All values in billion tonnes of carbon per year (GtC/yr), for the globe. For values in billion tonnes of carbon dioxide per year (GtCO2/yr) , multiply the numbers below by 3.664.
Note: 1 billion tonnes C = 1 petagram of carbon (10^15 gC) = 1 gigatonne C = 3.664 billion tonnes of CO2
All uncertainties represent ± 1 sigma error (68 % chance of being in the range provided)
Emissions from fossil fuel combustion and industrial processes (uncertainty of ±5% for a ± 1 sigma confidence level):
Cite as: Gilfillan, D., Marland, G., Boden, T. and Andres, R.: Global, Regional, and National Fossil-Fuel CO2 Emissions, available at: https://energy.appstate.edu/CDIAC, last access: 27 September 2019.
Cite as: average of two bookkeeping models: Houghton, R. A. and Nassikas, A. A.: Global and regional fluxes of carbon from land use and land cover change 1850-2015, Global Biogeochemical Cycles, 31, 456-472, 2017; Hansis, E., Davis, S. J., and Pongratz, J.: Relevance of methodological choices for accounting of land use change carbon fluxes, Global Biogeochemical Cycles, 29, 1230-1246, 2015.
Estimated directly from atmospheric CO2 concentration measurements, and provided by the US National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL). http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
Cite as: Dlugokencky, E. and Tans, P.: Trends in atmospheric carbon dioxide, National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), available at http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html, 2019.
1959-1980 are based on Mauna Loa and South Pole stations as observed by the CO2 Program at Scripps Institution of Oceanography. http://scrippsco2.ucsd.edu/data/atmospheric_co2/ 1980 onwards are global averages estimated from multiple stations run by NOAA/ESRL.
Estimated from the average of several global ocean biogeochemistry models that reproduce the observed mean ocean sink of the 1990s.
Cite as: Friedlingstein et al. 2019.
Estimated from the average of several dynamic global vegetation models that reproduce the observed mean total land sink of the 1990s.
Cite as: Friedlingstein et al. 2019.
The budget imbalance is the sum of emissions (fossil fuel and industry + land-use change) minus (atmospheric growth + ocean sink + land sink)
It is a measure of our imperfect data and understanding of the contemporary carbon cycle.
Cite as: Friedlingstein et al. 2019.
Reference of the full global carbon budget 2018: Pierre Friedlingstein, Matthew W. Jones, Michael O’Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Rob Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, Sönke Zaehle: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783-1838, 2019. https://doi.org/10.5194/essd-11-1783-2019