-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TF FE] Decouple tests for Logical binary ops into separate suite and…
… run on all platforms Signed-off-by: Kazantsev, Roman <[email protected]>
- Loading branch information
Showing
2 changed files
with
56 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
54 changes: 54 additions & 0 deletions
54
tests/layer_tests/tensorflow_tests/test_tf_LogicalBinaryOps.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
# Copyright (C) 2018-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
from common.tf_layer_test_class import CommonTFLayerTest | ||
|
||
rng = np.random.default_rng(23345) | ||
|
||
|
||
class TestLogicalBinaryOps(CommonTFLayerTest): | ||
def _prepare_input(self, inputs_info): | ||
assert 'x:0' in inputs_info, "Test error: inputs_info must contain `x`" | ||
assert 'y:0' in inputs_info, "Test error: inputs_info must contain `y`" | ||
x_shape = inputs_info['x:0'] | ||
y_shape = inputs_info['y:0'] | ||
|
||
inputs_data = {} | ||
inputs_data['x:0'] = rng.choice([True, False], x_shape).astype(bool) | ||
inputs_data['y:0'] = rng.choice([True, False], y_shape).astype(bool) | ||
return inputs_data | ||
|
||
def create_logical_binary_ops_net(self, x_shape, y_shape, op_type): | ||
op_type_map = { | ||
'LogicalAnd': tf.raw_ops.LogicalAnd, | ||
'LogicalOr': tf.raw_ops.LogicalOr, | ||
} | ||
|
||
tf.compat.v1.reset_default_graph() | ||
# Create the graph and model | ||
with tf.compat.v1.Session() as sess: | ||
x = tf.compat.v1.placeholder(bool, x_shape, 'x') | ||
y = tf.compat.v1.placeholder(bool, y_shape, 'y') | ||
op_type_map[op_type](x=x, y=y, name=op_type) | ||
|
||
tf.compat.v1.global_variables_initializer() | ||
tf_net = sess.graph_def | ||
|
||
ref_net = None | ||
|
||
return tf_net, ref_net | ||
|
||
@pytest.mark.parametrize('x_shape', [[], [4], [3, 4], [2, 3, 4]]) | ||
@pytest.mark.parametrize('y_shape', [[2, 3, 4]]) | ||
@pytest.mark.parametrize("op_type", ['LogicalAnd', 'LogicalOr']) | ||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
def test_logical_binary_op(self, x_shape, y_shape, op_type, | ||
ie_device, precision, ir_version, | ||
temp_dir, use_legacy_frontend): | ||
self._test(*self.create_logical_binary_ops_net(x_shape=x_shape, y_shape=y_shape, op_type=op_type), | ||
ie_device, precision, ir_version, | ||
temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend) |