Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

mmrotate1x distributed training takes significantly longer than mmroate0.3 #1054

Open
3 tasks done
luchaoshi45 opened this issue Jul 19, 2024 · 4 comments
Open
3 tasks done

Comments

@luchaoshi45
Copy link

Prerequisite

Task

I'm using the official example scripts/configs for the officially supported tasks/models/datasets.

Branch

1.x branch https://github.com/open-mmlab/mmrotate/tree/1.x

Environment

mmroate0.3

image

mmrotate1x

image

Reproduces the problem - code sample

lsknet

Reproduces the problem - command or script

train

Reproduces the problem - error message

mmrotate1x distributed training takes significantly longer than mmroate0.3

Additional information

Is there a plan to update the mmroate1x version?

@luchaoshi45
Copy link
Author

luchaoshi45 commented Jul 19, 2024

mmrotate0.3

2024-07-19 16:12:05,558 - mmrotate - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.8.19 | packaged by conda-forge | (default, Mar 20 2024, 12:47:35) [GCC 12.3.0]
CUDA available: True
GPU 0,1: NVIDIA GeForce RTX 4090
CUDA_HOME: /usr/local/cuda-12.2
NVCC: Cuda compilation tools, release 12.2, V12.2.91
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
PyTorch: 1.11.0+cu113
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.2
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

TorchVision: 0.12.0+cu113
OpenCV: 4.9.0
MMCV: 1.7.2
MMCV Compiler: GCC 9.3
MMCV CUDA Compiler: 11.3
MMRotate: 0.3.4+8aa6985
------------------------------------------------------------

@luchaoshi45
Copy link
Author

luchaoshi45 commented Jul 19, 2024

mmrotate1x

2024/07/19 15:52:26 - mmengine - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
    CUDA available: True
    MUSA available: False
    numpy_random_seed: 1555386739
    GPU 0,1: NVIDIA GeForce RTX 4090
    CUDA_HOME: /usr/local/cuda
    NVCC: Cuda compilation tools, release 12.2, V12.2.91
    GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
    PyTorch: 2.0.1+cu118
    PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.8
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
  - CuDNN 8.7
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

    TorchVision: 0.15.2+cu118
    OpenCV: 4.9.0
    MMEngine: 0.10.3

Runtime environment:
    cudnn_benchmark: False
    mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
    dist_cfg: {'backend': 'nccl'}
    seed: 1555386739
    Distributed launcher: pytorch
    Distributed training: True
    GPU number: 2
------------------------------------------------------------

@timresink
Copy link

I suggest you run a pytorch profiler over both models (with stack trace) and look at the difference. It could be that there is some more copying between cpu and gpu going on due to implementation differences.

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

@amomo123
Copy link

你好,请问mmrotate 1x如何设置GPU的数量和id?train.py文件里面没有设置项。
Excuse me, how do I set the number and id of Gpus in mmrotate 1x? There are no Settings in the train.py file.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants