From 2fc568fb681e7efb19abab26e1b95edc205f2605 Mon Sep 17 00:00:00 2001 From: zjowowen Date: Tue, 3 Dec 2024 14:15:59 +0800 Subject: [PATCH] Polish Citations. --- README.md | 21 +++++++++++++++------ README.zh.md | 21 +++++++++++++++------ 2 files changed, 30 insertions(+), 12 deletions(-) diff --git a/README.md b/README.md index db7c8e2..86be64d 100644 --- a/README.md +++ b/README.md @@ -145,16 +145,25 @@ We welcome contributions to GenerativeRL! If you are interested in contributing, ## Citation +If you find GenerativeRL useful in your research, please consider citing the following paper: + ```latex -@misc{generative_rl, - title={GenerativeRL: A Python Library for Solving Reinforcement Learning Problems Using Generative Models}, - author={Zhang, Jinouwen and Xue, Rongkun and Niu, Yazhe and Chen, Yun and Chen, Xinyan and Wang, Ruiheng and Liu, Yu}, - publisher={GitHub}, - howpublished={\url{https://github.com/opendilab/GenerativeRL}}, - year={2024}, +@misc{zhang2024generative_rl, + title={Revisiting Generative Policies: A Simpler Reinforcement Learning Algorithmic Perspective}, + author={Jinouwen Zhang and Rongkun Xue and Yazhe Niu and Yun Chen and Jing Yang and Hongsheng Li and Yu Liu}, + year={2024}, + eprint={2412.01245}, + archivePrefix={arXiv}, + primaryClass={cs.LG}, + url={https://arxiv.org/abs/2412.01245}, } ``` +### Papers implemented in GenerativeRL + +- [Data-driven Aerodynamic Shape Optimization and Multi-fidelity Design Exploration using Conditional Diffusion-based Geometry Sampling Method](https://www.icas.org/ICAS_ARCHIVE/ICAS2024/data/papers/ICAS2024_0431_paper.pdf) (Yang et al. 2024) +- [Pretrained Reversible Generation as Unsupervised Visual Representation Learning](https://arxiv.org/abs/2412.01787) (Xue et al. 2024) + ## License GenerativeRL is licensed under the Apache License 2.0. See [LICENSE](LICENSE) for more details. diff --git a/README.zh.md b/README.zh.md index f5d8628..338db5a 100644 --- a/README.zh.md +++ b/README.zh.md @@ -142,16 +142,25 @@ if __name__ == '__main__': ## 引用 +如果您在研究中使用了 GenerativeRL,请引用以下论文: + ```latex -@misc{generative_rl, - title={GenerativeRL: A Python Library for Solving Reinforcement Learning Problems Using Generative Models}, - author={Zhang, Jinouwen and Xue, Rongkun and Niu, Yazhe and Chen, Yun and Chen, Xinyan and Wang, Ruiheng and Liu, Yu}, - publisher={GitHub}, - howpublished={\url{https://github.com/opendilab/GenerativeRL}}, - year={2024}, +@misc{zhang2024generative_rl, + title={Revisiting Generative Policies: A Simpler Reinforcement Learning Algorithmic Perspective}, + author={Jinouwen Zhang and Rongkun Xue and Yazhe Niu and Yun Chen and Jing Yang and Hongsheng Li and Yu Liu}, + year={2024}, + eprint={2412.01245}, + archivePrefix={arXiv}, + primaryClass={cs.LG}, + url={https://arxiv.org/abs/2412.01245}, } ``` +### 使用 GenerativeRL 的论文 + +- [Data-driven Aerodynamic Shape Optimization and Multi-fidelity Design Exploration using Conditional Diffusion-based Geometry Sampling Method](https://www.icas.org/ICAS_ARCHIVE/ICAS2024/data/papers/ICAS2024_0431_paper.pdf) (Yang et al. 2024) +- [Pretrained Reversible Generation as Unsupervised Visual Representation Learning](https://arxiv.org/abs/2412.01787) (Xue et al. 2024) + ## 开源协议 GenerativeRL 开源协议为 Apache License 2.0。更多信息和文档,请参考 [开源协议](LICENSE)。