- TensorFlow
- XFoil
- Clone the repository and activate
virtual-env
there.
git clone [email protected]:heytitle/blackbox-optimization-using-rnns.git
- Once
virtal-env
activated, install dependencies
(neural-network-project) $ pip install -r requirements.txt
- Setup Python's path
# in bin/activate (virtualenv's activate)
export PYTHONPATH="./src:$PYTHONPATH"
Each experiment is corresponding to training RNN
on training data determined with --dimension
with combinations of hyperparameter specifid in config.yaml
. The experiment-manager.py
will write training logs to a directory(--log-dir
) under LOG_BASE
, for example ./log/2d
. The example below shows how to run the command.
TF_CPP_MIN_LOG_LEVEL=3 python ./scripts/train-lstm-model.py run --dimension 2 --log_dir 2d --kernel rbf --epochs 2
NOTE : Before running any experiment
1. Make sure that the resposity is up-to-dated, otherwise the results might not be consistent
2. Make sure that `--log_dir` is empty.
-
tmux
If you want to leave the experiment running while you're logging out from the server. You have to use tmux. You can do this by running
tmux
after log-in to the server. -
nvidia-smi
Monitor GPU usage. Combining this command with
watch
to get near realtime updated.$ watch -n 2 nvidia-smi #update every 2 secs
python ./scripts/skopt-test-data-experiment.py run --kernel rbf --dim 6 --no_testing_func 2000 --optimizer gp --dataset prior0 --n_steps 21
This experiment requires xfoil.
# Make sure XFOIL_PATH set properly
python ./scripts/airfoil-experiment.py run --optimizer basinhopping --normalization 100 --dim 6
python ./scripts/mnist-experiment.py run --optimizer basinhopping --no_runs 5