
'Learner.R'
'LearnerClassif.R'
'mlr_learners.R'
'LearnerClassifDebug.R'
'LearnerClassifFeatureless.R'
'LearnerClassifRpart.R'
'LearnerRegr.R'
'LearnerRegrFeatureless.R'
'LearnerRegrRpart.R'
'Measure.R'
'MeasureClassif.R'
'mlr_measures.R'
'MeasureClassifCosts.R'
'MeasureDebug.R'
'MeasureElapsedTime.R'
'MeasureOOBError.R'
'MeasureRegr.R'
'MeasureSelectedFeatures.R'
'MeasureSimple.R'
'Prediction.R'
'PredictionClassif.R'
'PredictionData.R'
'PredictionDataClassif.R'
'PredictionDataRegr.R'
'PredictionRegr.R'
'ResampleResult.R'
'Resampling.R'
'mlr_resamplings.R'
'ResamplingBootstrap.R'
'ResamplingCV.R'
'ResamplingCustom.R'
'ResamplingHoldout.R'
'ResamplingInsample.R'
'ResamplingLOO.R'
'ResamplingRepeatedCV.R'
'ResamplingSubsampling.R'
'ResultData.R'
'Task.R'
'TaskSupervised.R'
'TaskClassif.R'
'mlr_tasks.R'
'TaskClassif_breast_cancer.R'
'TaskClassif_german_credit.R'
'TaskClassif_iris.R'
'TaskClassif_pima.R'
'TaskClassif_sonar.R'
'TaskClassif_spam.R'
'TaskClassif_wine.R'
'TaskClassif_zoo.R'
'TaskGenerator.R'
'mlr_task_generators.R'
'TaskGenerator2DNormals.R'
'TaskGeneratorCassini.R'
'TaskGeneratorCircle.R'
'TaskGeneratorFriedman1.R'
'TaskGeneratorMoons.R'
'TaskGeneratorSimplex.R'
'TaskGeneratorSmiley.R'
'TaskGeneratorSpirals.R'
'TaskGeneratorXor.R'
'TaskRegr.R'
'TaskRegr_boston_housing.R'
'TaskRegr_mtcars.R'
'TaskUnsupervised.R'
'Task_cbind.R'
'Task_rbind.R'
'as_data_backend.R'
'assertions.R'
'auto_convert.R'
'benchmark.R'
'benchmark_grid.R'
'bibentries.R'
'default_measures.R'
'fix_factor_levels.R'
'helper.R'
'mlr_coercions.R'
'mlr_sugar.R'
'predict.R'
'reexports.R'
'resample.R'
'task_converters.R'
'worker.R'
'zzz.R'