-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
64 lines (57 loc) · 1.7 KB
/
vit-base-p16_8xb2048-linear-coslr-90e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
_base_ = [
'../../_base_/datasets/imagenet_bs32_pil_resize.py',
'../../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../../_base_/default_runtime.py'
]
# dataset settings
train_dataloader = dict(batch_size=2048, drop_last=True)
val_dataloader = dict(drop_last=False)
test_dataloader = dict(drop_last=False)
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
frozen_stages=12,
out_type='cls_token',
final_norm=True,
init_cfg=dict(type='Pretrained', checkpoint='', prefix='backbone.')),
neck=dict(type='ClsBatchNormNeck', input_features=768),
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(type='CrossEntropyLoss'),
init_cfg=[dict(type='TruncNormal', layer='Linear', std=0.01)]))
# optimizer
optim_wrapper = dict(
_delete_=True,
type='AmpOptimWrapper',
optimizer=dict(type='LARS', lr=6.4, weight_decay=0.0, momentum=0.9))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=10,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=80,
by_epoch=True,
begin=10,
end=90,
eta_min=0.0,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(by_epoch=True, max_epochs=90)
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3),
logger=dict(type='LoggerHook', interval=10))
randomness = dict(seed=0, diff_rank_seed=True)