RuntimeError: mat1 and mat2 shapes cannot be multiplied (286720x7 and 1280x3) #1764
Unanswered
wenshuyuan
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
i want to utlize mobilenet v2 to train my own data.
i dont know what cause the error.
my config are as follows :
my_mobilenet_v2_3_classes.py
base = [
'../base/models/mobilenet_v2_1x.py',
#'../base/datasets/imagenet_bs32_pil_resize.py',
]
dataset settings
dataset_type = 'ImageNet'
data_preprocessor = dict(
)
train_pipeline = [
dict(type='LoadImageFromFile'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
]
train_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='F:/研究生课程/mission/project/mmpretrain-main/datasets/clahe',
split='train',
pipeline=train_pipeline),
sampler=dict(type='DefaultSampler', shuffle=True),
)
val_dataloader = dict(
batch_size=32,
num_workers=5,
dataset=dict(
type=dataset_type,
data_root='F:/研究生课程/mission/project/mmpretrain-main/datasets/clahe',
split='val',
pipeline=test_pipeline),
sampler=dict(type='DefaultSampler', shuffle=False),
)
val_evaluator = dict(type='Accuracy', topk=(1, 5))
If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator
修改模型相关配置
model = dict(
type='ImageClassifier',
backbone=dict(
type='MobileNetV2',
#scale=1.0
#width_mult=1.0
),
neck=None,
head=dict(
type='LinearClsHead',
num_classes=3,
in_channels=1280,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
)
)
修改训练相关配置
lr_config = dict(
policy='step',
step=[30, 60, 90],
gamma=0.1
)
runner = dict(
type='EpochBasedRunner',
max_epochs=100
)
Beta Was this translation helpful? Give feedback.
All reactions