diff --git a/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb b/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb index 32f569f69..65a028c36 100644 --- a/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb +++ b/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abade_and_Albuquerque_2024/fig_2.ipynb)" ] }, { @@ -23,10 +23,13 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T10:37:52.672366Z", + "start_time": "2024-12-06T10:37:52.668120Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", @@ -34,7 +37,9 @@ " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" ], - "id": "aa876f2db21bb522" + "id": "aa876f2db21bb522", + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb b/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb index 407b2fb1c..5d7cd6390 100644 --- a/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb +++ b/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/fig_4_kinetic_limitations.ipynb)" ], "metadata": { "collapsed": false @@ -25,10 +25,13 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T10:38:02.660871Z", + "start_time": "2024-12-06T10:38:02.649799Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", @@ -36,7 +39,9 @@ " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" ], - "id": "f52cbd092d056ba6" + "id": "f52cbd092d056ba6", + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb b/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb index 1db6d9870..8a01617ae 100644 --- a/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb +++ b/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Abdul_Razzak_Ghan_2000/figs1-5.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb index 0ca02faf7..af8e7ed41 100644 --- a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb +++ b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb)\n" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb index f331adab2..60e209b63 100644 --- a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb +++ b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb @@ -10,8 +10,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb index 6a173ad44..bedcaf4a0 100644 --- a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb +++ b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_3.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb index 4cd85fbaf..15f48ff1b 100644 --- a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb +++ b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_4.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb index bc1482977..8075c0e78 100644 --- a/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb +++ b/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Alpert_and_Knopf_2016/fig_5.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb b/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb index 16cc3c52b..d4798900f 100644 --- a/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb +++ b/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_and_Shima_2017/fig_5.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb index fa6b59c5b..73fb3a2eb 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/gui.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb index 527f89feb..c49191c26 100644 --- a/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb @@ -6,9 +6,10 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb)" - ] + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2015/paraview_hello_world.ipynb)" + ], + "id": "a491199946368a38" }, { "cell_type": "markdown", @@ -19,25 +20,33 @@ ] }, { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-16T11:32:19.516146Z", + "start_time": "2024-12-16T11:32:19.508472Z" + } + }, "cell_type": "code", - "execution_count": 1, - "id": "93289adf665b5c7f", - "metadata": {}, - "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "id": "93289adf665b5c7f", + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": 2, "id": "ee889545", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-16T11:32:22.257915Z", + "start_time": "2024-12-16T11:32:19.522190Z" + } + }, "source": [ "from PySDM_examples.Arabas_et_al_2015 import Settings, SpinUp\n", "from PySDM_examples.Szumowski_et_al_1998 import Simulation, Storage\n", @@ -47,19 +56,26 @@ "import subprocess\n", "import glob\n", "import platform" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": 3, "id": "f0d2581f", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-16T11:32:22.265346Z", + "start_time": "2024-12-16T11:32:22.263221Z" + } + }, "source": [ "products = [\n", " PySDM_products.EffectiveRadius(unit='um')\n", "]" - ] + ], + "outputs": [], + "execution_count": 4 }, { "cell_type": "markdown", @@ -71,25 +87,13 @@ }, { "cell_type": "code", - "execution_count": 4, "id": "74c00944", - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0bcf160187564b299db7f4c1115a4480", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "FloatProgress(value=0.0, description='progress:', max=1.0)" - ] - }, - "metadata": {}, - "output_type": "display_data" + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-16T11:33:28.855986Z", + "start_time": "2024-12-16T11:32:22.284680Z" } - ], + }, "source": [ "settings = Settings()\n", "storage = Storage()\n", @@ -100,7 +104,24 @@ "\n", "simulation.run(ProgBarController(\"progress:\"), vtk_exporter=vtk_exporter)\n", "vtk_exporter.write_pvd()" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='progress:', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "92fc337846f24dfe8d7c866c2646af06" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 5 }, { "cell_type": "markdown", @@ -112,18 +133,13 @@ }, { "cell_type": "code", - "execution_count": 5, "id": "2030d8e7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Writing pvscript.py\n" - ] + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-16T11:33:28.932999Z", + "start_time": "2024-12-16T11:33:28.926834Z" } - ], + }, "source": [ "%%writefile pvscript.py\n", "\n", @@ -260,7 +276,17 @@ " Rasterize3Dgeometry= False,\n", " GL2PSdepthsortmethod= 'BSP sorting (slow, best)',\n", " )" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting pvscript.py\n" + ] + } + ], + "execution_count": 6 }, { "cell_type": "markdown", @@ -272,20 +298,27 @@ }, { "cell_type": "code", - "execution_count": null, "id": "79477d3d", "metadata": { "ExecuteTime": { - "start_time": "2024-12-16T17:37:04.232147Z" - }, - "jupyter": { - "is_executing": true + "end_time": "2024-12-16T11:34:24.126021Z", + "start_time": "2024-12-16T11:33:33.677036Z" } }, - "outputs": [], - "source": [ - "subprocess.run(['pvpython', '--force-offscreen-rendering', 'pvscript.py'], check=platform.system() != 'Windows')" - ] + "source": "subprocess.run(['pvpython', '--force-offscreen-rendering', 'pvscript.py'], check=platform.system() != 'Windows')", + "outputs": [ + { + "data": { + "text/plain": [ + "CompletedProcess(args=['pvpython', '--force-offscreen-rendering', 'pvscript.py'], returncode=0)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "execution_count": 8 }, { "cell_type": "markdown", @@ -297,24 +330,34 @@ }, { "cell_type": "code", - "execution_count": null, "id": "23e0cf61", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-16T11:34:37.962298Z", + "start_time": "2024-12-16T11:34:24.199410Z" + } + }, "source": [ "if platform.system() != 'Windows':\n", " for file in glob.glob('output/anim_frame_*.pdf'):\n", " subprocess.run(['ps2pdf', file, file+'_'], capture_output=True, check=True)\n", " subprocess.run(['mv', file+'_', file], check=True)" - ] + ], + "outputs": [], + "execution_count": 9 }, { "cell_type": "code", - "execution_count": null, "id": "9d3e4a35", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-16T11:34:37.975060Z", + "start_time": "2024-12-16T11:34:37.971995Z" + } + }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": { diff --git a/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb index 8461a996b..b1d3c8553 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb @@ -10,8 +10,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/aida.ipynb)" ] }, { @@ -22,17 +22,22 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T10:39:23.733040Z", + "start_time": "2024-12-06T10:39:23.728488Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "markdown", diff --git a/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb index db07aba6b..35490dd5e 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb @@ -5,8 +5,8 @@ "cell_type": "markdown", "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/copula_hello.ipynb)" ], "id": "b17de2cda126ff4f" }, @@ -17,10 +17,13 @@ "id": "5aec9c0198c091d5" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:50.170007Z", + "start_time": "2024-12-10T19:06:50.167900Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", @@ -28,14 +31,19 @@ " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" ], - "id": "7301d14cf5b6ccfb" + "id": "7301d14cf5b6ccfb", + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": null, "id": "e34aa194", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:51.325520Z", + "start_time": "2024-12-10T19:06:50.172736Z" + } + }, "source": [ "import pyvinecopulib as pv\n", "import seaborn\n", @@ -45,14 +53,19 @@ "from PySDM.initialisation.spectra import Lognormal\n", "from open_atmos_jupyter_utils import show_plot\n", "import numpy as np" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": null, "id": "f8e0bfd6", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:51.437069Z", + "start_time": "2024-12-10T19:06:51.426009Z" + } + }, "source": [ "import matplotlib\n", "font = {'family' : 'monospace',\n", @@ -61,27 +74,47 @@ " }\n", "matplotlib.rc('font', **font) \n", "matplotlib.pyplot.tight_layout()" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": null, "id": "a8cd1d9a", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:51.445915Z", + "start_time": "2024-12-10T19:06:51.442853Z" + } + }, "source": [ "freezing_fit_a = -0.5\n", "freezing_fit_b = 10\n", "lognormal_median = 5*si.um**2\n", "lognormal_g_mean = 1.75" - ] + ], + "outputs": [], + "execution_count": 4 }, { "cell_type": "code", - "execution_count": null, "id": "d49edfcf", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:51.472493Z", + "start_time": "2024-12-10T19:06:51.451359Z" + } + }, "source": [ "formulae = Formulae(\n", " freezing_temperature_spectrum='Niemand_et_al_2012',\n", @@ -91,28 +124,38 @@ " }\n", ")\n", "spectrum = Lognormal(norm_factor=1, m_mode=lognormal_median, s_geom=lognormal_g_mean)" - ] + ], + "outputs": [], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": null, "id": "9f12ad46", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:51.482244Z", + "start_time": "2024-12-10T19:06:51.478725Z" + } + }, "source": [ "T_range = (230 * si.K, 255 * si.K)\n", "A_range = (.05 * si.um**2, 40 * si.um**2)\n", "\n", "label_T=f'normalised freezing T within {T_range} K' \n", "label_A=f'normalised insoluble A within {tuple(np.asarray(A_range) / si.um**2)} $μm^2$'" - ] + ], + "outputs": [], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": null, "id": "019715d6", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:52.046810Z", + "start_time": "2024-12-10T19:06:51.491083Z" + } + }, "source": [ "N = 256\n", "T = np.linspace(*T_range, N)\n", @@ -151,14 +194,19 @@ "dT = T[1] - T[0]\n", "dA = A[1] - A[0]\n", "sampled_pdf = pdf(*grid)" - ] + ], + "outputs": [], + "execution_count": 7 }, { "cell_type": "code", - "execution_count": null, "id": "944ab8a0", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:52.558930Z", + "start_time": "2024-12-10T19:06:52.055741Z" + } + }, "source": [ "fig = pyplot.figure(figsize=(7, 6))\n", "ax = fig.add_subplot(111)\n", @@ -170,14 +218,44 @@ "pyplot.grid()\n", "show_plot()\n", "np.testing.assert_almost_equal(np.sum(sampled_pdf) * dT * dA, 1, decimal=1)" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:06:52.524203\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./tmp7x8wcj16.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2aebebfce183493a8ac6202c191ac7c0" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 8 }, { "cell_type": "code", - "execution_count": null, "id": "8a08db5f", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:52.919023Z", + "start_time": "2024-12-10T19:06:52.573754Z" + } + }, "source": [ "n_samples = 2222\n", "seed = 222\n", @@ -203,39 +281,79 @@ " points_A.append(A_rand[i])\n", "\n", "data = np.asarray([points_T, points_A]).T" - ] + ], + "outputs": [], + "execution_count": 9 }, { "cell_type": "code", - "execution_count": null, "id": "e4ccc918", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:52.933584Z", + "start_time": "2024-12-10T19:06:52.929936Z" + } + }, "source": [ "def jointplot(data_arg, title=''):\n", " h = seaborn.jointplot(x=data_arg[:, 0], y=data_arg[:, 1], kind='hex', label=title)\n", " h.set_axis_labels(label_T, label_A)\n", " if title != '':\n", " pyplot.legend(loc='upper right')" - ] + ], + "outputs": [], + "execution_count": 10 }, { "cell_type": "code", - "execution_count": null, "id": "fd8fd4c1", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:53.447705Z", + "start_time": "2024-12-10T19:06:52.945081Z" + } + }, "source": [ "jointplot(data)\n", "show_plot('01.pdf')" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:06:53.387794\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./01.pdf
\"), HTML(value=\"./tmp8p_rlq5g.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c9f35c7ecd2d4bf1ac540c748b20adf7" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:06:54.142053\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./tmp28na8wwn.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "fa55966a76984334ba554deb7a404e13" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 13 }, { "cell_type": "code", - "execution_count": null, "id": "1f1cade9", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:06:54.565323Z", + "start_time": "2024-12-10T19:06:54.177224Z" + } + }, "source": [ "# udata are almost perfectly uniform by construction\n", "jointplot(udata)\n", "show_plot('02.pdf')" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:06:54.526156\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./02.pdf
\"), HTML(value=\"" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:06:57.907549\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./03_0.pdf
\"), HTML(value=\"./03_1.pdf
\"), HTML(value=\"\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2024-06-11T18:30:47.836802\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.8.1, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1449e34d1f194e6c8c2399f5a12569dc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HTML(value=\"./fig_convergence_double precisio…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2024-06-11T18:30:48.419615\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.8.1, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7cd0bf13416e40489a478a6c650ecdbf", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HTML(value=\"./fig_convergence_single precisio…" - ] - }, - "metadata": {}, - "output_type": "display_data" + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T22:03:16.760614Z", + "start_time": "2024-12-15T22:03:14.742962Z" } - ], + }, "source": [ "for backend_key in output.keys():\n", " fig, ax = pyplot.subplots(1, 1, figsize=(10, 4.5))\n", @@ -4796,24 +290,83 @@ " ax.set_ylabel(\"frozen fraction [%]\")\n", " ax.grid()\n", " show_plot(f\"fig_convergence_{backend_key}.pdf\")" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-15T23:03:16.010903\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig_convergence_…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "44082a1d422b4335adf72513033e2fc3" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-15T23:03:16.725929\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig_convergence_…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "63284af1b12846b49fa0ce6128d1cebc" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 8 }, { "cell_type": "code", - "execution_count": 31, "id": "a19ec2af", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T22:03:16.793553Z", + "start_time": "2024-12-15T22:03:16.790990Z" + } + }, "source": [ "NORM_TYPE = 'mse'" - ] + ], + "outputs": [], + "execution_count": 9 }, { "cell_type": "code", - "execution_count": 32, "id": "53881f93", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T22:03:16.861635Z", + "start_time": "2024-12-15T22:03:16.805140Z" + } + }, "source": [ "mean = {}\n", "serr = {}\n", @@ -4838,13 +391,64 @@ " mask = tmp > 0\n", " serr[backend_key][n_real][mask] = np.sqrt(tmp[mask] / n_real)\n", " serr[backend_key][n_real][~mask] = 0" - ] + ], + "outputs": [], + "execution_count": 10 }, { "cell_type": "code", - "execution_count": 33, "id": "005673b0", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T22:03:20.405173Z", + "start_time": "2024-12-15T22:03:16.874395Z" + } + }, + "source": [ + "FIGSIZE = (4.75, 4.75)\n", + "\n", + "for backend_key in output.keys():\n", + " fig, ax = pyplot.subplots(1, 1, figsize=FIGSIZE)\n", + " pick_n_real = len(SEEDS)\n", + " pick_dt = -2\n", + " \n", + " x = number_of_real_droplets // np.asarray(MLT)\n", + " for i, c in enumerate((.0333, .0999)):\n", + " ax.plot(x, c * x**-.5, color='gray', label=r'$\\sim 1/\\sqrt{n_{sd}}$' if i==0 else '')\n", + "\n", + " for i, dt in enumerate(DTS):\n", + " if dt > 5000:\n", + " continue\n", + " print(dt)\n", + " x = number_of_real_droplets // np.asarray(MLT)\n", + " y = mean[backend_key][pick_n_real][i, :]\n", + " common_kwargs = {'marker': '.', 'linewidth': 6.66/np.log(float(dt))}\n", + " label = f\"dt={dt:d} s\"\n", + " if dt == DTS[pick_dt]:\n", + " for n_real in reversed(range(1, len(SEEDS)+1)):\n", + " if n_real < 4 or np.log2(n_real) != int(np.log2(n_real)):\n", + " continue\n", + " ax.errorbar(x=x, y=y,\n", + " yerr=serr[backend_key][n_real][i, :],\n", + " capsize=2*np.log2(n_real),\n", + " **common_kwargs,\n", + " color='black',\n", + " label=label + f\" ({n_real} runs)\"\n", + " )\n", + " else:\n", + " ax.plot(x, y, **common_kwargs, label=label + f\" ({pick_n_real} runs)\")\n", + " \n", + " pyplot.xscale('log', base=2)\n", + " pyplot.yscale('log', base=2)\n", + " if backend_key == 'double precision':\n", + " pyplot.legend(loc=\"lower left\")\n", + " pyplot.xlabel(\"$n_{sd}$\")\n", + " pyplot.ylabel(r'mean $E_{L2}$ over all runs (bars: std. err.)')\n", + " pyplot.grid()\n", + " pyplot.title(backend_key + (' (interpolated MSE)' if NORM_TYPE == 'mse_interp' else ''))\n", + " pyplot.ylim(2**-15, 2**-7.5)\n", + " show_plot(f'fig_lines_{backend_key}.pdf')" + ], "outputs": [ { "name": "stdout", @@ -4858,1984 +462,24 @@ }, { "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2024-06-11T18:30:50.351912\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.8.1, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], "text/plain": [ "
" - ] + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-15T23:03:19.885434\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, "metadata": {}, "output_type": "display_data" }, { "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig_lines_double preci…" + ], "application/vnd.jupyter.widget-view+json": { - "model_id": "dbd3bb6c9a5444d68432ff5af132787c", "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HTML(value=\"./fig_lines_double precision.pdf\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2024-06-11T18:30:51.101817\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.8.1, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], "text/plain": [ "
" - ] + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-15T23:03:20.361175\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, "metadata": {}, "output_type": "display_data" }, { "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig_lines_single preci…" + ], "application/vnd.jupyter.widget-view+json": { - "model_id": "a788f2f1b13844b3b0e8967ad1eca94e", "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HTML(value=\"./fig_lines_single precision.pdf 5000:\n", - " continue\n", - " print(dt)\n", - " x = number_of_real_droplets // np.asarray(MLT)\n", - " y = mean[backend_key][pick_n_real][i, :]\n", - " common_kwargs = {'marker': '.', 'linewidth': 6.66/np.log(float(dt))}\n", - " label = f\"dt={dt:d} s\"\n", - " if dt == DTS[pick_dt]:\n", - " for n_real in reversed(range(1, len(SEEDS)+1)):\n", - " if n_real < 4 or np.log2(n_real) != int(np.log2(n_real)):\n", - " continue\n", - " ax.errorbar(x=x, y=y,\n", - " yerr=serr[backend_key][n_real][i, :],\n", - " capsize=2*np.log2(n_real),\n", - " **common_kwargs,\n", - " color='black',\n", - " label=label + f\" ({n_real} runs)\"\n", - " )\n", - " else:\n", - " ax.plot(x, y, **common_kwargs, label=label + f\" ({pick_n_real} runs)\")\n", - " \n", - " pyplot.xscale('log', base=2)\n", - " pyplot.yscale('log', base=2)\n", - " if backend_key == 'double precision':\n", - " pyplot.legend(loc=\"lower left\")\n", - " pyplot.xlabel(\"$n_{sd}$\")\n", - " pyplot.ylabel(r'mean $E_{L2}$ over all runs (bars: std. err.)')\n", - " pyplot.grid()\n", - " pyplot.title(backend_key + (' (interpolated MSE)' if NORM_TYPE == 'mse_interp' else ''))\n", - " pyplot.ylim(2**-15, 2**-7.5)\n", - " show_plot(f'fig_lines_{backend_key}.pdf')" - ] + "execution_count": 11 }, { "cell_type": "code", - "execution_count": null, "id": "3f369c2d-cacb-42e1-b480-be325720ef83", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T22:03:20.423488Z", + "start_time": "2024-12-15T22:03:20.421765Z" + } + }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": { diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb index 45e52f7ac..a72ac1b49 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb @@ -10,11 +10,17 @@ } }, "source": [ - "[![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_11.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_10_and_11_and_animations.ipynb)" ] }, + { + "metadata": {}, + "cell_type": "markdown", + "source": " TODO #1417", + "id": "7ae7d5cdf161486c" + }, { "cell_type": "code", "execution_count": 1, diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb index ec5bea35e..74bd06be7 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb @@ -10,9 +10,9 @@ } }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_3_and_7_and_8.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_3_and_7_and_8.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_3_and_7_and_8.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_3_and_7_and_8.ipynb)" ] }, { @@ -22,10 +22,13 @@ "id": "99148d254fcace2f" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T10:40:43.115393Z", + "start_time": "2024-12-06T10:40:43.097185Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", @@ -33,7 +36,9 @@ " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" ], - "id": "a1ef1c9d72aa9b36" + "id": "a1ef1c9d72aa9b36", + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb b/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb index 9ea993645..f1bf83913 100644 --- a/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb +++ b/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb @@ -10,9 +10,9 @@ } }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_5_and_6.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/fig_5_and_6.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/fig_5_and_6.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Arabas_et_al_2023/figs_5_and_6.ipynb)" ] }, { @@ -22,10 +22,13 @@ "id": "bc1f274e9f347bca" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T10:40:47.266019Z", + "start_time": "2024-12-06T10:40:47.241299Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", @@ -33,7 +36,9 @@ " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" ], - "id": "b1ab25d00d401238" + "id": "b1ab25d00d401238", + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb b/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb index 5947fe3e6..37e08714a 100644 --- a/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb +++ b/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo.ipynb)" ], "metadata": { "collapsed": false @@ -18,32 +18,30 @@ }, { "cell_type": "code", - "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2024-02-05T13:19:56.219507Z", - "start_time": "2024-02-05T13:19:56.211676Z" + "end_time": "2024-12-15T19:13:04.632105Z", + "start_time": "2024-12-15T19:13:04.627358Z" } }, - "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2024-02-05T13:20:23.447993Z", - "start_time": "2024-02-05T13:20:23.443640Z" + "end_time": "2024-12-15T19:13:07.790075Z", + "start_time": "2024-12-15T19:13:04.635825Z" } }, - "outputs": [], "source": [ "from PySDM_examples.Arabas_et_al_2015 import Settings, SpinUp\n", "from PySDM_examples.Szumowski_et_al_1998 import Simulation, Storage\n", @@ -60,13 +58,18 @@ "from matplotlib import pyplot, rcParams\n", "from matplotlib.animation import FuncAnimation\n", "from matplotlib.gridspec import GridSpec" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T19:13:14.392062Z", + "start_time": "2024-12-15T19:13:07.883682Z" + } + }, "source": [ "settings = Settings()\n", "\n", @@ -98,33 +101,78 @@ "storage = Storage()\n", "simulation = Simulation(settings, storage, SpinUp=SpinUp)\n", "simulation.reinit(products)" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T19:14:06.565287Z", + "start_time": "2024-12-15T19:13:14.401584Z" + } + }, "source": [ "simulation.run(ProgBarController())" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "5b82aa86d4ee411cba73d97e161fc36e" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 4 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T19:14:06.632334Z", + "start_time": "2024-12-15T19:14:06.604935Z" + } + }, "source": [ "temp_file = TemporaryFile('.nc')\n", "exporter = NetCDFExporter(storage, settings, simulation, temp_file.absolute_path)\n", "exporter.run(ProgBarController())" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "51a4d97c7d5a4dcf887bc35713fead6b" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T19:14:06.862492Z", + "start_time": "2024-12-15T19:14:06.678764Z" + } + }, "source": [ "default_figsize = rcParams[\"figure.figsize\"]\n", "figsize = (1.75 * default_figsize[0], 3.1* default_figsize[1])\n", @@ -186,13 +234,18 @@ " plots[-1].timeseries\n", " )\n", "pyplot.close(fig)" - ] + ], + "outputs": [], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T19:14:07.140687Z", + "start_time": "2024-12-15T19:14:06.868979Z" + } + }, "source": [ "animation = FuncAnimation(fig, update, frames=frame_list, interval=interval, blit=False)\n", "\n", @@ -201,19 +254,53 @@ " file = TemporaryFile('.gif')\n", " animation.save(file.absolute_path)\n", " display(file.make_link_widget())" - ] + ], + "outputs": [], + "execution_count": 7 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T21:52:37.549297Z", + "start_time": "2024-12-15T21:52:36.478260Z" + } + }, "source": [ "# save last frame in vector format\n", "svg_file = TemporaryFile('.svg')\n", "fig.savefig(svg_file.absolute_path)\n", "display(svg_file.make_link_widget())" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "HTML(value=\"./tmp72gs0u17.svg
\")" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "458642af11f04bf99ba218260443e075" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 8 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T21:52:39.483293Z", + "start_time": "2024-12-15T21:52:39.480037Z" + } + }, + "cell_type": "code", + "source": "", + "outputs": [], + "execution_count": null } ], "metadata": { diff --git a/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb b/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb index 52de33bf0..73e9d4814 100644 --- a/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb +++ b/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig2.ipynb)" ], "metadata": { "collapsed": false @@ -18,32 +18,30 @@ }, { "cell_type": "code", - "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2024-02-05T13:20:30.337364Z", - "start_time": "2024-02-05T13:20:30.319370Z" + "end_time": "2024-12-10T18:58:30.038548Z", + "start_time": "2024-12-10T18:58:30.032993Z" } }, - "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2024-02-05T13:20:46.925590Z", - "start_time": "2024-02-05T13:20:46.914042Z" + "end_time": "2024-12-10T18:58:32.805460Z", + "start_time": "2024-12-10T18:58:30.055382Z" } }, - "outputs": [], "source": [ "from PySDM_examples.Arabas_et_al_2015 import Settings, SpinUp\n", "from PySDM_examples.Szumowski_et_al_1998 import Simulation, Storage\n", @@ -60,13 +58,18 @@ "from scipy.io import netcdf_file\n", "from matplotlib import pyplot\n", "from scipy.ndimage import uniform_filter1d" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T18:58:32.901248Z", + "start_time": "2024-12-10T18:58:32.897660Z" + } + }, "source": [ "tol = .5e-6\n", "m = 2\n", @@ -80,13 +83,18 @@ " {'file': TemporaryFile('.nc'), 'settings': {'condensation_adaptive': False, 'condensation_substeps': 8}},\n", " {'file': TemporaryFile('.nc'), 'settings': {'condensation_adaptive': False, 'condensation_substeps': 2}},\n", ")" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:12:55.657266Z", + "start_time": "2024-12-10T18:58:32.919878Z" + } + }, "source": [ "radius_range = (.5*si.um, 25*si.um)\n", "dt = 32 * si.s\n", @@ -128,13 +136,243 @@ " simulation.run(ProgBarController(f\"run {i+1}/{len(runs)}\"))\n", " exporter = NetCDFExporter(storage, settings, simulation, run['file'].absolute_path)\n", " exporter.run(ProgBarController('netCDF'))" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 1/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "6c5487f9a34a45a8aec2194059c19eac" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "40ef21163fe544c4b1f51c0f0a964d21" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 2/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "e512a23ff04f47c1997f729c69dbfb16" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "9e7c28e100654f41b9fbb9d5b7d03f96" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 3/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "220c54dcb8a845a79adda1855dcde20c" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "56c25c4eabc741c197ccbb8e6db1b47e" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 4/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "349bb3065da24a2c8aa7866520ebaf3a" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "762ef5455e534c7290b1a32746860e87" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 5/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d237414bc00142f1907c6218ef200803" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "323b810ff3314088a6f57c5bd2b739c1" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 6/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "a9521d672b3143bb978cf0d73fe87711" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "0159a1d100c94befa8b7cb440b3d9eff" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 7/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f3bfcbd89a914e45937b111eda598ee9" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f1bb67f37a6a4bde8510f3c8a0ca0fc3" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 8/8', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c0cb4ec5def24676acfc413cf4dac346" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "fb92d1108d9d421a9aa9401f69a4d8c0" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 4 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:12:57.722450Z", + "start_time": "2024-12-10T19:12:55.677044Z" + } + }, "source": [ "matplotlib.rcParams[\"figure.figsize\"] = (7.3, 18)\n", "\n", @@ -203,20 +441,64 @@ " ax.set_xlim(bin_range[var])\n", " ax.text(0, 1.03, '('+string.ascii_lowercase[plot_i]+')', transform=ax.transAxes, size=15, weight='bold')\n", "show_plot()" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:12:57.567055\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./tmp1tab8j77.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "3989b18c551e4bf4a491c4d595e4bc56" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:12:57.802091Z", + "start_time": "2024-12-10T19:12:57.796237Z" + } + }, "source": [ "# TODO #449: updraft vs. downdraft?\n", "# TODO #449: different n_sd\n", "# TODO #449: different aerosol\n", "# TODO #449: schedule\n", "# TODO #449: different initialisation" - ] + ], + "outputs": [], + "execution_count": 6 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:12:57.822152Z", + "start_time": "2024-12-10T19:12:57.819242Z" + } + }, + "cell_type": "code", + "source": "", + "outputs": [], + "execution_count": null } ], "metadata": { diff --git a/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb b/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb index 0581d09cc..7c0d148fd 100644 --- a/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb +++ b/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bartman_et_al_2021/demo_fig3.ipynb)" ], "metadata": { "collapsed": false @@ -18,32 +18,30 @@ }, { "cell_type": "code", - "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2024-02-05T13:21:05.386290Z", - "start_time": "2024-02-05T13:21:05.382623Z" + "end_time": "2024-12-10T19:08:19.405167Z", + "start_time": "2024-12-10T19:08:19.400212Z" } }, - "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2024-02-05T13:21:07.445263Z", - "start_time": "2024-02-05T13:21:07.435241Z" + "end_time": "2024-12-10T19:08:22.077732Z", + "start_time": "2024-12-10T19:08:19.408538Z" } }, - "outputs": [], "source": [ "from PySDM_examples.utils import ProgBarController\n", "from open_atmos_jupyter_utils import TemporaryFile, show_plot\n", @@ -58,13 +56,18 @@ "from scipy.io import netcdf_file\n", "import numpy as np\n", "import os" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:08:22.206252Z", + "start_time": "2024-12-10T19:08:22.200287Z" + } + }, "source": [ "ensemble_size = 3 if 'CI' not in os.environ else 2\n", "runs = []\n", @@ -74,30 +77,82 @@ " runs.append({'file': TemporaryFile('.nc'), 'settings': {'coalescence_adaptive': False, 'coalescence_substeps': 32 if 'CI' not in os.environ else 2}})\n", "for _ in range(ensemble_size):\n", " runs.append({'file': TemporaryFile('.nc'), 'settings': {'coalescence_adaptive': False, 'coalescence_substeps': 1}})\n" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:08:22.228446Z", + "start_time": "2024-12-10T19:08:22.222054Z" + } + }, "source": [ "radius_range = (.5*si.um, 25*si.um)\n", "dt = 32 * si.s\n" - ] + ], + "outputs": [], + "execution_count": 4 }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:52:55.506136Z", + "start_time": "2024-12-10T19:08:22.243866Z" + } + }, + "source": [ + "\n", + "for i, run in enumerate(runs):\n", + " settings = Settings()\n", + "\n", + " products = (\n", + " PySDM_products.DynamicWallTime('Collision', name='Coalescence_wall_time'),\n", + " PySDM_products.SurfacePrecipitation(name='surf_precip', unit='mm/day'),\n", + " PySDM_products.CollisionTimestepMin(name='dt_coal_min')\n", + " )\n", + "\n", + " settings.n_sd_per_gridbox = 128 if 'CI' not in os.environ else 16\n", + " settings.grid = (32, 32)\n", + " settings.dt = dt\n", + " settings.condensation_dt_cond_range = (.25*si.s, settings.dt)\n", + " \n", + " settings.mode_1.norm_factor *= 3\n", + " settings.mode_2.norm_factor *= 3\n", + " settings.spectrum_per_mass_of_dry_air.norm_factor *= 3\n", + " settings.simulation_time = settings.spin_up_time * (2 if 'CI' not in os.environ else 1.5)\n", + " settings.output_interval = settings.dt\n", + " settings.condensation_adaptive = True\n", + " settings.condensation_rtol_x = 1e-6\n", + " settings.condensation_rtol_thd = 2e-5/7/7\n", + " settings.condensation_schedule = 'dynamic'\n", + " settings.kappa = .8\n", + " \n", + " for key, value in run['settings'].items(): \n", + " assert hasattr(settings, key)\n", + " setattr(settings, key, value)\n", + " \n", + " storage = Storage()\n", + " simulation = Simulation(settings, storage, SpinUp=SpinUp)\n", + " simulation.reinit(products)\n", + "\n", + " simulation.run(ProgBarController(f\"run {i+1}/{len(runs)}\"))\n", + " exporter = NetCDFExporter(storage, settings, simulation, run['file'].absolute_path)\n", + " exporter.run(ProgBarController('netCDF'))" + ], "outputs": [ { "data": { - "text/plain": "FloatProgress(value=0.0, description='netCDF', max=1.0)", + "text/plain": [ + "FloatProgress(value=0.0, description='run 1/9', max=1.0)" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "5d61846a509143d0bf88049be4214449" + "model_id": "8161ccb72ad64718a36b57d70f1af722" } }, "metadata": {}, @@ -105,11 +160,13 @@ }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='run 8/9', max=1.0)", + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "5c6eba383b16408e96b2f55aca6a45fd" + "model_id": "dea33784ef124fb58358dfffebb55690" } }, "metadata": {}, @@ -117,11 +174,13 @@ }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='netCDF', max=1.0)", + "text/plain": [ + "FloatProgress(value=0.0, description='run 2/9', max=1.0)" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "4e4704c7c5524db4835bf97607a19bdd" + "model_id": "d41879819c9b4782ac2d8ceb1ff2d8d9" } }, "metadata": {}, @@ -129,11 +188,13 @@ }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='run 9/9', max=1.0)", + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c8504af8e1224bf09a294eb22342fdb7" + "model_id": "8fb61491099a49cdb00abd0e6a66e400" } }, "metadata": {}, @@ -141,82 +202,69 @@ }, { "data": { - "text/plain": "FloatProgress(value=0.0, description='netCDF', max=1.0)", + "text/plain": [ + "FloatProgress(value=0.0, description='run 3/9', max=1.0)" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "27739e67ea97414495ca020083f85260" + "model_id": "5c7d3be5169b4a718cccfc48e93d1286" } }, "metadata": {}, "output_type": "display_data" - } - ], - "source": [ - "\n", - "for i, run in enumerate(runs):\n", - " settings = Settings()\n", - "\n", - " products = (\n", - " PySDM_products.DynamicWallTime('Collision', name='Coalescence_wall_time'),\n", - " PySDM_products.SurfacePrecipitation(name='surf_precip', unit='mm/day'),\n", - " PySDM_products.CollisionTimestepMin(name='dt_coal_min')\n", - " )\n", - "\n", - " settings.n_sd_per_gridbox = 128 if 'CI' not in os.environ else 16\n", - " settings.grid = (32, 32)\n", - " settings.dt = dt\n", - " settings.condensation_dt_cond_range = (.25*si.s, settings.dt)\n", - " \n", - " settings.mode_1.norm_factor *= 3\n", - " settings.mode_2.norm_factor *= 3\n", - " settings.spectrum_per_mass_of_dry_air.norm_factor *= 3\n", - " settings.simulation_time = settings.spin_up_time * (2 if 'CI' not in os.environ else 1.5)\n", - " settings.output_interval = settings.dt\n", - " settings.condensation_adaptive = True\n", - " settings.condensation_rtol_x = 1e-6\n", - " settings.condensation_rtol_thd = 2e-5/7/7\n", - " settings.condensation_schedule = 'dynamic'\n", - " settings.kappa = .8\n", - " \n", - " for key, value in run['settings'].items(): \n", - " assert hasattr(settings, key)\n", - " setattr(settings, key, value)\n", - " \n", - " storage = Storage()\n", - " simulation = Simulation(settings, storage, SpinUp=SpinUp)\n", - " simulation.reinit(products)\n", - "\n", - " simulation.run(ProgBarController(f\"run {i+1}/{len(runs)}\"))\n", - " exporter = NetCDFExporter(storage, settings, simulation, run['file'].absolute_path)\n", - " exporter.run(ProgBarController('netCDF'))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2024-02-05T13:14:07.393235Z", - "start_time": "2024-02-05T13:14:06.974809Z" - } - }, - "outputs": [ + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "0541ef37568b41f9807c16f6219f4647" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 4/9', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "9cefc0a986324e9a8963b86061722497" + } + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-05T14:14:07.252930\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "02bca451bdfe4e8f9583d5faf4e0c817" + } }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./tmpbuw7z7bu.pdf
\")", + "text/plain": [ + "FloatProgress(value=0.0, description='run 5/9', max=1.0)" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "81eacead4a024dde807b9d8a2b2922dd" + "model_id": "00ceca8e867d42ebab48f7afd2cdf145" } }, "metadata": {}, @@ -224,25 +272,141 @@ }, { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-02-05T14:14:07.378644\n image/svg+xml\n \n \n Matplotlib v3.8.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "d951dd816b0545e7bd352e7e3c96a856" + } }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./tmpsz2rajs0.pdf
\")", + "text/plain": [ + "FloatProgress(value=0.0, description='run 6/9', max=1.0)" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "5039fd65f79e48cfa1d2a5a1a8527d98" + "model_id": "232e9fee0f544bcb83f57a87a37df71f" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "a6eed9df94e8456985a9ebf6b8e13bb0" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 7/9', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "5f67bc3504bb433d87983378bf5f482f" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "db60e6185c9a46b796595b749e946529" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 8/9', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "66a210bde5754cd58899e6ad8eda8f63" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "53bccafdaaa0402683589df6ad4f7cf4" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='run 9/9', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "4694642d86c64912b1ac9e14aee63f5f" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "FloatProgress(value=0.0, description='netCDF', max=1.0)" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "536885344dba43c292fb1fcbe0d7526e" } }, "metadata": {}, "output_type": "display_data" } ], + "execution_count": 5 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:52:56.362936Z", + "start_time": "2024-12-10T19:52:55.534703Z" + } + }, "source": [ "rcParams[\"figure.figsize\"] = (15, 5)\n", "\n", @@ -292,18 +456,67 @@ " pyplot.plot(timeaxis(nc.variables['T'][:]), np.amax(np.amax(data, axis=-1), axis=-1))\n", " pyplot.plot(timeaxis(nc.variables['T'][:]), np.amin(np.amin(data, axis=-1), axis=-1))\n", "show_plot()" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:52:56.142746\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./tmp3r6i2vu7.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "907dd22567e240a1b9bc6a24be37c448" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:52:56.347708\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./tmpsps46pkr.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "de479015ada9496a8376571d30371ad7" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2024-02-05T13:14:07.396484Z", - "start_time": "2024-02-05T13:14:07.394518Z" + "end_time": "2024-12-10T19:52:56.387862Z", + "start_time": "2024-12-10T19:52:56.385309Z" } }, - "outputs": [], "source": [ "# TODO #449: initialisation\n", "# TODO #449: rng_reuse\n", @@ -311,7 +524,9 @@ "# TODO #449: sd_num ?\n", "# TODO #449: plot deficit\n", "# TODO #449: dt histogram" - ] + ], + "outputs": [], + "execution_count": 7 } ], "metadata": { diff --git a/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb b/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb index 3cce8c164..c265744dc 100644 --- a/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb +++ b/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Berry_1967/figs_5_8_10.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb b/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb index 6bc3f39b2..6e3808959 100644 --- a/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb +++ b/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bieli_et_al_2022/make_fig_3.ipynb)" ] }, { @@ -18,17 +18,22 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T10:41:08.955982Z", + "start_time": "2024-12-06T10:41:08.951980Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Bolin_1958/table_1.ipynb b/examples/PySDM_examples/Bolin_1958/table_1.ipynb index 99478aac6..add988a95 100644 --- a/examples/PySDM_examples/Bolin_1958/table_1.ipynb +++ b/examples/PySDM_examples/Bolin_1958/table_1.ipynb @@ -5,9 +5,9 @@ "id": "e3f1edc815e974f4", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/examples/PySDM_examples/Bolin_1958/table_1.ipynb)\n", + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolin_1958/table_1.ipynb)\n", "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bolin_1958/table_1.ipynb)\n", - "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolin_1958/table_1.ipynb)\n" + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolin_1958/table_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb b/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb index 0deb014a3..55eb49b1c 100644 --- a/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb +++ b/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb @@ -5,9 +5,9 @@ "id": "dbe9cc43", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bolot_et_al_2013/fig_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py b/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py index 015e28221..f4082a468 100644 --- a/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py +++ b/examples/PySDM_examples/Bulenok_2023_MasterThesis/__init__.py @@ -2,7 +2,4 @@ """ Box-model coalescence-breakup performance benchmark from [Bulenok 2023 MSc thesis](https://www.ap.uj.edu.pl/diplomas/166879) - -performance_comparison_Srivastava_Setup.ipynb: -.. include:: ./performance_comparison_Srivastava_Setup.ipynb.badges.md """ diff --git a/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.ipynb b/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.ipynb deleted file mode 100644 index d56405c12..000000000 --- a/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.ipynb +++ /dev/null @@ -1,793 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "WIqA5e780Mjf", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.ipynb)" - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": " TODO #1417" - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "UQMa_1r60Mji", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "import sys\n", - "if 'google.colab' in sys.modules:\n", - " !pip --quiet install open-atmos-jupyter-utils\n", - " from open_atmos_jupyter_utils import pip_install_on_colab\n", - " pip_install_on_colab('PySDM-examples')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "CmpuwDeA0Mjk", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "import os\n", - "os.environ['NUMBA_NUM_THREADS'] = '10'\n", - "\n", - "from datetime import datetime\n", - "import numba # pylint: disable=unused-import\n", - "\n", - "from PySDM.backends import GPU, CPU\n", - "from PySDM.physics import si\n", - "\n", - "from PySDM_examples.Bulenok_2023_MasterThesis.utils import go_benchmark, process_results, plot_processed_results, write_to_file\n", - "from PySDM_examples.Bulenok_2023_MasterThesis.setups import setup_coalescence_only_sim, setup_breakup_only_sim, setup_coalescence_breakup_sim" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "Qesf60GDowi-", - "outputId": "87b58dce-e649-4551-c481-d59e34b11bb3", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "TIMESTAMP = str(datetime.now().strftime(\"%Y-%d-%m_%Hh-%Mm-%Ss\"))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "SIM_RUN_FILENAME=\"env_name_\" + TIMESTAMP" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 245 - }, - "id": "gXgbRuqNLtO5", - "outputId": "aa4660c0-3253-498c-8d17-cf76435c1bfc", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "assert not os.path.isfile(SIM_RUN_FILENAME)\n", - "\n", - "!echo NUMBA_DEFAULT_NUM_THREADS: $numba.config.NUMBA_DEFAULT_NUM_THREADS >> $SIM_RUN_FILENAME\n", - "!echo NUMBA_NUM_THREADS: $numba.config.NUMBA_NUM_THREADS >> $SIM_RUN_FILENAME\n", - "!lscpu >> $SIM_RUN_FILENAME\n", - "!nvidia-smi >> $SIM_RUN_FILENAME\n", - "!nvidia-smi -L >> $SIM_RUN_FILENAME\n", - "\n", - "!cat /proc/cpuinfo >> $SIM_RUN_FILENAME" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "CI = 'CI' in os.environ\n", - "\n", - "exponents = [3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24] if not CI else [3, 5]\n", - "n_sds = [2 ** i for i in exponents]\n", - "\n", - "numba_n_threads = [1, 2, 4, 5, 6, 8, 10] if not CI else [1, 2]\n", - "\n", - "n_realisations = 3 if not CI else 2\n", - "seeds = list(range(n_realisations))\n", - "\n", - "n_steps_short = 100 if not CI else 3\n", - "n_steps_full = 2048 if not CI else 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zRIO0J-C-PlE", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# Benchmark regular setup (without scaling)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "B9_nMuALeOdd", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### Coalescence-only" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 408 - }, - "id": "igcjY2XPfTLq", - "outputId": "c085dd3e-088c-4096-83a0-643be5343ac5", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "res_coalescence_only = go_benchmark(\n", - " setup_coalescence_only_sim, n_sds, n_steps_short, seeds, numba_n_threads=numba_n_threads, double_precision=True, \n", - " sim_run_filename=SIM_RUN_FILENAME + '-coalescence',\n", - " backends=[CPU, GPU]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "sXcOIaz70dFe", - "outputId": "5869ade7-f18e-4d6f-e919-35e84c58f5d6", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "coalescence_only_processed = process_results(res_coalescence_only)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 488, - "referenced_widgets": [ - "0dab1f08ab1d4f97aecf2795e132116a", - "4188e05dc62b473c9d8636f1a935c548", - "85360de6a1a64ca6b7c622599cf05516" - ] - }, - "id": "6P2uy4P5yl4R", - "outputId": "2ad46abf-41e9-4617-f040-8650e82d18d0", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "plot_processed_results(coalescence_only_processed, plot_title=f'coalescence-only (n_steps: {n_steps_short})')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "filename=f\"{SIM_RUN_FILENAME}-results-coalescence-double-n_steps{n_steps_short}.txt\"\n", - "write_to_file(filename=filename, d=coalescence_only_processed)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ESxwZYQJAWPU", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### Breakup-only" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "G3uATRbn0kvP", - "outputId": "e2b42ae0-a579-4442-f8a9-bdb11afd1780", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "res_breakup_only = go_benchmark(\n", - " setup_breakup_only_sim, n_sds, n_steps_short, seeds, numba_n_threads=numba_n_threads, double_precision=True,\n", - " sim_run_filename=SIM_RUN_FILENAME + '-breakup',\n", - " backends=[CPU, GPU]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "NOnnkG_14L1k", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "breakup_only_processed = process_results(res_breakup_only)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "b5jjNVtR4Ss1", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "plot_processed_results(breakup_only_processed, plot_title=f'breakup-only (n_steps: {n_steps_short})')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "filename=f\"{SIM_RUN_FILENAME}-results-breakup-double-n_steps{n_steps_short}.txt\"\n", - "write_to_file(filename=filename, d=breakup_only_processed)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jkJrNYj24gEo", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### Coalescence and Breakup" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LwbWQYPA4ZAX", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "res_coal_breakup = go_benchmark(\n", - " setup_coalescence_breakup_sim, n_sds, n_steps_full, seeds, numba_n_threads=numba_n_threads, double_precision=True, \n", - " sim_run_filename=SIM_RUN_FILENAME + '-coal-break',\n", - " backends=[CPU, GPU]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "rNQHIhvo4ZAX", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "coal_breakup_processed = process_results(res_coal_breakup)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Z2wL79a04ZAX", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "plot_processed_results(coal_breakup_processed, plot_title=f'coalescence+breakup (n_steps: {n_steps_full})')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "filename=f\"{SIM_RUN_FILENAME}-results-coal_with_breakup-double-n_steps{n_steps_full}.txt\"\n", - "write_to_file(filename=filename, d=coal_breakup_processed)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Benchmark setup with scaling" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def total_number_from_n_sd(n_sd):\n", - " return n_sd * 1e8\n", - "\n", - "def dv_from_n_sd(n_sd):\n", - " return n_sd * (0.125 * si.m**3)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "B9_nMuALeOdd", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### Coalescence-only" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 408 - }, - "id": "igcjY2XPfTLq", - "outputId": "c085dd3e-088c-4096-83a0-643be5343ac5", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "res_coalescence_only_scaled = go_benchmark(\n", - " setup_coalescence_only_sim, n_sds, n_steps_short, seeds, numba_n_threads=numba_n_threads, double_precision=True, \n", - " sim_run_filename=SIM_RUN_FILENAME + '-coalescence-scaled',\n", - " total_number=total_number_from_n_sd,\n", - " dv=dv_from_n_sd,\n", - " backends=[CPU, GPU]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "sXcOIaz70dFe", - "outputId": "5869ade7-f18e-4d6f-e919-35e84c58f5d6", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "coalescence_only_processed_scaled = process_results(res_coalescence_only_scaled)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 488, - "referenced_widgets": [ - "0dab1f08ab1d4f97aecf2795e132116a", - "4188e05dc62b473c9d8636f1a935c548", - "85360de6a1a64ca6b7c622599cf05516" - ] - }, - "id": "6P2uy4P5yl4R", - "outputId": "2ad46abf-41e9-4617-f040-8650e82d18d0", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "plot_processed_results(coalescence_only_processed_scaled, plot_title=f'coalescence-only with scaling (n_steps: {n_steps_short})')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "filename=f\"{SIM_RUN_FILENAME}-results-scaled-coalescence-double-n_steps{n_steps_short}.txt\"\n", - "write_to_file(filename=filename, d=coalescence_only_processed_scaled)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ESxwZYQJAWPU", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### Breakup-only" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "G3uATRbn0kvP", - "outputId": "e2b42ae0-a579-4442-f8a9-bdb11afd1780", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "res_breakup_only_scaled = go_benchmark(\n", - " setup_breakup_only_sim, n_sds, n_steps_short, seeds, numba_n_threads=numba_n_threads, double_precision=True,\n", - " sim_run_filename=SIM_RUN_FILENAME + '-breakup-scaled',\n", - " total_number=total_number_from_n_sd,\n", - " dv=dv_from_n_sd,\n", - " backends=[CPU, GPU]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "NOnnkG_14L1k", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "breakup_only_processed_scaled = process_results(res_breakup_only_scaled)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "b5jjNVtR4Ss1", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "plot_processed_results(breakup_only_processed_scaled, plot_title=f'breakup-only with scaling (n_steps: {n_steps_short})')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "filename=f\"{SIM_RUN_FILENAME}-results-scaled-breakup-double-n_steps{n_steps_short}.txt\"\n", - "write_to_file(filename=filename, d=breakup_only_processed_scaled)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jkJrNYj24gEo", - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### Coalescence and Breakup" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LwbWQYPA4ZAX", - "pycharm": { - "name": "#%%\n" - }, - "scrolled": true - }, - "outputs": [], - "source": [ - "res_coal_breakup_scaled = go_benchmark(\n", - " setup_coalescence_breakup_sim, n_sds, n_steps_full, seeds, numba_n_threads=numba_n_threads, double_precision=True, \n", - " sim_run_filename=SIM_RUN_FILENAME + '-coal-break-scaled',\n", - " total_number=total_number_from_n_sd,\n", - " dv=dv_from_n_sd,\n", - " backends=[CPU, GPU]\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "rNQHIhvo4ZAX", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "coal_breakup_processed_scaled = process_results(res_coal_breakup_scaled)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Z2wL79a04ZAX", - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "plot_processed_results(coal_breakup_processed_scaled, plot_title=f'coalescence+breakup with scaling (n_steps: {n_steps_full})')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "filename=f\"{SIM_RUN_FILENAME}-results-scaled-coal_with_breakup-double-n_steps{n_steps_full}.txt\"\n", - "write_to_file(filename=filename, d=coal_breakup_processed_scaled)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "pysdm_ex_venv", - "language": "python", - "name": "pysdm_ex_venv" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - }, - "vscode": { - "interpreter": { - "hash": "b43cf254c70d60c2e21a7f71ba113e70c1694742e72407132919c841d907074b" - } - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "0dab1f08ab1d4f97aecf2795e132116a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ButtonModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ButtonView", - "button_style": "", - "description": "tmprayqfc55.pdf", - "disabled": false, - "icon": "", - "layout": "IPY_MODEL_4188e05dc62b473c9d8636f1a935c548", - "style": "IPY_MODEL_85360de6a1a64ca6b7c622599cf05516", - "tooltip": "" - } - }, - "4188e05dc62b473c9d8636f1a935c548": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "85360de6a1a64ca6b7c622599cf05516": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ButtonStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" - } - } - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.py b/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.py new file mode 100644 index 000000000..f5adda9d8 --- /dev/null +++ b/examples/PySDM_examples/Bulenok_2023_MasterThesis/performance_comparison_Srivastava_Setup.py @@ -0,0 +1,225 @@ +import subprocess +import os + +from datetime import datetime +import numba # pylint: disable=unused-import + +from PySDM_examples.Bulenok_2023_MasterThesis.utils import ( + go_benchmark, + process_results, + plot_processed_results, + write_to_file, +) +from PySDM_examples.Bulenok_2023_MasterThesis.setups import ( + setup_coalescence_only_sim, + setup_breakup_only_sim, + setup_coalescence_breakup_sim, +) + +from PySDM.backends import GPU, CPU +from PySDM.physics import si + + +def main(plot: bool = True, save: str = None): + + TIMESTAMP = str(datetime.now().strftime("%Y-%d-%m_%Hh-%Mm-%Ss")) + + SIM_RUN_FNAME = "env_name_" + TIMESTAMP + + assert not os.path.isfile(SIM_RUN_FNAME) + + cmd = [ + "bash", + "-c", + # pylint: disable=no-member + f"echo NUMBA_DEFAULT_NUM_THREADS: {numba.config.NUMBA_DEFAULT_NUM_THREADS}" + + f">> {SIM_RUN_FNAME}", + ] + subprocess.run(cmd, check=False) + subprocess.run( + [ # pylint: disable=no-member + "bash", + "-c", + f"echo NUMBA_NUM_THREADS: {numba.config.NUMBA_NUM_THREADS} >> {SIM_RUN_FNAME}", + ], + check=False, + ) + subprocess.run(["bash", "-c", f"lscpu >> {SIM_RUN_FNAME}"], check=False) + subprocess.run(["bash", "-c", f"nvidia-smi >> {SIM_RUN_FNAME}"], check=False) + subprocess.run(["bash", "-c", f"nvidia-smi -L >> {SIM_RUN_FNAME}"], check=False) + subprocess.run(["bash", "-c", f"cat /proc/cpuinfo >> {SIM_RUN_FNAME}"], check=False) + + CI = "CI" in os.environ + + exponents = [3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24] if not CI else [3, 5] + n_sds = [2**i for i in exponents] + + numba_n_threads = [1, 2, 4, 5, 6, 8, 10] if not CI else [1, 2] + + n_realisations = 3 if not CI else 2 + seeds = list(range(n_realisations)) + + n_steps_short = 100 if not CI else 3 + n_steps_full = 2048 if not CI else 3 + + # # Benchmark regular setup (without scaling) + + # ### Coalescence-only + + res_coalescence_only = go_benchmark( + setup_coalescence_only_sim, + n_sds, + n_steps_short, + seeds, + numba_n_threads=numba_n_threads, + double_precision=True, + sim_run_filename=SIM_RUN_FNAME + "-coalescence", + backends=[CPU, GPU], + ) + coalescence_only_processed = process_results(res_coalescence_only) + filename = f"{SIM_RUN_FNAME}-results-coalescence-double-n_steps{n_steps_short}" + if plot: + plot_processed_results( + coalescence_only_processed, + plot_title=f"coalescence-only (n_steps: {n_steps_short})", + plot_filename=filename + ".svg", + ) + if save is not None: + write_to_file(filename=filename + ".txt", d=coalescence_only_processed) + + # ### Breakup-only + + res_breakup_only = go_benchmark( + setup_breakup_only_sim, + n_sds, + n_steps_short, + seeds, + numba_n_threads=numba_n_threads, + double_precision=True, + sim_run_filename=SIM_RUN_FNAME + "-breakup", + backends=[CPU, GPU], + ) + breakup_only_processed = process_results(res_breakup_only) + filename = f"{SIM_RUN_FNAME}-results-breakup-double-n_steps{n_steps_short}" + if plot: + plot_processed_results( + breakup_only_processed, + plot_title=f"breakup-only (n_steps: {n_steps_short})", + plot_filename=filename + ".svg", + ) + if save is not None: + write_to_file(filename=filename + ".txt", d=breakup_only_processed) + + # ### Coalescence and Breakup + + res_coal_breakup = go_benchmark( + setup_coalescence_breakup_sim, + n_sds, + n_steps_full, + seeds, + numba_n_threads=numba_n_threads, + double_precision=True, + sim_run_filename=SIM_RUN_FNAME + "-coal-break", + backends=[CPU, GPU], + ) + coal_breakup_processed = process_results(res_coal_breakup) + filename = f"{SIM_RUN_FNAME}-results-coal_with_breakup-double-n_steps{n_steps_full}" + if plot: + plot_processed_results( + coal_breakup_processed, + plot_title=f"coalescence+breakup (n_steps: {n_steps_full})", + plot_filename=filename + ".svg", + ) + if save is not None: + write_to_file(filename=filename + ".txt", d=coal_breakup_processed) + + # # Benchmark setup with scaling + + def total_number_from_n_sd(n_sd): + return n_sd * 1e8 + + def dv_from_n_sd(n_sd): + return n_sd * (0.125 * si.m**3) + + # ### Coalescence-only + + res_coalescence_only_scaled = go_benchmark( + setup_coalescence_only_sim, + n_sds, + n_steps_short, + seeds, + numba_n_threads=numba_n_threads, + double_precision=True, + sim_run_filename=SIM_RUN_FNAME + "-coalescence-scaled", + total_number=total_number_from_n_sd, + dv=dv_from_n_sd, + backends=[CPU, GPU], + ) + coalescence_only_processed_scaled = process_results(res_coalescence_only_scaled) + filename = ( + f"{SIM_RUN_FNAME}-results-scaled-coalescence-double-n_steps{n_steps_short}" + ) + if plot: + plot_processed_results( + coalescence_only_processed_scaled, + plot_title=f"coalescence-only with scaling (n_steps: {n_steps_short})", + plot_filename=filename + ".svg", + ) + if save is not None: + write_to_file(filename=filename + ".txt", d=coalescence_only_processed_scaled) + + # ### Breakup-only + + res_breakup_only_scaled = go_benchmark( + setup_breakup_only_sim, + n_sds, + n_steps_short, + seeds, + numba_n_threads=numba_n_threads, + double_precision=True, + sim_run_filename=SIM_RUN_FNAME + "-breakup-scaled", + total_number=total_number_from_n_sd, + dv=dv_from_n_sd, + backends=[CPU, GPU], + ) + breakup_only_processed_scaled = process_results(res_breakup_only_scaled) + filename = f"{SIM_RUN_FNAME}-results-scaled-breakup-double-n_steps{n_steps_short}" + if plot: + plot_processed_results( + breakup_only_processed_scaled, + plot_title=f"breakup-only with scaling (n_steps: {n_steps_short})", + plot_filename=filename + ".svg", + ) + if save is not None: + write_to_file(filename=filename + ".txt", d=breakup_only_processed_scaled) + + # ### Coalescence and Breakup + + res_coal_breakup_scaled = go_benchmark( + setup_coalescence_breakup_sim, + n_sds, + n_steps_full, + seeds, + numba_n_threads=numba_n_threads, + double_precision=True, + sim_run_filename=SIM_RUN_FNAME + "-coal-break-scaled", + total_number=total_number_from_n_sd, + dv=dv_from_n_sd, + backends=[CPU, GPU], + ) + coal_breakup_processed_scaled = process_results(res_coal_breakup_scaled) + filename = ( + f"{SIM_RUN_FNAME}-results-scaled-coal_with_breakup-double-n_steps{n_steps_full}" + ) + if plot: + plot_processed_results( + coal_breakup_processed_scaled, + plot_title=f"coalescence+breakup with scaling (n_steps: {n_steps_full})", + plot_filename=filename + ".svg", + ) + if save is not None: + write_to_file(filename=filename + ".txt", d=coal_breakup_processed_scaled) + + +if __name__ == "__main__": + main(plot="CI" not in os.environ, save=".") diff --git a/examples/PySDM_examples/Bulenok_2023_MasterThesis/utils.py b/examples/PySDM_examples/Bulenok_2023_MasterThesis/utils.py index 52d4cd1f3..9be36842e 100644 --- a/examples/PySDM_examples/Bulenok_2023_MasterThesis/utils.py +++ b/examples/PySDM_examples/Bulenok_2023_MasterThesis/utils.py @@ -6,7 +6,6 @@ import numba import numpy as np from matplotlib import pyplot -from open_atmos_jupyter_utils import show_plot from PySDM.backends import CPU, GPU @@ -208,11 +207,11 @@ def get_n_sd_list(backends, processed_d): def plot_processed_results( processed_d, - show=True, + *, plot_label="", plot_title=None, metric="min", - plot_filename=None, + plot_filename, markers=None, colors=None, ): @@ -257,33 +256,27 @@ def plot_processed_results( if plot_title: pyplot.title(plot_title) - if show: - if plot_filename: - show_plot(filename=plot_filename) - else: - pyplot.show() + pyplot.savefig(plot_filename) def plot_processed_on_same_plot(coal_d, break_d, coal_break_d): - plot_processed_results(coal_d, plot_label="-c", show=False) - plot_processed_results(break_d, plot_label="-b", show=False) - plot_processed_results(coal_break_d, plot_label="-cb", show=False) - - show_plot() + filename = "same_plot.svg" + plot_processed_results(coal_d, plot_label="-c", plot_filename=filename) + plot_processed_results(break_d, plot_label="-b", plot_filename=filename) + plot_processed_results(coal_break_d, plot_label="-cb", plot_filename=filename) def plot_time_per_step( processed_d, n_sd, - show=True, + *, plot_label="", plot_title=None, metric="mean", - plot_filename=None, + plot_filename, step_from_to=None, ): backends = PlottingHelpers.get_sorted_backend_list(processed_d) - markers = PlottingHelpers.get_backend_markers(backends) for backend in backends: @@ -305,8 +298,4 @@ def plot_time_per_step( if plot_title: pyplot.title(plot_title + f"(n_sd: {n_sd})") - if show: - if plot_filename: - show_plot(filename=plot_filename) - else: - pyplot.show() + pyplot.savefig(plot_filename) diff --git a/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb b/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb index 30fc8d1c9..90b1cc132 100644 --- a/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb +++ b/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb @@ -11,8 +11,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Gedzelman_and_Arnold_1994/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb index 6bf136463..636888448 100644 --- a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb +++ b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb index 55c96cbeb..229f084a3 100644 --- a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb +++ b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb index 244a53c3b..dfdb74929 100644 --- a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb +++ b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_3.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb index 4850c6c1c..ef7e59949 100644 --- a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb +++ b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_4.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb index 2540ed60f..fab4dfc4b 100644 --- a/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb +++ b/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Grabowski_and_Pawlowska_2023/figure_ripening_rate.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb b/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb index df6c7b657..016068c57 100644 --- a/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb +++ b/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb @@ -11,8 +11,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/Table_1.ipynb)" ] }, { @@ -33,10 +33,13 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T13:00:58.789303Z", + "start_time": "2024-12-06T13:00:58.763298Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", @@ -44,31 +47,36 @@ " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" ], - "id": "551e99a9150d82e9" + "id": "551e99a9150d82e9", + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 3, "id": "initial_id", "metadata": { "ExecuteTime": { - "end_time": "2024-01-19T14:29:25.839626Z", - "start_time": "2024-01-19T14:29:25.835319Z" + "end_time": "2024-12-06T13:01:01.045913Z", + "start_time": "2024-12-06T13:00:58.838016Z" } }, - "outputs": [], "source": [ "from PySDM import Formulae\n", "from PySDM.physics import si, in_unit\n", "from IPython.display import display, HTML" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": 6, "id": "9e79217e-e30a-4ebe-a14f-532dca3a3d8b", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T13:01:01.624239Z", + "start_time": "2024-12-06T13:01:01.193934Z" + } + }, "source": [ "formulae = Formulae(\n", " isotope_equilibrium_fractionation_factors='Majoube1970+Majoube1971+MerlivatAndNief1967',\n", @@ -90,37 +98,42 @@ "}\n", "for case in CASES.values():\n", " case['excess'] = excess_d(delta_2H=case['2H'], delta_18O=case['18O'])" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": null, "id": "65fb351f-2bf7-4118-a063-3ea961403db0", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T13:01:02.314607Z", + "start_time": "2024-12-06T13:01:01.649028Z" + } + }, "source": [ "# see text just below eq. (4) in the paper\n", "alpha_20C_l = alphas['18O_l'](20 * si.K + const.T0)\n", "alpha_20C_2H = alphas['2H_l'](20 * si.K + const.T0)\n", "assert f\"{alpha_20C_l:.4f}\" == \"1.0098\"\n", "assert f\"{alpha_20C_2H:.4f}\" == \"1.0850\"" - ] + ], + "outputs": [], + "execution_count": 4 }, { "cell_type": "code", - "execution_count": 7, "id": "dbbf7dc7ddffe08", "metadata": { - "ExecuteTime": { - "end_time": "2024-01-19T11:34:08.216993Z", - "start_time": "2024-01-19T11:34:08.211033Z" - }, "collapsed": false, "jupyter": { "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-06T13:01:03.131925Z", + "start_time": "2024-12-06T13:01:02.329497Z" } }, - "outputs": [], "source": [ "table_data = {}\n", "for TC in (20, 0):\n", @@ -146,14 +159,19 @@ " excess_vapour = excess_d(delta_2H=delta_v['2H'], delta_18O=delta_v['18O'])\n", " excess_phase = excess_d(delta_2H=case_data[f'delta_{phase}_2H'], delta_18O=case_data[f'delta_{phase}_18O'])\n", " case_data[\"diff_d_excess\"] = excess_phase - excess_vapour" - ] + ], + "outputs": [], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": 8, "id": "2f24d9cb-a36a-4ebd-87cf-3867f2bf9281", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T13:01:03.166287Z", + "start_time": "2024-12-06T13:01:03.158099Z" + } + }, "source": [ "table_html = \"\"\n", "table_html += \"\"\"\n", @@ -181,25 +199,32 @@ " \n", " \"\"\"\n", "table_html += \"
\"" - ] + ], + "outputs": [], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": 9, "id": "6d80a1710aaff2ef", "metadata": { - "ExecuteTime": { - "end_time": "2024-01-19T11:37:26.093941Z", - "start_time": "2024-01-19T11:37:26.088079Z" - }, "collapsed": false, "jupyter": { "outputs_hidden": false + }, + "ExecuteTime": { + "end_time": "2024-12-06T13:01:03.238062Z", + "start_time": "2024-12-06T13:01:03.231275Z" } }, + "source": [ + "display(HTML(table_html))" + ], "outputs": [ { "data": { + "text/plain": [ + "" + ], "text/html": [ "\n", " \n", @@ -257,26 +282,26 @@ " \n", " \n", "
-13.4‰
" - ], - "text/plain": [ - "" ] }, "metadata": {}, "output_type": "display_data" } ], - "source": [ - "display(HTML(table_html))" - ] + "execution_count": 7 }, { "cell_type": "code", - "execution_count": null, "id": "902db5d8-c140-47c2-b53a-2a5bd745a8bc", - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T13:01:03.273435Z", + "start_time": "2024-12-06T13:01:03.270969Z" + } + }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": { diff --git a/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb b/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb index 6db7fb0df..3c5f47215 100644 --- a/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb +++ b/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb @@ -8,8 +8,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Graf_et_al_2019/figure_4.ipynb)" ] }, { @@ -23,10 +23,13 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T13:01:19.373289Z", + "start_time": "2024-12-06T13:01:19.360208Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", @@ -34,7 +37,9 @@ " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" ], - "id": "b2c87898f6737935" + "id": "b2c87898f6737935", + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb b/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb index 355fe9410..280a595dd 100644 --- a/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb +++ b/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska/fig_2.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_2.ipynb)" ] }, { @@ -19,31 +19,33 @@ }, { "cell_type": "code", - "execution_count": 1, "metadata": { "ExecuteTime": { - "end_time": "2023-12-29T11:46:48.050378Z", - "start_time": "2023-12-29T11:46:48.039915Z" + "end_time": "2024-12-06T10:37:16.995005Z", + "start_time": "2024-12-06T10:37:16.990766Z" } }, - "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": null, "metadata": { "pycharm": { "name": "#%%\n" + }, + "ExecuteTime": { + "end_time": "2024-12-06T13:01:43.025041Z", + "start_time": "2024-12-06T13:01:39.759448Z" } }, - "outputs": [], "source": [ "from PySDM_examples.Kreidenweis_et_al_2003 import Settings, Simulation\n", "from PySDM import products as PySDM_products\n", @@ -54,7 +56,9 @@ "import numpy as np\n", "import os\n", "from matplotlib import pyplot" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb b/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb index b64d7d272..caf730938 100644 --- a/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb +++ b/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb @@ -9,8 +9,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jaruga_and_Pawlowska_2018/fig_3.ipynb)" ] }, { @@ -27,34 +27,36 @@ }, { "cell_type": "code", - "execution_count": 1, "metadata": { "pycharm": { "name": "#%%\n" }, "ExecuteTime": { - "end_time": "2023-12-29T11:45:00.528073Z", - "start_time": "2023-12-29T11:45:00.519048Z" + "end_time": "2024-12-06T10:37:21.599199Z", + "start_time": "2024-12-06T10:37:21.589064Z" } }, - "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": null, "metadata": { "pycharm": { "name": "#%%\n" + }, + "ExecuteTime": { + "end_time": "2024-12-06T10:37:32.026002Z", + "start_time": "2024-12-06T10:37:29.060774Z" } }, - "outputs": [], "source": [ "from PySDM_examples.Kreidenweis_et_al_2003 import Settings, Simulation\n", "from PySDM.physics import si\n", @@ -63,7 +65,9 @@ "from PySDM.products.aqueous_chemistry.aqueous_mass_spectrum import SpecificAqueousMassSpectrum\n", "from matplotlib import pyplot\n", "import os" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb index 957eab36c..7c2f793ea 100644 --- a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb +++ b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb @@ -7,9 +7,9 @@ "collapsed": false }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb index 6f8b3dbba..7304c3e20 100644 --- a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb +++ b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb @@ -7,9 +7,9 @@ "collapsed": false }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_3_and_Tab_4_upper_rows.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb index 2b23d16ce..57a611d58 100644 --- a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb +++ b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb @@ -10,9 +10,9 @@ } }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_4_and_7_and_Tab_4_bottom_rows.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb index 5ae449cc5..8214fe40e 100644 --- a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb +++ b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb @@ -10,9 +10,9 @@ } }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_5.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb index 053ebc8d9..3af0dc20c 100644 --- a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb +++ b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb @@ -7,9 +7,9 @@ "collapsed": false }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_6.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb index 177545fe5..06f698511 100644 --- a/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb +++ b/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb @@ -10,9 +10,9 @@ } }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Jensen_and_Nugent_2017/Fig_8.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb b/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb index 2d7979f2b..ee51e48de 100644 --- a/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb +++ b/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb @@ -6,9 +6,9 @@ "collapsed": true }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Kreidenweis_et_al_2003/fig_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb b/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb index 1622e2b8e..8817a21e7 100644 --- a/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb +++ b/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb @@ -11,8 +11,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lamb_et_al_2017/fig_4.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb index 4d37d633a..5548827ac 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb @@ -9,8 +9,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb index b09b2a202..6cb47b68d 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb index 63774e37a..c8aa8d8aa 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_3.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb b/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb index 1baaf8314..efe0eb8a0 100644 --- a/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb +++ b/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Lowe_et_al_2019/fig_s2.ipynb)" ] }, { @@ -19,22 +19,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:31:36.116404Z", + "start_time": "2024-12-13T12:31:36.111703Z" + } + }, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:31:39.101800Z", + "start_time": "2024-12-13T12:31:36.119217Z" + } + }, "source": [ "import os\n", "from contextlib import contextmanager\n", @@ -55,13 +63,18 @@ "from joblib import Parallel, delayed, parallel_backend\n", "\n", "from matplotlib import pyplot" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:31:39.227328Z", + "start_time": "2024-12-13T12:31:39.223339Z" + } + }, "source": [ "@contextmanager\n", "def numba_threading_disabled():\n", @@ -71,13 +84,18 @@ " yield\n", " finally:\n", " numba.set_num_threads(numba_original_num_threads)" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:31:39.282772Z", + "start_time": "2024-12-13T12:31:39.241180Z" + } + }, "source": [ "CI = 'CI' in os.environ\n", "nRes = 10\n", @@ -93,13 +111,18 @@ " AerosolBoreal(water_molar_volume=WATER_MOLAR_VOLUME), \n", " AerosolNascent(water_molar_volume=WATER_MOLAR_VOLUME)\n", ")" - ] + ], + "outputs": [], + "execution_count": 4 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:36:11.987889Z", + "start_time": "2024-12-13T12:31:39.295893Z" + } + }, "source": [ "def compute(keyname, settings):\n", " simulation = Simulation(settings)\n", @@ -130,13 +153,28 @@ " for model in models\n", " for aerosol in aerosols\n", " ))" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tasks scheduled: 60\n", + "updrafts: [0.2 0.44444444 0.68888889 0.93333333 1.17777778 1.42222222\n", + " 1.66666667 1.91111111 2.15555556 2.4 ]\n" + ] + } + ], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:36:13.253574Z", + "start_time": "2024-12-13T12:36:12.074515Z" + } + }, "source": [ "fig, axes = pyplot.subplots(1, 3, figsize=(10,3))\n", "\n", @@ -187,14 +225,46 @@ "\n", "pyplot.tight_layout()\n", "show_plot()" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-13T13:36:13.180506\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./tmpf6g1c1hr.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f6e827fe0c2c4b1cb2affda4e6ce268b" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:36:13.274167Z", + "start_time": "2024-12-13T12:36:13.271871Z" + } + }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": { diff --git a/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb b/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb index 29f503e1b..61a65bb2d 100644 --- a/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb +++ b/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Merlivat_and_Nief_1967/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb b/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb index c96250221..b1e0db8e6 100644 --- a/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb +++ b/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Miyake_et_al_1968/fig_19.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb b/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb index ce82f5f43..7228e4ec3 100644 --- a/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb +++ b/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb @@ -10,8 +10,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb b/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb index 19333d895..3b4ac762d 100644 --- a/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb +++ b/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Morrison_and_Grabowski_2007/fig_3.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb b/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb index dd8e2682e..8cb00cbf7 100644 --- a/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb +++ b/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Niedermeier_et_al_2014/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb b/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb index 2602de9bf..35a8b9468 100644 --- a/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb +++ b/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_3.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb b/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb index c81d2d59b..ba00d07dd 100644 --- a/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb +++ b/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pierchala_et_al_2022/fig_4.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb b/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb index 36c718cb1..bbae2972e 100644 --- a/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb +++ b/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Pyrcel/example_basic_run.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb b/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb index 1a5ecefd7..063031cd8 100644 --- a/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb +++ b/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb @@ -5,9 +5,9 @@ "id": "bfd1a1e7-29d9-443d-9eb4-ef75151ffcc7", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Rozanski_and_Sonntag_1982/figs_4_5_6.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb b/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb index 308f64981..8118b97b6 100644 --- a/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb +++ b/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shima_et_al_2009/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb b/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb index 8141a536a..d0af07517 100644 --- a/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb +++ b/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb @@ -9,8 +9,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/Shipway_and_Hill_2012/fig_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Shipway_and_Hill_2012/fig_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb b/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb index 9e3287ea3..adb0925a6 100644 --- a/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb +++ b/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Singer_Ward/MWE_joss_paper.ipynb)" ], "metadata": { "collapsed": false @@ -19,25 +19,32 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:09:56.811832Z", + "start_time": "2024-12-10T19:09:56.803208Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": null, "metadata": { - "tags": [] + "tags": [], + "ExecuteTime": { + "end_time": "2024-12-10T19:10:04.060283Z", + "start_time": "2024-12-10T19:09:56.816551Z" + } }, - "outputs": [], "source": [ "from PySDM import Formulae\n", "from PySDM.physics import si\n", @@ -73,13 +80,18 @@ " 'RUEHL_sgm_min': 35 * si.mN / si.m\n", " }\n", ")" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:10:07.831134Z", + "start_time": "2024-12-10T19:10:04.397617Z" + } + }, "source": [ "import numpy as np\n", "from matplotlib import pyplot\n", @@ -124,7 +136,34 @@ "pyplot.ylim(yticks[0], .45)\n", "pyplot.xlabel('Wet radius [nm]')\n", "show_plot(\"Singer_fig1_kohler.pdf\")" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:10:07.801306\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./Singer_fig1_kohler.pdf
…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c705f18abf4744a5af86ea30b1067979" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 3 } ], "metadata": { diff --git a/examples/PySDM_examples/Singer_Ward/kohler.ipynb b/examples/PySDM_examples/Singer_Ward/kohler.ipynb index 5b66a48fe..0576b626f 100644 --- a/examples/PySDM_examples/Singer_Ward/kohler.ipynb +++ b/examples/PySDM_examples/Singer_Ward/kohler.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Singer_Ward/kohler.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Singer_Ward/kohler.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Singer_Ward/kohler.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Singer_Ward/kohler.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Singer_Ward/kohler.ipynb)" ], "metadata": { "collapsed": false @@ -21,26 +21,33 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:16:37.800284Z", + "start_time": "2024-12-10T19:16:37.794555Z" + } + }, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": null, "metadata": { "pycharm": { "name": "#%%\n" + }, + "ExecuteTime": { + "end_time": "2024-12-10T19:16:39.922261Z", + "start_time": "2024-12-10T19:16:37.805127Z" } }, - "outputs": [], "source": [ "from matplotlib import pyplot\n", "import numpy as np\n", @@ -51,13 +58,18 @@ "from open_atmos_jupyter_utils import show_plot\n", "\n", "from PySDM_examples.Singer_Ward.aerosol import AerosolBetaCaryophylleneDark" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:16:45.169404Z", + "start_time": "2024-12-10T19:16:40.030188Z" + } + }, "source": [ "# aerosol creation\n", "FORMULAE = Formulae()\n", @@ -104,13 +116,18 @@ "r_wet_ticks_nm = (100, 200, 300, 500, 1000, 2000)\n", "lines = {'Constant': '-', 'CompressedFilmOvadnevaite': '--', 'CompressedFilmRuehl': ':', 'SzyszkowskiLangmuir': '-.'}\n", "colors = {'Constant': 'k', 'CompressedFilmOvadnevaite': 'C0', 'CompressedFilmRuehl': 'C1', 'SzyszkowskiLangmuir': 'C2'}" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:16:47.426715Z", + "start_time": "2024-12-10T19:16:45.178408Z" + } + }, "source": [ "fig,axes = pyplot.subplots(2, 1, figsize=(6,6), sharex=True, sharey=False)\n", "\n", @@ -165,7 +182,34 @@ "ax.set_xlabel('Wet radius [nm]')\n", "\n", "show_plot(\"Singer_fig1.pdf\")" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:16:47.372902\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./Singer_fig1.pdf
\"), HTML(value…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "71891e2c057b44599b877e63f2180046" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 4 } ], "metadata": { diff --git a/examples/PySDM_examples/Srivastava_1982/figures.ipynb b/examples/PySDM_examples/Srivastava_1982/figures.ipynb index 5e383208e..ab6781451 100644 --- a/examples/PySDM_examples/Srivastava_1982/figures.ipynb +++ b/examples/PySDM_examples/Srivastava_1982/figures.ipynb @@ -10,8 +10,8 @@ }, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Srivastava_1982/figures.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Srivastava_1982/figures.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Srivastava_1982/figures.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Srivastava_1982/figures.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Srivastava_1982/figures.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb b/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb index cae964a17..ae1f35635 100644 --- a/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb +++ b/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb @@ -6,8 +6,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Van_Hook_1968/fig_1.ipynb)" ] }, { diff --git a/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb b/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb index fb5e3e851..b9431260b 100644 --- a/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb +++ b/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examplesPySDM_examples/Yang_et_al_2018/fig_2.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/Yang_et_al_2018/fig_2.ipynb)" ] }, { diff --git a/examples/PySDM_examples/_HOWTOs/dimensional_analysis.ipynb b/examples/PySDM_examples/_HOWTOs/dimensional_analysis.ipynb index dfb6c4627..c8888cf00 100644 --- a/examples/PySDM_examples/_HOWTOs/dimensional_analysis.ipynb +++ b/examples/PySDM_examples/_HOWTOs/dimensional_analysis.ipynb @@ -5,9 +5,9 @@ "id": "c1925b9647eb39e9", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/howtos/units.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/howtos/units.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/howtos/units.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/_HOWTOs/dimensional_analysis.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/_HOWTOs/dimensional_analysis.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/_HOWTOs/dimensional_analysis.ipynb)" ] }, { diff --git a/examples/PySDM_examples/deJong_Azimi/box.ipynb b/examples/PySDM_examples/deJong_Azimi/box.ipynb index 8e6c12228..95a90b3ae 100644 --- a/examples/PySDM_examples/deJong_Azimi/box.ipynb +++ b/examples/PySDM_examples/deJong_Azimi/box.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/box.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Azimi/box.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/box.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/box.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Azimi/box.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/box.ipynb)" ] }, { @@ -15,17 +15,22 @@ "source": "TODO #1417" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-06T10:42:36.912566Z", + "start_time": "2024-12-06T10:42:36.904568Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", diff --git a/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb b/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb index 58abffd28..542687c5a 100644 --- a/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb +++ b/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb @@ -8,9 +8,9 @@ } }, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Azimi/rainshaft.ipynb)" ] }, { diff --git a/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb b/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb index 9d6ddb0b3..a4bbcf799 100644 --- a/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb +++ b/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/fig_9.ipynb)" ] }, { @@ -17,23 +17,31 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:30:43.577309Z", + "start_time": "2024-12-10T19:30:43.567919Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:30:43.620763Z", + "start_time": "2024-12-10T19:30:43.611621Z" + } + }, "source": [ "from matplotlib import pyplot\n", "import matplotlib\n", @@ -44,23 +52,33 @@ "import pickle as pkl\n", "import time\n", "import os" - ] + ], + "outputs": [], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:30:43.649864Z", + "start_time": "2024-12-10T19:30:43.645616Z" + } + }, "source": [ "(straub_x, straub_log_y, straub_dvdlnr_ss) = get_straub_fig10_data()\n", "(straub_x_init, straub_y_init, straub_dvdlnr_init) = get_straub_fig10_init()" - ] + ], + "outputs": [], + "execution_count": 7 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T05:24:09.461421Z", + "start_time": "2024-12-10T19:30:43.857408Z" + } + }, "source": [ "CI = 'CI' in os.environ\n", "run_sims = True\n", @@ -162,7 +180,365 @@ "ax[1].set_title(\"(b) Steady State\")\n", "show_plot('fig9_straub_fig10.pdf', fig=fig)\n", "show_plot('straub_dvdlnr.pdf', fig=fig2)" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #3\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #6\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #7\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #8\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #9\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #10\n", + "ran Straub2010 for 64 superdroplets in 61.549843072891235 sec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #3\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #6\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error in steady state sim for 1024 superdroplets, moving on with dt=0.5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #7\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #8\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #9\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #10\n", + "ran Straub2010 for 1024 superdroplets in 108.6907148361206 sec\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error in steady state sim for 16384 superdroplets, moving on with dt=0.5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #3\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #4\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error in steady state sim for 16384 superdroplets, proceeding to next iteration\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error in steady state sim for 16384 superdroplets, moving on with dt=0.5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #6\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error in steady state sim for 16384 superdroplets, proceeding to next iteration\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #8\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #9\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #10\n", + "ran Straub2010 for 16384 superdroplets in 789.2925410270691 sec\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:46:44.287718\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:46:44.528590\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig9_straub_fig10.pdf
\")…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "e21822bbf18947448b90838ce7e2421b" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./straub_dvdlnr.pdf
\"), HTML(v…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "210e91e496d84c6891ea5e42aabf6432" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Success with run #6\n", + "Error in steady state sim for 1024 superdroplets, moving on with dt=0.5\n", + "Success with run #7\n", + "Success with run #8\n", + "Success with run #9\n", + "Success with run #10\n", + "ran Straub2010 for 1024 superdroplets in 13070.641508340836 sec\n", + "Error in steady state sim for 16384 superdroplets, moving on with dt=0.5\n", + "Success with run #1\n", + "Success with run #2\n", + "Success with run #3\n", + "Success with run #4\n", + "Success with run #5\n", + "Success with run #6\n", + "Error in steady state sim for 16384 superdroplets, proceeding to next iteration\n", + "Success with run #8\n", + "Success with run #9\n", + "Success with run #10\n", + "ran Straub2010 for 16384 superdroplets in 13232.116261959076 sec\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-15T06:24:09.189986\n image/svg+xml\n \n \n Matplotlib v3.10.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-15T06:24:09.308767\n image/svg+xml\n \n \n Matplotlib v3.10.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig9_straub_fig10.pdf
\")…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "98c1b522502743b4ab2f21e982a42826" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./straub_dvdlnr.pdf
\"), HTML(v…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "8a6d099f0b1f46149124e002bd59550e" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 4 } ], "metadata": { diff --git a/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb b/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb index e719bedf8..0eaa1969d 100644 --- a/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb +++ b/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_10_11_12_13.ipynb)" ] }, { @@ -20,61 +20,64 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:32:43.231765Z", + "start_time": "2024-12-13T12:32:43.210493Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2024-02-01T07:53:45.884524Z", - "start_time": "2024-02-01T07:53:45.853905Z" + "end_time": "2024-12-13T12:32:47.921882Z", + "start_time": "2024-12-13T12:32:43.481397Z" } }, - "outputs": [], "source": [ "from PySDM_examples.deJong_Mackay_et_al_2023 import Settings1D, Simulation1D, plot_ax, plot_zeros_ax\n", "from PySDM.physics import si\n", "import matplotlib.pyplot as plt\n", "from open_atmos_jupyter_utils import show_plot\n", "import os" - ] + ], + "outputs": [], + "execution_count": 2 }, { "cell_type": "code", - "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2024-02-01T07:51:51.557663Z", - "start_time": "2024-02-01T07:51:51.555736Z" + "end_time": "2024-12-13T12:32:48.111192Z", + "start_time": "2024-12-13T12:32:48.096455Z" } }, - "outputs": [], "source": [ "def gen_key(*, breakup, stochastic_breakup):\n", " return f\"b={breakup}_s={stochastic_breakup}\"" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "code", - "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2024-02-01T07:53:19.095507Z", - "start_time": "2024-02-01T07:51:51.567338Z" + "end_time": "2024-12-13T12:36:40.525471Z", + "start_time": "2024-12-13T12:32:48.154622Z" } }, - "outputs": [], "source": [ "save = False\n", "restore_saved_data = False\n", @@ -126,7 +129,9 @@ " import pickle as pkl\n", " with open('data1d.pkl','wb') as file:\n", " pkl.dump(output, file)" - ] + ], + "outputs": [], + "execution_count": 4 }, { "cell_type": "markdown", @@ -137,14 +142,12 @@ }, { "cell_type": "code", - "execution_count": 4, "metadata": { "ExecuteTime": { - "end_time": "2024-02-01T07:53:19.105627Z", - "start_time": "2024-02-01T07:53:19.102285Z" + "end_time": "2024-12-13T12:36:40.560159Z", + "start_time": "2024-12-13T12:36:40.545458Z" } }, - "outputs": [], "source": [ "contour_lev = [.4]\n", "rate_unit = \"s$^{-1}$ kg$^{-1}$\"\n", @@ -199,39 +202,18 @@ "\n", "def fig_ax_spectra():\n", " return plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(8,6))" - ] + ], + "outputs": [], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": 5, "metadata": { "ExecuteTime": { - "end_time": "2024-02-01T07:53:23.530838Z", - "start_time": "2024-02-01T07:53:19.108790Z" + "end_time": "2024-12-13T12:36:47.259576Z", + "start_time": "2024-12-13T12:36:40.585360Z" } }, - "outputs": [ - { - "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAASoCAYAAABBmnYmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1f3/8fdk3xO2sMgqahQR3DBSRRCpiNalrbW1WkGt368tWq22tXZR0bbaXWvVr7YKXdxaf4rWrbVWcAUVtYoLKKKissiWBUJIMuf3R8zMPWeSO3OZmUySeT0fj9Hcudu5d5bzmXuYeYeMMUYAAAAAAAAAAABZICfTDQAAAAAAAAAAAOguDIwAAAAAAAAAAICswcAIAAAAAAAAAADIGgyMAAAAAAAAAACArMHACAAAAAAAAAAAyBoMjAAAAAAAAAAAgKzBwAgAAAAAAAAAAMgaDIwAAAAAAAAAAICswcAIAAAAAAAAAADIGgyMAEAPsmjRIoVCIYVCIb333nuZbg4AAFlrwYIFvb5PnjZtmkKhkKZNm5bppvRIc+bM4fwAAHqN9957L1KbLFiwINPN6ZE4PwiCgREAPVLHB/lQKKSf/vSnkfvfeuutlHZ0HR+IO255eXmqrq7Wcccdp5dffjnp7QMAkCxvnxgKhZSbm6vddttNxx9/vJ599tlMN2+XpOOCtHcgY9GiRSnbLrrmPeeJ8D6PQ6GQioqKtMcee+jCCy/Ujh070txaAOjdqAcS4+2bcnJyVFxcrN12202f/exntWDBAoXD4ZTtqy/qeJ7NmTMn7rLec91xvisrKzV58mT97W9/S39jgSQxMAKgx/vlL3+pzZs3p30/tbW1mjBhgjZt2qSHH35YM2fOVFNTk+86O3fuTHu7AACQpIKCgkhftWHDBj344IOaOnWqnn/++S7X6Wn9VE9rDzJj4MCBqq2t1ZAhQ7Rq1Spdd911+s53vuO7Tltbm9ra2rqphQDQc1EPJG7vvffW7rvvrk2bNunf//63zjzzTM2aNavHnY++YJ999tHBBx+scDisJUuW6NRTT/V9Tko973mJ7MPACIAer66uTj//+c99l/nggw90xhlnaMiQIcrPz9fw4cP1zW9+M9CAypIlS/TSSy9p3rx5kqRPPvlEb7zxhiT7K6t//OMfddRRR6moqEg/+9nPJEkff/yxzjrrLA0bNkwFBQXafffdddVVV6m1tTWy/dtvv12HHHKIBg4cqPz8fPXr108zZ86MWyxcfPHFCoVCKikp0b///W+rLd5/ETt69GiFQiFdccUVkuyf5XrggQc0ZcqUyL/MvOeeexI+LwCAnmHo0KFasmSJXn75ZS1cuFCS1NraqjvuuEOS/a8uf/GLX2j48OEqKiqKrD9//nwddNBBKi4uVmlpqQ477DDdf//9kfne/uXPf/6zjjvuOBUXF2v48OG64YYbrLYk0u91/IvDr33ta/rud7+r6upq1dTUaPTo0frTn/4kSVq8eLHVV5WVlUX62g6vvfZaZJklS5YEOmfef8n4xBNP6MADD1RxcbEOPPDAmG1df/312m233VRaWqrTTjtNdXV1nW7zkUce0dSpU1VeXq7i4mJNmTJFTzzxRNrP4xlnnKHLL79cQ4cOVb9+/XT66aeroaEhstyWLVt0yimnqKSkRCNHjtT//d//ddr+5uZmXX755dpzzz1VUFCg6upqnXXWWdq4cWNkmSuuuEKhUEijR4/W3//+d+29994qLS3VEUccoRUrVkhqf76deeaZkXU6jrmjDvFz3HHHacmSJXr33Xe11157SWp/LnS2/z//+c8aO3asCgoKtGbNmoQeA0maPXu29txzT5WXl6ugoECjRo3St771LdXX13fZrg0bNmifffZRKBTSIYccoq1bt1pt6dDZT596X3833HCDRo0apaKiIs2aNSvSbgBIBeqBxOuBG2+8Ua+//rrWr1+vr371q5Kkf/3rX7ryyisjywTtF++55x7V1NSoqKhIn/nMZ/Taa69Z+wxSJyxYsECf+9znVFJSojFjxujWW2+1tvXEE09o/PjxKioq0uGHHx65PuF666239KUvfUmDBg1SQUGB9tlnH910003WMh3XCy655BKdd955GjBggKqrq3XBBRdEHq9QKBTpj//0pz8F+knRG2+8Uc8//7weeeQRSVI4HNZTTz0Vs//vfve7Ouuss1RVVaWZM2cm/Bi88sorOuqoozR06FAVFhaqtLRUkyZN0l//+lffdt13333Kz8+3fo3EvXYidf7tpY7j/81vfqPTTjtN5eXlGjRokC677DIZY+KeE/QCBgB6oKlTpxpJZo899jDl5eWmuLjYfPTRR+bNN980kowkM3/+fGOMMevXrzfDhg0zkkxhYaEZN26cycvLM5LM+PHjTVNTU5f7mT17dmR7xhjT3Nxszj77bCPJFBQUmPXr1xtjjFm9enVkuYKCAjNgwAAzbtw4c+WVV5qNGzeaESNGGEmmvLzcTJgwIbL/M888M7KvCy64wBQVFZm99trLTJw40RQWFkbWWbt2rTHGmCeeeCKyn9WrV5sf//jHRpIpKSkxjz/+eExbnnjiicj2R40aZSSZyy+/PGZbhYWFZq+99jIVFRVGksnJyTEvvfRSqh4uAEAadfSJo0aNitz34IMPRt7jL7jgAmNMtE8rKCgwOTk5Zp999jEDBgwwxhhz1VVXRZYfOXKkGTJkSGT6L3/5izHG7l8KCwvNmDFjzMCBAyP33X///cYYk3C/19HugoICk5+fb8aPH28mTJhgTjrppMh2y8vLTW1tramtrTXLli0z55xzjpFkJk+eHNnO5ZdfbiSZvfbay/c8zZ8/P6Z/9N5XWFhoampqIm0dNWqUaWlpMcYY88ADD0SWGzRokBkxYoQpLS21+mRjjLnrrrtMKBSKrD9mzBgjyeTm5pr//Oc/aT2P+fn5pry8PLJPSeYHP/hBZLkvfOELkftrampMaWlp5BimTp0aWe7YY4+NtHnChAmR2mDcuHFm+/bt1jnPy8sz+fn5Zu+9944c92c+8xljjDFXXnml2X333SP77Hgc//CHP3T5GHUsO3v2bGOMMR9++GHkuXjiiSfGPOb5+fkmFAqZvfbaywwdOtSsXr06ocfAGGMqKyvNgAEDzMSJE612nnzyyZFlOl4zU6dONZs3bzYTJ06MHMvWrVuttnhff2695t1WYWGhKS4uNvvss4/JyckxksyBBx5owuFwl+cFABJBPbDr9YAxxmzfvt0MHTrUSDLV1dWR9+Ug/WJ+fn7kmkN+fr6RZHbbbTezbds2Y0zwOiE/P9+MHj3a+pz+5ptvGmOMWbt2baQfLykpMXvvvbdVm3RcD1m5cqWprKw0kkz//v3N+PHjI22YN29e5Pg7rhfk5+eb/v37m9122y2yrVtuucUYY0xtba0pLy83kszAgQMjj8nHH3+c0LkOh8PWfffdd1/M/gsKCkxxcbHZb7/9zKxZsxJ+DO677z6Tk5NjRo0aZQ444ADTr1+/yH4efPDByH685+eRRx4xBQUFRpK5+uqrY9rSce3EGLsmcLdVWFhohg0bZp2z6667zvd5iN6BgREAPVJH8VRbWxspQv73f/+304GRyy67LFJELFu2zBjT3ml2LHfbbbd1uR/vwIj3FgqFzK233hpZzlu8TJ06NTLY0traaq644gojyQwePNhs2LDBGGPMwoULI9t5++23jTHtBUtHwWSMMW+//XZkm3/84x+NMfYH7blz50aKIO8H/V0ZGPn+979vjGkvrqqqqowk8+Uvf3lXHhoAQDfzXlCora01+++/f+TCQ15enlmyZIkxxu7THn74YWNMez/V2NhoiouLjSTz+c9/3rS1tZkdO3aYQw45xLrA4u1fTj31VBMOh01DQ4PZc889I32yMSbhfs/b7ldeeSXSHm9bvR8+jTHmpZdeirSh48LA+PHjjSTzk5/8xPc8xRsY+d3vfmeMMea6666L2cfhhx9uJJmxY8eahoYG09raaqZNmxZz8Xv06NFGkjnrrLNMOBw24XDYfP7znzeSzOGHH57W81heXm4+/PBD09bWZg466CBrW++8805kn5dccokxxpi33nor8jzpOM+LFi2KLLd48WJjjDEff/xx5PnRUY901F6SzAMPPGCMMebb3/525L6OixTe85uIzmouSWb48OFmzZo1keW8+7/pppuMMcaEw2HT1taW0GNgjIk85zr88Ic/jLxmOuq4jufhQQcdZGpra40kc+ihh5q6urqYtiQ6MJKXl2eWL19ujDHm//7v/yLLPfLIIwmdIwDoCvXArtcDHY4//vjIvA0bNuxSv/joo48aY4x59NFHY/qqoHXCySefbMLhsPnvf/8bs60f/ehHRmofLOjoVzru814PmTNnjpHa/1Fox/WGa6+91kgyxcXFpr6+3hgTvV4wZswYs3XrVtPU1BT5B6beawMdj1fHP2JI9Fy7N3f9jv0PHDjQfPDBB8aY9udBoo/B2rVrzbp16yLba2pqMnvssYeRZE4//fTI/R3bOvPMMyPb+PnPf95pWxIdGJkyZYrZuXOn2blzp5kyZUrkeY/ej5/SAtDjXXzxxRo4cKBuvfVWvfPOOzHzX3jhBUlSTU2NDjzwQEnSSSedpJKSEknSiy++mNB+amtrdfDBB6uiokLGGH3729/Wf//735jlzj333MhXkXNzcyM/hbV+/XpVV1crFArppJNOkiQZY7R06VJJ7T9xceKJJ6p///7KycnRnnvuGdnmxx9/HLOfjq8p33nnnTryyCMTOoaunHrqqZKkIUOGRLblfuUXANCz7dy5U0uXLtWrr76qQYMG6bjjjtPixYtVW1trLVdTU6NZs2ZJau+nXn/99Uhm1le+8hXl5OSosLBQX/ziFyVJ77//vj755BNrG1/5ylcUCoVUVlamz33uc5Kk5cuXS1LC/V6HI488UhMnToy0x88BBxwQOZ7bbrtNK1eu1PLlyyM/wSFJV111lQ499NDI7aqrrkro/HWsP27cuMh969evlyS9/vrrkqSZM2eqrKxMubm5+sIXvmCt/8knn0R+SuK2225TTk6OcnJydN9990lSzHFLqT2P06dP12677aacnBztvffenbZfUuRxramp0YQJE6xteH++c+rUqQqFQho2bFjk+eH+NEllZaWOP/74mPO2YcOGmGMNoiNjZPz48QqFQvrwww/1ta99LSYQt7i4WP/zP/8jqf3nLDZt2pTwY/Dvf/9b48ePV3FxsfXzGa2trTHP92XLlmnp0qUaNWqU/vnPf6qiomKXj22//fbTvvvuKylaf0nUXQBSh3pg1+sBt58J2i92/By21F4z9OvXT1L7e/yu1AmnnXaaQqGQb21SU1MT6VdOOeWUmG10HMPy5ctVWlqqUCikCy+8UJLU1NSkV1991Vr+hBNOUGVlpYqKijRmzBhrn8nYZ599VFtbq6FDh0pq/ymu2267LWa5L37xixoxYoQk+3qK5P8YhEIhXXzxxRo2bJjy8vJUXFwcuT7U2fWU+fPnq6mpSd/+9rf1ve99L6ljO/nkk5Wfn6/8/HydfPLJktrPmft6Qe+Tl+kGAEA85eXluvTSS3XxxRfr8ssvT9t+OjrcTz75RKNHj1Z9fb1++ctfxvxm5eDBg7tsp7eg6VBSUqLGxkbNnDlTW7duVVFRkQ444ADl5+dHiqPOwkTLysrU2NioX/3qV/rsZz+r4uJiSe0FQQfvel39FjoAoG8YNWpUQr/x3FU/lWp+/V4y7fnmN7+ppUuX6i9/+YvKy8sltV9MGTlypCRp1apV1sWFjkGCeKqqqiRJeXnRj0BmF38fevfdd9egQYNi7t+VENFEz2NH+6XoMexq+yXFXECT2v8BRbx9JrtfqT1jZMGCBZLaf5N87ty5WrRokf7zn/9oxowZkeUGDRqknJzO/y2f32Pw97//PRLmPnToUI0YMUIbN27Uu+++Kym27iotLdW2bdv0/vvv6y9/+Yvmzp0bmddRd1FzAegpqAd2rR5oamrSsmXLJLX3LwMHDrTmJ9IvJirROiGVtcnAgQM1duzYmPvdQahU1xMdbrzxRk2bNk1tbW06/PDDtWTJEl122WU666yzrOX8ngd+j8Hpp5+uf//735GBpLKyMr3xxhtqaGjwvZ5y5513au7cuda5oW9HB74xAqBXmDt3rkaMGKGXXnopZt6kSZMkSStWrIjMX7hwobZv3y5JOvjggwPtKxQKRQqDHTt2dDq/s/3n5eXprrvu0pIlS7RkyRI99thj+uY3v6nPf/7zWrFihbZu3Sqp/V+PLFu2TNdee61vO/785z+rvLxcTz31lE455ZRIIFp1dXVkmZUrV0pq/1eRHdvvzN133y2p/V94dgS277fffr77BwD0Tm4/te+++0YG1++++26Fw2E1Nzfr3nvvldR+gcX98P63v/1NkrRt2zY99NBDkqTx48dLSqzf82uPFL1Ysm3btph5p5xyivr3769169bp5z//uSTpjDPOiMxfsGCBTPtPAssYE7nAnoyOf4n5r3/9S9u2bVNbW1vkX3h2GDRokEaNGiVJOvDAA/X0009Hjv3Pf/6zrrrqKhUUFFjrpPI8+vFekOpo98qVK2P+lWjHPiXp0ksvjezz6aef1hVXXKGzzz474X1K9kWvzh7LoNy6y33uJPoYdPxjl/Lycq1evVpLly7V0Ucf3eV+Dz74YP3oRz+SJJ1//vm68847I/M66q4NGzZELprcc889XW7rtdde05tvvikpWn9J1F0Auh/1QFRdXZ2+/vWva926dZKkr3/96wqFQoH7xS1btuixxx6TJD322GPasmWLpPb3+F2pE/x01CYrVqyI9Cud9T8dx1BZWamHH344ss8HH3xQ3/72t3XooYcmvE/J/zFJhPdxDnI9RfJ/DDr69nPOOUfLly/Xww8/rLKysi7bcdVVV2n8+PFat26dPvvZz2rt2rWReR19e8f1lI0bN0auk3Tm3nvvVWtrq1pbWyOvl8GDB3c6+IVeptt/vAsAEuDNGOnwxz/+0frNSm/4ekeIWmFhodl33313KXy9trbWTJo0KRJcJnUeQOf+TumGDRsiIVwFBQWRkM+OMDZjjNm8eXMkKK0jaGzw4MGRbXaWC7J69Wrz2GOPRbbzta99LRIQN3ny5Mi2jjzySFNSUhIJ+OxsW6WlpaampiZybN48FgBAz9ZZ2GpnuvqdbmOCh62WlpaaMWPGmEGDBkXu6wjQTKTf87a7s9+o9uZ8jB8/3tTW1kZyK4wx5uKLL7ba0tDQEPc8xcsY6eDtHzuW6/hNdKk9kHXkyJGmsLDQ6pONMeb222+P3Ddo0CCz//77R/rzjuPsjvPY8Vh7nxMnnXRSZB8dAa0dx+B9TsycOTOyXE1NjRk3blykRuk4H53lanjPZcf58P4m+siRI01tba15+umnu3yMOpbtCHTdb7/9IgGxgwYNMps2bepy/x0SeQxuueWWyDLDhg0zY8aMMf37949pv/uaOfPMM43UHkzb8bv8b775ZqTGGjNmjDnooIMi051tq7S01BQXF5tx48ZFltt///0JXweQNOqB4PXAPvvsY8aNG2f16UcffbTZsWNHZPkg/WJhYaEpLi42++67byTUe+jQoZFsj6B1gvfagntt4OOPPzYlJSVGioavFxUVxVwPeeuttyJh5SUlJWb//fc3I0eONLm5udZzpbNcjY7Hxvtc6cgUy8nJMQcccICZOXNmwue6trY2klsiyZx99tm++w/yGHzmM5+JtGvcuHGmqqoqEsDeWS7I/PnzzZo1a8zw4cONJLPffvuZzZs3G2OMufTSSyPLHX744WbIkCGRPruzbZWWlprddtvNCl//7W9/2+V5Qe/BN0YA9Bpz5sxRTU1NzP3V1dVasmSJvva1r6mqqkorVqzQ4MGDde6552rx4sWRPJB4li5dqhdeeEEtLS064IADdOONN+r000+Pu96gQYO0ZMkSnXnmmRowYEDkt1unTJmi3/72t5Laf4v073//u8aNG6dwOKyCggL94x//iLvtGTNm6LbbblMoFNJf/vKXyG+FLliwQFOmTJEkffjhh7rxxhsjv9PZmXvuuUeDBw/Wjh07tPvuu+vOO++M5LEAAPq+H/3oR7r11lt14IEHRv7l++TJk7Vw4cJO+7pbbrlF48ePV2Njo4YNG6brrrsu8rvhifR78Zx11ln64he/qMrKSi1fvlxLly61fs7g3HPPjfyLwi984Qu+/yIwFU488UT99re/1ZAhQ9TQ0KCDDz5YP/nJT2KW++pXv6oHH3xQU6dOVVNTk1asWKHy8nKdccYZ+vrXvx6zfLrPo9ett96qL37xiyoqKlJdXZ2uvPLKTv+V6MKFC3XZZZdpzz331Lvvvqt169Zpn3320Y9+9KPIvwJO1IQJE/TjH/9YgwcP1gcffKClS5dG/vWsn40bN2rp0qV6/fXXNWDAAH3uc5/TY489pv79+8ddN5HH4Oyzz9ZFF12kgQMHqqGhQdOmTdOVV14Zd9u33HKLZs2apZaWFp188sl65plntPfee+uWW27R6NGjtXbtWg0cOFA33nhjl9s4+OCD9bvf/U7btm1Tfn6+jj76aC1cuLDTfykNAN0t2+qBN998U++884769++v6dOn67bbbtMjjzyiwsLCyDJB+sUhQ4borrvuirTx0EMP1SOPPBL5lkXQOsHP0KFD9cADD2jcuHFqbW1VeXm5br/99pjlampq9Nxzz+lLX/qSSkpK9PrrryscDuuYY45JOIfN6zvf+Y5mzJihkpISvfzyywlntr755ptaunSpPvnkE40dO1YXX3yxrr/++oTWTeQxWLBggY488kgVFRVp+/btuvbaa2Oy1FzDhw/Xo48+qqqqKr322ms67rjjtH37dl166aU6/fTTVVVVpZUrV+qMM87QV77ylS6387Of/UxHHXWU6urqNGDAAP3whz/Ut771rYSODT1byJgU/JAcAKDHWbRoUSRoffXq1Ro9enRmGwQA6NHee++9SAjnE088oWnTpmWsLc3NzRo8eLDq6ur0+OOPa/r06RlrS1A96Tyi+8yZM0d/+tOfNHXqVN+f4wCAnq4n9WM9pR644oorNG/evITzXdA3dAzKzZ8/X3PmzMlsY5AWhK8DAAAA6DFOP/10vf7666qrq9NBBx3UqwZFAABAalAPAEg3BkYAAAAA9Bi333678vPz9ZnPfEZ/+tOfMt0cAACQAdQDANKNn9ICAAAAAAAAAABZg/B1AAAAAAAAAACQNRgYAQAAAAAAAAAAWYOBEQAAAAAAAAAAkDUYGAEAAAAAAAAAAFmDgREAAAAAAAAAAJA1GBgBAAAAAAAAAABZg4ERAAAAAAAAAACQNRgYAQAAAAAAAAAAWYOBEQAAAAAAAAAAkDUYGAEAAAAAAAAAAFmDgREAAAAAAAAAAJA1GBgBAAAAAAAAAABZg4ERAAAAAAAAAACQNRgYAQAAAAAAAAAAWYOBEQAAAAAAAAAAkDUYGAEAAAAAAAAAAFmDgREAAAAAAAAAAJA1GBgBAAAAAAAAAABZg4ERAAAAAAAAAACQNRgYAQAAAAAAAAAAWYOBEQAAAAAAAAAAkDUYGAEAAAAAAAAAAFmDgREAAAAAAAAAAJA1GBgBAAAAAAAAAABZg4ERAAAAAAAAAACQNRgYAQAAAAAAAAAAWYOBEQAAAAAAAAAAkDUYGAEAAAAAAAAAAFmDgREAAAAAAAAAAJA1GBgB0KdMmzZNoVBIoVBIr7zyStLbuvDCC5Paxpw5cyLtWbhwYVLbAgAAiaEeAAAA1AMA/DAwAqDPOeecc7R27VqNHz9+l9Y/88wz9aMf/Sglbbnuuuu0du3alGwLAAAkjnoAAABQDwDoCgMjAPqckpISDRkyRHl5eYHXbWtr04MPPqgTTjghJW2prKzUkCFDUrItAACQOOoBAABAPQCgKwyMAOgx3nrrLR155JEqKirSXnvtpYcffjglX3mVpIaGBp122mkqLS3V0KFD9dvf/rbTr8I+++yzys/P16RJk2K28dBDD6myslK33357oG0CAIDEUQ8AAADqAQDpxsAIgB7hrbfeUm1traZMmaLXX39dP//5z3XGGWcoPz9f48aNS3r7F110kZ555hk98MADeuyxx/TUU0/ppZdeilnugQce0PHHH69QKGTdf8cdd+jUU0/V7bffrtNOOy3QNgEAQGKoBwAAAPUAgO4Q/HtkAJAGc+fO1Re/+EVdeeWVkqSxY8fqr3/9q95++20VFBQkte2Ghgb96U9/0h133KGjjjpKkjR//nwNGzYsZtn7779fv/3tb637brjhBv3whz/UP/7xD02dOjXwNgEAQGKoBwAAAPUAgO7AwAiAjHv//ff1n//8R//973+t+wsKCjRx4sSkt//uu++qpaVFhxxySOS+yspK1dTUWMu9+eab+vjjjyOFjCTdc8892rBhg5555hnr67OJbhMAACSGegAAAFAPAOgu/JQWgIx75ZVXOv1K7PLlyyOFz/vvv6/jjz9eBxxwgMaPH68PPvgg5e144IEH9NnPflZFRUWR+w444AANGjRIt912m4wxKd8nAABoRz0AAACoBwB0FwZGAGRcTk6O2tra1NbWFrnv0UcfjRQ+O3fu1LHHHquLL75YL7/8sp566ikNHTo04e3vvvvuys/P1wsvvBC5r66uTitXrrSWu//++3XiiSda940dO1ZPPPGE7r//fp1//vmBtwkAABJDPQAAAKgHAHQXfkoLQMYddNBBys/P1w9+8APNnTtXL7/8sr73ve9JkiZOnKj77rtPhx56qKZNmyZJ6tevX6Dtl5eXa/bs2frud7+r/v37q7q6WpdffrlycnIiIWobNmzQiy++qAceeCBm/b322ktPPPGEpk2bpry8PF177bUJbRMAACSOegAAAFAPAOgufGMEQMYNGzZMf/zjH/W3v/1NEydO1N13361zzjlHQ4YMUXV1tV577TXrtzp3xW9+8xtNnjxZn/vc5zRjxgwddthh2meffSJfi/3HP/6hQw45RAMHDux0/ZqaGv3nP//RnXfeqYsvvjihbQIAgMRRDwAAAOoBAN2Fb4wA6BFOP/10nX766ZHpiy66KPL7oYMHD9by5cslSW1tbaqrq1P//v0Dbb+8vFy33357ZHrbtm2aN2+e/ud//kdS+9dkTzjhBGudRYsWWdP77LOP1q9fn/A2AQBAMNQDAACAegBAd+AbIwB6pFdffTVS+MyZM0erVq3S+PHjdfDBB8f9nc4bb7xRZWVleu211yL3vfzyy7rzzju1atUqvfTSSzrttNMkKfKboYcffrhOPfXUQG2Mt01JOvfcc1VWVhZouwAAoB31AAAAoB4AkA4hY4zJdCMAwDV48GD95je/iRQTifroo4/U1NQkSRo5cqQKCgoktRcpX//617VixQoVFBTooIMO0m9+8xvtt99+u9zGRLa5YcMG1dfXS5KGDh2q0tLSXd4fAADZhnoAAABQDwBIBwZGAAAAAAAAAABA1uCntAAAAAAAAAAAQNZgYAQAAAAAAAAAAGQNBkbQp91www0aPXq0ioqKVFtbq+effz7TTep2Tz75pI4//ngNGzZMoVBICxcuzHSTMubqq6/WpEmTVF5erurqap100klasWJFppvV7W666SZNmDBBFRUVqqio0OTJk/XII49kulk9wjXXXKNQKKQLL7ww000BkELUA+2oCdpRD0RRE3SOegDou6gJqAc6UA9EUQ90jnqg72NgBH3W3XffrYsuukiXX365XnrpJU2cOFEzZ87Uhg0bMt20brVt2zZNnDhRN9xwQ6abknGLFy/W3LlztWTJEj322GNqaWnR0UcfrW3btmW6ad1q+PDhuuaaa7Rs2TK9+OKLmj59uk488US9/vrrmW5aRr3wwgu6+eabNWHChEw3BUAKUQ9EURO0ox6IoiaIRT0A9F3UBO2oB9pRD0RRD8SiHsgOhK+jz6qtrdWkSZP0+9//XpIUDoc1YsQInX/++fr+97+f4dZlRigU0n333aeTTjop003pET755BNVV1dr8eLFOuKIIzLdnIzq37+/fvnLX+rss8/OdFMyorGxUQceeKBuvPFG/eQnP9H++++va6+9NtPNApAC1AOdoyaIoh6wZXNNQD0A9G3UBLGoB6KoB2zUA9QD2YBvjKBP2rlzp5YtW6YZM2ZE7svJydGMGTP03HPPZbBl6Enq6uoktXf42aqtrU133XWXtm3bpsmTJ2e6ORkzd+5cHXfccdZ7BoDej3oAiaAeaEdNQD0A9GXUBIiHeqAd9QD1QDbJy3QDgHTYuHGj2traNHjwYOv+wYMH66233spQq9CThMNhXXjhhTrssMM0fvz4TDen27322muaPHmyduzYobKyMt13330aN25cppuVEXfddZdeeuklvfDCC5luCoAUox5APNleD0jUBB2oB4C+jZoAfqgHqAc6UA9kFwZGAGSluXPnavny5Xr66acz3ZSMqKmp0SuvvKK6ujrdc889mj17thYvXpx1hc+aNWt0wQUX6LHHHlNRUVGmmwMA6GbZXg9I1AQS9QAAZDvqAeoBiXogGzEwgj5p4MCBys3N1fr16637169fryFDhmSoVegpzjvvPD344IN68sknNXz48Ew3JyMKCgq0xx57SJIOOuggvfDCC7ruuut08803Z7hl3WvZsmXasGGDDjzwwMh9bW1tevLJJ/X73/9ezc3Nys3NzWALASSDegB+qAfaURNQDwDZgJoAXaEeaEc9QD2QjcgYQZ9UUFCggw46SI8//njkvnA4rMcffzxrfyMRkjFG5513nu677z795z//0ZgxYzLdpB4jHA6rubk5083odkcddZRee+01vfLKK5HbwQcfrNNOO02vvPIKRQ/Qy1EPoDPUA/6ysSagHgD6PmoCuKgH/FEPUA9kA74xgj7roosu0uzZs3XwwQfrkEMO0bXXXqtt27bpzDPPzHTTulVjY6PeeeedyPTq1av1yiuvqH///ho5cmQGW9b95s6dqzvuuEP333+/ysvLtW7dOklSZWWliouLM9y67nPppZdq1qxZGjlypBoaGnTHHXdo0aJF+uc//5nppnW78vLymN+QLS0t1YABA7L2t2WBvoZ6IIqaoB31QBQ1QTvqASA7UBO0ox5oRz0QRT3Qjnog+zAwgj7ry1/+sj755BNddtllWrdunfbff389+uijMWFrfd2LL76oI488MjJ90UUXSZJmz56tBQsWZKhVmXHTTTdJkqZNm2bdP3/+fM2ZM6f7G5QhGzZs0BlnnKG1a9eqsrJSEyZM0D//+U999rOfzXTTACDlqAeiqAnaUQ9EURMAyCbUBO2oB9pRD0RRDyBbhYwxJtONAAAAAAAAAAAA6A5kjAAAAAAAAAAAgKzBwAgAAAAAAAAAAMgaDIwAAAAAAAAAAICswcAIAAAAAAAAAADIGgyMAAAAAAAAAACArMHACAAAAAAAAAAAyBoMjAAAAAAAAAAAgKzBwAj6vObmZl1xxRVqbm7OdFMyivMQxbmI4ly04zwAfR+v8yjORTvOQxTnIopzAfRtvMajOBftOA9RnIsozkV2CBljTKYbAaRTfX29KisrVVdXp4qKikw3J2M4D1GciyjORTvOA9D38TqP4ly04zxEcS6iOBdA38ZrPIpz0Y7zEMW5iOJcZAe+MQIAAAAAAAAAALIGAyMAAAAAAAAAACBr5GW6AUC6nXvuuZKkmpoahUKhDLcmczp+NS/bz4PEufDiXLTrOA933323zjrrLOXm5ma4RQBS7ZZbbpHE+53Ee38HzkMU5yJqy9otkqTGxkZ+OgPog5YuXSqJ9zuJ9/4OnIcozkXU5rWbJUkfffQR9UAfRsYI+rzRo0drn3331cXf/Z7y8/MlSUZS+zPfKPIKMNH7zad3mMj9xpofWaGTbZnorJhtmU//0/4/z/Y/3Yfx/B1d30TX62hDZD0TXUbOMsZu186WZv3z/r/r6BO+pLzc/I4merYvhd02e/YhT5s72h9tu2df8rTLc668bTKSFDaRbUba7T1A8+lRhb1t+PT/4eiJ87atoz2R+z0H5j3frS079eKSh3XwIbOUm5sXPXDJ83fMCYkeaNjzAEf+/vSYOnYSsx3Ptrwnwrj7+HRe5Bhltc+EjdNWe3smZtvuibeXaWtr1bK1z+igwZOVo1z7GK1ttd9nvO2LPHb2MtY+PNuJLOduO9z+WIdN+NMmhxWW+fQxC3/6f6Nwx7Q6Dt8zT0bm0/XDJtw+17Qvo8j89iXbH6b2dcOfvnra1KpVelf1qlee8vWXhX/RCSeckPXFINCXnHrqqVr59tv6+a9+vWv1QGSesZaJLmVvyzMr4XoguqxdE6SyHpA6rwlSWw94j9XYbfC0yUi7XA90nCu3JkhpPSB73Zi+OxX1gDrZrvckpaIe6GiXzzJJ1wOR511Xy0W3s6v1QPS5Z9cEqawHJGm7tut1vaGwwvrldb/U//7v/6qwsFAA+obrr79ev/jFLzT/L3/1rwc+neF9a+7ox1JVD3Tc11lNkKp6wLtftyZIVT0QPW7jabtnX/K0zbrPs/149YA6zpNJ6BrBrtUDxyo3Ly+2f+vqGoG3r5T7t7qoB7zTnTw4pov7g9QDsrcX7xrBLtUDnuNN5BrBrtQD7U+LxK8R7Eo9oI5tG8XUBDu1U2/oDW3Tdo3WKC3ZsFSDBg0S+hYGRtDnjRkzRn+4bb4Om3KEIp257IKg/U9P5xwzbSJ9UPQVs4vb8hY9xvN/T9ETtgqYrpeLvc/bpjjrdRyFp0AJd1Z4dbZNd/tdHlvkTMXs24TtTtiYaKceLV6MXfQ490WWVcd0sG1YRYbf397iJtKZx/s7wPY7/lb0uKyCK1IoRI/PKrQ8+463vtTZNky0WPFMd3af8czrcr3IPsK+6xrvPLVfCOkoYMLquDASjhQ7YWMixY7UXtRE5kWWt9cLR4obezudzZekNrXpA63R23pHxSrW/3v8/2n69OkJvdcA6NlOP/101ewzTt+55PvalT5ckfs+fb/tZN1Et9V5n2msfUTezmP68eTqgU9bGNsve/ruZOsBqfPtprIe6NiHWxOktB5QJ/MSqgG8f/tsP3qyYualtB5Qotswu14PSJ0vl8J6oH0XnffhqaoHJHVcetF6bdBbWqFWter3t/5eZ5xxhvLy+MEFoLe76aab9I8HH9T/u/8f8u3DJf9+PAX1gDrui+kzY/v6Xa0H5NlvItcIdqUeaD9aZ/tdHlsX+41XD3ScN5/+POl6IPqAJHaNwAT5O/LESGz7zjEFqgdk7z/4Nkz8esCzj0SuEexKPSAp0DWCXakH2p+7/tcI6lSnt7RCm7RZY7W7Xqh7kW+Q9CFkjAAA8Klc5WqMRmu6pmmIBuuYo2ZqUGhg5Cv3AACg7wsppCEarKmaor1Vo/PPPl9V+VX6+9//rnA4HH8DAACgT6hUpWp1iGp1iDZqkwZWDtS+oX3U1NSU6aYhBRgYAQDAkac87ak9NF3TVaUqHXboYRoaGqLly5dnumkAAKCbhBTScO2mIzVVu2uMzjjla+qf20+PPvpo5F9iAwCAvm+A+uszOlQHan99qI/Vv6Sfbr75ZrW0tGS6aUgCAyMAAHShQPnaR3truqapSEWauN9EjQgN17vvvpvppgEAgG6SoxyN1ihN15HaTcN0wqwTNDBnoJ555plMNw0AAHSTkEKqVrWO0OHaV/vq4nMvVlVBle644w6+UdpLMTACAEAcRSrSfhqvIzVVUkh7jt1TY0KjtXbt2kw3DQAAdJNc5WqsxuooHamBGqCph0/V4NBgvfLKK5luGgAA6CYhhTRMQzVNR2hP7aGzTztb/XKr9I9//INvlPYyDIwAAJCgEpXoAE3UFB2udVqvMcPGZLpJAACgm+UrXzXaS0fpSLWpTQcccIBWrVqV6WYBAIBulKMcjdQITdc0DdAAnXDCCTow54BMNwsB5GW6AQAA9BZGRuu1Xm9ppUIK6ZY/35LpJgEAgAyoU53e0grVqU412ku77bZbppsEAAC6WZN26G29rTX6UCM0XA9//Eimm4QAGBgBACABG7VRb2qFmtSkX13/K51zzjkqLCzMdLMAAEA3alSj3tJKrdd6jdFovbHxTQ0YMCDTzQIAAN1op3bqHa3Sar2nwRqsN956QzU1NZluFgJiYAQAAB9btCXyL0LHaqxebFym0tLSTDcLAAB0o+1q0kqt1Ef6WCM0XB98+AHfEgEAIMu0qlXvarVW6V31Uz+9sOwFHXjggZluFnYRAyMAAHSiXg1aoRX6RBs1RqO1cvPb6tevX6abBQAAulGzmvW23tH7+kBDNUQr3l6hPfbYI9PNAgAA3ahNbXpP7+sdrVKpSvX44sd1xBFHZLpZSBIDIwAAeGzTdq3USn2stRqlkfpw7YcaMmRIppsFAAC6UYtatErv6l2t1kAN1Mv/fVkTJkzIdLMAAEA3CiusNfpQK/W2ClSg+x66T7NmzVIoFMp005ACDIwAACBph3Zo5aehacM0TKtWr9Lo0aMz3SwAANCNWtWm9/Se3tEqVahcTz37lCZPnpzpZgEAgG5kZPSx1mqFVkqSFty1QF/60peUk5OT4ZYhlRgYQZ9XUVGhL5/8RRXEC0k2Cd0VbK7/Il1vqdP1TPzNGZ/V/VYx1lRXm407I9H9tu8zztLxZsdbP5EGJdkG3/XTtG/7oYq3kN+2g6wb54nl9/xJcHums/mdrm58mmN8mtnV6yd6f4taNFjVeu311zRu3LhOlwbQe1VUVOgX11ytG2/4vf+CGawHOl20kzt6ej2Q6L5TUQ+0byKN/Xki20imHtjF9XtkPRDbsMDbS7we+PRe09m85OqBVrWqTGV66F8PacaMGfyLUKCPqaio0OP//rd2Hzk8/sKB+reeWw8E2XVS9UAnM1NWDySwsaTrgUTa0RvrgXj739V6wG+7Ka0H7Hu6ukaQmnogOi+ssHKVq+v/cL1mz56t/Pz8LtdA7xUyCV1dBHqvdevW6f333890MwD0cP369dNee+2V6WYASJNt27Zp+fLlmW4GgB6uoKBA+++/PwMiQB9ljNGLL76ocDic6aYA6OEmTpyooqKiTDcDacTACAAAAAAAAAAAyBr8MBoAAAAAAAAAAMgaDIwAAAAAAAAAAICswcAIAAAAAAAAAADIGgyMAAAAAAAAAACArMHACAAAAAAAAAAAyBoMjAAAAAAAAAAAgKzBwAgAAAAAAAAAAMgaDIykwRVXXKFQKGTd9t5770w3CwAAdDNqAgAAQD0AAEDPk5fpBvRV++67r/79739HpvPyONUAAGQjagIAAEA9AABAz0JPnCZ5eXkaMmRIppsBAAAyjJoAAABQDwAA0LPwU1pp8vbbb2vYsGHafffdddppp+mDDz7IdJMAAEAGUBMAAADqAQAAepaQMcZkuhF9zSOPPKLGxkbV1NRo7dq1mjdvnj766CMtX75c5eXlna7T3Nys5ubmyHQ4HNbmzZs1YMAAhUKh7mo6AAA9kjFGDQ0NGjZsmHJyes+/6whaE1APAADQNeoB6gEAAFJWDxik3ZYtW0xFRYX54x//2OUyl19+uZHEjRs3bty4cfO5rVmzpht78NSLVxNQD3Djxo0bN27xb9QD3Lhx48aNG7dk6wG+MdJNJk2apBkzZujqq6/udL77L0Lq6uo0cuRIvfPe+yqvqOiuZgIA0CM11Ndrj9GjtHXrVlVWVma6OUnxqwmoBwAA6Br1APUAAACpqgcIX+8GjY2NWrVqlb72ta91uUxhYaEKCwtj7i+vqFAFhQ8AAJLU638+Il5NQD0AAEB81AMAACDZeqD3/ChnL/Kd73xHixcv1nvvvadnn31Wn//855Wbm6tTTz01000DAADdiJoAAABQDwAA0PPwjZE0+PDDD3Xqqadq06ZNGjRokA4//HAtWbJEgwYNynTTAABAN6ImAAAA1AMAAPQ8DIykwV133ZXpJgAAgB6AmgAAAFAPAADQ8/BTWgAAAAAAAAAAIGswMAIAAAAAAAAAALIGAyMAAAAAAAAAACBrMDACAAAAAAAAAACyBgMjAAAAAAAAAAAgazAwAgAAAAAAAAAAsgYDIwAAAAAAAAAAIGswMAIAAAAAAAAAALIGAyMAAAAAAAAAACBrMDACAAAAAAAAAACyBgMjAAAAAAAAAAAgazAwAgAAAAAAAAAAsgYDIwAAAAAAAAAAIGswMAIAAAAAAAAAALIGAyMAAAAAAAAAACBrMDACAAAAAAAAAACyBgMjAAAAAAAAAAAgazAwAgAAAAAAAAAAsgYDIwAAAAAAAAAAIGswMAIAAAAAAAAAALIGAyMAAAAAAAAAACBrMDACAAAAAAAAAACyBgMjAAAAAAAAAAAgazAwAgAAAAAAAAAAsgYDIwAAAAAAAAAAIGvk7cpKb7/9tt555x3V1dWpoqJCe+65p/bcc89Utw0AAAAAAAAAACClEh4Yeeutt3TzzTfrrrvu0oYNG2LmV1dX69RTT9X//M//aO+9905pIwEAAAAAAAAAAFIhoZ/SOv3007Xffvvpd7/7ndavXy9jjMrKyjRs2DCVlZXJGKP169fr2muv1X777aczzjgj3e0GAAAAAAAAAAAILKGBkTvuuEODBg3S3Llz9eijj2rTpk2qq6vTmjVrVFdXp02bNunRRx/VeeedpwEDBuj2229Pd7sBAAAAAAAAAAACS+intG677Taddtppys/P73R+v379dPTRR+voo4/Wr3/9a/31r39NaSMBAAAAAAAAAABSIaGBkTlz5iS8wfz8fJ155pm72h4AAAAAAAAAAIC0STh8vcMHH3zQ5bzi4mINGjQoqQYBAAAAAAAAAACkS+CBkdGjRysUCnU5f+jQofrJT34S6FsmAAAAAAAAAAAA3SGh8HWXMabL28cff6yzzz5bDz30UKrbCgAAAAAAAAAAkJTAAyO//e1vVVpaqqlTp+p3v/udfve732nq1KkqLS3VVVddpZkzZ8oYo9/+9rfpaC8AAAAAAAAAAMAuC/xTWi+88IIGDBigxx9/XDk57eMq3/jGN7T77rvr9ddf10MPPaS99tpLL730UsobCwAAAAAAAAAAkIzA3xhZuHChmpqatGPHjsh9O3fuVHNzs/7xj38oJydH++23n7Zv357ShgIAAAAAAAAAACQr8DdGqqqqtHbtWk2YMEGzZs2SJD322GPasGGDhg0bJklat26dBgwYkNqWAgAAAAAAAAAAJCnwwMj3v/99fetb39K7776rG2+8UVJ7GLsk/eAHP9D777+vF198Uccdd1xqWwoAAAAAAAAAAJCkwAMj5513nkaNGqVf/vKXev311yVJ48eP13e/+1197nOfU2trqzZu3KiioqKUNxYAAAAAAAAAACAZgTNG6uvrdfzxx+vJJ5/Upk2btGnTJi1evFif+9zn9NxzzykvL0+VlZUqLCxMR3t7pWuuuUahUEgXXnhhppsCAAAyhHoAAABQDwAA0DMEHhg5+uij1djYGHP/o48+qqOPPjoljepLXnjhBd18882aMGFCppsCAAAyhHoAAABQDwAA0HMEHhh5/vnnNXPmTGtw5O6779aJJ56o7du3p7RxvV1jY6NOO+00/eEPf1C/fv0y3RwAAJAB1AMAAIB6AACAniXwwEhNTY2WLFmiY445Ro2Njbrxxht12mmnqaWlRbNmzUpHG3utuXPn6rjjjtOMGTPiLtvc3Kz6+nrrBgAAej/qAQAAQD0AAEDPEjh8ffHixTr66KP17LPPasKECXr//fdljNGZZ56pW265JR1t7JXuuusuvfTSS3rhhRcSWv7qq6/WvHnz0tyqvssY40w787uxLUGEMt2ADAtl+wnISjzo2DXu+3pvQT3Q/bw1AfVA70R9kA14kJG4vvCeQD3Q/fyuEVAP9E594b0AneGBRXCpuj4Q+Bsj1dXVWrRokWpra/Xee+9Jkn784x/r1ltvVW5ubmpa1cutWbNGF1xwgW6//XYVFRUltM6ll16qurq6yG3NmjVpbiUAAEgn6gEAAEA9AABAzxQy7jB6J6ZPnx5zX2Njo1588UWVlZXp4IMPbt9YKKTHH3889a3sZRYuXKjPf/7z1kBRW1ubQqGQcnJy1NzcHHcQqb6+XpWVlVq/eYsqKirS3eRej2+M9E78i49sxIOOXVNfX68hA/qprq6u1/SL1AOZwTdGej/qg2zAg4zEed8T6uvrNbg/9QDi4xsjfQ/1QV/FA4vgUnV9IKGf0lq0aFGX8xobGyPzQ7xLSZKOOuoovfbaa9Z9Z555pvbee29dcsklfLMGAIAsQD0AAACoBwAA6JkSGhg544wzGPQIoLy8XOPHj7fuKy0t1YABA2LuBwAAfRP1AAAAoB4AAKBnSmhgZMGCBWpsbFRZWVm62wN0yf05jJ2tbZG/W1rD1rxwzHdj431ZtnsG/lI5vpjSFmdo3DPk7Ng4j5M7308y6wbVXePEqX2Ms3twO5NHn6lT32277aYDbGkLx18IWcGvHmifDne5bPAfz0jP8zsb64F09stebj0QTzLt6pXv7z2kHugZrUivHnKqY/T258/OVuoBtAtSD8Qu3zPqASl1L6veUg/E33Xm32ekHlyrJaMHvId3prta1VMOP63XeZJJJO8pJyhBqbo+kNDAiCQNHDhQRx11lE488UQdf/zxGjp0aEoakC38fo4MAABkB+oBAABAPQAAQOblJLrgFVdcoS1btugb3/iGRowYoUMPPVTXXHON3njjjXS2DwAAAAAAAAAAIGUSHhj5/ve/r2effVYff/yxbrzxRg0cOFDz5s3Tfvvtp7322kvf+9739Mwzz8gk87UdAAAAAAAAAACANEp4YKTD4MGD9T//8z968MEHtXHjRt19992qra3VrbfeqilTpmjIkCG6++6709FWAAAAAAAAAACApCScMdKZ0tJSnXzyyTr55JPV1tamxYsX64EHHlBDQ0Oq2gdENO1staYbd0SnW5ygtXhCAUKFUhk/5O7X/YaVX7t6ag5SpgLCg+43p4eev5QJ+ARxl/Zf3Z4ZZFfx99P7Qm+TkXSTe+ExJ8MbvthK2Co+5VcPSFJrmzd8PWAQt18/HGhL6ROkhpGCnYN42+4N77uBm5img4q3VXe3ydSm/uu6j3+w4/Wrn+I3uWfWtRnbtfuYJ9ES4zyu3m0FzWH1Wz72cUrdr0Ps6tG3pShsFb1fkHpASm1/aC0bZ36QV038vqNndsTpalZaj9ZpdNB+O2XNiLtAZuqUYM3omc/LeLrr5RR0N973jKDvL0H2ldzx7/o1Iv8tJa6lJdh14K4kNTDilZubq+nTp2v69Omp2iQAAAAAAAAAAEBKBf4prdzc3C5vpaWlOvzww/X444+no60AAAAAAAAAAABJCTwwYozp8tbU1KRnn31Ws2bN0rPPPpuO9gIAAAAAAAAAAOyywAMjl156qUpLS1VTU6OLLrpIF110kWpqalRaWqrzzz9f48ePV2trq6655pp0tBcAAAAAAAAAAGCXBc4Yqa+vV1lZmV566SUVFxdLkq688krtvvvuam1t1QsvvKCxY8dqyZIlKW8sskuzE6SzuaHZmq7fvjPyd1ubHTkUjgk1T3y/QQMKk5Gb0/XYZLz9xJ0fIMIoSOiiG/iW66Ry5rghZqHO/3b309m68drp1y6/dd1l3f26QaPuU8KvnUGfH97FgwZneY8j3vEHCZ8PGtoZRDhmW/Ydvs89d01nW37NTCZ4VJJyrZdqnHPt908OAp5L93F1w1Z9143TTu+24i2byjC1XQ2I66FZk+gGbj2wpbHrekCSWluDhKva07HvK11vK16flUo5njdxt43xmhHTx+V4+w572Xjvld7gWvf9KZ11iSvIuY+3aK7PuY23rbzcrt/wg77Xuct72xV03TzrMQ7Wj7j78r6cYs573JdaCoO6vXWczzwp/vPDL9Q0mWDjmFor3rb8nnBx25H4izdwbdpNb227+uxIYVmKXshbE/hdH5BirxEEqX1TWXOnkt9n8+58rfvVFp3N93KvHwSpRWI/H/q3w3fdeH2F05CcUNd9a7DP2nE+5LrtiP0AnRLxthrvkOxzHay2SKav9b0mFGfdIGcy/rWYZLewa2umM+Q8medEss+nIIzz/2QF/sbIX//6V+Xn56uwsDByX1FRkQoLC3XnnXeqsLBQBx10kOrq6lLURAAAAAAAAAAAgNQI/I2RvLw8ffTRRzriiCP0+c9/XpL04IMPas2aNRowYIAkaevWraqqqkppQwEAAAAAAAAAAJIVeGDk3HPP1U9/+lM999xzeu655yRFv2L2zW9+U5988omef/55TZ06NbUtBQAAAAAAAAAASFLggZGrrrpK1dXV+uUvf6kPP/xQkjRixAh997vf1Xnnnaf6+notWbJEgwYNSnljAQAAAAAAAAAAkhF4YESSzj//fJ1//vlqaGiQJJWXl0fmVVRUaOLEialpHbKKG25Vt80OT2tosqfrGqPTLa1ha168AK+wT0xPbsA0I79Qb5d7jEECVGNDzf1Dy/wCz/Ly7HghNywsPy83Os9JIgo5bW4L2+feL1DdbZIbPh9yN+7wbsttV7xQMju0M3VB07m57rkMFoLuFwAaw33MrZPthgs6nAfG77kaLzw0XnhakPPnLuobXB4v9DwmUC/xdsTuyQmrDZJAn8J8vJjgx0BPGH/JBEcnHrWX/Pygy6Fv8L7m6ra3WPPccNWtDfZ0c2s0mDXHeaG4/b873xXo/SxAqGe895SYwOwA70F+geCu2ABU/xDTfM+2Y+qOIMmjnazvx32/cusH73GEnXOVl+O/bo5PyHm8Y2pzag+/wHR3W/FqQHfbftx9edd1z0fMunGet94pv/pZin0++e8r2PPF+PV/TrN2tvl/Luhyu50I9rr2X9d3P+624swPElwbewwJrxp/207LkjnmePVmh2TqF/Q+ftcI/K4PSP7XCIJcH5CCXSOI97ncr48P2pf67ddV4PmMH2/5oJ/v3NrDe37jnw97vttPW9t167iYztO/nda2nIc8Xh/m7U/jfuZ3r6F43tFiPt853PfV3NxdD7Z3T653dtD3Uv/l/Y/JPdfu6zrINTW/hylen57EyyuwQNcPHH6nwLn8Fvfap/9+/F+LMY9bgE/kset69uMu67bLnY4tGDrdx65KaGDEGNPpk9M7IJLI8gAAAAAAAAAAAJmU0D8p23PPPfX73/9eGzdu9F1u8+bNuuGGG1RTU5OSxgEAAAAAAAAAAKRSQt8YWb16tS644AJddNFFOuSQQzRp0iSNHj1a5eXlamxs1Pvvv68XX3xRS5YsUWtrq3L8fwsFAAAAAAAAAAAgIxIaGHn99dd1xRVX6N5779Wzzz6r5557LmYZY4zy8vJ0yimn6PLLL095QwEAAAAAAAAAAJKV0MDI3nvvrbvuuksbNmzQPffco6efflpvv/226urqVFFRoT333FNTpkzRySefrOrq6nS3GX1UQ5MdrrqpYYc1vXGrPb2tuTXyd3OLnUDkBk26QVFu6JI3LCxuULBPiHXYCcp0w9PcMCx32i+oPF4wuV8gnNuOna12KpkbcNboPBZdtVGKDVoryO/6G2Pusq1xjsndlvdxDYWdQNg8d9oOl7MCUeNkIMUPe4qKCZt3g2zjbssTKB8nyDZeaFmi+/l07S7Xjc8/FDjIlt1lvZuKPbxgbbZC3AIsG2S7iW078Y0HC6715xd4JtntjndMQc58ugLz8gMESqP3a2iK9vEb65qseZvquq4HJLsmcN+f4oWaxoaH+r3Ppi5PL15Qt/e9IaaWcNqx3enjY0JNfWqNmHb5zPcLQO9sXfeYigqiH0PirRsTVOu8K/nllLe02jNbQ/b58dY1MXVZTD9sb8sNSLf7nWDnwy8U3m2XXy366QLRdePUwO667nzfAF1nYbcOTuY14h9aGi+413+/QQJA4/ELhY9bL3jviJM8mkzIebxQeN9NxdtREjVgzK6SWBd9l981Ar/rA5L/NQL3M228z+nxwoH9lo0Xwux9ryzM9+9bc5w95+d5rmPECRNvbbPPh/se7g1nd+e5PwoT732lMD+6rbxc99z61/Te8+X2IzGPU4DPB/H6v5i+1Vnfu7xbL7r8wsVj+fdEfk8f9xjc62B+W459XsYL4t71ftl9DriSCdH27ivmqRWwb+1qu51JKug9Tsq5X50S0w5303GW93Lr5/i1Rff01Ik+H+LVe4lKaGCkQ3V1tb75zW/qm9/8Zkp2DgAAAAAAAAAA0J3455cAAAAAAAAAACBrMDACAAAAAAAAAACyBgMjAAAAAAAAAAAgawTKGAFSzRvSuLVxpzWvfps9XbfdDl7zBrH5BWNJsSFUMeFPLdEgzgIntNsNIHIDgL3bys23182LCQdLPBwoXhhkvODNogJPeFrIPwzLDVfzhrjFC0eLDXDsOiDNfRziBrXGtNsTVB4n5NzlDUiNF3IeG+LpBKKGul42XksChXzHW9dvY3GDxRIP8Yw9xGDnPtH9xC4bL6TNP1zOL4w3nsSj5TqZ75+l5st9jcQGqHvCCAMGscZ7H7DbYU8Hen7EOWDfx8VnR8kEuqLnc0ObtzRGA1Ubnf6/3glirWuw64WQp681znZjw0Td55wdzO3t42ODNp1tuyHWPoGA+bmJLytJbW3RfbnnKuxsq6TALu8LC+zaxMuth9z3FbddbWE7uNVa1jl+by0h2XWJZIeiu2HqeU6/64ac5+e5od/eNtvt8gs1l+z3sPhh4va28u1d2eHrcToDd77v4nHqJ1ewMNo4wa0+78vu0yFekK33bMccQkwNaB9DMnWK37kPGq4aqC8KEEweilPXxtuvd3l3Wfdcx2zLr9+Ok7DsPuZ+T834n226XhfZw33f9btG4Hd9QPK/RtAWJ4g85rntvK26751+3P7PXdcbVO6+B7th64UFbjh7dNrtd92+wq1j/N4q3fMRuy13ftf7jnduXdZnbXdmgNBqtx2x+3Hb1fVnfle8z5nudZ9cz77iv5+7H+R3PWA6nVHZIb/HKZmNubMCbCaV3UiQSy/xxOvf4r0m/LYV79pDMu32O/tBt+tXpwTVcYzN+V1/xgmCb4wAAAAAAAAAAICsEWhgpKWlRWPHjtWBBx7Yyb8AAgAAAAAAAAAA6NkCDYzk5+eroaFBbW1tgb7qAwAAAAAAAAAA0BME/imtOXPmaMWKFVq+fHk62gMAAAAAAAAAAJA2gcPX161bJ0maNGmSjjzySA0ePDjy7ZFQKKRbb701tS1En9a4IxqQVueErW/YusOa3rxhmzUd8oSLmVY7PC2/rMCaLiq0Q3ncAPUCT2hPWZH9sqgqK3SWtdct9IS1u4FnMSGvIf8QM++0+60sv2Wl2AAjK9wozk/f+WchB0ylDCJOiHe88Mgg61rz4jTZPV9BjjAmTDXu8okv63e+gobAJ8c/IDwIv7CwuF9MjBfcl8Q58HuupTMsNMjLLWjQml8Ibrx2BDvGePvZtecP31Pt27z1gCTVb4tOr9/aZM3busWezi20++22ndEA9Tyf4HEpNjzUDSYt9dQE+U6waNh5LnvrASk29LzAUyO4oZyxwe42bxBnQV6cZZ0XS0F+16Gv7vHHex9p8YTAxwSCO8eQ57yRtjpBt961/QJyO5t230da2xJ/k/KrLWL26zx94gWmh3yWjReA7fdeGK9v8CsB3BBXN+jelZtE6Llb97q8xxgkTDxeO+Kt67dy0D495pj92uW8Z/gtGvcZ7BMg764fvL8MEPoaeNuJ7zX2Zd753uI8zdDLufWA3zUCv+sDUuw1Au/8knL7M36xc72gqtS5nuD06SWe+qDA6f9LnLrE7eNjrhl4nvwxz++kanL/df3eV93rFnFfdz4fHuKFr/ttOuhn3GQ+WwY5P6kMuE7mI2/QIO5UStemg1zX6Ul8H0e3XkzmcYr7hOl6VirPZdDXQDL77qpeSFU9EHhg5K9//atCoZCMMXr00Ucjb2rGGAZGAAAAAAAAAABAjxZ4YOSII44gXwQAAAAAAAAAAPRKgQdGFi1alIZmAAAAAAAAAAAApF/ggZEO7777rpYuXaqSkhKdeOKJqWwTAAAAAAAAAABAWgQeGGlra9P//u//asGCBTLGqLa2VvX19ZozZ46uvfZanX/++eloJ/oIN/zXG562bst2a962Ha3WdNgJ7WzeFF2+oNIOTytyw9Xz3DC1fGu6pCg6XV5iz8tzghNLnHB2bwi6G+ruBqTHCx6zMlDjhJLFBH76/MRdEllpgXXfL+3Fi+XKtp/8S/b4gzzo/sG//tvtLY9L1+ejW3Pug+wr7gvd73Hzf/xjHsUg6XKB53fODYlG7+ZXD0h24LpbD7Rss4NZG9c2WNPeeqGgzK4PCpww1f67VVjTbiBqiSeM1a0l3DDxogK7PnD7fKtecPbj1g9ucLsfd1333Oa4ofGe+WHnxe2GGLrhq0X5OV0vGycBsdAJgfdu2t1PPEGCSJPZrnt+4vGe+6TfsYKckwAJmO7zI34zEq8v/YLt2/fd9bLJhK0nJ1iQr8s+nyGfef7HHC9ANOxu22fZ4Ocu8RVS+bDE+/wR6uKk5OYGqUPR08WrB/yuEfhdH5CkfOczf1G/4sjfAyrs+qDCuQbg9ullxfZ0YX502q1R3WsA7ivHne+dzosXVB4zrS4l83oN2pX6vYenMqg88FEFWTzAsr4fq1LM7/zFO5fJXOchQcGWXJC9/8rJfbZOXPwtBbh2EzMrldHuiUnVczTwy/nqq6/WbbfdpnA4HOnEPv/5zysvL08PPPBAaloFAAAAAAAAAACQBoEHRubPn6/8/HwtXLgwcl9ZWZlGjBihN998M5VtAwAAAAAAAAAASKnAAyMffvihxo0bpxNOOMG6v7y8XJ988knKGgYAAAAAAAAAAJBqgQdGBg4cqNWrV2vTpk2R+z744AO9+eabGjRoUEobBwAAAAAAAAAAkEqBw9dnzpypBQsWaL/99pMkvfHGGzrwwAPV0tKiY445JuUNRN/S0GQHqNZta478Xb/dDlPdtqHRmt5RZwexyRO81lTfbM1q29lmTYeHlPu2yxuC2tRsJ/iUFtlBbG1OEqc3IM2NG4oXPxQb4hy9JzZv0D9oLbnQyq633XtCt3pNQ9Mk2eNP1/nrrY9Lb2131/wD45ILn+0ePaIRSBG/eqB9emd02XV2uPrOT7bZG9tph6+qObrtnU5QuwaXWZMfrt5iTYecANWS/iWRv4sL7fDwPCcAuF+pG3pu79oOb/cvwcPN9rYK8rsOY29ptc9l7OvVrom8Iehhp6Zpc1bODdnzvaGvbnhs2HS9rCSFnW15A9fDQWsan/czv7DwTpf3/B0vbD1uu6w7AjRase22gtzdsN24LfPdk+/cINGZ8fYaE+HprS8D7MfdVrwzG+zM+68bM98NsvVZww0Pd/vheM83r3jh7HbQcbBPIO7y9jEGqw+ChNPGttPvfBnP/d0f8Ir0iVcP+F0j8Ls+IEltO+x1czyB6psb7P24vNcHJKml1emX8zzv0THh6va6bj2Q4/Oe7r4v5AS4ohA0iNt3W/EWDSDmukWc942e8bmj50jl+eDc7rrkzl1vOfHJtLP7jjH6npGafQb+xshPf/pTDR8+XOvWrZMk1dfXa/PmzRo2bJiuvPLKlDSqt7vppps0YcIEVVRUqKKiQpMnT9YjjzyS6WYBAIBuRk0AAACoBwAA6HkCf2Nk6NCheuWVV/T73/9ezz//vCRp0qRJmjt3rgYOHJjyBvZGw4cP1zXXXKM999xTxhj96U9/0oknnqiXX35Z++67b6abBwAAugk1AQAAoB4AAKDnCTww8uSTT6qiokKXXXaZdX9zc7O2b9+ukpKSLtbMHscff7w1/dOf/lQ33XSTlixZQtEDAEAWoSYAAADUAwAA9DyBB0amTZumyZMn65lnnom5/4UXXlCr8zvH2a6trU1///vftW3bNk2ePLnL5Zqbm9Xc7MnbqK/vjuYBAIBukkhNQD0AAEDfRj0AAEDPEHhgROo88Gzbtm0EoXm89tprmjx5snbs2KGysjLdd999GjduXJfLX3311Zo3b143tjAz3DC1jZ7Q9K0f28Xejo/tsFU37ajf+MHRvysKrXkDyu3pitIC3+kiTxCpGyaa6wSx5vqkhzmLKideUmKcQPWul+xkvu8Cux5KFO9lTYAX0Dv09tdqb25/kJogW+sBNwS1bl00XHXnKjsgXU4IesHwCmu6bEh59O8iu9QtKrDXdfvpQids1QoIdzrEsuJ8e90C/3B27+pureG2yw3b9m7Lrbdj92PPd/flPaa8fHvdna1OkL2PtrBfYLPkRl67YbRtJrqvmHBxt56K8wbgPUQ35DZIGHtslnrQ4Omui6bYcHX/db2TMcH2vq1KLjw7Zn5K1931N3LfdrjTaewv/IPK/bnLup8bkpNEsn1M7Gjin+nd57H39RfzHHfWdQOr/ffqDZjuvQUB9UAsv+sDUpxrBD7XBySpstz+zD98YGnk7+JCuz4odvrhogJ7foFTH3j73ph+NqbftSZj+zx1LZ2Bzz3lpdRT2gGgd+h4z0jVe0fC4evTp0/X9OnTJUlvvPFGZHr69Omqra3V8uXLVVlZmZpW9QE1NTV65ZVXtHTpUn3jG9/Q7Nmz9cYbb3S5/KWXXqq6urrIbc2aNd3YWgAAkC5BagLqAQAA+ibqAQAAepaEvzGyaNEihUIhhUIh1dfXa9GiRTHLzJgxI5Vt69UKCgq0xx57SJIOOuggvfDCC7ruuut08803d7p8YWGhCgsLO50HAAB6ryA1AfUAAAB9E/UAAAA9S8IDI7Nnz5Yk/elPf9KgQYN07LHHRuaVlJRo77331llnnZX6FvYR4XDY+o1QAACQnagJAAAA9QAAAJmV8MDI/PnzJUlPPPGEDjrooMg0Yl166aWaNWuWRo4cqYaGBt1xxx1atGiR/vnPf2a6aQAAoBtREwAAAOoBAAB6nsDh6++9914ampE5r776auB1xo0bp7y8rk/dhg0bdMYZZ2jt2rWqrKzUhAkT9M9//lOf/exnk2lqr9S0s82aXr+lyZre4glb3bHZnucmEhYPtcNVcz0BaG4opRt45obytLXZ4aKtnvC02LA0/zA1b9havCC12HCgAIGghJIBQNqkox6QqAk6xKsH3LDVpo88YavVJda8/BI7TNVN7K3/YGvk7+bKImteTr4drtqvf7E1HXbCV8uKogHrBU7IeWWp/RMnrWG7tnCDhctLotsqdNqR79Q8uc6+vHPdgOKYUFdnvl9QsVs/lcQJp7fWDccJaHb26y7vnR0vpDlmAbc2C5A77c73bjn2cP2P0SdrPa54NaFf3ZfKkjDeIXjnu/t1nwLx2mU8W4u/bOLbds9VMo9LJ1sP0BJnySQeqOSOIdlnSNfru8fk+zxN4RPVez7cz2apRj2QXkGuD0j+1wj8rg9IUmub/ULaWL8j8nf/MrsPdwPUC/LtdVtj+rDEX6ShONcm/OdxvQAA0inwwIgk3XTTTbrrrrv08ccfq60t2rGFQiGtWrUqZY3rDvvvv79CoZBMgtVnTk6OVq5cqd13373LZW699dZUNQ8AAHSDdNQDEjUBAAC9CfUAAADZI/DAyHXXXaeLLrpIkmKKBb9/kdaTLV26VIMGDYq7nDFG48eP74YWAQCA7kY9AAAAqAcAAMgOgQdG/vjHP0qSpkyZoieffFKDBg3SsGHDtGbNGp1wwgkpb2C6TZ06VXvssYeqqqoSWv6II45QcXFx/AUBAECvQT0AAACoBwAAyB6BB0ZWrVql6upqPfHEE8rNzdXYsWP1xBNPaMSIERo3blw62phWTzzxRKDlH3744TS1BAAAZAr1AAAAoB4AACB75MRfJNZuu+2mUCikvLw8bdmyRYWFherfv7+uu+66VLcPAAAAAAAAAAAgZQJ/Y2TgwIHauHGjJGnYsGFauXKlZs2apZUrV6q8vDzlDexOxhjdc889euKJJ7RhwwaFw2Fr/r333puhlvVeWxqbremGphZrevOqzdGJNjuzpnz3/tb0zsad9rbfi667vaLImle/3d7P8AEl1vTQAaXWdFGB23JPs8L+wXveqJ0cZ6gxx4ndCSnkTLs5PfbcrvaTiF4a+QMAGUc9kHpuPdC4w+6n697fYq9QEO1Q84ryrVktW5rsZTc70/2iNUFOQa41q7zSrhe2bNpuTQ+sLlNXykvzu5wnSWVOO3OcIiDH0zG3tNnPqbBx6oNWe763BMhxOvhcp/bIdYqRPPsUWNWFWyq4eYF+tUe8bEF3dk5uzN66XDZmW8602yz/dvpv2/swpbLWCrqtZLi7ClICxlvW7xjj78e/7k18TVtMaZ7Wc+1Xq0t+LU3ncyCZOj9Iu3rK5wlvO7qzTdQDqRfo+oDke43A7/qAJOUX2/1yXVlhdGKYvZv8PLvvLC60L5XlO32pHzeL133PMvbTyOqH4l0vcIWsPiy5F0dPeb0DQHcK/I2R8ePHa82aNfrggw907LHHyhijf/3rX5Kko446KuUN7E4XXnihvva1r2n16tUqKytTZWWldQMAAH0f9QAAAKAeAACgbwv8jZE//OEP2rhxo/r166df/epXamlp0dKlSzVhwgT95je/SUcbu81f/vIX3XvvvTr22GMz3RQAAJAh1AMAAIB6AACAvi3hgZF58+bpiCOO0KGHHqrddtstcv8f/vCHtDQsEyorK7X77rtnuhkAACCDqAcAAAD1AAAAfVvCP6U1b948zZgxQ1VVVZo8ebK+973v6R//+Ie2bt2axuZ1ryuuuELz5s1TU1NT/IUBAECfRD0AAACoBwAA6NsS/sZIcXGxmpqaIj+d9fzzz+vXv/61QqGQxo0bpylTpmjKlCn6yle+ks72ptUpp5yiO++8U9XV1Ro9erTy8+2wrpdeeilDLes9Wp0w0S0Ndrjamg/rrGlvwFfxsHJrXsNqJ4h1R6s9XeR5+jrh68ZJONvotKPZCTUtL45ua0BFsTWvotROZi/Ic0NNoweR4wSeuQGpOSE3wDHU5XTIXVZylpUv/2DF9CWrEdoGoLejHkhe3Hrgo3prOtxiL5/rCTJvfX+rvXE3xbS/3W+HPGGrbgD6Vqe2CDvtbG22a42NnvDVqgEl1rxiJ9i9yqkXSp3Q14qS6PxCJ8U112mn24cXemoPZ9GYWiLefHte4stKTnC7s6jb5vj1wK4XDLH518Zn7q4nYCdzDKmsh4JuK32h30E3nJ6GuM/x4FL34Lghy4FakcSTxH+3yZ73aLviH57fAsGOryd+hqAeSA1vTRDk+oAU5xqB3/UBScVuv10e7YdbnVD3+m12kHuLe72gpMCZjj4X3D7de31AkuReI3BeN8Z6rfh3pv4vE/f1GOxFFeTtrCe+XgFgVyQ8MFJXV6cXX3xRTz31lJ588kk988wz2rp1q4wxWr58uZYvX66bb765Vw+MzJ49W8uWLdPpp5+uwYMHJ1WsAgCA3ol6AAAAUA8AANC3JTwwkpeXp0MPPVSHHnqovvvd78oYo5dfflm/+93vdMcdd6i1tTWpfzHTEzz00EP65z//qcMPPzzTTQEAABlCPQAAAKgHAADo2xIeGJGk5uZmLV26VE899ZSeeuopPffcc2psbIwMiAwfPjwtjewuI0aMUEVFRaabAQAAMoh6AAAAUA8AANC3JRy+fvjhh6uqqkpHHnmkfvzjH+tf//qXqqurNWfOHM2fP1+rVq3S+++/n862pt2vf/1rfe9739N7772X6aYAAIAMoR4AAADUAwAA9G0Jf2Pk2WefVSgUUnV1tS666CJ97Wtf05AhQ9LZtm53+umna/v27Ro7dqxKSkpiwtU2b96coZb1HvXbW6zp9VuarOmGNXa4Wq4n1HT7ugZ7Y5vtdd1w1fLd+0f+rnLmDa6yw9j7ldvTpU4wW5EnMC0np+twdSk2IDXPM+2GvLqBZzEhp+7SgX62NjO/cctP6wLo66gHkhevHqh/1w5BDxXawaVt9Z5wVqfPdsPX3WDWPE9tUVJh9/9ufVCQb/f5uU4N0BaOhq+6Qa1FTvh6idPO/Fx7vrf/bHFC33fstANkCwvsbYU9P1fr1iHudE7InW9NWu0IyT8QNqbWSDwfNkZsOLtfYHrM2nG21fWysfwC04MF1/bUmih97eoZB+z/+AdfPxnJZU4EaUiQ/XTn49T9Qfbd+fPd1AOp4a0JglwfkOJcI3CuAZSNrLKmK/rb4evDPMtXlNph6lWlhdZ0vEB1b70Q0w/H9MvWZMz7ht+rqDuvD/TUPg0A0inhgZHi4mI1NTVp/fr1+v73v68bbrhBRxxxhA4//HBNmTJF++yzTzrb2S1++9vfEqgGAECWox4AAADUAwAA9G0JD4zU1dVp2bJleuqpp/Tkk0/q2Wef1V//+lfdfvvtkqT+/fvr8MMP13333Ze2xqbbnDlzupzX1NTU5TwAANB3UA8AAADqAQAA+raEM0by8vJUW1ur73znO3rggQe0ceNGLVu2TKeffrpyc3O1adMmPfDAA+lsa9p961vf6vT+bdu26dhjj+3m1gAAgEygHgAAANQDAAD0bQl/Y0Rq/1cRzz33nJ566ik99dRTWrp0qbZv356utnW7hx56SP369dO8efMi923btk3HHHNMBlsFAAC6E/UAAACgHgAAoG9LeGDk0EMP1csvv6zW1vZwSG/oWW5urvbff39NmTIl9S3sRv/61780ZcoU9evXTxdeeKEaGho0c+ZM5eXl6ZFHHsl083okN/tuY/0Oa/r91XYgXbkTiLbDE77W9lG9vbFyOxCtbLS97uDBZdFF3cDTPDsszeWGq3qXL3SCWN0QU/d3Zr1havF/gjbx36jl52wBIDOoB3aNtyZw64EP3rfD1stGVFrTO7baP0nS+u7W6ESFUw+Mr7amG9c6waz1OyN/NjQ0W7PWDy61pvPL7bDVsmEV1vQgT1j7oEo7uD3o7843NkXDZ/uV2fstLrADffOcxHS/wPTY8PU4DfFuzCnkjLNt44RDe1sVjgnADhhUbrzzgoUpBzv36Qq4Ti7EO2hYfTLb6muSPd6ec756TEN6iMTOR3dmflAP7Bq/awRBrg9I/tcI3OsDQ4bafXhVqd23lpdE1y0ttOflOv2u2w/7XSOICVN3nqKx/TLXBACgp0h4YOT555+P/F1UVKRDDjlERxxxhKZMmaLJkyerrKzMZ+3eYezYsXr00Ud15JFHKicnR3feeacKCwv10EMPqbS0NP4GAABAr0c9AAAAqAcAAOjbEh4YOfbYYzVlyhRNmTJFkyZNUn5+fvyVeqEJEybowQcf1Gc/+1nV1tbqwQcfVHFxcaabBQAAuhH1AAAAoB4AAKDvSnhg5MEHH0xnOzLmgAMO6PTruIWFhfr444912GGHRe576aWXurNpAACgm1APAAAA6gEAALJHoPD1vuikk07KdBMAAECGUQ8AAADqAQAAskfWD4xcfvnlmW5Cr7a9udWa/vCTbf7Lr2+0ptu8081t1ryS8YN9t7VhQ3TdnMF2xk2/CjvUtMoJOS3Is8PTvFrawtZ0nhPUntP1qpLxD0CNDRftOk0tXugmQWwAkDrUA8nz1gRuPRB2+tYdm+1wVbPOrg9UEO1si/cYYM1qfPIDe10n6D3/sJHRzYztb83LdcJTC0rtYPeqMnu6vyec3Q1izc9zA9Ltjrm4MNea3hHNhFdO3IR0286W6Plza5iYesGtW3xDYZ15zqb8ao3uDECOx69mctvpv2zi2w26fPxldz0kPpVB7YS+I1V662cZ6oHkBblG4Ht9QAp0jWCDs5+2cIk1XZgf7ZdNkX0pLC/H/3N82Hk+e5+/8Z7K7mshyDUBAEB6+V3iBQAAAAAAAAAA6FOyfmCkf//+2rhxY8LLjxw5Uu+//34aWwQAALob9QAAAKAeAAAge2T9T2lt3bpVjzzyiCorKxNaftOmTWpra4u/IAAA6DWoBwAAAPUAAADZI6GBkenTpye0sVAopMcffzypBmXC7NmzM90EAACQYdQDAACAegAAgOyQ0MDIokWLFAqFZD5NjeosbNEY06NCGBMVDofjL4QubW6wA0/Xb7XDVFud4LW2Vudf07RGz3/h+Gpr1vbVm+1lnUDUvKL8yN8ft9iPY9NOez87nNC24YPssPaigmgQm39IaWfRaNF7AmapBtILX14A0GtQDyTPWxOs27zdmmfa7KBR4/TL2mHXC/l7D4z83bT4PXvZQXaYavGkYfamNkbDV4sH2Mv2619sTQ/whKtLUllJvjVdUhidLnfm5TqdvjfUVeokyNUzHa9mduuJksJoye6GuBrnjthNO+fedF23xK7bdTvd/brBtPFrIu/58N92fH7tTHwrgXfrtiKJWi3I56hg7ez68W/fr9uOINsGutZbn0vUA8nzu0YQ5PqAFOcagc/1AUlq2b7Tmq7fFp0e1t+uD4Y49UJ/pz4ocN938zy/Su/8QH1uCp/88d7ve+vrDAB6ioQGRo444girWH/xxRfV3NysCRMmSJJeffVV5eXl6dBDD01PKwEAAAAAAAAAAFIg4W+MdLj55pu1bNkyLV++XHvttZckaeXKlTrooIN0wgknpKWRAAAAAAAAAAAAqZATfxHbz372Mw0fPjwyKCJJe+21l0aMGKFf//rXKW0cAAAAAAAAAABAKiX0jRGvjRs36sMPP9QPf/hDfeELX5Ak3XfffXrrrbdUXFwcZ20AAAAAAAAAAIDMCTwwctxxx+mee+7RNddco2uuuSZmHvq+nZ5AtFVr6615LdvsgLO8QvsptrOu2ZrOGVYe+bv57U32jpzAM3dbpYOjAepVlUXWvH5uEFuu/eWoeieILTcnui93P8nkmQUJMY2/LgAAPcdOJyDVWxO0NrVY83KcYPKYoNKx/a3plv+uj04MKbMXzrdX3rHJDnrP9YSvFpba9YAbkJ7jJISv29xkTVdXRVNP83LtZcuL7ZBXV6uTRu7ds1OWKMfp9N1pazKmQPAvGNJXT9gbzk3hfuIFkfuF0faW+im5oPZAS1tT7rlLNnDe2lMSx5TKdrh6y3MC6K386gHJvkYQ5PqA5H+NwN1WmVMvVFbY1wiqPdcMKp3rBRUl9nRujt1RuzWAd9IpJWJ65SDXBHi/AoDuFfintG655RZ9/vOflzHGup100km65ZZb0tHGbjN9+nTNmzcv5v4tW7Zo+vTpGWgRAADobtQDAACAegAAgL4t8DdGqqqq9P/+3//Tu+++q9dff12SNG7cOI0dOzbljetuixYt0muvvaaXX35Zt99+u0pLSyVJO3fu1OLFizPcOgAA0B2oBwAAAPUAAAB9W+BvjHTYfffddfzxx+v444/vE4MiHf79739r3bp1OvTQQ/Xee+9lujkAACADqAcAAAD1AAAAfVdCAyO77767Tj755MjfXd36wgDJ0KFDtXjxYu23336aNGmSFi1alOkmAQCAbkY9AAAAqAcAAOi7Evoprffee09DhgyJ/N2VeEGJPV1H+wsLC3XHHXfoJz/5iY455hhdcsklgbZz9dVX695779Vbb72l4uJifeYzn9HPf/5z1dTUpKPZ3a7BE1z+Sd0Oa17ISRPd/vFWe+WwHcwW/sgTmNqvyHdZ02anMhpPqGl+nr1fN1y1yglXK3YD1j3P3bY2e7/uMbnhat60yLATpOaOPIZC8ZIlo+sHDaHs5S8/AOgxqAcS460HJLsmiKkH3ttqr+wEtbat3WLP9/bbeXH+Hc9HDfa2CqM1wMaP7Xn1Y/tZ0yUDS63pQf2KrekdO9sif29vbvVtRpFTp7i1SKiLvyXJOHeEnSLAmh0kqF2d/Suo3h/62lva2RP11HPXU9uF7JaqekDq2zWBXz0g2TVBoOsDku81gpjrA87nZ/d9xTvthqsbZ2W3H251rxGEPH18nM/tsdcE/JcHAHSfhAZGLr/8cg0fPlySdNlll/X6AZCuuJ3hj370I+2zzz6aPXt2oO0sXrxYc+fO1aRJk9Ta2qof/OAHOvroo/XGG29EfpcUAAD0TNQDAAAgVfWARE0AAEBPlPDASIcrrrgiXW3JuNWrV2vQoEHWfV/84he1995768UXX0x4O48++qg1vWDBAlVXV2vZsmU64ogjUtJWAACQHtQDAAAgVfWARE0AAEBPlNDAiNeTTz7pO783d+qjRo3q9P59991X++677y5vt66uTpLUv3//Xd4GAADoHtQDAAAgXfWARE0AAEBPEHhgZNq0aV3+lFYoFFJrq//vL2ebcDisCy+8UIcddpjGjx/f5XLNzc1qbm6OTNfX13dH8wAAQDegHgAAAFJiNQH1AAAA6Rd4YESK/a1NdG3u3Llavny5nn76ad/lrr76as2bN6+bWhVMOGw/3m9+EA1IdQM/dzY0W9MqcKLGNtvBbCryPAU3Ndnzdiu3Jtu22vObS/Ijf28psp/KbkB6abE93w1fz8+NrpDnBMbmOhtzp73ix+8kns/TR6N8ACAr9fV6QLJrgph6INfp1Bpa7OkWO9RUntBzFdoh5ua9Oms6VF5orzu8IvJn2VC7lsj3hrpLGlRlh7qWFeVb095jqmu0a5hmbxslVZTa56fJCWsvLIgeR6lThxQ4Qe25MYHq0el4dXgy5UO84FogVXiuIZslUhP0lXpAcmqCINcHJN9rBO71gR0ldh/eXGpPt7RGaw03XD0/z25XvnNNwJ3vLWvc43UvF/D+BgA9V078RWyrV6+2bq+88op+8IMfKDc3V3fddVc62thrnXfeeXrwwQf1xBNPRMLru3LppZeqrq4ucluzZk03tRIAAKQT9QAAAJASrwmoBwAASL/A3xjp7Hc2J0yYoMWLF+v666/Xl770pZQ0rDczxuj888/Xfffdp0WLFmnMmDFx1yksLFRhYWHc5QAAQO9APQAAAKTgNQH1AAAA6bdLP6XlZYzRypUrtWrVKm3dujUFTer95s6dqzvuuEP333+/ysvLtW7dOklSZWWliouLM9w6AADQHagHAACARE0AAEBPFHhgJDc3t8t5NTU1STWmr7jpppsktQfVe82fP19z5szp/gYBAIBuRz0AAAAkagIAAHqiwAMjXQU+lpWV6Ve/+lXSDeoL+lo4/dZtdiDa2i3RkLOmBnte6w47aDTPCRdtLXGecmsaon8XOYNum3dYk6HBpdb0Tk8I6racbda8cid4rXG7HfJakGfvK1wSDWMtyrcfPzeM3RgnXM2brmbcsFTZ0zLO/K6T2AilBIDeLZvqAcmuCdx6ILfY7v/b6pxOzT1XOZ6+d8N2a1ZoRIW9rFNreLfVuHKjNatoVJU1vdZpp9vXllZEf8akqMDeT47dLLU5YbRtYTtQvqI0Wmu0tdnz8p26pDC/6xDYXKcuyQnZ+zVxCoaQZ3k3MDa+rpenTkEQPF+6D58peoa+VBMEqQckuyYIdH1A8r1G4Hd9QJI2ramzpnM9tUVOjhuYbk/3Kytw5tvNCHn64pDz2IadvtIN9g2F3OdCdHlerwDQvQIPjMyfP9+aDoVCqq6uVm1trfr165eyhgEAAAAAAAAAAKRa4IGR2bNnp6MdAAAAAAAAAAAAaRd4YOTPf/5zwsueccYZQTcPAAAAAAAAAACQNoEHRubMmeObi9AhFAoxMAIAAAAAAAAAAHqUwAMjHfpSeBhs7kP77tp6a7q8OBpsvsMJOMstsMPRmlfYoadyQtBV5glJd59Sdc12u5xpDSyO7sdZ9eNVm63prYPsYLZB/ex2D/fMr64qtua54euxogOFMaFscccQuw5eAwAgk4LUA5JdE8TUA69vsjfWYoePq8TellUvuN1wq7Nu0w57ujC67/whZdYs4wSkN9fb65YMKLGmvTVAqxOY3t8JZi11Aubd+qGqNBrknusUDDHVgFNAeAPX89xiI2bdmHusKb/Vkwl5jffRgABZIDN47SFZydQDkl0TBLo+IPleI/C7PiBJO8NF1vQmT7u3Oftt9ATES1Jzi10PDKy0t1Vihcjb/b17+SB4GHuUMfa6vJ4BILXiXfGN8eCDD6qkpEQ/+tGP9Oqrr+rVV1/Vj3/8Y5WVlenBBx/U6tWrtXr1ar377rvpaC8AAAAAAAAAAMAuC/yNkauvvlojR47UlVdeGblv/Pjx+vvf/66f/exnevrpp1PaQAAAAAAAAAAAgFQJPDDy4osvKi8vT2+99Zb23ntvSdKKFSv0wQcfaPXq1SlvIAAAAAAAAAAAQKoEHhgZO3as3nzzTU2YMEE1NTWS2gdG2tratO+++6a8gQAAAAAAAAAAAKkSeGDk+uuv1wknnKBt27bp9ddfj9xfWlqq66+/PqWNQ2ZsabRDzDbU2cGkjU3RoLLW5jZrXvPm7fbGnJAyNdmhZmrwBLMV2kGtKnWC13KdpDFPRlmOkyRaUGoHog6ostvhhqfl50Xjdpqa7Ta6AamhfLudOTnesLR4aWhBA1MBAMiMIPWAZNcEMfWAE2qudY32dIMd1GrVBE6oa0xwe54TmecJVG0tskvdIifkvaCs0JouLLLnN3gCZCucsPXNTrhsvVPjlDh1zQ7P+alyg9ud/RbkuUGu0QIh7KTgxgS1h9ygVr/iIib23WfZ9NUpbrBvvP34Bb1TSwFAaiVTD0hOTRDk+oDkf43AvT6w096vWu16wdsf5hd03c9KUjhsdzQ7W+xt5+V03dmEQs62Yy5jdH1dg/4PALpX4IGRI488Uu+8845+//vf64033pDUnjHyzW9+U4MHD055AwEAAAAAAAAAAFIl8MCIJA0ePFhXXXVVqtsCAAAAAAAAAACQVgkNjFx55ZUaPny4zjrrLF155ZW+y1522WUpaRgAAAAAAAAAAECqJTQwcsUVV2jy5Mk666yzdMUVV/j+VjEDIwAAAAAAAAAAoKdKaGBk5MiRGjJkSORv/xBH9DZugNfbH221pt1gsTZPEJlxAs1iEr+2OeFpbqD6Dk/YmhuuusMJYjPOtj3Lt21tsmY1bnam1zdY0xtH9bOm+/crjvw91PO3JLW22Seo1GlnoScg1Q1Lzcu1p3OcfNhgr6Rdf93xkgUAxJNMPSA5NUHQesAJarUC1d15RU4Qaz87yDXk6adzC+1S161hc5x+2zhh5Lme+Y1OXZLnpKmWOPty64ftzZ5Q+Da7fnLrBbed3m25tUSue4cjJ9R1WLtbHrgPmzttfAJigwao7+qy8ZZPph0AgHbe99Kk6gHJfiMOcn1A8r9G4F4fKC+0p512bP84ek2g1dlP21Cn/3frBeeYcz39ttuHu8HtMbWHuu6o6LIAoHslNDDy3nvvdfo3AAAAAAAAAABAb+L/T8wS1NbWposuukgXX3xxKjYHAAAAAAAAAACQFikZGGltbdW1116ra6+9NhWbAwAAAAAAAAAASIuUDIwAAAAAAAAAAAD0BglljKBvW+8ElzfttENOdzqhZTu27oj83bLdCU9zg9bc6dICe9obkLZpuzPPWbbR2VddtB3qbwemq9Ae88vNs4NaW7a3WNObPX+3OYGoO5zzMaDSDnkd4DkGN5RNTuBprpMIGrO8J0AuJgBVboib4ogu4AaRxl2T1DcAyDrJ1AOSUxMErQfKnGnvtvvb/W5MPbDBrh9MfrQGaC2xQ1tbN9n1wXYn1LWkutSa3tnQ7JlXZs0rrrBDXlucYyzIt/dV4KlFykuc43XUbWu2pvM9IfDlTpud/HgZp9MPyw19jYrt750AXSfY1q8+6Cm1Q09pBwD0Zt6aIKl6QLJrgCDXByT/awR+1wek2GsEng6wbacdvr59o72fj+01Vd9kXz+o94TIV/ez99OvzD6Ggny7b813wtq9k26fHf8aAJ/5ASAZfGMEAAAAAAAAAABkjYS/MZKbmxt/IQAAAAAAAAAAgB4s4YER92v5AAAAAAAAAAAAvU3CAyOzZ89OZzsAAAAAAAAAAADSLuGBkfnz56ezHehGO1vs8LQPP2m0pt0vBzU4QWMFpdHQzx2bnTC0TXZwqwaWOBuzw0S1Ixp6FhpZabdjnd2umGC2XE9amBOmrmL7qd22w57fusOeX+gJectzwtDawnZA3HZnW97wtHLncN08s5CzbSebXSHrDv80tHhf4gq5G/dfOtC2dxUBbwDQs3hrgmTqAcmpCYLWA83OznYrj/79sVMPFDg/7+r0rfK20wmEjQl5d4Jbt6939tUvGvy+3enEWnfYwa25Tth6Tr7dzo8+boj8XeoEtw/rb58fN7i9srTrOmWHE4qbn9d16Hv7dHS+E4GrUJzQV+9zwi8AtvP5AICeyu8aQVL1gGTXBAGuD0hxrhH4XR+QYq8RFEYPpK3A7itNiX2QO511m52+1RtI3+CEzZcU2tcacnPsduU4n9O9c3OcZWMuCSRx/cDlPq702wCyEeHrAAAAAAAAAAAgazAwAgAAAAAAAAAAsgYDIwAAAAAAAAAAIGswMAIAAAAAAAAAALJGwuHr6N28wVofO2Fo4bCdutXkhHi6GVyNnsCzcLMTjuYNS5Vk3DA1J5hNOdGxObO5yX/ZAufp2uqJDC12lo2THt6yzQ5T21EQ3XejE8RWWuj/Mgl79hWzWzc7LW6gWXSBuNtyZ/tuO31JaoS0AUDv4fYtH22K1gTJ1AOSXRMErgfczsQb1FrhhKs6oeZqcw7Ku20nLDXkrJtfku87HfIEueYV2fP6VxZZ01VuCKwjzw2F9ch1AtWLC+12eoNb3cfQ3a4btu6e2p2e+qnQCXmPV3u4mbB+4pRivtw2ExALAKnlVw9Idk2QTD0g2TVBkOsDUpxrBH7XB+JsO8fpd1ud0Pd8p08vcOqJgrzoWch12tzitCNUZJ+xmDB2z7Tbv8Xvd7tegL4SAOJLaGDkgw8+SHiDI0eO3OXGAAAAAAAAAAAApFNCAyNjxoxJaGOhUEitra3xFwQAAAAAAAAAAMiAhAZGTDLfhQcAAAAAAAAAAOghEhoYmT9/fuTvuro6/fCHP9SkSZP0hS98QZJ033336bnnntNPfvKT9LQSAAAAAAAAAAAgBRIaGJk9e3bk79NPP10DBgzQ448/rtCnaU7f+MY3NHbsWC1ZsiQ9rUTStjRGQ842O4Fn25xwtOYWO1zNDWPN9wSdh51lY1TYwaTGXd4bTOYEgKrECTGt22FPe5ff5vyEW4ETWlpqtyPfCWLL8wSs72y227i50T5fYdnnY2dL9BjCzrerQqFCe7rATkBz8lHlPQOxYWn+6Wn+waRx0lSTEO8LZd52EJ4KAJm1xenTvNPJ1ANSnJrArQfcgNSdTj9eFO2XQ+V2X2q2OEGsbqh5s2fbTr9jnCD3sFN7NNfZx5DjqSd2bLHrkDYnjHbzVqddTic3eEBJ5O/yYrsEb3W25Ya8tuVGD6QtHHaWtbeV4yS15uV0HfrqPKQxIa+hFHbUyWyKegEAUsuvHpDsmiCt9YDf9QHJ/xqB3/UBSdrmbNvT7pwhZdaswgq71sgrsvvW5ha7Xd6uOPYagL3bllantnD7NE+fHzPPucOdHQqZLucG+ZwOANkqJ/4itoULF2rHjh3asSPaCe3cuVM7duzQww8/nNLGAQAAAAAAAAAApFJC3xjxqqqq0tq1azVx4kTNnDlTkvSvf/1LGzZs0NChQ1PeQAAAAAAAAAAAgFQJPDByySWX6IILLtA777yjVatWSYqGs19yySWpbR0AAAAAAAAAAEAKBf4prfPPP1/333+/Dj/8cFVVVamqqkqHH364Fi5cqG9961vpaCMAAAAAAAAAAEBKBP7GiCQdf/zxOv7441PdFqRQY1OLNf3e+obI361OoFlMWJizrWYn1Kx1R3Tb4Z1dh5RKsQGgKrSfcqYguu9Qrh2I2tbkBLE6gWhW2GqbcwxOaKmJkzzmnZ+Xbx9DkXNMBbn2tosKo/PdIDo3qC7PWTcnxzlf1unqnWlofiFuBLwBQPfyqwckuyZIph6Q7JoglB+nHnD61phpT3cZUw84Ia8qcP6dj7fOyfH/N0BugHooxw0ujZ4T49QaDe9vsabznZD4wio7YHbN+1sjf5f2L7bmVTvL5jh5sjutx8k+/qZmp9bYvtOariy166tCz2OT43TM7sOU69Qt3tmxfbp/Jx8vBNbaEvUCAKRUkHpAsmuCZOoBya4JglwfkOJcI/C7PiDFXCPwzm91agtjmqzpFud8tZTY7fi4LXq+mpzP/Dt22tuucPrh/uV2n19soucnP8+uh5zqKLbf9vxtB7F3JvFwdvphANki8DdGnnzySd8b2j355JM6/vjjNWzYMIVCIS1cuDDTTQIAAN2MegAAAFAPAADQ8wT+xsi0adMU6mL4OBQKqbW1tdN52Wbbtm2aOHGizjrrLH3hC1/IdHMAAEAGUA8AAADqAQAAep5d+imteD9LBGnWrFmaNWtWppsBAAAyiHoAAABQDwAA0PMEHhhZvXq1NV1XV6e//e1v+vnPf6477rgjZQ3LNs3NzWpubo5M19fXZ7A1AAAgE6gHAAAA9QAAAOkXeGBk1KhRMfdNmDBBixcv1vXXX68vfelLKWlYtrn66qs1b968hJd3Q763N9s/YbZ6nR2mVuwJCK9vtcPBWp1QMne6sNIOB7PmVXQ9r7N2tjohZjmekPQWJyw0v8wOKQu32YFwbTs8x5HbdViqJJkWezrsHKN3W62F9rncnuefPOYNphtYaYep5jqhr27WXGzi2a6nnPkHpKUvPY1gNgBInaD1gGT3tUHqAcmuCZKpByT/miBIPeDOz3NCS92+0w1QdYPf7Zl2p5XrhL6bcNiZHy2Vw04wbVH/Emu6oNQORc93AmWrPMdRkG8fb5HTZjd8tcBzfgqcc1XmhNHnOYHpeU6NlOcpRnKcOiU3bvpg152+Ww+4JQ71AgAkLtl6QLJrgiD1gGTXAJmsB/yuEfheH5Biw9idftxqV6u9X9NmtyvX6ZfbPNuqd9rocvvlkJrt6fJCa641zzkfIaefNt7ONW6/m/i1h3g/EkOfDqCvCBy+7jLGaMWKFVq1apVefPHFVLQpK1166aWqq6uL3NasWZPpJgEAgG5GPQAAAKgHAABIv8DfGMnN7fpf4dXU1CTVmGxWWFiowsLC+AsCAIA+i3oAAABQDwAAkH6BB0a6Cl4vKyvTr371q6QbBAAAAAAAAAAAkC6BB0bmz59vTYdCIVVXV6u2tlb9+vVLWcN6u8bGRr3zzjuR6dWrV+uVV15R//79NXLkyAy2DAAAdBfqAQAAQD0AAEDPEzJdfQUESVm0aJGOPPLImPtnz56tBQsWxF2/vr5elZWVWr95iyoqKiRJLZ6Ar8YddhjYhq1N1nSREybqDV7b5oSUtjlBo3Xb7G1v3LrDmi4ujo6n5TtBYjt22oFnYefp5QaAbvfsyzjhaS1OEFu4xZ6/syEaWpaT7x+XY9oSf5qH3GDWInv8MM8JOS2qiobLlTvz+jsB8sMGllrTlU6gbIEn1C3XSWrPcaedwDO33da8Lud0rOs7N87aiSOkDcCuqq+v1+D+/VRXVxfpF3uDdNcDkl0TBKkHJLsmSKYekOyaIJl6QLJrgrj1QKMdeprrUxO49UBsqKndrrAnjNZdN7yu0d64GxJf4ASbF0VrhIJy++dRivoVW9MVTv3grSfceqDEqVP6lTnbLnAeJ58gd7euc2sRux/3m5dc+Hpyn078w2WpRYDejXogsXpAsmuCIPWAZNcEydQDkl0TJFMPSHZN4Hd9QIpzjcDJYXdD4YOkjxc4fbYbTl9abs93++nqqmgN0N+pD4oL7XPr9tt5nn7avR4QOy17WvKd7y99nSn9NIBEpKoeCPyNEUlauXKlrr766kjY+qRJk/T9739fe+211y43pK+ZNm1alz87BgAAsgP1AAAAoB4AAKDnCTwwsnz5ch122GFqbGyMdOxvvPGG7r33Xj3zzDPad999U95IAAAAAAAAAACAVPD//aFO/PjHP1ZDQ4NKS0s1a9YszZo1S6Wlpaqvr9dll12WjjYCAAAAAAAAAACkROBvjDz55JMqLy/XG2+8od12202S9OGHH2rffffV4sWLU95AAAAAAAAAAACAVAk8MNLY2Kg99tgjMigiScOHD9fw4cP1zjvvpLRxsHkD0txwMG9gV2fzvcGblaX2vC1OSFlhvh3MNqR/19t2fybVDVNz29HcYoexhjzt3uHMa9huB681O+FqrQNKovPq7QC4tmZnP054qHHD1Tyz3ZAyd9k2J6gu7Gl3kxMet9nJZXW37Z6PgRXRoDb3ccg1TgqZbyCqs684QWv+Aan+IaZBdOfP6hLaBqCvcgNTvX1tkHpAsmuCZOoByX6PT6YekOyaIG494Gyr2RMK2+bMk5OP7nZxOW6oqSf01A1qzxtaLj9uKLx3225d0uqG4Dr78oatljlh6zud87HJqYn8wtfdgNzyEidA1gmuzQl5Q17V5bzOxM7ueltdLxl/W/HqFL9ahNoBQG/iVw9Idk0QpB6Q7JogmXpAsmuCZOoBya4J/K4PSHGuEbh9WJvdrlwnrD7PCUH3BrvnOucyz+k73b621QmU/6SuKbpd5zdd2pzzVey0q9Aznees7G7L/bkY45yExHvS9rWtdVPYfxr3ukcPRL0A9B2Bf0pr5MiRWrFiha6//npt3LhRGzdu1O9+9zu99dZbGjlyZDraCAAAAAAAAAAAkBKBB0ZOOeUUhcNhXXjhhRo8eLAGDx6sb3/725Kkr3zlKylvIAAAAAAAAAAAQKrsUvj6UUcdJWOMdTvqqKP0ox/9KB1tBAAAAAAAAAAASInAGSNFRUV67LHHtGjRIr3wwguSpEmTJmnatGmpbhsAAAAAAAAAAEBKBR4Y6TBt2jQGQ7pZWXF+5G8TkxwZL/0punyLEyxW4dmuJLU6AV9+W3ZDp9xMc7eZbru9YWJusFhzix0mt2Nn18FrddvtgFM3iNQNOHPPnjcELiZ83Q2QdaZz3VQzH247/cLVqsoKrXmFThBrfp4brma3O9cKSLXn5cRJMQ11PUtBw9j9gsmCZpYFCTlLbdB7309XI0AO6D3KnH7b7qcSrwckuyZIph6Q7PeRZOoBdzpIPSBJWwdE+9qdrXb/3+bUA247g2gL29ty64FQPztA1q1F/LhBty2edbc5Ybs7nJrHrS0KdtjLe4Na3frADbl1Q15Lizy1qNvmOHVJXq4b5K6Exeuj3NrMWjfx3aR8bd8t0+8CSJJ/PSD5v4d1XQ9Idk2QTD0g2X1tMvWAZNcE8eoB97O3N6zdrQfilQOxH5+j97jHEPO5PMe9vmBvq8DTP7a1+bfE7bfjNjxNgvVhfa/DS+W1BuoBILMSGhiZPn16QhsLhUJ6/PHHk2oQAAAAAAAAAABAuiQ0MLJo0SKFQqFO/gWCLWb0GgAAAAAAAAAAoAdJaGDkjDPOYNADAAAAAAAAAAD0egkNjCxYsCDNzQAAAAAAAAAAAEi/hMPX33vvPT355JOqqalRbW2tNW/JkiVauXKljjjiCI0ePTrVbcSn7NCuwLHVnu04s/ITDw9PVkzYms88N0nMDV5r9QSTueGqLa12EJu7rrsr78/ExQuEc3m37S7qhoG60+7yRZ6wVTekLcdJU41plttuz+rusyUmls9tl/cbYs7CQcPY/U5f4Mwyzwrd+yW2XU9X6y3ftfN7nPjCoNR7Hsm+K5Uhh72d2z8Ee366gaCeiR5SD8TOT7wekOyaoKXNP3zd5ddPu/WAu6xbi7jHaIXTx0l9d4/Ju7wb4u6+R7vnx92Xd9pdd+PWJmu6X0WhNb3NE+ReWuR8jCiyQ4Dd56nbbm8Ye577nHYa1uoG24bcGinx14B/n8Z7PYDeI231gNRtNUGwesBeIkg9INk1Qbzw9ZhQeLdf9rl+4NYHbp/ld43A3VZb2G5nc4t9ncPbTvd85DkPasz1hVDXhUps2LxzR9y63LuCvXAyny27s5furs/AyX3GoW7pC7jeklkJ93bXXHONzjzzTLW0tMTM27Ztm84880xdc801KW0cAAAAAAAAAABAKiU8MPLEE0+ooqJChx9+eMy8o446SlVVVXr88cdT2jgAAAAAAAAAAIBUSnhg5MMPP9TIkSO7nD9ixAh99NFHKWkUAAAAAAAAAABAOiQ8MJKXl6f3339f4XDsbzO3tbXpvffeU35+fidrAgAAAAAAAAAA9AwJh6/vs88+euGFF/TDH/5QV199tTXvxz/+serr63XIIYekvIFIvdhgn+5L+gkWKmQvnJdrzy30jMOV7nKLAAC9AaF06WGf195fD0jZVxO4AbHx2HmzXYfNd8b7uDU02bmDLW1uUK39j6ncgPQdLdH5RTEhv/5PkBxn8ZBn+Xg57CE3uD1kzfRtRbwa2u95HZNbG+Bhi/966Z7XbrLvw8kFzKauHV5BnvNAX5apawTBX2PRFXpLPZCq9z6J9yQASLWEB0ZOOeUUPf/88/rFL36hf/7zn5oyZYpCoZCefvppvfzyywqFQvryl7+czrYCAAAAAAAAAAAkJeGBkblz5+qvf/2rXnnlFf33v//Vf//738g8Y4wOOOAAzZ07Ny2NBAAAAAAAAAAASIWEM0YKCwv1n//8R6eeeqpyc3NljJExRrm5ufrqV7+qf//73yooKEhnWwEAAAAAAAAAAJKS8DdGJKmqqkq33367brrpJq1cuVLGGNXU1KiioiJd7QMAAAAAAAAAAEiZQAMjHSoqKnTwwQenui0AAAAAAnDDxOOxw2p3PcW1X1mhNd0WNr7Tblh7jrpOo83N8Q81jw1FD3W5rCvIEce00LkjFLLvCIe989xV4+3Z3Vuok78SXTdx8bbtPY7YAOGYSPkk95aYVAYZ96R9+Yl5PmWoXQQ/A8HxugGAnivhn9ICAAAAAAAAAADo7RgYAQAAAAAAAAAAWYOBEQAAAAAAAAAAkDUYGAEAAAAAAAAAAFmDgREAAAAAAAAAAJA18jLdAAAAAADdr6U1bE3n5dr/ZioU6nrd1jZ73Rxn4dwce7p/WYG97zYT+dsYIz/utpORk9P1tsJh/3a43GZ7j8PI3k9I/tv2O8R45yeUwvMTsyffXRufqYS2HhHvCLxrpu5o/c979/JvSJynQLA9ObsKsu0gy8Y7t+62es5jAQAAsgXfGAEAAAAAAAAAAFmDgREAAAAAAAAAAJA1GBgBAAAAAAAAAABZg4ERAAAAAAAAAACQNQhfBwAAALJQft6u/xspN6jdDVL2yThv33eudwF7ZTdM3N122LkjSGZzTGh8TvQ43P26YdDuftysdnt9J5g8TtB07Hzj+TuF4epuYHxMIHooznw/u97OeO2wl43TijjNsB6lHhJqnkh0faL7jrff7go9NybYhhM9X6l8zAAAQHbjGyMAAAAAAAAAACBrMDACAAAAAAAAAACyBgMjAAAAAAAAAAAgazAwAgAAAAAAAAAAsgYDI2l0ww03aPTo0SoqKlJtba2ef/75TDcJAAB0M+oBZINQyL4FWz5k3eJtOzcnZN1yAtwK8nOtW15uqMtbvP34rZuXm2Pd8vPsW26OfXOX987LCYV8b247rTbHLCvn5rbF3UZsW7u++bfFvrntcNutXb6F5H/zMgFvLmu+sW/dybtf9/US75bGVgW6GZP4rTejJgAAoOdgYCRN7r77bl100UW6/PLL9dJLL2nixImaOXOmNmzYkOmmAQCAbkI9AAAAJGoCAAB6GgZG0uQ3v/mNzjnnHJ155pkaN26c/u///k8lJSW67bbbMt00AADQTagHAACARE0AAEBPw8BIGuzcuVPLli3TjBkzIvfl5ORoxowZeu655zLYMgAA0F2oBwAAgERNAABAT5SX6Qb0RRs3blRbW5sGDx5s3T948GC99dZbna7T3Nys5ubmyHRdXZ0kqaG+Pn0NBQCgl+joD3vTb4tTDwDoSirfyvxyImL3496R1pAJH/4noLve6oPuprOMkq7mZUp6c0PSJ9HHvKGh99UDUvCagHoAAICuper6AAMjPcTVV1+tefPmxdy/x+hRGWgNAAA9U0NDgyorKzPdjLShHgAAID7qAQAAkGw9wMBIGgwcOFC5ublav369df/69es1ZMiQTte59NJLddFFF0Wmw+GwNm/erPz8fI0cOVJr1qxRRUVFWtvd09TX12vEiBEcO8eeNTh2jp1j75oxRg0NDRo2bFg3tS551AOpwWuEY+fYswfHzrH3xXpACl4TUA/E4jXCsXPs2SObj13K7uNP9NhTVQ8wMJIGBQUFOuigg/T444/rpJNOktReyDz++OM677zzOl2nsLBQhYWF1n1VVVWq//SrQRUVFVn3YujAsXPs2YZj59izTaLH3tv+ZSj1QGpx7Bx7tuHYOfZs01frASl4TUA90DWOnWPPNhx7dh67lN3Hn8ixp6IeYGAkTS666CLNnj1bBx98sA455BBde+212rZtm84888xMNw0AAHQT6gEAACBREwAA0NMwMJImX/7yl/XJJ5/osssu07p167T//vvr0UcfjQlbAwAAfRf1AAAAkKgJAADoaRgYSaPzzjuvy5/KSFRhYaEuv/zymK/RZgOOnWPPNhw7x55tsuXYqQeSw7Fz7NmGY+fYs002HXuyNUE2nSsXx86xZxuOPTuPXcru4+/uYw8ZY0y37AkAAAAAAAAAACDDcjLdAAAAAAAAAAAAgO7CwAgAAAAAAAAAAMgaDIwAAAAAAAAAAICswcAIAAAAAAAAAADIGgyM9GA33HCDRo8eraKiItXW1ur555/PdJOSdsUVVygUClm3vffeOzJ/x44dmjt3rgYMGKCysjJ98Ytf1Pr1661tfPDBBzruuONUUlKi6upqffe731Vra2t3H0pcTz75pI4//ngNGzZMoVBICxcutOYbY3TZZZdp6NChKi4u1owZM/T2229by2zevFmnnXaaKioqVFVVpbPPPluNjY3WMq+++qqmTJmioqIijRgxQr/4xS/SfWhxxTv2OXPmxDwPjjnmGGuZ3njsV199tSZNmqTy8nJVV1frpJNO0ooVK6xlUvUcX7RokQ488EAVFhZqjz320IIFC9J9eHElcvzTpk2LeezPPfdca5neePw33XSTJkyYoIqKClVUVGjy5Ml65JFHIvP78uMe79j76mPenagHqAd6Y58oZW89IGV3TUA9QD1APZA+fa0moB6Ioh6gHuhrfQP1APVAr6gHDHqku+66yxQUFJjbbrvNvP766+acc84xVVVVZv369ZluWlIuv/xys++++5q1a9dGbp988klk/rnnnmtGjBhhHn/8cfPiiy+aQw891HzmM5+JzG9tbTXjx483M2bMMC+//LJ5+OGHzcCBA82ll16aicPx9fDDD5sf/vCH5t577zWSzH333WfNv+aaa0xlZaVZuHCh+e9//2tOOOEEM2bMGNPU1BRZ5phjjjETJ040S5YsMU899ZTZY489zKmnnhqZX1dXZwYPHmxOO+00s3z5cnPnnXea4uJic/PNN3fXYXYq3rHPnj3bHHPMMdbzYPPmzdYyvfHYZ86caebPn2+WL19uXnnlFXPssceakSNHmsbGxsgyqXiOv/vuu6akpMRcdNFF5o033jDXX3+9yc3NNY8++mi3Hq8rkeOfOnWqOeecc6zHvq6uLjK/tx7/Aw88YB566CGzcuVKs2LFCvODH/zA5Ofnm+XLlxtj+vbjHu/Y++pj3l2oB6gHjOmdfaIx2VsPGJPdNQH1APUA9UB69MWagHoginqAeqCv9Q3UA9QDvaEeYGCkhzrkkEPM3LlzI9NtbW1m2LBh5uqrr85gq5J3+eWXm4kTJ3Y6b+vWrSY/P9/8/e9/j9z35ptvGknmueeeM8a0d6g5OTlm3bp1kWVuuukmU1FRYZqbm9Pa9mS4nX84HDZDhgwxv/zlLyP3bd261RQWFpo777zTGGPMG2+8YSSZF154IbLMI488YkKhkPnoo4+MMcbceOONpl+/ftaxX3LJJaampibNR5S4rgqfE088sct1+sqxb9iwwUgyixcvNsak7jn+ve99z+y7777Wvr785S+bmTNnpvuQAnGP35j2TvCCCy7ocp2+dPz9+vUzf/zjH7PucTcmeuzGZNdjng7UA+2oB3p/n5jN9YAx2V0TUA9QDxiTXY95uvTFmoB6oB31APVANvQN1APUA8b0vMecn9LqgXbu3Klly5ZpxowZkftycnI0Y8YMPffccxlsWWq8/fbbGjZsmHbffXeddtpp+uCDDyRJy5YtU0tLi3Xce++9t0aOHBk57ueee0777befBg8eHFlm5syZqq+v1+uvv969B5KE1atXa926ddaxVlZWqra21jrWqqoqHXzwwZFlZsyYoZycHC1dujSyzBFHHKGCgoLIMjNnztSKFSu0ZcuWbjqaXbNo0SJVV1erpqZG3/jGN7Rp06bIvL5y7HV1dZKk/v37S0rdc/y5556zttGxTE97f3CPv8Ptt9+ugQMHavz48br00ku1ffv2yLy+cPxtbW266667tG3bNk2ePDmrHnf32Dv09cc8XagHqAekvtMndiUb6gEpu2sC6gHqgQ59/TFPp75cE1APUA9I1APZ0DdQD1APdOhJj3le4DWQdhs3blRbW5v1JJCkwYMH66233spQq1KjtrZWCxYsUE1NjdauXat58+ZpypQpWr58udatW6eCggJVVVVZ6wwePFjr1q2TJK1bt67T89Ixr7foaGtnx+I91urqamt+Xl6e+vfvby0zZsyYmG10zOvXr19a2p+sY445Rl/4whc0ZswYrVq1Sj/4wQ80a9YsPffcc8rNze0Txx4Oh3XhhRfqsMMO0/jx4yPtSsVzvKtl6uvr1dTUpOLi4nQcUiCdHb8kffWrX9WoUaM0bNgwvfrqq7rkkku0YsUK3XvvvZJ69/G/9tprmjx5snbs2KGysjLdd999GjdunF555ZU+/7h3dexS337M0416oMpah3ogqrf1iV3JhnpAyu6agHqAeoB6IDX6ak1APdCOeoB6oC/3DRL1APVAz60HGBhBt5o1a1bk7wkTJqi2tlajRo3S3/72t4y/UaP7fOUrX4n8vd9++2nChAkaO/b/s/ffcXZU9/3H/7nb+65WWvUOkui9id7sGFdwwcZggWucgG2My9cliQE7wfnl97ONMSbEiTEhlGBiwAaDTRMSNk2AQDQJCSEQqK2k3bu93J3fH0L3nvOevTN7pd29W17PPIjv2Zk7c2bu3DmfmdHuex9bunSpnXHGGXns2eC5+OKL7cUXX7THHnss313Ji2zb/6UvfSn9+uCDD7Zp06bZGWecYevWrbN99tlnuLs5qBYtWmQrV6605uZmu+OOO+zCCy+0Rx99NN/dGhbZtv2AAw4Y05859hz1AMzGRz1gNr5rAuoB6gHqAUShHoAZ9cB4QD1APTBS6wH+lNYINGnSJCssLLQtW7Z4P9+yZYtNnTo1T70aGnV1dbZw4UJbu3atTZ061bq7u62pqcmbx93uqVOn9rtfdk8bLXb3Neoznjp1qm3dutWb3tvbazt27Bhz+2P+/Pk2adIkW7t2rZmN/m2/5JJL7J577rFHHnnEZs6cmf75YB3j2eapqakZERcQ2ba/P8cee6yZmffZj9btLykpsX333deOPPJIu+qqq+zQQw+1q6++elx87tm2vT9j6TMfatQDTd481AMZo2lMzMVYqwfMxndNQD1APUA9MHjGS01APUA9YEY9YDa2xgbqAeqBkVwP8GBkBCopKbEjjzzSHnroofTP+vr67KGHHvL+JttY0NraauvWrbNp06bZkUceacXFxd52r1692t588830di9evNhWrVrlDYoPPPCA1dTUpH8tazSYN2+eTZ061dvWZDJpTz75pLetTU1N9swzz6Tnefjhh62vry994li8eLEtW7bMenp60vM88MADtmjRohHxq6IDtXHjRtu+fbtNmzbNzEbvtgdBYJdccondeeed9vDDD4d+lXewjvHFixd7y9g9T77PD3Hb35+VK1eamXmf/WjdftXX12ddXV1j/nPvz+5t789Y/swHG/UA9YDZ6B0T98RYqQfMxndNQD3gox6gHhgM46UmoB6gHjCjHhgrYwP1gI96YITWAznHtWNY3HbbbUFpaWnwm9/8Jnj55ZeDL33pS0FdXV2wefPmfHdtr3zjG98Ili5dGqxfvz74y1/+Epx55pnBpEmTgq1btwZBEARf/vKXg9mzZwcPP/xwsGLFimDx4sXB4sWL0+/v7e0NDjrooOC9731vsHLlyuD+++8PGhoagu9+97v52qSsWlpagueeey547rnnAjMLfvKTnwTPPfdcsGHDhiAIguDHP/5xUFdXF9x9993BCy+8EHzkIx8J5s2bF3R0dKSX8b73vS84/PDDgyeffDJ47LHHggULFgTnnXdeenpTU1MwZcqU4DOf+Uzw4osvBrfddltQUVERXH/99cO+va6obW9paQm++c1vBo8//niwfv364MEHHwyOOOKIYMGCBUFnZ2d6GaNx2//u7/4uqK2tDZYuXRps2rQp/V97e3t6nsE4xl9//fWgoqIi+Na3vhW88sorwbXXXhsUFhYG999//7Bur4rb/rVr1wZXXnllsGLFimD9+vXB3XffHcyfPz84+eST08sYrdv/ne98J3j00UeD9evXBy+88ELwne98J0gkEsGf//znIAjG9ucete1j+TMfLtQD1ANBMDrHxCAYv/VAEIzvmoB6gHqAemBojMWagHqAeoB6YOyODdQD1AOjoR7gwcgIds011wSzZ88OSkpKgmOOOSZ44okn8t2lvfbJT34ymDZtWlBSUhLMmDEj+OQnPxmsXbs2Pb2joyP4+7//+2DChAlBRUVFcM455wSbNm3ylvHGG28EZ511VlBeXh5MmjQp+MY3vhH09PQM96bEeuSRRwIzC/134YUXBkEQBH19fcE//uM/BlOmTAlKS0uDM844I1i9erW3jO3btwfnnXdeUFVVFdTU1ASf/exng5aWFm+e559/PjjxxBOD0tLSYMaMGcGPf/zj4drErKK2vb29PXjve98bNDQ0BMXFxcGcOXOCL37xi6GCfjRue3/bbGbBDTfckJ5nsI7xRx55JDjssMOCkpKSYP78+d468iVu+998883g5JNPDurr64PS0tJg3333Db71rW8Fzc3N3nJG4/Z/7nOfC+bMmROUlJQEDQ0NwRlnnJEueoJgbH/uUds+lj/z4UQ9QD0wGsfEIBi/9UAQjO+agHqAeoB6YOiMtZqAeoB6gHpg7I4N1APUA6OhHkgEQRDk/nsmAAAAAAAAAAAAow8ZIwAAAAAAAAAAYNzgwQgAAAAAAAAAABg3eDACAAAAAAAAAADGDR6MAAAAAAAAAACAcYMHIwAAAAAAAAAAYNzgwQgAAAAAAAAAABg3eDACAAAAAAAAAADGDR6MABhTli5daolEwpqamoZ93YlEwhKJhNXV1Q1o/t19TSQSdvbZZw9p3wAAGE+oBwAAAPUAgCg8GAEwap166ql26aWXej87/vjjbdOmTVZbW5uXPt1www22Zs2aAc27u6/nnnvuEPcKAICxi3oAAABQDwDIFQ9GAIwpJSUlNnXqVEskEnlZf11dnU2ePHlA8+7ua3l5+RD3CgCA8YV6AAAAUA8AiMKDEQCj0kUXXWSPPvqoXX311elfN33jjTdCvyr7m9/8xurq6uyee+6xRYsWWUVFhX384x+39vZ2u/HGG23u3Lk2YcIE++pXv2qpVCq9/K6uLvvmN79pM2bMsMrKSjv22GNt6dKlOffz+eeft9NOO82qq6utpqbGjjzySFuxYsUg7QUAAMY36gEAAEA9AGBPFOW7AwCwJ66++mpbs2aNHXTQQXbllVeamVlDQ4O98cYboXnb29vt5z//ud12223W0tJiH/3oR+2cc86xuro6++Mf/2ivv/66fexjH7MTTjjBPvnJT5qZ2SWXXGIvv/yy3XbbbTZ9+nS788477X3ve5+tWrXKFixYMOB+nn/++Xb44YfbddddZ4WFhbZy5UorLi4elH0AAMB4Rz0AAACoBwDsCR6MABiVamtrraSkxCoqKmzq1KmR8/b09Nh1111n++yzj5mZffzjH7ebbrrJtmzZYlVVVXbAAQfYaaedZo888oh98pOftDfffNNuuOEGe/PNN2369OlmZvbNb37T7r//frvhhhvsX/7lXwbczzfffNO+9a1v2X777WdmllPRBAAAolEPAAAA6gEAe4IHIwDGvIqKinTRY2Y2ZcoUmzt3rlVVVXk/27p1q5mZrVq1ylKplC1cuNBbTldXl02cODGndV922WX2hS98wW666SY788wz7ROf+ITXFwAAMDyoBwAAAPUAgN14MAJgzNNfTU0kEv3+rK+vz8zMWltbrbCw0J555hkrLCz05nOLpYG4/PLL7dOf/rTde++9dt9999kPfvADu+222+ycc87Zgy0BAAB7inoAAABQDwDYjQcjAEatkpISLxBtsBx++OGWSqVs69atdtJJJ+318hYuXGgLFy60r3/963beeefZDTfcQOEDAMAgoR4AAADUAwByVZDvDgDAnpo7d649+eST9sYbb1hjY2P6X3TsrYULF9r5559vS5Yssd/97ne2fv16e+qpp+yqq66ye++9d8DL6ejosEsuucSWLl1qGzZssL/85S/29NNP2/777z8o/QQAANQDAACAegBA7ngwAmDU+uY3v2mFhYV2wAEHWENDg7355puDtuwbbrjBlixZYt/4xjds0aJFdvbZZ9vTTz9ts2fPHvAyCgsLbfv27bZkyRJbuHChnXvuuXbWWWfZFVdcMWj9BABgvKMeAAAA1AMAcpUIgiDIdycAYCxIJBJ255132tlnn53T+y666CJramqyu+66a0j6BQAAhg/1AAAAoB4ARj5+YwQABtF5551nM2fOHNC8y5cvt6qqKrv55puHuFcAAGA4UQ8AAADqAWBk4zdGAGCQrF271sx2/YrsvHnzYufv6Oiwt99+28zMqqqqbOrUqUPaPwAAMPSoBwAAAPUAMPLxYAQAAAAAAAAAAIwb/CktAAAAAAAAAAAwbvBgBAAAAAAAAAAAjBs8GAEAAAAAAAAAAOMGD0YAAAAAAAAAAMC4wYMRAAAAAAAAAAAwbvBgBAAAAAAAAAAAjBs8GAEAAAAAAAAAAOMGD0YAAAAAAAAAAMC4wYMRAAAAAAAAAAAwbvBgBAAAAAAAAAAAjBs8GAEAAAAAAAAAAOMGD0YAAAAAAAAAAMC4wYMRAAAAAAAAAAAwbvBgBAAAAAAAAAAAjBs8GAEAAAAAAAAAAOMGD0YAAAAAAAAAAMC4wYMRAAAAAAAAAAAwbvBgBAAAAAAAAAAAjBs8GAEwZpx66qmWSCQskUjYypUr93pZl1566V4t46KLLkr356677tqrZQEAgIGhHgAAAGbUBACi8WAEwJjyxS9+0TZt2mQHHXRQzu/97Gc/a//wD/8waH25+uqrbdOmTYO2PAAAMDDUAwAAwIyaAEB2RfnuAAAMpoqKCps6dWrO70ulUnbPPffYvffeO2h9qa2ttdra2kFbHgAAGBjqAQAAYEZNACA7fmMEwIjx6quv2mmnnWZlZWW2cOFC++Mf/zgov/La0tJi559/vlVWVtq0adPspz/9aejXYP/6179acXGxHX300f0u495777Xa2lq7+eabB7xMAACQO+oBAABgRk0AYGjxYATAiPDqq6/ascceayeddJK99NJL9q//+q+2ZMkSKy4utgMOOGCvln3ZZZfZX/7yF/v9739vDzzwgC1fvtyeffZZb57f//739qEPfcgSiUTo/bfccoudd955dvPNN9v5558/4GUCAIDcUA8AAAAzagIAQ48/pQVgRLj44ovtYx/7mF155ZVmZrbPPvvY//zP/9hrr71mJSUle7zclpYWu/HGG+2WW26xM844w8zMbrjhBps+fbo33913320//elPQ++/9tpr7fvf/7794Q9/sFNOOSWnZQIAgNxQDwAAADNqAgBDjwcjAPJuw4YN9vDDD9vzzz/v/bykpMQOPfTQ0PypVMoKCwsHtOzXX3/denp67Jhjjkn/rLa21hYtWpRuv/LKK/bOO++kC5jd7rjjDtu6dav95S9/8X59diDLBAAAuaEeAAAAZtQEAIYHf0oLQN6tXLmy31+HffHFF9NFz4c//GH7+7//ezv66KPthhtuGNT1//73v7f3vOc9VlZW5v388MMPt4aGBvv1r39tQRAM6joBAICPegAAAJhREwAYHjwYAZB3BQUFlkqlLJVKpX92//33e0XPqlWrbNGiRfb000/bF77whQEve/78+VZcXGxPP/10+mfNzc22Zs2adPvuu++2j3zkI6H37rPPPvbII4/Y3XffbV/5yldyWiYAAMgN9QAAADCjJgAwPPhTWgDy7sgjj7Ti4mL73ve+ZxdffLE999xz9u1vf9vMzA499FBraWmxVCplX/va13JednV1tV144YX2rW99y+rr623y5Mn2gx/8wAoKCiyRSNjWrVttxYoV9vvf/77f9y9cuNAeeeQRO/XUU62oqMh+9rOfxS4TAADkjnoAAACYURMAGB78xgiAvJs+fbr953/+p91+++126KGH2v/+7//aF7/4RZs6dapNnjzZXnrpJTv++OP3ePk/+clPbPHixfbBD37QzjzzTDvhhBNs//33t7KyMvvDH/5gxxxzjE2aNCnr+xctWmQPP/yw3XrrrfaNb3wjdpkAACB31AMAAMCMmgDA8OA3RgCMCBdccIFdcMEF6fZll13m/YrswQcfvMfLrq6utptvvjndbmtrsyuuuMK+9KUv2d13320f/vCHQ+9ZunSp195///1ty5YtA1omAADYM9QDAADAjJoAwNDjN0YAjEgvvPDCHhU9v/zlL62qqspWrVqV/tlzzz1nt956q61bt86effZZO//8883M7CMf+YideOKJdt555+Xcv6hl7vblL3/Zqqqqcl42AADYhXoAAACYURMAGHyJIAiCfHcCANSUKVPsJz/5SbqYGIi3337bOjo6zMxs9uzZVlJSYma7CpQvfOELtnr1aispKbEjjzzSfvKTn+zVvzAZyDK3bt1qyWTSzMymTZtmlZWVe7w+AADGI+oBAABgRk0AYPDxYAQAAAAAAAAAAIwb/CktAAAAAAAAAAAwbvBgBAAAAAAAAAAAjBs8GAEAAAAAAAAAAOMGD0Ywpl177bU2d+5cKysrs2OPPdaeeuqpfHdp2C1btsw+9KEP2fTp0y2RSNhdd92V7y7lzVVXXWVHH320VVdX2+TJk+3ss8+21atX57tbw+66666zQw45xGpqaqympsYWL15s9913X767NSL8+Mc/tkQiYZdeemm+uwJgEFEP7EJNsAv1QAY1Qf+oB4Cxi5qAemA36oEM6oH+UQ+MfTwYwZj1v//7v3bZZZfZD37wA3v22Wft0EMPtb/5m7+xrVu35rtrw6qtrc0OPfRQu/baa/Pdlbx79NFH7eKLL7YnnnjCHnjgAevp6bH3vve91tbWlu+uDauZM2faj3/8Y3vmmWdsxYoVdvrpp9tHPvIRe+mll/Ldtbx6+umn7frrr7dDDjkk310BMIioBzKoCXahHsigJgijHgDGLmqCXagHdqEeyKAeCKMeGB8SQRAE+e4EMBSOPfZYO/roo+0Xv/iFmZn19fXZrFmz7Ctf+Yp95zvfyXPv8iORSNidd95pZ599dr67MiJs27bNJk+ebI8++qidfPLJ+e5OXtXX19u//du/2ec///l8dyUvWltb7YgjjrBf/vKX9qMf/cgOO+ww+9nPfpbvbgEYBNQD/aMmyKAe8I3nmoB6ABjbqAnCqAcyqAd81APUA+MBvzGCMam7u9ueeeYZO/PMM9M/KygosDPPPNMef/zxPPYMI0lzc7OZ7Rrwx6tUKmW33XabtbW12eLFi/Pdnby5+OKL7QMf+IB3zgAw+lEPYCCoB3ahJqAeAMYyagLEoR7YhXqAemA8Kcp3B4Ch0NjYaKlUyqZMmeL9fMqUKfbqq6/mqVcYSfr6+uzSSy+1E044wQ466KB8d2fYrVq1yhYvXmydnZ1WVVVld955px1wwAH57lZe3Hbbbfbss8/a008/ne+uABhk1AOIM97rATNqgt2oB4CxjZoAUagHqAd2ox4YX3gwAmBcuvjii+3FF1+0xx57LN9dyYtFixbZypUrrbm52e644w678MIL7dFHHx13hc9bb71lX/va1+yBBx6wsrKyfHcHADDMxns9YEZNYEY9AADjHfUA9YAZ9cB4xIMRjEmTJk2ywsJC27Jli/fzLVu22NSpU/PUK4wUl1xyid1zzz22bNkymzlzZr67kxclJSW27777mpnZkUceaU8//bRdffXVdv311+e5Z8PrmWeesa1bt9oRRxyR/lkqlbJly5bZL37xC+vq6rLCwsI89hDA3qAeQBTqgV2oCagHgPGAmgDZUA/sQj1APTAekTGCMamkpMSOPPJIe+ihh9I/6+vrs4ceemjc/o1EmAVBYJdccondeeed9vDDD9u8efPy3aURo6+vz7q6uvLdjWF3xhln2KpVq2zlypXp/4466ig7//zzbeXKlRQ9wChHPYD+UA9EG481AfUAMPZRE0BRD0SjHqAeGA/4jRGMWZdddpldeOGFdtRRR9kxxxxjP/vZz6ytrc0++9nP5rtrw6q1tdXWrl2bbq9fv95Wrlxp9fX1Nnv27Dz2bPhdfPHFdsstt9jdd99t1dXVtnnzZjMzq62ttfLy8jz3bvh897vftbPOOstmz55tLS0tdsstt9jSpUvtT3/6U767Nuyqq6tDf0O2srLSJk6cOG7/tiww1lAPZFAT7EI9kEFNsAv1ADA+UBPsQj2wC/VABvXALtQD4w8PRjBmffKTn7Rt27bZP/3TP9nmzZvtsMMOs/vvvz8UtjbWrVixwk477bR0+7LLLjMzswsvvNB+85vf5KlX+XHdddeZmdmpp57q/fyGG26wiy66aPg7lCdbt261JUuW2KZNm6y2ttYOOeQQ+9Of/mTvec978t01ABh01AMZ1AS7UA9kUBMAGE+oCXahHtiFeiCDegDjVSIIgiDfnQAAAAAAAAAAABgOZIwAAAAAAAAAAIBxgwcjAAAAAAAAAABg3ODBCAAAAAAAAAAAGDd4MAIAAAAAAAAAAMYNHowAAAAAAAAAAIBxgwcjAAAAAAAAAABg3ODBCMa8rq4uu/zyy62rqyvfXckr9kMG+yKDfbEL+wEY+/ieZ7AvdmE/ZLAvMtgXwNjGdzyDfbEL+yGDfZHBvhgfEkEQBPnuBDCUksmk1dbWWnNzs9XU1OS7O3nDfshgX2SwL3ZhPwBjH9/zDPbFLuyHDPZFBvsCGNv4jmewL3ZhP2SwLzLYF+MDvzECAAAAAAAAAADGDR6MAAAAAAAAAACAcaMo3x0AhtpLL71kZma33367lZeX57k3+dPR0WFm7Acz9oWLfbHL7v3Q19eX554AGCpbtmwxM853Zpz7d2M/ZLAvMnp6evLdBQBDqLu728w435lx7t+N/ZDBvsjYvS8wtpExgjFvwYIFlky22L4LFlhBQcLMzLyDPuj3ZeZnQbYpzk9jlmFBEPq5LjY9R7ZlBbvbmZ/qt9dfpr/Ovr4+27rpbZs8bYYlEgXmzRVedZblBwPoX2ZKtrOL9tNbf5aFhqbJwkPLlPkDd7/0BbZz5xabMGHyrn0R9P+e9M/7/fD6mZbrz/vbsJj3Zdt3A1t/eJ1BEFhT53arK623hCVC83jrC7Sfup5+pnv/48yfbbr7KujnZ97mBN48/v93WkHWKc7PAmu2pFVYhd16z632/ve/3xIJZ38AGPWWLFliv//DH+zAAw/ao3rALHtNMJj1wK6mnh/9N+xNPWDWf00wmPWA9K7fZfTXzz2qB2ThQ1IPuAvem3E/qh7Qzg9FPdDvcgepHggtu5+ODko9oHNktnMw6gEzs07rsk7rtJ9c/RP78pe/bCUlJQZg7LjuuuvssssusyOOPCq2HuinuetnQ1APpOf13jsI9YC8cGcZ7Hogex8zU/auHoiZvtf1wJTMNWDkmDwI437stEGoBwbUN38hOdUDu94QXs4g1QPOGr11Z79HsCf1QGhq+v/3WsqSlrR5Ntee3r7C6uvrDWMPD0Yw5s2bN89+9esb7ISTTjazwIJ3z727i5nd7d3FSf/t3SdYGUD3ZFnp10Gm/e46drXN+nafqL2fh+cL/8ztU8z7dm9F4KzXnSdqmbr8rNuW3lOhdQd97+7TdycEwe6f7Xq9638Ds77M8vRn6Xltdzu3ZTgbHv26zxmgd7djX+ew/N2vLbNdmWn27nL97cv83F933PvN+lvGrvcH6eW8+7/9/CxwpmV9X3odfZHvDdxpFlhf0PfuMbjrf/uCPgusz/qCIP2/fdZnu4etPndaen7/fbvn75Pl9Dc9ZSnbYG/aa7bWKq3S7nr0Ljv55JMHeqoBMMJdcMEFtmj/A+yb/+87tidjuKV/9u75tp/3DnRZ/Y+ZgbeO9Ok8NI7vXT3wbg/D47Izdu9tPWDW/3IHsx7YvQ6tCQa1HrB+pg2oBnBfRyw/s7NC0wa1HrCBLiPY83rArP/5BrEe2LWK/sfwwaoHzMxSlrLNtsVetdXWZyn79/++3j796U9bYWHhgM41AEa26667zv5wzz32f3f/wSLHcLPocXwQ6gHb/bPQmBke6/e0HjBnvQO5R7An9cCurZXlZ922LOuNqwd277eI8Xyv64HMBzKwewRBLq/TB8bAli/blFM9YP76c19GEF8POOsYyD2CPakHzCynewR7Ug/sOnazL6/JmuxVW2M7baftY/NtRcszVlVVNZBTDUYJMkYAADCzQiu0+TbPzrDTbLI12BmnnGGTE5PtmWeeyXfXAADAMElYwqbZVDvVTraFttD+dsnf2oSiOrvrrrvSNxkBAMDYV2d1dpwdY0fbUbbVttrE6ol2UOJA6+zszHfXMEh4MAIAgKPIimyhLbAz7DSrsWo75qhjbHpimr366qv57hoAABgmCUvYLJtpp9upNsfm2KfO+ZTVF0ywBx98MN9dAwAAw2iSTbQT7Hg7zA6xt+wtm1A+wf7rv/7Lent789017CUejAAA0I8SK7EDbH87w06zEiuxA/c/0GYnZtmGDRvy3TUAADBMCqzA5tlcO91Otak21d7/nrOsITHJnnjiiXx3DQAADJOEJWyKTbGT7SQ7wPazr33hq1ZXXGe333679fX1xS8AIxIPRgAAiFBmZXaIHWyn2snWZ4HNnzvf5ifm2ZYtW/LdNQAAMEyKrMgW2L52hp1uE2yCnbj4RJuamGqrVq3Kd9cAAMAwSVjCZtgMO9VOsX1svl34yQttQuEEu++++/iTm6MQD0YAABiASqu0I+wwO8lOsHbrsBlTZ9iixMJ8dwsAAAyjYiu2/WyRnWGnWYWV22GHHGYzEzMsmUzmu2sAAGCYFFiBzbHZdrqdajNthn3k/R+xSQUT+RPcowwPRgAAyEG1Vdscm2XFVmzv2KZ8dwcAAORBqZXabJtltVZrm22LNTU15btLAABgmBVaoc2w6TbFptgO22lL9r8g311CDory3QEAAEaLRttur9pqa7M2W2D72oqOZ/LdJQAAMMxarc3W2BrbZJttjs2xV7e8apMnT853twAAwDDqth5bZ+tsvb1hDTbJXnzxRTvwwAPz3S3kgAcjAADEaLJme9VW207bafvYfHs6ucGqq6vz3S0AADCMOqzD1tha22gbbabNsPUb1tvs2bPz3S0AADCMeq3X1tsbttbWWZ3V2eNPPW5HH310vruFPcCDEQAAsmixFltta2yLbbV5NtdeaXzFJk6cmO9uAQCAYdRl3bbW1tobtsGm2hR7+dWXbdGiRfnuFgAAGEYpS9kGe9Nes7VWYRX2p4f+ZKeffnq+u4W9wIMRAABEu7XbGnvN3rZ3bJbNtLfefsumT5+e724BAIBh1GM99rqtt9dtvdXbBFvx7Ao7/PDD890tAAAwjPqszzba27bGXrMiK7Lf3v1b+9CHPmSJRCLfXcNe4sEIAADv6rIue83W2gZ706bZNFuzdo3ts88++e4WAAAYRilL2Ru2wV6ztVZtVfbwsoftpJNOyne3AADAMAossE222VbbauuzwH71P7+yT33qU1ZYWJjvrmGQ8GAE48KDDzxgb775ppmZBcGunwXv/v/d7V2nvMx0C3bNEziNIPPG9DIyP9u1rPT87y7LfU/w7g+D3WsLzHtPkG5n3p/53yA0LbMt725HkOleEATyPmebMhsdem/Q3/oC9+eyHU4fM31z96vzXneePncbd++LzD5xd06m/5lOBrLB6X706c/9Zbs/S++UPnfnODt39zb0uRsTMZ83zdnoPp3+7hvS65Xt8JYp6wnvdGeezOfl/kwO+qzbEFiQ2da+XT8PQst5d3vc97kHo/u5Bn399L+f9wW7j8PAvP/L1n53XYEF1vfuhvSlp5sFQV/mZ977zH+HtFus1dbbGzbJJtnKF1bawQcfbADGlpUrn7Nbb/4fM9NTY3w94M6b/pmzjEx7z+sB7c/usXUw6wGnm+9uZ9Dve4P+1tffsNJPPZDZi+76/aFkr+sBZ8e7NcGg1gPuDt7d7gucnzsbtTf1gFmoJhjUeqC/dQb9vc95b671QLr7Trtv9/sGpx7YtYpwTTCY9YCZWad12uu23kqsxO7+4932vve9j38RCowxb7/99gDqgXfbzjz+qTVIt81ZRqYdXw9kZh3YPYI9qQfc1Q3kHsGe1AOh7fCGp0DW7Q8lA68Hdv9c9pEzlu11PeB8dgO+R5BzPeAu353n3WmDUQ9482U+M/dne10P6AcZc49gT+qB3Z/NQO8R7Ek9YOkp7/5vkGn3Wq9tsA3WaV32s+t+Zp///OetuLjYMLYkAvcOKTAG/eAHP7ClS5fmuxsARrg1y1bbnY/fZccdd1y+uwJgCPz2t7+1X/ziF/nuBoAR7uVlL9m1//tL+/jHP24FBQX57g6AQfbSSy/ZJZdcYn19ffEzAxi3Xlz2ok2xyfZM+7NWXl6e7+5giPBgBAAAAAAAAAAAjBv8ExgAAAAAAAAAADBu8GAEAAAAAAAAAACMGzwYAQAAAAAAAAAA4wYPRgAAAAAAAAAAwLjBgxEAAAAAAAAAADBu8GAEAAAAAAAAAACMGzwYAQAAAAAAAAAA4wYPRgAAAAAAAAAAwLjBg5EhcPnll1sikfD+22+//fLdLQAAMMyoCQAAAPUAAAAjT1G+OzBWHXjggfbggw+m20VF7GoAAMYjagIAAEA9AADAyMJIPESKiops6tSp+e4GAADIM2oCAABAPQAAwMjCg5Eh8tprr9n06dOtrKzMFi9ebFdddZXNnj076/xdXV3W1dWVbvf19dmOHTts4sSJlkgkhqPLAACMWEEQWEtLi02fPt0KCkbXXwLNpSagHgAAIDvqAeoBAAAGqx5IBEEQDGK/YGb33Xeftba22qJFi2zTpk12xRVX2Ntvv20vvviiVVdX9/ueyy+/3K644oph7ikAAKPLW2+9ZTNnzsx3NwYs15qAegAAgHjUAwAAYG/rAR6MDIOmpiabM2eO/eQnP7HPf/7z/c6j/yKkubnZZs+ebWvf2GDVNTXD1VUAAEaklmTS9p07x5qamqy2tjbf3dljcTUB9QAAANlRD1APAAAwWPUAf0prGNTV1dnChQtt7dq1WecpLS210tLS0M+ra2qshsIHAAAzs1H/5yPiagLqAQAA4lEPAACAva0HRtcf5RylWltbbd26dTZt2rR8dwUAAOQRNQEAAKAeAAAg/3gwMgS++c1v2qOPPmpvvPGG/fWvf7VzzjnHCgsL7bzzzst31wAAwDCiJgAAANQDAACMPPwprSGwceNGO++882z79u3W0NBgJ554oj3xxBPW0NCQ764BAIBhRE0AAACoBwAAGHl4MDIEbrvttnx3AQAAjADUBAAAgHoAAICRhz+lBQAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGDByMAAAAAAAAAAGDc4MEIAAAAAAAAAAAYN3gwAgAAAAAAAAAAxg0ejAAAAAAAAAAAgHGjKJeZGxsb7Y477rDly5fb2rVrrbm52WpqamzBggV20kkn2cc//nGbNGnSUPUVAAAAAAAAAABgrwzowciaNWvs8ssvt//7v/+z3t5eC4LAm75ixQq77bbb7Gtf+5p94hOfsH/6p3+yhQsXDkmHAQAAAAAAAAAA9tSAHowceOCBlkqlrLCw0I499lg75phjbM6cOVZTU2PJZNI2bNhgTz31lD399NN2yy232O23327d3d1D3XcAAAAAAAAAAICcDOjByKxZs+yyyy6zT37yk9bQ0JB1vm3bttmtt95qV1999aB1EAAAAAAAAAAAYLAM6MHI2rVrraAgPqe9oaHBvvrVr9oll1yy1x0DAAAAAAAAAAAYbPFPO8wG9FBkb+Yf63784x9bIpGwSy+9NN9dAQAAeUI9AAAAqAcAABgZBvQbI67Pfe5zWaeVl5fbYYcdZp/5zGesrKxsrzo2Vjz99NN2/fXX2yGHHJLvrgAAgDyhHgAAANQDAACMHDk/GPnNb35jiUQicp6f/exn9thjj9mECRP2uGNjQWtrq51//vn2q1/9yn70ox/luzsAACAPqAcAAAD1AAAAI0vOf/Nq9uzZVlJSYkEQ2IQJE2zChAkWBIGVlpbaxIkTLQgCe/XVV+2HP/zhUPR3VLn44ovtAx/4gJ155pn57goAAMgT6gEAAEA9AADAyJLzg5Gf/vSnVlhYaA8++KA1NjZaY2OjPfDAA5ZIJOy6666z5cuXW1FRkf3hD38Yiv6OGrfddps9++yzdtVVVw1o/q6uLksmk95/AABgdKMeAAAA1AMAAIw8OT8Y+c53vmNz5861008/Pf2zM844w+bNm2ff+9737IQTTrCTTjrJ3nrrrUHt6Gjy1ltv2de+9jW7+eabB5y1ctVVV1ltbW36v1mzZg1xLwEAwFCiHgAAANQDAACMTIkgCIJc3lBeXm69vb12zTXX2Cc+8QkzM7vzzjvt7/7u76y4uNja29vtgx/8oC1fvtyam5uHpNMj3V133WXnnHOOFRYWpn+WSqUskUhYQUGBdXV1edPMdv2LkK6urnQ7mUzarFmzbMuOnVZTUzNsfQcAYCRKJpM2pX6CNTc3j5pxkXoAAIDBRT1APQAAwGDVAzmHr5988sn2wAMP2MUXX2wXX3xx+udBENiZZ55pfX19tnLlSps/f/4ed2q0O+OMM2zVqlXezz772c/afvvtZ//v//2/UNFjZlZaWmqlpaXD1UUAADDEqAcAAAD1AAAAI1POD0b+8z//08455xx79tlnvZ8feeSR9h//8R+2YcMG+8QnPmHHHnvsoHVytKmurraDDjrI+1llZaVNnDgx9HMAADA2UQ8AAADqAQAARqacH4zMmjXLVqxYYQ8//LC99NJLZmZ20EEH2WmnnWZBEFgikbCf/vSng95RAAAAAAAAAACAvZXzg5Gbb77Zzj//fDv99NO9APbu7m779Kc/bXfcccegdnCsWLp0ab67AAAA8ox6AAAAUA8AAJB/OT8Yueiii6ywsNA+9alPpX/W3t5uH/nIR+zhhx8e1M4BAAAAAAAAAAAMppwfjKRSKVuyZIkVFBTYueeea9u3b7cPfOAD9tRTTxEOBgAAAAAAAAAARrSCXN/ws5/9zFKplF1wwQX2i1/8wk4++WR76qmnrLa21u67776h6CMAAAAAAAAAAMCgyPk3Rr761a9aVVWVfelLX7Kvfe1rFgSBzZgxw+677z476KCDhqKPAAAAAAAAAAAAg2JAD0aWLVvmtffdd1/70pe+ZP/+7/9u1dXVdtVVV9mOHTts2bJldvLJJw9JRwEAAAAAAAAAAPbWgB6MnHrqqZZIJEI/TyQS1traahdeeGG63dvbO7g9BAAAAAAAAAAAGCQD/lNaQRAMZT8AAAAAAAAAAACG3IAejKxfv36o+wEAAAAAAAAAADDkBvRgZM6cOfa9733PzjnnHDv66KOHuk8AAAAAAAAAAABDYsB/Suvaa6+1f/3Xf7WpU6fahz70ITvnnHPs9NNPt+Li4qHsHzCmhf9CXfY/Wddfzs9YM7h/sW/gCxsP+xbDR//0JMcXAIxc7il7tJ6utX7qy6Ggips1ap/oJJ13qMa/va0XR+vnDAAj1d786X2ulUanqI+cjxSjScFAZ2xsbLQ//vGP9pGPfMTuvfdeO+uss2zSpEl27rnn2q233mrNzc1D2U8AAAAAAAAAAIC9NuAHI8XFxfY3f/M39stf/tLeeuste/LJJ+0rX/mKvfLKK3b++efb5MmT7cwzz7Rrr73WtmzZMpR9BgAAAAAAAAAA2CMDfjCijj76aPvRj35kq1atstdee82uuuoq6+7utksvvdSuv/76wewjAAAAAAAAAADAoBhwxkiUffbZxy677DK77LLLbPv27bZjx47BWCwAAAAAAAAAAMCgyvnByJVXXpl1Wnl5uR1++OF25pln7lWngPEiHEqVPaUq1RcdaBYV5K7T4qLR3F4UFkQnZ2m3ombX9cYsOvx+ZwG63rh+Rr3XrC9mzdmXrUFzobbMr/0sLHB/cW/PQ+vCn4P2ec+DWGMOvZCosLXcPvPcDpCREvKmAYK5ZRHq8bT3/el/yT79XAhBBGAWXVuEz9G5nbDcZRfkWhBELEv7kcv5LPfw2L3bB1HLcruda7fcGmBvT+dR6w6FvEsz1efXV1GfeS57Uufd2+NnqER/f3K159vIkA7AzKwv7n5C1LSYgShqcnGR/4dqdF69zxG9Kn9i7HWqszAdK+LuH0Sdd3X800Xlev3s2ptrxzhuTZTr/QKtp6LGlrhtyL3eGhq5bBPGrpwfjFx++eWxFxinnHKK/fGPf7SysrI97hgAAAAAAAAAAMBg2+OMkSAIsv736KOP2r/+678OZj8BAAAAAAAAAAD2Ws4PRpYtW2bV1dX2n//5n5ZMJi2ZTNqvfvUrq6mpsXvvvdduuukmMzO7/fbbB72zAAAAAAAAAAAAeyPnByOXXHKJzZw50z73uc9ZVVWVVVVV2ec//3mbOXOmffe737Xzzz/fjj/+eFu/fv1Q9BcAAAAAAAAAAGCP5Zwxsnr1aguCwO6//3573/veZ2ZmDz74oK1duzadPVJfX28FBXv8V7qAMSuXwLNwSHeuSVC5hI36bTcAravXD87UbdDgLA0ic2cvKvT7pIFfml+USkloZ2SfNUDdX1ZxUaZdJOcn/VR0zyUS2T+3cGBX9OfWK9vU3dubddlxitxly3p7A389uR8/GeHPyZ+eS3aabH5MwFlMANxeLDvX3RG1jfEhbYMZmDo0gbr6vQ1C36eB09Oc7mvdl4mIkGC3GXf+BMayXI5/DReNCoAOf1+jgzjd+kBn1T7qeKj1gjse9qT0vf6yiwv9cVvPK9HXHQOvW3QbdF/GjYdRgelxwax9Mm5HDTxxeY9R51UV97n50/y2dlHHkqhQUw3bDa0rYt36zt7ePV9W+JjPjf/2gX8uucolyD38ucQty+fvn9iu7YXo883e7C9gtOpN6Rc0OpjcHdN0zAobeNh2aAyLGQ/DAeqZdktHj98LHcMT2ZcddW3Q3wx6zZtw3qHnws7uVOSydCe4rdB1qMxbWlSoPc3ax9C9iJix1t23uV4d9Tm1VygAXfdlTN0StW5dtu4v3QduHRc+PqL7EbWeuGEk6riNEz9G5fLp6HfAXU+u60Wucn4wcthhh9mTTz5pH/jAB6yiosISiYS1tbWZmdmxxx5rZmYvvviizZkzZ3B7CgAAAAAAAAAAsJdy/rWO66+/3qZPn25BEFhbW5u1trZaEAQ2ffp0+4//+A9bt26dHXLIIfalL31pKPoLAAAAAAAAAACwx3L+jZFDDjnE1q5da7fccou99NJLZmZ20EEH2ac//WkrLS01M7M777xzcHsJAAAAAAAAAAAwCHJ+MGJmVlZWZp/73OcGuy8AAAAAAAAAAABDakAPRm688UY7//zzragofvbe3l67+eab7cILL9zrzgFDJSpoMhRCHBPA5AWR6noigrJ0vWZ+yFIQ6F+6i+6Hrqu7JxMmpu/U7S8p8tfl9kv7HBe8pv1wQ7s6e/xg0fae3qzzmpkVFWq/LKuK0ujzU5ez7s6UH7SmIe+aeaeB6V6/NGit2A9a0/2hAfRu8FhM/lno+OrWtHFvXn/unl5/3qhAVA1D65Yg7rh+uu+PDQeLCKeNyxqOix2Ler8G5OlGRGUX6jaFc8qzn0PiA3OlHZojs6zcguzjw1ZdcWG0UeGDevzkcu4KhQt6IdGEr2Pvachi+Hj1ueOlHoM6RuUS2BgXjqzfG7efOq9uU4+EiabCJ6k9VuaOcTHnHB07dVeXOMsqKfan6b7sljGsV+s4Z+DWcTaXz1xrnFBAuuzLQj0GnDfEBZPHBdu6rfD5b8+PNT29a02oS84lnFx3bVSdGx53JYxWOu51M8fxIBHxuepxGv4qDjxQXrcht4DUgV8j9NOtrH0yC9eEsQWUN/ZGrzeXTYwLkA8FDrvXWM40/U4DI11UeLaZjGk6/ul1air7ubFHr1nlxKF1i44tudQ84XsA0WOcS8fhPjkXFCQiQuGlrWNYKEw7Yt7QNkYEgpuZFTv1hY7/xfLejm7/Pof/0fjrLdZ7MZZ9nDGLvn+gtYTOoPd9omitFXl9HPMT3df6OXX3OvsrVKdEdNKi72PEDVGh2stZWFyQe9y1aS71k3KXHcj2B0FM3bIXtMdR+0fF1YAj2YC+FZ/97Gdtzpw5dumll9qDDz5ozc3N3vRkMmmPPPKIXXbZZTZnzhx+mwQAAAAAAAAAAIxIA/qNkU996lN2++232zXXXGPXXHONmZnV1NRYdXW1tba2ph+UBEFgBQUF9qlPfWroegwAAAAAAAAAALCHBvQbI7fccoutWrXKLr74Yps0aZIFQWDNzc22ceNGa2pqsiAIbNKkSfaVr3zFVq1aZTfffPNQ9xsAAAAAAAAAACBnAw5f33///e3nP/+5/fznP7c1a9bYa6+9Zs3NzVZTU2MLFiywRYsWDWU/AQAAAAAAAAAA9tqAH4y4Fi5caAsXLhzsvgB7LC6kU4OnNVWo1wkx0/d2dPV47UIN4XICrNzAczOzshL/K6b5Q70SnuaGG2kguAYfFUvglwailRVn2hoOpqFUHRLU2uskXBXJ9sYFnun0XucHGohaWeDvHw3A1M/Cfb+GWbV1+gFnGvbkrTsUiO5vY4UEqGsovBuCp5lb7V1+P3T/qKgAyRLpRzgQzt0f/nv1OxEKuQunXKfp56B03+vs7nEdFRbXH7dbcQFe4YDY7POHwtMKon9hUvePF4K7F0HGoeWGU9xMZvDb7vs15DX7R9qvqE8iFfPmRPavkxeWOhD+ZoQ+qYhpQLxQCKccnq2dPZHTo87RcSGe+lb3/Kfnc/2q6xjf657PYs6Nep5N9el3J3Cm6bL8tp7vO3syb9BQd91eHUuixjDtc1y2drifmdddPbmNu+54GTP8ecGrZmY9KX/MzyVsVnX3+CtPRHzmuQRgh/aVnEu1RtRu9kTUPPodiBvS9Bjw540LH3fCZnXkiRn/wqHo2dejNZ/WC1Hh9VFBxmb9hJpGHhISVBtzEESFnCZCQcbRx2Iux1NoetS8Me8NfX8Y9rGX9HrIpde/XXIObpP6QMO0u5z367iix75ea5YU+dd4dVUl6deVpf71cZlcD1qx3/RWLdur26jbED7PZlmuhcd0vY+hY5w7doTuPXRpP/x19Tg3ECrL9H6KP3OpXi/LSdzdJYHWIaHxLrqua+vK7E+9vxQKNddxx3mtYet67Ck9jt1l6bEVDsv2l6XbGCWuJszlvXEzlBRl2qHLYfkKhBblvNbNiwtQD9f57n2MPR93zcxS7rJi+pHTcBdTt/TzhhwWHn3dFBU4n4q5DvJ6lEMtsWv+/o/ruPtWAzWgP6UFAAAAAAAAAAAwFvBgBAAAAAAAAAAAjBs8GAEAAAAAAAAAAOMGD0YAAAAAAAAAAMC4kVP4ek9Pj916662WSCTsggsuiA2bAYaSG3ilwWJNrV1eW0OCmtu6vbYbnqbzVpX7CWca0OS2y0r8ZKhtzZ1eW4PH3KA1M7OEEzOk69H3dpofWuaGlJmZ9aQy26ShXLWVpV5bw0Td+Xsk0CgUHBkT6p2KCPiKC+auln3vhsLHhb5reL3b1PXo/umU4ykqHEs/85Ii/zMNBdFJUJsbUlUoAZ86b09v9pDAuIAqpcF0bphaVBCfWXhfa4CcGxCn+Vwa1BcVYhrehOiA4VBHneMlFNweRAd1RQW9x4WnRu37UBdl/4S/T6GOOZ2S70COY3JUIGVcIlpcMHKUUAy0lycfteC9WCnGFA3aizqvaqB1t8y7ranDa4fqhdZMvdAt651Y7Y+leoROqPKnu+csXY+OtbqNblCrBnyWlfjlvJ6TS/Uc7XwLZfgLrbezxx933FOUfpd7Y4Lu2yVs1d0HpcX+Nug2xn373dBOnVvPyVo/uIqL/HkTspVduj805NRdjwZWyvin6woF0LuvQ12OTql2P0fth64nLkzVnb1YDpiEXElG7Vszv7bV70DcuJIK3CBf6UfMP/XTmtovAfxpvaExXdqm+y/7zKHxTtq9Xs0TF/Ia3a+ofR8KeY8LPY34LPSYV97nGlpO3B6Jrj+zLQXYTesBPWe3dmbGoc072vxpHX7YerLDH7NmTar02oFz/Op5NTTGS78am/x7BGvfaU6/buuMDiafP7Xa71dDVfp1OIjcPzlOkGB3vRZwTyP6PdMwer1/oDWAu249P1WUat2SPV1b6xI9n+t9H91fbk2k+6dE1ltaHF0DJJzrfh2zuuU6PSyzLD0eIq/JzKxE+u3OHnVvyix8lnU/Cz1uS4plbI07J+dy7SnbqIHhqYhjL6a0iFxP6Ipfw9mjtiHmc4nrVtTeCdVmUfs2VC9J3SIbGTXmh8fVuAIhyDo1tO/01owuKWKHxe1L3ebd1zI5HRsRcvqNkeLiYvviF79oV111FQ9FAAAAAAAAAADAqJPzn9I69NBDLZlMDkVfAAAAAAAAAAAAhlTOD0a+/e1vW2Njoy1ZssSeeuop27Bhg7355pvp/wAAAAAAAAAAAEaqnDJGzMzOPfdcSyQSdvPNN9vNN9/sTUskEtbb25vlnQAAAAAAAAAAAPmV84MRs/hwIGAwaEiXhna2Oe12CSnT8LS3Gv1wNU3IqSrLfBU0aHTtW81eu6LSDwR3w1UbmyWoPCaKZ/3mFq9d7gSRVZf5X8+aSj/UW8NVqyv86alUZroGdrXJ/tGQLjcwrlzCxTUsrUACMDXEyw0n14DPuOBIDXHz+W/WADgrzB4mp/3Q9cSFr7rBkx0S1B4+P8r+kFCzImf/6Xt1XxbLvndD7eLC5zXYV0Pf3N8fDGR/aKaUBrdrKLy7zfoZy+ES+iy8ULyIQEAzs94+3aaBB3eHcts19FbWreGFUTRw0RUKNI0LBY4IctWwde1zXBJYVFZYeFr2kNxcg+ciPyXd/IhpGL9CYdpybKScBEc9v7d0dHvtQI7IGhlL3XOSfrdb2/2xtFPGg23NfriqG1ydbPf7UStjvAamFzrnXQ2e1vNGuYwV+nV2z2dV5X5No/VCmbTdcUnPOcUxYdoaeuqeVnXfac2n52ANY+3qyX4+08BwPd+726TjSEFC6wMJhY84MemooZ9DV4+/DaE6xn+39Cs68FJrNVevhMCn+jQEVuZ32l09/jGvn4t+N3Wsdfefzqtbr7Wp1yfpc0rKkLh6yj0GtKbR7Y8LiY8KlA999yKOvVDYrPxE90bo0Is4FrU86vPT560w6oJFP6c+/Y7o7FHHsbw3VHtpP90fJJyfR6wCY5475kXdHzALB3M3OuOyvnebBKJPm1jhtVesfMdrV03KTNdzjJ4b9ZxcXe6362v8YHdXt1yzbZF+vurcqyiU89mkmjKvXVPhj/lucLuZWVlJpl96zVZZ5r83HIbs64u4WNBzpdYAUV9x3dcTqku9dnTgta7XPwbiTqslzhimn7HWOPpet9t9RdHXleFwbR3TnGUF0Vd8ofsvzqGn69G6JBT6Lcsu9MZSf5u0fkyEU7/96W74emxAeMQ9giBqzrCo68u4Psctq/8RbJeo8Pm4joVue8XUMW5Ta6tE3B7KIZw+7nPTc0ougizHeage3kM5d+2RRx7J+t/DDz88KJ0a7a677jo75JBDrKamxmpqamzx4sV233335btbAABgmFETAAAA6gEAAEaenH9j5JRTThmKfowpM2fOtB//+Me2YMECC4LAbrzxRvvIRz5izz33nB144IH57h4AABgm1AQAAIB6AACAkWePfpll9erVduGFF9qiRYvswx/+sD3xxBN25ZVX2osvvjjY/RuVPvShD9n73/9+W7BggS1cuND++Z//2aqqquyJJ57Id9cAAMAwoiYAAADUAwAAjDw5/8bI888/byeddJK1tbVZEAQ2ceJEKysrs8svv9y2bt1qv/jFL4ain6NWKpWy3/72t9bW1maLFy/OOl9XV5d1dWX+BmYymRyO7gEAgGEykJqAegAAgLGNegAAgJEh5wcj3/nOd6y1tdWOOuooW7FihZmZHXbYYVZfX2+PPPLIoHdwtFq1apUtXrzYOjs7raqqyu6880474IADss5/1VVX2RVXXDGMPRz5NGhMA63e3p4JVE+2+SGmGiqkQeZvbfPD2N9ZvyP9ukiCxUpq/ECvZGO7125cvzP9evL8em/alLpyr62BX5USxNblbHO7hJA1tft91uDROgmMrXf6XS1Baxp85AatmfkBTd0SRt8iwe0a1KrxR53dbmCshIkXFUpbg8k1rD172HhcOJgbNqr7ToPHJNMzxP0cNdS1VMLVNSBS96fXUw0ElzAp3X/ud0SPLd135fIZV5ZpgHr2ZWk7Jelg4TDazOu4PCwNB/P2T8z+CO0f/3DyQj3jgrvjgtm6nYD5UIidzKvBo15Yccx6QmG0UXmosubcA+IC57U/rU/DeEPrdl7HfMgarjrQPuma4tYzkuVSE1APhOmYHhXKbOafs/SY0u+v1hYait7ljMUa6hoK1pSxVceDptbMsvV47pGaR0Nh3X5r7VBW4m9Di2yDBmJ2OedZnbdOQky3y3jpnhr03F8tQe66Xj0X9Dmn+0INqg2FenvN0L7V/efSMd9kGHbP0bpN+latTXV+dxNDQbR90eO0Htc65rtCy5ZxuadXa40MDXkvlAM3KgQ+FfjHmu533YZe+ZL0eDtU++GvS7+b7negqDA65DacYZo9qFXDZuOGmlL5zAu1+HDXE3Pu6vOC26PXq/3S4yMRlWoaMbaa9RP6mnXOfs7HMr0gkX1het4LhdWH35BluaM3fZ16YO+55+Go+wNmZm2d/ljqnoN0TJpY6weVv/H6Dq9dJPcTtjvTSzQAXI717XptION2oTOmTW3wg9hrZGydM9kPTJ89OTN/b6//3dDw+bYOf38881qj166rzNxPqJDtnTLBD6PXcbhEruuLnHOSnr/0PFJVrtfPzrlR5tXTWadcW0eFMeuZQ+uUIhn/9BjpcfavBrfrfQ0d03qclev4rzWQXuPJoq3XKcb0zK/7J2pIK5BxQ/usdCx1P0f9THfKsaf3jPRzKnOOJ+1X+PrQ5+3OvbxedFcVt14dOyPKp/B6pB2q+Zx1x42dcddFiSyvzXK7To8T6kYgRbQ3pue2Xp097t5OrnL+U1p/+ctfbMaMGfb44497P581a5a99dZbg9ax0W7RokW2cuVKe/LJJ+3v/u7v7MILL7SXX3456/zf/e53rbm5Of0f+xIAgLEhl5qAegAAgLGJegAAgJEl598YSaVSVlVVFfrXMdu2bQv9C9PxrKSkxPbdd18zMzvyyCPt6aeftquvvtquv/76fucvLS210tLSfqcBAIDRK5eagHoAAICxiXoAAICRJeffGDnggANszZo19qMf/cjMdv2ty29+85v2zjvv2EEHHTToHRwr+vr6vL8RCgAAxidqAgAAQD0AAEB+5fwbI1/72tdsyZIl9oMf/MASiYS98sor9sorr1gikbBLLrlkKPo46nz3u9+1s846y2bPnm0tLS12yy232NKlS+1Pf/pTvrsGAACGETUBAACgHgAAYOTJ+cHIBRdcYO+8845deeWV1t6+K4S6vLzc/vEf/9EuuOCCQe/gUHvhhRdyfs8BBxxgRUXZd93WrVttyZIltmnTJqutrbVDDjnE/vSnP9l73vOevenqmKfhmBoq9PIbO722m7/TKsFqGs7TK8lI86ZWe+1NpZk/Dde0pdWb1p30/xVPQlKV3LC1t5dv8KZtnz/Ba8/exw9nXzCj1mu7gXAauqUBqRqU1Cah6G2dmXZLuwam+78sNllC4t0gu1IJfNPg0S4JPNMQPA0185flvzccnubP7y5L16NhVxpg5bbjAtI7JPS2N+X3yw1IS8jm6bGoIW4lEtrpHqwaLqfbHwr4cmYoCoVy+fP2yPcr1ePP4O5bDYTTjQwKo8JU/WM3FDar4XKyO/qC7O8NBx1Hh3ZF5ZDFhakpNyAsFJAu8+qx5wai6Vrj8s6CyMg8OV6iFxW5/8L9iO6Yuwt0P+t6UppeHLP//FmHL2x1KOoBM2qCwaD1waYd7V57e7LTa7vnjmYZ/6bVV2Sd1yx8/m9xxtYKCT0PBTrLod4s47YbPDlZQl63NvvboEGKbU7Ip45/O9tkPTLOdEq4tHuO7+z2x7eN2/zgWu3H9ImZ/VcpwawaxK2ht/o5uqHxcXWbbpPWiG6AuAZ86jisZxL3HJXqzj7e71qPvyytidypel7VMNFQ7qR0zN0HgZ7vY87Z7vS40M5APuPObn+b3P0ZFwBeFlNfufsrKhDdzKxV6lp3sm6THh8akB5VixYXRoe86v7qks888L5f/rwaxqv1lXtMxJUlUaG3/fUzF/o5uuvSz0W/T1GHcbg+iA6B16Z7bLp7Wc8Pg416YGSJukcQdX/ALHx93OV8X5ta/bGzQcbl/RY1eO3tLf49gfKqzD2AlkZ/7CyUeiGh16UyTpU69yK2Nvn1gPazutxv11ZmrtUry/zr9nnTarx2SgoV/UrucLZRzwubd/jbWFbib2OxnHernHsI5Tqvnkc0nN5dtwSP63mlTILs9fzgHj9xtYbWS8o9h2tNGHcOdrdJ5+yWeyC673X/uMH2sWfDiLE210Br7UdZSaYfui91bNUxS7fR3fd9UouFwuql7Y7xen8gptSKpNsbvvbOPnbq3DpNl63T3XsPoZEz7oOLCDbXKfq56PRQPyPmDR23Moe7qvD+6Kez7nqDmBn2Us4PRszMvv3tb9tXvvIVe+mll8zM7MADD7Ty8vKYd41Mhx12mCUSiQHfJCsoKLA1a9bY/Pnzs87zX//1X4PVPQAAMAyGoh4woyYAAGA0oR4AAGD8yPnByOmnn24HHnigXXPNNXbUUUelf37ttdfahg0b7P/z//n/DGoHh8OTTz5pDQ0NsfMFQUCOCgAAYxT1AAAAoB4AAGB8yPnByNKlS62zszP085tuusmefvrpUfdg5JRTTrF9993X6urqBjT/ySefPGp/OwYAAPSPegAAAFAPAAAwfgz4wciyZcvSr5PJpNdua2uz1157zQoLC/t764j2yCOP5DT/H//4xyHqCQAAyBfqAQAAQD0AAMD4kQgG+MczCwoK+gmf8e277762evXqQenYeJdMJq22tta27NhpNTU18W8YAzSwaWtzh9euqZAQcCegKSkBp8ufe8drJ1/Z6rWDNTu8dmJqVfr1vh9c5M8rX5GkBLm6eiWQcee67f56JHizeob/2U5yQk01AG725CqvrcFjXT1+yKkbetoqfS6VkDINTJ1Yk1m3BqlpWwMvNYjU/Wx03uryEq8dDsfMHhamQXx6dgr3O7PNoUBUObdpaJeeJTudfa1hu7rsUMhpKMQy08+o8Mv+6PxR4kK7vIBsDcDbm6wrWZZ+bioqIDUkZv+4p5S4TYgLcveCSKNS3a2fEDNnH4RCS2PC0zRf1H17VBiaWfi4Dq/KCfaNyWwLB8S567FIuQT76SR33mQyaTMa6q25uXncjItm47MeMPPHEh3jK0uj/11PuxOg3ijB7C+s98f/UGD6xmavXeOM04Xy/W2RoPJuCWatnu5/XpWVmTFvx+YWf8XSj9qp/pg/bULmXyM3yno0jF0DLzu6/fqgrtIfe11dEjxaUZr9Hz1p7aDj7oxJlV67XD43N/g9LixTz6s6VrjnGe2XtivL/XrSPdFoDaPjrO7rqNFA35sKBQj78+u51A/ujg4qjx4OowOvddjVfevukxzKjl1r0vrKacctKxVTP3nzyg4JhzX787tBruHvT3RNqPuvT08iju5UdNCx29bjJdyP7Mf8rmVl30FxdUtUjRiqa2VZUUsOf/65LSvbJiWTSZszdRL1wDgRdY8g6v6AmV8PmJm9sTmZfv3mFn8M3/noen/FEgBduP8kr10zsy79umGCf93e2umvt0UC1Xva/Lqm0Lk275PzRq3cA1CVZZmxVeujXvmOTawp9dr6HXPD24uL/C9sa4e/Tfr91fsLpcVOQLisR+uBcnmve94tjLlOV+Fr7cz8eizpeVPHHd1G96PRc7+ergrlnO32Iy4QPHaodWbQmk9FXndFBLObhc/ZofsHzhtyrQ9CYezOdsQtKur+SlyIt96PUlH3vPcmyF3p9ut1u7eNQfZ91c/kyJ6F6pCYGaK+b6HaIodAed3PcZ9bNslk0qZP2vv7Azn9Ka0gCLIGkU2cOHHU/RktFQSB3XHHHfbII4/Y1q1bQye73/3ud3nqGQAAGC7UAwAAgHoAAICxbcAPRtavX29BENj8+fPt8MMP94qAioqKAYWTjXSXXnqpXX/99XbaaafZlClTYn9DBgAAjD3UAwAAgHoAAICxbcAPRubMmWNmZjfccIM1NDSk22PJTTfdZL/73e/s/e9/f767AgAA8oR6AAAAUA8AADC25fSntMzMLrzwQuvu7rZHHnnE3nnnHUul/L+9uGTJkkHr3HCrra21+fPn57sbAAAgj6gHAAAA9QAAAGPbgMPXd3vttdfszDPPtI0bN4YXlkhYb29vP+8aHW688Ua7//777de//rWVl5fHv2EIjZdwNTd0qElCyMo04FIO1fVOcKmGq6r506q99pYdfrD78yszYe0dN63ypiUq/VC3guNneu2DT98n/bqk2A9C2tHqb1OjBLV2NPrtmtl16dcTq/1wNA1omjLBP0an1ld4bTfkMy7cqEXC2Vs7Mm0NR5sg/VIaAOaGeKbk7/K2dfrr9YNGw8tyg12LNKhc+qHHS48Ttqbv1VApDb/SwGx3uobaabhqKCA9FFqWPbQzLkzNPSb0F/vjAuTDWaIJZ14NmpMw8dBbsx9fceHiqtcLcYs+bnW6cifH5I7GbmOugXLZxAWLxoXceSHwOXymZtFBduFdOfBAtLgqIpe/OhEVajdY4WoDQT0w/DTAr6sn8w9vNGRQv/ubdvhjqSsp41tDnf95dvf4/8BHg97dWmPLm34we6+Euvb1+stKbWr1O9PshKZP8YPJy6b7dUqvBLcGzhhWLHVJ+UR/WfpFqpJwWm9cljGrodYPkNXg8jZnmzXktaLMb7dJUKueCyY666oq8/uoQe6xIc4RIdZ6fu+Qz82dv0y2SU9wPbK/NKi8KCI8NG4M0+l+6Hl0oGVUEGdcSHeoTrHs+zruojFuPIgaS/Wtus3ee2NqqYQGpEfUNfod0H7oZ6z7y23rvFHHqVl0YLqGBOtxHFWb6meu/VJ6/nX3V2z9KKL+1FQ4bFaWHbFwtx/JZNJmTp5IPTBG6XESdY8g6v6AmdmmHe1eu8oZpzQgXe89bNwWE87e4vRLxqza9+zjtfedVWtRGpOZ+qBXzkl6Lmhv6fLaZVUl6delsg3T6/1jVvetjrUlzrW4fpVLZNkamN4m+7PQOUfpGK/90G0uK8l8TroePQfrOSc83bKKCmo36y983Rk7dFyRz0nvEbjnaD0lh65pYy6f3fl1/AvVJRH3TOLO77JJoXVFhmn7bw2Nwzpd95dLt0FrHndDtM9xtB/uMRC+Dtd3RweoR3UlvH8i5tXPRb4vOkO4rttzui53n+iYrd8X7Xdf1MEnBvpnKwerHsj5N0a+853v2FtvvbXHKxzJzj33XLv11ltt8uTJNnfuXCsu9k/gzz77bJ56BgAAhgv1AAAAoB4AAGBsy/nByPLly62oqMjuu+8+e8973mOHH364ffvb37avfOUrdttttw1FH4fNhRdeaM8884xdcMEFhKsBADBOUQ8AAADqAQAAxracH4w0NTXZ/vvvb2eccYYlEgkrLi62T37yk/bP//zP9i//8i92+umnD0U/h8W9995rf/rTn+zEE0/Md1cAAECeUA8AAADqAQAAxracH4xUV1db37t/W66qqspeffVVe/LJJ+3NN9+0devWDXoHh9OsWbPG9N/rBAAA8agHAAAA9QAAAGNbzuHrhx12mL3++uu2c+dOO+WUU+zxxx9PT5s3b56tXbt20Ds5XO6991675ppr7N///d9t7ty5ee3LeAlX6+jOBJVqRpAemVua/PA0N/tp4zY/4PTt7f68ybeTXjshwVrHHjsr/XrDFn9Z76xp9NcrQaR9K7ekX1eeMc+btv+iSV5bw8Vf3dDktSudgFQNPK2tjA4mLZRf7Z7mhLFWlfvv1dBz3deVTjBdU5sf8NYuwWp1VX4Ye01Fidd2g0o11E4DztzjwSwczOYGSWm4VUkoqNVrWmFBZnqgUVgxZ0Gd7IWLR4SUmoW3QZO2CiNCy6K2X9cVF+qt9uYvAehbQ9sYsSL5yHMKF1dxuWLu293PfyB0aHRboYDw3IbRrMvtT1SIW9w5MxRyGnH86Ho0IC9qE+NCkeMMdO8NZ/g69cDw0xB0lx7LOyWItbXDH9O2N3emX+tXX8dWPTeEQk8jTkRbmzq9drcEt8+Z4Yetbm/NjKdNW/1Q1/YXNnvt2uNmee0eZ5u7W/319Lb643SVrLd+sh/O7p4LNChRw8V1THfPFTqWVpT4/95K931Vub+s1o7MdpRIfaTnqzIJX9WAWTcUNjK0u59lu+e3LjkO9XiIC7R0l63HltZtofdGhLPrOTkuuN0fqaLPsvr96knpujKvw3WItHMYAOICdPXY9I432aS4ZSl3cihcV/Z1T2/0/vPXHaoYvZbuHi/ENOY41X2tx2YQMa8ePxpkq6I+x7jazN2fOmvocwotW4NbE/3OO5zh69QDw0+vB6Pq3aj7A2Zmm7b7Y+3aN3amX7du9q/5Azn/l02s8NoNEqCedALTWzf59xpSzv0BMwudpMsWz/Ta+x0wOf26vcu/1tbvXJ3cE9gitYhLv3N6vTyzwa8Pupx9r+vV+wlKQ9K7ejIfRodsU32Nf/9A7xG445BeZ+k26dhaLMHc7rv13BdVD5j1c02TQ5K77j+3vtBaS5eq4eK6TVFd0jFd26XO/gqFmKuI62GzmDBt7VjMdG8k1XE4FX0MuPeU4uo0XZaKGtH1c9BV6Wceda8mF/H3GqLHfHdq1P2AXeuSJUdsY673QNwxPS7IPv4+0K5lJZNJm9Gw9/cHcv6NkQsvvNCWLVtmr732mn3/+9+3c845x7q7u62wsNAuv/zyPe7ISHDBBRdYe3u77bPPPlZRUREKV9uxY0eeegYAAIYL9QAAAKAeAABgbBvwg5Hu7m4rKSmxr3/96/b1r3/dzMz2228/e+WVV+y5556zAw880BYtWjRkHR0OP/3pTwlUAwBgnKMeAAAA1AMAAIxtA34wUldXZ8ccc4ydeOKJdtJJJ9nxxx9v1dXVNm/ePJs3b178AkaBiy66KOu0jo6O4esIAADIG+oBAABAPQAAwNg24D+63tnZacuXL7errrrK3v/+91t9fb0deeSR9vWvf91+97vf2bZt24ayn8Piq1/9ar8/b2trs/e///3D3BsAAJAP1AMAAIB6AACAsW3AvzHywx/+0JYvX26PP/64tbS0WCqVsueee85WrlxpP//5z83MbOHChfbKK68MWWeH2r333msTJkywK664Iv2ztrY2e9/73pfHXo0tGhToBoBpAE9Htx/S1SRho+9IwLprogR6dTb7gZ+9EiC+/P/3l/Trmg8s9Kbtc/BUr/3ac+947doPZuZvfvwtb5p+Gw5Y1OC1F8z0A4Lc0PiSYgkO0zAnCVnS3/J2Q840ILWqzP/7uBq81eQEuU6sLvOmVZf7n2GzhOD2pvwAuAlOOHs44NNflgavaXhWpxta1ps9dNKsv2DJzPy5BpNriKW7sgJNE48JiNPArz6TlECvHxIIp2HszvQi+QwT8thbA6w0LCu0je68oR9Eb6M7VdcbDmrPHhAetVyz8PlE95f70ei8cfmwBRKaG92T6IX5uXQDDzU3M+uN2NfhcDQNI4wOsnU/C11PUaGeX+KCfp31xIS2qYFHBA8f6oGh15vSY04CDZ1jvU3GbP0eTazxxyk3AFSXu3GbH7aalOD2bRJi2rK5Jf26rK7c73OZX0ZXSu2xatl6r22lmX7NOHCKN+nw8w/12k8/tdFrd+/I/MvkaYf5dYmevzW4dttGPxS2qDzT76lTq71p+v3VMb7aCV/VAMfGpL/vKmT/pOQzr3SWpWN6aEwLBU/r2SKVdZoGt6f6NFA9sy4NptUwWR3DosZWPU5DYdkxIa/uPogKvzQz60tl33+hUTdm7Cgr1n8354wVsm81qLxXOqbb5Ibk6v6QZuT+CBJxn0P0vnaXpcdxoYzpUpqGalf3cAqNlf5bI0Nhw5+pbmP0d8QdtuNCS7t7o+snc9YdVw8o7ZdLA2H1eIkKYy9I9P/zoUY9MPSi7g+YRd8j0PsD25r9cahLAtWLnHGnbu4Eb9rOp/1xt1PGzm3SkfJJmeDyI4+b7U17e8Ekr61HbKv0c+UDa9OvJx42zZs2SwLSm9v8umWqU5vo+ay1059XxzS9n1JbkblnUlvl3z9pafeXVVHqj/H6OZU6Y0lpsb8srS2a5L0NtZm6Tu9ThK8Ho8+Vxc45rKs3+nqnSK7/dMyPOv3p6V3ndfd9uUXXFp1y3Op9Mbdu0es9PQcXyRjm1kDdXf5y9bunY1bUtbZ+MKFxSO9ryGT3vK67Wful54yunoGPWVFB9rps7Ud3r/+5aP2t3z93CXH3HqLqvLjaIhz6rnNkZtD7AXonStele8tbdsR6+uuXWxeHawn5nGTFen7Z/Z3JNQA+mwE/GPn+979vZmZ9fX323HPP2bJly2z58uX22GOPWWNjo5mZrVmzZlA6lS9//vOf7aSTTrIJEybYpZdeai0tLfY3f/M3VlRUZPfdd1++uwcAAIYB9QAAAKAeAABgbBvwg5HdCgoK7NBDD7Wenh7r7e217u5u+/Of/2y9vb3xbx7h9tlnH7v//vvttNNOs4KCArv11luttLTU7r33XqusrIxfAAAAGPWoBwAAAPUAAABj24AfjDz44IO2fPlyW758uT355JPW2dmZ/rWVOXPm2Mknn2ynnHLKkHV0uBxyyCF2zz332Hve8x479thj7Z577rHy8vL4NwIAgDGDegAAAFAPAAAwdg34wch73/ve9N8BW7hwoZ188snp/2bNmjVkHRxqhx9+eL9/K7W0tNTeeecdO+GEE9I/e/bZZ4ezawAAYJhQDwAAAOoBAADGj5z+lFYQBDZlyhQ7/vjjbfHixXbccceN6ociZmZnn312vrswrkQFTWqA49amDq+toZ7bd2amN7+yzV/w+p1+u9oPRE3MrfPakz95UGa9yzd409pm+EGt8w7xQ0/d0LdjPnWwN+2pO1/22n7L7ISjZ3rtjq5MoNNOCSWbVl/htVslMLa81E/WcvfXJAmmLdUULjHR2V8aeuuGpZqFw7Ca2/1+tzj9LJUESw1E1SAtyRnzQtw08K2rJ3uIuZkfel6sQWsa6hYTVO5mQ2lgrGS2WUKDpEKBghFhWKF++O0+J+Cqu1dD2fz1locC8jSYO7Mdul4NMQsHbUmYmheeJmHjGrym2+SsvE9j2TTwTQPhpFfu/KHAsyB6X6ciwto10EwvnvV4iQpMV6Hw1YjA9FDIny4sJti3MDHwgFSTIEN/30YHr8UF/XoZbrqkIPu0wUY9MLw0+1CPC/fYb0z69UBFqT8OFcnB7Y5bzW1d3rSNjX7QaKeMcUUyTtVOr0m/bt3a5vdRQs7bJeS0clat1y51wkQ3/vdKb9pbEqZa/sGFXtsNXN/0+FvetLLZ/nq6kv42V0hw6+QpVZbNxGo/ILVQBjW3NklEnJ/MwmHr77T4n2NdVWb/Ta7z6xQdK1ukttBx260vCmXM0nFal+2NJXIcagCqhnbqONTpHBMawtnT7fdDx+VQ/rV7vtcTeMQ52cyvp/S9es4Oh7Nr2Gxm/pKi3N6r5393/+hnqLWZnvTd0FPd76E6JYie7u6fHulkKIxdvgMlWjM6pwwNAdb9EQobj6gtdBzWY0+n93j1gb8srdWjzrdKa3P91HVZqcBLo/fnlSXF1nHuWiOCeQcb9cDwiro/YBZ9j0DvD2za3OK1k6sb/YW534Ud/phUc/QM/73PbvLabbf7V/KdC+rTr5+a5F+nH/o3+3rtzTv9fpZW+mPtoWfuk379jvRr9Wr/Psec+fVe2732nlzn/yaTXvP3ydd56gS/324ds0P27bR6v5ZIyri8o8Wf371nUFfp34spkVqrS+opd5v0mr9Ytik0dsgZwr0HUBq6Dvff2d0bfT/B7XboPBp92Sph2v40PRdWyjantJ9ObaI1Tl/BwMc0+RisR873ff7H0k/t7qxHQ7t1WNbawoTz/rh7MVEh8FqLykduXVLX6b5391fcuKzr0n66ezN0fJi0Y/afP6/f1iv6cG2WeUMiERdWHn2PxJ0cuheh/dIfOM34+1zRdn9u+vntqQE/GPnhD39ojz32mP31r3+1G264wX7zm9+YmdmUKVPspJNOspNOOslOPPFEO+ywwwalY8PlBz/4Qb67AAAA8ox6AAAAUA8AADB+DPjByPe//30z2/WvileuXGmPPfaYLV++3B577DG744477I477rBEIjEmQtgBAAAAAAAAAMDYlP3vaGR7Q0GBHXTQQXbEEUfYEUccYYceeqgVFhZaEAThPzczCtTX11tjY2P8jO+aPXu2bdiwIX5GAAAwalAPAAAA6gEAAMaPAf/GyP3332/Lly+35cuX29NPP23d3Zm/+7f7gUiB/nH9UaCpqcnuu+8+q62tjZ/ZzLZv326pVCp+RgAAMGpQDwAAAOoBAADGj0QwwF/zKCgosEQi4f1WSHFxsR111FHpjJETTjjB6urqhqqvQ2JPHuasXbvW5s+fPwS9yUgmk1ZbW2tbduy0mpqa+DeMElGhjM3tfvCohq1Ok3AwNzxT37tq/Xav/epdr3jtvpf8fwWUmJAJ/Vz4t0d50954ZavX7tnmh6+aE/pdsXCSN+mYw6d77aV/XuO1J8yf6LWPXJR5v34zV72xw2vPafDDUzX8aYIToN7UKkGsZf4z0VoJgCstzkzXwMYOSUTXEFz9jN1gNg2l1MD4MkkA0+9nShPjHBpKGRV4pjR0UkM6Q2FiBW6AVXTwtsZBaT/cZWk/QuGDOj0i1DsuDEw/Vw2yc2nwZigsMxSu1n8f++tn+JyQaWvQXDjgKzpsKypMNBTUGsNdlO5bpSGAXoD4XuaDef2Qz0V7pcG2UasO70tdWvZ3axCdHh/xAXrZ++G2ksmkTZtUb83NzUMyLlIPDK3Q+S0mLO+dHZmQ9Jpyf5zp0VDv7f647I5pbze2etM0ELxJ6octG5u9dokzlrZu8kNdCzTRUTapYqJft7jqJSB121a/ny0bk157olMflBT76218o8lrV0q4eucOCZzflFlX+Sz/mJo1d4LX1uBp9/uupw39nDTgUjU6IfF6Xq2WZc2bVu21i6RfbjB3ZZkcL725jWEuDUjXOkbHx0qnvtIQV12NTtfvRFHEd6Qw5vzuhnzrtHAQa3QdE3WlqMsKh4lq261bogM+Q9vvjhWhcF3ZlxoAGrEvQ+GqMQmp+p1wtyMuqFVFTddt1E3IpZ4M1Y+yrGI9l3nzRn9fonZXXM0TDl/Nfuy525dMJm3W5InUA2NE3Dkn6h5B1P0Bs/B59qnVmev611/1Q83bb3zBaxfO9MedxEGTvXbv3aszfe70+1gk9wSmf/EIr11SpNe8meN7htQOLRJy/sY7fi0yd3qmn9uS/jX/AbPrvHZHl38d397pt+ucmke/vzrvFNn3+jl2OjWAvrdBaqDyEn+sdeuH5jZ/m+qq/CD30Jjud9sbL+OudvR+QuhaPOKcXRg6Vw681ogL5o4qmbUmDt8vyd4P7ZPWVvqZ6va72xwKwY4NY9d2xHio91tkujvGxY1/oW3WRHl3XmnH1Y/6ObrX6lEh72b97I+o9fbb2+z9ilpP+LbGwO8BRN0DMjML71r3DdHriXtMsXtqMpm06YNwf2DAvzFiZlZRUWGLFy9OPwg57rjjrKysLP6NI1hfxI1WAAAwPlAPAAAA6gEAAMaPAT8Yeeqpp+zwww+3wsLs/6oYAAAAAAAAAABgJBvwg5GjjjoqfiYAAAAAAAAAAIARbPSlpQMAAAAAAAAAAOyhAYevY3iNl3C1Tie4XIPFKiTwctV6P3x8c1MmeG3nZj+E7JgjZnjtmgo/XHz5C5u89pZv3Z9+XfqeBd60/T99iNfeIP0ocoI2k6/v9KZNPXSq155e74eUvfi8348p8yZknVd1Sgj6pFo/xKy1IxMCpyFlbRIQV1fl75+oIO7SIg1E9z/TUglQd0OZunr8v9mrAXAaQqkBqm44VjjsKTq4zw3b1mnhgKroaDY3ACwcNBoTaqqrikrmjjk9u2FrGiau/dKwNA2QdcM1NbhQw8RDIV2y7KiQ0/C+H3gwnYaN7004e1wQdNTnGhUebhbet7msR8WHojtTZJKGAmtH3WDb8DZFBwhGi15WKMjQ62b2ILZkMmkzGoYufH2kGqv1gOro9oO63dOOBqSve9sPSG+TscQd/zpludtfa/Ta5RJyWlrtj5dNL2xxVuTXKaaBxRv9WkS/V6WnzEm/rp7qh7qmJCC2aaVfH1Tv35BZrQST63mlRWqiKRKo3rSjw7JJyLIWzq3z2lXlmXpB65Au2df6uUyICEzVuqS71993rTJda6TK8kwtpvEANRX+/ooK4tQQTg3a1vFRA8LdsFmdFhs07U/2zuFal0Xkku9at7MdWltpUKu+t7RY6zzLSpcdCj2X878bCq+1hfakp9c/nvwaMLrW0n5F1qoxn0MoID2ijokb43vl4HSDa7VO0xDgcN2WvR+RtWY/03X/RIXRqqiQ4KiA+P7eG1m3Odsw1OHrI9VYrQei7g+YRd8jiLo/YGbWtLXNazdMy4y9+t3WurlpS6vXbrvzVa9dcLATxi7jX2rlFn9eudae/LnDvbZ7TiqRcWbGJH+803HplTebMsut9fN/d0rdsu90/7jRr5x7ztb9odflGopeJgHqlc49Ev1uJ+Uz1XOOWy/ouKv1go4zui53rCko0HObhImHwrWzjzV6tgqd76IunWKujUKzR6wrHOLtd6S7N/sgHnd1p/tD2zp2+AvP/jnEix7TlXsMxI3/un/0OC+JuA8Wdzkcdc2r/dB7EYXyHSiIuPcQ16+4a+8oceHsUX2Jugeky44vM+I6vWthyWTSpk7c+/sD/MYIAAAAAAAAAAAYN3gw4jj99NPtiiuuCP18586ddvrpp+ehRwAAYLhRDwAAAOoBAADGtgGFry9btmzACzz55JP3uDP5tnTpUlu1apU999xzdvPNN1tlZaWZmXV3d9ujjz6a594BAIDhQD0AAACoBwAAGNsG9GDk1FNPHdDfF08kEtbb2xs730j24IMP2t/+7d/acccdZ3/4wx9s7ty5+e4SAAAYZtQDAACAegAAgLFrQOHr4ZCiLAtLJCyVSsXPOEIVFBTY5s2brba21j772c/aAw88YL/97W9t//33t+nTpw/rto3VcDXV1pl5kKaH4o4WP9CrUsJG//TUW5lpEqy58X9X+Svq9kOV6s890GtPq88Elz9+6i+9aTVXvt9rH3LKPK+93gk8mzS5ypv2zut+INysfSd6bd3m7U2d6dczJld606ZM8MPV2zv9h5AtHX4QmTt/XNh4S5v/3qlOqGmJhKlrqJLmaGnAV7kTkKfhaBqs2SXv7e7xp7thexr+pecpDXSKyjgPh6Xpsv3p5i0r+qGxBm1pgFxURlUo7zPig0xJoGciJrBK958bCKrBtTqvbkPIXoRy5UaC2aTjUcF0oXB6DUCL6Gc45C6mm84Bo0FrccGkUXLdlaHA4RzWG8rWczY6l6C1/hR5J5HsYXvJZNKmTxqe8HXqgeHXIUHd7mHTJWNBlQSAdsp0N0jx7UY/eHW9BJO/+eRGvyMbk37brVNkjAqa/DqlYKo/btsMCVh/PLOuggYJD3/fAq9dVOqPvSkn2LVTwmVn7T/Zaze3+KGmO1/0Q2AnHjo1/bq9sd2b1i21V0LO9wcePi39urbSD1N3x/v+NDb7/XaDXHuiEr7NLCXTd7T62zihMhNsW1/jh8/q+byizO+nO7VNaquykugaSAPW3fExMpQ0tOZwAKgbRqvTouqBd2fodzlm8WOYfhZlXhh7dKBnb1y4qPMGrRd1EzSA2N2fWnvpKKR1im6jnlOi1htXP7ibGKr5pEiO2veh0HdZVmisjQiYDQXmyjGgy9Z1u8dbLmHEu7qVvR9x640KL3aXlEwmbdaUSdQDY5Seh6PuEej9gVc2+NfeW5xrazOzzX98LdOY5Y/RExY1eO2uZv+97VI/BC9szbxulnrghFleu+8Jv9ZISBj7xE8elH6t406xfH/nyP0G93y3eac/ppdKkHSzhJ7XyP6rccZSHdM19FzD1vUc7vZbxyG9v6BjfKdT85TK/giNadGnRq9f4bHCX3Z8yHVmCUWF0efGkL24dtJ+JSKCuUPB2xGB6Xr/IK4fUZ+xnt+1H3H91P0Z3Y/sy477GOLCxN36QI+1uFDz0Kqd+XWa9rM3FXH/RObVMT3+eMney9A2hDdC2u7x40/R4Ht9p/sZhz8Hvz3Qfu0KX58wPOHrjzzySPq///mf/7HKykr7zGc+Y7///e/t97//vX3mM5+xsrIy+/Wvf73HHRkJdh/opaWldsstIVKOyAAA3O1JREFUt9jXvvY1e9/73me//OUvY97pu+qqq+zoo4+26upqmzx5sp199tm2evXqoegyAAAYZNQDAABgsOoBM2oCAABGogH9Ka1TTjkl/foDH/iATZs2zW688cb0zz74wQ/a448/brfccotdeOGFg9/LYaJP1v7hH/7B9t9//5y36dFHH7WLL77Yjj76aOvt7bXvfe979t73vtdefvnl9N8lBQAAIxP1AAAAGKx6wIyaAACAkWhAD0ZcjzzyiJWVlVljY6NNmjTJzMwaGxtt27ZttnHjxph3j2zr16+3hgb/Vyg/9rGP2X777WcrVqwY8HLuv/9+r/2b3/zGJk+ebM8888yoDqcHAGA8oB4AAACDVQ+YURMAADAS5fxgZNq0afbGG2/YwoUL7YQTTjAzs7/85S+WTCZHfRDZnDlz+v35gQceaAceeGC/0waiubnZzMzq6+uzztPV1WVdXZm/TZlMJrPOCwAAhg71AAAAGKp6wCy+JqAeAABg6A0ofN11++2326c//Wnr6+tL/83NIAgskUjYrbfeaueee+6QdHS06uvrsw9/+MPW1NRkjz32WNb5Lr/8crviiitCPx/t4Wp6dHV2+2FqhRHBko0SeKYBqm545ooV/m8rda7Z7vfj9Sav3f6HF7x22XH7pl/XfvEIb9q9H/2O137f7f/stafOqku/3vyWv54CDQeToLF959R57fWb/FA316LZ/rxuOJqZH0xuZrbVCWfV0DYNHtVwxKQTzDa5zg+I1ZAuDS3T0Eo3iEtDtfT40MAmDaFqbsv0a0K1H/qqC9Mw9qjgtbhwMO1XobNsDYLSdqH8QIOm3GXHhclFZYmFAqx0eigQzZ+ugfMu/W7quqLCRePywUMBqjkEiseNXu6yeuRY0n2r+163OSpQT/ddLtugQmG9Eal3cSFuYf4MXsBu6PujgXjZI8niwlSje+F/Bwrle+uudle42vCErw+F8V4PqI5uP7C2XMI1Wzr8kE9XqQYry3R3/Nue9GsJ/Y5pMGuyzQ8mbdqwM/Penf68wcuNXrtvmx96WjjND0hNbWhOv+55fZvfafkOlp62r9fu25qpgWovPMyb1vrYm1579kf399ot7f6+dANlC6V2KJJ2b5dft/U5oZSTpvrBtaXF/udSW+HXKXUybjc5AbpT6/1aQz//dgl9jQrT1gDwCRJyq0Guboh8qdRpHbL9WgNpbqlbX5XJsgplrEylosdlfxjSozx63HHrGD1Hxw0WOqb19Gb2rdZ8OjSEg8q1Bso+QmivuiScvTCittAxW4NJo0JdtY8aPq/1QjggPHsYb3jf+02vnpR+6b4K1QfCrfW1jk1F1LH9rdsVtyzdf7nU23HB9l4/nNfJZNJmTZ44ausBs4HVBGO1Hsjl/oBZ9D0CvT+wTcb8bW82+etyxumu/3ja71eHP/6XfcAfS21+ndesdcLam1/z7z30/mGN1y459wCvnVrmj9vuiWbSkkO9SRq2vqO1K+t0DTXfskPqkpjQb/c7qtfaeu8hPD7K9bPTrpR7D90R53cz/76Gjulx17QlRdnD2vv6oq/vtK3XuO6a465DdTxwt1G3Qc+FOg7rqrwxPnqYibwuC41vMdd0Oi65zaKYtOxcLo/3Jmw81+vw0LKc1z1ynAayR/RYC4Wee43o/aHHXlS9lJJzYugekuzA3O74R3MXHRfUHlXH6DGu9WRMyZOWTCZt+qS9vz8woPB117nnnmsrVqyw888/3w477DA77LDD7IILLrBnnnmGhyL9uPjii+3FF1+02267LXK+7373u9bc3Jz+76233hqmHgIAgKFGPQAAAMwGVhNQDwAAMPRy/lNaZmaHHXaY3XTTTYPdlzHnkksusXvuuceWLVtmM2fOjJy3tLTUSktLI+cBAACjD/UAAAAwG3hNQD0AAMDQG9CDkf/+7/+2hoYGO+uss+y///u/I+ddsmTJoHRsNAuCwL7yla/YnXfeaUuXLrV58+blu0sAAGCYUQ8AAAAzagIAAEaiAT0Yueiii2zx4sV21lln2UUXXZT1b60nEgkejNiuX4295ZZb7O6777bq6mrbvHmzmZnV1tZaeXl5nnsHAACGA/UAAAAwoyYAAGAkGlD4ekFBgR133HH217/+NRRorDTQaDzK9uDohhtusIsuumhAy0gmk1ZbWzvqw9WUhmm74T2tnb1Zp5mFg1p3OsFj25ygVTOzzTulvWqzv7AtflBbz5/XZfq4pcmbVv7RQ7z2s9f4f0buPff/MP1aQ823b2712r0SJjphZq3Xnjc1E5721ja/j62tfiDcQgljLyvVQMzs31U3pNTMrFbC1NywMA1tnT6x0mtrSKUG5LlhkBraqZFe2mc9PblBUjtb/OA5DXWLClMLBaTHBtH5bT+YTMPS9L3Ry3bX3SvnTz07a+BwVChVXPCYBuRFhYPpNun3WD8nd5s0LE03KmoACoV0xgR86dLcVWkImYbLabBfKGwvcF9HB9lG9TPuc4kLzIsK29N9GxcomG25ZuHjQ6cXe8di9EaFgugiZg8dl87MozFslXpg4HRc8oKEZV4N/NRxqKsn0y6R82ajBLN2SW3R3eu3tzkhr9tkXK6uLfPab/9htd/P21d67eKF09KvEzJmJyQgPCWBsV0vZf62fPlJi7xphWfKvzpe7YfAVp+1wGt3OjVSQs51Gr6u399uZ+ytlEDYGdP847NcQs7161DmTN8uY/qsBn/ZOk63tPs1kRe+LmOUnu81YN2tnypKi71pVeV+W8cS5QaV63o1FLe8ROsWf1luPaXBmtoLPXd6Ia8xwdtxId9uQKbWeDpvKHxcvrzu2KrnRx1a9TN31xXeXv+9PTF1insMxAWg6nv1fOTOntL1yrxRh4+uVz9zzY/XZbvfAa23db1RYbNm/j6Ju1EQFYScSwjwrvdmr6fcKclk0mZNmTSq6gGzva8Jxmo9EHV/wCz6HkHU/QGz8FixblNL+nWP1BJNEpjedusKr12yYJrXLpw7IdOn/Sb6nZbr0tRfN3rt0o/u57V71+5wViTXy1P8a+8jTpjrtd1Tuo5vE2v8OmW71kBSe7ljYGe3v38qyvzxUJedkuvYdmf/ai2mY62OLW6/ymSs1HFGg9yVO4aVyb7V85eed8PjZ/aTuIZJR4VnF+ugJULX1hquHTGW6DbpOJxLDnfsOTziulSDyrX2iKqm4sbO0Hjp1TxxS1PZtzLuTnmXXDMURozjejyErtO1VxE7SPuly9Z94O6fuDo25jaHBN1Hb0OUuM9Jv0/ZJJNJmzYI4esD+o0R92EHDz7iDeBZEwAAGOOoBwAAgBk1AQAAI1H0o0oAAAAAAAAAAIAxZEC/MeI6/fTTs05LJBL20EMP7VWHAAAAAAAAAAAAhkrOD0aWLl1qiUQi9LfFgiCI/Vv6AAAAAAAAAAAA+ZTzg5ElS5Z4D0Cam5tt6dKl1tLSYp/61KcGtXMY/cKBVv7DMzdYS0M6NUy1TgLC3UDM6RMrvGkHSojbCnnv6jtf9tpNL2fC119ufdWbdvRNfojb9FI/eO2db9yXfr3oug9702bPrfPaW5v8wLOdG5u99oTqTD8bJNS1QgJRGyWotC4lgWjO+/VP2tZU+Ptje7Pfryn15enXGni2eWe71546wd/3RRLo5AZg6mdaUaoBaBapxwlXq5HPVMN4NVjKDb8qkoe4PRLapsepRkm558Bw+JW8NdBlZw+Yjwsl65b95wZ8aRhcVDB7f/1w90FCwq/6TPdl9P7xAlKlz/q5RAVt6jbEhXRFBahqUKuKCnnVZRXEBNfqqvz9GRN4Jm399wZuPwtC+yc69E8zwtxQM/0cioui94f7vZacx5C44Ht31XGhwBi7NIjSPW46JVw1KhzazD+v6pil575iCQQtkmO/rjcz1lRJmOrqV7Z57cQ+E7x2+ccO9dpdD7yWft3+xjvetIoZU7x24QxZ1qmZoNZn77nbm3boltO8dskZ8712yz1+oGy5G9Yu426h1mJtfnBtuTPmd2z39+07sm+LZFl1EjBflcrsz8m15d60txv9oPtaGfO1XdDZk36tAdh6/Ggt0tfpnM/keGhu8+ctkVBrnd8NWO+RUE4NstXTm4bCusvu7vH7oWdGrb16ne9ImZykNahWx7/i4uznYR3/dBs0RLm4UMeSzLpjsmctFaoJM8vWOkRHVl2vdNvbn3pOKEjEhK1L263FikukjpNzkwYMu+NhVJj6rn7503Xfu8eeridcS0TXm5HZrDFhq263QgHCMbVqOOjeqbcj3ofRJZf7A2bR9wii7g+Yhc/DsyZXp19v2Jz0pj179HR/vVv399pv3rvMa2946q306xPf9wlvWsH0aq9dKMtu/8WTXrvkYwdmGvL9LZJ7AM8/+ZbXnn1Qpn6YXu+PpW0SXF9V7u+vkmJ//2ze0ZF+vWhWrTdtR9K/96BB7nrvota539DS0eNN0zpOw9nd83I4mN1va+C8Hl/u8dLS7m9vpQTKd8Yce/45SmpPOYvruOyeO7UOCY0rEfcLzMzcoVZrYL3uKjA97zrX6aF62u+H7kvlXR/r5lr0+Kf9LI4IKtd+av3gXpfq/oj7x/tR2U/61tBxqx3RMd+ZX8c/pcsO32/JCN1PkXsAemnu3gPQOi3cr+h+Rt0Hi425T/T/etdao+9jDDSMfU/l/GDkN7/5TehnjY2Ndsghh9jMmTMHo08AAAAAAAAAAABDYlDC1ydNmmT77rtvvw9NAAAAAAAAAAAARoqcf2Pkyiuv9NqpVMrWrFljjz32mE2YMCHLuwAAAAAAAAAAAPIv5wcjl19+eda/0/bBD35wrzsEAAAAAAAAAAAwVHJ+MDJ79mzvwUgikbDJkyfbGWecYd/97ncHtXMAAAAAAAAAAACDKREEmiWPkSCZTFptba1t2bHTampq8t2dPdbX5x9eerAVFmQesvX09nnTiov8CJzO7pTXbu/qTb/evLPdm7b2naTX3tnY5vcj5fekqr4is6z/etabtux/bvTaxy46zWs/ufqR9OuTv/h5b9qsJYd57VSfv41tLd1eO/lWU/r1IcfN9qY1t/d4bf3qTqgq8doNdeXp1yVFhd40/aWvilL/Gem25s7069pKf7m9KX8b9HOZPrHSa6ecY6C715+3qND/jMtL/H6qXudz65Pt199j0366H3lRgT93UaHf1rOiHrfu++UQ947p/vqZkje4s+v+0N/O0210jwHtY4G8V7oV2e9e/d7KNuj+0wPKnV+3N26bCpxl9/+7iVlX2887ggFO6+czlx+4mxF1PPQ33Z2s58QC3ZexW519m3RRcYO7u43ar9DnFPEZ6/Gi34HQJkZso+53d73JZNJmNNRbc3PzqB4XczUe6wEz/xyu50al41CH027t8MfZt7a2em2tNTbt7PDa7viofezq8der5xH9fr+5pjH9uv3G571pPa++479ZT3DOskoOnulN6t2ww+9Hd6/XLjlylr/oisw2JRZN9KYVN/hjeHFVqddu35bZf0Vlxf68lX67SGqLCRMrvHZ1RWb+EvmM9TPXMV0/typnWfreLjk+Wjv8esrd1b1SH1aW+dtQKnVKWbE/vcBZdaXsHz0+OuVz0ullzrqKY+o4PXe6NUCP7Dut+XTfKnfdsfWA6Jba3j2na32ky9b6wf1c48asYqnrelI69jrrSeV2btL6yq/to8c/PSdE7T2dV+s25fVD5tX3FsgpNRFbe2Tody9Uezjr0s8wqgbe1S/ZZmd+953JZNLmTWugHhilcq0Hou4R6PjfKePy9mSn116zsTn9uqnNrw/K5Pze3eOvt/GFTV479dAbmXlf9Mfw0qP86/i+Rv9eRdF75vvTn9+Sfl0wp9abZnVlXrN4pv/Z9zn7YL8jp3vTCuV8VSdjelmpv83u+XC1s6/MzI5aOMlfr3yOO1u7vPbUCZkxX68VkrLv62v8bfSvtbNfk5mFxzCtAaKuw+LGx6hxKPb+gY7Lbh0nfYzbJj1Fu+dsHe+0QMjlOqxP7lVpv/S76u5PPX9HXdO9O4PXdI+REhlnQueEVPYBUXdH3P7I9teQzMLHSxzdZrcVV7foNrvHZvgjzO0z9r4D+n0K3ZvQay7dB9n3V9y9iOgnD9H7J9vxlEwmbfqkvb8/MCjh6wAAAAAAAAAAAKNBzn9Ka/78+fEz2a4nOOvWrcu5QwAAAAAAAAAAAEMl5wcjb7zxhiUSidCvsqioX0kCAAAAAAAAAADIh5wfjCxZssT+7//+z0pLS+3UU081M7OlS5dad3e3ffSjH+WBCAAAAAAAAAAAGLH26E9plZSU2KuvvmqTJu0KYGpsbLRFixbZ3Llz7fLLLx/sPmIUCwcL+9xAKw3z09Cp0uJCaWfmr6nwAy73neYH77RI0ObLG3Z67dUvb02/Thw82Zt28mc/67Wfv+n/vPZJ53w6/XrZr/7Lm3ZK5Ze99uyPH+i1KyQwvWL/zLrf2eEHwE6Z4IeSvb1VAuXN19qZCfU8YPYEb1pbl78/NHhsQnUmmE1DS8sllEyfhb693Q+2neGEsWuolAbmpaQfGlzqfuYaxKfhaBpUas6yYwPBZZuiAtX1GNdl63sLi7IvS7cpFPipy3LacYHx2i/dSPf7pusNZF4NPNNcZLefGgin4Xu6r91+anhaXBBpIhTaZVnFPcTXyYmIX5KMCxN1J2sgYOhzMQ1A0+AxJ5w+Yj39TQ/LzBB3ro6Kctfw3biQxMJQKp7TI+m0F7wa85uqGNlyqQfMogPXNdA5FAvorEprh4Wz6rz22rf9cNHqcn/ccQPWe/ys7FDIa+ObTX6/5FzZsyMTvjrpm8d705qWrvffK0GtfZszY35qo7+egnK/lrBKP1w1tXa71y4+wQmFlXDZnpWbvXbv/g1eu6Khyumkv33tr/u1VfV+flDrDqlbWmsy/ayt9LdhioTNaiyinmfcwNje3lTkvBqw2+bUSzpNTzsaxptK+fWUq6PL70eNbGNpiYS8prIf1+Fw2ejvkzvWalh4e5d/IEd918zMOpz5Q3WchppLt/T7538Wuf1jOrdG0rFCs0I7e7Se8qcnnOOpUMpF3V/hwFR//mI3FD4Ueh49bkXluqbkPKfCNaGzkbJe2cRQLdYXZA8v1v3RLd8vne7WkNrHuFIjHBLv1Dxu/2JrFoxkudYDUfcIou4PmIXDtN1A8LZO//z915e3eO3GNdu8dt/Tfvh6wbTMeNj3V3/M7l7lh7En5Hzfc+1fvHbJEXMyDf3ul8l7N/vX2pX71qdfb5A65MiDpnrtLqlbdN+6Nfph+9R701at3+G1959d57Xda34zs23NmeB7DVfXEHgNY3fv7YSupUPnlegxzD2c9Ngrtuh7EzrmueOBlISh85KGWLvHdaeEnOt69LjW74R7TdQt9UGhDlLSL3dy6J6HBtdrmLiOcc779X6Sjg0xydveuKPLSvUlss6rQmO26Xjnzx+65nfaceequHB2t1Yp1ntA8l79bkZtYzjkXe4XRFy36+eSkHpSa9G4+2SuuKz66HsTes8jelm7pw/W7YGcw9evvfZaq6+vTz8UMTObNGmS1dfX23XXXTc4vQIAAAAAAAAAABgCOf/GSGdnpzU2NtoFF1xg55xzjpmZ3XXXXbZu3TqrqamJeTcAAAAAAAAAAED+5Pxg5FOf+pT96le/sltvvdVuvfVWb9p55503aB0DAAAAAAAAAAAYbDn/Ka1rrrnGvv71r1tJSYkFQWBBEFhpaalddtlldvXVVw9FHwEAAAAAAAAAAAZFItjDNNP29nZbt26dmZntu+++Vl5ePqgdG++SyaTV1tbalh07R/WfKNNQoagAo1zm1fnbuyX+So5qDaxqauvKutw1G/0g1tXXPOm1l910o9euKMwc+0ee+3FvWoGGh86t85oNR8/I2s8+CWCaO90/DjQg9K1tfqjpzEmZALQdLf72HjjXD2NPSXimG2yrYWC6XqWhnr3Oshtq/f2hJx8NF9WzkxugFxWIbhYO53UD0eKCe/XQC4e8Zdq63lDQWIyCyAD16ER1NwxL+xwfpu2LCsvSJemiNcTT3Q4NiNV92SvHXtTu0/2jgYE6nLnniLjgsLgwdnfR4cCzmI469FwUCrnT0NeI4yvHQy2SLiocGJt9ZXFlRFwYe7F3jOjxknmdTCZt6sR6a25uHtXjYq7GYz1g5n+NwsHs/nt79JzuvLlHzjGtEraq3/3G5g6vPbkuM8a//k7Sm9Ym450e69uT/tjb6/Rz5/N+iGvnf67w2s+/9rjXPuK496RfFx853ZvW86y/rEBqnMK5foBq28MvpV9XHL3Am1Z0rL9slZhTl35dPrHCm1Yt7ZZGvy4pm+BfK7jnMz2PdLf7n1Ndvf/eCRJk7r5dx4YJ1X7IqwZauuHizbLvNAC1TAJ0C+VYdJetIcCtHf7x4obLmoXD2Luc2lb7rP2K+j6FwlIl9FX3V9T5Xus0HdPjslbd/RUKANVeRIzbOo6kZJsSsjQ9h7jtcI0nfda6RZbl1sm6DSkdHgM9l7nB7dlrmF3TZVER4aoavhsKNZeORi5bP8O44GxnO4rluA3VWjH1gf/ezOtkMmmzp0yiHhil9uaaP25+nVfvEbiHnJ7Punr89msbm7y2jvnrHn8z/XrTP9zhTVvTts5rn/TpJVn7bGbW/dSG9OuiWRO9aUUnzfLaNcfM9Nod2zPB772dfh9rZ9d67XlyP0FD0d3vWbj28r/P25qkXpIxfmJ1Ztl6L6Jaxj/9LNx2eak/r3762i8dD9yxJjSGacC1nJP0fO+uK3R9HDOWRJ3vQ2NlTOC82woFs1u0goj7B+FxV7cy+9JDtUaQfdztb34v9FzWG7rWlOn+pWT0e0Nnj0T2zy282uzXqWZmcnh5x2Lc8RI1/sXd1onrp7sPdDVFMXWcfm5uM+74GUq7tymZTNqMhol7XQ/k/Ke0dquoqLCDDz54j1cMAAAAAAAAAAAw3Ab0p7QKCwvthBNOSL/O9l9R0R4/ZwEAAAAAAAAAABhyA3qSsTtLZPdrAAAAAAAAAACA0WhAD0ZuuOEGa2hoSL8GAAAAAAAAAAAYjfY4fF0lk7sCKUdzENhIMlbC1QZTVAihHsY9knzU2e0HmXdJsHmyvTvzuq3bm6aBXitXbfba933iexG99p1w2ke9dsl5B3rtyilV6dcFEqyZkvC4Q/ab7LV3tPqhZjtbMtsxWULPayr9EDMNE3XDssplWmuHH4g6TcJWCwv8/bU92emsx98mDR7VwCoNCHVDqjR4VIOjNCjKDeDVoCg9XvRY0xQqt1Ui4aoaZK/BrBoI6h67cQFwqYigNs26igs11cCvREQIbq6jhLtqDVfX9WqYnLvuuLg3/Zj0GHCXHQ4Tl2VHf+SRYWJxYXPuDAXy/dBjXHsZ3j9ZuxHat7l8bnGhblGBcGHRYaq6qt6IEFy3lUwmbebkvQ9XG23Gaz0QdX7bGxrUHhda2ezUBO54ZmbW0u7XC3r8dsu6tjhBpY1vNPnvlbGkc4cfavroJf9i2cwp94NZJ1dO8drrmv0Q2P0OPz7Tx9XveNPKFu/r92uuH9xqM51jUEO72/z6oGhendeunukvyz1n6Vg5tc4PcW2XOq6qLPu/7Yo7b2rYeGV5Zll6fGxP+rWVjjNV5RqgnqlNtJbQkFutN8tL/brGrb86IgKEzcLb5L5X61ilYbRR9URUIHp/7VBosjuDhpzHfNETXj/8afo9Dr1X2u7s4RDc6DFMjy933WVam8aEArs1UmnxgP7Cdb/vNYsP3PXm1TBa2aF6TETR/eF+R3piasDY4NYsA0EymbRZ1AP57s6IEHV/wCx8rLvjsoapd8v9gRI5r76zvc1rP/v8pvTrjlVbvWnJqx/x2hs63vLaB5z5Hq9dMLM6/brz3pe8aeUfO9Rrm/Sz8j37ZJYjfW7d1OK16/f1g91nNVR67QnVpenXofO7nEl1DNNr4trKzLIm1pR601rkfoKeO7ucz0k/Y72foOeN4kI9nznXljmOHXp+0/OuS4+XKDo2aL90PdoPr36KuYgLbWNEgR0fKB+1rtzuH+h3091kHSuj1+v3W4+H2ODyHJYVWm8O9wtyr1OcwHR5a+g+jrxX9607v/ZR+xU61iJ2QVwdEroflcP1XNx9oN2buCt8vT5/4euurq4uq6urs4KCAuvt7Y1/AwAAAAAAAAAAQB7k9k9TYpA/AgAAAAAAAAAARrJBfTACAAAAAAAAAAAwkvFgBAAAAAAAAAAAjBsDzhi58sors04jVwTDIRT+5LUkdEvCrzTQq1NCy9xwdg1h3LC11WtPmlbttc/+80/Sr+9672XetNoiPwCo++WNXrvgfj+Is/tj+6dfpyRotEwC1F/Z0OS1F832Q01bOzLfy6QEnGnAZ0OdHx7qhi5q0NrUej9sXcNoJ0tg6uS6TL/d4FmzcPCYBqprGLkbilpY4H9OGv6kIZYlTtpTd6+/b4tlPX0xy3ZDqeLC1kM53Ba1rOxh87vmzf4sW0PKNKhO92U4YN5ZrwavxgR86XcmFRGmrX9yMWrfhsLQJLGr0LKvV98fH2KeSzh7RJhsP/1036th63Fh7LpN7rL1cwqF3MZss9vNuHD1XMLSgkCPW3+69tMNatXtLYg4HjC2DVbgeugcHHG+MjPrkfOwG/Kp45+eV9o6/bG2UgLCTzhwavp18SHTvWmvvLnTa69/O+m1P3TPv6VfN/36OW/a8t/d4rU15PW4A87w2mtWPp5+Pad8tjet6/k3vXZZ/SKvHTzxdvp14Sn+exMz/ZqnV4LLd/5htdcuPynz/qpJfgDsxu3tXnuSBLdu2OLXZhOdGkkDUDWovUtqQPecVCqhrpMkMF3rBz3Ptjn1ltY4W3bINkld1yF1X28qs6yKUn8b4kI8W51+aFCtHrclUnuFxx23peGq0cG0RYXZv8haPwUyVkTVD1qbhkPOI8Jmzd+mcGhp9BgWCi53XrdLmLMei3p94u6frp6+yHl1G3S6t80x4epx2eqlzrJ1V+o5UmvATmc79HPRfReY1k8m0531OB2JO/4xfkTfHzCLukeg36FOOQdvbPTHGf0ezZ5Xn2m4r83s1TeavPaOm17w2hse+avXnnvWyenXZaf7427bzSu8duXfn+BPX5+pHxqO8GuLQM6znc3+dftGvbZy9qfWPDta/DFdp7+1zd9f7mejwewVpf69h9YOP8i9rCQz5qUSUqf1+ueg8Fjht937C72puPd6zdD5z509btyJun7W86j2I3R+1/Ou0wwFpssPdBgOnM887lSq5+wevb/g3j+Qa9pEInrhev53r+sL9L5FtuTtfqYnIuPU48PY/dVEXDyHu2EFln3s1c84utYyK0wUOPNG3x8o0vOgtP1r7+jjVK/T5evk3ffQGi+utvD358DH//Dcmflz+TyjDPjByOWXXx4aDAAAAAAAAAAAAEaTAT8YMSNcHQAAAAAAAAAAjG4DfjCyfv36oewHAAAAAAAAAADAkBvwg5E5c+YMZT8AAAAAAAAAAACGXE5/SgsYLfSvvvX2aUCT325wAjCryv0wsMl1frDYyxKQ2rnDDxR3Nff64alPb3nKa5/2vr/x2l3PbMr040Q/1LS4ssRrF0mImQaRTXFCz5PtfiDsmreavXa3vHfhzLr068akv31dEjxaXeH3a8tOf/4GJ4y9odYPZt/W7M9bUOCHqxZLoJMbYqnhqRpMqtPd4DU30M0sHLanYWoFEWHsGoYWSOxfOBAqe8BVVGj3rnmzB7WVxISUacibRka57+6TPgayXt0kDXZ3g7h0/ygNLne3Wf94o4at6/7SwDP3zz/29EYHwmogWji3NfvnFBXM9+4bMtM0iDwmIFWX5YathdYbE+oWta/jIsSi/pKmvjduWbqNXgiuTHOPW8JWMRjC51k5h0ecd/UQLC/1Q6t13OmSseVPf92QtV81dRLyLcHlpbWZ8XHWpcd5006u8sfhJ//HD2N/6uVHvPZxx5yVfp2QcPFNf33Ga2+7/SWvfcQXz0u/7v3jOm9a0UcWem3b6NdAJcfO8NodW9sy06r88T+QsaNFap6JElzuhl739fmfy3bZlzMm+nWdex4Oh05Gh742t/n1VZ3zWYSCJOX42Z70Q3Arpf4sLnQDsHMLyyz0Qr2ja5weCefVesoNnNcw8bggW60v3bpOw2V130aVTxqwrGO8LrsvohQp0X0pCw/XTxpymn1aOKjcX7Zbi2jN2y31drEG/cqyvWMiFLYeXQNF1zz+tLJi//sV9RnrcnVZ2i/9s93uNhVmeQ1E0fOue4x1y7mxo7vXa1eW+edCHUvc79EbTgC6mVnpe/fxV3yT33yrc6PXnvzwy+nXPX3+uFL7wSO8dt/qHV67YMGE9OvGNY3etP2Omum1N+9o99r6ndzZmglB13FlztRqr/3G5havPWNSpdfe6twTaJF7ESVF/nmkPOI6vljm1QvEuHHH3YzK0Pim1/Fyz6gv+9jSFTr3Sfi4ZRd1TWYWPjZ17HW7FRqH9T5G6DrNuS4NXTtbZFuX5U7Wfui8WrfoPnB3WOgaV/upgepucHtMfdQj9UAoQNyZPRRcH3PdHt3vmO2PuI+hdZt+Lj1SL+h3oqAgez0Zd3mtvfTeL8ns0s3w8eQsLercbBbet0NN60oAAAAAAAAAAIAxiwcjAAAAAAAAAABg3ODBCAAAAAAAAAAAGDd4MAIAAAAAAAAAAMaNRKApJwPw0EMP2UMPPWRbtmwJBdL+13/916B2cLRatmyZ/du//Zs988wztmnTJrvzzjvt7LPPHvD7k8mk1dbW2pYdO62mpmboOjpG9UqQpIZBaRBlsj0TNLaz1Q9W29Hit8tL/ACwrU2Z8MzNErz2wGf+aYA93uWU/++3M41QSqcfVF55tB9iWihhYocumpR+vbHRD1prqPFDTjXw0g1AmzbRD1Jz95VZONxJg8fccHadVz+XzpigMVephj/KezXEzV2XBr5pv7QfRRpq7Xw2qVR0gJWGUEVFsWnGlPZLQ6hSEWmiGsYeCuKMCASN60dcWJY7vwag6XczaggKhyRHh3KFwkSjNkrXm9DwsOyfU7jL0cF1XsidLDYceBZ3POUQbF+gQW0D39cReXihXuZaRYQ/iuzBdO68yWTSpk+qt+bm5lE1LlIPjCyhcO0c5g+FLMo5uKnNHx81yLWjKzO2PLduuzetVUJMSyUUvdcJLu3Y6Y/p9Qsmee3tN6702stuutFrFzj/Luqg6v29aRUzpnjtvqS/ruJF09Ovi46e7k1LvbTNaxe+f1+vbVta/bYzThc0+IHoFZP92qO4wg+Yr5c6xg1Q1UBLDRNvljpmlhMYqzVfg4S8a23R2uEHyrrHS6GMSRoI3tbhHx+6TW6tqjVPmdSiWte4dZ0GbWqIp/ZLA7Hd/afjiC5L6fxdTuppKNRbtknrK3f8CwegR4/xOt1tpfQkkGPQfSqHQVBD4qNqDb3e0M8lNE67P4jZhqg65d05Iubtv7/99VPfG7cNUetyv9fJZNLmTJ1EPYC9oucnvUbpkTpbr1u3NWfuAbR3+ufzdZuSXnvza34o+sOfvzJrv076xAVee/lv/yfrvGZmp/zosvTrqgMme9NaX/eD2ucsnu219TvpXkuVl/jjnY6HOma909jmz19XnnVabZX/3mn1fg3g9kqvd/S8Gd4Gf1xyr+v1vVVlxf56Az0Gst9T0rFTg9z1noi7b3O5ljYLj+OFzjWeDiM6JhWGB4us69GOxY1u7tgRuk6Pea8KjeMR9DP38sBjxj8VNe7kEj5vFn29HKpbcrjPEXcPRD9iPVe5k+P2h+5b5d/XiA6QD0/PNmc/02Nm2L0ZyWTSpg3C/YGi+Fl8//zP/2z/9E/hm71BEPBgxNHW1maHHnqofe5zn7OPfvSj+e4OAADIA+oBAABAPQAAwMiT84OR6667zoIgsOLiYps8ebIVFeW8iHHhrLPOsrPOOivf3QAAAHlEPQAAAKgHAAAYeXJ+qpFMJq2hocFefvllmzhx4lD0CQAAAAAAAAAAYEjk/GDkwx/+sC1dutTq6uqGoDvjV1dXl3V1Zf6ucTKZjJgbAACMRdQDAACAegAAgKGX84ORI444wn7729/aKaecYueee27oAcmSJUsGq2/jylVXXWVXXHFFvrsxZmimkIZ4a4BVnRMAVlXuh3DVVfrhYG9LeNjkukwQWVOdH0p2yk//n9fu/OWTXvvJ15b6HV3nhLcf5IenTTlqptfesmKj1y6eXOW1X9rQlH59wOw6b9pG2YaWdj88dP7U6vTrrh4/TK6yzD9tuGGyZuGw0Te3ZgJlZzX4fdRwtCIJe9KAS3f+jm4JW5eQyi4JUC9zgku7e6XPElKtIae6LDdHSo+t3phtkFVJWJg/TYOzNCzLDVPTfKpQAFyRBsBl/05o6JZugwqHwjvLiggPN7NQx91mzGrDAXm92Y8XnVcXXajBdbJyL1A+FKCuIbDaz+zLDQegSaC8hqk579dw9XBwe3QInh8uF72zA9PAuOwLjo5hiw59Dfcj1+i+0Y96YHDFha3reVa/o24Yq44zuqxqqR+ighaPl4DU7TNrvfYbW/ww9u3JTMirbfHH8B2r/NDzsvf5oecnF3/Oay/79a/Tr19oecmbdnSzP06/teMNr735kSfSr08o+Jg3rehwP7g9FLY+wa+RrNsJCH+z2ZuUmOL3o3WTvz86pI6ZuU/mt9i7ZczWMX+KBMi6NdGsBj/0fUerH8Ze3uXXRBNlWTuSmfm1HtJg30lSMzY2dXrtuupM4HzUcWlmFgTZ65RQiKssS2tArWta+zLT9TvQkdJay3+vjnHlpZn39/lfPeuSuk7rli6pa7x5ZV9rXdeXyj726vivKaZax4TG7ezdCoU36/5xt0mDetvkWCsq0FpDtznzOqou2zVvdLCvO1nXE6pjZHe4yw7V8VJf6/6Rj9yrA936IK5mGSuoB4ZWaIyW46/I5PsqY0ttZeYcrd/f2XJdrus65St/67WXX/OrzGsJWz+y9jC/X5PrvPZj/3h1+vXiv/Gza+r+/mivvV3G5YR86SqdQHX9ruv3tVTGgykT/AD1LTvbs87bI+PyThlr66ud8VFOMqFrOJmu1+JuiHxnt39ebZfzrN4D0PHQ/Zg1mL1U5tX9FTjXi2WyP/SaV8dHDbF2a1e9ptew9dCVlXvNHzE2moWPW+We43Us0PeGztsJHYeyr0d7oWN84N3H8OeNG/9C2fTucmW92kd9b+TIJNuv464uzN2mcF661oAxNZBzQMXd19FzmfbTfb9+14oKB/6ZxgXZx03fvey4+0UDlfODkW9+85uWSCTs8ccft8cff9yblkgkeDCyh7773e/aZZddlm4nk0mbNWtWHnsEAACGG/UAAACgHgAAYOjtUXJ6tn+lMV7+9cZQKC0ttdLS0vgZAQDAmEU9AAAAqAcAABh6OT8Y6dPf60K/Wltbbe3aten2+vXrbeXKlVZfX2+zZ8/OY88AAMBwoR4AAADUAwAAjDx79BsjiLdixQo77bTT0u3dvwZ74YUX2m9+85s89QoAAAwn6gEAAEA9AADAyJMIBvD3r04//XQ78MAD7ZprrrHTTz89+8ISCXvooYcGtYPjVTKZtNraWtuyY6fV1NTkuztjnvs1aJcwcQ1a01Dr19/JBIYmO/wAy18fd/Ee9+n4Yz7gtYs/cYDXLpDAzwIJ/Kp2glwnTyj3pmkw0qQaf1lr30mmX8+Y6AepzZAAddXS3u21JzrLbpX94wWrWTjcSfd1KCDToScyDUvzlhMR2NUfXZYGcbo00Eq3SdelYWqemBRrt6mhnKnQev336nr1mHDpNsWFqbnTYzLb9opuU9TnWFykIXf+vClJaisszH6M6L4LB6hn72copC12CM4eeh4KV48LuRsy0SF2uQh3OfODZDJpMxomWnNz87gaF6kHhlb4nK1zZH7Q1eOfJzSIulPqBT2eO5zQzw4J/NzW7Adve2HrZrbJCR+fKAHh76zb4ffj7tVeu2CWHDfOl7Tthie8SSt2Puu1jzv4PV679+3MulbseMabdlT9kV674sOH+KtdUO/3wz3vtvr1gdWUeM3K/Ru8dqHse3dfT5Xgdg2xri4v9tru+Fcg57OKMv/fkLVIHaN1yvT6TM2kIa8aPqvHQCj01Wn3yHo0TNQNATYzq3K2UUPN9Rytwa26bFevhomX+Psn1adh49m3Sfuh30UNmNcw9qh+6bikNY63btlcDWbVMV53jz8uR/XCrFsCh905dN+FAnVjAtPd7QgHs2t9YJHT3f2jn4vWR8pdtpZHGkYcCk2OCQLeLZlM2qzJ1AMYXlpXu/cM9H6BtjvlPPzcukav/cqH/jP9enXra960KaUy/iUkyLwvM5bMPvFYb1rRiX4mTWKqPz7OPniq13brlCm1/v2DLjl/aQ1UL/cT3HOYfte37Gj32uWl/lji3ruoKvPHbD3f63V5cWH284pe0+vnFL6fkD2MXcd/PSfr9aJ7/tPL7grZRr0uDQ0m7nr7oter14feRxFz0aZTowKxc7k/0N+yvbljgsl1ujtWxN0fCAWG6/ho2cVe4kb0M7crfllW3L6M6Zh7TOj262caV8ckIgqo+KD77J9TXD+y3W5JJpM2bVL9XtcDA/qNkaVLl1pnZ2f6dSKR6PeGi35AAAAAAAAAAAAAI8mAHowsWbLEFixYkH7NAxAAAAAAAAAAADAaDejBiPs3L/n7lwAAAAAAAAAAYLTa4/D17u5u27Ztm6VS/t/lmz179l53CgAAAAAAAAAAYCgMKHzd1dLSYl/4whfsrrvust5ePzQwkUiEfoY9Q7jayKWBX27w2o4WPyx1swSLPXPz81770R//Iut6Tvnql712z1MbvXbJZw/32gVFEqzlBJ5Nnu8Hns6fVu21tzb5/XZDvColeLSuqlTafuBnsYQyNjoBshqeViKhnFXl/ro06LbbCUgrk8A3DWzUsCc3AE5D2TSoPCExUxqm5m6jTguFY0pylJ5w3UBVDdoMh2vLm4Ps84bCxiPCVM38QKvIkDYLb0NUSFdMVlrs9MGiYWAavqc0mEw/1yihcHY3O03mjVuq9ttdtK5H59XQUh3uo0Lhw6Ii8vYufH2g/UgmkzZ9EMLVRhvqgeEVDmMPsk6LOxdqoKP7He2VoGUN19b2241t6dfPPvu2v54Kf2wNZDxse26T1+64KROaHkhAeF97l9d+pnmlZTOldLLXTgX+shq7/VD444//kNcuPmN+plHvh7baVr9+slJ/TKs4aIrXLnKmF0htMW2SH1avAeoVznu1lqiSGkhrDx0v3RpRaxwNQa+V+kmPr/bOzP6cWOvvHw1u1/O/28+qcg119efVQGwdH7MFYPfXZ93mqNpD59XaTMeWqEvWuNJB31tYkNlGDWaPo5951DZG7Tul1xdxdVthodYabpB7dP2otXpoXc4b4rZAN9EPV42rS2IWnkUymbSZhK/nuztjnn4v9NrA/c7qNWufjPGdMWHsDz20NrOs+9d50zr+/LLXLmzwP/uWtzNj/Mutr3rTTvm7L3rt8lPmem2TyyH3/sGEyX5Q+4RKf8zSbaqv9u8RVDrX9d2yfybI/YSN21q9drEzDs2a7N+30LFCzys6jrtjWlw4tE6PGnc0ML1b9odem7tnUz0+lI7bOk679yr0HKz3NXSAjLqmjQv11qGisCD7+T4yTLy/+SPGnbggd3d6aJr2Q5Ylh4u3P3O91tZzhrd/tB8x/YoKto8TunfjLCzumFe5rVqX7R+37v6M26a4e0S7N2NYw9dd//AP/2C//e1v93iFAAAAAAAAAAAA+RL9T2b7cffdd1sikbDvf//7Zma2zz772Je//GWrr6+3X/wi+79+BwAAAAAAAAAAyLecH4xs2rTJ5s+fbz/84Q/NzGzSpEn2y1/+0mpra+3ZZ58d9A4CAAAAAAAAAAAMlpwfjJSWllp19a6/81dWVmYbN260np4e6+rq4k9sAQAAAAAAAACAES3njJGpU6faxo27QqD32Wcfe/nll62hocGSyaQ1NDQMegeBkUYDsqvKMslAFaV+wOfEGj8s8/mFE732MbOO99qJskyo2aM//3dvmoaWdl33lNcuOecAr51yglvf6fLDwLa/nfTaU2bXee1Fs2rTr1esafSm6Ta1tPshpsUS2llfnZm/sbnDm1Ze6p+CNABTQ07dwCYNNNPPRUMsg8DdB/5yS4v992oIVZGkP3X3ZpYVXm9M0KQsu9QJH+2WsN2CmEfX7rILJOxKtz8UtKnBY06/ios0fN5fb2wAmvs6Jqy4SDYy4cwRF1Km/YoKGtNjS0PsdP9o292focw6DWKNCDkPHQ8WLSqoNByuGhdqqoF62dceFWoXJ27WcFCr896IZe1pSCuQC/3OeedWf+gIHZP6PdFD1g08LAr8c0xZsYa6Sgj4rEwQ55wpfhDpyxv8kPN6GadfkwDV5qNnpF+3LH3Dm/boT6+zgdrStTVy+syy6V772Sce8NqHvH1k+nXxgqnetKL9/HrJKv1taF/t1yaFkzP1V0LqkLc6/TqlekK51966ozv9uq7GD4RtlhpHachpaVHmINGAdB1XWtq7vXaNBNtWOuGr25s7vWmTZRuSsqw2J7i9KxSQ6x8fZYVyYIueXnf8iw69jQvxdGsm7Vcg34lQCKzzWsNDta0BqAUFWue5NYCOjdnXu2tdftute8NhzX6tURgRNqrboOcXrS1CIa9OnRNVw5iF931JkX8MuOeyAt1goec9t1/hjN/oOiR0+GQZ+HOpSYA9pee3Em073/0Kf+jwzptmZsUStl5c6I8Pp562T/r1H6561Ju2Yscz/sL9Id+z+Ij3ee1Hr/uV1z5lzjf9N1T54860g6ekX7/9sj/GFznTzMwqy/zr+PZOGfOc/aPX/K0yLs9o8O+hbNmRuWfwdqMfzK5h7H1SL0Vd88UFT+t7U32hGPD0q3bZhgrZxvB1fWZZvRY9ZrV2RC/bvXjS86GO03q27HH2l26vnnOjwtbN5HwfdSHeTzuqn6HY+rgE8Ij9EbqmlXahrM3rR+h+kx5buk1+t/oiQuFDImqPuDB6FRpLnWX3an20F9f8YRo+H1F7BdHzajd09+3ejJiyc8By/o2RxYsXW09Pj61atcouuugiC4LAksldN1mXLFkyOL0CAAAAAAAAAAAYAjn/xsiNN96Yfn3wwQfbtGnT7IknnrBDDjnEPv/5zw9q5wAAAAAAAAAAAAZTzg9G1Kc//Wn79Kc/bWZmr7zyiu2///573SkAAAAAAAAAAIChkPOf0tq5c6elUv7fSHzmmWfsYx/7mB1yyCGD1jEAAAAAAAAAAIDBlggGmK7yxhtv2Ic//GF76aWXrK6uzm644QY7/vjj7Ytf/KL9/ve/T8+nD02wZ5LJpNXW1tqWHTutpqYm393BIFm+apPXPmBuvdf++azvp1+/0rrGm3bq9f/otYNtbX779SavnajMhHbaBD9os0LC06bMrPXabijj9Ho/4HPdOy1e+/gD/WVpqHXCiYuqcoJEzcx2tvphojUVfgBcXaWfZOcGpHV2+wFvGoIeFQiakj6Wlfi/PFdSFB1U7oZnaaCl9kNPsZEBoZIqpcF9UZldulylQb4aHuYGb2lYnO6PbOFXmWVlXusIo93UADB3O+ICwHW6Btd5rbj3ynQNLnXnT/XpMR7DeW84tz363To5am4dzMPhs9nfHRciHf3e6DIiLhTenRy1fclk0qZNqrfm5uZxNS5SD4wdueQZ6nnGlz0M1Mysqc0P4q4s88fexuZMqOkL6/0UVx1LXvzEzV67vakpM63l5Yg+5qYw4Yc/71+1yGtXL5jtz9/gh68WHtyQaczwp5mOf1LXTJg7If26RwJy9UMrlgDUOglMd+fWsVODt7t6/XWVl/j7oK5K0nwdWh9ocLtb83RL0LbWLdVSeyn3+Ik+LsP9igqjLS32tzdUW4TCxTP7M64eKNIgc+lnQdSYrgHzMQHi3rzyTw6LQmGi2QfAuHBVrbW03+5nXizHnvZDa56oGjEuAFXrXney7ncNOtbzje6DVJZg32QyabMmT6QewJj0/Ovbvfaat5u99tbbX/LfMDEzpq3615u8SQsXHOG1+9r8a+8JPz7Laxc649DM2XX+ep1AdDOzuVOrvHZbl39tXuac43U803GoQoLc3fNOl4xhZTJWTqrx73PI6cw7z8RdG2kQdVxetrfe0Db5tZd77yIuBF7b2i+3vtBl6Xk36t6DhodH3R/ob9ku3VUxtyb6WUDEDYS462XndaiPMde0OrbqMeK9V7oRt6yoa2StNaK2MOpeVH/vjao1QkL7J7pu2YuPyaI+qfB3M+53OHbNn0wmbUbD3tcDA/5TWt/+9rftxRdfNLNdvzXy+c9/3g444ABbvny5mZmVlJQQvg4AAAAAAAAAAEa0AT8YWb58uSUSCbvgggvMzOymm26yxx57zEpLS+3iiy+2b3zjGzZt2rQh6ygAAAAAAAAAAMDeGvCDkcbGRluwYIHdeOONZmb2xBNP2Nq1a+3uu++29773vUPWQQAAAAAAAAAAgMEy4PD1VCpl9fWZPITdr3koAgAAAAAAAAAARosB/8aImdlzzz1n8+fPNzOzTZt2hUjvbpvtCoFZt27dIHYPGFtOPGiq1/7lfz7ltRvOPTH9evLhH/Om9f7eD2Of+JVjvHbHvAlee/r8zIPM9f/nh7SlJFz0jRc2e+06Z1kajllc7D9PfW6dHxB32PyJXru5rSv9WgOZNGy9sdkPhFP11ZlwtSDw+6WB4VHh0QUSSqmhbpr1pEHcXsClTNN+aIiZBpO6YaIaOlUm+1oD0tz9qcGZGrQWGfpuZglnVbrertA2SdC9fK7urtfPIUjk0i8NhBt4GNiufrnpYP40DeZTGopbWpQ53uL2pS46KhAudJzGhLy6q4oLtQsFwulnHpGQpu+NCgHUYL744Lns69X35hzcB4xguYR46vkuZsleKy7QeFZDJjBVQ0vXb2nx2tt+ebbX3n7V8vTrw1/0LyO2dTd67Y2d72TtsUoF/jk3FOz+rN+eVz7Ha098KlN7lB7sB7UX7TfJa/dW+oGo29Y6AfQz/ODGMglq75b6oSPp1y3lzv6MCxfXz6m10w+u3ZbM1E8NNX5wrZ6/9RzthtOWlWgAur+vk23d/ntL/X73dWSWrSHekeOumTW3+8t2g9zdIFqz8LhTUuT3ww221Xl1nAnXS7K/zK3jdF+a35ZxSbrlh4/KvBowHB7jMj+IC33X8FXlvl9rzf8/e3ce52R57///nWR2ZgMGZthmWGQRkaWoFFcUqqJdsJtaqyiVnrZYj6K2alsUz/kWj6eL1mOtv1rRc+pS7dHa41qlgNqiCLKrCMiwKIsIzL4m1++PkSTXnZnMZO7MZCZ5PfuYmuteryvJ5H5PLpKPIzK3+1wMzwsRhesdryjODB1e+N45pvbyk/NxDc/Q4Y+p8/kOJJNJjr+l3/jvdfYGY/pZTf/fdwVvjzvlDGudx1EAfOOKF6z2ScvGWu3c2aODt49UN1jr6ivs4uu7Ha+dJ46w+3XwaGj7Kse1oMBRjP2o41xFBaFrb62jqPu+w7VW25mXCvvY7y+E97K9v40Cjle8dMc1P3xv5+uQsx/VdU1WOyczdC32B+zXaOf1zvl+gvP1P3y9s4/OfkT7Gy4z3b4/nOd1/jP6iALr4YXtnUXM2/mbLuKvw3aucZ3WTl5y5pbw65QzWzj3jbg+Oouih7Uj9m1nvOH9cB7XuWfkczH63+bhnEXOA47npvP+C++2s18RBdWdxdnVduZxHsqZn5xjOrZ/tPczYhHTxEhjY6PKy8utZeHteHUKAAAAAAAAAACgK3R4YuTMM89k4gMAAAAAAAAAAPRqHZ4YWbFiRRd2AwAAAAAAAAAAoOvF8gXGAAAAAAAAAAAAvVpMNUYAuOP8OrqJn7cLhJ5wyeTg7cdueNFa98bzf7LaZ31hhNXOP84u1Lbz/94P3i67aLy1bteLjkLuM+xj+cMKb+09ZBc4mzDcLvK+pfyo1S53FG4dM7QgePuTo3bRtoCxC8L1cRSIq3AUBM3JTA/b1n75Chi7MFtkWaqwNRGFNJ2FJO1iTx5HqbHwQp3NjqpSmc6C6VGKrUt28TWfN3qxNGeB0PBzOwuv+R0FqyILXDkKkYXdKf5mx5icx3b0y1mY1CrMHWMBcK9V8Mw+rrMIl/PYzmOFn8v5TZAR96VdOzSiuFx4MfYMZ/H5iCKwcrSjVDxrp3C5sxBd+BidhfgiHmPHqZxFT/1R7h9nlyOL04Y2CJjoxdOcvz/RirNHK+ROrVWgY/o6ipp+UmEXCA//VUp3FPw8bnCB1R41yC5G/nxYEXDntTL/6fesdtl7djH2QKUjA1SE8sWHu7dY64bnD7faHxy1c0tFc6XVzmoK9SvtSI19nnV2lvD162O1Tdi1Je14e9v6XLuIq/Ic7Qz7/qvJC/XDeW3IG2bft1mOHNPQYF+I0jNC15od5UesdWmOvJSTY7dzw46d5SgC7yzMmuHILUer7Psg/GW5X1hxeUlKdxyrwW+PwXnNr6kPFaONvDY4Cqin2c+v7LDCtc7jRhYHdV4f1SZntnCOyXntdG5vX5ftYzv74cx51pgd+/qdRYAj8qMcwnKcid5nZz+MiThYaFvH9b8p8sSOY7V9TTeOrBU5Jke+DLsd/jA4i/gCyez0K6ZY7fXvHrDa1ReEXhvTHL/bR276i9U+6YpLrPYH//O81R479org7YZK+1o5akKx1d6987DV3uG4po0ZErrmOYuvO18b8x0F0xvD/u5y/s2f5bjuHqmyC7dnOq554dfiyOth9L/hGprsF63wIumRRc6dBdXt9fWNofcqnH1sdPwh6vy7vqm57T+CnK/v7f0NF37fG8d12Pk3f6Pz2hHl7zTny7LzuhtLMfaIa0c7f/Na69pc0/q+Uf+8dGzrfL5EvifiKOweNsj2CqI7c00gyrXUqb1+hYt4vyRKn1sTfmjnc97Zz2iHai+nOX8HIt4H+mz7iDzYSXxiBAAAAAAAAAAApAwmRgAAAAAAAAAAQMpgYgQAAAAAAAAAAKQMJkYAAAAAAAAAAEDK8JioVWGRKJWVlSooKNCBw0eUn5/f/g7olZy/ff/zYqhgeuWTdiFSU9Nktb2nDrHafUb2s9r9inODt2vq7cLkedl2kc5KR5HzvmHFQ2sb7H2HFuVY7VpHsVBnYaTw4uvOYo+VjkJszn59WmkXjM0IK1Q2pL9dEC68KKckVdXZ91eat+PFMZ0vis66UeHnctS6iih25Sxg5Sxa6SxiFovwY7dXiDTiyeYQXizM2SfnmJwF5CPug7DN2yuQGUNd8oht27vrwldHFJt3jKm9gmjhxeydXU5zDNIbUdQ0WgE0u93e4xjeiig+7zh2e0+J8GZ7dcsiC8h2vAi8k3Nt+N7Ouyp8iJWVlRpU1E8VFRUpdV0kDyDejlSHrr3pafZvpPM67SysGF4A9IO9dkHwjz6ttdr71u2zT+zIC8oPFVsNvLbbWlX9/AarnTGwr32uvdvsQ6WFfjcaA3a26D+szGqnjyiy2p6wgvL+j+yi7l5H5vH2zbb3HZpntRWeY/rZhcr1iX3/qMBenz0o12qbsItpfom9zqmusqHNdc5C7fmOgvLOl2xnwdjw1+Vmx8UiJ9MuIFuQYx87y7G+oTH0HHDmNuc1zZkn68OeP86inBmOQraZ6W2Pwbm/8zkfWcjWmRfaPrfz+ubcNlLH/wx31jyPdk1vr7iqkzPHhD/Mzn2dz49oBWOdfXZmwsgsZh87/KEJz6aVlZUaPmgAeQAp6b7/t9xeEF6cPC36a45/xS57gTPfj+sfvD36GxOsdc7XaGeh7t37q6z26GGFwds5jgLq1Y6/0wsc1yV/2PWvMDfTWufc1/lehbM4e3Hf0HXcWUzdWQTdyfnaGL6/8zzOwtPO62X4oZr90V9XnftGe412iiimHaWAeGTB9OjFs5v8zr/52j6PU3t/14efK+K9mBjeL4n1nRU3b4ZH/u0d5W9+Z9v5N36U9wTae28q2vsFEfvH+IZKe/0OFwhEDyrtvS8ULuL54dj5WH6orKzUsIH9XecBPjECAAAAAAAAAABSBhMjAAAAAAAAAAAgZTAxAgAAAAAAAAAAUgYTIwAAAAAAAAAAIGWktb8JgK5jVxX64hkjgrefc2xZ9bpdLO2NH/3Kap/+25utdk5YgdDGarsoZ5aj4OfuTYetdp8TioO3q4/WWesySuxCo4MdRdDf233Uam/aGSrOOnlUf2uds0hXQ5NdsKmowC5yeqQqNI7DVfaYBjgKMuU6irxV1oYKtTkLbTuLOTk5i0PWN4aKvOW0UzzUWRzNWeQzvKins4Cls8i5swpVeL+cRdn8kVXL2jxvy/6hc0UUW3eOKaKqt920+t1Owc+IQmxWH9te18ppoxZbcxaxa29MEc+JsDE5t404tuzncfi5nGOKLJDe8UJsfn/0PrdXqC587/YK4kXcX2EbOM/TXk23aEXhnXe7aeM2gM4ryAkV43b+Xjl/f7McRaw9WaFf0tKBdh5wFtOuq7MLoh7dctBqB/62M3g7//KJ1rr0c0ZY7ca/bLXao84ZbR8rrKB8YK9dQF2O4qqeHLsYuXdSKPN4Jwyw1pndFfa+2fa+anQUmgyPLQdq7PMMtu8vr6Nf9UfqrbYv7L7/dLud03IG2tkro49duDa8uHi9o1BtRaV9nhzHvnUNdnHa8MzkLFRbU28/xo2OHOeUF3b/Ha1ptNZlOwrZ5mTa93V4YW5nke5GR0FdJ+c1rCmsWG971/80R25raLLHXBV2/zrH4Oynsx/h53Ju216N0sjoGlrQ1E4B+Yh85cjF4VnVmS/rGh3Fix1Fg8MzQZqjrrGzH+nOgsOOfvsDoWP5PaF9m5qjP8+AZHbh1SdZ7Zdf/qDNbX2O63L1AbtAevq3TrTatUv+Hry9rZ/9d3jh5wZb7aK+9vr8PLtI+s4D1cHbk0b2s9YNKLT3dRZFD39trKy1rxXhxdQl6VCF/V5FveM16uNDoWvx0AG51rpoxbKlyNek8Gug832LTEdecr7fEF6X2rnOWdQ82t9dTo4uRuzrTHpNzaF2RjvF551/s0WMKWy98/W9vb8P2yqmLbUyhnbfT/C0erv1fjn2dRwrWmH76Pds5Htb0YqeO/sVcfTwMZnoOaWdu8dR2L7jz63WzuV4B8Fa43zvqr3sES7icYnyHogUuq+d93ln8YkRAAAAAAAAAACQMpgYAQAAAAAAAAAAKYOJEQAAAAAAAAAAkDKYGAEAAAAAAAAAACmD4utAAjmLQ72/O1SoPCvXLoZpl0qTTv/JAvtYzuKQYcXGCx0F0g8esYuUHX/yUKu9e8/R4O2y0kJr3YYtB6z2pLBC7ZI0clC+1a6uCxVMq3AU2izpZxdPO+IoqO6spZQZVtTSWSjqiKPAfLGjqFt4sdmaBrtwppOzhFO6r+3iYM5icVmOImbOelURBb7ClvjSnIXYnEW8HQUuw+6D9gqmO2tdBdR2YbJ2atFHPC7+KBXFnf1or2iZVVzMsbGzuJbfcf9EFgcLcRYPba/QmLPAl11M1Pl8aGffNo7TmvYKlXut54C9MrLPzmM7ir5G60pEP9ouENdewTenWAqse9q4DaDzwl8rna8bkb/O9m9ec1iB0EGOa7jzdWL2tFKr/U5/e3tzRlnw9kd77CLnp5890mp/4ij6Wuu4jpe/uiN423uKva2chbkd+Uphr+H9xxbZ6061m5V77X5GFLEOq66aP7TQ7oYjAwUcF48cx/0Zfo1zXt8aKu3M43eMMRD2OPV3FMhtdBSudj4HBhZkqS31jvM0O4rPhhfIluzs5ZSfYz8Ozn44M1BOWBHhOsfj77x/6hvt9RmOKuDh22dn2H8Om1Z+C6KdyxP27wybHQV0/QH7/nJel+1c53esszd2FioPGOfFtO3nizNLOEfofE54wh5HZ35ythsc+4Zn5ogM47gDnEXUnQXo29JelgKSmbP4eN6QguDt2rBC45KUlmW/vvX76VlWu+oFu3B7ztcmB283v7LTWtc4xr4+NjqupQML7WvHgaP1wdsffGRfO0sH2O9NpDteo8Nf/5yvyYer6q123zz7vM5i7OGvnZ9WOvZ1jMH52unzOYuTh702+trOR5KU4XidCh+TMy9F/L0c8Tew8/U/tL+zfrrz2M7XXU/YuZzvYzjHlOZ878E+ldVv59/D7XFe861rR7QK6FLEHWT9LRlwXs9iu15Yhcrb64ajHVmMPXxd9KLwsezrfK619/yJNo72ipc732Oy70/Hc82xb+R9H+0Ojb5tZDdNq9t1Fp8Y6UL33Xefhg8frqysLE2bNk2rV69OdJcAAEA3Iw8AAACJTAAAQE/CxEgX+dOf/qSFCxfqtttu0zvvvKNJkybpvPPO08GDBxPdNQAA0E3IAwAAQCITAADQ0zAx0kV+9atfaf78+brqqqs0fvx4/e53v1NOTo4eeuihRHcNAAB0E/IAAACQyAQAAPQ01BjpAo2NjVq7dq1uueWW4DKv16tZs2Zp1apVre7T0NCghobQ9wVXVLR8D2NVZWXXdhY9Sk11qJJIXU2tta6+odaxteM7H+vsX+e02tD6tLQma11dnf3dy7WZ9vdL1tVWh/XJ1+a6lvX295x6/Pb3SdfUh86d5viezqo0ux/VjjohzY329rX1oe2d36WY4fju5WyvPWbrOI7vpnZ+/6HzKwwjampEqaHR6Piiz2g1EyT7+5ed52mOqKHhmMuO8oWR7dYYcS6IoVBE5K6O75cM62esNUbC+xFx37moMeL8/sz2aoxEPgc8Ybftdc7v3nR+L2r4feAcQ7TvE23pp3N929/rGa0uSmvtaDVG2nuMY6n4EVHrpJ1ztbVtVVVlG33pucgD6OmcrxvO1xzna3j4653zu6irquzvNm9Ot3NJbbVdLS38d9mZLaqr7G1rq+3vBa911JCorw87d4ajjpizxojPkQ/CLiV1NW3X15Ck+jq7n9FqjKTX2ONvqo1eY8TjyGL+sO+QjqgxUmvnpbSAfa7wunO1afZ526sxkil7e+u8jvuyodn5/eR2TkkL2Jkw/DrUnGHnJWc/IupkhGXC+kZ/1G2dnBkxfPvmiNwW2zXGE3alivwubkVtR+S6MBE1Rhz3bcR3d5u2ny/t/Z4HnN/lHTYmZ00RZ7+ao31PfDs1Rpw5t6M1Rqo+e33oTXlAij0TkAfQmjrH619dTei6VFfrqDHiuDZ4Ha939Y2O9xfCXpOamx21OhzX6doa+/evxvF+Q22Nfd22ts12/u47a4yEbjt/y53Zw+vPtNrVjhok6WE1PD2Ov0LSAu3UGIl4jW67vqfz5ch53Ql/zXb+HercN7LGSNt/x0a+t9BOjZGwtrOWl/O+dY4/4lLriXL9U2zSXNQYsRjndTh6/Y1oYr3ERK0T4syL7Tzo0fZtr7ZsLDVG2uN8PkWr2RJRW9f5vkfUjsTyDkFIvN4fYGKkCxw6dEh+v1/FxXZR6uLiYr3//vut7rNkyRItXrw4Yvlxw8ta2RoAgNRUVVWlgoKC9jfsAcgDAAB0jd6UB6TYMwF5AD3K64nuAAC0zm0eYGKkh7jlllu0cOHCYDsQCOjw4cNKT09XaWmp9uzZo/z8/AT2sPtVVlZq2LBhjJ2xpwzGztgZe9uMMaqqqtLgwYO7qXeJQR6IxO8IY2fsqYOxM3byQAvyQCR+Rxg7Y08dqTx2KbXH39GxxysPMDHSBYqKiuTz+XTgwAFr+YEDB1RSUtLqPpmZmcrMtD8GWFhYqMrPPiqbn5+fcr8MxzB2xp5qGDtjTzUdHXtv+pehEnkg3hg7Y081jJ2xp5pkzQNS7JmAPNA2xs7YUw1jT82xS6k9/o6MPR55gOLrXSAjI0NTp07VsmXLgssCgYCWLVum6dOnJ7BnAACgu5AHAACARCYAAKAn4hMjXWThwoWaO3euTjrpJJ1yyim6++67VVNTo6uuuirRXQMAAN2EPAAAACQyAQAAPQ0TI13k4osv1ieffKJFixZp//79mjx5sl566aWIYmvtyczM1G233RbxMdpUwNgZe6ph7Iw91aTC2MkD7jF2xp5qGDtjTzWpMvZ4ZIJUua9aw9gZe6ph7Kk5dim1x9/dY/cYY0y3nAkAAAAAAAAAACDBqDECAAAAAAAAAABSBhMjAAAAAAAAAAAgZTAxAgAAAAAAAAAAUgYTIwAAAAAAAAAAIGUwMdKD3XfffRo+fLiysrI0bdo0rV69OtFdcu3222+Xx+OxfsaNGxdcX19frwULFqh///7Kzc3V1772NR04cMA6xu7du3XhhRcqJydHAwcO1E033aTm5ubuHkq7XnvtNX3pS1/S4MGD5fF49Je//MVab4zRokWLNGjQIGVnZ2vWrFnatm2btc3hw4d12WWXKT8/X4WFhfrOd76j6upqa5uNGzfqjDPOUFZWloYNG6a77rqrq4fWrvbGfuWVV0Y8D84//3xrm9449iVLlujkk09WXl6eBg4cqDlz5mjr1q3WNvF6jq9YsUKf+9znlJmZqeOOO04PP/xwVw+vXR0Z/4wZMyIe++9973vWNr1x/Pfff78mTpyo/Px85efna/r06XrxxReD65P5cW9v7Mn6mHcn8gB5oDdeE6XUzQNSamcC8gB5gDzQdZItE5AHQsgD5IFkuzaQB8gDvSIPGPRITzzxhMnIyDAPPfSQ2bJli5k/f74pLCw0Bw4cSHTXXLntttvMCSecYPbt2xf8+eSTT4Lrv/e975lhw4aZZcuWmTVr1pjPf/7z5tRTTw2ub25uNhMmTDCzZs0y69atMy+88IIpKioyt9xySyKGE9ULL7xgfvKTn5inn37aSDLPPPOMtf7OO+80BQUF5i9/+YvZsGGD+fKXv2xGjBhh6urqgtucf/75ZtKkSebNN980r7/+ujnuuOPMpZdeGlxfUVFhiouLzWWXXWY2b95sHn/8cZOdnW0eeOCB7hpmq9ob+9y5c835559vPQ8OHz5sbdMbx37eeeeZpUuXms2bN5v169ebCy64wJSWlprq6urgNvF4jn/44YcmJyfHLFy40Lz77rvm3nvvNT6fz7z00kvdOl6njoz/rLPOMvPnz7ce+4qKiuD63jr+v/71r+b55583H3zwgdm6dau59dZbTXp6utm8ebMxJrkf9/bGnqyPeXchD5AHjOmd10RjUjcPGJPamYA8QB4gD3SNZMwE5IEQ8gB5INmuDeQB8kBvyANMjPRQp5xyilmwYEGw7ff7zeDBg82SJUsS2Cv3brvtNjNp0qRW1x09etSkp6ebp556KrjsvffeM5LMqlWrjDEtF1Sv12v2798f3Ob+++83+fn5pqGhoUv77obz4h8IBExJSYn5z//8z+Cyo0ePmszMTPP4448bY4x59913jSTz9ttvB7d58cUXjcfjMR999JExxpjf/va3pm/fvtbYf/zjH5uxY8d28Yg6rq3g85WvfKXNfZJl7AcPHjSSzMqVK40x8XuO/+hHPzInnHCCda6LL77YnHfeeV09pJg4x29My0XwX//1X9vcJ5nG37dvX/Pggw+m3ONuTGjsxqTWY94VyAMtyAO9/5qYynnAmNTOBOQB8oAxqfWYd5VkzATkgRbkAfJAKlwbyAPkAWN63mPOV2n1QI2NjVq7dq1mzZoVXOb1ejVr1iytWrUqgT2Lj23btmnw4MEaOXKkLrvsMu3evVuStHbtWjU1NVnjHjdunEpLS4PjXrVqlU488UQVFxcHtznvvPNUWVmpLVu2dO9AXNi5c6f2799vjbWgoEDTpk2zxlpYWKiTTjopuM2sWbPk9Xr11ltvBbc588wzlZGREdzmvPPO09atW3XkyJFuGk3nrFixQgMHDtTYsWP1/e9/X59++mlwXbKMvaKiQpLUr18/SfF7jq9atco6xrFtetrrg3P8xzz66KMqKirShAkTdMstt6i2tja4LhnG7/f79cQTT6impkbTp09PqcfdOfZjkv0x7yrkAfKAlDzXxLakQh6QUjsTkAfIA8ck+2PelZI5E5AHyAMSeSAVrg3kAfLAMT3pMU+LeQ90uUOHDsnv91tPAkkqLi7W+++/n6Bexce0adP08MMPa+zYsdq3b58WL16sM844Q5s3b9b+/fuVkZGhwsJCa5/i4mLt379fkrR///5W75dj63qLY31tbSzhYx04cKC1Pi0tTf369bO2GTFiRMQxjq3r27dvl/TfrfPPP19f/epXNWLECO3YsUO33nqrZs+erVWrVsnn8yXF2AOBgK677jqddtppmjBhQrBf8XiOt7VNZWWl6urqlJ2d3RVDiklr45ekb33rWyorK9PgwYO1ceNG/fjHP9bWrVv19NNPS+rd49+0aZOmT5+u+vp65ebm6plnntH48eO1fv36pH/c2xq7lNyPeVcjDxRa+5AHQnrbNbEtqZAHpNTOBOQB8gB5ID6SNROQB1qQB8gDyXxtkMgD5IGemweYGEG3mj17dvD2xIkTNW3aNJWVlenJJ59M+As1us8ll1wSvH3iiSdq4sSJGjVqlFasWKGZM2cmsGfxs2DBAm3evFlvvPFGoruSEG2N/7vf/W7w9oknnqhBgwZp5syZ2rFjh0aNGtXd3YyrsWPHav369aqoqNCf//xnzZ07VytXrkx0t7pFW2MfP358Uj/m6DzyAKTUyANSamcC8gB5gDyAaMgDkMgDqYA8QB7oqXmAr9LqgYqKiuTz+XTgwAFr+YEDB1RSUpKgXnWNwsJCjRkzRtu3b1dJSYkaGxt19OhRa5vwcZeUlLR6vxxb11sc62u0x7ikpEQHDx601jc3N+vw4cNJd3+MHDlSRUVF2r59u6TeP/ZrrrlGzz33nJYvX66hQ4cGl8frOd7WNvn5+T3iD4i2xt+aadOmSZL12PfW8WdkZOi4447T1KlTtWTJEk2aNEn33HNPSjzubY29Ncn0mHc18sBRaxvyQEhvuibGItnygJTamYA8QB4gD8RPqmQC8gB5QCIPSMl1bSAPkAd6ch5gYqQHysjI0NSpU7Vs2bLgskAgoGXLllnfyZYMqqurtWPHDg0aNEhTp05Venq6Ne6tW7dq9+7dwXFPnz5dmzZtsi6Kr7zyivLz84Mfy+oNRowYoZKSEmuslZWVeuutt6yxHj16VGvXrg1u8/e//12BQCD4wjF9+nS99tprampqCm7zyiuvaOzYsT3io6IdtXfvXn366acaNGiQpN47dmOMrrnmGj3zzDP6+9//HvFR3ng9x6dPn24d49g2iX59aG/8rVm/fr0kWY99bx2/UyAQUENDQ9I/7q05NvbWJPNjHm/kAfKA1HuviZ2RLHlASu1MQB6wkQfIA/GQKpmAPEAekMgDyXJtIA/YyAM9NA/EXK4d3eKJJ54wmZmZ5uGHHzbvvvuu+e53v2sKCwvN/v37E901V2644QazYsUKs3PnTvOPf/zDzJo1yxQVFZmDBw8aY4z53ve+Z0pLS83f//53s2bNGjN9+nQzffr04P7Nzc1mwoQJ5txzzzXr1683L730khkwYIC55ZZbEjWkNlVVVZl169aZdevWGUnmV7/6lVm3bp3ZtWuXMcaYO++80xQWFppnn33WbNy40XzlK18xI0aMMHV1dcFjnH/++WbKlCnmrbfeMm+88YYZPXq0ufTSS4Prjx49aoqLi83ll19uNm/ebJ544gmTk5NjHnjggW4fb7hoY6+qqjI33nijWbVqldm5c6d59dVXzec+9zkzevRoU19fHzxGbxz797//fVNQUGBWrFhh9u3bF/ypra0NbhOP5/iHH35ocnJyzE033WTee+89c9999xmfz2deeumlbh2vU3vj3759u7njjjvMmjVrzM6dO82zzz5rRo4cac4888zgMXrr+G+++WazcuVKs3PnTrNx40Zz8803G4/HY/72t78ZY5L7cY829mR+zLsLeYA8YEzvvCYak7p5wJjUzgTkAfIAeaBrJGMmIA+QB8gDyXttIA+QB3pDHmBipAe79957TWlpqcnIyDCnnHKKefPNNxPdJdcuvvhiM2jQIJORkWGGDBliLr74YrN9+/bg+rq6OvODH/zA9O3b1+Tk5JiLLrrI7Nu3zzpGeXm5mT17tsnOzjZFRUXmhhtuME1NTd09lHYtX77cSIr4mTt3rjHGmEAgYH72s5+Z4uJik5mZaWbOnGm2bt1qHePTTz81l156qcnNzTX5+fnmqquuMlVVVdY2GzZsMKeffrrJzMw0Q4YMMXfeeWd3DbFN0cZeW1trzj33XDNgwACTnp5uysrKzPz58yMCfW8ce2tjlmSWLl0a3CZez/Hly5ebyZMnm4yMDDNy5EjrHInS3vh3795tzjzzTNOvXz+TmZlpjjvuOHPTTTeZiooK6zi9cfzz5s0zZWVlJiMjwwwYMMDMnDkzGHqMSe7HPdrYk/kx707kAfJAb7wmGpO6ecCY1M4E5AHyAHmg6yRbJiAPkAfIA8l7bSAPkAd6Qx7wGGNM7J8zAQAAAAAAAAAA6H2oMQIAAAAAAAAAAFIGEyMAAAAAAAAAACBlMDECAAAAAAAAAABSBhMjAAAAAAAAAAAgZTAxAgAAAAAAAAAAUgYTIwAAAAAAAAAAIGUwMQIAAAAAAAAAAFIGEyMAAAAAAAAAACBlMDECIKmsWLFCHo9HR48e7fZzezweeTweFRYWdmj7Y331eDyaM2dOl/YNAIBUQh4AAADkAQDRMDECoNeaMWOGrrvuOmvZqaeeqn379qmgoCAhfVq6dKk++OCDDm17rK/f/OY3u7hXAAAkL/IAAAAgDwCIFRMjAJJKRkaGSkpK5PF4EnL+wsJCDRw4sEPbHutrdnZ2F/cKAIDUQh4AAADkAQDRMDECoFe68sortXLlSt1zzz3Bj5uWl5dHfFT24YcfVmFhoZ577jmNHTtWOTk5+vrXv67a2lo98sgjGj58uPr27atrr71Wfr8/ePyGhgbdeOONGjJkiPr06aNp06ZpxYoVMfdzw4YNOvvss5WXl6f8/HxNnTpVa9asidO9AABAaiMPAAAA8gCAzkhLdAcAoDPuueceffDBB5owYYLuuOMOSdKAAQNUXl4esW1tba1+85vf6IknnlBVVZW++tWv6qKLLlJhYaFeeOEFffjhh/ra176m0047TRdffLEk6ZprrtG7776rJ554QoMHD9Yzzzyj888/X5s2bdLo0aM73M/LLrtMU6ZM0f333y+fz6f169crPT09LvcBAACpjjwAAADIAwA6g4kRAL1SQUGBMjIylJOTo5KSkqjbNjU16f7779eoUaMkSV//+tf1P//zPzpw4IByc3M1fvx4nX322Vq+fLkuvvhi7d69W0uXLtXu3bs1ePBgSdKNN96ol156SUuXLtXPf/7zDvdz9+7duummmzRu3DhJiik0AQCA6MgDAACAPACgM5gYAZD0cnJygqFHkoqLizV8+HDl5uZayw4ePChJ2rRpk/x+v8aMGWMdp6GhQf3794/p3AsXLtTVV1+t//mf/9GsWbP0jW98w+oLAADoHuQBAABAHgBwDBMjAJKe86OpHo+n1WWBQECSVF1dLZ/Pp7Vr18rn81nbhYeljrj99tv1rW99S88//7xefPFF3XbbbXriiSd00UUXdWIkAACgs8gDAACAPADgGCZGAPRaGRkZVkG0eJkyZYr8fr8OHjyoM844w/XxxowZozFjxuj666/XpZdeqqVLlxJ8AACIE/IAAAAgDwCIlTfRHQCAzho+fLjeeustlZeX69ChQ8F/0eHWmDFjdNlll+mKK67Q008/rZ07d2r16tVasmSJnn/++Q4fp66uTtdcc41WrFihXbt26R//+IfefvttHX/88XHpJwAAIA8AAADyAIDYMTECoNe68cYb5fP5NH78eA0YMEC7d++O27GXLl2qK664QjfccIPGjh2rOXPm6O2331ZpaWmHj+Hz+fTpp5/qiiuu0JgxY/TNb35Ts2fP1uLFi+PWTwAAUh15AAAAkAcAxMpjjDGJ7gQAJAOPx6NnnnlGc+bMiWm/K6+8UkePHtVf/vKXLukXAADoPuQBAABAHgB6Pj4xAgBxdOmll2ro0KEd2vb1119Xbm6uHn300S7uFQAA6E7kAQAAQB4AejY+MQIAcbJ9+3ZJLR+RHTFiRLvb19XV6aOPPpIk5ebmqqSkpEv7BwAAuh55AAAAkAeAno+JEQAAAAAAAAAAkDL4Ki0AAAAAAAAAAJAymBgBAAAAAAAAAAApg4kRAAAAAAAAAACQMpgYAQAAAAAAAAAAKYOJEQAAAAAAAAAAkDKYGAEAAAAAAAAAACmDiREAAAAAAAAAAJAymBgBAAAAAAAAAAApg4kRAAAAAAAAAACQMpgYAQAAAAAAAAAAKYOJEQAAAAAAAAAAkDKYGAEAAAAAAAAAACmDiREAAAAAAAAAAJAymBgBAAAAAAAAAAApg4kRAAAAAAAAAACQMpgYAYBOOnr0qE466SRNnjxZEyZM0O9///tEdwkAAHQz8gAAAJDIBEBv4zHGmER3AgB6I7/fr4aGBuXk5KimpkYTJkzQmjVr1L9//0R3DQAAdBPyAAAAkMgEQG/DJ0YAJJ0ZM2bI4/HI4/Fo/fr1XXYen8+nnJwcSVJDQ4OMMQqfa77yyiuD/fjLX/7SZf1IFa+99pq+9KUvafDgwZ26T2+//fbg4xH+06dPn67pMAAgocgDyYk8AACIFZkg+ZAHEA9MjABISvPnz9e+ffs0YcKELj3P0aNHNWnSJA0dOlQ33XSTioqKguvuuece7du3r0vPn0pqamo0adIk3XfffZ3a/8Ybb9S+ffusn/Hjx+sb3/hGnHsKAOgpyAPJhzwAAOgMMkFyIQ8gHtIS3QEA6Ao5OTkqKSlxfZzJkyerubk5Yvnf/vY3DR48WIWFhdqwYYMOHDigr371q/r617+u4uJiSVJBQYEKCgpc9wEtZs+erdmzZ7e5vqGhQT/5yU/0+OOP6+jRo5owYYL+4z/+QzNmzJAk5ebmKjc3N7j9hg0b9O677+p3v/tdV3cdAJAg5IHkQx4AAHQGmSC5kAcQD3xiBECPsGPHDnk8Hj333HOaOXOmcnJyNHbsWL311ltxOf6MGTP0wx/+UNddd5369u2r4uJi/f73v1dNTY2uuuoq5eXl6bjjjtOLL75o7bd+/Xpt3rw54mfw4MHWdsXFxZo0aZJef/31uPQXsbvmmmu0atUqPfHEE9q4caO+8Y1v6Pzzz9e2bdta3f7BBx/UmDFjdMYZZ3RzTwEAbSEPwC3yAAAkBzIB3CAPoCOYGAHQI2zYsEEej0e/+tWv9LOf/UwbNmxQaWmpbr755rid45FHHlFRUZFWr16tH/7wh/r+97+vb3zjGzr11FP1zjvv6Nxzz9Xll1+u2traDh3vwIEDqqqqkiRVVFTotdde09ixY+PWX3Tc7t27tXTpUj311FM644wzNGrUKN144406/fTTtXTp0ojt6+vr9eijj+o73/lOAnoLAGgLeQBukAcAIHmQCdBZ5AF0FBMjAHqEDRs2qLCwUH/60580Y8YMjR49Wl/+8pf1ySefxO0ckyZN0k9/+lONHj1at9xyi7KyslRUVKT58+dr9OjRWrRokT799FNt3LixQ8fbtWuXzjjjDE2aNElnnHGGfvjDH+rEE0+MW3/RcZs2bZLf79eYMWOCH4nNzc3VypUrtWPHjojtn3nmGVVVVWnu3LkJ6C0AoC3kAbhBHgCA5EEmQGeRB9BR1BgB0CNs2LBBX/nKVzRgwIDgsp07d+q4446L2zkmTpwYvO3z+dS/f38rpBz73s+DBw926HinnHKK1q9fH7f+ofOqq6vl8/m0du1a+Xw+a13494Ye8+CDD+qLX/xi8DEHAPQM5AG4QR4AgORBJkBnkQfQUUyMAOgRNmzYoFtuucVatn79ep155plxO0d6errV9ng81jKPxyNJCgQCcTsnuseUKVPk9/t18ODBdr8TdOfOnVq+fLn++te/dlPvAAAdRR6AG+QBAEgeZAJ0FnkAHcVXaQFIuIqKCpWXl2vKlCnW8vXr12vy5MmSpD/+8Y865ZRTdOKJJ+rCCy9UQ0NDAnqKRKqurtb69euD/wJn586dWr9+vXbv3q0xY8bosssu0xVXXKGnn35aO3fu1OrVq7VkyRI9//zz1nEeeughDRo0SLNnz07AKAAAbSEPoCPIAwCQ/MgEaA95APHAxAiAhNu4caPS0tKsj6zu2rVLR44cCYae2bNna/Xq1dq0aZMGDx6sFStWJKazSJg1a9ZoypQpwXC8cOFCTZkyRYsWLZIkLV26VFdccYVuuOEGjR07VnPmzNHbb7+t0tLS4DECgYAefvhhXXnllREfqQUAJBZ5AB1BHgCA5EcmQHvIA4gHvkoLQMJt2LBBY8eOVVZWVnDZunXrVFhYqOHDh8sYo9///vf63//9XzU2NmrPnj369re/ncAeIxFmzJghY0yb69PT07V48WItXry4zW28Xq/27NnTFd0DALhEHkBHkAcAIPmRCdAe8gDigYkRAAl3zTXX6JprrrGWzZkzR3PmzJEkPfzww3r//ff12muvKTs7W6NGjdL48eNjOkdr/3qkvLw8Ylm0CysAAOg65AEAACCRCQB0D75KC0CPt2XLFp122mnKzs7Wfffdp9raWg0YMCDqPr/97W+Vm5urTZs2dVMvI33ve99Tbm5uws4PAEAyIQ8AAACJTAAgPjyGqU8APdyGDRv09a9/Xf3799fpp5+ujRs36m9/+1ub23/00Ueqq6uTJJWWliojI6O7umo5ePCgKisrJUmDBg1Snz59EtIPAACSAXkAAABIZAIA8cHECAAAAAAAAAAASBl8lRYAAAAAAAAAAEgZTIwAAAAAAAAAAICUwcQIAAAAAAAAAABIGUyMoNe57777NHz4cGVlZWnatGlavXp11O2feuopjRs3TllZWTrxxBP1wgsvWOuNMVq0aJEGDRqk7OxszZo1S9u2bevKIcTFa6+9pi996UsaPHiwPB6P/vKXv0Td/umnn9YXvvAFDRgwQPn5+Zo+fbpefvlla5vbb79dHo/H+hk3blwXjsK9JUuW6OSTT1ZeXp4GDhyoOXPmaOvWrVH3efjhhyPGmZWVZW3T254X999/vyZOnKj8/Pzg4/viiy+2uf2MGTMi7gOPx6MLL7wwuM2VV14Zsf7888/vjuG40pnncbK+TgDJjDzQgjzQgjwQQiZoQR4AUgeZgDxwDHkghDwQQiZAW5gYQa/ypz/9SQsXLtRtt92md955R5MmTdJ5552ngwcPtrr9P//5T1166aX6zne+o3Xr1mnOnDmaM2eONm/eHNzmrrvu0m9+8xv97ne/01tvvaU+ffrovPPOU319fXcNq1Nqamo0adIk3XfffR3a/rXXXtMXvvAFvfDCC1q7dq3OPvtsfelLX9K6deus7U444QTt27cv+PPGG290RffjZuXKlVqwYIHefPNNvfLKK2pqatK5556rmpqaqPvl5+db49y1a5e1vrc9L4YOHao777xTa9eu1Zo1a3TOOefoK1/5irZs2dLq9k8//bQ1/s2bN8vn8+kb3/iGtd35559vbff44493x3Bci+V5nMyvE0CyIg+EkAdakAdCyAQh5AEg+ZEJWpAHWpAHQsgDNjIBWmWAXuSUU04xCxYsCLb9fr8ZPHiwWbJkSavbf/Ob3zQXXnihtWzatGnmX/7lX4wxxgQCAVNSUmL+8z//M7j+6NGjJjMz0zz++ONdMIKuIck888wzMe83fvx4s3jx4mD7tttuM5MmTYpfxxLg4MGDRpJZuXJlm9ssXbrUFBQUtLk+WZ4Xffv2NQ8++GCHtv31r39t8vLyTHV1dXDZ3LlzzVe+8pUu6l3XifV5nCqvE0AyIQ+0jjwQQh6wpWImIA8AqYFMEIk8EEIesKViHjCGTIC28YkR9BqNjY1au3atZs2aFVzm9Xo1a9YsrVq1qtV9Vq1aZW0vSeedd15w+507d2r//v3WNgUFBZo2bVqbx0wWgUBAVVVV6tevn7V827ZtGjx4sEaOHKnLLrtMu3fvTlAPO6eiokKSIsblVF1drbKyMg0bNiziX0309ueF3+/XE088oZqaGk2fPr1D+/zhD3/QJZdcoj59+ljLV6xYoYEDB2rs2LH6/ve/r08//bQruhx3sTyPeZ0AehfyQHyRB5I3D0hkAvIAkNzIBPFDHiAPOCVTHpDIBGgdEyPoNQ4dOiS/36/i4mJreXFxsfbv39/qPvv374+6/bH/xnLMZPGLX/xC1dXV+uY3vxlcNm3aND388MN66aWXdP/992vnzp0644wzVFVVlcCedlwgENB1112n0047TRMmTGhzu7Fjx+qhhx7Ss88+qz/+8Y8KBAI69dRTtXfvXkm993mxadMm5ebmKjMzU9/73vf0zDPPaPz48e3ut3r1am3evFlXX321tfz888/Xf//3f2vZsmX6j//4D61cuVKzZ8+W3+/vqiHERazPY14ngN6FPBBf5IHkywMSmUAiDwCpgEwQP+QB8kC4ZMoDEpkAbUtLdAcAdL/HHntMixcv1rPPPquBAwcGl8+ePTt4e+LEiZo2bZrKysr05JNP6jvf+U4iuhqTBQsWaPPmze1+7+n06dOtfyVx6qmn6vjjj9cDDzygf/u3f+vqbnaZsWPHav369aqoqNCf//xnzZ07VytXrmw3+PzhD3/QiSeeqFNOOcVafskllwRvn3jiiZo4caJGjRqlFStWaObMmV0yhnjo7c9jAOgu5IHkzAMSmUDq/c9jAOgu5AHygFMy5QGp9z+X0XX4xAh6jaKiIvl8Ph04cMBafuDAAZWUlLS6T0lJSdTtj/03lmP2dk888YSuvvpqPfnkkxEfDXQqLCzUmDFjtH379m7qXeddc801eu6557R8+XINHTo0pn3T09M1ZcqU4Dh76/MiIyNDxx13nKZOnaolS5Zo0qRJuueee6LuU1NToyeeeKJDYWDkyJEqKirqFc+HcO09j3mdAHoX8kB8kAciJUsekMgErSEPAMmHTOAeeSASeSC584BEJkAIEyPoNTIyMjR16lQtW7YsuCwQCGjZsmVtfkfi9OnTre0l6ZVXXgluP2LECJWUlFjbVFZW6q233urw9y72Jo8//riuuuoqPf7447rwwgvb3b66ulo7duzQoEGDuqF3nWOM0TXXXKNnnnlGf//73zVixIiYj+H3+7Vp06bgOJPleREIBNTQ0BB1m6eeekoNDQ369re/3e7x9u7dq08//bRHPx9a097zmNcJoHchD7hHHmhdsuYBiUwgkQeAZEQmcIc80DryQHLnAYlMgDAJLv4OxOSJJ54wmZmZ5uGHHzbvvvuu+e53v2sKCwvN/v37jTHGXH755ebmm28Obv+Pf/zDpKWlmV/84hfmvffeM7fddptJT083mzZtCm5z5513msLCQvPss8+ajRs3mq985StmxIgRpq6urtvHF4uqqiqzbt06s27dOiPJ/OpXvzLr1q0zu3btMsYYc/PNN5vLL788uP2jjz5q0tLSzH333Wf27dsX/Dl69GhwmxtuuMGsWLHC7Ny50/zjH/8ws2bNMkVFRebgwYPdPr6O+v73v28KCgrMihUrrHHV1tYGt3E+LxYvXmxefvlls2PHDrN27VpzySWXmKysLLNly5bgNr3teXHzzTeblStXmp07d5qNGzeam2++2Xg8HvO3v/3NGBN5Hxxz+umnm4svvjhieVVVlbnxxhvNqlWrzM6dO82rr75qPve5z5nRo0eb+vr6Lh+PG+09j1PpdQJIVuSBEPJAC/JACJmgBXkASA1kghbkgRbkgRDyQAiZAG1hYgS9zr333mtKS0tNRkaGOeWUU8ybb74ZXHfWWWeZuXPnWts/+eSTZsyYMSYjI8OccMIJ5vnnn7fWBwIB87Of/cwUFxebzMxMM3PmTLN169buGIory5cvN5Iifo6Nf+7cueass84Kbn/WWWdF3d4YYy6++GIzaNAgk5GRYYYMGWIuvvhis3379u4dWIxaG5Mks3Tp0uA2zufFddddF3wOFRcXmwsuuMC888471nF72/Ni3rx5pqyszGRkZJgBAwaYmTNnBgOPMa3/brz//vtGkrXdMbW1tebcc881AwYMMOnp6aasrMzMnz8/+AdGT9be8ziVXieAZEYeaEEeaEEeCCETtCAPAKmDTEAeOIY8EEIeCCEToC0eY4yJ5ydQAAAAAAAAAAAAeipqjAAAAAAAAAAAgJTBxAgAAAAAAAAAAEgZTIwAAAAAAAAAAICUwcQIAAAAAAAAAABIGUyMAAAAAAAAAACAlMHECAAAAAAAAAAASBlMjAAAAAAAAAAAgJTBxAiSXkNDg26//XY1NDQkuisJxf0Qwn0Rwn3RgvsBSH78nodwX7TgfgjhvgjhvgCSG7/jIdwXLbgfQrgvQrgvUoPHGGMS3QmgK1VWVqqgoEAVFRXKz89PdHcShvshhPsihPuiBfcDkPz4PQ/hvmjB/RDCfRHCfQEkN37HQ7gvWnA/hHBfhHBfpAY+MQIAAAAAAAAAAFIGEyMAAAAAAAAAACBlpCW6A0BXu+WWWyRJp512mrze1J0LDAQCkrgfJO6LcNwXLY7dD6+++qouuugieTyeBPcIQLw99thjkni9k3jtP4b7IYT7IqR8Y7kkqampKbEdAdAl1q9fL4nXO4nX/mO4H0K4L0J2bvxQknTkyBG+SiuJMTGCpPf888/r7HNm6l9+8AOlp6dJRjKSjlXXCRbZMcZaLoXaJmxD5/rQMqPwij32via43bG9jDHWsU3Y/oGwzpnw/RzbRTuG+Ww8Mi37NzU3qvjl/9OZ535Jab60sHHb5wge79htY0LbhN9vweM77qewfgXvs7D70rqfw24YE1p/rOPGSAqEjevYToFW7vNj93EgdA4ZE+y/goc18jc3KS3r75o8+Wx5fWn2g+U4T+i/CvZLgbAnT/C2cRyjlWXHjhV8oMMeoPBxWPvby0zwjlKr/TBt7h/25AyeV/KrWb4BOZoYmCqv8YX699mPCd//s8dCARN5bMd5Wh6HgLUu2LfAsfs3NA4jo4Axsv5njIwCn20WUCBs+bHnVeCzxyoQ3P7Y/wIyprXloXb4+fxqVpH665KvXaI85emvb/xVp512mgAkj5UrV+rEiRP1k0W3dSoPfLYq+HKu4DZxzAOf7RCRCazLgYnYJpY8ILWRCRzncJMHwu/P8EwQ3zzw2VmcmSCeeUBhHQzPBMfusHjlASkyE8QzD8h5DOM4ZxzyQMTYP9svjnkgNFQ7E8QzD0hSmUr1vraqtKhUv3/097rkkktS/s0hIJls2LBBgwYN1k9vXxw9D0gR1zaFXcdM2MadzQMKLgu9drd1Pe9sHgg/XYfeI3Cco6N5wD6+434K61uwz8f27XAeCLtPO/IeQWfywJRzPssDbVyLj12/g9fxY7cjr8Nt5gE5jhs8lvPa3EYfHMtazQOOvrT7HkFn8sCxcXTwPYLO5IGWm61ngnjlgc+eMa1mguN0nLZqq44bfpyO0yitqV6rPn36CMmF4utIeiNGjNDvH1qq0844U8ELrOyLZqsXb6sddvF3XJRjPlbwdihYWKHDhCZG7OWR20UuC+9TO/sdG4UJO2/4NtGO6Tx+m2ML3lMR5zYBY13IjTm2LHSxNccutG0sC26r0MU+lmOEDTz67fCgc6zd7u0Yjn/stkLjCq2TFTJMeOBo5dzt7S+1doyW/U3wOJ/9t5VlJmxdm/sFzxGIuq8JXyejgPks2Hz234AJfBZ6TPC/gc8CjdQSg4Lrgtvb+wWCAcg+TmvrJalJTfpQO/Whdqqf+unldS9r8uTJHXmpAdDDffvb39bY48frxh/frM5cwxVc9tnrbSv7dvRYrV8zjXWO4Mt5xHXcXR74rIeR1+Wwa7fbPCC1ftx45oFj53BmgrjmAbWyrkMZIPx2lOOH7qyIdXHNA+roMUzn84DU+nZxzAMtp2j9Gh6vPCB9li8U0F59pA+0TelK0x//+qi++MUv8olSIAncf//9+r/nntP/Pvt/inoNl6Jfx+OQB3RsWcQ1M/Ja39k8oLDzduQ9gs7kgZbROo7f5tjaOG97eeDY/Rbleu46D4QekI69R2BiuR18YnTs+I4xxZQHZJ8/9mOY9vNA2Dk68h5BZ/KApJjeI+hMHmh57kZ/j+ATHdL72qo61ekX9/5C3/3ud5WRkdHuaw16B/7pCwAAn0lXusZqjM7RDOWqj6ZOmaohniH64IMPEt01AADQTbzyqlTDdLbO0jAN09e//HX19/bTihUrEt01AADQjQaoSKfrVE3UBN36w1tUmFmoRx55RH6/P9FdQxwwMQIAgEOmMnWCxusczVCafDp+7PEq85Rqz549ie4aAADoJj75NFIjNFNna6AG6gtnf0EDPAO0Zs2aRHcNAAB0E488KlGJztKZGqcx+sGV31dhWqGefvrp4Cez0DsxMQIAQBuyla1JmqizdKaa5dfw0uEa5RmpTz75JNFdAwAA3SRNaRqj0Zqps1WoAn3+5M9rkGeQ3n333UR3DQAAdBOPPBqqoTpbMzRCw/Wtr31Lfb199corrzBB0ksxMQIAQDty1UdTNUWn61RVq0aDBg7SWM8YVVZWJrprAACgm2QoQ8drnM7RDGUpUyeecKKGeYapvLw80V0DAADdxCuvhqtM5+hsDdYgXXjuhRrgLdKqVasS3TXEiIkRAAA6qEAFmqaT9Xmdot3ao5KCkkR3CQAAdLMsZelETdAMnaVa1WrkiJFMjgAAkGLS5NNxGqWZOlu5ytWpp56qkzxTE90txICJEQAAYnBYh/Wetsovv0ZoeKK7AwAAEqBGtfpAH+iojqpMpRowYECiuwQAALpZk5q0Qx9qrz5SsYr11Id/TnSXEIO0RHcAAIDeoEIVel9b9akOa5RGamfFTuXn5ye6WwAAoBvVq14faJv2aK8Ga7B27Nyh4cOHJ7pbAACgGzXLr3KVa7t2KF95ev2fr2v69OmJ7hZixMQIAABRVKtaW7VN+7Vfw1WmzQe38K9CAQBIMY1q1HbtULl2aaAGaNOWTRo/fnyiuwUAALpRQAHt1m59oO3KUpae/9vzmjVrljweT6K7hk5gYgQAgFbUqU4faJv26iMN1RCV7y7XsGHDEt0tAADQjZrVrA+1Uzv0ofqqUG++/aZOOumkRHcLAAB0IyOjvfpIH+gDeeXT408/rjlz5jAh0ssxMQIAQJgGNQT/RWiJSvT+B+9r9OjRie4WAADoRn75tUu7tU3b1Uc5emX5K5oxY0aiuwUAALqRkdF+HdBWbVWz/PrdI7/TZZddJp/Pl+iuIQ6YGAEAQC1F0479i9D+6q+169Zq8uTJie4WAADoRgEFtFcfaas+UIbS9b//97+68MIL+RehAACkmE90SO9rq+pUp1/+1y919dVXKzMzM9HdQhwxMYKkl5WVpe9e/R3l9smVJBlrbZSWvaqtRdYK41zQ2r6mjeUyrRzH3rC15aaNla2dr83+tXLs1vtrIvvQRr8kybQxkLbui5a2aavZ6nZRHzPTyoijbNOh9a1u41gY6/rWOtjOuNs+T5RjWIujbdPaOscD3U5fTMT92ta2xnEY52MW1nYc00T9/9A5W13XSrtOdcpTvla+sVKnnXaaACSXrKws3Xfvb/TUn/4kyV0eaHNxXPLAZ622LgdxyANt9rGL8oDU2uU0DnnAsbIj1/pO54GObBOPPODcLh55oI1tuiQPOE/bBXnAedz45oGWWiI+efXQYw/p4osvltfrFYDkkZWVpddfe03TPjdFUvQ8ELGklddk13mgldXWfnHKA9YxWn0pjlMeiNI3yV0eaGNRxApXeaC1TsaaGTpyvY91G1fHiHKcTucBa+d2+9PZPNCypO2rtts80NqtY22//GpUg0ZplNZUr1WfPn2E5OMxEc9OILns2LFD77//fqK7AaCH69evnz7/+c/zL0KBJHX48GGtWrUq0d0A0MNlZGRoxowZSk9PT3RXAHQBv9+vv/3tbwoEAonuCoAe7tRTT1Xfvn0T3Q10ISZGAAAAAAAAAABAyuBzwQAAAAAAAAAAIGUwMQIAAAAAAAAAAFIGEyMAAAAAAAAAACBlMDECAAAAAAAAAABSBhMjAAAAAAAAAAAgZTAxAgAAAAAAAAAAUgYTIwAAAAAAAAAAIGUwMdIFbr/9dnk8Hutn3Lhxie4WAADoZmQCAABAHgAAoOdJS3QHktUJJ5ygV199NdhOS+OuBgAgFZEJAAAAeQAAgJ6FK3EXSUtLU0lJSaK7AQAAEoxMAAAAyAMAAPQsfJVWF9m2bZsGDx6skSNH6rLLLtPu3bsT3SUAAJAAZAIAAEAeAACgZ/EYY0yiO5FsXnzxRVVXV2vs2LHat2+fFi9erI8++kibN29WXl5eq/s0NDSooaEh2A4EAjp8+LD69+8vj8fTXV0HAKBHMsaoqqpKgwcPltfbe/5dR6yZgDwAAEDbyAPkAQAA4pYHDLrckSNHTH5+vnnwwQfb3Oa2224zkvjhhx9++OGHnyg/e/bs6cYrePy1lwnIA/zwww8//PDT/g95gB9++OGHH374cZsH+MRINzn55JM1a9YsLVmypNX1zn8RUlFRodLSUt163m+UlZ7dsjDLF1zv8dmzYZ7xA6y2ee+Q3W72hxp++yH3julnd6bRb7drmux2Zqg0jTlcZ69zPJs8GT57wVj7XIE3Pwr1Y2iBvW0gYLfTHDOAYfeHAjyNASCZ1TfU6t//63IdPXpUBQUF7e/Qg0XLBLHmAcnOBDHlAcnKBG7ygOTIBC7ygOTIBLHkAYlMAABJjDzQsTwg2ZkgljwgOTKBmzwgWZnAVR6Q7ExAHgCAlBWvPEDx9W5QXV2tHTt26PLLL29zm8zMTGVmZkYsz0rPVlZ6TksjPWxixBECPFl9rLbJqLXbnrAw43WEnkx7X3kcwaep0dHZsImRDMfHeNt7I8TRz8CxsUnyZubY27b3Rkh4ACP0AEBK6O1fH9FeJog1D0h2JogpD0hWJnCTB1rOFfbYuMgDLX0Ja8eSByQyAQCkAPKAouYByc4EseQByZEJ3OQBKfrESCx5QIo+MUIeAICU4zYP9J4v5exFbrzxRq1cuVLl5eX65z//qYsuukg+n0+XXnpporsGAAC6EZkAAACQBwAA6Hn4xEgX2Lt3ry699FJ9+umnGjBggE4//XS9+eabGjBgQPs7AwCApEEmAAAA5AEAAHoeJka6wBNPPBG3Y3mH5Mmb8dnHR8M/HjQsz9rObLG/M1Re+6NE3qKwj6Bmp9v77qm02p5ix8dZD9gfu/UODZ3bMyjXWuffeLDt80ryHKix1w/LDzuR46syGhwf2e2bbbf3VYVuZ/BUBoCk1tCc6B50SrwyQZt5QLIyQUx5QLIygZs8INmZwFUekOxMEEsekMgEAJDMyAMdygOSIxPEkAckOxO4yQOSnQlc5QHJzgTkAQBIXXHKA3yVFgAAAAAAAAAASBlMjAAAAAAAAAAAgJTBxAgAAAAAAAAAAEgZTIwAAAAAAAAAAICUQTWqns7nldI+m78yJrg48M5+azNPus9u52dY7cD+UFEz76hCe1tHoTVnkVNnMbXAvurQvjn2vr7B9rY6vr+971sf28ceF7b+oF3ETSPtfmq3XRRWg8LOlc4cHwAktfpEdyDB2sgDkp0JYskDkp0J3OQByc4ErvKAZGeCWPKARCYAgGRGHuhQHpDsTBBLHpAcmcBFHpAcmcBNHpDsTEAeAIDUFac8ELcrRV1dnfbv36/a2tr2NwYAAAAAAAAAAEiATk+M+P1+Pfvss7rkkks0ZMgQ5ebmasiQIcrLy9OQIUN0ySWX6K9//av8fn/7BwMAAAAAAAAAAOgGnZoYefDBBzVq1Ch99atf1ZNPPql9+/bJGBP82bdvn5588klddNFFOu644/TQQw/Fu98AAAAAAAAAAAAx61SNke9+97uSpAkTJuiLX/yiTjnlFJWVlSk/P1+VlZXatWuXVq9ereeee06bN2/W/PnzNW/evLh2HAAAAAAAAAAAIFadmhi54oordMMNN+jEE09sdf2UKVM0Z84c/fznP9fGjRv1y1/+0lUnU5mpqJfJaPlgjyczrHhamuPDPo524IBd68U7LD90zI+qrHWeklx7310V9r5D7CJm4ecOHK6z12XYRV+9e+xzeYcX2P0+EFb0zXEefXjUbvfNsvu55ZNQw3l/ICl5vJ5EdwHoOVLs18E0pnYNs7bygOTIBDHkAcnOBG7ygGRnAld5QLIzQSx5QCITpADyAOCQQr8S5IEO5gHJuh7GkgckOxO4yQOSnQlc5QHJzgTkgZRHHgAcUuhXIl55oFMTIw8//HCHt504caIeeeSRzpwGAAAAAAAAAAAgrphCBwAAAAAAAAAAKSPmiZEjR47o8OHDkqRPPvlETz/9tLZs2RL3jgEAAAAAAAAAAMRbTBMjDz74oKZOnaqTTjpJ999/vy666CItW7ZMl1xyiR588MGu6iMAAAAAAAAAAEBcxFRj5De/+Y22bNmiuro6lZaWaufOnRowYIAqKip01lln6eqrr+6qfqYs09AsE2huuV3dFFzudRYaq2602p4+6faB6kL7enIz7HXNAavpLXQce1+1feycsGPXNdv7Ti629/3gsL2+uI997vC+7K201w2wtw3sOGL3Iyv09DVV9viRnALGJLoLQM+RYr8PgabUfp1vKw9IdiaIJQ9IjkzgJg9IViZwlQckOxPEkAckMkEqIA8ADin0O0Ee6FgekOxMEFMekKxM4CYPSHYmcJUHJCsTkAdAHgAcUuh3Il55IKaJkbS0NGVnZys7O1vHHXecBgwYIEkqKCiQx+OJS4cAAAAAAAAAAAC6SkxfpeXz+VRfXy9JWrlyZXB5dXV1W7sAAAAAAAAAAAD0GDFNjLz66qvKzMyU1PIpkWNqa2v1//1//198ewYAAAAAAAAAABBnMX2VVvhkiCTt379fJSUlGjhwoAYOHBjXjgEAAAAAAAAAAMRbTBMjTueee642btwYr76gFd5+2fJmZEuSTH2oiFngaL21nWn02/sNtyexzMGa4G1PvqN42u4Ke9/R/exOOM6lQKiYT0SxNAdvUY69wG8XAjIVdaF+Obb1bzxgHysv02qHF1eLKCYHAEgqvkZforuQUG3lAcnOBLHkAcnOBG7ygBQ9E8SSByQ7E8SSByQyAQAkM/JAx/KAZGeCWPKAZGeCnpIHJDsTkAcAIHXFKw/E9FVaTiaFqt0DAAAAAAAAAIDez9XEiMfjiVc/AAAAAAAAAAAAupyriREAAAAAAAAAAIDehIkRAAAAAAAAAACQMlwVX/f5UrvwWXfw76qUP73ps0aoposnN8Paznd8kdU2uyuttqdfdqjRZBdm9RTaRcua1+yz2mmOY/u3fho676Rie926/Xa/ygqtdsS5w4qpBT48Yq3z9s222kp3zOPlhD19G+zjAgB6oWhf0ZniX9/ZVh6Q7EwQUx6QrOuymzwg2ZnATR6Q7EwQUx6QyAQAkAzauu6TBzqUByQ7E8SSByQ7E7jJA5KdCdzkAcmRCcgDAJD8ujgPuPrEyLp16+LSCQAAAAAAAAAAgO7AV2kBAAAAAAAAAICU4eqrtI7x+/3asWOHDhw4IGPsj3OeeeaZ8TgFAAAAAAAAAACAa64nRv75z3/qW9/6lvbs2ROxzuPxqLm52e0pAAAAAAAAAAAA4sL1xMgPfvAD7d69Ox59QSt8Q3Lly/isAFl4MTVHkRnzSY3V9uSm2wcKBII3/Xvswmu+0f3sfQ/U2rvuq7bX980KNQbaxdF8VXl2v2obFY3ZdjjUyPLZK5sD9ra1TXb7aEOoT3l2oTmkoGT8YsBA+5sAqcI0pvY/tGgzD0hWJoglD0h2JnCVByQrE7jKA5KdCWLIAxKZIOWRB4CkRh7oWB6Q7EwQSx6Q7EzgJg9IdiZwlQckKxOQB9AuMgGQtOKVB1xPjGzfvl19+/bVU089pZEjR8oTp6rwAAAAAAAAAAAA8eZ6YuSss87Spk2bdOaZZyotLS4lSwAAAAAAAAAAALqE65mMP/zhD5oxY4Y+97nP6dxzz1V+fr61ftGiRW5PAQAAAAAAAAAAEBeuJ0Zeeukl7dixQ4FAQFu2bIlYz8QIAAAAAAAAAADoKVxPjPz0pz+V3++PR1/QmvQ0KaPlYTIHw4qeBYy9nbO0S4b90JqaUGEyb99sa51/8ydW2ze52Go3/X2n3aXPDQrebn5+u7UubcIAu1s+R8dy7AJopiJUfM2T5Xg6+u0xenLsgnGmMfS8M0fqhZ7BGNP+Rl1z4sScF0C3CDTVJboLidVWHpDsTBBDHpDsTOAmD0h2JnCTByRHJoghD0hkgp6CPACgK5AHOpgHJDsTxJAHJDsTuMkDkp0JXOUBycoE5IHeIWF5oOXkiTs3gC4VrzzgdXuA6upqDRo0SNu2bVNTU5MCgYD1AwAAAAAAAAAA0FO4nhj5zne+o+bmZg0cOFA+ny8efQIAAAAAAAAAAOgSrr9K65NPPlFlZaVGjx6t008/3Sq+7vF49Ic//MHtKQAAAAAAAAAAAOLC9cTIH//4R3k8Hh08eFDPPPNMcLkxhokRAAAAAAAAAADQo7ieGCktLZXH46z0iXgJ7K9SIL2liJhVeCzD8bVlzi9Fc9R3CXwSKszmG93P3nZ/tdX0bzlktdMn28XUNKwgdCxHQVRnETcnc8AuEOfJDI3DVNmF1pRmD8pZeM0Tvr6PXXgNicOrAYCu4HUU1Ew1beYByc4EMeQByZEJXOQByc4EbvKA5MgEseQBiUzQQ5AHAHQF8kAH84BkZ4JY8oBkZQI3eUCKngliygOSlQnIA70DeQBAV4hXHnBdY6S8vFw7d+5s8wfSnXfeKY/Ho+uuuy7RXQEAAAlCHgAAAOQBAAB6hk5NjFRVVXXp9snk7bff1gMPPKCJEycmuisAACBByAMAAIA8AABAz9GpiZFhw4bpxhtv1Lp166Jut3HjRt10000qKyvrVOd6u+rqal122WX6/e9/r759+ya6OwAAIAHIAwAAgDwAAEDP0qkaI4FAQL/+9a/161//WoMGDdLJJ5+s4cOHKy8vT9XV1dq1a5fWrl2rPXv2yBijvLy8ePe7V1iwYIEuvPBCzZo1S//+7/8edduGhgY1NDQE25WVlV3dPQAA0A3IAwAAgDwAAEDP0qmJkfLyct111136wx/+oI8//ljPPvusVYDdmJZiW/3799fVV1+tm266KT697UWeeOIJvfPOO3r77bc7tP2SJUu0ePHiiOWewix5MrJaGmFFzJxFyeSzS1r5tx2x2t5BucHbTWs+ttalnzzEajf9c7d9bEdBm8DG/aF9PzfYWmdkb+vJy7T3/dRRXK0wbH3ALtLmbJtau2hb2qwRwdvfufxz9nE9lPjqiUzEgoglCeF86jmZbuqn8yyBWM4b/dcnYgzOI4evjti2nX0j7r8o/W5u5872+0OFIZ3jd9SMVLNjQbS7K+B8PZFzjM5+dPy+b/Y7ilk6Dha+3jmG9u5bZz/8Yds7++wck5Nz+/D7JPIhbOdxCrTdj/Y4jx2I8twLV1tTJT0Z27l6gq7OA5IjE8SQByQ7E7jJA5KdCVzlAcl+YsSQByRHJiAP9FwJygDRztpeHnD2ubtGEFMecO4b43UnMgN0fN945gHnddsfNhDnYZv8Hc8D7R0rYlu/85rV9g6RfW57DJLUHCVrOO9r5/3lfFwDVj6IMQ9Eecyd2nsuOu8D67hR94zer/AxkQc6mAckKxPEkgckOxO4yQOSnQlc5QFHO6Y8IJEJeooe8h5Ae72I5ZrWlSOKeN3t/FsE1mt05Mt123+jtaxuOwO0995DxJkcq51/T3d0nSQ1NofWO6+z7Z032t/8zr+tY3l/QJKamtt+X6O9MTVH+Vs78j2S2O7raMdq71zRzhvLvRPxOMTwvk64eOWBTk2M9OvXT3feeaf+7d/+Ta+88oreeOMNbdu2TRUVFcrPz9fo0aN1xhln6Atf+ILS09Pd97KX2bNnj/71X/9Vr7zyirKysjq0zy233KKFCxcG25WVlRo2bFhXdREAAHQx8gAAACAPAADQM3VqYuSY9PR0XXDBBbrgggvi1Z+ksHbtWh08eFCf+1zoXyj4/X699tpr+q//+i81NDTI57P/NUdmZqYyMzOdhwIAAL0UeQAAAJAHAADomVxNjKB1M2fO1KZNm6xlV111lcaNG6cf//jHEaEHAAAkH/IAAAAgDwAA0DMxMdIF8vLyNGHCBGtZnz591L9//4jlAAAgOZEHAAAAeQAAgJ6JiZEeztQ0yjS2PEzevtmh5VUN9nbVduEx74Ac+0Bhdca8+fb3mvrfO2S1fUML7GNNKbHX76tq87xy1DPzb/3UXp1tP+VMdWPYOrsejamzj338TadZ7VlT7CKxAIDkVVlZmeguJFRbeUCyM0EseUCyM4GbPBBxbhd5oGV9KBOQBwAAx1RWVmp+ojuRQB3NA5J9XY4lD0h2JnCVBxzncpMHJDsTkAcAIHVVVlbqu3E4DhMj3WTFihWJ7gIAAEgw8gAAACAPAACQeN5EdwAAAAAAAAAAAKC7MDECAAAAAAAAAABShuuv0goEAlq6dKmWLVumAwcOyBgTXOfxeLRs2TK3pwAAAAAAAAAAAIgL1xMjCxcu1L333itJwUkRj8cjY4w8Hk+0XdEBnsw0eTJaHqbAvurgctPot7cryLTb+Xbbv6sieNtXmm+ta3xrj9X2Fdvr/av22usH57XdX0c/dLjObqfZH1IyR+pbvS1JvjNKrTbF1AAAqaqtPCDZmSCWPCDZmaCn5AFnmzwAAECLjuYByb4Wx5IHJDsTuMkDzn64yQOSnQnIAwAAt1xPjDz++OMyxmjw4MEaMWKE0tKo5w4AAAAAAAAAAHom17MYfr9fQ4cO1bZt25SZmdn+DgAAAAAAAAAAAAniuvj6JZdcorq6OjU1NcWjPwAAAAAAAAAAAF3G9SdGcnNzVVlZqcmTJ+vLX/6yCgsLrfWLFi1yewoAAAAAAAAAAIC4cD0xctddd8nj8ejDDz/UPffcE7GeiRF3/B9VyZ/WLEny9EkPLvdk2w+dx1G0rPFtR0G04lBBNH+5XWgtbWR/q+2dONBqmw+PWu3A0bACaD6P3d8tVfax+mZZbTUH7H7nZba57YIfnyUAANB2HpDsTBBLHpDsTOAqD0hWJnCTB5zbkwcAAGjR0Twg2Zkgljwg2ZnATR6Q7EzgJg9IZAIAQHy5nhgpLS2Vx+Npf0MAAAAAAAAAAIAEcz0xUl5eHoduAAAAAAAAAAAAdD3Xxdcl6fXXX9fZZ5+tvLw85eXl6ZxzztHrr78ej0MDAAAAAAAAAADEjetPjLzxxhuaOXOm/H6/jDGSpBUrVmjWrFlavny5Tj31VNedBAAAAAAAAAAAiAfXEyN33HGHmpubVVZWpgsuuECS9MILL2jXrl2644479NJLL7nuZCrzDsiRNz1HkuQJL2KW6bO2a373E6vt69fHanuyQ4XZmrc5ti3Jt9r+d/bbfcjNsI+VH2p7cux1pqrRbjc028dyFFNr2hw61/VrFggAAERqMw9IViaIJQ9IdiZwkwckOxO4yQMSmQAAgNZ0NA9IdiaIJQ9IdiZwkwckOxOQBwAAPYnriZHVq1erf//+2rBhg/LzWy6eFRUVGjVqlN58803XHQQAAAAAAAAAAIgX1zVG6uvr1a9fv+CkiCQVFBSoX79+amhocHt4AAAAAAAAAACAuHH9iZFRo0bp/fff1w033KBLL71UkvTYY49p+/btGj9+vOsOAgAAAAAAAAAAxIvrT4zMmzdPxhjdfffdmjZtmqZNm6Z77rlHHo9H8+bNi0cfAQAAAAAAAAAA4sL1J0auv/56vffee1q6dKmMMZIUnBS5/vrrXXcw1Xk8Hnm8LUXVApWhryYLfFJjb+iz57i8g3Ottn/HkdCmQwrtXaeWWO3AZrvwmmkO2O1DYcXTKo7a/XUUYlOjva//oyqrnfHtSQIAANG1lQckRyaIIQ9IdiZwkwckOxOQBwAAiL8O5wHJygSx5AHJzgRu8oDkyATkAQBAD+J6YsTr9erBBx/UrbfeqrVr10qSpk6dqpEjR7ruHAAAAAAAAAAAQDy5nhg5ZuTIkUyGAAAAAAAAAACAHq1TEyN33HGHhg4dqnnz5umOO+6Iuu2iRYs61TEAAAAAAAAAAIB469TEyO23367p06dr3rx5uv322+XxeNrclokRAAAAAAAAAADQU3RqYqS0tFQlJSXB29EmRuCO/+Mq+dOaJUmmsTm43JPms7bzlRXY++08arcPhYqapRfbhdeaV+yy2t6h+Vbbk2U/Tbx9s0LHrW+2t820++UszOY/WGm1//W60wUAAKJrKw9IdiaIJQ9IdiZwkwckOxOQBwAAiL+O5gHJzgSx5AHJzgRu8oBkZwLyAACgJ+nUxEh5eXmrtwEAAAAAAAAAAHoyr9sDvPbaa1q/fn3E8oaGBtXW1ro9PAAAAAAAAAAAQNy4nhiZMWOGFixY0Ory/Pz8VvYAAAAAAAAAAABIDNcTI5JkjIlYVlNT0+pyAAAAAAAAAACAROlUjRFJOuecc4K33333XatdU1OjzZs3q7Cw0FXnICnN2/IjKW1Yv+Bi02QXLQsctL+2zP9ptX2YsH29Y/tZ6yIKpDqKpQUqGuz1jf7Qvhn2voEj9fax0+y5t8xvTRIAAIhRG3lAsjNBLHlAsjOBmzwg2ZmAPAAAQBfoYB6Q7EwQSx6QHAXTXeQByc4E5AEAQE/S6YmRFStWyOPxyOPxqLKyUitWrIjYZtasWW76BgAAAAAAAAAAEFednhiZO3euJOmRRx7RgAEDdMEFFwTX5eTkaNy4cZo3b577HgIAAAAAAAAAAMRJpydGli5dKklavny5pk6dGmwDAAAAAAAAAAD0VJ2eGDmmvLxcDQ0NWr58uT7++GP5/fb3S15xxRVuTwEAAAAAAAAAABAXridGtm3bplmzZmnv3r0R6zweDxMjLnmy0uVJT5dkF09zFjjz7ztqtX1D+trt8UXB2w1/3mytSz9xsH3OnHSr7e2XbbWbtx0ONXLsp5An22437zpsta/98eUCAACxaSsPSHYmiCUPSHYmcJUHJCsTkAcAAIi/juYByc4EseQByc4EbvKAZGcC8gAAoCdxPTFy8803a8+ePfHoCwAAAAAAAAAAQJfyuj3A66+/rrS0NL3yyiuSpClTpujxxx9XUVFRcBkAAAAAAAAAAEBP4Hpi5OjRozr++OM1c+ZMeTwepaen6+KLL1ZJSYl+/vOfx6OPAAAAAAAAAAAAceH6q7Ty8vIUCAQkSbm5uXr//ff11ltvaffu3dqxY4frDgIAAAAAAAAAAMSL64mRYcOG6cMPP5Tf79eJJ56oVatW6dRTT5UkjRgxwnUHU13TB/vl82ZJkgIVoeJqnj5Z1nbpo4uttjcvw2oHdlUEb6eNHmitM43NdruywbHeLuKmtNAHjQKH7IJvgep6u19j7XMBAIDYtZUHJDsTxJIHJDsTuMkDkp0JyAMAAMRfR/OAZGeCWPKAZGcCN3lAsjMBeQAA0JO4/iqtuXPnaubMmdq2bZt+8pOfKD09XcYYeb1e3X777XHoYu9z//33a+LEicrPz1d+fr6mT5+uF198MdHdAgAA3YxMAAAAyAMAAPQ8rj8xcv311+v666+XJI0bN07vvfee1q1bpxNOOEFjx4513cHeaOjQobrzzjs1evRoGWP0yCOP6Ctf+UrwfgEAAKmBTAAAAMgDAAD0PK4mRpqamnT++ecrJydHf/3rX+XxeDRixIiU/wqtL33pS1b7//2//6f7779fb775JqEHAIAUQiYAAADkAQAAeh5XEyPp6el65513VFZWJo/HE68+JRW/36+nnnpKNTU1mj59eqK7AwAAEoRMAAAAyAMAAPQMrr9K66KLLtKTTz6pjz/+WIMHD45Hn5LCpk2bNH36dNXX1ys3N1fPPPOMxo8f3+b2DQ0NamgIFTWrrKzsjm4CAIAuFksmIA8AAJCcyAMAAPQsridGioqK1NzcrClTpuhrX/uaiouLrU+PLFq0yO0peqWxY8dq/fr1qqio0J///GfNnTtXK1eubDP4LFmyRIsXL45Y7huQL19atiQprawouNw0NlvbeTJ8Vts7vNBqN6/bHzrmkDxrnWn028fql23vu+WgfewBuaFts3LsDjfZx/rcz84SAACpLJZMEGsekOxMEEsekOxM4CYPSI5MQB4AAMDSnXlAsjNBLHmg5Vih67irPCBZmYA8AADoSTzGGOPmAF6vVx6PR8aYVr9Oy+/3t7JX6pk1a5ZGjRqlBx54oNX1rf2LkGHDhum2aXcr67Pg48lKD653hh5vfpbV9o3tb7Vjmhjpk261owYfr/2YBw5UWe2Tf/8Vq33aCSUCACBWlZWVKu7XVxUVFcrPz090d1yJlglizQOSnQliyQNSOxMjseQBycoE5AEAQFcgD3QsD0h2JoglD7QcK2xixEUekOxMQB4AAMRDvPKA60+MlJaWUl+kAwKBgBVsnDIzM5WZmdmNPQIAAIkQLROQBwAASA3kAQAAEsv1xMgjjzyigoICTZ482VpeX1+vQCDg9vC90i233KLZs2ertLRUVVVVeuyxx7RixQq9/PLLie4aAADoRmQCAABAHgAAoOdxPTFy9tlna/r06frHP/4Rsfztt99Wc3NzG3v2DBs3box5n/Hjxystre277uDBg7riiiu0b98+FRQUaOLEiXr55Zf1hS98wU1XAQBAF+mKPCCRCQAA6E3IAwAApA7XEyOS1FqZkpqamlaX9zSTJ08O1kjpCK/Xqw8++EAjR45sc5s//OEP8eqeTH2jjO+zomn+0Cdw0sYNsLZzFkSrf/49q51xwqDgbf/+antfn9dq+3cftdc7vq/cv68i1D+//amgtOH9rDbfGQoA6A26Ig9I8csEbeUByc4EseQByc4EbvKAZGcC8gAAoDdKljwg2Zkgljwg2ZnATR6Q7ExAHgAA9CSdnhg555xzgrffffddq11TU6PNmzersLDQVee6y1tvvaUBAwa0u50xRhMmTOiGHgEAgO5GHgAAAOQBAABSQ6cnRlasWCGPxyOPx6PKykqtWLEiYptZs2a56Vu3OOuss3Tcccd1eBLnzDPPVHZ2dvsbAgCAXoM8AAAAyAMAAKSOTk+MzJ07V1JL8fUBAwboggsuCK7LycnRuHHjNG/ePPc97GLLly+PafsXXnihi3oCAAAShTwAAADIAwAApI5OT4wsXbpUUktwmDp1arANAAAAAAAAAADQU7kuvl5eXh6HbvQMxhj9+c9/1vLly3Xw4EEFAnbRsKeffrrb+5Rx2nBlZOa0NNJ9weWBvZXWdvVPrbf3m1pmtU1tU/C2d2Afa53H67Hagar6qH3yDSkM3m7e8Ym97txRUfcFAKCn6015QLIzQSx5QLIzgZs8INmZgDwAAOjtenMekOxMEEsekOxM4CYPSGQCAEDP5XpiJBAIaOnSpVq2bJkOHDggY0xwncfj0bJly9yeottcd911euCBB3T22WeruLhYHo+n/Z0AAEBSIQ8AAADyAAAAyc31xMjChQt17733SlJwUsTj8cgY0+uCw//8z//o6aeftuqlAACA1EIeAAAA5AEAAJKb64mRxx9/XMYYDR48WCNGjFBamutDJkxBQYFGjhyZ6G4AAIAEIg8AAADyAAAAyc31LIbf79fQoUO1bds2ZWZmxqNPCXP77bdr8eLFeuihh5SdnZ3o7gAAgAQgDwAAAPIAAADJzfXEyCWXXKI//elPampq6vUTI9/85jf1+OOPa+DAgRo+fLjS09Ot9e+8806396nx9Z3y+lpCWKCmIbjcm5dlbZfxuVJ7x2a7MJwnL/TYmCN28bSmvUestreP/Tj6P6myj93QHLyZfnyJtWrBv0xzDgEAgF6lN+UByc4EseQByc4EbvKAZGcC8gAAoLfrzXlAcmSCGPKAZGcCN3lAIhMAAHou1xMjubm5qqys1OTJk/XlL39ZhYWF1vpFixa5PUW3mTt3rtauXatvf/vbFFcDACBFkQcAAAB5AACA5OZ6YuSuu+6Sx+PRhx9+qHvuuSdifW+aGHn++ef18ssv6/TTT090VwAAQIKQBwAAAHkAAIDk5npipLS0NGn+5cSwYcOUn5+f6G4AAIAEIg8AAADyAAAAyc3r9gDl5eXauXNnmz+9yS9/+Uv96Ec/Unl5eaK7AgAAEoQ8AAAAyAMAACQ3158YSSbf/va3VVtbq1GjRiknJyeiuNrhw4e7vU++IX3lS28pruYzJrQizTGn5TdWM3Ckzl4f1vbkZFirPFn2OD0Z9tMirTDbajeXfxq87T2ub9udBwCgF+pVeUCyM0EMeUCyM4GbPCCRCQAAyaVX5wHJygSx5AHJzgTkAQBAsorLxMihQ4d077336s0331RZWZmuvfZavfPOO5oxY4ZKS0vjcYpu8etf/zppvhYMAAB0DnkAAACQBwAASG6uJ0bKy8t12mmnaf/+/ZKkadOm6ejRo7ryyit144036q677nLdye5y5ZVXtrmurq6uzXUAACB5kAcAAAB5AACA5Oa6xsiPfvQj7du3T0OGDJH57KOcp59+uvLz8/XKK6+47mB3uvbaa1tdXlNTowsuuKCbewMAABKBPAAAAMgDAAAkN9cTI6+++qqKior03nvvWcvLysp6XZGy559/Xrfddpu1rKamRueff76am5sT1CsAANCdyAMAAIA8AABAcnP9VVp1dXUaPXq0+vTpYy2vrq5WQ0OD28N3q7/97W8644wz1LdvX1133XWqqqrSeeedp7S0NL344ouJ7p4UVlvNVDVaqwKV9kd504b3s/cN+2rUxg0f2dsOs7c1tfaxG1btstpZp44O3r701hnRegwAQK/Tm/KAZGeCWPKAZGcCN3lAIhMAAJJLb84Dkp0JYskDkp0JyAMAgGTlemJk1KhR2rJli/74xz9KkhoaGnTvvfdq586dmjhxousOdqdRo0bppZde0tlnny2v16vHH39cmZmZev755yMmfgAAQHIiDwAAAPIAAADJzfVXac2fP1/GGM2dO1cej0fr16/XddddJ4/Ho3nz5sWjj91q4sSJeu6553TrrbcqJydHL774IqEHAIAUQx4AAADkAQAAkpfrT4xce+212rp1qx544IFg8XWPx6P58+e3WaysJ5kyZYo8Hk/E8szMTH388cc67bTTgsveeeed7uwaAADoJuQBAABAHgAAIHW4nhjxeDz67W9/qx/96Edas2aNJGnq1KkaMWKE6851hzlz5iS6CwAAIMHIAwAAgDwAAEDqcD0xsnHjRpWXl+ukk07S17/+dUnSRx99pL/+9a8aPnx4j68zcttttyW6C1EFDtcokBaIWO4rzrPa3r5Z9gbN9j5NHx4K7Tsw31pnKuvttt/eN31Usb2+JlR8rV9eZhs9BwCg9+iteUCyM0EseUCyM4GbPCCRCQAAvV+y5AHJkQliyAOSnQnIAwCAZOV6YmT+/PnauHGj9u7dG1yWnZ2tiy++WJMnT9aqVavcngIAAAAAAAAAACAuXBdff++99zR69Gj1798/uKxfv34aPXq0tmzZ4vbwXa5fv346dOhQ+xt+prS0VLt27erCHgEAgO5GHgAAAOQBAABSh+tPjDQ3N2v//v1qbm5WWlrL4ZqamrR//375/X7XHexqR48e1YsvvqiCgoIObf/pp5/2inEBAICOIw8AAADyAAAAqcP1xMi4ceO0YcMGXXrppVq4cKEk6e6779ahQ4c0ZcoU1x3sDnPnzk10FwAAQIKRBwAAAHkAAIDU4Hpi5Oqrr9Y111yjp59+Wk8//XRwucfj0fz5890evssFAq0XLuspvP36yJueLUny5KYHl/t3HLa3G5hrtZt32evV1Pa/YglU1tn7HjhqtbNOGWW1fWeWRu0zAAC9TW/NA5KdCcgDAAB0XrLkAcnOBLHkAcnOBOQBAECycl1j5Ac/+IEWLFggSTLGyBgjSbrmmmv0ve99z+3hAQAAAAAAAAAA4sb1J0Yk6d5779WNN96ot99+W5J08sknq6ysLB6HBgAAAAAAAAAAiJu4TIxIUllZGZMhAAAAAAAAAACgR3M9MRIIBLR06VItW7ZMBw4cCH6VltRSZ2TZsmVuTwEAAAAAAAAAABAXridGFi5cqHvvvVeSrEkRqWViBO4EDtcokPZZAbhPQvevb2iBtV3Ttk+stmlsttppxaHt/UdqrHWeLLtoW9rgflbbf6jaal/747M60HMAABAvbeUByc4EseQByc4E5AEAAHq2juYByc4EseQByc4E5AEAQLJyXXz98ccflzFGgwYN0mmnnaazzjor+HPmmWfGo4/d5pxzztHixYsjlh85ckTnnHNOAnoEAAC6G3kAAACQBwAASG6uPzHi9/s1dOhQbdu2TZmZmfHoU8KsWLFCmzZt0rp16/Too4+qT58+kqTGxkatXLkywb0DAADdgTwAAADIAwAAJDfXnxi55JJLVFdXp6ampnj0J+FeffVV7d+/X5///OdVXl6e6O4AAIAEIA8AAADyAAAAycv1J0Zyc3NVWVmpyZMn68tf/rIKCwut9YsWLXJ7im41aNAgrVy5UldddZVOPvlkPfXUUzr++OMT3S0AANCNyAMAAIA8AABA8nI9MXLXXXfJ4/Howw8/1D333BOxvjdNjBwrFp+ZmanHHntM//7v/67zzz9fP/7xjxPZqZYfSYGquuDiplV2cVVvfo7dzs6w2v5Pwwqk+QPWuqa9n1rtjOOHWO30L4+Nrc8AAPRivSkPSHYmiCkPSFYmIA8AABDSm/OAZGeCWPKAZGcC8gAAIFm5/iqt0tJSlZaWqqysLHg7/Kc3McZY7Z/+9Kd69NFH9ctf/jKm4yxZskQnn3yy8vLyNHDgQM2ZM0dbt26NZ1cBAEAXIQ8AAIB45QGJTAAAQE/k+hMjyfQ9mzt37tSAAQOsZV/72tc0btw4rVmzpsPHWblypRYsWKCTTz5Zzc3NuvXWW3Xuuefq3XffDRZsAwAAPRN5AAAAxCsPSGQCAAB6ItcTI5L0+uuva9GiRcFwcPLJJ2vx4sU644wz4nH4blNWVtbq8hNOOEEnnHBCh4/z0ksvWe2HH35YAwcO1Nq1a3XmmWe66iMAAOha5AEAABCvPCCRCQAA6IlcT4y88cYbmjlzpvx+f/CjpitWrNCsWbO0fPlynXrqqa472dtVVFRIkvr169fmNg0NDWpoaAi2Kysru7xfAACg+5AHAACA1H4mIA8AAND1XE+M3HHHHWpublZZWZkuuOACSdILL7ygXbt26Y477oj4lxGpJhAI6LrrrtNpp52mCRMmtLndkiVLtHjx4ojlTdv2y+fNlCT5ivKDy30Fjo/b+uxyMabJb7frGts8t29ggb1tQ7PVXnAj/4IFAAA3uioPSI5MQB4AAKBH60gmcJ0HJCsTxJIHJDsTkAcAAMnK9cTI6tWr1b9/f23YsEH5+S0X5oqKCo0aNUpvvvmm6w72dgsWLNDmzZv1xhtvRN3ulltu0cKFC4PtyspKDRs2rKu7BwAAugF5AAAASB3LBOQBAAC6nuuJkfr6ehUXFwcnRSSpoKBA/fr10549e9wevle75ppr9Nxzz+m1117T0KFDo26bmZmpzMzMbuoZAADoLuQBAAAgdTwTkAcAAOh6ridGRo0apffff1833HCDLr30UknSY489pu3bt2v8+PGuO9gbGWP0wx/+UM8884xWrFihESNGJLpLAACgm5EHAACARCYAAKAncj0xMm/ePN100026++67dffddweXezwezZs3z+3he6UFCxboscce07PPPqu8vDzt379fUssnabKzsxPcOwAA0B3IAwAAQCITAADQE7meGLn++uv13nvvaenSpTLGSApNilx//fWuO9gb3X///ZKkGTNmWMuXLl2qK6+8MqZjpQ0vUprvs6AUMMHlnkz7oQtU1ds7hm0rSZ7sjOBt/4Gj1rqMCfZ3laaN6R9THwEAQKTuyAOSnQliyQOSnQnIAwAAdI14ZYKO5gHJkQliyAOSnQnIAwCAZOV6YsTr9erBBx/UrbfeqrVr10qSpk6dqpEjR7ruXG91bIIIAACkLvIAAACQyAQAAPREridGjhk5cmRKT4YAAAAAAAAAAICez9vZHcvLy/Xf//3feuuttyLWrVq1Sv/93/+t8vJyN30DAAAAAAAAAACIq05PjNx555266qqr1NTUFLGutrZWV111le68805XnQMAAAAAAAAAAIinTn+V1vLly5Wfn6/TTz89Yt3MmTNVWFioZcuWueocJFPVIOPzRCz3f1pttT1eextPhv3QVn+0P3g7/8RRUY91wU+/2qm+AgCArtFWHpDs63gseUCyMwF5AACAnq2jeUCyM0EsecB5LPIAACBZdfoTI3v37lVpaWmb64cNG6aPPvqos4cHAAAAAAAAAACIu05PjKSlpWnXrl0KBAIR6/x+v8rLy5Wenu6qcwAAAAAAAAAAAPHU6YmR448/XlVVVfrJT34Sse5nP/uZKisrdfzxx7vqHAAAAAAAAAAAQDx1usbIN7/5Ta1evVp33XWXXn75ZZ1xxhnyeDx64403tG7dOnk8Hl188cXx7CsAAAAAAAAAAIArnZ4YWbBggf74xz9q/fr12rBhgzZs2BBcZ4zRlClTtGDBgrh0MpUZY2SMkSQFKmuDy719suwNPXYBtiN79ljtwuJBwduBijprnbdPptUePbig0/0FAADx11YekByZIIY8INmZgDwAAEDP1uE8IFmZIJY80HKsUCYgDwAAklWnv0orMzNTf//733XppZfK5/MFL9A+n0/f+ta39OqrryojIyOefQUAAAAAAAAAAHCl058YkaTCwkI9+uijuv/++/XBBx/IGKOxY8cqPz8/Xv0DAAAAAAAAAACIG1cTI8fk5+frpJNOisehAAAAAAAAAAAAukynv0oLAAAAAAAAAACgt4nLJ0bQPby52cHbpslvrTt88COr3a9/idX2DSoM3g4cqbHWDf2Pc+PUQwAA0NXC84BkZ4JY8oBkZwLyAAAAvUe0PCDZmSCWPCCRCQAAqYFPjAAAAAAAAAAAgJTBxAgAAAAAAAAAAEgZnfoqrTvuuKPD2y5atKgzpwAAAAAAAAAAAIi7Tk2M3H777fJ4PB3alokRAAAAAAAAAADQU3RqYqS0tLTDEyNwZ/+eHcrwZEiSjALB5Q2BRmu7EQNHW21fSaHVbnx3b/B29tnjrHVfP2NEPLoKAAC6SFt5QLIzQSx5QLIzAXkAAICeraN5QLIzQSx5QCITAABSQ6cmRsrLy+PcDQAAAAAAAAAAgK5H8XUAAAAAAAAAAJAy4jIx8vrrr+vss89WXl6e8vLydM455+j111+Px6EBAAAAAAAAAADiplNfpRXujTfe0KxZs9Tc3CxjjCRpxYoVmjVrlpYvX65TTz3VdScBAAAAAAAAAADiwfXEyB133KGmpiaVlZXpggsukCS98MIL2rVrl+644w699NJLrjuZygZkFinLkylJ8uZnB5d7++Va23nSfFbbf7DCaqcVFwZvf//xi+PcSwAA0JXaygOSnQliyQMSmQAAgN6ko3lAsjMBeQAAgEiuJ0ZWr16t/v37a8OGDcrPz5ckVVRUaNSoUXrzzTdddxAAAAAAAAAAACBeXNcYqa+vV79+/YKTIpJUUFCgfv36qaGhwe3hAQAAAAAAAAAA4sb1J0ZGjRql999/XzfccIMuvfRSSdJjjz2m7du3a/z48a47CAAAAAAAAAAAEC+uPzEyb948GWN09913a9q0aZo2bZruueceeTwezZs3Lx59BAAAAAAAAAAAiAvXnxi5/vrr9d5772np0qUyxkhScFLk+uuvd93BVJdWWqQ0X1bEclNjf01ZoNbxtWUZ6VYzfXxJ6Jg+T/w6CAAAulxbeUCyM0EseUAiEwAA0Jt0NA9IjkxAHgAAIILriRGv16sHH3xQt956q9auXStJmjp1qkaOHOm6cwAAAAAAAAAAAPHk+qu0KioqtHv3bg0aNEjf+MY35PV6dc899+ihhx6KR/8AAAAAAAAAAADixvUnRv7lX/5FTz31lFavXq2PP/5Y3/zmN4PrDh06pB/96EduTwEAAAAAAAAAABAXrj8xsnbtWhUWFmrq1Kn63//9X0nSueeeK2OMHnnkEdcdBAAAAAAAAAAAiBfXnxj5+OOPNWbMGEnSpk2bNGXKFL344os6/vjjtXv3btcdTHWBihoFvP7PGia0wpjWd/hMxgmDrfYPn7wk3l0DAADdpM08IEXNBOQBAACSB3kAAID4cf2JkYyMDB09elQNDQ3atm2bxo8fH1zu9bo+PAAAAAAAAAAAQNy4nrk49smQ4uJi1dTUaNq0aZKkvXv3aujQoa47CAAAAAAAAAAAEC+uJ0Z++tOfKj09XZWVlRo5cqQuv/xyvfnmmzpy5Ig+//nPx6OPAAAAAAAAAAAAceG6xsgFF1ygvXv3avfu3TrhhBOUmZmpE044Qdu2bVP//v3j0UcAAAAAAAAAAIC4cD0xIklFRUUqKioKtvPy8pSXlxePQ6c8U98k4/W13G5sDi6vb663tssbN9xqX/vsZV3eNwAA0D3aygOSnQnIAwAAJK+O5gHJzgTkAQAAIsWlOvrrr7+us88+Ozghcs455+j111+Px6F7rddee01f+tKXNHjwYHk8Hv3lL39JdJcAAEA3Iw8AAADyAAAAPY/riZE33nhDs2bN0muvvaaamhrV1NRoxYoVmjVrlv75z3/Go4+9Uk1NjSZNmqT77rsv0V0BAAAJQh4AAADkAQAAeh7XX6V1xx13qKmpSWVlZbrgggskSS+88IJ27dqlO+64Qy+99JLrTvZGs2fP1uzZsxPdDQAAkEDkAQAAQB4AAKDncT0xsnr1avXv318bNmxQfn6+JKmiokKjRo3Sm2++6bqDqaKhoUENDQ3BdmVlZQJ7AwAAEoE8AAAAyAMAAHQ91xMj9fX1Ki4uDk6KSFJBQYH69eunPXv2uD18yliyZIkWL14csby+rkbG01JULXf4kODykhtPt7b77mVTuraDAACgy8WaByQ7E5AHAADo/dzmAYlMAABAe1zXGBk1apS2b9+uG264QWvWrNGaNWu0cOFCbd++XaNGjYpHH1PCLbfcooqKiuAPk0oAAKQe8gAAACAPAADQ9Vx/YmTevHm66aabdPfdd+vuu+8OLvd4PJo3b57bw6eMzMxMZWZmJrobAAAggcgDAACAPAAAQNdz/YmR66+/Xt/5znckScYYGWMktUyYXH/99W4PDwAAAAAAAAAAEDeuPjHS1NSk888/X9nZ2dq2bZvWrl0rSZo6dapGjhwZlw72VtXV1dq+fXuwvXPnTq1fv179+vVTaWlpAnsGAAC6C3kAAACQBwAA6HlcTYykp6frnXfeUVlZmUaOHJnykyHh1qxZo7PPPjvYXrhwoSRp7ty5evjhhzt8nJyi/sryZrUcY90P49pHAADQtcgDAACAPAAAQM/jusbIRRddpCeffFIff/yxBg8eHI8+JYUZM2YEv1YMAACkJvIAAAAgDwAA0PO4nhgpKipSc3OzpkyZoq997WsqLi6Wx+MJrl+0aJHbUwAAAAAAAAAAAMSF64mRX/ziF/J4PPrkk0/0wAMPRKxnYgQAAAAAAAAAAPQUridGSktLrU+IAAAAAAAAAAAA9FSuJ0bKy8vj0A20pfbQp/J7MhPdDQAAkEDkAQAAQB4AACB+vInuAAAAAAAAAAAAQHdx/YkRSTp06JDuvfdevfnmmyorK9O1116rd955RzNmzFBpaWk8TgEAAAAAAAAAAOBaXL5K67TTTtP+/fslSdOmTdPRo0d15ZVX6sYbb9Rdd93lupMAAAAAAAAAAADx4PqrtH70ox9p3759GjJkiIwxkqTTTz9d+fn5euWVV1x3EAAAAAAAAAAAIF5cf2Lk1VdfVVFRkd577z3l5eUFl5eVlVGYPQ5yBg5Qli9LktTUHAgubwy73dL2W+2GJnt9Sd/sLuohAADoam3lAcnOBOQBAACSV0fzQEs7lAnIAwAARHL9iZG6ujqVlJSoT58+1vLq6mo1NDS4PTwAAAAAAAAAAEDcuJ4YGTVqlLZs2aI//vGPkqSGhgbde++92rlzp8aMGeO6gwAAAAAAAAAAAPHiemJk/vz5MsZo7ty58ng8Wr9+va677jp5PB7NmzcvHn0EAAAAAAAAAACIC9cTI9dee62+973vSZKMMcEC7PPnz9e1117r9vAAAAAAAAAAAABx47r4usfj0W9/+1v96Ec/0po1ayRJJ510ktLS0vTzn/9ct956q+tOpjJPuk8en0+SdO/U/wouD1TUWNvVVlRY7U8aD1ntBe//Injb5/NY6yprGq12s99RtM1RqC07M/S08diHUnqaN2o7NyvdPnZYgbj8nAxrnddrH9znaOdk+IK3M9J9AgAgWbWVByQ7E8SSByQ7E7jJA5KdCdzkAcnOBLHkAYlMAABIXh3NA5KdCWLJA5KdCdzkAcnOAG7ygGRnAvIAAMAt158YOWb48OH64he/qMbGRn33u9/ViBEjtGjRongdHgAAAAAAAAAAwDXXnxiRpH/+8596+OGH9dRTT6myslJSy9dqeZz/VAAAAAAAAAAAACCBOj0x8tFHH+mRRx7RI488ou3bt0tSsL6Ix+PR3Xffra9+9avx6SUAAAAAAAAAAEAcdHpipKyszCq2PnHiRF1++eW6/fbbVVtbS+F1AAAAAAAAAADQ43S6xkgg0FIU6+STT9b69eu1fv163XDDDUpLi8u3cwEAAAAAAAAAAMSd61mMNWvWaPbs2brsssv07W9/Ox59QpiqvR+r0ZMZsbzGXxO1PWroBKv93Jm/CzU++5RP8BxHP7XafTLy7JP5A3bT+IO3a/111rqjzRVWu2zgcfaxvHbdmcOf7Ave3tdwwFqX6c2w2mNPOMXux6HK4G1T36SonPVuHPdBNCbg2NZxf7jhzcuy2hknDA3e9p04wFqXdsJAq507yH6c+uSkW+28sHZulv2rnpNpb5uV6bP7kRaaM/V57flTn+Mx9Pns9c7KQuGbO+sORZYhir4+WtWi9ksatb1BrOWQYtq8m0otebrrRB0Qfn/G8KuGbmbURQ9OFx22pq6d1/kk11YekOwMEFMekKxfUjd5QLIzgZs8INmZIJY8ILWTCboxD8TyOxYwHc8WTaY56r7pXvsan9k33z6AJ3Td9mTa+cCba+cS37BCu33y4ODtws8NstYVF/Wx2oP65Vjtwlz7cczKCJ073ZEl0nz24+T1ONtW08oX7WWLiLVRVsd6Ze268oo95xofC8pNAvHX0TzgbMeSByQ7E7jJA5KdCdzkAcnOBInKA5IjEzjuD+f133md9no6/u+T0wYUWO2Mk0rtYx1fFNq21N62aERfqz0g377GF+bZ1+XMdF+rtyUpLeI6bbe93rav0873AJzX8GjvATg3jfX9g7a3jH2DWP7e7srrH5fW3q+nvkXS2967qa1vbn+jDuj0J0YeeughnXnmmZKkffv26Ze//KWmTJmiioqWi977778flw4CAAAAAAAAAADES6cnRq688kotX75cO3bs0KJFizR8+PBgvRFJOuGEEzR+/Pi4dBIAAAAAAAAAACAeOj0xcszw4cN1++23a8eOHVq+fLmuuOIK5eTkyBijrVu3xqOPAAAAAAAAAAAAceF6YiTcWWedpYcfflj79++3vmoLAAAAAAAAAACgJ3BdfL01ffr00ZVXXqkrr7yyKw6fUg43HVGGp6UoVr2/Prh8QEaRtd3gTLsAZuOho1Y7c3Bo++qP9lvr8gcNttoRRcscpYE+bgjtX9Z/pLWuIN0uEO4ttAtxbn9vjdX2hM3NDXSMqSi/2Grven+j1R6cHRqzs1hoBBdVhLq0uJWjaJlpCCseVNlorWuubLDaniF2MdWIAmhhFb+cBdSdxcCcRU3Dt3ce11l8PbLQWrTCa3JopxBbRPH1+BQ8a7/wWgzn6fCWHThWHA/WrUXZemh11Z7Zq67TQx+GuGnM8LW/URJrKw9IdiaIJQ9IdiZwkwckOxO4yQOSnQliyQNSO5mgh+aBWJ7d6e1vYnMUefUWZHd418Cntfah1oSK4h49YBf5rRhvP7cOHdffag8bYD8HBhSG+lHQxy4Am5EWvchrRBYJazpzicfxvI2st9t24XbnsyXJX2YB9AIdzQOSnQliyQOSnQnc5AHJzgRu8oBkZ4JE5QEptuuBmwRrmhzFhRvsQvfhhd+d17DGZrvoe8B5PXSMIissa6enRS++Hnkd7vh7AM5i7NHeInD2MeJYEfu2/cjEeg139X5CZw8c66HidqQOnCvlQlDKDTgmPeH5EK/3B+L6iREAAAAAAAAAAICejIkRAAAAAAAAAACQMpgYAQAAAAAAAAAAKYOJEQAAAAAAAAAAkDK6pPg64mdo3zJleVuKhlVXHWlzu5xhJfaCgF1Y6+DuD4O30z122c5du9+zz5llF1/d13DAao8YNzl4+8j2nda6fqPtQmvvbl5lr0/va7WPNB8N3u6f0c9aZxrtQmODMu3iqxuObgrebjrSpGTQ7+PQ/TNqy3HWusw9I6z2kSq7GHtNWaHVzsgLFTLt4yi02ifL/tXvk2m3wwuvZWZEL7yW5mu7cLskpaeF1kcUZWunaJuzMJtdxC16tad2C7NF2TiiBnz0naP2o51TRd+2i44b69HdFNaKa02uuBan775qYT2hMFl7ekEX1eQoIJlquiIPSHYmcJMHJDsTuMkDkp0JYskDUvJkgq6S4wtlgvy0fGtdtjdKoVpJ2WH75pXYj0PaewOs9qcT7HblZPu5mVuSF7xdmJ9prSvpa+eWvBw7u+Zm2e3wYu3pjsLtzqzhi5I1vO0EgHbzgWn71bS9a0H01bEVCe4p153otY17SCd7iZ7ymCLxOpoHJEcmiCEPSHYmcJMHJDsTuMkDkp0JUjEPDD1g37fDdp4YvB04fqC1rmmUfd9Wje5vtXMH5Vntkn45wds5mfZ7AFmO9wQy0h3tNGc7dC32Od4vaO89gWjX5cjrcPTi7OF7xPT+QDvHan/bKMd1uUEsf8d25bWjyw7dYy549mtmT+lVe3rM3deFjg3R74/P+wN8YgQAAAAAAAAAAKQMJkYAAAAAAAAAAEDKYGIEAAAAAAAAAACkDCZGAAAAAAAAAABAyqD4eg9XW10pv6elyHb+kCHB5R5HAezmfXbhtT21e612UyBUeKw40y6GOSRrkH1Of53V9skupLVx8+vB2xOKJ1nrDnyw1WqPKRxjtbcc2WK1j88dq7asOfJOm+skaUR2WfD2wKEjomzZe3jzQkVPfcMKrXW+KXbR0swRdjG1wsF2AdXwQqW5jmLr2Y5i6xmOQqXhBded65zF153F1n0RBdVDtyOLo0UvlhZRBDWW4mkxFUBrr2hbtH1j5KIaVjzraMWzKFe31ffqoZXEemavEqerHiZnQeVU01YekOxMEEsekOxM4CYPSHYmSFQekJInE3SZsIurM0/K2Y5SEFWOwqvevAx7X79dtLK5zn7uecOKsTqzhnFU7U6PyB7Owq2h9c5s4SzyGlFQ3RNlnb1nlxVilSLLq7t5KQ2/+3rWpbNHdaZH61mPG3qSjuYByc4EseQByc4EbvKAZGcCN3lAip4JUiEPeDLsv+N9QwuDt73DCuyNHcXVMwsyrXZBrn3dzkoPPX/y+9jrMh3XfGfb+R5BeEF1X8RluOPvCUR7P8C5beRae0EsRctbO3bU88Syc6zH6vyh43pedydL/ota8o8wukQ8xN7IF4jOHScuRwEAAAAAAAAAAOgFmBgBAAAAAAAAAAApg4kRAAAAAAAAAACQMpgYAQAAAAAAAAAAKYPi613ovvvu03/+539q//79mjRpku69916dcsopMR2jT/8iZXlbCnL7D1YEl9c21VrbNQYarXaON9tqZ6UXBm/7jd9a1+xof1hbbrUnlky22iX+waGGo+hWjd/u14eH1ljtCXnjrbY3J1QA7O19b1nrxvQZZbVPe3Wh1Z598jABAFKDs6hjb9KVeUCyM0EseUCyM4GrPCBZmcBNHpDsTEAeAHom46wYnxK6Z9Cped92jOnld47bTNDRPCDZmSCWPCDZmcBNHpDsTOAmD0h2JiAPAEDqitf7A733XYYe7k9/+pMWLlyo2267Te+8844mTZqk8847TwcPHkx01wAAQDchDwAAAIlMAABAT8PESBf51a9+pfnz5+uqq67S+PHj9bvf/U45OTl66KGHEt01AADQTcgDAABAIhMAANDTMDHSBRobG7V27VrNmjUruMzr9WrWrFlatWpVAnsGAAC6C3kAAABIZAIAAHoiaox0gUOHDsnv96u4uNhaXlxcrPfff7/VfRoaGtTQ0BBsV1S0fF9oQ6A+uCxgQusbwm5LUqNpstrO7wj1mLbXeY39HaBNjmPVh/VBkkwgEDpuwD5Wo7G/27xJ9rGc/fYE0ju8bW1NldWurKwUACA1VH32mt+bvlu8O/KAZF8vY8kDzvVu8oBkZwI3ecC5PXkA6Jl60ctxHKXkoHuU3pgHpNgzgds8INmZIJY8INmZwE0eaOlHKBO4yQPO7ckDAJC64pUHmBjpIZYsWaLFixdHLP/F3jsT0BvbX/b/NW7Heqn6b/aC6igb27Xj9F+zHohbPwAAvVNVVZUKCgoS3Y0uQx5oBXkAAOBAHkichOUBycoE5AEAgNs8wMRIFygqKpLP59OBAwes5QcOHFBJSUmr+9xyyy1auHBhsB0IBHT48GGlp6ertLRUe/bsUX5+fpf2u6eprKzUsGHDGDtjTxmMnbEz9rYZY1RVVaXBgwd3U+/cIw/EB78jjJ2xpw7GztiTMQ9IsWcC8kAkfkcYO2NPHak8dim1x9/RsccrDzAx0gUyMjI0depULVu2THPmzJHUEmSWLVuma665ptV9MjMzlZmZaS0rLCwMfhw0Pz8/5X4ZjmHsjD3VMHbGnmo6Ovbe9i9DyQPxxdgZe6ph7Iw91SRrHpBizwTkgbYxdsaeahh7ao5dSu3xd2Ts8cgDTIx0kYULF2ru3Lk66aSTdMopp+juu+9WTU2NrrrqqkR3DQAAdBPyAAAAkMgEAAD0NEyMdJGLL75Yn3zyiRYtWqT9+/dr8uTJeumllyKKrQEAgORFHgAAABKZAACAnoaJkS50zTXXtPlVGR2VmZmp2267LeJjtKmAsTP2VMPYGXuqSZWxkwfcYeyMPdUwdsaealJp7G4zQSrdV06MnbGnGsaemmOXUnv83T12jzHGdMuZAAAAAAAAAAAAEsyb6A4AAAAAAID/v717j42qTOM4/hvGTm23tlPsZVq0UC4tYoFF1G5VWA2NFDcqeKu1WWBXMbgQb8AqGkX9YyGabIJGiYmxGEJsdEPRyCUqULykIhAKVNxiodis6WWFbQFbENpn/zAdHWihhZm2M+f7SZrUc9458zzznvT9kdfTAgAAoK+wMQIAAAAAAAAAAByDjREAAAAAAAAAAOAYbIwAAAAAAAAAAADHYGNkAHv99dc1bNgwXXrppcrNzdXXX3/d3yVdtBdeeEEulyvga/To0f7zJ06c0Lx583T55ZcrLi5Od999txobGwOuUVdXpz/96U+KjY1VSkqKFi1apNOnT/d1K+f12Wef6fbbb1d6erpcLpfWrl0bcN7M9PzzzystLU0xMTHKz8/Xd999FzDmyJEjKi4uVnx8vLxerx588EEdP348YMyePXs0adIkXXrppbryyiv18ssvh7q18zpf77Nnzz7rPigoKAgYE469L126VNddd50uu+wypaSkaPr06aqurg4YE6x7vLy8XNdcc42io6M1cuRIrVy5MtTtnVdP+r/55pvPmvu5c+cGjAnH/lesWKFx48YpPj5e8fHxysvL04YNG/znI3nez9d7pM55XyIPkAfCcU2UnJsHJGdnAvIAeYA8EDqRlgnIA78iD5AHIm1tIA+QB8IiDxgGpNLSUvN4PPb222/bN998Y3PmzDGv12uNjY39XdpFWbJkiV199dVWX1/v//rvf//rPz937ly78sorbdOmTbZjxw77wx/+YDfccIP//OnTpy0nJ8fy8/Nt165dtn79ektKSrLFixf3RzvntH79env22WdtzZo1JsnKysoCzi9btswSEhJs7dq1tnv3brvjjjssMzPT2tra/GMKCgps/Pjx9tVXX9nnn39uI0eOtKKiIv/5lpYWS01NteLiYquqqrJ3333XYmJi7M033+yrNrt0vt5nzZplBQUFAffBkSNHAsaEY+9Tp061kpISq6qqssrKSrvtttssIyPDjh8/7h8TjHv84MGDFhsba08++aTt27fPXnvtNXO73bZx48Y+7fdMPen/j3/8o82ZMydg7ltaWvznw7X/Dz/80NatW2f79++36upqe+aZZywqKsqqqqrMLLLn/Xy9R+qc9xXyAHnALDzXRDPn5gEzZ2cC8gB5gDwQGpGYCcgDvyIPkAcibW0gD5AHwiEPsDEyQF1//fU2b948/3+3t7dbenq6LV26tB+runhLliyx8ePHd3muubnZoqKi7P333/cf+/bbb02SVVRUmNkvC+qgQYOsoaHBP2bFihUWHx9vJ0+eDGntF+PMxb+jo8N8Pp+98sor/mPNzc0WHR1t7777rpmZ7du3zyTZ9u3b/WM2bNhgLpfLfvjhBzMze+ONNywxMTGg96eeesqys7ND3FHPdRd87rzzzm5fEym9NzU1mSTbunWrmQXvHv/73/9uV199dcB7FRYW2tSpU0PdUq+c2b/ZL4vgY4891u1rIqn/xMREe+uttxw372a/9m7mrDkPBfLAL8gD4b8mOjkPmDk7E5AHyANmzprzUInETEAe+AV5gDzghLWBPEAeMBt4c86v0hqAfv75Z+3cuVP5+fn+Y4MGDVJ+fr4qKir6sbLg+O6775Senq7hw4eruLhYdXV1kqSdO3fq1KlTAX2PHj1aGRkZ/r4rKio0duxYpaam+sdMnTpVR48e1TfffNO3jVyE2tpaNTQ0BPSakJCg3NzcgF69Xq+uvfZa/5j8/HwNGjRI27Zt84+ZPHmyPB6Pf8zUqVNVXV2t//3vf33UzYUpLy9XSkqKsrOz9cgjj+jw4cP+c5HSe0tLiyRp8ODBkoJ3j1dUVARco3PMQPv5cGb/nVavXq2kpCTl5ORo8eLFam1t9Z+LhP7b29tVWlqqn376SXl5eY6a9zN77xTpcx4q5AHygBQ5a2J3nJAHJGdnAvIAeaBTpM95KEVyJiAPkAck8oAT1gbyAHmg00Ca80t6/QqE3I8//qj29vaAm0CSUlNT9e9//7ufqgqO3NxcrVy5UtnZ2aqvr9eLL76oSZMmqaqqSg0NDfJ4PPJ6vQGvSU1NVUNDgySpoaGhy8+l81y46Ky1q15+22tKSkrA+UsuuUSDBw8OGJOZmXnWNTrPJSYmhqT+i1VQUKC77rpLmZmZOnDggJ555hlNmzZNFRUVcrvdEdF7R0eHHn/8cd14443Kycnx1xWMe7y7MUePHlVbW5tiYmJC0VKvdNW/JD3wwAMaOnSo0tPTtWfPHj311FOqrq7WmjVrJIV3/3v37lVeXp5OnDihuLg4lZWVacyYMaqsrIz4ee+udymy5zzUyAPegNeQB34Vbmtid5yQByRnZwLyAHmAPBAckZoJyAO/IA+QByJ5bZDIA+SBgZsH2BhBn5o2bZr/+3Hjxik3N1dDhw7Ve++91+8/qNF37r//fv/3Y8eO1bhx4zRixAiVl5drypQp/VhZ8MybN09VVVX64osv+ruUftFd/w8//LD/+7FjxyotLU1TpkzRgQMHNGLEiL4uM6iys7NVWVmplpYW/etf/9KsWbO0devW/i6rT3TX+5gxYyJ6znHhyAOQnJEHJGdnAvIAeYA8gHMhD0AiDzgBeYA8MFDzAL9KawBKSkqS2+1WY2NjwPHGxkb5fL5+qio0vF6vsrKyVFNTI5/Pp59//lnNzc0BY37bt8/n6/Jz6TwXLjprPdcc+3w+NTU1BZw/ffq0jhw5EnGfx/Dhw5WUlKSamhpJ4d/7/Pnz9dFHH2nLli264oor/MeDdY93NyY+Pn5A/AOiu/67kpubK0kBcx+u/Xs8Ho0cOVITJ07U0qVLNX78eC1fvtwR895d712JpDkPNfJAc8AY8sCvwmlN7I1IywOSszMBeYA8QB4IHqdkAvIAeUAiD0iRtTaQB8gDAzkPsDEyAHk8Hk2cOFGbNm3yH+vo6NCmTZsCfidbJDh+/LgOHDigtLQ0TZw4UVFRUQF9V1dXq66uzt93Xl6e9u7dG7AofvLJJ4qPj/c/lhUOMjMz5fP5Ano9evSotm3bFtBrc3Ozdu7c6R+zefNmdXR0+H9w5OXl6bPPPtOpU6f8Yz755BNlZ2cPiEdFe+o///mPDh8+rLS0NEnh27uZaf78+SorK9PmzZvPepQ3WPd4Xl5ewDU6x/T3z4fz9d+VyspKSQqY+3Dt/0wdHR06efJkxM97Vzp770okz3mwkQfIA1L4rokXIlLygOTsTEAeCEQeIA8Eg1MyAXmAPCCRByJlbSAPBCIPDNA80Os/144+UVpaatHR0bZy5Urbt2+fPfzww+b1eq2hoaG/S7soCxYssPLycqutrbUvv/zS8vPzLSkpyZqamszMbO7cuZaRkWGbN2+2HTt2WF5enuXl5flff/r0acvJybFbb73VKisrbePGjZacnGyLFy/ur5a6dezYMdu1a5ft2rXLJNk///lP27Vrl33//fdmZrZs2TLzer32wQcf2J49e+zOO++0zMxMa2tr81+joKDAJkyYYNu2bbMvvvjCRo0aZUVFRf7zzc3Nlpqaan/+85+tqqrKSktLLTY21t58880+7/e3ztX7sWPHbOHChVZRUWG1tbX26aef2jXXXGOjRo2yEydO+K8Rjr0/8sgjlpCQYOXl5VZfX+//am1t9Y8Jxj1+8OBBi42NtUWLFtm3335rr7/+urndbtu4cWOf9num8/VfU1NjL730ku3YscNqa2vtgw8+sOHDh9vkyZP91wjX/p9++mnbunWr1dbW2p49e+zpp582l8tlH3/8sZlF9ryfq/dInvO+Qh4gD5iF55po5tw8YObsTEAeIA+QB0IjEjMBeYA8QB6I3LWBPEAeCIc8wMbIAPbaa69ZRkaGeTweu/766+2rr77q75IuWmFhoaWlpZnH47EhQ4ZYYWGh1dTU+M+3tbXZ3/72N0tMTLTY2FibMWOG1dfXB1zj0KFDNm3aNIuJibGkpCRbsGCBnTp1qq9bOa8tW7aYpLO+Zs2aZWZmHR0d9txzz1lqaqpFR0fblClTrLq6OuAahw8ftqKiIouLi7P4+Hj7y1/+YseOHQsYs3v3brvpppssOjrahgwZYsuWLeurFrt1rt5bW1vt1ltvteTkZIuKirKhQ4fanDlzzgr04dh7Vz1LspKSEv+YYN3jW7Zssd///vfm8Xhs+PDhAe/RX87Xf11dnU2ePNkGDx5s0dHRNnLkSFu0aJG1tLQEXCcc+//rX/9qQ4cONY/HY8nJyTZlyhR/6DGL7Hk/V++RPOd9iTxAHgjHNdHMuXnAzNmZgDxAHiAPhE6kZQLyAHmAPBC5awN5gDwQDnnAZWbW++dMAAAAAAAAAAAAwg9/YwQAAAAAAAAAADgGGyMAAAAAAAAAAMAx2BgBAAAAAAAAAACOwcYIAAAAAAAAAABwDDZGAAAAAAAAAACAY7AxAgAAAAAAAAAAHIONEQAAAAAAAAAA4BhsjACIKOXl5XK5XGpubu7z93a5XHK5XPJ6vT0a31mry+XS9OnTQ1obAABOQh4AAADkAQDnwsYIgLB188036/HHHw84dsMNN6i+vl4JCQn9UlNJSYn279/fo7Gdtd53330hrgoAgMhFHgAAAOQBAL3FxgiAiOLxeOTz+eRyufrl/b1er1JSUno0trPWmJiYEFcFAICzkAcAAAB5AMC5sDECICzNnj1bW7du1fLly/2Pmx46dOisR2VXrlwpr9erjz76SNnZ2YqNjdU999yj1tZWvfPOOxo2bJgSExP16KOPqr293X/9kydPauHChRoyZIh+97vfKTc3V+Xl5b2uc/fu3brlllt02WWXKT4+XhMnTtSOHTuC9CkAAOBs5AEAAEAeAHAhLunvAgDgQixfvlz79+9XTk6OXnrpJUlScnKyDh06dNbY1tZWvfrqqyotLdWxY8d01113acaMGfJ6vVq/fr0OHjyou+++WzfeeKMKCwslSfPnz9e+fftUWlqq9PR0lZWVqaCgQHv37tWoUaN6XGdxcbEmTJigFStWyO12q7KyUlFRUUH5DAAAcDryAAAAIA8AuBBsjAAISwkJCfJ4PIqNjZXP5zvn2FOnTmnFihUaMWKEJOmee+7RqlWr1NjYqLi4OI0ZM0a33HKLtmzZosLCQtXV1amkpER1dXVKT0+XJC1cuFAbN25USUmJ/vGPf/S4zrq6Oi1atEijR4+WpF6FJgAAcG7kAQAAQB4AcCHYGAEQ8WJjY/2hR5JSU1M1bNgwxcXFBRxramqSJO3du1ft7e3KysoKuM7Jkyd1+eWX9+q9n3zyST300ENatWqV8vPzde+99wbUAgAA+gZ5AAAAkAcAdGJjBEDEO/PRVJfL1eWxjo4OSdLx48fldru1c+dOud3ugHG/DUs98cILL+iBBx7QunXrtGHDBi1ZskSlpaWaMWPGBXQCAAAuFHkAAACQBwB0YmMEQNjyeDwBfxAtWCZMmKD29nY1NTVp0qRJF329rKwsZWVl6YknnlBRUZFKSkoIPgAABAl5AAAAkAcA9Nag/i4AAC7UsGHDtG3bNh06dEg//vij///ouFhZWVkqLi7WzJkztWbNGtXW1urrr7/W0qVLtW7duh5fp62tTfPnz1d5ebm+//57ffnll9q+fbuuuuqqoNQJAADIAwAAgDwAoPfYGAEQthYuXCi3260xY8YoOTlZdXV1Qbt2SUmJZs6cqQULFig7O1vTp0/X9u3blZGR0eNruN1uHT58WDNnzlRWVpbuu+8+TZs2TS+++GLQ6gQAwOnIAwAAgDwAoLdcZmb9XQQARAKXy6WysjJNnz69V6+bPXu2mpubtXbt2pDUBQAA+g55AAAAkAeAgY8nRgAgiIqKinTFFVf0aOznn3+uuLg4rV69OsRVAQCAvkQeAAAA5AFgYOOJEQAIkpqaGkm/PCKbmZl53vFtbW364YcfJElxcXHy+XwhrQ8AAIQeeQAAAJAHgIGPjREAAAAAAAAAAOAY/CotAAAAAAAAAADgGGyMAAAAAAAAAAAAx2BjBAAAAAAAAAAAOAYbIwAAAAAAAAAAwDHYGAEAAAAAAAAAAI7BxggAAAAAAAAAAHAMNkYAAAAAAAAAAIBjsDECAAAAAAAAAAAcg40RAAAAAAAAAADgGP8HY+ColjuwkAYAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": "HTML(value=\"./fig10_hydrometeors.pdf
\")", - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "42c580f9a87448c0b2446dda49176904" - } - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "# Hydrometeors\n", "fig, axes = fig_ax()\n", @@ -255,39 +237,43 @@ "add_titles(axes)\n", "plt.tight_layout()\n", "show_plot(\"fig10_hydrometeors.pdf\", inline_format=inline_format)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2024-02-01T07:53:25.114142Z", - "start_time": "2024-02-01T07:53:23.530383Z" - } - }, + ], "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADM90lEQVR4nOzdd3xT1f8/8NftSJN0l24olL2hpUBBBUEKBRVBAYEPWjbiBwQsqCCyQfZQ9EMZskQB9SPoVwSE/qiyBIGirA9LNi1llzZp0zbn90dsaJqkO0mbvp6PRx40955778mlPSfve5YkhBAgIiIiIiIqBQdbZ4CIiIiIiCo+BhZERERERFRqDCyIiIiIiKjUGFgQEREREVGpMbAgIiIiIqJSY2BBRERERESlxsCCiIiIiIhKjYEFERERERGVGgMLIiIiIiIqNQYWRERERERUagwsqMI7dOgQpk+fjkePHtksD3v37sULL7wAT09PuLu7IyIiAlu3bjVK9+OPP6JFixaQy+WoXr06pk2bhuzsbKN0jx49wogRI+Dn5wdXV1d07NgRJ06cKHJ+zp07h65du8LNzQ0+Pj548803cffu3VJ9RiIie2DrOmPPnj147rnnoFQq4e3tjd69e+Pq1asm07LOoIqGgQVVeIcOHcKMGTNsVkmsW7cOXbp0gbOzMz7++GMsXLgQ7du3x40bNwzS7dy5Ez179oSXlxeWL1+Onj17Yvbs2XjnnXcM0mm1Wrz00kv4+uuvMXr0aCxYsAApKSno0KEDLl68WGh+bt68ifbt2+PSpUv4+OOPMWHCBOzYsQOdO3eGRqMp089ORFTR2LLO+Omnn9C1a1dkZmZi3rx5GD9+PH799Vc899xzRl/kWWdQhSSIKriFCxcKAOLKlStWv/aVK1eEQqEQY8aMKTRto0aNRPPmzUVWVpZ+2+TJk4UkSeLcuXP6bVu3bhUAxLfffqvflpKSIry8vET//v0Lvc7bb78tFAqFuHbtmn7bnj17BACxcuXKon40IiK7ZMs6o1GjRqJOnToiMzNTv+3kyZPCwcFBxMbGGqVlnUEVDQMLqtCmTZsmABi9rFVhfPDBB0Imk4lHjx4JIYR48uSJ0Gq1RunOnDkjAIjPP//cYPutW7cEADFr1iz9tj59+oiAgACRk5NjkHbEiBFCqVSKjIyMAvPk7+8v+vTpY7S9Xr16olOnTvr3Go1GTJ8+XdSpU0e4uLgIHx8f8eyzz4pffvml8A9ORFQB2bLOuH//vgAg3nvvPaN9jRs3FsHBwfr3rDOoonKyavMIURl77bXXcOHCBWzevBlLly6Fr68vAMDPz8/sMSqVCiqVqtBzOzo6wtvbu8A0e/fuRYMGDfDzzz/jvffew61bt+Dt7Y1Ro0ZhxowZcHDQ9TZMTEwEALRs2dLg+ODgYFSrVk2/PzdtixYt9Mfmat26NVatWoULFy6gadOmJvNz69YtpKSkGF0n9/iff/5Z/3769OmYO3cuhg0bhtatWyM1NRXHjh3DiRMn0Llz5wI/NxFRRWTLOiMzMxMAoFAojPYplUqcOXMGycnJCAwMZJ1BFRYDC6rQmjVrhhYtWmDz5s3o2bMnQkNDCz1mwYIFmDFjRqHpatSoYXZAXa6LFy/C0dERgwcPxvvvv4/mzZvj+++/x+zZs5GdnY25c+cCAJKSkgAAQUFBRucICgrC7du39e+TkpLQvn17k+kA4Pbt22YricKu8+DBA2RmZsLFxQU7duzAiy++iFWrVhX4GYmI7IUt64yAgAB4eXnh4MGDBtvv37+Ps2fPAtB90Q8MDGSdQRUWAwuqdGJiYvDcc88Vms7UU6X80tLSoNVqMW/ePHzwwQcAgF69euHBgwf45JNP8OGHH8Ld3R1qtRoA4OLiYnQOuVyO1NRU/Xu1Wm02Xe5+cwq7Tt7ze3l54cyZM7h48SLq1q1b6GclIqqMyqrOcHBwwFtvvYX58+dj0qRJGDJkCFJTU/H+++/rB0nnluGsM6iiYmBBlU6tWrVQq1atMjmXQqFAeno6+vfvb7C9f//+2LVrFxITE9G+fXt9hZPbFJ5XRkaGQYWkUCjMpsvdX1B+CrpO3jQzZ85Ejx49UK9ePTRp0gRdu3bFm2++iWbNmhX4mYmIKpOyrDNmzpyJe/fuYcGCBZg3bx4AoEuXLhg6dCji4uLg5uYGoPCynHUGlVecbpYqnbS0NCQnJxf6Ksoc3sHBwQB0Tdx5+fv7AwAePnwI4Gkzc26zc15JSUn68+SmNZcu7zVNKew6Pj4++idT7du3x+XLl7F27Vo0adIEa9asQYsWLbBmzRqz5yciqmzKss6QyWRYs2YNbt++jd9++w3nz5/H7t278fjxYzg4OKBOnToAWGdQxcXAgio8SZKKlX7RokUICgoq9NWqVatCzxUREQFA1y82r9z+r7kDAsPCwgAAx44dM0p38+ZN/f7ctCdOnIBWqzVIe+TIESiVStSrV89sfqpWrQo/Pz+j6wDA0aNHDa4DAD4+Phg8eDA2b96MGzduoFmzZpg+fbrZ8xMRVXS2rDNyBQQEoF27dqhXrx5ycnKQkJCAyMhIfYsF6wyqqNgViio8V1dXACjyYkdlOcaib9++2LJlC7744gvMmTMHgG6xonXr1sHHx0cfeDRu3BgNGjTAqlWr8NZbb8HR0REAsGLFCkiShN69e+vP2bt3b3z33Xf4/vvv9dvv3buHb7/9Ft27dzfoC3v58mUAQO3atfXbevXqhQ0bNuDGjRsICQkBAMTHx+PChQt499139enu37+PKlWq6N+7ubmhTp06Rgv7ERHZE1vWGaYsWrQISUlJWL58uX4b6wyqqCQhhLB1JohK448//kDr1q3x4osvol+/fnB2dkb37t31lYclCSHQuXNn/L//9/8wfPhwNG/eHNu3b8eePXuwcuVKjBgxQp/2p59+wiuvvIKOHTuiX79+OH36ND777DMMHTrUYJaNnJwcPPfcczh9+jTee+89+Pr64j//+Q+uX7+OP/74A/Xr19enzZ3RJO9MJDdu3EB4eDi8vLwwduxYpKWlYeHChahWrRr++OMPfSUTEBCADh06ICIiAj4+Pjh27BhWrVqF0aNH49NPP7XsjSMishFb1hmbNm3Cf//7X7Rv3x5ubm7Yu3cvvvnmGwwbNgyrV682SMs6gyokG6+jQVQmZs2aJapWrSocHBysvqLqkydPxNixY0VgYKCQyWSiadOmYtOmTSbTbtu2TYSFhQkXFxdRrVo18dFHHwmNRmOU7sGDB2Lo0KGiSpUqQqlUiueff1788ccfRulq1KghatSoYbT99OnTokuXLkKpVAovLy8xYMAAkZycbJBm9uzZonXr1sLLy0soFArRoEEDMWfOHJP5ISKyJ7aqM44cOSLat28vvL29hVwuF82bNxdxcXEmF1YVgnUGVTxssSAiIiIiolLj4G0iIiIiIio1BhZERERERFRqDCyIiIiIiKjUGFgQEREREVGpMbAgIiIiIqJSY2BBRERERESlxpW389Fqtbh9+zbc3d0hSZKts0NEVCAhBJ48eYLg4GA4OPBZkbWxziCiisTSdQYDi3xu376tX9KeiKiiuHHjBqpVq2brbFQ6rDOIqCKyVJ3BwCIfd3d3ALob7uHhYePcEBEVLDU1FSEhIfqyi6yLdQYRVSSWrjMYWOST25Tt4eHBSoKIKgx2w7EN1hlEVBFZqs5gh1wiIiIiIio1BhZERERERFRqDCyIiIiIiKjUOMaCypWcnBxkZWXZOhtE5YqzszMcHR1tnQ0iIqICMbCgckEIgeTkZDx69MjWWSEql7y8vBAYGMhB2kREVG4xsKCyJQSQpTLe7qwECvhClBtU+Pv7Q6lU8ssT0T+EEFCpVEhJSQEABAUF2ThHROVICescIrIMBhZUdoQA1kYDN44Y7wtpAwzZZbKgz8nJ0QcVVapUsUJGiSoWhUIBAEhJSYG/vz+7RREBJa5ziMhyOHibyk6WynQBDwA3fjf9VAnQj6lQKpWWyhlRhZf798ExSET/KGGdQ0SWwxYLsowJlwCZEtCogEV1inQIuz8Rmce/D6IClKDOIaKyx8CCLEOmBGSuts4FERFVBqxziMoFdoUiIiMJCQmQJImzdBEREVGRMbAgKqFBgwZBkiTMmzfPYPv27dtL3W1l/fr1kCRJ/3Jzc0NERAS+//77Up2XiKjS0KgATfrTlxC2zhGR3WNgQVQKcrkc8+fPx8OHD8v83B4eHkhKSkJSUhISExMRHR2N119/HefPnzd7jEajKfN8EBFVSIvqAB8HP32t7crggsjCGFgQlUJUVBQCAwMxd+7cAtP997//RePGjeHi4oLQ0FAsXry40HNLkoTAwEAEBgaibt26mD17NhwcHPDXX3/p04SGhmLWrFmIiYmBh4cHRowYAQA4cOAA2rVrB4VCgZCQEIwZMwbp6en647788ku0bNkS7u7uCAwMxL/+9S/9OgmmqFQqdOvWDc8++ywePXqEQYMGoWfPngZpxo0bhw4dOujfd+jQAaNHj8bo0aPh6ekJX19fTJkyBYIVOxFZirNSN9WsKZwpisjiGFhQmRIAVJKE+6on+pdKklDcr5JCCKg02VZ/FfdLr6OjIz7++GMsX74cN2/eNJnm+PHjeP3119GvXz+cOnUK06dPx5QpU7B+/foiXycnJwcbNmwAALRo0cJg36JFi9C8eXMkJiZiypQpuHz5Mrp27YpevXrhr7/+wtatW3HgwAGMHj1af0xWVhZmzZqFP//8E9u3b8fVq1cxaNAgk9d+9OgROnfuDK1Wiz179sDLy6vI+d6wYQOcnJxw9OhRfPLJJ1iyZAnWrFlT5OOJiIpFknTrV3x4++lrwiVb54qo0uCsUFRmtFotBgYF4KTcBfih89MdoSEIz8jAeq22yJGsOisHjabutkg+C3J2ZjSUsuL9Wbz66qsICwvDtGnT8MUXXxjtX7JkCTp16oQpU6YAAOrVq4ezZ89i4cKFZr/MA8Djx4/h5uYGAFCr1XB2dsaqVatQu3Ztg3QvvPACxo8fr38/bNgwDBgwAOPGjQMA1K1bF59++imef/55rFixAnK5HEOGDNGnr1WrFj799FO0atUKaWlp+msCuhXR+/bti7p16+Lrr7+GTCYr1r0JCQnB0qVLIUkS6tevj1OnTmHp0qUYPnx4sc5DRFRkksQZoohshC0WVGYeZqTrggoTEuVyPMxIN7nPHsyfPx8bNmzAuXPnjPadO3cOzz77rMG2Z599FhcvXkROTo7Zc7q7u+PkyZM4efIkEhMT8fHHH2PkyJH4v//7P4N0LVu2NHj/559/Yv369XBzc9O/oqOjodVqceXKFQC6VpTu3bujevXqcHd3x/PPPw8AuH79usG5OnfujDp16mDr1q3FDioAoE2bNgYD2du2bVvo5yYiIqKKiS0WZBHfd9kOH09/PHicgtd+6Vns4xXOjjg7M7rsM1aE65ZE+/btER0djUmTJhXYClEcDg4OqFPn6UJPzZo1wy+//IL58+eje/fu+u2uroZP5tLS0vDWW29hzJgxRuesXr060tPTER0djejoaHz11Vfw8/PD9evXER0dbTT4+6WXXsJ///tfnD17Fk2bNjXIW/5uY1wRmoiIqHJjYEEW4aNwRRWlu26KvxKQJKnYXZJsbd68eQgLC0P9+vUNtjds2BAHDx402Hbw4EHUq1cPjo7FC2QcHR2hVqsLTNOiRQucPXvWICjJ69SpU7h//z7mzZuHkJAQAMCxY8dMpp03bx7c3NzQqVMnJCQkoFGjRgAAPz8/nD592iDtyZMn4ezsbLDtyJEjBu9///131K1bt9ifm4iIiMo/doUiKiNNmzbFgAED8OmnnxpsHz9+POLj4zFr1ixcuHABGzZswGeffYYJEyYUeD4hBJKTk5GcnIwrV65g1apV2L17N3r06FHgcR988AEOHTqE0aNH4+TJk7h48SJ++OEH/eDt6tWrQyaTYfny5fj777/x448/YtasWWbPt2jRIgwYMAAvvPAC/ve//wHQjes4duwYNm7ciIsXL2LatGlGgQag61oVGxuL8+fPY/PmzVi+fDnGjh1bYP6JiIioYmJgQVSGZs6cCa1Wa7CtRYsW+Oabb7BlyxY0adIEU6dOxcyZMwvtMpWamoqgoCAEBQWhYcOGWLx4MWbOnInJkycXeFyzZs3w66+/4sKFC2jXrh3Cw8MxdepUBAcHA9C1Nqxfvx7ffvstGjVqhHnz5mHRokUFnnPp0qV4/fXX8cILL+DChQuIjo7GlClT8P7776NVq1Z48uQJYmJijI6LiYmBWq1G69atMWrUKIwdO1Y/JS4RERHZF0lwUnkDqamp8PT0xOPHj+Hh4WHr7FQo9x8lo8M/s0El9NiDKl6BJrfll5GRgStXrqBmzZqQy+VWzTNZTocOHRAWFoZly5bZOit2wdzfCcss2+L9tyFNum7hO0A3ray5maCKmo6oErB0mcUWCyIiIiIiKjUGFkREREREVGoVa9odIqowEhISbJ0FIiIisiK7arFYsWIFmjVrBg8PD3h4eKBt27bYuXOnrbNFRERERGT37CqwqFatGubNm4fjx4/j2LFjeOGFF9CjRw+cOXPG1lkjIiIr+PzzzxEaGgq5XI7IyEgcPXq0wPSPHj3CqFGjEBQUBBcXF9SrVw8///yzlXJLRGRf7KorVN7ViAFgzpw5WLFiBX7//Xc0btzYRrkiIiJr2Lp1K2JjYxEXF4fIyEgsW7YM0dHROH/+PPz9/Y3SazQadO7cGf7+/vjuu+9QtWpVXLt2DV5eXtbPPBGRHbCrwCKvnJwcfPvtt0hPT0fbtm1tnR0iIrKwJUuWYPjw4Rg8eDAAIC4uDjt27MDatWsxceJEo/Rr167FgwcPcOjQIf2q8aGhodbMMhGRXbGrrlAAcOrUKbi5ucHFxQUjR47Etm3b0KhRI7PpMzMzkZqaavAiIqKKRaPR4Pjx44iKitJvc3BwQFRUFA4fPmzymB9//BFt27bFqFGjEBAQgCZNmuDjjz9GTk6OtbJNRGRX7C6wqF+/Pk6ePIkjR47g7bffxsCBA3H27Fmz6efOnQtPT0/9KyQkxIq5JSKisnDv3j3k5OQgICDAYHtAQACSk5NNHvP333/ju+++Q05ODn7++WdMmTIFixcvxuzZs81ehw+jiIjMs7vAQiaToU6dOoiIiMDcuXPRvHlzfPLJJ2bTT5o0CY8fP9a/bty4YcXcElVu69evr1D92UNDQ7mSuB3RarXw9/fHqlWrEBERgb59+2Ly5MmIi4szewwfRhERmWd3gUV+Wq0WmZmZZve7uLjop6fNfREV1aBBgyBJEiRJ0ge1M2fORHZ2tq2zZtL06dMRFhZWJueSJAnbt28vk3NVZh06dMC4ceNsnY0Kz9fXF46Ojrhz547B9jt37iAwMNDkMUFBQahXrx4cHR312xo2bIjk5GRoNBqTx/BhFBGReXYVWEyaNAm//fYbrl69ilOnTmHSpElISEjAgAEDbJ01smNdu3ZFUlISLl68iPHjx2P69OlYuHChUTpzX1SsQQhRboMdorIgk8kQERGB+Ph4/TatVov4+HizE3g8++yzuHTpErRarX7bhQsXEBQUBJlMZvIYPowiIjLPrgKLlJQUxMTEoH79+ujUqRP++OMP7N69G507d7Z11siOubi4IDAwEDVq1MDbb7+NqKgo/Pjjjxg0aBB69uyJOXPmIDg4GPXr1wegm2DghRdegEKhQJUqVTBixAikpaXpz5d73IwZM+Dn5wcPDw+MHDnSIDDRarWYO3cuatasCYVCgebNm+O7777T709ISIAkSdi5cyciIiLg4uKCTZs2YcaMGfjzzz/1rSzr16/HkCFD8PLLLxt8pqysLPj7++OLL74o0j24evUqJEnC999/j44dO0KpVKJ58+ZGg2bXr1+P6tWrQ6lU4tVXX8X9+/eNzvXDDz+gRYsWkMvlqFWrFmbMmGEQFEmShBUrVqBbt25QKBSoVauWwWcHgBs3buD111+Hl5cXfHx80KNHD1y9etXoHi9atAhBQUGoUqUKRo0ahaysLH2alJQUdO/eHQqFAjVr1sRXX31llNdHjx5h2LBh+v+nF154AX/++ad+f24L0ZdffonQ0FB4enqiX79+ePLkiT4fv/76Kz755BP9/0nefFLxxMbGYvXq1diwYQPOnTuHt99+G+np6fpZomJiYjBp0iR9+rfffhsPHjzA2LFjceHCBezYsQMff/wxRo0aZauPQERUodnVdLNF/RJEFYAQQJbK+td1VgKSVKpTKBQK/Rfm+Ph4eHh4YM+ePQCA9PR0REdHo23btvjjjz+QkpKCYcOGYfTo0Vi/fr3+HPHx8ZDL5UhISMDVq1cxePBgVKlSBXPmzAGg6+e9adMmxMXFoW7duvjtt9/wxhtvwM/PD88//7z+PBMnTsSiRYtQq1YtyOVyjB8/Hrt27cLevXsBAJ6enqhXrx7at2+PpKQkBAUFAQB++uknqFQq9O3bt1ifffLkyVi0aBHq1q2LyZMno3///rh06RKcnJxw5MgRDB06FHPnzkXPnj2xa9cuTJs2zeD4/fv3IyYmBp9++inatWuHy5cvY8SIEQBgkHbKlCmYN28ePvnkE3z55Zfo168fTp06hYYNGyIrK0t/j/fv3w8nJyfMnj0bXbt2xV9//aV/Er1v3z4EBQVh3759uHTpEvr27YuwsDAMHz4cgO5L/+3bt7Fv3z44OztjzJgxSElJMchvnz59oFAosHPnTnh6emLlypXo1KkTLly4AB8fHwDA5cuXsX37dvz00094+PAhXn/9dcybNw9z5szBJ598ggsXLqBJkyaYOXMmAMDPz69Y95ye6tu3L+7evYupU6ciOTkZYWFh2LVrl35A9/Xr1+Hg8PR5WkhICHbv3o13330XzZo1Q9WqVTF27Fh88MEHtvoIREQVmyADjx8/FgDE48ePbZ2VCufewyTRZH0T0WR9E3HvYZLZbfmp1Wpx9uxZoVarn27MTBNimof1X5lpxfrMAwcOFD169BBCCKHVasWePXuEi4uLmDBhghg4cKAICAgQmZmZ+vSrVq0S3t7eIi3t6XV27NghHBwcRHJysv6cPj4+Ij09XZ9mxYoVws3NTeTk5IiMjAyhVCrFoUOHDPIydOhQ0b9/fyGEEPv27RMAxPbt2w3STJs2TTRv3tzoczRq1EjMnz9f/7579+5i0KBBBX52AGLbtm1CCCGuXLkiAIg1a9bo9585c0YAEOfOnRNCCNG/f3/x4osvGpyjb9++wtPTU/++U6dO4uOPPzZI8+WXX4qgoCCD644cOdIgTWRkpHj77bf16evXry+0Wq1+f2ZmplAoFGL37t1CCN09rlGjhsjOztan6dOnj+jbt68QQojz588LAOLo0aP6/efOnRMAxNKlS4UQQuzfv194eHiIjIwMg7zUrl1brFy5Ugihu99KpVKkpqbq97/33nsiMjJS//75558XY8eOFYUx+XciWGbZGu+/DeWtJwoqu4uajqgSsHSZZVddoYhs4aeffoKbmxvkcjm6deuGvn37Yvr06QCApk2bGvTVPnfuHJo3bw5XV1f9tmeffRZarRbnz5/Xb2vevDmUSqX+fdu2bZGWloYbN27g0qVLUKlU6Ny5M9zc3PSvjRs34vLlywZ5a9myZZE+w7Bhw7Bu3ToAusGuO3fuxJAhQwAAI0eONLhOQZo1a6b/Obf1I/cp/7lz5xAZGWmQPn/f9z///BMzZ840uN7w4cORlJQElUpl9ri2bdvi3Llz+nNcunQJ7u7u+nP4+PggIyPD4P40btzYYNBuUFCQQV6dnJwQERGh39+gQQODGaz+/PNPpKWloUqVKgb5vXLlisF1QkND4e7ubvI6RERE9sSuukKRHXFWAh/ets11i6ljx45YsWIFZDIZgoOD4eT09M8qbwBRVnLHY+zYsQNVq1Y12Ofi4mLwvqjXj4mJwcSJE3H48GEcOnQINWvWRLt27QAAM2fOxIQJE4p0ntzViwHdWAgABgNjC5OWloYZM2bgtddeM9onl8uLfI6IiAiTYyLydjPKm9fc/BY3r0FBQUhISDDalzcAKe11iIiIKgoGFlQ+SRIgK/sv5Zbg6uqKOnXqFCltw4YNsX79eqSnp+u/9B88eBAODg76wd2A7mm4Wq2GQqEAAPz+++9wc3NDSEgIfHx84OLiguvXrxuMpygKmUxmclXhKlWqoGfPnli3bh0OHz6sH+wKAP7+/vD39y/WdUxp2LAhjhw5YrDt999/N3jfokULnD9/vtD7+fvvvyMmJsbgfXh4uP4cW7duhb+/f4ln7GnQoAGys7Nx/PhxtGrVCgBw/vx5PHr0yCCvycnJcHJyQmhoaImuA5j/PyEiIqpo2BWKyIoGDBgAuVyOgQMH4vTp09i3bx/eeecdvPnmmwYrBms0GgwdOhRnz57Fzz//jGnTpmH06NFwcHCAu7s7JkyYgHfffRcbNmzA5cuXceLECSxfvhwbNmwo8PqhoaG4cuUKTp48iXv37hms8TJs2DD9bDoDBw4s888+ZswY7Nq1C4sWLcLFixfx2WefYdeuXQZppk6dio0bN2LGjBk4c+YMzp07hy1btuCjjz4ySPftt99i7dq1uHDhAqZNm4ajR49i9OjRAHT32NfXFz169MD+/ftx5coVJCQkYMyYMbh582aR8lq/fn107doVb731Fo4cOYLjx49j2LBh+kAPAKKiotC2bVv07NkTv/zyC65evYpDhw5h8uTJOHbsWJHvS2hoKI4cOYKrV6/i3r17bM0gIqIKi4EFkRUplUrs3r0bDx48QKtWrdC7d2906tQJn332mUG6Tp06oW7dumjfvj369u2LV155RT9uAwBmzZqFKVOmYO7cuWjYsCG6du2KHTt2oGbNmgVev1evXujatSs6duwIPz8/bN68Wb8vKioKQUFBiI6ORnBwcJl+bgBo06YNVq9ejU8++QTNmzfHL7/8YhQwREdH46effsIvv/yCVq1aoU2bNli6dClq1KhhkG7GjBnYsmULmjVrho0bN2Lz5s1o1KgRAN09/u2331C9enW89tpraNiwIYYOHYqMjIxitWCsW7cOwcHBeP755/Haa69hxIgRBi03kiTh559/Rvv27TF48GDUq1cP/fr1w7Vr1wyCxMJMmDABjo6OaNSoEfz8/HD9+vUiH0tERFSeSEIIYetMlCepqanw9PTE48ePufBRMd1/lIwOP+jWDEnosQdVvAJNbssvIyMDV65cQc2aNYvcj96eDRo0CI8ePbL6qtZpaWmoWrUq1q1bZ3KMQ3khSRK2bduGnj172jorVmXu74Rllm3x/tuQJh34+J+HIB/eNt99tqjpiCoBS5dZHGNBVMlptVrcu3cPixcvhpeXF1555RVbZ4mIiIgqIJsFFllZWUhOToZKpYKfn59+MSkisq7r16+jZs2aqFatGtavX28wqxVRWWPZT0Rkv6z6DeLJkyfYtGkTtmzZgqNHj0Kj0UAIAUmSUK1aNXTp0gUjRozQz8JCVBnlXYHbGkJDQ1GRekRWpLySDst+IqLKwWqDt5csWYLQ0FCsW7cOUVFR2L59O06ePIkLFy7g8OHDmDZtGrKzs9GlSxd07doVFy9etFbWiIjIQlj2ExFVHlZrsfjjjz/w22+/oXHjxib3t27dGkOGDEFcXBzWrVuH/fv3o27dutbKHhERWQDLfiKiysNqgUXeaS0L4uLigpEjR1o4N0REZA0s+4mIKg+rdIV6+PAhHjx4AAC4e/cuvv/+e5w5c8YalyYiIhth2U9EVLlYPLBYs2YNIiIi0LJlS6xYsQKvvvoq4uPj0a9fP6xZs8bSlyciIhtg2U9FIoRunYn8L07SQFQhWbwr1KeffoozZ85ArVajevXquHLlCvz8/PD48WM8//zzGDZsmKWzQEREVsaynwolBLA2GrhxxHhfSBtgyC5AkqyfLyIqMYu3WDg5OUGhUMDHxwd16tSBn58fAMDT0xMSCwwisrEOHTpg3Lhxts6G3WHZT4XKUpkOKgDgxu+6/URUoVg8sHB0dERGRgYA4Ndff9VvT0tLs/SliSxu0KBBkCQJkiRBJpOhTp06mDlzJrKzs22dNZOmT5+OsLCwMjlX7ueWJAmurq6oW7cuBg0ahOPHj5fJ+SuyQYMGoWfPnrbOhk2x7KdimXAJ+PC27l8iqrAsHljs3bsXLi4uAHRPqnKpVCqsWrXK0pcnsriuXbsiKSkJFy9exPjx4zF9+nQsXLjQKJ1Go7FB7nSEEBYJdtatW4ekpCScOXMGn3/+OdLS0hAZGYmNGzeW+bWoYmHZT8UiUwIyV92/RFRhWTywMNfs7e/vz1VWyS64uLggMDAQNWrUwNtvv42oqCj8+OOP+qfWc+bMQXBwMOrXrw8AOHXqFF544QUoFApUqVIFI0aMMHiKm3vcjBkz4OfnBw8PD4wcOdIgMNFqtZg7dy5q1qwJhUKB5s2b47vvvtPvT0hIgCRJ2LlzJyIiIuDi4oJNmzZhxowZ+PPPP/UtDevXr8eQIUPw8ssvG3ymrKws+Pv744svvijws3t5eSEwMBChoaHo0qULvvvuOwwYMACjR4/Gw4cP9ekOHDiAdu3aQaFQICQkBGPGjEF6erp+f2hoKGbNmoX+/fvD1dUVVatWxeeff25wrUePHmHYsGH6e/LCCy/gzz//1O/PbY358ssvERoaCk9PT/Tr1w9PnjzRp0lPT0dMTAzc3NwQFBSExYsXG32mzMxMTJgwAVWrVoWrqysiIyORkJCg379+/Xp4eXlh9+7daNiwIdzc3PTBZW4+NmzYgB9++EF/n/MeX1mw7Cciqnysto5FfhkZGfjrr7+QkpICrVZrsO+VV16xUa6ovBBCQJ2ttvp1FU6KUvf/VigUuH//PgAgPj4eHh4e2LNnDwDdF9vo6Gi0bdsWf/zxB1JSUjBs2DCMHj0a69ev158jPj4ecrkcCQkJuHr1KgYPHowqVapgzpw5AIC5c+di06ZNiIuLQ926dfHbb7/hjTfegJ+fH55//nn9eSZOnIhFixahVq1akMvlGD9+PHbt2oW9e/cC0H35q1evHtq3b4+kpCQEBQUBAH766SeoVCr07du32J//3XffxcaNG7Fnzx68/vrruHz5Mrp27YrZs2dj7dq1uHv3LkaPHo3Ro0dj3bp1+uMWLlyIDz/8EDNmzMDu3bsxduxY1KtXD507dwYA9OnTBwqFAjt37oSnpydWrlyJTp064cKFC/Dx8QEAXL58Gdu3b8dPP/2Ehw8f4vXXX8e8efP09+29997Dr7/+ih9++AH+/v748MMPceLECYPuYaNHj8bZs2exZcsWBAcHY9u2bejatStOnTqlX7hNpVJh0aJF+PLLL+Hg4IA33ngDEyZMwFdffYUJEybg3LlzSE1N1X++3PwRy34iIntmk8Bi165diImJwb1794z2SZKEnJwcG+SKyhN1thqRX0da/bpH/nUESueSNcULIRAfH4/du3fjnXfewd27d+Hq6oo1a9ZAJpMBAFavXo2MjAxs3LgRrq6uAIDPPvsM3bt3x/z58xEQEAAAkMlkWLt2LZRKJRo3boyZM2fivffew6xZs5CVlYWPP/4Ye/fuRdu2bQEAtWrVwoEDB7By5UqDwGLmzJn6L+YA4ObmBicnJwQGBuq3PfPMM6hfvz6+/PJLvP/++wB0XZz69OkDNze3Yt+HBg0aAACuXr0KQBcEDRgwQD9Aum7duvj000/x/PPPY8WKFZDL5QCAZ599FhMnTgQA1KtXDwcPHsTSpUvRuXNnHDhwAEePHkVKSoq+e82iRYuwfft2fPfddxgxYgQAXUvO+vXr4e7uDgB48803ER8fjzlz5iAtLQ1ffPEFNm3ahE6dOgEANmzYgGrVqunzfv36daxbtw7Xr19HcHAwAGDChAnYtWsX1q1bh48//hiArkUnLi4OtWvXBqALRmbOnKm/xwqFApmZmQb3mVj2ExHZO6sskJffO++8gz59+iApKQlardbgxYqFKpqffvoJbm5ukMvl6NatG/r27Yvp06cDAJo2baoPKgDg3LlzaN68uT6oAHRfqLVaLc6fP6/f1rx5cyiVTwOctm3bIi0tDTdu3MClS5egUqnQuXNnuLm56V8bN27E5cuXDfLWsmXLIn2GYcOG6Z+u37lzBzt37sSQIUMAACNHjjS4TmHEP/PP57b8/Pnnn1i/fr3BOaKjo6HVanHlyhWDz5hX27Ztce7cOf050tLSUKVKFYPzXLlyxeAzh4aG6oMKAAgKCkJKSgoAXWuGRqNBZOTTgNXHx0ffRQ3QdVPLyclBvXr1DK7z66+/GlxHqVTqg4r81yHzWPYTEdk3m7RY3LlzB7Gxsfqns0T5KZwUOPIvM9MQWvi6xdWxY0esWLECMpkMwcHBcHJ6+meVN4AoK7njMXbs2IGqVasa7Mt9ml/c68fExGDixIk4fPgwDh06hJo1a6Jdu3YAdK0eEyZMKHL+coOBmjVr6vP71ltvYcyYMUZpq1evXqRzpqWlISgoyORYBS8vL/3Pzs7OBvskSTLqblPYdRwdHXH8+HE4Ojoa7MsbVJm6juCCXoVi2U9EZN9sElj07t0bCQkJBk/8iPKSJKnEXZKszdXVFXXq1ClS2oYNG2L9+vVIT0/Xf+k/ePAgHBwcDJ6c//nnn1Cr1VAodIHO77//Djc3N4SEhMDHxwcuLi64fv26QbenopDJZCafDFepUgU9e/bEunXrcPjwYQwePFi/z9/fH/7+/kW+xrJly+Dh4YGoqCgAQIsWLXD27NlC79Hvv/9u9L5hw4b6cyQnJ8PJyQmhoaFFzktetWvXhrOzM44cOaIPaB4+fIgLFy7o72N4eDhycnKQkpKiD6xKwtx9ruxY9hMR2TebBBafffYZ+vTpg/3796Np06ZGT/9MPdkksgcDBgzAtGnTMHDgQEyfPh13797FO++8gzfffNPgKa5Go8HQoUPx0Ucf4erVq5g2bRpGjx4NBwcHuLu7Y8KECXj33Xeh1Wrx3HPP4fHjxzh48CA8PDwwcOBAs9cPDQ3FlStXcPLkSVSrVg3u7u76Vo5hw4bh5ZdfRk5OToHnyOvRo0dITk5GZmYmLly4gJUrV2L79u3YuHGjviXhgw8+QJs2bTB69GgMGzYMrq6uOHv2LPbs2YPPPvtMf66DBw9iwYIF6NmzJ/bs2YNvv/0WO3bsAABERUWhbdu26NmzJxYsWIB69erh9u3b2LFjB1599dUidflyc3PD0KFD8d5776FKlSrw9/fH5MmT4eDwtEdovXr1MGDAAMTExGDx4sUIDw/H3bt3ER8fj2bNmuGll14q0n0JDQ3F7t27cf78eVSpUgWenp5G5VxlxLKfiMi+2SSw2Lx5M3755Rf9rDd5Z+GRJImVC9ktpVKpn/GoVatWUCqV6NWrF5YsWWKQrlOnTqhbty7at2+PzMxM9O/fXz9uAwBmzZoFPz8/zJ07F3///Te8vLzQokULfPjhhwVev1evXvj+++/RsWNHPHr0COvWrcOgQYMA6L68BwUFoXHjxvqBy4XJbdmQy+WoWrUqnnvuORw9ehQtWrTQp2nWrBl+/fVXTJ48Ge3atYMQArVr1zaacWr8+PE4duwYZsyYAQ8PDyxZsgTR0dEAdOXCzz//jMmTJ2Pw4MG4e/cuAgMD0b59+2J1q1m4cCHS0tLQvXt3uLu7Y/z48Xj8+LFBmnXr1mH27NkYP348bt26BV9fX7Rp08ZoSt6CDB8+HAkJCWjZsiXS0tKwb98+dOjQocjH2yuW/URE9k0SNugYHBgYiDFjxmDixIkGTwvLg9TUVHh6euLx48fw8PCwdXYqlPuPktHhB90MRAk99qCKV6DJbfllZGTgypUrqFmzpn6GoMps0KBBePToEbZv327V66alpaFq1apYt24dXnvtNateOzQ0FOPGjdPPHEXGzP2dVKQyqzyX/SVVke5/uaNJBz7+5yHGh7d1C+SZ2lac40uTjqgSsHSZZZMWC41Gg759+9pNxUJUkWm1Wty7dw+LFy+Gl5cX1xIgi2HZT0Rk32xSug8cOBBbt261xaWJKJ/r168jICAAX3/9NdauXWswqxVRWWLZT0Rk32zyDSInJwcLFizA7t270axZM6MBfPn7mxNVJnlX4LaG0NBQm0+VmruYHtk3lv1ERPbNJoHFqVOnEB4eDgA4ffq0wb68g/mIiMh+sOwnIrJvNgks9u3bZ4vLUjln66fmROWZPfx9sOwnIrJvHEFHNpfbHUKlUtk4J0TlV+7fB9fDICKi8oqjNMnmHB0d4eXlhZSUFAC6tR7YLYJIRwgBlUqFlJQUeHl5wdHR0dZZIiIiMomBBZULgYG69S1ygwsiMuTl5aX/OyEiqiiEEFBnq422K5wUfIhohxhYULkgSRKCgoLg7++PrKwsW2eHqFxxdnZmSwURVThCCMTsjMHJuyeN9oX7h2ND1w0MLuyMVQOLqVOnokePHoiIiLDmZakCcXR05BcoIjvDsp+oclJnq00GFQCQmJIIdbYaSmeldTNFFmXVwOLmzZvo1q0bZDIZunfvjldeeQWdOnWCTCazZjaIiMiKWPYTUcLrCVA4KaDOVqPDNx1snR2yEKvOCrV27VokJydj8+bNcHd3x7hx4+Dr64tevXph48aNePDggTWzQ0REVsCyn4gUTgoonZVQOClsnRWyIKtPN+vg4IB27dphwYIFOH/+PI4cOYLIyEisXLkSwcHBaN++PRYtWoRbt25ZO2tERGQhLPuJiOyfzdexaNiwId5//30cPHgQN27cwMCBA7F//35s3rzZ1lkjIiILYdlPRGR/ytWsUH5+fhg6dCiGDh1q66wQEZGVsOwnKh84NSyVVrkKLIiIiIjI+jg1LJUFBhZERERkWUIAWSrDbRqV6bTWYipPuZyVQCX7Es2pYaksMLAgIiIiyxECWBsN3Dhi65w8DWaEANZ1BZJPmU4X0gYYsqvSBRe5ODUslRQDCyIiIrKcLFXBQUVIG10LgTUsqlO0dDd+1+Vb5mrZ/JRTuVPDEhWXTQKL2NhYk9slSYJcLkedOnXQo0cP+Pj4FOu8c+fOxffff4///e9/UCgUeOaZZzB//nzUr1+/LLJNRESlYKmynyqQCZcAWb4vrJbuduSs1AUvN3433hfYFBicp2VCoyp68EFERmwSWCQmJuLEiRPIycnRf+m/cOECHB0d0aBBA/znP//B+PHjceDAATRq1KjI5/31118xatQotGrVCtnZ2fjwww/RpUsXnD17Fq6ulfOpAxFReWGpsj+vzz//HAsXLkRycjKaN2+O5cuXo3Xr1oUet2XLFvTv3x89evTA9u3bS3RtKgKZ0vqtAJKk69ZkajxFJRxLQWRJNlnHokePHoiKisLt27dx/PhxHD9+HDdv3kTnzp3Rv39/3Lp1C+3bt8e7775brPPu2rULgwYNQuPGjdG8eXOsX78e169fx/Hjxy30SYiIqKgsVfbn2rp1K2JjYzFt2jScOHECzZs3R3R0NFJSUgo87urVq5gwYQLatWtXoutSBSBJuoAm/4tBBVGZsklgsXDhQsyaNQseHh76bZ6enpg+fToWLFgApVKJqVOnljogePz4MQAU2KyemZmJ1NRUgxcREZU9S5f9S5YswfDhwzF48GA0atQIcXFxUCqVWLt2rdljcnJyMGDAAMyYMQO1atUq0XWp6FSabKOXEMLW2SKiMmKTrlCPHz9GSkqKUVP33bt39V/svby8oNFoSnwNrVaLcePG4dlnn0WTJk3Mpps7dy5mzJhR4usQEVHRWLLs12g0OH78OCZNmqTf5uDggKioKBw+fNjscTNnzoS/vz+GDh2K/fv3F3qdzMxMZGZm6t/zYVThhBDIbReImL0XasgN9res4Y1vR7blGgkViLmF9IDiLaanzsoBRLbh8c6O/F2owGwSWPTo0QNDhgzB4sWL0apVKwDAH3/8gQkTJqBnz54AgKNHj6JevXolvsaoUaNw+vRpHDhwoMB0kyZNMhhQmJqaipCQkBJfl4iITLNk2X/v3j3k5OQgICDAYHtAQAD+97//mTzmwIED+OKLL3Dy5MkiX4cPo4pPnZWDguYXOnbtoS6NjBNVVgQFLaQHFL6YXt4WqohZewEhM9jPQLNis8lf8cqVK/Huu++iX79+yM7WRapOTk4YOHAgli5dCgBo0KAB1qxZU6Lzjx49Gj/99BN+++03VKtWrcC0Li4ucHFxKdF1iIio6Cxd9hfHkydP8Oabb2L16tXw9fUt8nF8GFU6+9/vCKWbriucSpODlrP32jhHVFwFLaQH6BbTe5DxQL8ORn4Z2doCz89As2Kzyf+am5sbVq9ejaVLl+Lvv/8GANSqVQtubm76NGFhYcU+rxAC77zzDrZt24aEhATUrFmzrLJMRESlZKmyHwB8fX3h6OiIO3fuGGy/c+cOAgMDjdJfvnwZV69eRffu3fXbtFrdFx4nJyecP38etWvXNjqOD6NKRylzrJhfGM2t0l3JZ5XKXUgPgMFiekVdVG//Bx1RRan7+2egaR9s+tft5uaGZs2aldn5Ro0aha+//ho//PAD3N3dkZycDEA3OFChUJTZdYiIqOTKuuwHAJlMhoiICMTHx+u7VWm1WsTHx2P06NFG6Rs0aIBTpwxXXf7oo4/w5MkTfPLJJ2yFoKcKWjm8kq/QnXchPYWTAuH+4UhMSTRKF+4frg9A8qqwgSaZZbX/zevXr6N69epFTn/r1i1UrVq1WNdYsWIFAKBDhw4G29etW4dBgwYV61xERFR61ij7c8XGxmLgwIFo2bIlWrdujWXLliE9PR2DBw8GAMTExKBq1aqYO3cu5HK50cQeXl5eAFDghB9kGSpNju4HTXaB4zFsoqCVwyv5Ct15SZKEDV03mOz+VJwB3VSxWW262VatWuGtt97CH3/8YTbN48ePsXr1ajRp0gT//e9/i30NIYTJF4MKIiLbsEbZn6tv375YtGgRpk6dirCwMJw8eRK7du3SD+i+fv06kpKSSnx+KjkBQCVJUGerocpSQZWl0n0BlTQABFrO3otGU3cjIk9XGJtPQ6tRAZp03b+5JlwCPryt+5eMSJIEpbPS6MWgovKwWovF2bNnMWfOHHTu3BlyuRwREREIDg6GXC7Hw4cPcfbsWZw5cwYtWrTAggUL8OKLL1ora0REZCHWLvtHjx5tsusTACQkJBR47Pr160t1bTJNCIGYoACclLsAP3Q22OfeAMjJCILq6kgAEgANVJIEhRC6Aby2HM6yqI7xNlusHG7HdIGm4z8/5+gCTeFs41xRaVgtsKhSpQqWLFmCOXPmYMeOHThw4ACuXbsGtVoNX19fDBgwANHR0WyCJiKyIyz7KSMnQxdUmOEoT4J7g2n695EIQXhGBlbYosXCWakbN3Hjd+N9IW10+6nMdNvWyeC9ewMgW1UDQkTbKEdUWlYfMaNQKNC7d2/07t3b2pcmIiIbYdlPALDzpf+Dj6e//v3AXQPxvwfG64wkyuXIyMmA1dsGJEk3GJszQFmM3FGObFUNOCmvmdzvpLz2z/89Wy4qIg7FJyIiIqtQOMn1swgBwDcvf2Mw2PfB4xR029Hd1KHWI0ns7mRBkiRBfW0kIGXh+JQoKJx1XaEeqNOMWjCo4mFgQURERDaRO9g3l9pJbsPclJAmX+tGaVo2zK2XUdrzljsSIGT/TFer+yqqzsqxcZ6oLDCwICIiIiqp/IO8S7q2RUHrZZTmvERWZLXpZomIiIjsQu4gb1Nu/A6k3/tnqto8r8IGoxe0Xkbuec21ZhCVE2yxICIiIioOU4O8NaqnrRempqotTovDhEu6qW3zn7cExD9T95qicHYs8hoTuWNhTC2AR5SLgQURERFRceUf5F3QVLVA8VbpLqP1MoQQ6B13GMevPTS5v2UNb3w7sm2RgosO33QodX7I/jGwICIiIiotc1PVlrLFoTTUWTlmgwoAOHbtoW4hQpnpr4MKJwXC/cORmJJotC/cPxwKJ0WZ5ZXsAwMLIiIiorJQjqeqPfZRFJQy3dSuKk0OWs7eW+gxkiRhQ9cNJrs/KZwURe5GRZWH1QdvZ2VloVOnTrh48aK1L01ERDbCsp/ItpQyRyhlTv+8HIt8XO6UwPlfDCrIFKu3WDg7O+Ovv/6y9mWJiMiGWPYTWZ4QwqB1QZ2dA0gaQHAVa7IOm3SFeuONN/DFF19g3rx5trg8ERHZAMt+IssRQiBmZwxO3j1psN29AZCtqgEhom2TMapUbBJYZGdnY+3atdi7dy8iIiLg6mrYH3HJkiW2yBYREVkQy34iy1Fnq42CilxOymvIyMmAK8qm5aKsprAl+2OTwOL06dNo0aIFAODChQsG+/jLSERkn1j2E1lHwusJUDgp8ECdhm7bOpXpuctyCluyPzYJLPbt22eLyxIRkQ2x7CeyDoWTAkpnpdlWhdIo7RS2ZN/4v05ERERkbUIYr9xdwZRkCluybzYLLOLj4xEfH4+UlBRotVqDfWvXrrVRroiIyJJY9hNBF1SsjQZuHLF1Tkoldwpbolw2+W2YMWMGZs6ciZYtWyIoKIj98IiIKgGW/UT/yFKZDypC2gDOyjK/pDpbDVWW4z8/cxpasgybBBZxcXFYv3493nzzTVtcnoiIbIBlP5EJEy4BsjyBhLNSt4J3Gcs/iJvT0JIl2CSw0Gg0eOaZZ2xxaSIishGW/UQmyJSAzLXwdCUgd5QjW1UDTsprJvc7Ka/hYeZDSA5uBgvr5ZV/almVpuwHhJP9sElgMWzYMHz99deYMmWKLS5PREQ2wLKfKr3cAdpWGqgtSRLU10YCUhaOT4mCwlnXFSrvNLQFTUdb2NSy5QnX1igfbBJYZGRkYNWqVdi7dy+aNWsGZ2fDPn5cJImIyP6w7KdKb1EdG1xUAoTsnylodV/7hNbZbEtGuH84FE4KAAVPLduyhrc+ULE1rq1RftgksPjrr78QFhYGQLdgUl78Tycisk8s+6lSclbqBmTf+N14n4UGahfGXEsGoFsDw9TfY96pZYHy1QrAtTXKDy6QR0REVsGynyolSQKG7DJcswL/dN2BC5Cv+05ZfGFXZ+UAIruQ8RC6lgyhlQGi8JYHW00ta66Lk7n7xLU1bIuhGxEREZElSZLBAO2Cuu6UtNuOEEL/c8SsvYCQFem4/F+8y1O3oZLcJ66tYVtWu/OxsbFFTst+tkRE9oFlP9E/T93zzLqkzsrB8et3ADgDMPxiXNJuOxnZWrP78o+HUDg7omUNbxwz8YW9PHUbKqiLU3nKJz1ltf+NxMTEIqUrDxEyERGVDZb9VNkJIRCzMwYn75402J67jsRvb3wHVxenMu22s/+DjqiidNO/z99tSJIkfDuyrdE0suW521BuF6fyns/KzmqBBfvWEhFVPiz7qbJTZ6uNgopcTsprcHDMglImL9NrFqU7kCRJVnnaX1brYLCLU8XA/yEiIiIiK0h4PQEKJ4XBOhL2KDd4EALoE3cYZ5NSbZwj44CmPM1qZU84xoKIiCyGZT/RU7q1JJRmF3KzF0XpqmTtdTDK8yB1e2KzMRYnTpxAdnY26tevDwC4cOECHB0dERERYa0sERGRhbHsJ7IQIQynsNWk2y4vKHhAeKMgj3++xBumt/SX+ooySN2e2GSMxZIlS+Du7o4NGzbA29sbAPDw4UMMHjwY7dq1s1aWiIjIwlj2ExWHAKQs3QxS0j9P87PVgCRBIcTT+aOEANZGAzeO6I9USBIQGvJ0v5WZGhCeq7hBhDpbDVWWI9TZOYCkAYRzmeWJg78tyyZh2uLFi/HLL7/oKxYA8Pb2xuzZs9GlSxeMHz/eFtkiIiILYtlPZJ4QAsoacXBUXkOHb6ca7gwNQXhGBjbkBhdZKoOgwkiWCoCHBXNrWlkNCM87/iR39iwhom2aJyoam9zp1NRU3L1712j73bt38eTJExvkiIiILI1lP9m7/OtVADB6b05GTgYcldfM7k+Uy6HOyYASumlkBQC1JAFj/wJkSjxITQF29y1x3m1N7ihHtqoGnEzcAyflNWTkZMAVJWu5IOuxSWDx6quvYvDgwVi8eDFat24NADhy5Ajee+89vPbaa7bIEhERWRjLfrJn5tarKImdr8bDR6ELINTq++iw7UXdz9lqXWtElgoDgwPxPxcZ8MNLpb5eeSBJEtTXRgJSFo5PiYLC2dHuZ8+yRzYJLOLi4jBhwgT861//QlZWli4jTk4YOnQoFi5caIssERGRhbHsJ3tW0HoVABDuHw6Fk6JI5xJaGSBkujfap0/pcwMMAICLzPR1MjIgdyzbdTGsRwKE7J/Zs5zsfvYse2STwEKpVOI///kPFi5ciMuXLwMAateuDVdXV1tkh4iIrIBlP1UWuetV5KVwUhR5AHO7+fv0gYUCarSqmYFEuXGw0CBTgw0DDgAyV6jTU6H4pAEUQui6SBHZgE1Hs7i6uqJZs2a2zAIREVkZy36yd7nrVRSH3MnBzB4JG5JSoJYkqMf+DwpXD113qIV1dDNFOSsBZyXglAWlDWaDIsqLw+SJiIiIbCxva8bxKVH6Fg9VWiqkT6ELGnIDFiFsMqUsUWEYWBAREREVkxDCYAyAOrtk4wGertnwdPYohbMjlM7/fEWT5VmdOksFaJwAjQqWpNLkGPxLVFQMLIiIiKjM5P/CbY9fToUQ6B13GMfzrugsaeDe4On+oirOrEfKTxoYbVNpsgFkQ6XJQfE6X5nHBeSopKwaWEydOhU9evRARESENS9LREQ2xLK/8hBCoPeKQzh7PVm/TSE9AYy/D1do6qwcHL/2AJCy9NskB43+54xsLVxNT9oEoOA1G4xmj3JW4g9tPbRyuGCU9g9tPfSZvR+ABAUycK4Uk0EpnB3RsoY3juUNlv7RsoY3FM6OJo6q2PIHvcVdIZyMWTWwuHnzJrp16waZTIbu3bvjlVdeQadOnSCTFfDXR0REFRrL/spDrcnGpORxaCl/+iVYJUmIRAgAQG4nX07zrpJdEqbWbMhlNHuUJKGPZhoUyMTxj6KglDlBpclGxOy9UMMFgPEX4ZIEAZIk4duRbU1O8WqvX7jzt8y0rOGNb0e2tcvPai3mpiCwiLVr1yI5ORmbN2+Gu7s7xo0bB19fX/Tq1QsbN27EgwcPrJkdIiKyApb9lUiWCi1NPFnPJRVzpqTyqqBVsrNVNYq4jkTeNRuU+pfpL7US1JADMlf9Sw05AAnHPorC2ZnROP5R1NPUJfxiLEkSlDIno5c9fdHObZkx5di1h1w7o5SsGlgAgIODA9q1a4cFCxbg/PnzOHLkCCIjI7Fy5UoEBwejffv2WLRoEW7dulWi8//222/o3r07goODIUkStm/fXrYfgIiIis3SZT+VP6qx/wM+vA28d+npRjv6gppr56vxOPKvI0jocwhP/jcT6msjrfpFXClz1AcAVLjclpmzM6P1r2N5gjIqHasHFvk1bNgQ77//Pg4ePIgbN25g4MCB2L9/PzZv3lyi86Wnp6N58+b4/PPPyzinRERUVsq67M/1+eefIzQ0FHK5HJGRkTh69KjZtKtXr0a7du3g7e0Nb29vREVFFZieikZA1/1JLUn6f+1ZbouDwknxz6J25ezzCgFo0k2/KumUtcYtM/bRRa88KFfhrZ+fH4YOHYqhQ4eW+BzdunVDt27dyjBXRERkSWVR9gPA1q1bERsbi7i4OERGRmLZsmWIjo7G+fPn4e/vb5Q+ISEB/fv3xzPPPAO5XI758+ejS5cuOHPmDKpWrVqqvFRWQgjEBAXgpNwF+KGzrbNDQgBro4EbR0zvD2kDDNllly1JZBs2b7EgIiIqC0uWLMHw4cMxePBgNGrUCHFxcVAqlVi7dq3J9F999RX+/e9/IywsDA0aNMCaNWug1WoRHx9v5Zzbj4ycDF1QYYLRbEdkeVkq80EFANz4XZemglJpcqDSZNvllMYVVblqsbCFzMxMZGZm6t+npqbaMDdERFQSGo0Gx48fx6RJk/TbHBwcEBUVhcOHDxfpHCqVCllZWfDx8TGbhnVG0e186f/g4/m0pchotiOyrgmXANk/g+c1KmBRHdvmpwxwvY3yp9K3WMydOxeenp76V0hIiK2zRERExXTv3j3k5OQgICDAYHtAQACSk5PNHGXogw8+QHBwMKKizA/kZJ1RdAoneRFmO6ochBD/PFnPtt0Tdpkyz6xSFXd2roJmdbLX9TYqkkrfYjFp0iTExsbq36emprKiICKqZObNm4ctW7YgISEBcrn5qUJZZ1BxmVylm0qsMq63UZHYLLDIyMjAX3/9hZSUFGi1WoN9r7zyitXy4eLiAhcX0/1BiYiobFmq7Pf19YWjoyPu3LljsP3OnTsIDAws8NhFixZh3rx52Lt3L5o1a1ZgWtYZVFy6VbpNBxV8wl4yubM6Ufljk/+VXbt2ISYmBvfu3TPaJ0kScnJK3kSYlpaGS5eezpl95coVnDx5Ej4+PqhevXqJz0tERKVjybJfJpMhIiIC8fHx6NmzJwDoB2KPHj3a7HELFizAnDlzsHv3brRs2bLE1ycqimMfRRlMbcon7GRvbDLG4p133kGfPn2QlJQErVZr8CpNxQIAx44dQ3h4OMLDwwEAsbGxCA8Px9SpU8si60REVEKWLPsBXXm/evVqbNiwAefOncPbb7+N9PR0DB48GAAQExNjMLh7/vz5mDJlCtauXYvQ0FAkJycjOTkZaWlppc4LkSl5F7OztxWtrUkIAVWWyuglKum6HOWJTVos7ty5g9jYWKNBdmWhQ4cO/MUiIiqHLFn2A0Dfvn1x9+5dTJ06FcnJyQgLC8OuXbv017t+/TocHJ4+T1uxYgU0Gg169+5tcJ5p06Zh+vTpFskjEZWOEAIxO2Nw8u5Jo33h/uHY0HUDAzYbsklg0bt3byQkJKB27dq2uDwREdmANcr+0aNHm+36lJCQYPD+6tWrFssHEVmGOlttMqgAgMSURKiz1VA6V9xZryo6mwQWn332Gfr06YP9+/ejadOmcHZ2Ntg/ZswYW2SLiIgsiGU/kZVoVIb/2qmE1xOgcFJAna1Gh2862Do7BBsFFps3b8Yvv/wCuVyOhIQEgyYrSZJYuRAR2SGW/URWYgeL3xWFwknB1olyxiaBxeTJkzFjxgxMnDjRoL8rERHZL5b9RBbkrARC2gA3fjfeF9JGt7+CyF1A0CYLCVKp2CSw0Gg06Nu3LysWIqJKhGU/kQVJEjBkF5BlovuTs1K3v4JoOXuv7gdJA/cGuh/V2WqoshyhzlbbLmNUKJuU7gMHDsTWrVttcWkiIrIRlv1EFiZJgMzV+FUBggqFsyNa1vA2u7/btk6I/DqSYynKOZu0WOTk5GDBggXYvXs3mjVrZjSAb8mSJbbIFhWTEALqrKfNlGyyJKKCsOynikoIYfCknE/Ny54kSfh2ZFuD7xVCCIzY+z3+unfSKH24fzgUTgor5pCKwiaBxalTp/QL2J0+fdoWWaBSEkKg14qDOHfjhn6bwiENqGfDTBFRucaynyqigtZNoLIlSRKUMsOvppte3GgykFM4KbheRTlkk8Bi3759trgslSFVZhaEw7/h1ODpYoRZefbLnR2tnykiKtdY9lNFVNC6CdmqGpA7yq2boUpGkiTO/FSBWC2wiI2NLVI6SZKwePFiC+eGSisj4wEuKUyvcB4uZFAqqlg5R0RUHrHsJ3uiXzchKwcRs/YCwplPzYnysFpgkZiYaPD+xIkTyM7ORv369QEAFy5cgKOjIyIiIqyVJSojO6O3wsfDX/9eIfeBxFlfiAgs+8m+6NdNENmAkJlNl3fMYVmOP+Q0rFTeWS2wyNsEvmTJEri7u2PDhg3w9tbNAPDw4UMMHjwY7dq1s1aWqIwo5D5QKn1tnQ0iKodY9lNlpJ8utYKcl6is2OSx8uLFizF37lx9xQIA3t7emD17NpvCiYjsFMt+smeFTZfasoY3FCUYf1jQeUt6TiJLscng7dTUVNy9e9do+927d/HkyRMb5IiIiCyNZT/ZM1PTpealcHYs0XiMgs5b0nMSWYpNAotXX30VgwcPxuLFi9G6dWsAwJEjR/Dee+/htddes0WWiIjIwlj2k70zNV1qeT4vUVmzyW9pXFwcJkyYgH/961/IytJNUurk5IShQ4di4cKFtsgSERFZGMt++yO0WqgzHujf5/2ZiCofmwQWSqUS//nPf7Bw4UJcvnwZAFC7dm24urraIjtERGQFLPvti9BqEbOxJU5KWYUnJqJKwabtaq6urmjWrJkts0BERFbGst8+qDMemA0q6qglyOU+Vs4REdkaO+wRERFRqeyM3gqF3AcqTQ66LP0NicKtwq5npNVq8TAjXf9ena22YW7KASGALJXxdmclwIHjlA8DCyIiIio2IYT+586f/Am18PjnnYfpAyoArVaLyPWvIcPxssn9eT9zpSAEsDYauHHEeF9IG2DILgYXZKBiPk4gIiIim8owM60qUHHXV3iYkW42qMhW1YAq0xEqTXblWfk6S2U6qACAG7+bbsmgSo0tFlS+sMmViKjC+eXd9qjiFaB/bw/rK3z/0i/wUbpBpclBu/n7AOGMVnPibZ0ty8pfB2vy/DzhEiBT6rYtqmP9vFGFwMCCyg82uRIRVUhKmaPdrbPgo3RDFaU7fBQCLasH4Ni1h0ZpKmrLjEkF1cGALqiQcQY3Kph9lQJUrqmzM6DK8yRE4aQwfKJVlCZXFmpERGRFlWbl64Lq4JA2up4DRIVgYEFW021Hd4P34X7h2NBtg+lCmU2uRERUTlS6la9z6+Bc7I5MRcTB22RRckc5wjMyTO5LvJto0IJhILfJVcYnJERERFalr4P/eTGooCKqROE32YJS5oQNSSlQSxIiMlZADTkkBw3c6s0GAGRka+Eqs3EmiYjIrgkhjLoyCSEASWPQal7p16wgKiUGFmRRuQW2Uggcn/wiIHPFfVUaXvxhdvFPpsnXusGmWSIiKoQQAr3jDuO4weBrAWWNODgqr9ksX0T2iIEFWY1S5gTInKDOLuEMGvnHWnCmKCIiKoQ6KwfHrz0ApCz9NslBU2BQka2qAbmj3BrZI7IrDCzIenJbHDTpRT/GWakLIG78bryPM0UREVEhhCi4dWLnq/HwUbgB0AUhEbP2AsLZfmZ7IrIiBhZkPf+0OCgkCQgN0W0TouBjJEnXKpF/wR7OFEVEZNdUmhwoNNn69yWd2jUjJ8NsUJGtqgEXyQMQuq9DQpsDCA78K7L8XZTNYdflSoOBBVlWQS0OwD8Bg0fB55Ak860SHHdBRGSXuiz9DWrxtH5oWcMb345sW6qWhNzWibwtE3a/mrYlFfUhH7suVxoMLMiyTLQ4qB/fAX7uUTbn57gLIiK7IS9gFetj1x5CnZVTqvUkFE4KKJ2VUDiZX00bsLMVtctaYQ8MTWHX5UqDgQVZXv4Wh9Ku3lnYuIv0e8brX7Alg4io3MvbGnHgg45QKH2h0uSg5ey9ZX4dc6tpA3a2onZZM9VF2Rx2Xa50GFhQxWNm3IVYVAdqSQIW1zU6RFRrBenN7QbBhcJJwYqDiKi8csjSrTPhkANIGkA4F+kwrVaLhxlPJwl5oEozma7SraZdlgrqokyVGv+iqFDanBw8fHLXYNvD1Hs2ys0/8hVqWkc5Xg8OxXkXrZkDkoHNbQy2hPuHY0PXDSUKLoQQJhdSYrBCRFQ2Omx7Uf+zewNAqEIgMp8D8E+AYWLgsFarReT615DheNlKubQD+hkbizgQu7TXycWeBHaJgQUVSJuTg9e/aFHAF/by4WGmqth5TExJhFp9H0onxdONRSjohBCI2RmDk3dPGu0rTbBCRFSe5V+9WqUx3Y2oNBSOcoRnZCBRbryGhKS8AWlJaIGzCT7MSDcbVChyasNbzqfsRqzVVYljIisFBhZUoIdP7hb4hb1+pgO83f2smKPCff/SL/BR6uYkV6WlosqKxgCA+2+fgdLNA+osFbptj9IlXljHsJIyUdDlb51QZ6tNBhXAP8FKthrK0o4jISIqR4QQ6LXiIM7duKHfpnBIA+qV7XUkScKGpBRdt9Z/qCUJHWpU0/+cn7ZqS2Rm5QDZTwy6PeWtCwDAW+4KBweHss1wRVXQWMWQNqUfC1mU63BAt11iYEFFtq3jZnh7+Bps83b3g4Oj9WfOMPVlP5eP0g1VlO4AAIVWC+U/gUPEkt+hhhwKKRVODcycOF9BV1DrBACkXfgIQiuD5KCBW73Z+mOKlH8TgwY5YJCIyiNVZhaEw7/h1OBp+ZaVZ39BszkVi7MSUkgbKM3MOJQbYBi6A3z3rNHWvHUB5VPQAOyy7KJU2FpUprpf2biLlKmWONbNRcfAgorM28MXVbwCbZ2NQr/s55V3ukAlMnXbkKmvEJ/TLIRa6wYFMnFAPg4KIaDKzIYE3aJMBbVOZKtqQOS4ApAg8jTqPMxIL7AAEkLgjS+OIvFaOgDDdGUxTzsRUVnLyHiASwrTD03ChQxKRZWyuZCJL6IiMwti078gKW8UcKAhdnsqAmsNwC7oOqa6Ydm4i5SpGchYNxcdAwuyKXV2BlS5FUi2GpAkKIQw+Lqdf4YPVVbBX/bljk/75uYtBI7L39YdL0mIhG7l76x6n8IJuidvkQhBg0wNTn+8A2roxl3oWiJ0x+e2TugJZxz7qDOUMkfcV6XhxR90m7tt61T4B1cCiho1oL42EnmDi7KYp52IyJJ2Rm+Fj4e//r1C7gOpLLsY5fsiKiEbadf+DUhZZg/Z/0FHKGVPHySx21M5Vtg6GDboIqVwdkTLGt5m1zVh3Vx0vENkU912dDfcEKr7cr9ClQopWwutViB6a19kOd00eXz+L/sR1f0N//BNFGAKIcwODvyfiwxODebCVOO50MoA8fRaLWt4o4qrDJIkQQhXZKtqwEl5rWgfHICT8hr2T3wOVZRuFpmnnYjIEhRyHyiVvoUnLKvrOTuiZQ2fAhezq+bpyafJFYW5blg2XPPC3Lom5upmdmc2j4EFGcg/tawlppWVFzDrB6D7ct/xhy5PN5j5LZVl18apKa/BwSHP2hT5/6hNFGASgA1C6AYB5qbVpGPgV8/hfy55WiTyaOYbhlXTXzY4d95rKWVOaIRJOP6/FJPHH58Spe+W9UCdpm/VUMoc+QSEiKgAXMzODpXDdTCKuq6JEAK94w7juIlAl12mGFhQHtaaWlbp6oGJ96ogNPt/RvsGBgWY/HLvnF0Nu/tuNQgiitzUbaIAkwAYzHkhBL65nawLNsb+ZbRyd2FN/ZIk4buRzxhNxZj7pEPhpIDSWffnZq5yJCIi07iYHZUX6qwck0EFwC5TAAMLyqOgqWXLclpZycEBDScdglr1xGjfeiGQ4eBgNGjLGv1lJUA3g9SypsY7izCYrKCKL+8sE5aY+52IiIis69hHUVDKHNmdOQ8GFmRS/qlly3paWcnBAUo3T5P7bNI4WpTBZOn3DFsyijElnkGBI2ngbm66WyIiG8vfJRawTLdYooqusO7M5sZiAPbbhY+BBZlUXqaWtZqiDCYr5qqhhc0yAQByJ85aQkTlh7W6xBLZu4LGYgD2Ox7DLr/VfP755wgNDYVcLkdkZCSOHj1q6yyVS9qcHNx/lKx/VfonUrljMfK+XH11AYQpua0YmnSTLylLhW+HNMPZGV1wdma0/nV8SlSeS9pXgUJka8Ut/7/99ls0aNAAcrkcTZs2xc8//2ylnJYP+euBv2+dKzCoKMtusUT2rKCxGMDT8Rj2xu5aLLZu3YrY2FjExcUhMjISy5YtQ3R0NM6fPw9/f//CT2CHTDVra4UWQ7+LxhXTkyBRrsJWDS1kajwJgDJ/y4aUp0tZlgoQAtBkQ4EMqOFiNAbDXptLicpaccv/Q4cOoX///pg7dy5efvllfP311+jZsydOnDiBJk2a2OATWFb+uqCweiB/l1ig7LvFEpU1dbbaaJvCSVHqejS3bi7JOMncsRi5x9vzeAy7CyyWLFmC4cOHY/DgwQCAuLg47NixA2vXrsXEiRNtnLvCmQoCSnW+gioOM5UJn0jlk39WqcLGY+SXf3xGniBFvaiuLrAAcFwBnNOGoP2cJ8i7vm2NAF9sGt7GqMcVF4AiMlTc8v+TTz5B165d8d577wEAZs2ahT179uCzzz5DXFycVfJc3DI//xf7oh5vti4ooB6oVbUhgwiqcDp808FoW7h/ODZ03VCq4KI0wUBlmlrerj6lRqPB8ePHMWnSJP02BwcHREVF4fDhw8U614NHd5ClVRWesAxZrBWhgPPV1ABf9N4NB+npF1Q+kSqEufEY+Zlr2ZAkIFS38neHGtWMDnPExwbvbwHo+J3x6WXZVbHrtXVwYGtGpcO/UWMlKf8PHz6M2NhYg23R0dHYvn17sa9fkjqjJGV+3jK72MebScd6gModTfH+lhRCINy3GRLv/WVyf2JKIh48uQmFk6JY5xVCoG11B5y88choX1iIF0TWQ6iyJag12VBIqQCA+4/uQP3PTFG529Sqe0D2P1POm0hradb8e7arwOLevXvIyclBQECAwfaAgAD873/GayYAQGZmJjIzM/XvU1N1/9kv/twDjgobFKoW6ppkquIAWHmUWFEW9zHTslHQyt/FoXG6hRd+7FJ4QrI7CT32VK7JFYqgJOV/cnKyyfTJyclmr1PmdUYxy/wrMuCFH6NLfDyDCKoQirkCtwRgA6BbiyoPtSTpH+B12PZiyfLiCjiZmMnxNIA2eR765aZ5cefHRts6/GD4wNBUWkuyZp1hV4FFScydOxczZsywdTYMmAsCSoMVhw2YadkwufI3oOsSlbdvqBAQX/aEdOeM0anNLSRIRJZliTqjKGV+Qa0TxakzWBdQuVXcbsb56NeiyqOsHuRR0dlVYOHr6wtHR0fcuXPHYPudO3cQGGg6Ups0aZJBU3hqaipCQkLw84s/wN3D3aL5NYcFvx0x07JhtPJ3rvxp3zpgssvVVq0WDzPSyySLVPFwDJSxkpT/gYGBxUoPWKbOKGqZv33ISZPjKVhnkF0oajfj4pwS/zzIy8kos3OaI4RAholZnuQmJmAxl9ZSrFln2FVgIZPJEBERgfj4ePTs2RMAoNVqER8fj9GjR5s8xsXFBS4uLkbbfbwC4OHhYcnsEhXOTGDiAKCK3DaBL1F5VJLyv23btoiPj8e4ceP02/bs2YO2bduavY4t6wwHR0d2gSP7VpRuxsU9JQAl3Mr0nOYUJ+c2WQzYCuwqsACA2NhYDBw4EC1btkTr1q2xbNkypKen62cJISIi+1RY+R8TE4OqVati7ty5AICxY8fi+eefx+LFi/HSSy9hy5YtOHbsGFatWmXLj0FEVGHZXWDRt29f3L17F1OnTkVycjLCwsKwa9cuowF6RERkXwor/69fv24wRfMzzzyDr7/+Gh999BE+/PBD1K1bF9u3b7fLNSyIiKxBEiLfSJdKLjU1FZ6ennj8+DG7QhFRuccyy7Z4/4moIrF0mcXVtYiIiIiIqNQYWBARERERUanZ3RiL0srtGZa76BERUXmWW1axV6ttsM4goorE0nUGA4t87t+/DwAICQmxcU6IiIru/v378PT0tHU2Kh3WGURUEVmqzmBgkY+Pjw8A3ewhlrjhrVq1wh9//FHmxxSWxtx+U9vzbzP3PndhqBs3blhkAJCl7lVh6SxxrwBY9H6V5F4V9ThL3StT2yr675Yt/g4fP36M6tWr68susi5L1hn8uy4e1hlFZw+/W9a6VwXlu7TH2GOdwcAin9ypCD09PS3yy+no6Fjs8xblmMLSmNtvanv+bYW99/DwqFD3qrB0lrxXgGXuV0nuVVGPs9S9MrWtov9u2fLvMO80qmQ9lqwz+HddPKwzis4efresda/MXassjrHHOoM1kZWNGjXKIscUlsbcflPb828r7L2lWOpeFZaustyroh5nqXtlalt5vl+V9e+QbId/18XDOqPo7OF3y5plIOuMouM6FvlwTvKi470qHt6vouO9KjreK9vi/S863qvi4f0qOt6rouM6Flbm4uKCadOmwcXFxdZZKfd4r4qH96voeK+KjvfKtnj/i473qnh4v4qO96roLH2v2GJBRERERESlxhYLIiIiIiIqNQYWRERERERUagwsiIiIiIio1BhYEBERERFRqTGwICIiIiKiUmNgQUREREREpcbAguxOhw4dMG7cuDJPaw3582Ot/N2/fx/+/v64evWqRa/Tr18/LF682KLXICIqDtYZxcc6g8xxsnUGiEqjQ4cOCAsLw7Jly/Tbvv/+ezg7O9suU2XIWp9lzpw56NGjB0JDQy16nY8++gjt27fHsGHD4OnpadFrERHlxzqjbLDOIHPYYkEVkkajMbvPx8cH7u7uVsyNoYLyVlzW+CwqlQpffPEFhg4datHrAECTJk1Qu3ZtbNq0yeLXIiLKxTqj7LDOoIIwsCCL69ChA0aPHo3Ro0fD09MTvr6+mDJlCnIXfd+1axeee+45eHl5oUqVKnj55Zdx+fJlk+cYN24cfH19ER0djUGDBuHXX3/FJ598AkmSIEkSrl69atQUrNVqsWDBAtSpUwcuLi6oXr065syZYzKvWq0Wc+fORc2aNaFQKNC8eXN89913Rfp8efNWlM+Vnp6OmJgYuLm5ISgoyGRzb/7PEhoaavCkDQDCwsIwffp0/fvvvvsOTZs2hUKhQJUqVRAVFYX09HSz+f/555/h4uKCNm3a6LcdOHAAzs7OyMjI0G+7evUqJEnCtWvX9Hl75513MG7cOHh7eyMgIACrV69Geno6Bg8eDHd3d9SpUwc7d+40uF737t2xZcsW8zeUiCo11hmsM/JinVGxMLAgq9iwYQOcnJxw9OhRfPLJJ1iyZAnWrFkDQFdYxsbG4tixY4iPj4eDgwNeffVVaLVao3PIZDIcPHgQcXFx+OSTT9C2bVsMHz4cSUlJSEpKQkhIiNG1J02ahHnz5mHKlCk4e/Ysvv76awQEBJjM59y5c7Fx40bExcXhzJkzePfdd/HGG2/g119/LfTz5c1bUT7Xe++9h19//RU//PADfvnlFyQkJODEiRPFvrd5JSUloX///hgyZAjOnTuHhIQEvPbaa/oK2ZT9+/cjIiLCYNvJkyfRsGFDyOVy/bbExER4e3ujRo0aBp/b19cXR48exTvvvIO3334bffr0wTPPPIMTJ06gS5cuePPNN6FSqfTHtG7dGkePHkVmZmapPisR2S/WGawzcrHOqGAEkYU9//zzomHDhkKr1eq3ffDBB6Jhw4Ym09+9e1cAEKdOnTI4R3h4uMlzjx071uy21NRU4eLiIlavXm02b7lpMzIyhFKpFIcOHTJIM3ToUNG/f/8CP5+pvBX0uZ48eSJkMpn45ptv9Pvv378vFAqFwefJ//lq1Kghli5danDe5s2bi2nTpgkhhDh+/LgAIK5evVpofnL16NFDDBkyxGDbsGHDRExMjMG2qVOnig4dOhjk7bnnntO/z87OFq6uruLNN9/Ub0tKShIAxOHDh/Xb/vzzz2LnkYgqD9YZxp+LdQbrjIqCLRZkFW3atIEkSfr3bdu2xcWLF5GTk4OLFy+if//+qFWrFjw8PPSDwa5fv25wjvxPSIri3LlzyMzMRKdOnQpNe+nSJahUKnTu3Blubm7618aNG42a2fMzlbeCPtfly5eh0WgQGRmpT+/j44P69esX7wPm07x5c3Tq1AlNmzZFnz59sHr1ajx8+LDAY9RqtcFTJkD39CksLMxgW2JiotG2Zs2a6X92dHRElSpV0LRpU/223Kd8KSkp+m0KhQIADJ5IERHlxTqDdUYu1hkVC2eFIpvr3r07atSogdWrVyM4OBharRZNmjQxGtDm6upa7HPnFkhFkZaWBgDYsWMHqlatarDPxcWlwGNN5a2on6s4HBwcjJqos7Ky9D87Ojpiz549OHToEH755RcsX74ckydPxpEjR1CzZk2T5/T19TWoSHJycnD69GmEh4cbpDtx4gR69eplsC3/7COSJBlsy/1ikLeLwoMHDwAAfn5+hX5eIqL8WGcUHesMsja2WJBVHDlyxOD977//jrp16+LRo0c4f/48PvroI3Tq1AkNGzYs9GlJXjKZDDk5OWb3161bFwqFAvHx8YWeq1GjRnBxccH169dRp04dg5epfrgFuX//foGfq3bt2nB2dja4Lw8fPsSFCxcKPK+fnx+SkpL071NTU3HlyhWDNJIk4dlnn8WMGTOQmJgImUyGbdu2mT1neHg4zp49q39//vx5ZGRkIDg4WL/t8OHDuHXrltHTp5I4ffo0qlWrBl9f31Kfi4jsE+sM1hm5WGdULGyxIKu4fv06YmNj8dZbb+HEiRNYvnw5Fi9eDG9vb1SpUgWrVq1CUFAQrl+/jokTJxb5vKGhoThy5AiuXr0KNzc3+Pj4GOyXy+X44IMP8P7770Mmk+HZZ5/F3bt3cebMGaOp8tzd3TFhwgS8++670Gq1eO655/D48WMcPHgQHh4eGDhwYJHzVdjncnNzw9ChQ/Hee++hSpUq8Pf3x+TJk+HgUHCs/8ILL2D9+vXo3r07vLy8MHXqVDg6Our3HzlyBPHx8ejSpQv8/f1x5MgR3L17Fw0bNjR7zujoaEyaNAkPHz6Et7c3Tp48CQBYvnw5xowZg0uXLmHMmDEAymZaxP3796NLly6lPg8R2S/WGawzcrHOqFgYWJBVxMTEQK1Wo3Xr1nB0dMTYsWMxYsQISJKELVu2YMyYMWjSpAnq16+PTz/9FB06dCjSeSdMmICBAweiUaNGUKvVRk9iAGDKlClwcnLC1KlTcfv2bQQFBWHkyJEmzzdr1iz4+flh7ty5+Pvvv+Hl5YUWLVrgww8/LNbndXBwKPRzLVy4EGlpaejevTvc3d0xfvx4PH78uMDzTpo0CVeuXMHLL78MT09PzJo1y+Aze3h44LfffsOyZcuQmpqKGjVqYPHixejWrZvZczZt2hQtWrTAN998g7feegsnT55EdHQ0/v77bzRt2hSNGjXCjBkz8Pbbb+PTTz/Fl19+Wax7kVdGRga2b9+OXbt2lfgcRGT/WGewzgBYZ1REksjf+Y6ojJla6ZTKlx07duC9997D6dOn0a1bN7Rq1QqzZ88u8+usWLEC27Ztwy+//FLm5yYi+8A6o/xjnUHmsMWCiPDSSy/h4sWLuHXrFv78808MGTLEItdxdnbG8uXLLXJuIiKyDtYZZA4DCyICAIwbNw7Jycm4c+eOwfR/ZWnYsGEWOS8REVkX6wwyhV2hiIiIiIio1DjdLBERERERlRoDCyIiIiIiKjUGFkREREREVGoMLIiIiIiIqNQYWBARERERUakxsCAiIiIiolJjYEFERERERKXGwIKIiIiIiEqNgQUREREREZUaAwsiIiIiIio1BhZERERERFRqDCyIiIiIiKjUGFgQEREREVGpMbAgIiIiIqJSY2BBRERERESlxsCCiIiIiIhKjYEFERERERGVGgMLqlAOHTqE6dOn49GjR1a/dlJSEiZOnIiOHTvC3d0dkiQhISHBKJ1KpcLnn3+OLl26ICgoCO7u7ggPD8eKFSuQk5NjlF6r1WLBggWoWbMm5HI5mjVrhs2bN5vMw7lz59C1a1e4ubnBx8cHb775Ju7evVvkz/Djjz+iRYsWkMvlqF69OqZNm4bs7OwiH09EVJFUhDoD0NUDcXFxCAsLg5ubGwICAtCtWzccOnTIKG1mZiY++OADBAcHQ6FQIDIyEnv27DF53kOHDuG5556DUqlEYGAgxowZg7S0tCJ/hi+++AINGzaEXC5H3bp1sXz58iIfS5WUIKpAFi5cKACIK1euWP3a+/btEwBE3bp1Rdu2bQUAsW/fPqN0p06dEpIkiaioKLFgwQIRFxcnXn31VQFAxMTEGKWfOHGiACCGDx8uVq1aJV566SUBQGzevNkg3Y0bN4Svr6+oXbu2+OSTT8ScOXOEt7e3aN68ucjMzCw0/z///LOQJEl07NhRrFq1SrzzzjvCwcFBjBw5ssT3hIioPKsIdYYQQsTGxgoA4o033hArV64U8+fPF7Vq1RJOTk7iyJEjBmn79esnnJycxIQJE8TKlStF27ZthZOTk9i/f79BusTERCGXy0V4eLhYsWKFmDx5snBxcRFdu3YtUv7j4uIEANGrVy+xatUq8eabbwoAYt68eSW6H1Q5MLCgCsWWlURqaqq4f/++EEKIb7/91mwlcffuXXH69Gmj7YMHDxYAxMWLF/Xbbt68KZydncWoUaP027RarWjXrp2oVq2ayM7O1m9/++23hUKhENeuXdNv27NnjwAgVq5cWWj+GzVqJJo3by6ysrL02yZPniwkSRLnzp0r9HgiooqmItQZWVlZQqFQiN69exts//vvvwUAMWbMGP22I0eOCABi4cKF+m1qtVrUrl1btG3b1uD4bt26iaCgIPH48WP9ttWrVwsAYvfu3QXmXaVSiSpVqoiXXnrJYPuAAQOEq6urePDgQcEfniotdoWiCmP69Ol47733AAA1a9aEJEmQJAlXr161yvXd3d3h4+NTaDpfX180btzYaPurr74KQNedKdcPP/yArKws/Pvf/9ZvkyQJb7/9Nm7evInDhw/rt//3v//Fyy+/jOrVq+u3RUVFoV69evjmm28KzNPZs2dx9uxZjBgxAk5OTvrt//73vyGEwHfffafflpycjMGDB6NatWpwcXFBUFAQevToYbX7TERUFipKnZGVlQW1Wo2AgACD7f7+/nBwcIBCodBv++677+Do6IgRI0bot8nlcgwdOhSHDx/GjRs3AACpqanYs2cP3njjDXh4eOjTxsTEwM3NrdA6Y9++fbh//75B3QQAo0aNQnp6Onbs2KHfdvHiRfTq1QuBgYGQy+WoVq0a+vXrh8ePHxf62cn+OBWehKh8eO2113DhwgVs3rwZS5cuha+vLwDAz8/P7DEqlQoqlarQczs6OsLb27vM8mpKcnIyAOjzDQCJiYlwdXVFw4YNDdK2bt1av/+5557DrVu3kJKSgpYtWxqdt3Xr1vj5558LvHZiYiIAGB0fHByMatWq6fcDQK9evXDmzBm88847CA0NRUpKCvbs2YPr168jNDS06B+YiMiGKkqdkTtOYv369Wjbti3atWuHR48eYdasWfD29jYIIhITE1GvXj2DYAF4WmecPHkSISEhOHXqFLKzs43KfJlMhrCwMIMy3xRzdUZERAQcHByQmJiIN954AxqNBtHR0cjMzMQ777yDwMBA3Lp1Cz/99BMePXoET0/PEt8XqpgYWFCF0axZM7Ro0QKbN29Gz549i/Qld8GCBZgxY0ah6WrUqGHRp1gajQbLli1DzZo10apVK/32pKQkBAQEQJIkg/RBQUEAgNu3b+vT5d2eP+2DBw+QmZkJFxcXk9cv7Pjc6zx69AiHDh3CwoULMWHCBH2aSZMmFfmzEhGVBxWpzti0aRP69u2LN954Q7+tVq1aOHjwIGrVqqXflpSUZLYcB4peZ+zfv7/A/CQlJcHR0RH+/v4G22UyGapUqaK/ztmzZ3HlyhV8++236N27tz7d1KlTCzw/2S8GFmTXYmJi8NxzzxWaLm9TsyWMHj0aZ8+exY4dOwy6IqnVapPBgFwu1+/P+29hac0FFoUdn5qaCkB3H2QyGRISEjB06FCLt+IQEZUntqoz3N3d0bhxY7Rt2xadOnVCcnIy5s2bh549e2L//v361payqjNy95ujVqshk8lM7st7fG6LxO7du/Hiiy9CqVQW5eOSHWNgQXatVq1aBk97bGHhwoVYvXo1Zs2ahRdffNFgn0KhQGZmptExGRkZ+v15/y1KWlMKOz53v4uLC+bPn4/x48cjICAAbdq0wcsvv4yYmBgEBgYW+lmJiCoyW9QZ2dnZiIqKQocOHQymc42KikLjxo2xcOFCzJ8/H0DZ1RmFBUYKhQIajcbkvrzH16xZE7GxsViyZAm++uortGvXDq+88greeOMNdoOqpDh4m+xaWloakpOTC30VZy2I4li/fj0++OADjBw5Eh999JHR/qCgICQnJ0MIYbA9txk7ODhYny7v9vxpfXx8zLZWFOX43OsAwLhx43DhwgXMnTsXcrkcU6ZMQcOGDQvtk0tEVNHZos747bffcPr0abzyyisG2+vWrYuGDRvi4MGD+m1BQUFmy3Gg6HVG3jLflKCgIOTk5CAlJcVgu0ajwf379w2OX7x4Mf766y98+OGHUKvVGDNmDBo3boybN28WeA2yTwwsqELJPxahMIsWLUJQUFChr7zjHsrKDz/8gGHDhuG1117D559/bjJNWFgYVCqVwUxRAHDkyBH9fgCoWrUq/Pz8cOzYMaNzHD16VJ/OnNz9+Y+/ffs2bt68aXR87dq1MX78ePzyyy84ffo0NBoNFi9eXOA1iIjKm4pQZ9y5cwcATC6gmpWVZbCIaVhYGC5cuKDvvporf53RpEkTODk5GZX5Go0GJ0+eLHGdcezYMWi1WqPjmzZtio8++gi//fYb9u/fj1u3biEuLq7Aa5B9YlcoqlBcXV0BoMirqNqqv+xvv/2Gfv36oX379vjqq6/g4GA6hu/Rowfeffdd/Oc//8Fnn30GABBCIC4uDlWrVsUzzzyjT9urVy9s2LABN27cQEhICAAgPj4eFy5cwLvvvqtPl5WVhcuXL8PT01P/1Kpx48Zo0KABVq1ahbfeeguOjo4AgBUrVkCSJP2gO5VKBQcHB31/XUAXZLi7u5tsUiciKs8qQp1Rr149AMCWLVvQtWtX/fYTJ07g/PnzBrNC9e7dG4sWLcKqVav0E2xkZmZi3bp1iIyM1NcNnp6eiIqKwqZNmzBlyhS4u7sDAL788kukpaWhT58++nOqVCpcv34dvr6++rEcL7zwAnx8fLBixQqDLrwrVqyAUqnESy+9BEA3ra1SqTQYO9i0aVM4ODiwzqikGFhQhRIREQEAmDx5Mvr16wdnZ2d0795dX3nkV9b9ZWfPng0AOHPmDABdIX3gwAEA0Hd1unbtGl555RX9F/Zvv/3W4BzNmjVDs2bNAADVqlXDuHHjsHDhQmRlZaFVq1bYvn079u/fj6+++kofAADAhx9+iG+//RYdO3bE2LFjkZaWhoULF6Jp06YYPHiwPt2tW7fQsGFDDBw4EOvXr9dvX7hwIV555RV06dIF/fr1w+nTp/HZZ59h2LBh+uluL1y4gE6dOuH1119Ho0aN4OTkhG3btuHOnTvo169fmd1HIiJrqAh1RkREBDp37owNGzYgNTUVXbp0QVJSEpYvXw6FQoFx48bpzxcZGYk+ffpg0qRJSElJQZ06dbBhwwZcvXoVX3zxhcG158yZg2eeeQbPP/88RowYgZs3b2Lx4sXo0qWLQQBz9OhRdOzYEdOmTcP06dMB6AKnWbNmYdSoUejTpw+io6Oxf/9+bNq0CXPmzNGvz/H//t//w+jRo9GnTx/Uq1cP2dnZ+PLLL+Ho6IhevXqV2X2kCsTGC/QRFdusWbNE1apVhYODg9VXVAVg9pVr3759BaabNm2awTlzcnLExx9/LGrUqCFkMplo3Lix2LRpk8nrnz59WnTp0kUolUrh5eUlBgwYIJKTkw3SXLlyRQAQAwcONDp+27ZtIiwsTLi4uIhq1aqJjz76SGg0Gv3+e/fuiVGjRokGDRoIV1dX4enpKSIjI8U333xT8ptGRGRD5b3OEEK30vXMmTNFo0aNhEKhEJ6enuLll18WiYmJRudUq9ViwoQJIjAwULi4uIhWrVqJXbt2mbz+/v37xTPPPCPkcrnw8/MTo0aNEqmpqQZpcuus/HWTEEKsWrVK1K9fX8hkMlG7dm2xdOlSodVq9fv//vtvMWTIEFG7dm0hl8uFj4+P6Nixo9i7d2/xbxbZBUmIfKNGiYiIiIiIiomDt4mIiIiIqNQYWBARERERUakxsCAiIiIiolJjYEFERERERKXGwIKIiIiIiEqNgQUREREREZUaF8jLR6vV4vbt23B3d4ckSbbODhFRgYQQePLkCYKDg82u8E6WwzqDiCoSS9cZDCzyuX37NkJCQmydDSKiYrlx4waqVatm62xUOqwziKgislSdwcAiH3d3dwC6G+7h4WHj3BARFSw1NRUhISH6sousi3UGEVUklq4zGFjkk9uU7eHhwUqCiCoMdsOxDdYZRFQRWarOYIdcIiIiIiIqNQYWRERERERUagwsiIiIiIio1BhYEBERERFRqTGwICIiIiKiUuOsUERkMUIIqLPVRtsVTgrOYkREVNaEALJUxtudlQDLXLICBhZEZBFCCMTsjMHJuyeN9oX7h2ND1w0MLoiIyooQwNpo4MYR430hbYAhuxhckMWxKxQRWYQ6W20yqACAxJREky0ZRERUQlkq00EFANz43XRLBlEZY4sFEVlcwusJUDgpoM5Wo8M3HWydHSIi+zbhEiBTAhoVsKiOrXNDlQgDCyKyOIWTAkpnpa2zQURUOciUgMzV1rmgSohdoYiIiIiIqNQYWBARERERUakxsCAiIiIiolLjGAsiIiKi8ozrU1AFwcCCiIiIyNqKGixwfQqqQBhYEBEREVlTcYKFoqxPwRmgqJwo92MsPv/8c4SGhkIulyMyMhJHjx41m3b9+vWQJMngJZfLrZhbIiIiokKUdDG7CZeAD2/r/iUqh8p1i8XWrVsRGxuLuLg4REZGYtmyZYiOjsb58+fh7+9v8hgPDw+cP39e/15i8yARERGVV8VZzI7rU1A5V65bLJYsWYLhw4dj8ODBaNSoEeLi4qBUKrF27Vqzx0iShMDAQP0rICDAijkmIiIiKobcYEHGRUSp4iu3gYVGo8Hx48cRFRWl3+bg4ICoqCgcPnzY7HFpaWmoUaMGQkJC0KNHD5w5c6bA62RmZiI1NdXgRURE5U9xusauXr0a7dq1g7e3N7y9vREVFWWUftCgQUbdZ7t27Wrpj0FEZLfKbWBx79495OTkGLU4BAQEIDk52eQx9evXx9q1a/HDDz9g06ZN0Gq1eOaZZ3Dz5k2z15k7dy48PT31r5CQkDL9HEREVHq5XWOnTZuGEydOoHnz5oiOjkZKSorJ9AkJCejfvz/27duHw4cPIyQkBF26dMGtW7cM0nXt2hVJSUn61+bNm63xcYiI7FK5DSxKom3btoiJiUFYWBief/55fP/99/Dz88PKlSvNHjNp0iQ8fvxY/7px44YVc0xEREVR3K6xX331Ff79738jLCwMDRo0wJo1a6DVahEfH2+QzsXFxaD7rLe3tzU+DhGRXSq3gYWvry8cHR1x584dg+137txBYGBgkc7h7OyM8PBwXLpkfvYEFxcXeHh4GLyIiKj8KGnX2LxUKhWysrLg4+NjsD0hIQH+/v6oX78+3n77bdy/f7/A87D7LBGReeU2sJDJZIiIiDB4upT7tKlt27ZFOkdOTg5OnTqFoKAgS2WTiIgsrCRdY/P74IMPEBwcbBCcdO3aFRs3bkR8fDzmz5+PX3/9Fd26dUNOTo7Z87D7LFmFRgVo0v95mZl61ihtIemIrKBcTzcbGxuLgQMHomXLlmjdujWWLVuG9PR0DB48GAAQExODqlWrYu7cuQCAmTNnok2bNqhTpw4ePXqEhQsX4tq1axg2bJgtPwYREdnQvHnzsGXLFiQkJBisbdSvXz/9z02bNkWzZs1Qu3ZtJCQkoFOnTibPNWnSJMTGxurfp6amMrigslfYtLMlTUtkYeU6sOjbty/u3r2LqVOnIjk5GWFhYdi1a5f+qdX169fh4PC00eXhw4cYPnw4kpOT4e3tjYiICBw6dAiNGjWy1UcgIqJSKk3X2EWLFmHevHnYu3cvmjVrVmDaWrVqwdfXF5cuXTIbWLi4uMDFxaV4H4CoKJyVulW3b/xuen9IG12awtLmTUdkZeU6sACA0aNHY/To0Sb3JSQkGLxfunQpli5daoVcERGRteTtGtuzZ08AT7vGmqsfAGDBggWYM2cOdu/ejZYtWxZ6nZs3b+L+/fvsPku2IUnAkF3mV912VurSFJY2bzoiKyv3gQUREVFxu8bOnz8fU6dOxddff43Q0FD9WAw3Nze4ubkhLS0NM2bMQK9evRAYGIjLly/j/fffR506dRAdHW2zz0mVnCQVfWXt4qQlshIGFkREVO4Vt2vsihUroNFo0Lt3b4PzTJs2DdOnT4ejoyP++usvbNiwAY8ePUJwcDC6dOmCWbNmsasTEVEJMbAgIqIKoThdY69evVrguRQKBXbv3l1GOSMiIoCBBZFtCMG+sURERGRXGFgQWZsQwNpo4MYR430hbXQD8hhcEBERUQXDwILI2rJUpoMKQDd1YJaqUgzIU2erDd4rnBSQGFARERFVWAwsiGxpwiVAptStmFrJFjnq8E0Hg/fh/uHY0HUDgwsiIkso6src7JJLpcDAgsiWZMpK0TqRS+GkQLh/OBJTEo32JaYkQp2thpILOxERlb2iPrxil1wqBQYWRGQ1kiRhQ9cNBt2g1Nlqo9YLIiIqA4Wt5m1KJeqSS2WPgQURWZUkSWyVICKyhsJW886rEnbJpbLHwIKIiIjIXnGFbrIih8KTEBERERERFYyBBRERERERlRq7QhFRqQkhjNalyP+eiIiI7BsDCyIqFSEEYnbG4OTdk7bOChEREdkQAwuiikgI07N82GBhI3W2usCgItw/HAonhfUyREREZacc1TdU/jGwICrPTBXoQgDrugLJp4zT23hho4TXE4yCCIWTgqtpExFVREIAa6OBG0eM93EhPTKhTAKLrKwsJCcnQ6VSwc/PDz4+PmVxWqLKraAC3RwbL2ykcFJwjYpKjvUBkR3JUpmvg7iQHplQ4sDiyZMn2LRpE7Zs2YKjR49Co9FACAFJklCtWjV06dIFI0aMQKtWrcoyv0SVR0EFOgAENgUG//O0iAsbkQ2xPiCqBCZcAmRK1jdUoBIFFkuWLMGcOXNQu3ZtdO/eHR9++CGCg4OhUCjw4MEDnD59Gvv370eXLl0QGRmJ5cuXo27dumWdd6LKI7dAz4v9W6kcYH1AVEnIlGydoEKVKLD4448/8Ntvv6Fx48Ym97du3RpDhgxBXFwc1q1bh/3797MiISoNFuhUTrE+ICKiXCUKLDZv3lykdC4uLhg5cmRJLkFERBUA6wMiIspV7JW3Hz58iAcPHgAA7t69i++//x5nzpwp84wREVH5xvqAyE5pVIAmXfcvUTEUK7BYs2YNIiIi0LJlS6xYsQKvvvoq4uPj0a9fP6xZs8ZSeSQionKG9QGRHVtUB/g4mIO0qdiK1RXq008/xZkzZ6BWq1G9enVcuXIFfn5+ePz4MZ5//nkMGzbMUvkkIqJyhPUBkZ1xVurWprjxu/G+kDa6/USFKFaLhZOTExQKBXx8fFCnTh34+fkBADw9PS22ANbnn3+O0NBQyOVyREZG4ujRo0U6bsuWLZAkCT179rRIvoiIKjNb1AdEZEGSpFvw7sPbxi8uhEdFVKzAwtHRERkZGQCAX3/9Vb89LS2tbHP1j61btyI2NhbTpk3DiRMn0Lx5c0RHRyMlJaXA465evYoJEyagXbt2FskXEVFlZ+36gIisQJJ0MxDmfzGooCIqVmCxd+9euLi4ANA9lcqlUqmwatWqss0ZdPOjDx8+HIMHD0ajRo0QFxcHpVKJtWvXmj0mJycHAwYMwIwZM1CrVq0yzxMREVm/PiAiovKvWIGFuSZuf3//Ml9RVaPR4Pjx44iKitJvc3BwQFRUFA4fPmz2uJkzZ8Lf3x9Dhw4t0/wQEdFT1qwPchWna+zq1avRrl07eHt7w9vbG1FRUUbphRCYOnUqgoKCoFAoEBUVhYsXL1ok70RElUGJ1rHILyMjA3/99RdSUlKg1WoN9r3yyislOue9e/eQk5ODgIAAg+0BAQH43//+Z/KYAwcO4IsvvsDJkyeLfJ3MzExkZmbq36emppYov0REZJn6AHjaNTYuLg6RkZFYtmwZoqOjcf78efj7+xulT0hIQP/+/fHMM89ALpdj/vz56NKlC86cOYOqVasCABYsWIBPP/0UGzZsQM2aNTFlyhRER0fj7NmzkMvlJc4rEVFlVerAYteuXYiJicG9e/eM9kmShJycnNJeokiePHmCN998E6tXr4avr2+Rj5s7dy5mzJhhwZwREVUOlqwP8naNBYC4uDjs2LEDa9euxcSJE43Sf/XVVwbv16xZg//+97+Ij49HTEwMhBBYtmwZPvroI/To0QMAsHHjRgQEBGD79u3o169fifNKRFRZFXuBvPzeeecd9OnTB0lJSdBqtQav0lQivr6+cHR0xJ07dwy237lzB4GBgUbpL1++jKtXr6J79+5wcnKCk5MTNm7ciB9//BFOTk64fPmyyetMmjQJjx8/1r9u3LhR4jwTEVVmlqoPSto1Ni+VSoWsrCz4+PgAAK5cuYLk5GSDc3p6eiIyMrLAc2ZmZiI1NdXgRUREOqUOLO7cuYPY2FijLkulJZPJEBERgfj4eP02rVaL+Ph4tG3b1ih9gwYNcOrUKZw8eVL/euWVV9CxY0ecPHkSISEhJq/j4uICDw8PgxcRERWfpeqDgrrGJicnF+kcH3zwAYKDg/WBRO5xxT3n3Llz4enpqX+Zq1uIiCqjUneF6t27NxISElC7du2yyI+B2NhYDBw4EC1btkTr1q2xbNkypKen65vCY2JiULVqVcydOxdyuRxNmjQxON7LywsAjLYTEVHZs2R9UBrz5s3Dli1bkJCQUOqxE5MmTUJsbKz+fWpqKoMLIqJ/lDqw+Oyzz9CnTx/s378fTZs2hbOzs8H+MWPGlPjcffv2xd27dzF16lQkJycjLCwMu3bt0j9hun79OhwcSt3oQkREZcBS9UFxu8bmtWjRIsybNw979+5Fs2bN9Ntzj7tz5w6CgoIMzhkWFmb2fC4uLvppdomIyFCpA4vNmzfjl19+gVwuR0JCgsH0g5IklSqwAIDRo0dj9OjRJvclJCQUeOz69etLdW0iIio6S9UHebvG9uzZE8DTrrHm6gdAN+vTnDlzsHv3brRs2dJgX82aNREYGIj4+Hh9IJGamoojR47g7bffLlE+iSAEkKUqPJ2mCGmIKqBSBxaTJ0/GjBkzMHHiRLYeEBFVYpasD4rTNRYA5s+fj6lTp+Lrr79GaGioftyEm5sb3NzcIEkSxo0bh9mzZ6Nu3br66WaDg4P1wQtRsQgBrI0GbhyxdU6IbKbUgYVGo0Hfvn0ZVBARVXKWrA+K2zV2xYoV0Gg06N27t8F5pk2bhunTpwMA3n//faSnp2PEiBF49OgRnnvuOezatYtrWFDJZKmKH1SEtAGclZbJD5ENlDqwGDhwILZu3YoPP/ywLPJDRHZOCAF11tOpR9XZ1lnrhizP0vVBcbrGXr16tdDzSZKEmTNnYubMmWWQO6I8JlwCZEUIGJyVgIkV7IkqqlIHFjk5OViwYAF2796NZs2aGQ3WW7JkSWkvQUR2QgiB3nGHcfzaw6cbJQ3cGzzdTxUX6wOif8iUgMzV1rkgsrpSBxanTp1CeHg4AOD06dMG+yRG4UTFlzuozw4H96mzcgyDinwysrVwlVkxQ1SmWB8QEVVupQ4s9u3bVxb5IKJci+rYOgcFEkJAna3Wv8/7c3Ec+ygKSpkj7qvS8OIPZZU7siXWB0RElVupAwsiKgPOSt0gvhu/G+8rR4P7hBCI2RmDk3dPlvpcSpkjlDInqLMdS58xIiIisjkGFkTlgSQBQ3aZnv+8HA3uU2erzQYV4f7hUDgprJshIiIiKjcYWBBZkqnFksyNnZCkCjXYL+H1BINAQuGkYD96IiKiSoyBBZGl2PliSQonBZTlpIsWERER2V6JVzGaOnUqjh8/XpZ5IbIvhS2WZKmxExoVoEl/+uIUrmRhrA+IiAgoRYvFzZs30a1bN8hkMnTv3h2vvPIKOnXqBJmMc0VSJZW/21PeLk+mFkuy1NiJ/LNKhbTRjd9gNyWyENYHREQElCKwWLt2LbRaLQ4ePIj/+7//w7hx45CUlITOnTujR48eePnll+Hj41OWeSUqvwrr9mTpxZIKmlXqxu+6gKcCjd+gioX1ARERAaXoCgUADg4OaNeuHRYsWIDz58/jyJEjiIyMxMqVKxEcHIz27dtj0aJFuHXrVlnll6h8KqjbkzWmi82dVerD209fEy5Z9ppEebA+oEpHCMNup3a4qClRcZXp4O2GDRuiYcOGeP/993H37l38+OOP+PHHHwEAEyZMKMtLEZVf+bs9WWu62HI4q5QQAuqsHP17lSangNRkT1gfkF2z88k5iErKYrNC+fn5YejQoRg6dKilLkFUPlm621MFIYRA77jDOH7toa2zQjbG+oDsjq1bqYnKKU43S0QWoc7KMRtUtKzhDYUzV9wmIjtgq1ZqonKIgQURWdyxj6KglD0NJBTOjlxMj4jsA1upifQYWBCVREFTy5IRpcwRSlnhxY06Ww1VlmFLBlf0JiIiqhgYWBAVFwftWUy3bZ2MtoX7h2ND1w0MLoiIiMq5UgcWsbGxJrdLkgS5XI46deqgR48enMOc7AcH7ZUpuaMc2aoacFJeM7k/MSUR6mw1lLyv5R7rAyKiyq3UgUViYiJOnDiBnJwc1K9fHwBw4cIFODo6okGDBvjPf/6D8ePH48CBA2jUqFGpM0xUrnDQXqlJkgT1tZGAlIXjU6L0g7rV2Wp0+KaDbTNHxcL6gIiocivVAnkA0KNHD0RFReH27ds4fvw4jh8/jps3b6Jz587o378/bt26hfbt2+Pdd98ti/wSlS+5g/ZyXwwqSkgChAwKJwWUzkoonZVQOClsnSkqJtYHRESVW6lbLBYuXIg9e/bAw8NDv83T0xPTp09Hly5dMHbsWEydOhVdunQp7aWIyMqEEFBnq/Xv8/5MlB/rA6JKxtTEJWy5r9RKHVg8fvwYKSkpRs3ad+/eRWpqKgDAy8sLGo2mtJciIisSQiBmZwxO3j1p66xQBcH6gKiSWVTHeFtIG2DILgYXlVSZdIUaMmQItm3bhps3b+LmzZvYtm0bhg4dip49ewIAjh49inr16pX2UkRUFoQANOmmX0Lok6mz1WaDinD/cHZVIiOsD4gqAWelLngw58bvhtOxU6VS6haLlStX4t1330W/fv2QnZ2tO6mTEwYOHIilS5cCABo0aIA1a9aU6Pyff/45Fi5ciOTkZDRv3hzLly9H69atTab9/vvv8fHHH+PSpUvIyspC3bp1MX78eLz55psl+3BE9qawqXLNPGlKeD3BIJDg2hJkiqXrAyIqByRJV0/kDx40KtMtGFSplLrFws3NDatXr8b9+/eRmJiIxMRE3L9/H6tWrYKrq24lyrCwMISFhRX73Fu3bkVsbCymTZuGEydOoHnz5oiOjkZKSorJ9D4+Ppg8eTIOHz6Mv/76C4MHD8bgwYOxe/fu0nxEIvtR0FS5gNknTXkHVSudlQwqyCRL1geA7kFTaGgo5HI5IiMjcfToUbNpz5w5g169eiE0NBSSJGHZsmVGaaZPnw5JkgxeDRo0KFHeiCoVSTKcuETmajhDIlVaZbZAnpubG5o1a1ZWpwMALFmyBMOHD8fgwYMBAHFxcdixYwfWrl2LiRMnGqXv0KGDwfuxY8diw4YNOHDgAKKjo8s0b0QVXt6pcvmkicqQJeqD3AdNcXFxiIyMxLJlyxAdHY3z58/D39/fKL1KpUKtWrXQp0+fAmehaty4Mfbu3at/7+TEdWOJiEqqRC0W169fL1b6W7duFfsaGo0Gx48fR1RUlH6bg4MDoqKicPjw4UKPF0IgPj4e58+fR/v27c2my8zMRGpqqsGLqFIwmCqXT5qoZKxRHwCGD5oaNWqEuLg4KJVKrF271mT6Vq1aYeHChejXrx9cXFzMntfJyQmBgYH6l6+vb4nyR0REJQwsWrVqhbfeegt//PGH2TSPHz/G6tWr0aRJE/z3v/8t9jXu3buHnJwcBAQEGGwPCAhAcnJygdd1c3ODTCbDSy+9hOXLl6Nz585m08+dOxeenp76V0hISLHzSlTuaVT/DNDmgDoqW9aoD0r7oKkgFy9eRHBwMGrVqoUBAwYUO1AiIqKnStTme/bsWcyZMwedO3eGXC5HREQEgoODIZfL8fDhQ5w9exZnzpxBixYtsGDBArz44otlnW+z3N3dcfLkSaSlpSE+/v+3d+fxTZX5/sA/p2nTJG2B0kJZrEUBWWRpaSmgMBSpFFQUFQaZOxYRdXQGBSuoKJThilMViig69opyRWcYEe+IM4Mi0h91RZC26CAiwsgi0lLWQpM0TXJ+f4SkWU7SpNlOks/79eIFOefk5MlDm2+e7ftUoqSkBFdeeaXLNCmrhQsXoqSkxPa4sbGRjQuKPkGe5iSKInQtJodjWoPJzdUUTUIRDzx1NO3fv7/dZR8xYgTeeOMN9OvXDydOnMDSpUsxZswY7N27FykpKZLPaW5uRnNzs+0xR7mJiFq1q2GRlpaGlStX4umnn8bmzZvx+eef48iRI9DpdEhPT8d//dd/oaioCIMGDWp3wdLT06FQKFBfX+9wvL6+Ht26dXP7vLi4OPTpY/kSlZ2dje+//x5lZWVuGxaJiYkeh8kpxERROk1dODfccS5TpPT6W1MCHvvK9VzmSMv59nCqD1EU8V+v78KXR7UAuKg71oQiHgTLpEmTbP8eMmQIRowYgaysLLzzzjuYPXu25HPKysqwdOnSUBWRiCii+LVKTa1WY+rUqZg6dWqgymOjVCqRm5uLyspKW/5zs9mMyspKzJkzx+v7mM1mh94lkjFPqVDDteFOW+lZ5cxdSkCg/Q01ifoQAKwH8LXyKkwzLIFz4yIvKxXqBIXvr0URJZjxoL0dTb7q1KkTrrrqKhw8eNDtNRzlJiJyT9bpL0pKSjBz5kzk5eUhPz8fq1atQlNTky1LVHFxMXr27ImysjIAlp6kvLw89O7dG83Nzfjggw/w1ltv4ZVXXgnn2yBveUqFak2DqkyST5n86fUPFWtKwEDxUB/D4w5g96PXQJPcweG4OkHB9LTkl0B1NLXl4sWLOHTokMe9jzjKTUTknqwbFtOnT0dDQwNKS0tRV1eH7OxsbNmyxTbP9ujRo4iLa11/3tTUhN///vf4+eefoVar0b9/f/zlL3/B9OnTw/UWqL2sqVDllAbVPj0rEN7pWWEiiqJtPCJX/wq0SIQGzahWPQAA0CgV0Chl/bFCEcrXjiaDwYB9+/bZ/n38+HHs2bMHycnJtumy8+fPx+TJk5GVlYVffvkFS5YsgUKhwIwZM8LzJomIIpzsvwHMmTPHbY9UVVWVw+Nly5Zh2bJlISgVBZ01FWqwuFvL4cx+PUWwyyRnLVpAFKHTXoC1aaVFInRQOVzGKU8ULL52NP3yyy/IycmxPV6xYgVWrFiBsWPH2mLHzz//jBkzZuD06dPo0qULRo8eja+++gpdunQJ6XsjIooWsm9YEAVcJK+bCCVRbP338j6AKMJ+4tdnj46zTHsyNAErLMc45YmCyZeOpl69ekG0/xmW8PbbbweqaEREBDYsKBZ5WjfhTiSsp/CTCEAnCIBRBwgCdPozbq/92nwVrk5KuTTtiR8jRERExG8EFOuc1024E+XrKURRRHH3DOxRJQIbx7leMPdbQJMGrcGI3GXboEMi9kVxfRAREZHv2LCg2BbL6ybs6Ex6S6NCQo5eD1HRAVokQot4l3UVRERERAAbFkTkpOrWD6BWp0E0NEFY0RdqUcTApyvZoCAiIiKP4tq+xL2WlhaMHz8eP/74Y6DKQ0Rhpo5XQ5OggSAqobFLL2uPm96RM8YDIiLya8QiISEB3377baDKQkQyZcsAdQk3vSNnjAdEsUMUReiMOseDlxJ/qN10SFFs8Hsq1G9/+1u8/vrreOaZZwJRHiKSIW58R95gPCCKfqIoovjDYuxp2ON6slcmcvR6rGPjImb5/U3BaDRi7dq12LZtG3Jzc5GU5LgQduXKlf6+BBERRQDGA6Lo4zw6oTPqpBsVl9SqVNCZ9NAgOQSlI7nxu2Gxd+9eDBs2DABw4MABh3OcKkFEFDsYD4iii8fRCQBVv66COl4NANDpTqPgvRtCWDqSI78bFtu3bw9EOYiIKMIxHhBFF0+jEzldc9BZ1bm106BFG7qCkWxx0jQREREReWQ/OgFYMghyJJKcBaRhUVlZicrKSpw8eRJms9nh3Nq1awPxEkQUKgYtEN/E3idqF8YDouhkTUVO5InfDYulS5fiv//7v5GXl4fu3buz9UoU6V4YAogiwhE+tAaT7d86o8nDlSRHjAdEBKC1g8oqQQPw8yAm+N2wqKiowBtvvIE777wzEOUhCjxRdOx9N7An3oXd8Lazr81X4eoQ9VLlLdvW+kAwIKW/5Z+iKIbk9ck/jAdEBMDWQWWTORK4ewsbFzHA74aFwWDANddcE4iyEAWeKAJri4BjO8NdEnmz+7DXzd0PxKuhNZgw5rnt0CER+4IYDNQJCuRlpWL3kbNur9EbzUhSBq0IFCCMBxS12EHVNg8dVDj2laX+lEnur6Go4HfD4p577sH69euxePHiQJSHKLBatO4bFZkjLcOz5DAikPvsDkC0fotXBf21BUHAxvtHQdfiOPXptPYibng/6C9PAcR4QFGJHVTese+AWnDQ0tAwaIEVfcJXJgo5vxsWer0er776KrZt24YhQ4YgISHB4Tw3RCLZmH8QUNo1JDjn00ZvNLs9l5eVCnWCIqivLwiCy87eOmNwX5MCj/GAohI7qHyXoGG9xCi/GxbffvstsrOzAVg2R7LHhXskK0oNh2G98Nlj45Cmad0xVZ2g4O8yeYXxgKIeO6iIPOIGeUTkQKNUuIweEHmD8YCiXpR3UImi6DAtldn5yFf89kBEREQU40RRxNSKHai2T6Rhl51PazABotF2iqPZJKVdDYuSkhKvr+WcWiKi6MV4QCQfziMOVt40AnQtJsdGhZO8ZdvsEntY1t9tvH8UGxfkoF0Ni9raWq+u4w8bEVF0YzwgkgfJEYdLfG0E7F5UCI1SAW2LDuPeLZW+5shZ6FpMnDpLDtr108B5tEREBDAeEMmFpxEHXxsBtrV2Qmt2vurFhVBf2uPIYTNTIjtsZhKR7GkNJqjjObeXiMgbthGHADYC1AkKaBL8+NrovKkgM2pFJdmvsXj55ZexfPly1NXVYejQoVi9ejXy8/Mlr12zZg3efPNNW5rD3Nxc/OlPf3J7PRFFhjHPbufcXpniGgsi+ZFldj/njfIyRwJ3b2HjIsoEZI1FTU0NjEYj+vXrBwA4cOAAFAoFcnNz/Srchg0bUFJSgoqKCowYMQKrVq1CUVERfvjhB3Tt2tXl+qqqKsyYMQPXXHMNVCoVnn32WUyYMAHfffcdevbs6VdZiCi0VPFxbs9xbq98hCoeAL51NH333XcoLS1FdXU1jhw5gueffx7z5s3z655E5KMEjaUBcewr13PHvrJsPhjF6Xtjkd9rLFauXImUlBSsW7cOqampAICzZ89i1qxZGDNmjF+FW7lyJe69917MmjULAFBRUYHNmzdj7dq1ePzxx12u/+tf/+rw+LXXXsP//d//obKyEsXFxX6VhWSAw6jy5/x/BLT7/8l+NIJze+UrVPHA144mrVaLK6+8EtOmTcPDDz8ckHsSkY8EwTIq0WIXGwxa19ELihruuwS9VF5ejrKyMlsQAYDU1FQsW7YM5eXl7b6vwWBAdXU1CgsLbcfi4uJQWFiIHTt2eHUPrVaLlpYWdO7cud3lIBlZ0Qf4U4/WP2snAqIY7lKRPef/owD9P6kTLMP6GqWi7YspbIIVDwDHjqaBAweioqICGo0Ga9eulbx++PDhWL58Oe644w4kJiYG5J5E0UQURWgNRrs/QdoMTxAsoxK2P5q2n0MRy+95BI2NjWhoaHA53tDQgAsXLrT7vqdOnYLJZEJGRobD8YyMDOzfv9+rezz22GPo0aOHQ+PEWXNzM5qbm22PGxsb21dgCg4Oo8qfp/8jgP9PMSRY8cDa0bRw4ULbMV87mkJxTwoDUXTsDbfiiLZHnlLTEvnD74bFrbfeilmzZqG8vNw2L3Xnzp1YsGABbrvtNr8L2F7PPPMM3n77bVRVVUGlUrm9rqysDEuXLg1hycgnHEaVP6n/I4D/TzEoWPEgEB1NgbonO6NkRBSBtUXAsZ2u57gw2CP3qWlFDMtKgohmaFsM0Bl1IS8bRTa/GxYVFRWYP38+fvOb36ClpcVy0/h4zJ49G8uXL2/3fdPT06FQKFBfX+9wvL6+Ht26dfP43BUrVuCZZ57Btm3bMGTIEI/XLly40CGrSWNjIzIzM9tdbgoC6zAq+UwURZfAIIoi9Eazw7Ez2ov+vRD/jwjBiwdyws4oGWnRSjcqAP9GSp1HQaTWjkURa2paURRx37ZZ+PbUNxj5t3CXiiKV3w0LjUaDP//5z1i+fDkOHToEAOjduzeSkvz7kqFUKpGbm4vKykpMmTIFAGA2m1FZWYk5c+a4fd5zzz2Hp59+Gh999BHy8vLafJ3ExES382+JIpkoiij+sBh7GvaEuygUI4IVD/zpaAr0PdkZJVPzD1rm7vs7UuppFCTqiIDQAiHOAAgK6E06fHvqG8krc7rmQB2v9vrOzh1a6ng104PHiIDlakxKSmpzdMBXJSUlmDlzJvLy8pCfn49Vq1ahqanJliWquLgYPXv2RFlZGQDg2WefRWlpKdavX49evXqhrq4OAJCcnIzk5OSAlo1I7nRGnc+NCrWpN1JVHHkg/wQ6HrS3oykY92RnlEwpNYEZNfU0CpI50rJ2IwqIoghNVgUUmiMo2Fjqcr7q11UODQlfGwYF7xQ4PM7pmoN1E9excREDZJ0Efvr06WhoaEBpaSnq6uqQnZ2NLVu22ObEHj16FHFxrYmtXnnlFRgMBkydOtXhPkuWLMEf//jHUBadSFasQULXYkLuU5Z0rZ89Ns4ly1KqKsnhd4pILnztaDIYDNi3b5/t38ePH8eePXuQnJyMPn36eHVPinHWURCrKFoQrjfpodAckTyX0zUHnVWdfW4EqOPVyOmag9qTtS7nak/WQmfUQRMlDTNyT9YNCwCYM2eO296jqqoqh8eHDx8OfoGIIpA6Xm35QBeNth2s0zTJ3GCOIoavHU2//PILcnJybI9XrFiBFStWYOzYsbbY0dY9KcYFahRE5j68tRKd1a2zOto7bUkQBKybuM5hGpTOqHMZvaDoxm8VREQUEXzpaOrVqxdEL/ZP8XRPolhg63gKAEEQOCoR49o956G0tBTV1dWBLAuR7wxawNDU+ocb5hGFHOMBEbVFZ9RB26KF1qiDVhDAaB2d2j1i8fPPP2PSpElQKpWYPHkybr75ZowfPx5KpTKQ5SPyzDn7R7fBwCy73OVRniaQSA4YD4jkz35n7UDtsi11H3WCQnIqlcOUqF6ZyNHrsU4UER2rVsiq3Q2LtWvXwmw244svvsA///lPzJs3DydOnMD111+PW265BTfddBM6d+4cyLISWXja6bnu30BZz9CXiSiGMR5QRJLatTuKO6Pylm1rfSAYkNI/wPe0HstKxcb7R0EQBM8LulUq6Ex6aMCsndHErzUWcXFxGDNmDMaMGYPnnnsO33//Pf75z3/if/7nf3DfffchPz8fN998M2bMmIGePflljwJEaqdnUQT+d6KlYSElitIEEskR4wFFlBjZr0KdoEBeVip2S+6ybaGK921WfFv33H3kLHQtJmiU8dILunWnUfDeDT69JkWOgC7eHjBgAAYMGIBHH30UDQ0N+Mc//oF//OMfAID58+cH8qUo1knt9Py7z1x7n6yiKE2gO867bDtvUEQUSowHJCtSu2l7alRESWeUIAjYeP8o6FocpyzpjDrb/hW+ZoByd0+twSQ5guGyoNtdnKaoELSsUF26dMHs2bMxe/bsYL0EkSOpxkaM4C7bJGeMBxRWbY1OOO9XAURwZ5RlN22dUQcIrfsUqROcUsgKConnek8QBKYrJ0n8qSCKAp522c7pmuOwgyoRUUxpazftpPQIbUQ48rSbNne+plBhw4Ioylh32bZq72ZHRERRJ0Z30649WYsz+jO22MCpshQsbFgQyYTzGgkrXxsGgdzsiIgoqsTYbtr2O19zB2wKBTYsiGTA0xoJqSHsWFuobX1/OqMJEAyAmBDmEhERyZe1g8lTuleAU2Up8ALSsNDr9fj2229x8uRJmM1mh3M333xzIF6Cwkg0m6HTXpA8p9akQIhr9wbudImnNRLOQ9gAMHPLTOw/sz9EpQs/+562lP6AUZsFUSwKX4HILcYDIvmQSvdqj1NlKdD8blhs2bIFxcXFOHXqlMs5QRBgMgVmd0cKD9Fsxg9l16J/yz7J898nDET/hV+wcRFA1jUS7RnCjqbeJ089bfGaI9Cb9EgCRy7khPGASH5c0r0SBZHfDYsHH3wQ06ZNQ2lpKTIyMgJRJpIRnfaC20YFAAxo2Qet9gI0yR1DWKooJyoBUQlVXAKGpGfj21N7JC/r37k/1k1c53AsmnqfpHrazuguYtJ748NYKvKE8YBkxbqLdhTvpk0kN343LOrr61FSUsIgEgNOP/Ad1EkpAABd0wWkvXJ1mEsUPURRtP0796ltlsYFAGA6hmXdjbdm57s0GLxpRIii6LCJkdYQWT3Gzj1tzhsykbwwHpCsrOgT7hIEVayttaPI4HfDYurUqaiqqkLv3r0DUR6SMXVSCkcmgkRvNLs5I6DmiBYCEqFJaP11dW4wWKkTFLbGhiiKmFqxA9VHzgajyL5x7jGMohSP1IrxgMIuQWPZm+LYV67nomQ3bYCbopJ8+d2weOmllzBt2jR89tlnGDx4MBISHOc8P/TQQ/6+BFFM+eyxcUjTJENrMCFv2TaX854aDHlZqdh4/ygIggBdi8ltoyIvKxXqBP92XvWJc89h5kjg7i1sXEQZxgMKO0GwfLa0SEx/iqIODU8JP4zaLKgUqtAWiOgSvxsWf/vb37B161aoVCpUVVU5TM0QBIGBhMhHGqUCGqX7X01PDYbdR85C12Jyef7uRYXQKFsbEvYjG0Hjqefw2FeWwB8D+eRjCeMByYIgxNRniy3hR4vp0lTahKhZa0eRx++GxZNPPomlS5fi8ccfRxwzAxGFlLXB4G50w6qtxkpQSPUcGrRRP+85ljEeEBC4zT7JO7ZNUUWj3fq88HJezxeSziySBb+/aRgMBkyfPp1BhCgMwtJg8EWM9RzGOsYD8nWzT4pOzh1d9tN0Kbr5/ek/c+ZMbNiwIRBlIZkSAWgFATqjDtoWLbQtWsu/BQFim8+mUNMaTNAajBGXAYoiH+MBtbXZJzMXRS91ggJ5WamS56zTdCn6+d3VaTKZ8Nxzz+Gjjz7CkCFDXBbrrVy50t+XoDASRRHF3TOwR5UIvH+948lemcjR6/GKyOaFnHiaEkUUTIwHZE9qs0+KXoIgYOP9o1xSnHuMSQYtEN/keCyKFtnHIr8bFv/+97+Rk5MDANi7d6/fBSJ50Zv0lkaFG7Uq1aUdkCmcrD1Fu91kigppBiiKWYwH5ODSZp8Q2VMdKwRB8G167gtDAOfOSWYNjGh+Nyy2b98eiHJQBPjwxn+ic8euAIAz509i0ubJACw9EmqD0XYdF2mFnlRPkRX/PyhUGA9IcrNPwYCU/q7no5G7hesAF6/bxKs9n2fWwIjWroZFSUmJV9cJgoDy8vL2vATJkDpeZdsFWRffmiN7wvOfQid2sD3mIq3w8LmniCgAGA/Inv1mn2roAZgBGBzOJ8kjcVHAtbVpHRevX2L//hccbG1oMGtgVGjXt5Da2lqHxzU1NTAajejXrx8A4MCBA1AoFMjNzfW7gC+//DKWL1+Ouro6DB06FKtXr0Z+fr7ktd999x1KS0tRXV2NI0eO4Pnnn8e8efP8LgO5UnmYWuNuLwUiij6hjAcUAexGJKpVD0AjitAKAkYg0+V8tPG0cB1oXbyuiZLdvwMiQRM1u6GTRbuyQm3fvt32Z/LkyRg7dix+/vln1NTUoKamBseOHcO4ceNw4403+lW4DRs2oKSkBEuWLEFNTQ2GDh2KoqIinDx5UvJ6rVaLK6+8Es888wy6devm12uTZ/Y9Lp8/Ng77/rsIuxcVhrFERBQOoYoHgKWjqVevXlCpVBgxYgR27drl8fqNGzeif//+UKlUGDx4MD744AOH83fddRcEQXD4M3HiRL/LGdOkdrz25XyUqPp1FXb+Zid2/mYnqn5dJXmNKIqXMvg5/pGaLiaKoi0rozUzI5Ec+d2lXF5ejq1btyI1tTXFWGpqKpYtW4YJEybgkUceafe9V65ciXvvvRezZs0CAFRUVGDz5s1Yu3YtHn/8cZfrhw8fjuHDhwOA5HkKDrUynqMTRBTUeGDtaKqoqMCIESOwatUqFBUV4YcffkDXrl1drv/yyy8xY8YMlJWV4aabbsL69esxZcoU1NTUYNCgQbbrJk6ciP/93/+1PU5MdJ+sgnyj+30NNB0zoDtfD3xwS7iLE1K2TevcEEURUyt2oNpNwg376cRtTbEikhO/97FobGxEQ0ODy/GGhgZcuHCh3fc1GAyorq5GYWFrL3hcXBwKCwuxY8eOdt+XiIiCI1jxAHDsaBo4cCAqKiqg0Wiwdu1ayetfeOEFTJw4EQsWLMCAAQPw1FNPYdiwYXjppZccrktMTES3bt1sf+wbReSnBI1lAS6nurjQtZgkGxWAZTrx6SaDbQTjjO6ix3Ub6rYWQxOFkN/dzLfeeitmzZqF8vJy29qHnTt3YsGCBbjtttvafd9Tp07BZDIhIyPD4XhGRgb279/vV5ntNTc3o7m52fa4sbExYPcmChT7ze648Z2FZcPG1rU+zLgSfsGKB9aOpoULF9qOtdXRtGPHDpeF5UVFRdi0aZPDsaqqKnTt2hWpqam47rrrsGzZMqSlpbW7rES+2r2oEBqlwmHPB4e9H+yyam2ftt1hJCSSPvessUtnZAyLZn43LCoqKjB//nz85je/QUtLi+Wm8fGYPXs2li9f7ncBg62srAxLly4NdzEim3WDG4MRauihA6cSWAUq9SA3vXM16b3xDo+ZcSX8ghUP2tPRVFdXJ3l9XV2d7fHEiRNx22234YorrsChQ4fwxBNPYNKkSdixYwcUCukEFeyMokDTKBXQKOM97kdkJSAxYhd/2+JYDKUfjkV+Nyw0Gg3+/Oc/Y/ny5Th06BAAoHfv3khK8i//cHp6OhQKBerr6x2O19fXB3Rh9sKFCx16tRobG5GZmRmw+8cC3YtDbZk+qtXAXlMfQCwKc6nCz9/Ug20FmVjc+E6lUMGozUK85ojLOWZcCb9gxYNgueOOO2z/Hjx4MIYMGYLevXujqqoK48ePl3wOO6MoWNztR3RaexE3vB+mQvmprTgWzemHY1XAVtwmJSVhyJAhgbodlEolcnNzUVlZiSlTpgAAzGYzKisrMWfOnIC9TmJiIhfrtYfdnM6CrMscTuXoz+MVQxOQ2CnEhZIXb1IPHr/QAHW8Gme0F13Oe9r0DojNje8EQYDuyP2A0ILqxYVQJyigM+pQ8E5BuItGdgIdD9rT0dStWzefO6auvPJKpKen4+DBg24bFuyMcuQ8Kqsz6sNYmsgntR+Rzhi5HUhScSySG0rUNlmn8ikpKcHMmTORl5eH/Px8rFq1Ck1NTbYsUcXFxejZsyfKysoAWObh7tu3z/bv48ePY8+ePUhOTkafPtx0JZDUCRrkdMlBbUOty7lalQp6kx7y7KMMj6pfV9kW2GlbtBi3cRwA1+k8zrjpnRQBEJWXsq6wbmJBezqaRo0ahcrKSoe9jD7++GOMGjXK7ev8/PPPOH36NLp37+72GnZGtWK2IvKGcxyL5IYStU3WUXn69OloaGhAaWkp6urqkJ2djS1bttjmzR49ehRxca2JrX755Rfk5OTYHq9YsQIrVqzA2LFjUVVVFeriRyZRdMwz7ibnuCAIWDdpnUNP1ZnzJzFp8+Rgl1C2RFF06JWxX6Bmn3pQNCe4nc6jNvVGqopNMiJnvnY0zZ07F2PHjkV5eTluvPFGvP3229i9ezdeffVVAMDFixexdOlS3H777ejWrRsOHTqERx99FH369EFREadyekPXonU/1VOvh0qhCm2BYoxzzGFiD5IDWTcsAGDOnDlue6ScGwu9evXiQiB/iCKwtgg4ttN2SC0IQC/pYX5BEBzms+viYyeIOH+giyIwteJLfF932nZMiDMg+arW623H7abzfPbYOGiUrb03qaokh8YyuccMI7HF146ma665BuvXr8eiRYvwxBNPoG/fvti0aZNtDwuFQoFvv/0W69atw7lz59CjRw9MmDABTz31FEckvGXXsVR15Geo7T7n9pr6QFCyk8SZtTNOZzQBgqH1mOC+F18qAYinfTCIwkn2DQsKoRatQ6PCBRfFAnD3gS5Ck1WBlP6uoxCA1AI1y3SeNE0ypzq1EzOMxB5fOpoAYNq0aZg2bZrk9Wq1Gh999FEgixdz7H/frtc9D52YYnusQyL2xdgaMG/Yrwezfm4VbCz1+T6e9sGIxcQeJB/8RkPS5h8ElBrotBeA96+3HGOQAODmA11ogUJiahMAGLVZMJsSoDUYAXC42h/MMEIkH3r7qZ9IhA6to9ax8OXWdeG6dGpxlUIFlak39IpDfr2efSyxjyPWfTCsYjGxB8kHGxYkTXlpx1SjOdwlkTXrB7rOqLP1OlkXautaTMh9ahsgJmD405VhLml0YIYRInna+vCvkNapdd8Qd19utQYT1Jc6Wdq6Vs58WbiuN5rRcOAeQGhxOTfs8k54a3a+x/ffViyx7oMRiRw2OjXqAEGAWhQRWT8NZC8yfxIpaEQAOkGw/YK764EhC9sHuuC4A7QmQQN1vIi8yzO4D0WAMcMIkfx4++V2wvOfQid2cDiWl5WKjfePiqjGhad04jldcmxZAFtZpr+2Z3TBUyyJ9DjikhmxVyZy9HqsY+MiYrFhQTaiKKK4ewb2qBKBS+lQqf24DwUREaBq44vv7iNnoWsxRVSvu/36kosHFkE0t87BbNJ2dfu89owueIolkRhHPG10ClhS1utMemiQHOKSUSBEzm8xBZ3WqLM0KiQYtVlRnzrQeb6sPXW8ul0f3tyHgohinf1n5+ePjYNakw7AMi3KloQhwujtpgmLZiUgtjYsqo+cC3hDKZpiidRGpwCg051GwXs3hLl05K/o+CmlgLBfiGc8MB86c+twde7lXaPmQ01KW/Nlc7rmYN3EdRHXMyRrBqc9UhI0TBBAFOXUyvioiyWfPTYOaZrkiG4ohZ7ERqdu9s2iyBJdv90UMFvnFnq1EC9aeJovCwC1J2uhM+oc9u0gP63o4/g4cyRw9xY2LogookhNb7LP2sRMgBRL2LAgSZGcZcJf1qxOgKXBYZ93nPyUoLE0II595Xru2FeWHituqkVEYeRuWqwvU2I5ckGxKja/ORJ5YM3q5JkICC22HVOZPctLgmAZlbAf8jZoXUcvrERRenic06aIQs5sNuOsvsn2+IyuycPVkcnTtNi2psS2tc9OpGdwIvIGGxYUFM65yqNpKpUoWnbZVmiOtGvH1JgnCN6NSogisLZIejd4TpsiCimz2YwRb9zm9yZvOqPO1lmgM5oAwQCICYEookeiKHqVVcnTtNjak7U4oz9j2adIojOJmQCJ2LCgIHHOVR6Jecrd0Zv0bnfZzukqlb+c2qVFK92oADhtiijEzuqb3DYqcvR6pKq8+110zvqT0t+SdVAUi/wuozuiKGJqxQ5Uu9kHwl1ssm12ajcltq2psdGUvYmoPfjTTwHjKVe53PKUO/de6YxtL647o7sIXYsJZ7QXbcc+vLUSndWtubbbm5aW2jD/oGU3eE/TpogoJP4+YRM6q5OAFi3Ufx5m2Sk5Ls7t9WqFCjl6PWpV0inL4zVHoDfpkYTgjFzoWkySjQpAxO6j9Tiju9ia8tR+JEK0pJFNFBKgNPaGId61YRULqdiJfCGPb3kUFaRylcsx/Z5k75VgQEr/1vP211q57BAKb9djkN+UGo5OEIWT3Wdhz1dzobF73BZBELDuxEnoBAFYcNCyRgqWzhqpz9X20BqMADxNv7Wsi/vssXHQKBXQGowo2jAdCtUJt1Nac5/aZrc/xT2A0OJ6TZSnYpcFrrWLKPxtoKCQc65y971XFnqjGUnWWCIq3e4Qqjb19nr4n4goonnaYyBzpK2x4I4AWBoj8Wrbte7WInhLFEVYv1bmLtsGHVpHDgZ273BpihPQ1Gy0rYu74f3W53saaDBqs5zWfggY2C3ddk8rrpsIMq61izjy/OZH0U+qB8J5w7QQ2L2oEBqlAqe1Fx0CjpX9DqHWni6rVFUS4jwM/1M7GLTS/yYi2dD9vgaajq37HIWr51jXYoK75sy+E424eslHlgeCASn9pdfFmfTd8dH0DbaOMK3BhDHPbgfEBOxedL3DZz4bEWHAtXYRhw2LGGY2mXD2QoPt8dnGUwG7tzXzh2TWD089ECFm3a9DZ/SUAtCyQ2iaJlm2ozBRg+sniOQvIfBTE7UGE9Tx7qcySWV10hpaGxafPToOmuQOEEVgWsUO7DvRKPk626dthyZBA12L6dJUpwSMeeZLp6ssQ9axvJ+TLHGtXUTgb0yMMptM+PXrw/BDojko97fP/OGS9cNTDwTg1bC6FHebGjmzNXYA7kMhB542zQN8+nlo68sJEYWZw6hk6z4YllECpe2xfbYmd1md1NBjnwrQCQKEOAMgGCAIwMYHhgGi0va7rzPqbOsoNAkaaBI0UMeLyLs8g3tOhJn9ruQ6uxT1krjWLiKwYRGjzl5ocNuo6Ncch9SULj7f01PmD7dZP6w9EJeIomhZ4OfFF337DEyeNjWSYl2oLbVoz/7Lqf2HHgWJ1KZ59nyYZuHpywkRyYBdT7NaEIBemQAAIa4Zol1I2n3kjC2ToKesTsXdM7BHlQi8f73DGYfN7ATXBgL3nJAH++QuaqER8RJJVCiysGFBeG/c35DaId32ODWlC+IUvvfUOGT+mPstoNTgjPYiJm2eDMDuC7vB2Dov1q4HwtfGgX3g8LSpkS+M2iyMeeZzAAwoIeXtpnkSVPGt61zU0ANo/XZi/+WEiMKkrVFJAMlXPe3w2N3eFtZ1cQCg055CwfuJkverPVkLnVHnMWsf95wIj7Z2KAcAfYsJHJuITPyNIqR2SEdap24BuZct88eqwZcOtPZIjXn2/wFiItTQ4/tLgxr2WT18bRzUnqzF8QsNUMeroW1pHeG4eGARRLPS4dr+3VLwl3tGQBDsFucBqF5cCHWCAqIo4s7Xd6HmSBOkGhUcFpcv+/+tatUDDmkwvzZfBQRx4y0i8oKbUUl1cxNy1l/r0yi3w7oHY+tXmKpbP4BaneawmR3Jk7vRotPn6nHDh38KU6koUNiwoMBpo1dKjWbo4Ni7dLrJAI1wadqR3YeMc+Ng2OWd8NbsfAiCAG2LFuM2jgMgvbeEaFY6TIcBgP0nmpH31Kd2RyznLftQWH4N/u/+Ag6LRyI30+ZEAFcrfoROdxqI6+BwjhsZErknms3QaS84HNM1XXRztZckRiUFwGV/C4e9LQxNQHwcYDBCDb1L/LAntaeQde0c19DJj9RokU7JzrtowIYFBY5Ur5T2NPD+jQCAjx8ZBbUmDdqLjdC+IkAtihjz3PbW3OP2m9Q5NQ5qjmghIBGahHiI5gS3e0sojb2xd8lNiIuzrr1wnyHEeRSCw+JRYO63gCYNTRfP4/6NBZJzrwGn+ddEZCOazdhfdg2yjPsdjqsFAci6LOCvZxvlNouAKEJnbu3cUb/QHxBFaAB8rwK+M2cBhtGAdRSjjZTUHLkgCj1+i4oFUntGeNrsyB/OvVJ2PUXWtRYAgF6ZyNHrgZ+kF2jtXlQITYJacuduX/eW2PzQaMmRCI5CRKFLa3b0cRcsjQo3vJl/TRSLtE2N+FP6GexRZbq9RqVODvwLX1rUbb+g254I4ArFUaC8F6zRSyfR2FHHq5HTNQe1J2td7pHTNQfqeHWgS05BoGu6CG38eaBF63avEpInNiyinSjCvHYC9D9/7Xg8SL1PzjxliqpVqfDx/DyoNWkALMPVk96znNMoFbYpStK831uCIxGx7cMb/4nOHbsCAOdfE7VBb9J7bJTndMmGJlApP9uYPptneAGiWQkBInpfUYbD7otl2dEbl5KITFwnOf2JUyAjR+fX8hzWywGOazJJvvhtK8qZmy9ipvEI9kj0ANkEsdfWIVPUJTpBQMGlRo3DKEYbrKlfmQKWfKEWza0BiikMKYY5b4oqxX6jVPtGuVVAv5xLTJ8VW7TAu9cBABRXrbAdP+zhNjldcqC2i2OCIHA0MgJ5Ggn72nwVrkYiRy8igOwbFi+//DKWL1+Ouro6DB06FKtXr0Z+fr7b6zdu3IjFixfj8OHD6Nu3L5599lnccMMNbq+PZO6ChP10oLMXGjz2PqlNvZEajGFtqwQNhMyR0Nj1SKlF0e0oBuB+uNp5ShTFOOv86jbmWav/PKy1QWE/zYKNjIgT6HggiiKWLFmCNWvW4Ny5c7j22mvxyiuvoG/fvqF4OyHVnk1R1fGq4H9Bd5o+q0nQIKdLDmobXKcy9U/tj3WT1rkc50hEdBDspjHr5u4H4i3ToS1rMROxj//HEUHWDYsNGzagpKQEFRUVGDFiBFatWoWioiL88MMP6Nq1q8v1X375JWbMmIGysjLcdNNNWL9+PaZMmYKamhoMGjQoDO8geDwFif7NBqw7UW95YDfl6e8TNrn0PkmtSQgoiR4pAcA660Z4Eh8U9kHCU75rpoCNcdaNtqTmZHvzZcio4y6uESQY8eC5557Diy++iHXr1uGKK67A4sWLUVRUhH379kHlpuMjUnnaFFVKezdK9ZcgCFg3iVOZYl5iAhCfACEuDjohzrLIhiKCIMp4e8MRI0Zg+PDheOmllwAAZrMZmZmZePDBB/H444+7XD99+nQ0NTXhX//6l+3YyJEjkZ2djYqKCq9es7GxER07dsRPRw4gpUNKYN5IEJxtPIVbt8/w6TlVU79AWlKHti+UGVEUufiaLEQRWDvRYU62VhAw4lLDomradqidUlZ+MGkL0jSWUTmd7jQKPrgFAPBh0QaoVZ1D/AYCw34TS+tn1vnz59GhQ+T9fnsr0PFAFEX06NEDjzzyCObPnw8AOH/+PDIyMvDGG2/gjjvu8KpckRgznDdFldLejVKJ2kvbosWI9SMkz5n03fHR9A2W9ZKGJkvGMAC639cEdTp3tAhlzJDtiIXBYEB1dTUWLlxoOxYXF4fCwkLs2LFD8jk7duxASUmJw7GioiJs2rTJ7es0NzejubnZ9rix0ZKW9IYPboFCHRkfqtYgYRZFTPz7LBjij7tcE/QpT0HExddkI5XS2KgDLu1rUnDpb3tjnt9lS12sFhoRfyml8aSPpge9uMFSdcvHAdvUMhIEIx789NNPqKurQ2Fhoe18x44dMWLECOzYscNtwyIaYkYgN0UlChRPGb0UqhO44f1ftR6wjlJf6igiz0IZM2T7be3UqVMwmUzIyMhwOJ6RkYH9+/dLPqeurk7y+rq6OrevU1ZWhqVLl/pf4DDp1xyHK3sOsLVEv571Ac7qm1yuC/qUJ6JQcZqTrU7QuA1GRm0WILbu3KsTk5GjE3BQLduBWpIQjHhg/TsWY0Y4pjgRtUUqo5coihj712lojjsWxpKRL2TbsAiVhQsXOvRqNTY2IjMzEx/c8L6sh7WtnIer4+LikKaRf7mJAsVdeklRFAFR6TJdTjQXQa8/E8oiBhy/GIZPtMUMIjmRyui1a+a/XDtMpfbnIrdCGTNk27BIT0+HQqFAfX29w/H6+np06yY9nNOtWzefrgeAxMREJCa6Zk3q3CkjqucrE0UTX9NLJqk4DSSSBCMeWP+ur69H9+7dHa7Jzs52WxbGDKLQct9hyt83OZLt3BilUonc3FxUVlbajpnNZlRWVmLUqFGSzxk1apTD9QDw8ccfu72eiIjkLxjx4IorrkC3bt0crmlsbMTOnTsZM4iI2km2IxYAUFJSgpkzZyIvLw/5+flYtWoVmpqaMGvWLABAcXExevbsibKyMgDA3LlzMXbsWJSXl+PGG2/E22+/jd27d+PVV18N59sgIiI/BToeCIKAefPmYdmyZejbt68t3WyPHj0wZcqUcL1NIqKIJuuGxfTp09HQ0IDS0lLU1dUhOzsbW7ZssS22O3r0qMOC5GuuuQbr16/HokWL8MQTT6Bv377YtGlT1O1hQUQUa4IRDx599FE0NTXhvvvuw7lz5zB69Ghs2bIl6vawICIKFVnvYxEOsZITnoiiAz+zwov1T0SRJNifWbJdY0FERERERJGDDQsiIiIiIvKbrNdYhIN1Zph1N1UiIjmzflZxVmt4MGYQUSQJdsxgw8LJ6dOnAQCZmZlhLgkRkfdOnz6Njh07hrsYMYcxg4giUbBiBhsWTjp37gzAkmEkGBU+fPhwfP311wF/TlvXuDsvddz5mLvH1h1njx07FpQFQMGqq7auC0ZdAQhqfbWnrrx9XrDqSupYpP9sheP38Pz587j88sttn10UWsGMGfy99g1jhvei4WcrVHXlqdz+PicaYwYbFk6s6Qo7duwYlB9OhULh8329eU5b17g7L3Xc+Vhbjzt06BBRddXWdcGsKyA49dWeuvL2ecGqK6ljkf6zFc7fQ/tUqxQ6wYwZ/L32DWOG96LhZytUdeXutQLxnGiMGYxEIfaHP/whKM9p6xp356WOOx9r63GwBKuu2rouVurK2+cFq66kjsm5vmL195DCh7/XvmHM8F40/GyF8jOQMcN73MfCCXOSe4915RvWl/dYV95jXYUX6997rCvfsL68x7ryHvexCLHExEQsWbIEiYmJ4S6K7LGufMP68h7rynusq/Bi/XuPdeUb1pf3WFfeC3ZdccSCiIiIiIj8xhELIiIiIiLyGxsWRERERETkNzYsiIiIiIjIb2xYEBERERGR39iw8MG//vUv9OvXD3379sVrr70W7uLI3q233orU1FRMnTo13EWRtWPHjqGgoAADBw7EkCFDsHHjxnAXSbbOnTuHvLw8ZGdnY9CgQVizZk24ixQRtFotsrKyMH/+/HAXJaYwZviGMcM7jBneY8xoH39iBrNCecloNGLgwIHYvn07OnbsiNzcXHz55ZdIS0sLd9Fkq6qqChcuXMC6devw7rvvhrs4snXixAnU19cjOzsbdXV1yM3NxYEDB5CUlBTuosmOyWRCc3MzNBoNmpqaMGjQIOzevZu/h2148skncfDgQWRmZmLFihXhLk5MYMzwHWOGdxgzvMeY0T7+xAyOWHhp165duPrqq9GzZ08kJydj0qRJ2Lp1a7iLJWsFBQVISUkJdzFkr3v37sjOzgYAdOvWDenp6Thz5kx4CyVTCoUCGo0GANDc3AxRFMG+Ec9+/PFH7N+/H5MmTQp3UWIKY4bvGDO8w5jhPcYM3/kbM2KmYfHpp59i8uTJ6NGjBwRBwKZNm1yuefnll9GrVy+oVCqMGDECu3btsp375Zdf0LNnT9vjnj174vjx46Eoelj4W1+xJJB1VV1dDZPJhMzMzCCXOjwCUVfnzp3D0KFDcdlll2HBggVIT08PUelDLxD1NX/+fJSVlYWoxNGDMcM3jBneY8zwHmOGb+QQM2KmYdHU1IShQ4fi5Zdfljy/YcMGlJSUYMmSJaipqcHQoUNRVFSEkydPhrik8sD68l6g6urMmTMoLi7Gq6++Gopih0Ug6qpTp0745ptv8NNPP2H9+vWor68PVfFDzt/6ev/993HVVVfhqquuCmWxowI/A33D+vIeY4b3GDN8I4uYIcYgAOJ7773ncCw/P1/8wx/+YHtsMpnEHj16iGVlZaIoiuIXX3whTpkyxXZ+7ty54l//+teQlDfc2lNfVtu3bxdvv/32UBRTFtpbV3q9XhwzZoz45ptvhqqoYefPz5XVAw88IG7cuDGYxZSN9tTX448/Ll522WViVlaWmJaWJnbo0EFcunRpKIsdFRgzfMOY4T3GDO8xZvgmXDEjZkYsPDEYDKiurkZhYaHtWFxcHAoLC7Fjxw4AQH5+Pvbu3Yvjx4/j4sWL+PDDD1FUVBSuIoeVN/VFFt7UlSiKuOuuu3DdddfhzjvvDFdRw86buqqvr8eFCxcAAOfPn8enn36Kfv36haW84eZNfZWVleHYsWM4fPgwVqxYgXvvvRelpaXhKnLUYMzwDWOG9xgzvMeY4ZtQxYz4gJY6Qp06dQomkwkZGRkOxzMyMrB//34AQHx8PMrLyzFu3DiYzWY8+uijMZtVwJv6AoDCwkJ88803aGpqwmWXXYaNGzdi1KhRoS5uWHlTV1988QU2bNiAIUOG2OZDvvXWWxg8eHCoixtW3tTVkSNHcN9999kW4D344IMxV09W3v4eUuAxZviGMcN7jBneY8zwTahiBhsWPrj55ptx8803h7sYEWPbtm3hLkJEGD16NMxmc7iLERHy8/OxZ8+ecBcjIt11113hLkLMYczwDWOGdxgzvMeY0X7tjRmcCgUgPT0dCoXCZUFPfX09unXrFqZSyRfry3usK++xrnzD+gof1r1vWF/eY115j3Xlm1DVFxsWAJRKJXJzc1FZWWk7ZjabUVlZGXPDsN5gfXmPdeU91pVvWF/hw7r3DevLe6wr77GufBOq+oqZqVAXL17EwYMHbY9/+ukn7NmzB507d8bll1+OkpISzJw5E3l5ecjPz8eqVavQ1NSEWbNmhbHU4cP68h7rynusK9+wvsKHde8b1pf3WFfeY135Rhb15Ucmq4iyfft2EYDLn5kzZ9quWb16tXj55ZeLSqVSzM/PF7/66qvwFTjMWF/eY115j3XlG9ZX+LDufcP68h7rynusK9/Iob4EUeTe5kRERERE5B+usSAiIiIiIr+xYUFERERERH5jw4KIiIiIiPzGhgUREREREfmNDQsiIiIiIvIbGxZEREREROQ3NiyIiIiIiMhvbFgQEREREZHf2LAgIiIiIiK/sWFBRERERER+Y8OCiIiIiIj8xoYFRZ2CggLMmzcv4NeGgnN5QlW+06dPo2vXrjh8+HBQX+eOO+5AeXl5UF+DiMgXjBm+Y8wgd+LDXQAifxQUFCA7OxurVq2yHfv73/+OhISE8BUqgEL1Xp5++mnccsst6NWrV1BfZ9GiRfjVr36Fe+65Bx07dgzqaxEROWPMCAzGDHKHIxYUkQwGg9tznTt3RkpKSghL48hT2XwVivei1Wrx+uuvY/bs2UF9HQAYNGgQevfujb/85S9Bfy0iIivGjMBhzCBP2LCgoCsoKMCcOXMwZ84cdOzYEenp6Vi8eDFEUQQAbNmyBaNHj0anTp2QlpaGm266CYcOHZK8x7x585Ceno6ioiLcdddd+OSTT/DCCy9AEAQIgoDDhw+7DAWbzWY899xz6NOnDxITE3H55Zfj6aefliyr2WxGWVkZrrjiCqjVagwdOhTvvvuuV+/PvmzevK+mpiYUFxcjOTkZ3bt3lxzudX4vvXr1cuhpA4Ds7Gz88Y9/tD1+9913MXjwYKjVaqSlpaGwsBBNTU1uy//BBx8gMTERI0eOtB37/PPPkZCQAL1ebzt2+PBhCIKAI0eO2Mr24IMPYt68eUhNTUVGRgbWrFmDpqYmzJo1CykpKejTpw8+/PBDh9ebPHky3n77bfcVSkQxjTGDMcMeY0ZkYcOCQmLdunWIj4/Hrl278MILL2DlypV47bXXAFg+LEtKSrB7925UVlYiLi4Ot956K8xms8s9lEolvvjiC1RUVOCFF17AqFGjcO+99+LEiRM4ceIEMjMzXV574cKFeOaZZ7B48WLs27cP69evR0ZGhmQ5y8rK8Oabb6KiogLfffcdHn74Yfz2t7/FJ5980ub7sy+bN+9rwYIF+OSTT/D+++9j69atqKqqQk1Njc91a+/EiROYMWMG7r77bnz//feoqqrCbbfdZgvIUj777DPk5uY6HNuzZw8GDBgAlUplO1ZbW4vU1FRkZWU5vO/09HTs2rULDz74IB544AFMmzYN11xzDWpqajBhwgTceeed0Gq1tufk5+dj165daG5u9uu9ElH0YsxgzLBizIgwIlGQjR07VhwwYIBoNpttxx577DFxwIABktc3NDSIAMR///vfDvfIycmRvPfcuXPdHmtsbBQTExPFNWvWuC2b9Vq9Xi9qNBrxyy+/dLhm9uzZ4owZMzy+P6myeXpfFy5cEJVKpfjOO+/Yzp8+fVpUq9UO78f5/WVlZYnPP/+8w32HDh0qLlmyRBRFUayurhYBiIcPH26zPFa33HKLePfddzscu+eee8Ti4mKHY6WlpWJBQYFD2UaPHm17bDQaxaSkJPHOO++0HTtx4oQIQNyxY4ft2DfffONzGYkodjBmuL4vxgzGjEjBEQsKiZEjR0IQBNvjUaNG4ccff4TJZMKPP/6IGTNm4Morr0SHDh1si8GOHj3qcA/nHhJvfP/992hubsb48ePbvPbgwYPQarW4/vrrkZycbPvz5ptvugyzO5Mqm6f3dejQIRgMBowYMcJ2fefOndGvXz/f3qCToUOHYvz48Rg8eDCmTZuGNWvW4OzZsx6fo9PpHHqZAEvvU3Z2tsOx2tpal2NDhgyx/VuhUCAtLQ2DBw+2HbP28p08edJ2TK1WA4BDjxQRkT3GDMYMK8aMyMKsUBR2kydPRlZWFtasWYMePXrAbDZj0KBBLgvakpKSfL639QPJGxcvXgQAbN68GT179nQ4l5iY6PG5UmXz9n35Ii4uzmWIuqWlxfZvhUKBjz/+GF9++SW2bt2K1atX48knn8TOnTtxxRVXSN4zPT3dIZCYTCbs3bsXOTk5DtfV1NTg9ttvdzjmnH1EEASHY9YvBvZTFM6cOQMA6NKlS5vvl4jIGWOG9xgzKNQ4YkEhsXPnTofHX331Ffr27Ytz587hhx9+wKJFizB+/HgMGDCgzd4Se0qlEiaTye35vn37Qq1Wo7Kyss17DRw4EImJiTh69Cj69Onj8EdqHq4np0+f9vi+evfujYSEBId6OXv2LA4cOODxvl26dMGJEydsjxsbG/HTTz85XCMIAq699losXboUtbW1UCqVeO+999zeMycnB/v27bM9/uGHH6DX69GjRw/bsR07duD48eMuvU/tsXfvXlx22WVIT0/3+15EFJ0YMxgzrBgzIgtHLCgkjh49ipKSEvzud79DTU0NVq9ejfLycqSmpiItLQ2vvvoqunfvjqNHj+Lxxx/3+r69evXCzp07cfjwYSQnJ6Nz584O51UqFR577DE8+uijUCqVuPbaa9HQ0IDvvvvOJVVeSkoK5s+fj4cffhhmsxmjR4/G+fPn8cUXX6BDhw6YOXOm1+Vq630lJydj9uzZWLBgAdLS0tC1a1c8+eSTiIvz3Na/7rrr8MYbb2Dy5Mno1KkTSktLoVAobOd37tyJyspKTJgwAV27dsXOnTvR0NCAAQMGuL1nUVERFi5ciLNnzyI1NRV79uwBAKxevRoPPfQQDh48iIceeghAYNIifvbZZ5gwYYLf9yGi6MWYwZhhxZgRWdiwoJAoLi6GTqdDfn4+FAoF5s6di/vuuw+CIODtt9/GQw89hEGDBqFfv3548cUXUVBQ4NV958+fj5kzZ2LgwIHQ6XQuPTEAsHjxYsTHx6O0tBS//PILunfvjvvvv1/yfk899RS6dOmCsrIy/Oc//0GnTp0wbNgwPPHEEz6937i4uDbf1/Lly3Hx4kVMnjwZKSkpeOSRR3D+/HmP9124cCF++ukn3HTTTejYsSOeeuoph/fcoUMHfPrpp1i1ahUaGxuRlZWF8vJyTJo0ye09Bw8ejGHDhuGdd97B7373O+zZswdFRUX4z3/+g8GDB2PgwIFYunQpHnjgAbz44ot46623fKoLe3q9Hps2bcKWLVvafQ8iin6MGYwZAGNGJBJE58l3RAEmtdMpycvmzZuxYMEC7N27F5MmTcLw4cOxbNmygL/OK6+8gvfeew9bt24N+L2JKDowZsgfYwa5wxELIsKNN96IH3/8EcePH8c333yDu+++Oyivk5CQgNWrVwfl3kREFBqMGeQOGxZEBACYN28e6urqUF9f75D+L5DuueeeoNyXiIhCizGDpHAqFBERERER+Y3pZomIiIiIyG9sWBARERERkd/YsCAiIiIiIr+xYUFERERERH5jw4KIiIiIiPzGhgUREREREfmNDQsiIiIiIvIbGxZEREREROQ3NiyIiIiIiMhvbFgQEREREZHf2LAgIiIiIiK//X935ZjJG2SWTQAAAABJRU5ErkJggg==" + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAASoCAYAAABBmnYmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1f3/8fdk3xP2RVZRg4jghpEKgkhFtG6ttbVaQf3ary1aLba1tlZF22pXtVb9aqvQxa31p2jdWrWCK4goVVBAERWVfckCISSZ8/sjZnLPmeTOXDKTSTKv5+MRzZ1777nn3pnkfHIPM++QMcYIAAAAAAAAAAAgDWSkugMAAAAAAAAAAAAdhYkRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQAAAAAAAAAAkDaYGAEAAAAAAAAAAGmDiREAAAAAAAAAAJA2mBgBAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQDoRBYsWKBQKKRQKKQPP/ww1d0BACBtzZs3r8uPyZMnT1YoFNLkyZNT3ZVOaebMmVwfAECX8eGHH0Zqk3nz5qW6O50S1wdBMDECoFNq/kM+FArp5z//eeTxlStXJnSga/6DuPkrKytLffv21UknnaQ333yz3e0DANBe3jExFAopMzNT++yzj04++WS98sorqe7eXknGDWnvRMaCBQsS1i7a5r3m8fC+jkOhkPLy8rTffvvpsssu0+7du5PcWwDo2qgH4uMdmzIyMpSfn6999tlHX/ziFzVv3jyFw+GEHas7an6dzZw5M+a23mvdfL1LS0s1fvx4/f3vf09+Z4F2YmIEQKf361//Wtu2bUv6cSoqKjRmzBht3bpVTz75pKZNm6ba2lrfffbs2ZP0fgEAIEk5OTmRsWrTpk16/PHHNWnSJL322mtt7tPZxqnO1h+kRu/evVVRUaH+/ftrzZo1uuWWW/T973/fd5/GxkY1NjZ2UA8BoPOiHojfyJEjte+++2rr1q169tlndd5552n69Omd7np0BwceeKCOOOIIhcNhLVq0SGeddZbva1LqfK9LpB8mRgB0epWVlfrlL3/pu83HH3+sc889V/3791d2drYGDRqk73znO4EmVBYtWqQ33nhDc+bMkSRt3rxZ77zzjiT7Lat/+tOfdNxxxykvL0+/+MUvJEmfffaZzj//fA0cOFA5OTnad999df3116uhoSHS/r333qsjjzxSvXv3VnZ2tnr06KFp06bFLBYuv/xyhUIhFRQU6Nlnn7X64v0XscOGDVMoFNK1114ryf5Yrscee0wTJ06M/MvMhx56KO7rAgDoHAYMGKBFixbpzTff1Pz58yVJDQ0Nuu+++yTZ/+ryV7/6lQYNGqS8vLzI/nPnztXhhx+u/Px8FRYW6uijj9ajjz4aWe8dX/7yl7/opJNOUn5+vgYNGqTbbrvN6ks8417zvzj85je/qR/84Afq27evysvLNWzYMP35z3+WJC1cuNAaq4qKiiJjbbO33347ss2iRYsCXTPvv2R8/vnnddhhhyk/P1+HHXZYVFu33nqr9tlnHxUWFurss89WZWVlq20+9dRTmjRpkoqLi5Wfn6+JEyfq+eefT/p1PPfcc3XNNddowIAB6tGjh8455xxVV1dHttu+fbvOPPNMFRQUaMiQIfq///u/VvtfV1ena665Rvvvv79ycnLUt29fnX/++dqyZUtkm2uvvVahUEjDhg3TP/7xD40cOVKFhYU65phjtGrVKklNr7fzzjsvsk/zOTfXIX5OOukkLVq0SB988IEOOOAASU2vhdaO/5e//EUjRoxQTk6O1q1bF9dzIEkzZszQ/vvvr+LiYuXk5Gjo0KH67ne/q6qqqjb7tWnTJh144IEKhUI68sgjtWPHDqsvzVr76FPvz99tt92moUOHKi8vT9OnT4/0GwASgXog/nrg9ttv14oVK7Rx40Z94xvfkCT9+9//1nXXXRfZJui4+NBDD6m8vFx5eXn6whe+oLfffts6ZpA6Yd68efrSl76kgoICDR8+XHfffbfV1vPPP6/Ro0crLy9PEyZMiNyfcK1cuVJf/epX1adPH+Xk5OjAAw/UHXfcYW3TfL/giiuu0MUXX6xevXqpb9++uvTSSyPPVygUiozHf/7znwN9pOjtt9+u1157TU899ZQkKRwO68UXX4w6/g9+8AOdf/75Kisr07Rp0+J+DpYtW6bjjjtOAwYMUG5urgoLCzVu3Dj97W9/8+3XI488ouzsbOvTSNx7J1Lr715qPv/f/e53Ovvss1VcXKw+ffro6quvljEm5jVBF2AAoBOaNGmSkWT2228/U1xcbPLz882nn35q3n33XSPJSDJz5841xhizceNGM3DgQCPJ5ObmmlGjRpmsrCwjyYwePdrU1ta2eZwZM2ZE2jPGmLq6OnPBBRcYSSYnJ8ds3LjRGGPM2rVrI9vl5OSYXr16mVGjRpnrrrvObNmyxQwePNhIMsXFxWbMmDGR45933nmRY1166aUmLy/PHHDAAWbs2LEmNzc3ss/69euNMcY8//zzkeOsXbvW/PSnPzWSTEFBgXnuueei+vL8889H2h86dKiRZK655pqotnJzc80BBxxgSkpKjCSTkZFh3njjjUQ9XQCAJGoeE4cOHRp57PHHH4/8jr/00kuNMS1jWk5OjsnIyDAHHnig6dWrlzHGmOuvvz6y/ZAhQ0z//v0jy3/961+NMfb4kpuba4YPH2569+4deezRRx81xpi4x73mfufk5Jjs7GwzevRoM2bMGHPaaadF2i0uLjYVFRWmoqLCLF261Fx44YVGkhk/fnyknWuuucZIMgcccIDvdZo7d27U+Oh9LDc315SXl0f6OnToUFNfX2+MMeaxxx6LbNenTx8zePBgU1hYaI3JxhjzwAMPmFAoFNl/+PDhRpLJzMw0//nPf5J6HbOzs01xcXHkmJLMj3/848h2X/7ylyOPl5eXm8LCwsg5TJo0KbLdiSeeGOnzmDFjIrXBqFGjzK5du6xrnpWVZbKzs83IkSMj5/2FL3zBGGPMddddZ/bdd9/IMZufxz/+8Y9tPkfN286YMcMYY8wnn3wSeS2eeuqpUc95dna2CYVC5oADDjADBgwwa9eujes5MMaY0tJS06tXLzN27Firn2eccUZkm+afmUmTJplt27aZsWPHRs5lx44dVl+8P39uveZtKzc31+Tn55sDDzzQZGRkGEnmsMMOM+FwuM3rAgDxoB7Y+3rAGGN27dplBgwYYCSZvn37Rn4vBxkXs7OzI/ccsrOzjSSzzz77mJ07dxpjgtcJ2dnZZtiwYdbf6e+++64xxpj169dHxvGCggIzcuRIqzZpvh+yevVqU1paaiSZnj17mtGjR0f6MGfOnMj5N98vyM7ONj179jT77LNPpK277rrLGGNMRUWFKS4uNpJM7969I8/JZ599Fte1DofD1mOPPPJI1PFzcnJMfn6+Ofjgg8306dPjfg4eeeQRk5GRYYYOHWoOPfRQ06NHj8hxHn/88chxvNfnqaeeMjk5OUaSueGGG6L60nzvxBi7JnDbys3NNQMHDrSu2S233OL7OkTXwMQIgE6puXiqqKiIFCH/+7//2+rEyNVXXx0pIpYuXWqMaRo0m7e755572jyOd2LE+xUKhczdd98d2c5bvEyaNCky2dLQ0GCuvfZaI8n069fPbNq0yRhjzPz58yPtvPfee8aYpoKluWAyxpj33nsv0uaf/vQnY4z9h/asWbMiRZD3D/29mRj50Y9+ZIxpKq7KysqMJPO1r31tb54aAEAH895QqKioMIccckjkxkNWVpZZtGiRMcYe05588kljTNM4VVNTY/Lz840kc/rpp5vGxkaze/duc+SRR1o3WLzjy1lnnWXC4bCprq42+++/f2RMNsbEPe55+71s2bJIf7x99f7xaYwxb7zxRqQPzTcGRo8ebSSZn/3sZ77XKdbEyO9//3tjjDG33HJL1DEmTJhgJJkRI0aY6upq09DQYCZPnhx183vYsGFGkjn//PNNOBw24XDYnH766UaSmTBhQlKvY3Fxsfnkk09MY2OjOfzww6223n///cgxr7jiCmOMMStXroy8Tpqv84IFCyLbLVy40BhjzGeffRZ5fTTXI821lyTz2GOPGWOM+d73vhd5rPkmhff6xqO1mkuSGTRokFm3bl1kO+/x77jjDmOMMeFw2DQ2Nsb1HBhjIq+5Zj/5yU8iPzPNdVzz6/Dwww83FRUVRpI56qijTGVlZVRf4p0YycrKMsuXLzfGGPN///d/ke2eeuqpuK4RALSFemDv64FmJ598cmTdpk2b9mpcfPrpp40xxjz99NNRY1XQOuGMM84w4XDY/Pe//41q66qrrjJS02RB87jS/Jj3fsjMmTON1PSPQpvvN9x8881GksnPzzdVVVXGmJb7BcOHDzc7duwwtbW1kX9g6r030Px8Nf8jhnivtfvl7t98/N69e5uPP/7YGNP0Ooj3OVi/fr3ZsGFDpL3a2lqz3377GUnmnHPOiTze3NZ5550XaeOXv/xlq32Jd2Jk4sSJZs+ePWbPnj1m4sSJkdc9uj4+SgtAp3f55Zerd+/euvvuu/X+++9HrV+yZIkkqby8XIcddpgk6bTTTlNBQYEk6fXXX4/rOBUVFTriiCNUUlIiY4y+973v6b///W/UdhdddFHkrciZmZmRj8LauHGj+vbtq1AopNNOO02SZIzR4sWLJTV9xMWpp56qnj17KiMjQ/vvv3+kzc8++yzqOM1vU77//vt17LHHxnUObTnrrLMkSf3794+05b7lFwDQue3Zs0eLFy/WW2+9pT59+uikk07SwoULVVFRYW1XXl6u6dOnS2oap1asWBHJzPr617+ujIwM5ebm6itf+Yok6aOPPtLmzZutNr7+9a8rFAqpqKhIX/rSlyRJy5cvl6S4x71mxx57rMaOHRvpj59DDz00cj733HOPVq9ereXLl0c+gkOSrr/+eh111FGRr+uvvz6u69e8/6hRoyKPbdy4UZK0YsUKSdK0adNUVFSkzMxMffnLX7b237x5c+SjJO655x5lZGQoIyNDjzzyiCRFnbeU2Os4ZcoU7bPPPsrIyNDIkSNb7b+kyPNaXl6uMWPGWG14P75z0qRJCoVCGjhwYOT14X40SWlpqU4++eSo67Zp06aocw2iOWNk9OjRCoVC+uSTT/TNb34zKhA3Pz9f3/rWtyQ1fZzF1q1b434Onn32WY0ePVr5+fnWx2c0NDREvd6XLl2qxYsXa+jQofrXv/6lkpKSvT63gw8+WAcddJCklvpLou4CkDjUA3tfD7jjTNBxsfnjsKWmmqFHjx6Smn7H702dcPbZZysUCvnWJuXl5ZFx5cwzz4xqo/kcli9frsLCQoVCIV122WWSpNraWr311lvW9qeccopKS0uVl5en4cOHW8dsjwMPPFAVFRUaMGCApKaP4rrnnnuitvvKV76iwYMHS7Lvp0j+z0EoFNLll1+ugQMHKisrS/n5+ZH7Q63dT5k7d65qa2v1ve99Tz/84Q/bdW5nnHGGsrOzlZ2drTPOOENS0zVzf17Q9WSlugMAEEtxcbGuvPJKXX755brmmmuSdpzmAXfz5s0aNmyYqqqq9Otf/zrqMyv79evXZj+9BU2zgoIC1dTUaNq0adqxY4fy8vJ06KGHKjs7O1IctRYmWlRUpJqaGv3mN7/RF7/4ReXn50tqKgiaefdr67PQAQDdw9ChQ+P6jOe2xqlE8xv32tOf73znO1q8eLH++te/qri4WFLTzZQhQ4ZIktasWWPdXGieJIilrKxMkpSV1fInkNnLz4fed9991adPn6jH9yZENN7r2Nx/qeUc9rb/kqJuoElN/4Ai1jHbe1ypKWNk3rx5kpo+k3zWrFlasGCB/vOf/2jq1KmR7fr06aOMjNb/LZ/fc/CPf/wjEuY+YMAADR48WFu2bNEHH3wgKbruKiws1M6dO/XRRx/pr3/9q2bNmhVZ11x3UXMB6CyoB/auHqitrdXSpUslNY0vvXv3ttbHMy7GK946IZG1Se/evTVixIiox91JqETXE81uv/12TZ48WY2NjZowYYIWLVqkq6++Wueff761nd/rwO85OOecc/Tss89GJpKKior0zjvvqLq62vd+yv33369Zs2ZZ14axHc14xwiALmHWrFkaPHiw3njjjah148aNkyStWrUqsn7+/PnatWuXJOmII44IdKxQKBQpDHbv3t3q+taOn5WVpQceeECLFi3SokWL9Mwzz+g73/mOTj/9dK1atUo7duyQ1PSvR5YuXaqbb77Ztx9/+ctfVFxcrBdffFFnnnlmJBCtb9++kW1Wr14tqelfRTa335oHH3xQUtO/8GwObD/44IN9jw8A6Jrcceqggw6KTK4/+OCDCofDqqur08MPPyyp6QaL+8f73//+d0nSzp079cQTT0iSRo8eLSm+cc+vP1LLzZKdO3dGrTvzzDPVs2dPbdiwQb/85S8lSeeee25k/bx582SaPhJYxpjIDfb2aP6XmP/+97+1c+dONTY2Rv6FZ7M+ffpo6NChkqTDDjtML730UuTc//KXv+j6669XTk6OtU8ir6Mf7w2p5n6vXr066l+JNh9Tkq688srIMV966SVde+21uuCCC+I+pmTf9GrtuQzKrbvc1068z0HzP3YpLi7W2rVrtXjxYh1//PFtHveII47QVVddJUm65JJLdP/990fWNdddmzZtitw0eeihh9ps6+2339a7774rqaX+kqi7AHQ86oEWlZWV+p//+R9t2LBBkvQ///M/CoVCgcfF7du365lnnpEkPfPMM9q+fbukpt/xe1Mn+GmuTVatWhUZV1obf5rPobS0VE8++WTkmI8//ri+973v6aijjor7mJL/cxIP7/Mc5H6K5P8cNI/tF154oZYvX64nn3xSRUVFbfbj+uuv1+jRo7VhwwZ98Ytf1Pr16yPrmsf25vspW7Zsidwnac3DDz+shoYGNTQ0RH5e+vXr1+rkF7qYDv/wLgCIgzdjpNmf/vQn6zMrveHrzSFqubm55qCDDtqr8PWKigozbty4SHCZ1HoAnfs5pZs2bYqEcOXk5ERCPpvD2IwxZtu2bZGgtOagsX79+kXabC0XZO3ateaZZ56JtPPNb34zEhA3fvz4SFvHHnusKSgoiAR8ttZWYWGhKS8vj5ybN48FANC5tRa22pq2PqfbmOBhq4WFhWb48OGmT58+kceaAzTjGfe8/W7tM6q9OR+jR482FRUVkdwKY4y5/PLLrb5UV1fHvE6xMkaaecfH5u2aPxNdagpkHTJkiMnNzbXGZGOMuffeeyOP9enTxxxyyCGR8bz5PDviOjY/197XxGmnnRY5RnNAa/M5eF8T06ZNi2xXXl5uRo0aFalRmq9Ha7ka3mvZfD28n4k+ZMgQU1FRYV566aU2n6PmbZsDXQ8++OBIQGyfPn3M1q1b2zx+s3ieg7vuuiuyzcCBA83w4cNNz549o/rv/sycd955RmoKpm3+XP533303UmMNHz7cHH744ZHl1toqLCw0+fn5ZtSoUZHtDjnkEMLXAbQb9UDweuDAAw80o0aNssb0448/3uzevTuyfZBxMTc31+Tn55uDDjooEuo9YMCASLZH0DrBe2/BvTfw2WefmYKCAiO1hK/n5eVF3Q9ZuXJlJKy8oKDAHHLIIWbIkCEmMzPTeq20lqvR/Nx4XyvNmWIZGRnm0EMPNdOmTYv7WldUVERySySZCy64wPf4QZ6DL3zhC5F+jRo1ypSVlUUC2FvLBZk7d65Zt26dGTRokJFkDj74YLNt2zZjjDFXXnllZLsJEyaY/v37R8bs1toqLCw0++yzjxW+ftNNN7V5XdB18I4RAF3GzJkzVV5eHvV43759tWjRIn3zm99UWVmZVq1apX79+umiiy7SwoULI3kgsSxevFhLlixRfX29Dj30UN1+++0655xzYu7Xp08fLVq0SOedd5569eoV+ezWiRMn6qabbpLU9Fmk//jHPzRq1CiFw2Hl5OTon//8Z8y2p06dqnvuuUehUEh//etfI58VOm/ePE2cOFGS9Mknn+j222+PfE5nax566CH169dPu3fv1r777qv7778/kscCAOj+rrrqKt1999067LDDIv/yffz48Zo/f36rY91dd92l0aNHq6amRgMHDtQtt9wS+dzweMa9WM4//3x95StfUWlpqZYvX67FixdbH2dw0UUXRf5F4Ze//GXffxGYCKeeeqpuuukm9e/fX9XV1TriiCP0s5/9LGq7b3zjG3r88cc1adIk1dbWatWqVSouLta5556r//mf/4naPtnX0evuu+/WV77yFeXl5amyslLXXXddq/9KdP78+br66qu1//7764MPPtCGDRt04IEH6qqrror8K+B4jRkzRj/96U/Vr18/ffzxx1q8eHHkX8/62bJlixYvXqwVK1aoV69e+tKXvqRnnnlGPXv2jLlvPM/BBRdcoNmzZ6t3796qrq7W5MmTdd1118Vs+6677tL06dNVX1+vM844Qy+//LJGjhypu+66S8OGDdP69evVu3dv3X777W22ccQRR+j3v/+9du7cqezsbB1//PGaP39+q/9SGgA6WrrVA++++67ef/999ezZU1OmTNE999yjp556Srm5uZFtgoyL/fv31wMPPBDp41FHHaWnnnoq8i6LoHWCnwEDBuixxx7TqFGj1NDQoOLiYt17771R25WXl+vVV1/VV7/6VRUUFGjFihUKh8M64YQT4s5h8/r+97+vqVOnqqCgQG+++Wbcma3vvvuuFi9erM2bN2vEiBG6/PLLdeutt8a1bzzPwbx583TssccqLy9Pu3bt0s033xyVpeYaNGiQnn76aZWVlentt9/WSSedpF27dunKK6/UOeeco7KyMq1evVrnnnuuvv71r7fZzi9+8Qsdd9xxqqysVK9evfSTn/xE3/3ud+M6N3RuIWMS8EFyAIBOZ8GCBZGg9bVr12rYsGGp7RAAoFP78MMPIyGczz//vCZPnpyyvtTV1alfv36qrKzUc889pylTpqSsL0F1puuIjjNz5kz9+c9/1qRJk3w/jgMAOrvONI51lnrg2muv1Zw5c+LOd0H30DwpN3fuXM2cOTO1nUFSEL4OAAAAoNM455xztGLFClVWVurwww/vUpMiAAAgMagHACQbEyMAAAAAOo17771X2dnZ+sIXvqA///nPqe4OAABIAeoBAMnGR2kBAAAAAAAAAIC0Qfg6AAAAAAAAAABIG0yMAAAAAAAAAACAtMHECAAAAAAAAAAASBtMjAAAAAAAAAAAgLTBxAgAAAAAAAAAAEgbTIwAAAAAAAAAAIC0wcQIAAAAAAAAAABIG0yMAAAAAAAAAACAtMHECAAAAAAAAAAASBtMjAAAAAAAAAAAgLTBxAgAAAAAAAAAAEgbTIwAAAAAAAAAAIC0wcQIAAAAAAAAAABIG0yMAAAAAAAAAACAtMHECAAAAAAAAAAASBtMjAAAAAAAAAAAgLTBxAgAAAAAAAAAAEgbTIwAAAAAAAAAAIC0wcQIAAAAAAAAAABIG0yMAAAAAAAAAACAtMHECAAAAAAAAAAASBtMjAAAAAAAAAAAgLTBxAgAAAAAAAAAAEgbTIwAAAAAAAAAAIC0wcQIAAAAAAAAAABIG0yMAAAAAAAAAACAtMHECAAAAAAAAAAASBtMjAAAAAAAAAAAgLTBxAgAAAAAAAAAAEgbTIwA6FYmT56sUCikUCikZcuWtbutyy67rF1tzJw5M9Kf+fPnt6stAAAQH+oBAABAPQDADxMjALqdCy+8UOvXr9fo0aP3av/zzjtPV111VUL6csstt2j9+vUJaQsAAMSPegAAAFAPAGgLEyMAup2CggL1799fWVlZgfdtbGzU448/rlNOOSUhfSktLVX//v0T0hYAAIgf9QAAAKAeANAWJkYAdBorV67Uscceq7y8PB1wwAF68sknE/KWV0mqrq7W2WefrcLCQg0YMEA33XRTq2+FfeWVV5Sdna1x48ZFtfHEE0+otLRU9957b6A2AQBA/KgHAAAA9QCAZGNiBECnsHLlSlVUVGjixIlasWKFfvnLX+rcc89Vdna2Ro0a1e72Z8+erZdfflmPPfaYnnnmGb344ot64403orZ77LHHdPLJJysUClmP33fffTrrrLN077336uyzzw7UJgAAiA/1AAAAoB4A0BGCv48MAJJg1qxZ+spXvqLrrrtOkjRixAj97W9/03vvvaecnJx2tV1dXa0///nPuu+++3TcccdJkubOnauBAwdGbfvoo4/qpptush677bbb9JOf/ET//Oc/NWnSpMBtAgCA+FAPAAAA6gEAHYGJEQAp99FHH+k///mP/vvf/1qP5+TkaOzYse1u/4MPPlB9fb2OPPLIyGOlpaUqLy+3tnv33Xf12WefRQoZSXrooYe0adMmvfzyy9bbZ+NtEwAAxId6AAAAUA8A6Ch8lBaAlFu2bFmrb4ldvnx5pPD56KOPdPLJJ+vQQw/V6NGj9fHHHye8H4899pi++MUvKi8vL/LYoYceqj59+uiee+6RMSbhxwQAAE2oBwAAAPUAgI7CxAiAlMvIyFBjY6MaGxsjjz399NORwmfPnj068cQTdfnll+vNN9/Uiy++qAEDBsTd/r777qvs7GwtWbIk8lhlZaVWr15tbffoo4/q1FNPtR4bMWKEnn/+eT366KO65JJLArcJAADiQz0AAACoBwB0FD5KC0DKHX744crOztaPf/xjzZo1S2+++aZ++MMfSpLGjh2rRx55REcddZQmT54sSerRo0eg9ouLizVjxgz94Ac/UM+ePdW3b19dc801ysjIiISobdq0Sa+//roee+yxqP0POOAAPf/885o8ebKysrJ08803x9UmAACIH/UAAACgHgDQUXjHCICUGzhwoP70pz/p73//u8aOHasHH3xQF154ofr376++ffvq7bfftj6rc2/87ne/0/jx4/WlL31JU6dO1dFHH60DDzww8rbYf/7znzryyCPVu3fvVvcvLy/Xf/7zH91///26/PLL42oTAADEj3oAAABQDwDoKLxjBECncM455+icc86JLM+ePTvy+aH9+vXT8uXLJUmNjY2qrKxUz549A7VfXFyse++9N7K8c+dOzZkzR9/61rckNb1N9pRTTrH2WbBggbV84IEHauPGjXG3CQAAgqEeAAAA1AMAOgLvGAHQKb311luRwmfmzJlas2aNRo8erSOOOCLm53TefvvtKioq0ttvvx157M0339T999+vNWvW6I033tDZZ58tSZHPDJ0wYYLOOuusQH2M1aYkXXTRRSoqKgrULgAAaEI9AAAAqAcAJEPIGGNS3QkAcPXr10+/+93vIsVEvD799FPV1tZKkoYMGaKcnBxJTUXK//zP/2jVqlXKycnR4Ycfrt/97nc6+OCD97qP8bS5adMmVVVVSZIGDBigwsLCvT4eAADphnoAAABQDwBIBiZGAAAAAAAAAABA2uCjtAAAAAAAAAAAQNpgYgQAAAAAAAAAAKQNJkbQrd12220aNmyY8vLyVFFRoddeey3VXepwL7zwgk4++WQNHDhQoVBI8+fPT3WXUuaGG27QuHHjVFxcrL59++q0007TqlWrUt2tDnfHHXdozJgxKikpUUlJicaPH6+nnnoq1d3qFG688UaFQiFddtllqe4KgASiHmhCTdCEeqAFNUHrqAeA7ouagHqgGfVAC+qB1lEPdH9MjKDbevDBBzV79mxdc801euONNzR27FhNmzZNmzZtSnXXOtTOnTs1duxY3XbbbanuSsotXLhQs2bN0qJFi/TMM8+ovr5exx9/vHbu3JnqrnWoQYMG6cYbb9TSpUv1+uuva8qUKTr11FO1YsWKVHctpZYsWaI777xTY8aMSXVXACQQ9UALaoIm1AMtqAmiUQ8A3Rc1QRPqgSbUAy2oB6JRD6QHwtfRbVVUVGjcuHH6wx/+IEkKh8MaPHiwLrnkEv3oRz9Kce9SIxQK6ZFHHtFpp52W6q50Cps3b1bfvn21cOFCHXPMManuTkr17NlTv/71r3XBBRekuispUVNTo8MOO0y33367fvazn+mQQw7RzTffnOpuAUgA6oHWURO0oB6wpXNNQD0AdG/UBNGoB1pQD9ioB6gH0gHvGEG3tGfPHi1dulRTp06NPJaRkaGpU6fq1VdfTWHP0JlUVlZKahrw01VjY6MeeOAB7dy5U+PHj091d1Jm1qxZOumkk6zfGQC6PuoBxIN6oAk1AfUA0J1REyAW6oEm1APUA+kkK9UdAJJhy5YtamxsVL9+/azH+/Xrp5UrV6aoV+hMwuGwLrvsMh199NEaPXp0qrvT4d5++22NHz9eu3fvVlFRkR555BGNGjUq1d1KiQceeEBvvPGGlixZkuquAEgw6gHEku71gERN0Ix6AOjeqAngh3qAeqAZ9UB6YWIEQFqaNWuWli9frpdeeinVXUmJ8vJyLVu2TJWVlXrooYc0Y8YMLVy4MO0Kn3Xr1unSSy/VM888o7y8vFR3BwDQwdK9HpCoCSTqAQBId9QD1AMS9UA6YmIE3VLv3r2VmZmpjRs3Wo9v3LhR/fv3T1Gv0FlcfPHFevzxx/XCCy9o0KBBqe5OSuTk5Gi//faTJB1++OFasmSJbrnlFt15550p7lnHWrp0qTZt2qTDDjss8lhjY6NeeOEF/eEPf1BdXZ0yMzNT2EMA7UE9AD/UA02oCagHgHRATYC2UA80oR6gHkhHZIygW8rJydHhhx+u5557LvJYOBzWc889l7afkQjJGKOLL75YjzzyiP7zn/9o+PDhqe5SpxEOh1VXV5fqbnS44447Tm+//baWLVsW+TriiCN09tlna9myZRQ9QBdHPYDWUA/4S8eagHoA6P6oCeCiHvBHPUA9kA54xwi6rdmzZ2vGjBk64ogjdOSRR+rmm2/Wzp07dd5556W6ax2qpqZG77//fmR57dq1WrZsmXr27KkhQ4aksGcdb9asWbrvvvv06KOPqri4WBs2bJAklZaWKj8/P8W96zhXXnmlpk+friFDhqi6ulr33XefFixYoH/961+p7lqHKy4ujvoM2cLCQvXq1SttP1sW6G6oB1pQEzShHmhBTdCEegBID9QETagHmlAPtKAeaEI9kH6YGEG39bWvfU2bN2/W1VdfrQ0bNuiQQw7R008/HRW21t29/vrrOvbYYyPLs2fPliTNmDFD8+bNS1GvUuOOO+6QJE2ePNl6fO7cuZo5c2bHdyhFNm3apHPPPVfr169XaWmpxowZo3/961/64he/mOquAUDCUQ+0oCZoQj3QgpoAQDqhJmhCPdCEeqAF9QDSVcgYY1LdCQAAAAAAAAAAgI5AxggAAAAAAAAAAEgbTIwAAAAAAAAAAIC0wcQIAAAAAAAAAABIG0yMAAAAAAAAAACAtMHECAAAAAAAAAAASBtMjAAAAAAAAAAAgLTBxAgAAAAAAAAAAEgbTIyg26urq9O1116rurq6VHclpbgOLbgWLbgWTbgOQPfHz3kLrkUTrkMLrkULrgXQvfEz3oJr0YTr0IJr0YJrkR5CxhiT6k4AyVRVVaXS0lJVVlaqpKQk1d1JGa5DC65FC65FE64D0P3xc96Ca9GE69CCa9GCawF0b/yMt+BaNOE6tOBatOBapAfeMQIAAAAAAAAAANIGEyMAAAAAAAAAACBtZKW6A0CyXXTRRZKk8vJyhUKhFPcmdZo/NS/dr4PEtfDiWjRpvg4PPvigzj//fGVmZqa4RwAS7a677pLE7zuJ3/3NuA4tuBYttq/fLkmqqanhozOAbmjx4sWS+H0n8bu/GdehBdeixbb12yRJn376KfVAN0bGCLq9YcOG6cCDDtLlP/ihsrOzJUlGUtMr3yjyE2BaHjefP2AijxtrfWSHVtoyLaui2jKf/6fpf572Pz+G8Xzfsr9p2a+5D5H9TMs2crYxdr/21NfpX4/+Q8ef8lVlZWY3d9HTvhR2++w5hjx9bu5/S989x5KnX55r5e2TkaSwibQZ6bf3BM3nZxX29uHz/4dbLpy3b839iTzuOTHv9W6o36PXFz2pI46crszMrJYTlzzfR12QlhMNe57gyPefn1PzQaLa8bTlvRDGPcbn6yLnKKt/Jmycvtrtmai23Qtvb9PY2KCl61/W4f3GK0OZ9jlabTU9Zrz9izx39jbWMTztRLZz2w43PddhE/68y2GFZT5/zsKf/98o3Lys5tP3rJOR+Xz/sAk3rTVN2yiyvmnLpqepad/w5z89jWrQGn2gKlUpS9n66/y/6pRTTkn7YhDoTs466yytfu89/fI3v927eiCyzljbtGxlt+VZFXc90LKtXRMksh6QWq8JElsPeM/V2H3w9MlIe10PNF8rtyZIaD0ge9+osTsR9YBaadd7kRJRDzT3y2ebdtcDkdddW9u1tLO39UDLa8+uCRJZD0jSLu3SCr2jsML69S2/1v/+7/8qNzdXALqHW2+9Vb/61a80969/868HPl/h/dXcPI4lqh5ofqy1miBR9YD3uG5NkKh6oOW8jafvnmPJ0zfrMU/7seoBNV8nE9c9gr2rB05UZlZW9PjW1j0C71gp93u1UQ94l1t5ckwbjwepB2S3F+sewV7VA57zjecewd7UA00vi/jvEexNPaDmto2iaoI92qN39I52apeGaagWbVqsPn36CN0LEyPo9oYPH64/3jNXR088RpHBXHZB0PStZ3COWjaRMajlJ2Yv2/IWPcbzf0/RE7YKmLa3i37M26cY+zWfhadACbdWeLXWptt+m+cWuVJRxzZhexA2pmVQbylejF30OI9FtlXzcrA2rCLD73tvcRMZzGN9H6D95u/Vcl5WwRUpFFrOzyq0PMeOtb/UWhumpVjxLLf2mPGsa3O/yDHCvvsa7zo13QhpLmDCar4xEo4UO2FjIsWO1FTURNZFtrf3C0eKG7ud1tZLUqMa9bHW6T29r3zl6/899/80ZcqUuH7XAOjczjnnHJUfOErfv+JH2psxXJHHPv9928q+8bbV+phprGNEfp1HjePtqwc+72H0uOwZu9tbD0itt5vIeqD5GG5NkNB6QK2si6sG8H7v037LxYpal9B6QPG2Yfa+HpBa3y6B9UDTIVofwxNVD0hqvvWijdqklVqlBjXoD3f/Qeeee66ysvjABaCru+OOO/TPxx/X/3v0n/IdwyX/cTwB9YCaH4saM6PH+r2tB+Q5bjz3CPamHmg6W6f9Ns+tjePGqgear5vPeN7ueqDlCYnvHoEJ8n3khRFf+845BaoHZB8/eBsmdj3gOUY89wj2ph6QFOgewd7UA02vXf97BJWq1Eqt0lZt0wjtqyWVr/MOkm6EjBEAAD6XqUwN1zBN0WT1Vz+dcNw09Qn1jrzlHgAAdH8hhdRf/TRJEzVS5brkgktUll2mf/zjHwqHw7EbAAAA3UKpSlWhI1WhI7VFW9W7tLcOCh2o2traVHcNCcDECAAAjixlaX/tpymaojKV6eijjtaAUH8tX7481V0DAAAdJKSQBmkfHatJ2lfDde6Z31TPzB56+umnI/8SGwAAdH+91FNf0FE6TIfoE32mngU9dOedd6q+vj7VXUM7MDECAEAbcpStAzVSUzRZecrT2IPHanBokD744INUdw0AAHSQDGVomIZqio7VPhqoU6afot4ZvfXyyy+numsAAKCDhBRSX/XVMZqgg3SQLr/ocpXllOm+++7jHaVdFBMjAADEkKc8HazROlaTJIW0/4j9NTw0TOvXr0911wAAQAfJVKZGaISO07HqrV6aNGGS+oX6admyZanuGgAA6CAhhTRQAzRZx2h/7acLzr5APTLL9M9//pN3lHYxTIwAABCnAhXoUI3VRE3QBm3U8IHDU90lAADQwbKVrXIdoON0rBrVqEMPPVRr1qxJdbcAAEAHylCGhmiwpmiyeqmXTjnlFB2WcWiqu4UAslLdAQAAugojo43aqJVarZBCuusvd6W6SwAAIAUqVamVWqVKVapcB2ifffZJdZcAAEAHq9Vuvaf3tE6faLAG6cnPnkp1lxAAEyMAAMRhi7boXa1SrWr1m1t/owsvvFC5ubmp7hYAAOhANarRSq3WRm3UcA3TO1veVa9evVLdLQAA0IH2aI/e1xqt1Yfqp356Z+U7Ki8vT3W3EBATIwAA+Niu7ZF/ETpCI/R6zVIVFhamulsAAKAD7VKtVmu1PtVnGqxB+viTj3mXCAAAaaZBDfpAa7VGH6iHemjJ0iU67LDDUt0t7CUmRgAAaEWVqrVKq7RZWzRcw7R623vq0aNHqrsFAAA6UJ3q9J7e10f6WAPUX6veW6X99tsv1d0CAAAdqFGN+lAf6X2tUaEK9dzC53TMMcekultoJyZGAADw2KldWq3V+kzrNVRD9Mn6T9S/f/9UdwsAAHSgetVrjT7QB1qr3uqtN//7psaMGZPqbgEAgA4UVljr9IlW6z3lKEePPPGIpk+frlAolOquIQGYGAEAQNJu7dbqz0PTBmqg1qxdo2HDhqW6WwAAoAM1qFEf6kO9rzUqUbFefOVFjR8/PtXdAgAAHcjI6DOt1yqtliTNe2CevvrVryojIyPFPUMiMTGCbq+kpERfO+MryokVkmzieijYWv9N2m6p1f1M7OaMz+5+uxhrqa1mY66I97hNx4yxdazVsfaPp0Pt7IPv/kk6tv1UxdrIr+0g+8Z4Yfm9fuJsz7S2vtXdjU93jE832/r5aXm8XvXqp756e8XbGjVqVKtbA+i6SkpK9Ksbb9Dtt/3Bf8MU1gOtbtrKA529Hoj32ImoB5qaSOJ4Hk8b7akH9nL/TlkPRHcscHvx1wOfP2paW9e+eqBBDSpSkZ749xOaOnUq/yIU6GZKSkr03LPPat8hg2JvHGh867z1QJBDt6seaGVlwuqBOBprdz0QTz+6Yj0Q6/h7Ww/4tZvQesB+pK17BImpB1rWhRVWpjJ16x9v1YwZM5Sdnd3mHui6Qiauu4tA17VhwwZ99NFHqe4GgE6uR48eOuCAA1LdDQBJsnPnTi1fvjzV3QDQyeXk5OiQQw5hQgTopowxev311xUOh1PdFQCd3NixY5WXl5fqbiCJmBgBAAAAAAAAAABpgw9GAwAAAAAAAAAAaYOJEQAAAAAAAAAAkDaYGAEAAAAAAAAAAGmDiREAAAAAAAAAAJA2mBgBAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJkSS49tprFQqFrK+RI0emulsAAKCDURMAAADqAQAAOp+sVHeguzrooIP07LPPRpazsrjUAACkI2oCAABAPQAAQOfCSJwkWVlZ6t+/f6q7AQAAUoyaAAAAUA8AANC58FFaSfLee+9p4MCB2nfffXX22Wfr448/TnWXAABAClATAAAA6gEAADqXkDHGpLoT3c1TTz2lmpoalZeXa/369ZozZ44+/fRTLV++XMXFxa3uU1dXp7q6ushyOBzWtm3b1KtXL4VCoY7qOgAAnZIxRtXV1Ro4cKAyMrrOv+sIWhNQDwAA0DbqAeoBAAASVg8YJN327dtNSUmJ+dOf/tTmNtdcc42RxBdffPHFF198+XytW7euA0fwxItVE1AP8MUXX3zxxVfsL+oBvvjiiy+++OKrvfUA7xjpIOPGjdPUqVN1ww03tLre/RchlZWVGjJkiN7/8CMVl5R0VDcBAOiUqquqtN+wodqxY4dKS0tT3Z128asJqAcAAGgb9QD1AAAAiaoHCF/vADU1NVqzZo2++c1vtrlNbm6ucnNzox4vLilRCYUPAACS1OU/PiJWTUA9AABAbNQDAACgvfVA1/lQzi7k+9//vhYuXKgPP/xQr7zyik4//XRlZmbqrLPOSnXXAABAB6ImAAAA1AMAAHQ+vGMkCT755BOdddZZ2rp1q/r06aMJEyZo0aJF6tOnT6q7BgAAOhA1AQAAoB4AAKDzYWIkCR544IFUdwEAAHQC1AQAAIB6AACAzoeP0gIAAAAAAAAAAGmDiREAAAAAAAAAAJA2mBgBAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQAAAAAAAAAAkDaYGAEAAAAAAAAAAGmDiREAAAAAAAAAAJA2mBgBAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQAAAAAAAAAAkDaYGAEAAAAAAAAAAGmDiREAAAAAAAAAAJA2mBgBAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQAAAAAAAAAAkDaYGAEAAAAAAAAAAGmDiREAAAAAAAAAAJA2mBgBAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQAAAAAAAAAAkDaYGAEAAAAAAAAAAGkja292eu+99/T++++rsrJSJSUl2n///bX//vsnum8AAAAAAAAAAAAJFffEyMqVK3XnnXfqgQce0KZNm6LW9+3bV2eddZa+9a1vaeTIkQntJAAAAAAAAAAAQCLE9VFa55xzjg4++GD9/ve/18aNG2WMUVFRkQYOHKiioiIZY7Rx40bdfPPNOvjgg3Xuuecmu98AAAAAAAAAAACBxTUxct9996lPnz6aNWuWnn76aW3dulWVlZVat26dKisrtXXrVj399NO6+OKL1atXL917773J7jcAAAAAAAAAAEBgcX2U1j333KOzzz5b2dnZra7v0aOHjj/+eB1//PH67W9/q7/97W8J7SQAAAAAAAAAAEAixDUxMnPmzLgbzM7O1nnnnbe3/QEAAAAAAAAAAEiauMPXm3388cdtrsvPz1efPn3a1SEAAAAAAAAAAIBkCTwxMmzYMIVCoTbXDxgwQD/72c8CvcsEAAAAAAAAAACgI8QVvu4yxrT59dlnn+mCCy7QE088kei+AgAAAAAAAAAAtEvgiZGbbrpJhYWFmjRpkn7/+9/r97//vSZNmqTCwkJdf/31mjZtmowxuummm5LRXwAAAAAAAAAAgL0W+KO0lixZol69eum5555TRkbTvMq3v/1t7bvvvlqxYoWeeOIJHXDAAXrjjTcS3lkAAAAAAAAAAID2CPyOkfnz56u2tla7d++OPLZnzx7V1dXpn//8pzIyMnTwwQdr165dCe0oAAAAAAAAAABAewV+x0hZWZnWr1+vMWPGaPr06ZKkZ555Rps2bdLAgQMlSRs2bFCvXr0S21MAAAAAAAAAAIB2Cjwx8qMf/Ujf/e539cEHH+j222+X1BTGLkk//vGP9dFHH+n111/XSSedlNieAgAAAAAAAAAAtFPgiZGLL75YQ4cO1a9//WutWLFCkjR69Gj94Ac/0Je+9CU1NDRoy5YtysvLS3hnAQAAAAAAAAAA2iNwxkhVVZVOPvlkvfDCC9q6dau2bt2qhQsX6ktf+pJeffVVZWVlqbS0VLm5ucnob5d04403KhQK6bLLLkt1VwAAQIpQDwAAAOoBAAA6h8ATI8cff7xqamqiHn/66ad1/PHHJ6RT3cmSJUt05513asyYManuCgAASBHqAQAAQD0AAEDnEXhi5LXXXtO0adOsyZEHH3xQp556qnbt2pXQznV1NTU1Ovvss/XHP/5RPXr0SHV3AABAClAPAAAA6gEAADqXwBMj5eXlWrRokU444QTV1NTo9ttv19lnn636+npNnz49GX3ssmbNmqWTTjpJU6dOjbltXV2dqqqqrC8AAND1UQ8AAADqAQAAOpfA4esLFy7U8ccfr1deeUVjxozRRx99JGOMzjvvPN11113J6GOX9MADD+iNN97QkiVL4tr+hhtu0Jw5c5Lcq+7LGHfZtL5h8/ok9SOUpHa7ixAXqBPhyUDXEuPXeqdFPdDxvK+VVNUDEr9lg6A+SCUuProW6gHEK8g9AuqB5GGM70x4MtB9JKoeCPyOkb59+2rBggWqqKjQhx9+KEn66U9/qrvvvluZmZmJ6VUXt27dOl166aW69957lZeXF9c+V155pSorKyNf69atS3IvAQBAMlEPAAAA6gEAADqnkIn1T+kkTZkyJeqxmpoavf766yoqKtIRRxzR1FgopOeeey7xvexi5s+fr9NPP92aKGpsbFQoFFJGRobq6upiTiJVVVWptLRUG7dtV0lJSbK73OXxjpGugX8t0pnwZKBrqaqqUv9ePVRZWdllxkXqgdTgHSNdD/VBKnHx0bVQD1APxIt3jHQOjPGdCU8Guo9E1QNxfZTWggUL2lxXU1MTWR/iN54k6bjjjtPbb79tPXbeeedp5MiRuuKKK3hnDQAAaYB6AAAAUA8AANA5xTUxcu655zLpEUBxcbFGjx5tPVZYWKhevXpFPQ4AALon6gEAAEA9AABA5xTXxMi8efNUU1OjoqKiZPcHaJP7ztc9DY2e78O+2wZ7c2ziJgGTOZ/YrqbTfJ4z1IkuQEfNOXeeM3YEuABBz6HbX9s0+AcL3jNsaAy3uR3Si1890LQcbnPb9n1YRueoDxL6kx+rsUR+tkg3/JXVWeqJTvN66igJHP866/l3hyE+WadQ7/zOR/qKVQ/UO/cIwtb2QQe45P1Qdsrf4Z30d1BnGXdjSeTv8K5xxu2UpEGvI69dZx23O2m32ufzi12foPsDcU2MSFLv3r113HHH6dRTT9XJJ5+sAQMGJKQD6cLv48gAAEB6oB4AAADUAwAApF5GvBtee+212r59u7797W9r8ODBOuqoo3TjjTfqnXfeSWb/AAAAAAAAAAAAEibuiZEf/ehHeuWVV/TZZ5/p9ttvV+/evTVnzhwdfPDBOuCAA/TDH/5QL7/8skz0ZxYAAAAAAAAAAAB0CnFPjDTr16+fvvWtb+nxxx/Xli1b9OCDD6qiokJ33323Jk6cqP79++vBBx9MRl8BAAAAAAAAAADaJe6MkdYUFhbqjDPO0BlnnKHGxkYtXLhQjz32mKqrqxPVPyBi954Ga7m6tj7yvRu+Hkt73tkUclKVkhWy5B4n5vbOcrLiZYP2y/c4MZoKdKQkBnH6Nd3uo/o0HrsfqQkCjrWp3Zb/z4v7s+jXj1g/tu16noIEECfyh609Yv782BsYp6NBwgtTFSZH+Dpa49YDVZ56QIoOW+0oMce0dvwgJfJHMEg/3E1DfisTKGjL3q5ED5VRA49POwFrryBjZzvquuDjfyIHpraPlRGzIHAX478Gvm0n8BMKkjqEt+NnxIRT+CkMnSRBtq1epPLSoHPxuz8gRd8jSNanm2TE/GWYOIn8W7w9ktmL9lzPqHs11rqAbe11L9rJ5xxaWW1J5Es8Vu0R5G/v2G351GZtH6adG3dPfrVWe+4HxDxuR97b+/yF3piggqBdEyNemZmZmjJliqZMmZKoJgEAAAAAAAAAABIq8EdpZWZmtvlVWFioCRMm6LnnnktGXwEAAAAAAAAAANol8MSIMabNr9raWr3yyiuaPn26XnnllWT0FwAAAAAAAAAAYK8Fnhi58sorVVhYqPLycs2ePVuzZ89WeXm5CgsLdckll2j06NFqaGjQjTfemIz+AgAAAAAAAAAA7LXAGSNVVVUqKirSG2+8ofz8fEnSddddp3333VcNDQ1asmSJRowYoUWLFiW8s0gve+obreXtO/dYy9W79ni2tYPVwjECnd2QoSBBXG6glXdfv3VNy/4H8mvLlZXpnsPeh6lm+OwbNPDabcs3lCtgKKd/W07QdNRrIOT53vcwUefsF9TnHjdWWJxfbrdfn1tb711018Xqh99zHrVtAgMFY/4MtKvtduwboPHY4fN7H1TrvtLad+VjBdu3J6ys45PtGhpJW01XQeqBpu1baoL21gNBxtZYoa7JCkzNcP6ZU6xz8utmrPP3jh1ugGN7ZDkn4fYj0/nlmZ2V2eb2sXLK/QJBw+FYvzedfX2vpb1zOOyEALvbRzfQ9rqo3+/u8+TXr7bXta7tk2wMt7mq1WN5f0Zi9aPRf3UM8YfT+wX1tvewfq+PmE2lMkDW+zy5q2Lsmshut3WsZAVoo2vw1gSx6oE6p37wvnSSWQ+4Yv2NF+Tv5SBjeNT6AD+hMduK8Xeq9+9Hd4yPxRuo7I7/7j0QV9Tf8d7f9+24B+SKdQ/A755IdB3ijkP2SbQnX7p9da2zb4C6z93ShN31Pm3F+B0f5HL41VatrfdrO/Y9gPj3cOs097je9bHuMUZr+55RrG3bI+g9tkSor29ftdgs8DtG/va3vyk7O1u5ubmRx/Ly8pSbm6v7779fubm5Ovzww1VZWZmQDgIAAAAAAAAAACRK4HeMZGVl6dNPP9Uxxxyj008/XZL0+OOPa926derVq5ckaceOHSorK0toRwEAAAAAAAAAANor8MTIRRddpJ///Od69dVX9eqrr0pqedvcd77zHW3evFmvvfaaJk2alNieAgAAAAAAAAAAtFPgiZHrr79effv21a9//Wt98sknkqTBgwfrBz/4gS6++GJVVVVp0aJF6tOnT8I7CwAAAAAAAAAA0B6BJ0Yk6ZJLLtEll1yi6upqSVJxcXFkXUlJicaOHZuY3iGtuIFd22rs8LQtlbXW8q7dDZHva/fYoTuxgn8yo8LC2t7XDfxyBQn1jt7XXs7KjD/2J0iItRsG5p6TX6BTZoyAs+xMOwC1wUnW8gv5jgrFDRAIFx285gS+uaGnnn5lxgiAi35e7HP0Xj43DM19Hcd6/fi+aKKC+gLHQrV5mOhgOr9uBEvKsg4V48BBAuDaE1ze3qyvIG25AbvefRtihKfFCuOLd50Ufb38gvuCh8m13VjgIFsrjLDtoMJYv4vQvXh/77j1wOYddj2we0+DteytCTJivAJjh4t6v09cSHOQ4FXJ/tUZNYa7IZ1OwGV08GbL927d4f66jz5WC/d3TMy6xGe1Oy5nZ2U46+2ddzthi9me83D3dc/JrYm8Qb5Bg2ujwlZ9Biq/INamZWd9gLHXuKmmfgdyVwfY3H2eYo1h/l2JPyC9aV+fMPoYIcqt9KSNPvltGZxfXRJYO37/BP77JNjmlmTFonv7FLO2Rrfid4/AvT+ws7btekByx/RYx7WX3fsHbbUbz3q/8dLvb+emfsX/U+aOSe74mJtt/43rrbVjjXfu+uzsjDbXB/0d5O2ne74Nje7YYO/r/n7w9iPWpYtVm3n39xvvpVbuc/jsG3b+SIt1PyFIQLhxH/G07W4b65yiAtW999DcfsS4llE1pNUP/xrQZR0rYHB7kNscvoHxrTUeYFPfM4y6uPEfJ7qp9o2fAW5d+XKvpd89AD9ZWXt/f8xqJ56NjDGt/vL2TojEsz0AAAAAAAAAAEAqxTW9sv/+++sPf/iDtmzZ4rvdtm3bdNttt6m8vDwhnQMAAAAAAAAAAEikuN4xsnbtWl166aWaPXu2jjzySI0bN07Dhg1TcXGxampq9NFHH+n111/XokWL1NDQEPXWJwAAAAAAAAAAgM4gromRFStW6Nprr9XDDz+sV155Ra+++mrUNsYYZWVl6cwzz9Q111yT8I4CAAAAAAAAAAC0V1wTIyNHjtQDDzygTZs26aGHHtJLL72k9957T5WVlSopKdH++++viRMn6owzzlDfvn2T3Wd0U9W19dby9prd1rI3bF2yg9caG+3QSTdk2I28cQOuvEFT7rog3ECz7Ez/MFFXKNQSEJflhEzl59o/rm6KT16uE57meedWTszj+q62RIeau6HnTliW5xq4wVluW26uVnQAWNsR2H4B8tH7uvwDwd0ANO/6WPmPQV5O7nMeKxvLLzwrKhysPWmYAUNNvcd2Q4Cjtg0Qxp7M8NAgz5Pvy1KtBOx6vk9WKKkU+2cg+kci/isU9Tz5bRuwX37ben+/BAmbRNdX7QlQdesBN2x9c2WdtdzgqQlivWrc15UbRt7o+eXgjulBagvJHgNjZfG5v2e89UOjc5wcp19R9YJPWy7397s7lnj3zc606w6/kNLW1ntrk6gQ81Db166pXzZvgLp7XLcGcq+993l1+xFzjPJZHzR42y/0NPr3X/whlbFC36OPFevYnnXOctRY6gbfh3xWOtx+uoG7ftu6bfvVm7F+R8SqefzqwFg/50HqlFj1pvc8YrabwHBn9xyT9bkRVo/IMk0rfvcI3PsDO3busZbd8dJP9N+0sf7m9fw9GGPsiPk3sGd9rLokO9M9VuvtSNF1yZ56+w+zBuceivf+gftjFtWPLDcg26092g75zs22t3XPyXv/IOrP44A//0H+Zgly+yBWveQ3uMS6VxV1ikELCu+u7rH82olxnCB/irnnkOneX4m/qZj1ZKPPDYdYod4x/162Vtqv+UC3boIWye252O5qb7Ox2goYXh/vcZseSPy9h6j7Z3spromRZn379tV3vvMdfec730nIwQEAAAAAAAAAADoSYSAAAAAAAAAAACBtMDECAAAAAAAAAADSBhMjAAAAAAAAAAAgbQTKGAESzRsItr3GDk/dWWuHqW2qtMNXa3bZQWx+QgFCedwt3aCxDGc60RsAFhXo6YSSuQGgudl2cGleTstyphNCFh1EareVldl2sJSboRTVlht4ltF24Jkb6hY7QDb+MO0g+V+hkH8IbqzAL3vbYKFNgUKgfYK4A+7qv23UA/7z3smMrfS7OrGO6wYb+on1egmyb6CL7fQxdrhzy/exfhW155xiiQrU9Tmuyy8UONa+7s+X3zn5XZ89zu9LdC9uQKg3XNUd7zdst+uB2jq7Xgh7QppDMcZSd0wPOwGO3jDNWOHq+Tn+r1Fv+GqsPFj35yZQgGyMfnpDrKN/5PxDX72XpzHkhrg6vxudXzruOXhrIPc4br1knGU3bNHblnvtYo0r3q1jXTv3uG4tYu0bICy71fXWL+kY4aHuzp4HYgUIu9yQYG9waVS2eozsUJd3+9jnYD+S49+0bz+CBMq3K9g7+kD24t63rKjseZ/6su0Y2s+3dUNN2xEg717L9tSA7rG8i941CcpaRScVXQ+0fY8g5v0B93eUpyaIVQ+4f6dnZ7ph4y37u39L52T6/x3m3iOwX+v+od6Nzi+DvLyWW3qxQt/zcuzbf26/szwXwb23kJ1lXw/3WH7jZXQ4vbUYtd4Otre3jRUQ7he2HfR3UPR6Tzdi3F9pT5h27BrRZ13cR4luKNa+QTLgE/k3bCxB+hH7NRD/cf3+to4p1oG89xhj7BqkFosVRu8erT33rgL86RJ9DnEO9JkxftfGi3eMAAAAAAAAAACAtBFoYqS+vl4jRozQYYcdFuxfTAMAAAAAAAAAAHQCgSZGsrOzVV1drcbGxsAfPQMAAAAAAAAAAJBqgT9Ka+bMmVq1apWWL1+ejP4AAAAAAAAAAAAkTeDw9Q0bNkiSxo0bp2OPPVb9+vWLvHskFArp7rvvTmwP0a1V1bYEpFU7YWmfbt1lLVdX28Fr2bktL986J5TNleGEp5WU5FrL3pDP0gI73jE/1w1Iz3KWW9ZHB4nZy25gul9ImRuWFh1+7Ozrhq97v3fD5WIkOPm9Hyzovn4BzzHDnnw60p7Az1ja84Y43kvnL/a1Tc4VTOynP+59H5MZph70devdPGi/gl3P+JPp/ELaggS4oevx1gOSXRN8tq3W3tYJW83Jz7YbC7W8WBp228HsbphfYZE95kcHT7fIz7XH/9IC+7huqLUbKO7l1hIFTtt19Y1tth3rZ98Nrs3Jbjsw1a1L3NDzPCdQ3nt9ooOSQ862dr+iQ8C9+9rbxigPrBB4yQ52d+uUWCGVfucUJFg6qpsxAmFjhrO3o27x7hs7fN4/FNe7OqqOi3ES7tqoEF1r43YknsYQ1bSVxhvsHPyPE+NatkNUUwlsPGg4rZf7cx2kV35/M0iSaWPgd3/HoXvxqwck+x6Be38gN98eS/c4NYDxjB2hqLGx7QBwSSrKs9vOyfYGlbtjqd12sVMvRAW7e8Zetw6Juifg8zMX69eoO+b7/mr0b6pdf9NEj/FtHy16mNn7v8Ni1hrtEPv3aHL+xg16DyTY34vJfBUkjvGpJ4Pb+0j5RNVtgblttaMpV6Dhth2vtb29j5Gon6rAEyN/+9vfFAqFZIzR008/HSkAjTFMjAAAAAAAAAAAgE4t8MTIMcccQ74IAAAAAAAAAADokgJPjCxYsCAJ3QAAAAAAAAAAAEi+wBMjzT744AMtXrxYBQUFOvXUUxPZJwAAAAAAAAAAgKQIPDHS2Nio//3f/9W8efNkjFFFRYWqqqo0c+ZM3XzzzbrkkkuS0U90E26I5XZPYNrGHXa46p4GO3i00QlPq/cEsWU5YWiZTlhofp5/yGmeJzwt2wkedcPUGhrtxM/GcMt6N0jNDTF123bD07wfU+cGVAYN7fSGtccKOPNrKmhAerCQyphbxL2KT/jrGtoTLNae5zhoMJ3f/u06h73fNamNBW4qocF98cn2CbJG1+PWAztq7ADVDdtbagI3iNwNVK/6cLu1nF2cG/m+dFCptc4NQM1yBlN3nM7zjOveoNXWtnWX/X5X+AWzS9F1Sq6nrnH7nOEsxwomtmsN/59P93ny/jzHCleP/auyZQun5FNWpt1WllMUOeWWb/Cmez3cjwS2LkGM+ijWWBL2SZSPbitW9HT8vzsTGuLZrvjsxLXl+zx2oqKvPV2xQpNjtBs7rLhl2f25TW44r9sLz98fQY8b1VjrbWVSD3QrfvcHJP97BO79ge2baqzlvB751nKmZ2zNd8bZQud+QW6MewLeIHP3HkBejt2Wu2/YOedGn3Hbd8ySXRO4Y3qsj8APNsbFaCtI0HL8mwbWnnNo13GDbNuBQ5hffdD+2mHv65RE6rjrmbifgUTu25GCvUb8Nm7vCTe1najrFriquOGGG3TPPfcoHA5HBrHTTz9dWVlZeuyxxxLTKwAAAAAAAAAAgCQIPDEyd+5cZWdna/78+ZHHioqKNHjwYL377ruJ7BsAAAAAAAAAAEBCBZ4Y+eSTTzRq1Cidcsop1uPFxcXavHlzwjoGAAAAAAAAAACQaIEnRnr37q21a9dq69atkcc+/vhjvfvuu+rTp09COwcAAAAAAAAAAJBIgcPXp02bpnnz5unggw+WJL3zzjs67LDDVF9frxNOOCHhHUT3Ul1rB6RtqWwJU6vyhKlLUuVn1dZybkmutZzlCTkrKsyx1vUqdpZL86zlHkX2sjckPVZAuhtq5s0HdQPOYgWeufw2DxoA2j5dJP0JXU5nDRYLFBjYSc+hO2pfgDA6M7ce2OyEq1bXttQEO9ZVWuuynMDUvJ52uGooyxuIao/pZU74eo0T3FrkhK8WebbPybLDVXOcesENT40Oj275PiPGP01ya5GGxpadjXFCXBvC1rIbzu7WIt6m3RDXWHWMWxP5iQpjdwOhTct659JGc/Y1PkHdUefrBLlH/Vrxth11HJcTdO9snxkjzN6f377+vwwb7ZeA1VLwMcs/BN1P9O/stl8DQYO53fq77aO0st5ng1jB4+569xT9xqmoAPVYgeo+Yg2H3n74XavWtC+cN+qKeLYN+uJz2/IGyvv1AV2Z3/0Byf8egXt/oGhgib3sjPllBS33CPr3KrDWlRTY9w/csSM6fL3t13essTJqV5/t3TVt/5TEFnPM99m3fX//pO6PJ/5us/neb+JaIYZgr5FkvqCa2g56v7Utgd8x8vOf/1yDBg3Shg0bJElVVVXatm2bBg4cqOuuuy4hnerq7rjjDo0ZM0YlJSUqKSnR+PHj9dRTT6W6WwAAoINREwAAAOoBAAA6n8DvGBkwYICWLVumP/zhD3rttdckSePGjdOsWbPUu3fvhHewKxo0aJBuvPFG7b///jLG6M9//rNOPfVUvfnmmzrooINS3T0AANBBqAkAAAD1AAAAnU/giZEXXnhBJSUluvrqq63H6+rqtGvXLhUUFLSxZ/o4+eSTreWf//znuuOOO7Ro0SKKHgAA0gg1AQAAoB4AAKDzCTwxMnnyZI0fP14vv/xy1ONLlixRQ0NDG3ump8bGRv3jH//Qzp07NX78+Da3q6urU11dXWS5qqqqI7oHAAA6SDw1AfUAAADdG/UAAACdQ+CJESk6PFGSdu7c2erj6ertt9/W+PHjtXv3bhUVFemRRx7RqFGj2tz+hhtu0Jw5czqwh6mxo6bOWq7yhKtu+8QOV3XDRHdt3mkt55W1hK3WOiGl1VlufM5uu20npLI4vyWYLc8JdXXDVbPdaB5PilmGE4fmRgFFZ7TFH7QWO1co/uAhgrUAdAV2oHLq+tFeQWqCdK0HKp1w1a2ewHXjJEvXrtthLecPLrOWy/oVRb53Q8x37Wm0lkucYNacbDdgvWV5T4O9b22d/Y+BcnPsfd3wVW+Qa8gZs93juqGvQUJenQz4Vvb1BmD7h6v7BbW6Ac9RR3GDzN2222i3VTESsoMExrrXPtSOUO9MN1zcrx8x+uWywqbdPgdoK9afZzHDxn33d57jGEHmQUIyg/zOd1/zUfvGCFCPf2Vrocl+Wydu4Ir9Z0AC/w73HMx9TjOiEkrb7lnwWwPxXa+A2fKdCvVANL/7A5L/PQL3/kBB3yJreafzYvEGqG/ctstu1/lFUpRv1wf5uW2Pl+6YHT22yne9/xjmtu2zsbtvrPUd9furC//MAuj+4g5fnzJliqZMmSJJeueddyLLU6ZMUUVFhZYvX67S0tKkdbSrKS8v17Jly7R48WJ9+9vf1owZM/TOO++0uf2VV16pysrKyNe6des6sLcAACBZgtQE1AMAAHRP1AMAAHQucb9jZMGCBQqFQgqFQqqqqtKCBQuitpk6dWoi+9al5eTkaL/99pMkHX744VqyZIluueUW3Xnnna1un5ubq9zc3I7sIgAA6ABBagLqAQAAuifqAQAAOpe4J0ZmzJghSfrzn/+sPn366MQTT4ysKygo0MiRI3X++ecnvofdRDgctj4jFAAApCdqAgAAQD0AAEBqxT0xMnfuXEnS888/r8MPPzyyjGhXXnmlpk+friFDhqi6ulr33XefFixYoH/961+p7hoAAOhA1AQAAIB6AACAzidw+PqHH36YhG6kzltvvRV4n1GjRikrq+1Lt2nTJp177rlav369SktLNWbMGP3rX//SF7/4xfZ0tUuqdUJOt1bZIegbtrSEnjXstkNMM5wg0gznmmdkt0TkeIPUJCnXJzxVig4E3V3f0s8sJ6g1y0lLMxltJzjGClpzQ8xSFR4YNIgTALq7ZNQDEjVBs1j1wOZKe7nRE2zeWG+Hr6sgx1pscELQd6yviXyflW8/P6U9C3z76YaPF+S17J+d6dYW9r5uyLkb/J7tqVXcde6+brB5pqdf7hAeFY7shmk724dCLcd2h3v3uG4YrffyuLVUVCB6gJooVgB4rMKkPWG0fiVRrGvdnn7E4r1+MQN0A/QjZiB2oHMIesLxp3H79dNdFbSe9m4e9RzH2tknyD26H8HC6dun7cZi/Xz59SPovt710UHt/m3Fy/3dkmjUA8kV5P6A5H+PwL0/YBrteqHYCVAv9ozpZUX2x5Tl59pjvHs/wb0n4B233drBHdNjBaiHfNYF03F/xHO/AEB3EXhiRJLuuOMOPfDAA/rss8/U2NgysIVCIa1ZsyZhnesIhxxyiEKhUPQfd23IyMjQ6tWrte+++7a5zd13352o7gEAgA6QjHpAoiYAAKAroR4AACB9BJ4YueWWWzR79mxJ0f9SLNn/eiNZFi9erD59+sTczhij0aNHd0CPAABAR6MeAAAA1AMAAKSHwBMjf/rTnyRJEydO1AsvvKA+ffpo4MCBWrdunU455ZSEdzDZJk2apP32209lZWVxbX/MMccoPz8/uZ0CAAAdinoAAABQDwAAkD4CT4ysWbNGffv21fPPP6/MzEyNGDFCzz//vAYPHqxRo0Ylo49J9fzzzwfa/sknn0xSTwAAQKpQDwAAAOoBAADSR4xItNbts88+CoVCysrK0vbt25Wbm6uePXvqlltuSXT/AAAAAAAAAAAAEibwO0Z69+6tLVu2SJIGDhyo1atXa/r06Vq9erWKi4sT3sGOZIzRQw89pOeff16bNm1SOBy21j/88MMp6lnXtb2mzlqu3lVvLTfWNUS+z8jJtNaZBvv6h+vtTJvarY2R7+t32u2Go8Ly8qylwvxsaznfc+ysDDsrx20p7DzgnV10t3W74cbwuNt7V8eO7Elcpk8XjQcCgKSgHki8WPXAHmd9yDMWm/pGa11OmT2m76m29/Wq3VhjLdc52xb0LrSWdxXlWMuVu/ZEvs/Osv89UVGeXUv0KM61lnPdwdWz3OgWEw53fYNnX7dOyYyx7A7y3oxAd/h3l7MygxQI9rZRp+9sbXzWZTj/dCvODORWjxtrX78zjKqPAlyOIH1uvXG/Bvw74j22z8sw6aKvQfwH9+tnIk8h5HudYx/d/68Gf36vkaDPk19QeKzXYqy/V/z3bXvjeMPL296/5Xu7T+1rN1gfqAcSLcj9Acn/HoF7f2CPbNucF/Oehly1JSPD/dl2x7QsZ7llvTvs+t0vaG7dbqvNbrWCewAAkEiB3zEyevRorVu3Th9//LFOPPFEGWP073//W5J03HHHJbyDHemyyy7TN7/5Ta1du1ZFRUUqLS21vgAAQPdHPQAAAKgHAADo3gK/Y+SPf/yjtmzZoh49eug3v/mN6uvrtXjxYo0ZM0a/+93vktHHDvPXv/5VDz/8sE488cRUdwUAAKQI9QAAAKAeAACge4t7YmTOnDk65phjdNRRR2mfffaJPP7HP/4xKR1LhdLSUu27776p7gYAAEgh6gEAAEA9AABA9xb3R2nNmTNHU6dOVVlZmcaPH68f/vCH+uc//6kdO3YksXsd69prr9WcOXNUW1ub6q4AAIAUoR4AAADUAwAAdG9xv2MkPz9ftbW1kY/Oeu211/Tb3/5WoVBIo0aN0sSJEzVx4kR9/etfT2Z/k+rMM8/U/fffr759+2rYsGHKzrZDNd94440U9azraGi0A+l2OOFqaz/ebi3XfFod+T7TCVZrdILYskrssLSeQ3tEvu/nBLGWFNrhqYVOQGputj0nmJ/b8qOQl233I1aIqXd1KOQfpBYriNQ/AI10NADoCNQD7RerHlizZqu1vOvjSruB3Z7w1Ty7XN3jbltq1wA5ngD1XCcQ3Q1xrd9pR7WGC+zn2hv+W5hr96Mw316ub7DPuTps1zHe+qIw3z6OK8MpCLy1SGZmhrOts7Nbi0StDrX6vdRaWHLbdU2sqiRWqKvf6piB6QHqpVSFy8Y+rnuSQQKl/Z8na8vAOdXJDLZOTPh6YiU2yt13rbO67XDx4M9b5wxRDnY9EtVuIlEPJIa3Jghyf0Dyv0eQ6YzZRf2KrOU+zj2CIk890bPEXufeL8h2xtpc5x6BNU5H3R9wx6GOCVvvnL8HAKBzi3tipLKyUq+//rpefPFFvfDCC3r55Ze1Y8cOGWO0fPlyLV++XHfeeWeXnhiZMWOGli5dqnPOOUf9+vWLGsAAAED3Rz0AAACoBwAA6N7inhjJysrSUUcdpaOOOko/+MEPZIzRm2++qd///ve677771NDQ0Mq/MutannjiCf3rX//ShAkTUt0VAACQItQDAACAegAAgO4t7okRSaqrq9PixYv14osv6sUXX9Srr76qmpqayITIoEGDktLJjjJ48GCVlJSkuhsAACCFqAcAAAD1AAAA3Vvc4esTJkxQWVmZjj32WP30pz/Vv//9b/Xt21czZ87U3LlztWbNGn300UfJ7GvS/fa3v9UPf/hDffjhh6nuCgAASBHqAQAAQD0AAED3Fvc7Rl555RWFQiH17dtXs2fP1je/+U31798/mX3rcOecc4527dqlESNGqKCgICpcbdu2bSnqWddR6QSmf7J5p7W8c0NNm/s2OtvKCVvPdoJKqza3tOWGvO6ub7SWe5fYH/OW5YSxegNT3c+OdYPXsuzctUApZzEyTa28y0R+hC0fhwsA8aMeaD+3Hvh0iz3G79rkjPnuP9XxBq7X2AHpoX6F1rLZ6NQanhqgeHgPa12xU1uUFBTb3XD6sae+pT4IO4O4G7ZekGu/Tno6tUZ2Vkvj7ric49Qafp9jH2tMd2uN6O3bbiDDSXL3KVNiR3TH7EfbYvc5/vDx2D3d+yKpffXV3u8c5NOLg4d67/1rL4hY/Yj9Oo6/LVeQ80jmJ0W372eibUGuXev7+5104l4EXeFTuKkHEsNbEwS5PyD53yPIccbZXdt2WcubnbbCnn1DzmvZfT2WFORYy+79BmtMj2rLbiz693DbYezRP7/xj3ft/dkHgHQU98RIfn6+amtrtXHjRv3oRz/SbbfdpmOOOUYTJkzQxIkTdeCBByaznx3ipptuIlANAIA0Rz0AAACoBwAA6N7inhiprKzU0qVL9eKLL+qFF17QK6+8or/97W+69957JUk9e/bUhAkT9MgjjySts8k2c+bMNtfV1tZ2XEcAAEDKUA8AAADqAQAAure4M0aysrJUUVGh73//+3rssce0ZcsWLV26VOecc44yMzO1detWPfbYY8nsa9J997vfbfXxnTt36sQTT+zg3gAAgFSgHgAAANQDAAB0b3G/Y0Rq+lcRr776ql588UW9+OKLWrx4sXbt2hV7xy7iiSeeUI8ePTRnzpzIYzt37tQJJ5yQwl4BAICORD0AAACoBwAA6N7inhg56qij9Oabb6qhoUGSHSiVmZmpQw45RBMnTkx8DzvQv//9b02cOFE9evTQZZddpurqak2bNk1ZWVl66qmnUt29TskN+NpWvdta3uwEoBX2L7KWa7e2rG9UnrUulGW/oal2Q7W1XDSkrM1+5WXbCekFefZLvcgJcs/xJKpnOsGj7rIbTGov+q2L5v+RtcE+z5aPvwWAxKAe2DvemsCtBzZuseuB/F4F1nJdlb192BvOnm3XA2ab8/Elznp51lfvbrBW7XKOu2dET2vZHUuL8lrqhUwnmb2x0S6CjBPyvdW5Bt7aJC/HrkvqM+19c5waKCuzpWNuyGtGqO0Q16b18l0fiKebyfzc/dhN+4fm2m11jgIpkaG4sQLV/dpOZoB6ssLEO7Ktjmw7Wcdtb59T9TPTGcPYqQf2jt89giD3ByT/ewTu/YHCwaXWcsOeRmu53jNuu3/TxwpMD/RzEWPbIE0lMoy9Pf0AgO4q7omR1157LfJ9Xl6ejjzySB1zzDGaOHGixo8fr6KiIp+9u4YRI0bo6aef1rHHHquMjAzdf//9ys3N1RNPPKHCwsJUdw8AAHQA6gEAAEA9AABA9xb3xMiJJ56oiRMnauLEiRo3bpyys7Nj79QFjRkzRo8//ri++MUvqqKiQo8//rjy8/NT3S0AANCBqAcAAAD1AAAA3VfcEyOPP/54MvuRMoceemirb4vMzc3VZ599pqOPPjry2BtvvNGRXQMAAB2EegAAAFAPAACQPgKFr3dHp512Wqq7AAAAUox6AAAAUA8AAJA+0n5i5Jprrkl1F7q0XXV2qOkH6+0AtF1O2KoJ2wlgjd4AVScQ3Wx3wlVLc63Fms+qIt+HssqsdZuy7MBTV4MTmNqjuKVtN7g9KgBV9nLIE9xGgBkAdE3UA+3nrQnceqDWCVsNO4GoVti6JDWEW74vtsd/OYHqqqyzl4uy29y2scbedvtHO6zlgt4Fba7fPqDEWjfA2bYx3HZtIUn5uS1ld3S54NRH4bC1nBHy1B7Ozo3OvpluMHeo7YBZt89ZmU6N47Nv+0Pe9z4wNqqlFNVf7QmLdoN+o6+H8VkXq+2213WV0HOkn3hfT8l+3VEPtJ/fPYJA9wck/3sEzv2Bukr7HkBRT3uc9v6dn5dj/81fUpBjLWc742GmM8hlZmS0uc4NdndfstGv4cS8qPmdDADBZcTeBAAAAAAAAAAAoHtI+4mRnj17asuWLXFvP2TIEH300UdJ7BEAAOho1AMAAIB6AACA9JH2H6W1Y8cOPfXUUyotLY1r+61bt6qxsTH2hgAAoMugHgAAANQDAACkj7gmRqZMmRJXY6FQSM8991y7OpQKM2bMSHUXAABAilEPAAAA6gEAANJDXBMjCxYsUCgUioQEukGMUlOAYGuPd3ZhJ9wSwWyrtgPOKnfusZbdMLX6Hfb2OQOKI9/vWbPdbtwJbcvsY4enDTigT+T7nkV2WFpZkR3EVuSEthXm2S/9HE8QW64Tvh4VphZyl1u+Dxqk1gV/ZACgW6IeaD9vTbCjxqkHGu16oMEJSA05QebmU094+0YnmD3LGYf362Hv66k9spzxv2yw/S+A63bVW8slpXnW8uB9WgLXywrtWqMgz2473wlydcNXvSVRnlNr5GTZn26b5SSohz07Z2TY27Yn9DzbZyt3W3fZPU504HescPH2sNsOFoKeuH60r46LtTNFIpAK1APt53ePIMj9Acn/HoF7f6BsqF0PlBTYo1xvT1h7zxJ7vHfD2N17Am4Yu3eMd8dh7gEAQNcR18TIMcccY016vP7666qrq9OYMWMkSW+99ZaysrJ01FFHJaeXAAAAAAAAAAAACRD3O0aa3XnnnVq6dKmWL1+uAw44QJK0evVqHX744TrllFOS0kkAAAAAAAAAAIBEyIi9ie0Xv/iFBg0aFJkUkaQDDjhAgwcP1m9/+9uEdg4AAAAAAAAAACCR4nrHiNeWLVv0ySef6Cc/+Ym+/OUvS5IeeeQRrVy5Uvn5+QnvIAAAAAAAAAAAQKIEnhg56aST9NBDD+nGG2/UjTfeGLUO3d+ehpZAuvc/q7LWNTTYYXWZ2fabksJOANqe1Vs9O9v7Zu3X07cfNTV1ke+L8u2XcthJ4XTD1HKcMDVvyKmbhRYr1JTwNABAOtrjjNvemqAxRj1Q7wSIm48r7ca9w3hfO1xVO+3A9LAT5J4/tCzyfa4TrlrshLG7oec9nID1Qk99UVNrH9cNV3frgeJ8u61Mz/ZuneIuNzTabVn7OsHAJuT2w79fIZ91QQK/YwWeu/1IrM5RfJmoixCkX0ES4/2fU6SO388BzxPShV89INn3CALdH5B87xGYRvsHsM5zf0CSwoV22/Wetmo9Ie6SlOvUAw2N9nHdMc26++DUAxkh/7HB/b3B7woASJ3AH6V111136fTTT5cxxvo67bTTdNdddyWjjx1mypQpmjNnTtTj27dv15QpU1LQIwAA0NGoBwAAAPUAAADdW+B3jJSVlen//b//pw8++EArVqyQJI0aNUojRoxIeOc62oIFC/T222/rzTff1L333qvCwkJJ0p49e7Rw4cIU9w4AAHQE6gEAAEA9AABA9xb4HSPN9t13X5188sk6+eSTu8WkSLNnn31WGzZs0FFHHaUPP/ww1d0BAAApQD0AAACoBwAA6L7imhjZd999dcYZZ0S+b+urO0yQDBgwQAsXLtTBBx+scePGacGCBanuEgAA6GDUAwAAgHoAAIDuK66P0vrwww/Vv3//yPdtSW7IYvI19z83N1f33Xeffvazn+mEE07QFVdcEaidG264QQ8//LBWrlyp/Px8feELX9Avf/lLlZeXJ6PbHa5y557I9xu311rrdu+wl+udgNRGJ+TMClPrZYerNnxih7ZlDyl1jtUStrrRCXHdvcdOLXUDU/v3tI9VXNASkJqb5Qai2m1nZzqBsZ7XfXRQe7DgNXvfttcBAJKHeiA+3npAsmuCuio7EH33dntZOc6/zXHGVvVsCU03KzZbq0J9C+1tP622FmvrWmqA+n1KrHX5+Xbp27vYDmdvCNsDc6Mn2LWsKNdaV+QGuWdnWstZmfZAvqe+pV9u6HvYDXJ39vX2KiPD/XdNdp+ja5H4Cwp3UwJi/bXvb5+93zdW8H0ieU8x6HHT4fWSDueYzhJVD0jduybwqwck+x5BoPsDUvQ9gs9axvwsZ4zf7Rx3s1Nb1NW3tB12xnv391uJEwrvbK6wp+1sd8x2x3Tn94Q7Thuz9+M0AKB94poYueaaazRo0CBJ0tVXX93lJ0DaYpzR8KqrrtKBBx6oGTNmBGpn4cKFmjVrlsaNG6eGhgb9+Mc/1vHHH6933nkn8rmkAACgc6IeAAAAiaoHJGoCAAA6o7gnRppde+21yepLyq1du1Z9+vSxHvvKV76ikSNH6vXXX4+7naefftpanjdvnvr27aulS5fqmGOOSUhfAQBAclAPAACARNUDEjUBAACdUVwTI14vvPCC7/quPKgPHTq01ccPOuggHXTQQXvdbmVlpSSpZ8+ee90GAADoGNQDAAAgWfWARE0AAEBnEHhiZPLkyW1+lFYoFFJDQ0Or69JVOBzWZZddpqOPPlqjR49uc7u6ujrV1dVFlquqqtrcFgAAdC3UAwAAQIqvJqAeAAAg+QJPjEjRn7WJts2aNUvLly/XSy+95LvdDTfcoDlz5nRQr4Jxg8lWf7Ij8n1ujh00WutMmmU46xvf3WI37glXVaUTzJprvzwbdtuTbo2egPW8Mjs81X2Juq9ZN4w91xOYmumkoWWE3VBTe9mb6RZ2gjTdeNRYYewAgO6pu9cDkpTnGfPt+FMpu9AOMa1/a5O9Qa98a9EbuB5ygsrV4Iylo3rby5UtN5IaPrVvJFUW2wHqYSfjtdgJW93uCZTdWl1nrSsrzLGXi+3lojy7rSxPwbDHCZd1A9XDptFaVpannnIuhxvi2ug8T+6/Z7KzaJ3A2Bhh69713TRysEtI1bXnOQcSI56aoCvXA373CALdH5B87xG4we0ZTti6O6h56xS3j1H3AJzlWOttIZ+lYPi9CwDJ5d63jWnt2rXW17Jly/TjH/9YmZmZeuCBB5LRxy7r4osv1uOPP67nn38+El7fliuvvFKVlZWRr3Xr1nVQLwEAQDJRDwAAACn+moB6AACA5Av8jpHWPmdzzJgxWrhwoW699VZ99atfTUjHujJjjC655BI98sgjWrBggYYPHx5zn9zcXOXm5sbcDgAAdA3UAwAAQApeE1APAACQfHv1UVpexhitXr1aa9as0Y4dOxLQpa5v1qxZuu+++/Too4+quLhYGzZskCSVlpYqPz8/xt4AAKA7oB4AAAASNQEAAJ1R4ImRzMzMNteVl5e3qzPdxR133CGpKajea+7cuZo5c2bHdwgAAHQ46gEAACBREwAA0BkFnhhpK3i9qKhIv/nNb9rdoe6gu4XTe4NHJWnjjpZI1dpaO/Csfpcdal6/ocZurMB5yW3a1fJ9mfNW4Rw7Asc4bZk+hZHvqz+zw1W9weySVJRfau/rPEeN3vTVGM9f2FnvzVN3Q3tMVGqpvRgdxu7tRrCkNYLZAKBzSad6QLJrgj019rYNm3bajbmB6p/Y43ioh+dfzxbZoeZya4tNTsjpkJYxPzPXrjvcoNa63XbdUuqExJd4wthzsux/HOQGtxbm2vu6waze8HU3xDWqQHCiWr1Bt+6eGZn+gbDuobyZuaGo48ZCsQEAe6M71QRB6gHJvkcQ6P6A5HuPwL0/EO5fZC3vdoLbt+e3jNP52fYY7o7x+Y12vzIz7Ocvw/N3vDsOu/cLXKGocHbPGO/ePghwT4D7AQAQXOCJkblz51rLoVBIffv2VUVFhXr06JGwjgEAAAAAAAAAACRa4ImRGTNmJKMfAAAAAAAAAAAASRd4YuQvf/lL3Nuee+65QZsHAAAAAAAAAABImsATIzNnzlQojg8vDIVCTIwAAAAAAAAAAIBOJfDESLPuFB4Gm/vUvv/pDms5L6flZVO93Q5ay3DDVF3FTniad/uwc+CNTlBrz3xnfUvYWmOmfdzq7XbQ2qptdj+L9ymxlnuX5kW+Hz6g2FpXVmj3OdcJavNOE4ac0/dmukuKmlSMClC1HvAPYnUF+ZEkmA0AEEuQekCya4KM7Bj1QC9nTHdCz7W7JbjVrKu0VoV6F9jb7mm0Fs2n1ZHvG3rm2etK7DG9ZoO9b7UTAp9T2rJ9Xpnd56ICu8+9nRon26mJvNvnZdvXrjDPCXl1gt2947Ybru5ya/RwVMhr24LUB7HqDmoNdEfu657XOdJBe+oBKcY9Ar/7A5L/PQLn/oAbxr4n3x6nt9W0hMbX9a+z1lXusgPlB/aya43+Pe3lsGk55xxj9znbuTfh/JGvqKsRavXbz8V/T4DfTwAQXIy/WqM9/vjjKigo0FVXXaW33npLb731ln7605+qqKhIjz/+uNauXau1a9fqgw8+SEZ/AQAAAAAAAAAA9lrgd4zccMMNGjJkiK677rrIY6NHj9Y//vEP/eIXv9BLL72U0A4CAAAAAAAAAAAkSuCJkddff11ZWVlauXKlRo4cKUlatWqVPv74Y61duzbhHQQAAAAAAAAAAEiUwBMjI0aM0LvvvqsxY8aovLxcUtPESGNjow466KCEdxAAAAAAAAAAACBRAk+M3HrrrTrllFO0c+dOrVixIvJ4YWGhbr311oR2DqmxrdoOLq/cWW8t797jCURttBO+6jbZgWfKdBK/dtltyRNqqko7AE1FOfZytR2IZuWOuQFnTkB6lhNqmuuEmtY3tqSkb9i6y1rnhpj1KrGDXDM8ietuuLp7+rF4j5XIsDSC1wAAQQWpByS7Jtizeae1LmY9kGuPy2poGZejwtbz2w5qjzpWnR2u3lhjHzevj912hhMCW9CjJdi1Z7FdlzS4NZCnz5JU4NQee+pb1uc5p+BqdMJmQ6GW5XDYPic3jD3TWXZrgAzPA+66sH0KUTIzvP2KFQLv31YQ1DHoLHgtIh21px6QnHsEQe4PSP73CNz7A8646x7LeAYmt487nVpi/TY7QL7eGeP7lLXUB/m5zr0GJ0A+17k3kencu/B202S4v2TcMd20udb9/RR7HE7cLzR+NwLoqgJPjBx77LF6//339Yc//EHvvPOOpKaMke985zvq169fwjsIAAAAAAAAAACQKIEnRiSpX79+uv766xPdFwAAAAAAAAAAgKSKa2Lkuuuu06BBg3T++efruuuu89326quvTkjHAAAAAAAAAAAAEi2uiZFrr71W48eP1/nnn69rr702KkfBi4kRAAAAAAAAAADQWcU1MTJkyBD1798/8r3fxAi6HjeUa+2Gamu5wQkArdrSEk5unHVu6Lk2VtnLBU7a6EZPOKv7unJCy6LC1Lybu8Gr9XYwaYOzvmaHHaaW36+45XsnPC3snKMbLpcR8pxTyA5lC4Xsc3B/cjLcR7yLzqV1g9aitf1zGTQAlR9xAEg/7akHJKcmiFUPuAHq2+xgV3mHTzd8fYezrTtmVXnCWHc59UGWHeK6u9YOfc3omW8te8fDTU5tUVTohrHbNUBWVIBq6+1KUoOTel5WaIfPNjS2HDs/x762UTGtTuN+Q3qMjNdWHkhcojq1BgB0Xt6aoF31gGTXBEHuD0jRg0W2p0Bw7w/kOrWHe4/As/2eGju4PcupSxqdewKNzjl5x/xMZzDNcsLVXdFDbfz1QvSY73uoWEdOGLeGZIwH0FXENTHy4Ycftvo9AAAAAAAAAABAV+I/lR2nxsZGzZ49W5dffnkimgMAAAAAAAAAAEiKhEyMNDQ06Oabb9bNN9+ciOYAAAAAAAAAAACSIiETIwAAAAAAAAAAAF1BXBkj6N42bLfD0mrr7JAy4yRp5RS3BILu+GCb3ZgbcFac67/eG7bWYAePRnH6paKW0NPQkFJrlRuelltq9yO/JM9aznGD3r37OgGy2Vn2sjdbLdMNPHWW3WA2l3dt7MCyxCWaEY4GAGhPPSA5NUHQeqDQCV/N9AxMW2vbXidFh6/2Kmhz25CzrXEC1XOK7EB1a1sneHX3HnvfYidAdrfTdk/PNXBri1yntnDHZW+Q6x6nXsrJtmuYkNPPjAw3jL1lfWOM0suvbDFOEHvQQFhj4g+bBQB0LG9NELMeKHLqgbU+9wiC3B+Q/O8RuPcHnFoie0CxtZzpGS9zy/KtdWWl9v2B3iV2P3s69w8KPfVEthO2nuPeP3DWu2OrPeYFGwAZLwGgfXjHCAAAAAAAAAAASBtxv2MkMzMz9kYAAAAAAAAAAACdWNwTI+7bJQEAAAAAAAAAALqauCdGZsyYkcx+AAAAAAAAAAAAJF3cEyNz585NZj/QgfY4YaAfb6q2lmudMNEdVXX2/jV7It9nOSGm9U7bUWFpfuGqu5zwtNwYH9/mCTUzdfZxw07AmbfPUnQoeqVPumjYCTENu++eKvCEwLvpZyH/YFI3ENUfQWwAgMTy1gTtqQckuyaod8f/WPWAO+ZXedoubjsQXZLkvqnZW4vU2StNjFD4+p311nKGp9Zo3OOEzzrJ5Zt22CHxBT3sYNdt1S3nNKRPobWuf0/7/OuceqqhseU8spxA+ahr7VT3ORlt11MZTrEQu3YItfIdAKCr87tH0J56QHLuEQS5PyAFu0fg9LN+yy5rudFTTzQ49w8aau3xv9YZ8yt32etL8lv6XVpk1ynF+fY5FeXb6/Oy7XsVmZ57F/7B7LHG3vaNzNw/AJCOCF8HAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQAAAAAAAAAAkDbiDl9H1+bNC1+3Zae1zg3edDNMc3Ptl0nt1pYQs/rNO+XLCTWVG3rqDWLrW2Cvq7JD3KJUe0LfnJQyNyBVGXYAamOeE/Lmkem0lecEvOXl2MvZnoA4N7AsVnhaIhGWBgCIxTiDvLcmaE89IMWoCWLVA7XOcm9PTeCEukYFrzqB6Qp7el5iHzer0A5ANWE7BLagtx2KnuWpF0qccFW3HjDOxe1RZB87Oyuj1e8l6SMn+L7M6WevkjzPkn3czAzn3zk5T1w4bD+Q4Qbbejh58sr0+SdU1B0A0HX51QOSXRN0aD3ghMAHukfg7rur1loMe+qJcM88a13I+cM95AxyWc6A6A1fd8fDTGdbtz5ocMfljJZl91q7/UgkxnEAiHNi5OOPP467wSFDhux1ZwAAAAAAAAAAAJIpromR4cOHx9VYKBRSQ0ND7A0BAAAAAAAAAABSIK6JEfetfwAAAAAAAAAAAF1RXBMjc+fOjXxfWVmpn/zkJxo3bpy+/OUvS5IeeeQRvfrqq/rZz36WnF4CAAAAAAAAAAAkQFwTIzNmzIh8f84556hXr1567rnnIkFQ3/72tzVixAgtWrQoOb1Eu22r3h35vmqnHVi2p8FO2txVZ38cWm1NnbWcke0JE3OCSFXnBJ45AWihQjv03BjPS9Dd1w0HddLBQv2LWvrkBJxlFdjHyethh68XOP3IyWoJMm1wkkdrnetRU2uHvNphtXYfM0P2u63c8DSf/NPA/N7YRbAaAECy6wFJqvTUBO2qByS7JghaDxQ4Jam3L05QuXbZ43Colz3Gm8a2B8Sw04+sfLcucQJSPdeg0l3n1BoZTnBr9m67n3nZLbWGMXaAep9S+xzccPa6+rBnnb1vvVO3GOPWT2pzvRsQ65xCVI6t+1T4HYjaAwA6L796QLJrgnbVA5JdEwS5P+DuK9l/QPvcH5Cix+WQZ9+8MmfcLbT7XOz0q4dzTkWe+iHHGZdjDX8Zbr89y+79Aret6LG17aMxDgNAbL5/3rRm/vz52r17t3bvbhlI9+zZo927d+vJJ59MaOcAAAAAAAAAAAASKa53jHiVlZVp/fr1Gjt2rKZNmyZJ+ve//61NmzZpwIABCe8gAAAAAAAAAABAogSeGLniiit06aWX6v3339eaNWsktXzswBVXXJHY3gEAAAAAAAAAACRQ4I/SuuSSS/Too49qwoQJKisrU1lZmSZMmKD58+fru9/9bjL6CAAAAAAAAAAAkBCB3zEiSSeffLJOPvnkRPcFCVTtBIR/smVn5Pvde+wAs+01dtBalhNSFnZCPfdUtoStFfUrttY1OMFsjc6xGpx+ecPFjJMOltWrwN7XCYQznrYadznHzbNf2nVbdlnLlTn2nGBeaV7k+5ziXGvdDidozb1eZZ6gtl6ediSpKM8ObcvPtfuV46SYZnlCUKND2Zwgd/nz7h4dzJ68JDZC3gCg8/CrBySpzjNOt6cekOyaIFY9UL/LPlaGEwIe9oStZvWwx9aoesDpt7zHCtsDYNgJU93jBLnv2VZrLWeXtRw7K98ew+udftQ7bW0vtuuHAk+NEHLG4d6ldu2R6QymBZ66pqbWqUOKcp1t7XMMNdjXwJv7bmQ/p+5z7gbXei9nJuM9AHQZQeoBya4J2lMPSHZNEOT+gOR/jyBWPdC4265FvH8U12yyz1+5doD69gy7LtnQ0w5rz+vRspxbYI+7vUrscbmHM04XF7jB7i3r83PsWiM7039c9l6e9g/Le98C9wAAdFWB3zHywgsv+H6hyQsvvKCTTz5ZAwcOVCgU0vz581PdJQAA0MGoBwAAAPUAAACdT+B3jEyePDlqFr9ZKBRSQ0NDq+vSzc6dOzV27Fidf/75+vKXv5zq7gAAgBSgHgAAANQDAAB0Pnv1UVom+nN54Jg+fbqmT5+e6m4AAIAUoh4AAADUAwAAdD6BJ0bWrl1rLVdWVurvf/+7fvnLX+q+++5LWMfSTV1dnerqWj6bs6qqKoW9AQAAqUA9AAAAqAcAAEi+wBMjQ4cOjXpszJgxWrhwoW699VZ99atfTUjH0s0NN9ygOXPmxL192AkT3emEnH68qcZa9gZ5ZzkBXkVOmOgGJ3g0ywkMz/UEje2u3G2ty863g8Tc1O9cJ4jMG76WVWYHmtVutwPTM3LsQDRv5Ftmf7tdJ0s0at9MZznkuSZuINxuJ8Qt7LTtPcX6Bntl7zI7MNYNS/N781WsAFSjtoPXPt+gTW6QeytbxFjfNvecCGIDgPgFrQckuyYIUg9Idk3QnnpAsmsCtx4wTt2SV2qPj4319vjpDTXd5QTEZjrh4uFse0z3Brln5tl9dvsRcsfaLDt+z/vxsW5AfKZzPQqdYNbMjLYHwDrnfLdV28G1eU74ap2nvsh36yFn3N3utOWGs+d59neP05jpX1tkecJow8a5dk5t4b7W/OqB2LWDfzFBrQGgu2lvPSDZNUGQekCya4L21AOSUxMEuD8g+d8j8Ls/IEmZTtvehN1wg1MPOOOIO8ZnONen0XNtG5x+VO2yA+VdjU54vTf4vnepfb4Fuf5h7N5aw71fIOM/DkcPnS3XJOi4Gn1fIzUDM/UAgKACh6+7jDFatWqV1qxZo9dffz0RfUpLV155pSorKyNf69atS3WXAABAB6MeAAAA1AMAACRf4HeMZGZmtrmuvLy8XZ1JZ7m5ucrNzY29IQAA6LaoBwAAAPUAAADJF3hipK3g9aKiIv3mN79pd4cAAAAAAAAAAACSJfDEyNy5c63lUCikvn37qqKiQj169EhYx7q6mpoavf/++5HltWvXatmyZerZs6eGDBmSwp4BAICOQj0AAACoBwAA6HxCpq23gKBdFixYoGOPPTbq8RkzZmjevHkx96+qqlJpaak2btuukpISSXawd81uO9BrS5UdcBZywq4aPAFfO519d9baQa219XbgWa0T5Op9wbgvHzeYPNsJMa1z2vYGxO3aZoetu+lpDU4/rMB0Z13YCTV1w9bdoLYsT5BrTlGOtS7XCTwrLrBDX72BZ4XOtqVOW4VOCGxJgb0+J6ulX24AnhviGnJDTdW24CFknT+1jGA1IL1UVVWpX88eqqysjIyLXUGy6wHJrgmC1AOSXRO0px6Q7JogaD3Q6ATG1nprggD1gCQ1es7DDaJ1uUGlbn3gbTu32P5IE7e2yHHG+B5O6HlZYcuY3+hcoC1VdmB6sRMwn5/bciz3WuY44fNureGtLdzt85x93drDr9Zw10VlvtqLUZWFvbt/QGz0Xyt+z2uwAoF6AuhaqAfiqwckuyYIUg9Idk3QnnpAsmuCIPcHJP97BG49kOG03eCck2lse+yIGu+cttyBKK9nS0h6XnGetc4bXC9J+Tn2cmGePfYW5LaM+blObdGrxG471+lXZmbLsjsOZ7jnFLWsNrV3aGzf2Nr1B2ZqCyD5ElUPBH7HiCStXr1aN9xwQyRsfdy4cfrRj36kAw44YK870t1Mnjy5zY8dAwAA6YF6AAAAUA8AAND5BJ4YWb58uY4++mjV1NREBvZ33nlHDz/8sF5++WUddNBBCe8kAAAAAAAAAABAImTE3sT205/+VNXV1SosLNT06dM1ffp0FRYWqqqqSldffXUy+ggAAAAAAAAAAJAQgd8x8sILL6i4uFjvvPOO9tlnH0nSJ598ooMOOkgLFy5MeAcBAAAAAAAAAAASJfDESE1Njfbbb7/IpIgkDRo0SIMGDdL777+f0M7BVrun7TDRnk7gl8sbzFZSaAd+V+/aYx/HCTFzA1G9IV5uqJQbAOeGmrohb7vqWsLWQp4AM0navccOYttRY/ezzhNU2uAcJ5xj99k4xw07bdfubAlm27W5xlqX5QSqV+bbgajesPZ8J2i11jlOrxJ7vRuCl5fb0u98NyDeOceYYezeReMftBadDdbSj84a3B7rI3oJPAPQXXnrAcmuCYLUA5JdE7SnHpDs37tB64Gdu+3xMtSjpSZw64GqXXaY6u5KO3DeWxM01tvHCTn9MM45ufWBdRz3nJzg8lpn+x3hKrttz/7ZTi2RW2Y/bzt3O4Gynovbo9iu49wAdbdGzHNqIm84b3G+3ZZbe/jVGtHrrMWYoa+Z7Rqo49+XegBAd+VXD0j+NYFfPSDZNUF76gH3WEHuD0j+9wii7g/U1FnL7pgf9h7L+Vsy7FwP949Nd8xv8NQidhUiSfZ1d5+XDOdzW7z3BDIz7T671z4jZNcPCnn67TQcck7SfV6M8RkgY94vcNYndKwNksXTOQf5zhInRA0ExBb4o7SGDBmiVatW6dZbb9WWLVu0ZcsW/f73v9fKlSs1ZMiQZPQRAAAAAAAAAAAgIQJPjJx55pkKh8O67LLL1K9fP/Xr10/f+973JElf//rXE95BAAAAAAAAAACARNmr8PXjjjtOxhjr67jjjtNVV12VjD4CAAAAAAAAAAAkROCMkby8PD3zzDNasGCBlixZIkkaN26cJk+enOi+AQAAAAAAAAAAJFTgiZFmkydPZjKkgxXmtQRtRQd4OWGiUWlPLev3NNiBZsVOAKgbpuayMr19t4wOnQq7D3iW9zS4wWtOmJyzb7Un8MwNXttdb5+je71cfqFUsfdtO4zevdZVO+1+us9TUUNL6F047ASzOoFv2VluGLv9BjDvSyIqbN05pejzD7XyXev8gttbb7s94m+sswSeBUE4GoB4eOsByR6ngtQDkj1OtacekPxrgiD1QFO/WmqCIPWAZNcEQesBP1F9dtc7bbtbe8PK3WvrXkv3eayubgmU3RIjxPWTLbus5Z4+Ye3bs+2g2oI8+0+D4gL7NZGd1bJvQa69bU6WE/rq9Mu9HuHGlkfcIPfYb2n3D/r10576gHEaQGfiVw9I9lgSpB6Q7Jqgs9QDkl0TBKkHJLsmiFUPuONwkPrB7VfIGTxqau26xhso7z4PdXvsZZXZi9ZrIMsJkHcLBPceQNTf7d7Xi++urQS5u223jbE0ebi2QHBxTYxMmTIlrsZCoZCee+65dnUIAAAAAAAAAAAgWeKaGFmwYIFCoVAr/8rA5s6EAwAAAAAAAAAAdCZxTYyce+65THoAAAAAAAAAAIAuL66JkXnz5iW5GwAAAAAAAAAAAMkXd/j6hx9+qBdeeEHl5eWqqKiw1i1atEirV6/WMccco2HDhiW6j/icN5jSDamM1vb6zAz3ae+4lGq/T2OLFWrqhr55A9DqG+2gMTekzQ1Lc9syPtu6HyEXMzDOZ1v3uG6AeobnnVnuU5wZI4nUfcZDfusS+AawmK+ehIacdsZE9cRdzK4YGN9V8KZHdCduDeBfE/i/+O2aoHPUA5L/2OpXD0h2TRCrHnCzVN3jemuA6HxY//rA+FxPd1u3n+7vLG+/3fPPcDaud9pqDNvL3gD1bVW77ePECIwtyG37uO45ZDuFS15OprXs3dsvMLi1Y4VCTj99Xk+x3vXuXR3rdRkVLtuOsSWRbQFIT8mrB6SOqgk6qh6Q7HEq1v2B6HpAznL8Y7xfPeBuH+v+gfsc2/3wT0QPR2WzO2OrfNoKyPeME/jScuuB1Okcg3i630+glsLeiHGrtcWNN96o8847T/X19VHrdu7cqfPOO0833nhjQjsHAAAAAAAAAACQSHFPjDz//PMqKSnRhAkTotYdd9xxKisr03PPPZfQzgEAAAAAAAAAACRS3BMjn3zyiYYMGdLm+sGDB+vTTz9NSKcAAAAAAAAAAACSIe6JkaysLH300UcKux9MKKmxsVEffvihsrOzE9o5AAAAAAAAAACARIo7fP3AAw/UkiVL9JOf/EQ33HCDte6nP/2pqqqqdOSRRya8g0i86ECijkso8gtDyojRj6zMttfl72V/upP2BG0RUgUA6cn+/d856gHJvybwqwek7lET+IW6tlfYJ+TVfV4anOBaNwTdyw25dbf1C3aPCpN12m7tH2Y5jXmO66yLcSmD1EDupmGfthP70xSrNbcjyflZpl4Euq9U3SOgHgAApFLcEyNnnnmmXnvtNf3qV7/Sv/71L02cOFGhUEgvvfSS3nzzTYVCIX3ta19LZl8BAAAAAAAAAADaJe6JkVmzZulvf/ubli1bpv/+97/673//G1lnjNGhhx6qWbNmJaWTAAAAAAAAAAAAiRB3xkhubq7+85//6KyzzlJmZqaMMTLGKDMzU9/4xjf07LPPKicnJ5l9BQAAAAAAAAAAaJe43zEiSWVlZbr33nt1xx13aPXq1TLGqLy8XCUlJcnqHwAAAAAAAAAAQMIEmhhpVlJSoiOOOCLRfQHQDgRiAgDQPYSSOKhnBmg6I2S/uby+oSUEPTPTXpflvBHdPUx2Rtvr6xrscPW8bPdN7U44e1RofMizzj9t3Q2BN6bt4Hb3aYg6rttLzwMxutFKv9peF5IbXB+rtYAHd47WZqtRJ9U5i09qYgAAAMQj7o/SAgAAAAAAAAAA6OqYGAEAAAAAAAAAAGmDiREAAAAAAAAAAJA2mBgBAAAAAAAAAABpg4kRAAAAAAAAAACQNrJS3QEAAAAAnU8oFLKWc7IzI98bY28blvOAI8NuSnX14cj32Zn2v9WqbwhbyxnOzuGwz7GcPkf3w17vXWxw2nX7LLW9rxR9TeJdF0vUrs4DfqfsfzVa2T4UpKPtOKnAPYtfe651LDFeXt1OMq/l3uqMfQIAAF0T7xgBAAAAAAAAAABpg4kRAAAAAAAAAACQNpgYAQAAAAAAAAAAaYOJEQAAAAAAAAAAkDYIXwcAAAAQiBtCnZ1l/3srNyC5odEOVM/xbN/ohJ5nOWHs7rHc9d4w9liB6G5uu3e9XzB7a4LkcLttBQnxds8hUOh7/Idpta32BF37n6PdsLup375B+5TIwPToY3e/NHbv9Yp17ZIbhO5tvPtdZwAAkHq8YwQAAAAAAAAAAKQNJkYAAAAAAAAAAEDaYGIEAAAAAAAAAACkDSZGAAAAAAAAAABA2mBiJIluu+02DRs2THl5eaqoqNBrr72W6i4BAIAORj2AdBQK2V/ZWRnWV0ZGKPLlty4jI6RQyP5y+W3rtpWVGf9XZob/V6xj+fUr1ldT2HTTl9+61tZbfWrnl33Ocr78r0+Q47ivlyCvrSDXMvrLnzH2VytbeL781hkZY3+564N9JY97zn5fyRX/89SVUBMAANB5MDGSJA8++KBmz56ta665Rm+88YbGjh2radOmadOmTanuGgAA6CDUAwAAQKImAACgs2FiJEl+97vf6cILL9R5552nUaNG6f/+7/9UUFCge+65J9VdAwAAHYR6AAAASNQEAAB0NkyMJMGePXu0dOlSTZ06NfJYRkaGpk6dqldffTWFPQMAAB2FegAAAEjUBAAAdEZZqe5Ad7RlyxY1NjaqX79+1uP9+vXTypUrW92nrq5OdXV1keXKykpJUnVVVfI6CgBAF9E8Hprkf6h5wlAPAN2b++vILxsjyLatbd85uJ1KZPZDe064Pf3wP26w581dae8c9DXgr3vlbgTRFesBKXhNQD0AAEDbElUPMDHSSdxwww2aM2dO1OP7DRuagt4AANA5VVdXq7S0NNXdSBrqAQAAYqMeAAAA7a0HmBhJgt69eyszM1MbN260Ht+4caP69+/f6j5XXnmlZs+eHVkOh8Patm2bsrOzNWTIEK1bt04lJSVJ7XdnU1VVpcGDB3PunHva4Nw5d869bcYYVVdXa+DAgR3Uu/ajHkgMfkY4d849fXDunHt3rAek4DUB9UA0fkY4d849faTzuUvpff7xnnui6gEmRpIgJydHhx9+uJ577jmddtppkpoKmeeee04XX3xxq/vk5uYqNzfXeqysrExVn781qKSkJO1+GJpx7px7uuHcOfd0E++5d7V/GUo9kFicO+eebjh3zj3ddNd6QApeE1APtI1z59zTDeeenucupff5x3PuiagHmBhJktmzZ2vGjBk64ogjdOSRR+rmm2/Wzp07dd5556W6awAAoINQDwAAAImaAACAzoaJkST52te+ps2bN+vqq6/Whg0bdMghh+jpp5+OClsDAADdF/UAAACQqAkAAOhsmBhJoosvvrjNj8qIV25urq655pqot9GmA86dc083nDvnnm7S5dypB9qHc+fc0w3nzrmnm3Q69/bWBOl0rVycO+eebjj39Dx3Kb3Pv6PPPWSMMR1yJAAAAAAAAAAAgBTLSHUHAAAAAAAAAAAAOgoTIwAAAAAAAAAAIG0wMQIAAAAAAAAAANIGEyMAAAAAAAAAACBtMDHSid12220aNmyY8vLyVFFRoddeey3VXWq3a6+9VqFQyPoaOXJkZP3u3bs1a9Ys9erVS0VFRfrKV76ijRs3Wm18/PHHOumkk1RQUKC+ffvqBz/4gRoaGjr6VGJ64YUXdPLJJ2vgwIEKhUKaP3++td4Yo6uvvloDBgxQfn6+pk6dqvfee8/aZtu2bTr77LNVUlKisrIyXXDBBaqpqbG2eeuttzRx4kTl5eVp8ODB+tWvfpXsU4sp1rnPnDkz6nVwwgknWNt0xXO/4YYbNG7cOBUXF6tv37467bTTtGrVKmubRL3GFyxYoMMOO0y5ubnab7/9NG/evGSfXkzxnP/kyZOjnvuLLrrI2qYrnv8dd9yhMWPGqKSkRCUlJRo/fryeeuqpyPru/LzHOvfu+px3JOoB6oGuOCZK6VsPSOldE1APUA9QDyRPd6sJqAdaUA9QD3S3sYF6gHqgS9QDBp3SAw88YHJycsw999xjVqxYYS688EJTVlZmNm7cmOqutcs111xjDjroILN+/frI1+bNmyPrL7roIjN48GDz3HPPmddff90cddRR5gtf+EJkfUNDgxk9erSZOnWqefPNN82TTz5pevfuba688spUnI6vJ5980vzkJz8xDz/8sJFkHnnkEWv9jTfeaEpLS838+fPNf//7X3PKKaeY4cOHm9ra2sg2J5xwghk7dqxZtGiRefHFF81+++1nzjrrrMj6yspK069fP3P22Web5cuXm/vvv9/k5+ebO++8s6NOs1Wxzn3GjBnmhBNOsF4H27Zts7bpiuc+bdo0M3fuXLN8+XKzbNkyc+KJJ5ohQ4aYmpqayDaJeI1/8MEHpqCgwMyePdu888475tZbbzWZmZnm6aef7tDzdcVz/pMmTTIXXnih9dxXVlZG1nfV83/sscfME088YVavXm1WrVplfvzjH5vs7GyzfPlyY0z3ft5jnXt3fc47CvUA9YAxXXNMNCZ96wFj0rsmoB6gHqAeSI7uWBNQD7SgHqAe6G5jA/UA9UBXqAeYGOmkjjzySDNr1qzIcmNjoxk4cKC54YYbUtir9rvmmmvM2LFjW123Y8cOk52dbf7xj39EHnv33XeNJPPqq68aY5oG1IyMDLNhw4bINnfccYcpKSkxdXV1Se17e7iDfzgcNv379ze//vWvI4/t2LHD5Obmmvvvv98YY8w777xjJJklS5ZEtnnqqadMKBQyn376qTHGmNtvv9306NHDOvcrrrjClJeXJ/mM4tdW4XPqqae2uU93OfdNmzYZSWbhwoXGmMS9xn/4wx+agw46yDrW1772NTNt2rRkn1Ig7vkb0zQIXnrppW3u053Ov0ePHuZPf/pT2j3vxrScuzHp9ZwnA/VAE+qBrj8mpnM9YEx61wTUA9QDxqTXc54s3bEmoB5oQj1APZAOYwP1APWAMZ3vOeejtDqhPXv2aOnSpZo6dWrksYyMDE2dOlWvvvpqCnuWGO+9954GDhyofffdV2effbY+/vhjSdLSpUtVX19vnffIkSM1ZMiQyHm/+uqrOvjgg9WvX7/INtOmTVNVVZVWrFjRsSfSDmvXrtWGDRuscy0tLVVFRYV1rmVlZTriiCMi20ydOlUZGRlavHhxZJtjjjlGOTk5kW2mTZumVatWafv27R10NntnwYIF6tu3r8rLy/Xtb39bW7dujazrLudeWVkpSerZs6ekxL3GX331VauN5m062+8H9/yb3Xvvverdu7dGjx6tK6+8Urt27Yqs6w7n39jYqAceeEA7d+7U+PHj0+p5d8+9WXd/zpOFeoB6QOo+Y2Jb0qEekNK7JqAeoB5o1t2f82TqzjUB9QD1gEQ9kA5jA/UA9UCzzvScZwXeA0m3ZcsWNTY2Wi8CSerXr59WrlyZol4lRkVFhebNm6fy8nKtX79ec+bM0cSJE7V8+XJt2LBBOTk5Kisrs/bp16+fNmzYIEnasGFDq9eleV1X0dzX1s7Fe659+/a11mdlZalnz57WNsOHD49qo3ldjx49ktL/9jrhhBP05S9/WcOHD9eaNWv04x//WNOnT9err76qzMzMbnHu4XBYl112mY4++miNHj060q9EvMbb2qaqqkq1tbXKz89PxikF0tr5S9I3vvENDR06VAMHDtRbb72lK664QqtWrdLDDz8sqWuf/9tvv63x48dr9+7dKioq0iOPPKJRo0Zp2bJl3f55b+vcpe79nCcb9UCZtQ/1QIuuNia2JR3qASm9awLqAeoB6oHE6K41AfVAE+oB6oHuPDZI1APUA523HmBiBB1q+vTpke/HjBmjiooKDR06VH//+99T/osaHefrX/965PuDDz5YY8aM0YgRI7RgwQIdd9xxKexZ4syaNUvLly/XSy+9lOqupERb5/+tb30r8v3BBx+sAQMG6LjjjtOaNWs0YsSIju5mQpWXl2vZsmWqrKzUQw89pBkzZvx/9u48Pq7qvv//Z7TvkmXJ+w622WLMjtm3pCEbkIVAIIasTQtJCEnzC0nbAElL+u3jkYQSQmnSAE1ZStKwBAIpm7FJWMxiYjYbg7ExeLel0b6M7u8P45lz3ldzr8aWNLL0evZBM0d3O/fOnXs+c6+ltz3++OP57tawyLbvBx100Kh+z7HnqAdgNjbqAbOxXRNQD1APUA8gCvUAzKgHxgLqAeqBkVoP8Ke0RqCGhgYrLCy0zZs3ez/fvHmzTZo0KU+9Ghp1dXU2b948W7NmjU2aNMm6u7utqanJm8fd70mTJvV7XHZP21fs7mvUezxp0iTbsmWLN723t9d27Ngx6o7HnDlzrKGhwdasWWNm+/6+X3rppXbffffZY489ZtOmTUv/fLDO8Wzz1NTUjIgvENn2vz/HHHOMmZn33u+r+19SUmL777+/HXHEEXbNNdfYoYceatdee+2YeN+z7Xt/RtN7PtSoB5q8eagHMvalMTEXo60eMBvbNQH1APUA9cDgGSs1AfUA9YAZ9YDZ6BobqAeoB0ZyPcCDkRGopKTEjjjiCHvkkUfSP+vr67NHHnnE+5tso0Fra6u98cYbNnnyZDviiCOsuLjY2+9Vq1bZ+vXr0/u9aNEiW7lypTcoPvTQQ1ZTU5P+tax9wezZs23SpEneviaTSXv66ae9fW1qarLnnnsuPc+jjz5qfX196QvHokWLbOnSpdbT05Oe56GHHrL58+ePiF8VHagNGzbY9u3bbfLkyWa27+57EAR26aWX2l133WWPPvpo6Fd5B+scX7RokbeO3fPk+/oQt//9WbFihZmZ997vq/uv+vr6rKura9S/7/3Zve/9Gc3v+WCjHqAeMNt3x8Q9MVrqAbOxXRNQD/ioB6gHBsNYqQmoB6gHzKgHRsvYQD3gox4YofVAznHtGBZ33HFHUFpaGtx8883BK6+8Enz5y18O6urqgk2bNuW7a3vlm9/8ZrBkyZJg7dq1wZ/+9KfgjDPOCBoaGoItW7YEQRAEX/nKV4IZM2YEjz76aPDss88GixYtChYtWpRevre3NzjkkEOCD3zgA8GKFSuCBx98MGhsbAyuuOKKfO1SVi0tLcELL7wQvPDCC4GZBT/+8Y+DF154IVi3bl0QBEHwox/9KKirqwvuueee4C9/+Utw1llnBbNnzw46OjrS6/jgBz8YHHbYYcHTTz8dPPHEE8HcuXOD888/Pz29qakpmDhxYvDZz342eOmll4I77rgjqKioCG688cZh319X1L63tLQE3/rWt4Inn3wyWLt2bfDwww8Hhx9+eDB37tygs7MzvY59cd//5m/+JqitrQ2WLFkSbNy4Mf1fe3t7ep7BOMfffPPNoKKiIvi7v/u74NVXXw2uv/76oLCwMHjwwQeHdX9V3P6vWbMmuPrqq4Nnn302WLt2bXDPPfcEc+bMCU466aT0OvbV/f/Od74TPP7448HatWuDv/zlL8F3vvOdIJFIBP/3f/8XBMHoft+j9n00v+fDhXqAeiAI9s0xMQjGbj0QBGO7JqAeoB6gHhgao7EmoB6gHqAeGL1jA/UA9cC+UA/wYGQEu+6664IZM2YEJSUlwdFHHx089dRT+e7SXvv0pz8dTJ48OSgpKQmmTp0afPrTnw7WrFmTnt7R0RH87d/+bTBu3LigoqIiOOecc4KNGzd663jrrbeCM888MygvLw8aGhqCb37zm0FPT89w70qsxx57LDCz0H8XXXRREARB0NfXF/zDP/xDMHHixKC0tDQ4/fTTg1WrVnnr2L59e3D++ecHVVVVQU1NTfC5z30uaGlp8eZ58cUXgxNOOCEoLS0Npk6dGvzoRz8arl3MKmrf29vbgw984ANBY2NjUFxcHMycOTP40pe+FCro98V972+fzSy46aab0vMM1jn+2GOPBQsXLgxKSkqCOXPmeNvIl7j9X79+fXDSSScF9fX1QWlpabD//vsHf/d3fxc0Nzd769kX9//zn/98MHPmzKCkpCRobGwMTj/99HTREwSj+32P2vfR/J4PJ+oB6oF9cUwMgrFbDwTB2K4JqAeoB6gHhs5oqwmoB6gHqAdG79hAPUA9sC/UA4kgCILcf88EAAAAAAAAAABg30PGCAAAAAAAAAAAGDN4MAIAAAAAAAAAAMYMHowAAAAAAAAAAIAxgwcjAAAAAAAAAABgzODBCAAAAAAAAAAAGDN4MAIAAAAAAAAAAMYMHowAAAAAAAAAAIAxgwcjAEaVJUuWWCKRsKampmHfdiKRsEQiYXV1dQOaf3dfE4mEnX322UPaNwAAxhLqAQAAQD0AIAoPRgDss0455RS77LLLvJ8dd9xxtnHjRqutrc1Ln2666SZbvXr1gObd3ddzzz13iHsFAMDoRT0AAACoBwDkigcjAEaVkpISmzRpkiUSibxsv66uziZMmDCgeXf3tby8fIh7BQDA2EI9AAAAqAcAROHBCIB90sUXX2yPP/64XXvttelfN33rrbdCvyp78803W11dnd133302f/58q6iosE9+8pPW3t5ut9xyi82aNcvGjRtnX/va1yyVSqXX39XVZd/61rds6tSpVllZacccc4wtWbIk536++OKLduqpp1p1dbXV1NTYEUccYc8+++wgHQUAAMY26gEAAEA9AGBPFOW7AwCwJ6699lpbvXq1HXLIIXb11VebmVljY6O99dZboXnb29vt3/7t3+yOO+6wlpYW+/jHP27nnHOO1dXV2R/+8Ad788037ROf+IQdf/zx9ulPf9rMzC699FJ75ZVX7I477rApU6bYXXfdZR/84Adt5cqVNnfu3AH384ILLrDDDjvMbrjhBissLLQVK1ZYcXHxoBwDAADGOuoBAABAPQBgT/BgBMA+qba21kpKSqyiosImTZoUOW9PT4/dcMMNtt9++5mZ2Sc/+Un79a9/bZs3b7aqqio76KCD7NRTT7XHHnvMPv3pT9v69evtpptusvXr19uUKVPMzOxb3/qWPfjgg3bTTTfZP//zPw+4n+vXr7e/+7u/swMOOMDMLKeiCQAARKMeAAAA1AMA9gQPRgCMehUVFemix8xs4sSJNmvWLKuqqvJ+tmXLFjMzW7lypaVSKZs3b563nq6uLhs/fnxO27788svti1/8ov3617+2M844wz71qU95fQEAAMODegAAAFAPANiNByMARj391dREItHvz/r6+szMrLW11QoLC+25556zwsJCbz63WBqIK6+80j7zmc/Y/fffbw888IB9//vftzvuuMPOOeecPdgTAACwp6gHAAAA9QCA3XgwAmCfVVJS4gWiDZbDDjvMUqmUbdmyxU488cS9Xt+8efNs3rx59o1vfMPOP/98u+mmmyh8AAAYJNQDAACAegBArgry3QEA2FOzZs2yp59+2t566y3btm1b+l907K158+bZBRdcYIsXL7bf/e53tnbtWnvmmWfsmmuusfvvv3/A6+no6LBLL73UlixZYuvWrbM//elPtnz5cjvwwAMHpZ8AAIB6AAAAUA8AyB0PRgDss771rW9ZYWGhHXTQQdbY2Gjr168ftHXfdNNNtnjxYvvmN79p8+fPt7PPPtuWL19uM2bMGPA6CgsLbfv27bZ48WKbN2+enXvuuXbmmWfaVVddNWj9BABgrKMeAAAA1AMAcpUIgiDIdycAYDRIJBJ211132dlnn53TchdffLE1NTXZ3XffPST9AgAAw4d6AAAAUA8AIx+/MQIAg+j888+3adOmDWjeZcuWWVVVld16661D3CsAADCcqAcAAAD1ADCy8RsjADBI1qxZY2a7fkV29uzZsfN3dHTYO++8Y2ZmVVVVNmnSpCHtHwAAGHrUAwAAgHoAGPl4MAIAAAAAAAAAAMYM/pQWAAAAAAAAAAAYM3gwAgAAAAAAAAAAxgwejAAAAAAAAAAAgDGDByMAAAAAAAAAAGDM4MEIAAAAAAAAAAAYM3gwAgAAAAAAAAAAxgwejAAAAAAAAAAAgDGDByMAAAAAAAAAAGDM4MEIAAAAAAAAAAAYM3gwAgAAAAAAAAAAxgwejAAAAAAAAAAAgDGDByMAAAAAAAAAAGDM4MEIAAAAAAAAAAAYM3gwAgAAAAAAAAAAxgwejAAAAAAAAAAAgDGDByMAAAAAAAAAAGDM4MEIAAAAAAAAAAAYM3gwAgAAAAAAAAAAxgwejAAYNU455RRLJBKWSCRsxYoVe72uyy67bK/WcfHFF6f7c/fdd+/VugAAwMBQDwAAADNqAgDReDACYFT50pe+ZBs3brRDDjkk52U/97nP2d///d8PWl+uvfZa27hx46CtDwAADAz1AAAAMKMmAJBdUb47AACDqaKiwiZNmpTzcqlUyu677z67//77B60vtbW1VltbO2jrAwAAA0M9AAAAzKgJAGTHb4wAGDFee+01O/XUU62srMzmzZtnf/jDHwblV15bWlrsggsusMrKSps8ebL95Cc/Cf0a7J///GcrLi62o446qt913H///VZbW2u33nrrgNcJAAByRz0AAADMqAkADC0ejAAYEV577TU75phj7MQTT7SXX37Z/uVf/sUWL15sxcXFdtBBB+3Vui+//HL705/+ZPfee6899NBDtmzZMnv++ee9ee6991776Ec/aolEIrT8bbfdZueff77deuutdsEFFwx4nQAAIDfUAwAAwIyaAMDQ409pARgRLrnkEvvEJz5hV199tZmZ7bfffvbf//3f9vrrr1tJScker7elpcVuueUWu+222+z00083M7ObbrrJpkyZ4s13zz332E9+8pPQ8tdff71973vfs9///vd28skn57ROAACQG+oBAABgRk0AYOjxYARA3q1bt84effRRe/HFF72fl5SU2KGHHhqaP5VKWWFh4YDW/eabb1pPT48dffTR6Z/V1tba/Pnz0+1XX33V3n333XQBs9tvf/tb27Jli/3pT3/yfn12IOsEAAC5oR4AAABm1AQAhgd/SgtA3q1YsaLfX4d96aWX0kXPxz72Mfvbv/1bO+qoo+ymm24a1O3fe++99v73v9/Kysq8nx922GHW2Nhov/rVrywIgkHdJgAA8FEPAAAAM2oCAMODByMA8q6goMBSqZSlUqn0zx588EGv6Fm5cqXNnz/fli9fbl/84hcHvO45c+ZYcXGxLV++PP2z5uZmW716dbp9zz332FlnnRVadr/99rPHHnvM7rnnHvvqV7+a0zoBAEBuqAcAAIAZNQGA4cGf0gKQd0cccYQVFxfbd7/7XbvkkkvshRdesG9/+9tmZnbooYdaS0uLpVIp+/rXv57zuqurq+2iiy6yv/u7v7P6+nqbMGGCff/737eCggJLJBK2ZcsWe/bZZ+3ee+/td/l58+bZY489ZqeccooVFRXZT3/609h1AgCA3FEPAAAAM2oCAMOD3xgBkHdTpkyxX/7yl3bnnXfaoYceav/zP/9jX/rSl2zSpEk2YcIEe/nll+24447b4/X/+Mc/tkWLFtlHPvIRO+OMM+z444+3Aw880MrKyuz3v/+9HX300dbQ0JB1+fnz59ujjz5qt99+u33zm9+MXScAAMgd9QAAADCjJgAwPPiNEQAjwoUXXmgXXnhhun355Zd7vyL7vve9b4/XXV1dbbfeemu63dbWZldddZV9+ctftnvuucc+9rGPhZZZsmSJ1z7wwANt8+bNA1onAADYM9QDAADAjJoAwNDjN0YAjEh/+ctf9qjo+fnPf25VVVW2cuXK9M9eeOEFu/322+2NN96w559/3i644AIzMzvrrLPshBNOsPPPPz/n/kWtc7evfOUrVlVVlfO6AQDALtQDAADAjJoAwOBLBEEQ5LsTAKAmTpxoP/7xj9PFxEC888471tHRYWZmM2bMsJKSEjPbVaB88YtftFWrVllJSYkdccQR9uMf/3iv/oXJQNa5ZcsWSyaTZmY2efJkq6ys3OPtAQAwFlEPAAAAM2oCAIOPByMAAAAAAAAAAGDM4E9pAQAAAAAAAACAMYMHIwAAAAAAAAAAYMzgwQgAAAAAAAAAABgzeDCCUe3666+3WbNmWVlZmR1zzDH2zDPP5LtLw27p0qX20Y9+1KZMmWKJRMLuvvvufHcpb6655ho76qijrLq62iZMmGBnn322rVq1Kt/dGnY33HCDLViwwGpqaqympsYWLVpkDzzwQL67NSL86Ec/skQiYZdddlm+uwJgEFEP7EJNsAv1QAY1Qf+oB4DRi5qAemA36oEM6oH+UQ+MfjwYwaj1P//zP3b55Zfb97//fXv++eft0EMPtb/6q7+yLVu25Ltrw6qtrc0OPfRQu/766/Pdlbx7/PHH7ZJLLrGnnnrKHnroIevp6bEPfOAD1tbWlu+uDatp06bZj370I3vuuefs2WeftdNOO83OOusse/nll/Pdtbxavny53XjjjbZgwYJ8dwXAIKIeyKAm2IV6IIOaIIx6ABi9qAl2oR7YhXogg3ogjHpgbEgEQRDkuxPAUDjmmGPsqKOOsp/97GdmZtbX12fTp0+3r371q/ad73wnz73Lj0QiYXfddZedffbZ+e7KiLB161abMGGCPf7443bSSSfluzt5VV9fb//6r/9qX/jCF/LdlbxobW21ww8/3H7+85/bD3/4Q1u4cKH99Kc/zXe3AAwC6oH+URNkUA/4xnJNQD0AjG7UBGHUAxnUAz7qAeqBsYDfGMGo1N3dbc8995ydccYZ6Z8VFBTYGWecYU8++WQee4aRpLm52cx2DfhjVSqVsjvuuMPa2tps0aJF+e5O3lxyySX24Q9/2LtmANj3UQ9gIKgHdqEmoB4ARjNqAsShHtiFeoB6YCwpyncHgKGwbds2S6VSNnHiRO/nEydOtNdeey1PvcJI0tfXZ5dddpkdf/zxdsghh+S7O8Nu5cqVtmjRIuvs7LSqqiq766677KCDDsp3t/LijjvusOeff96WL1+e764AGGTUA4gz1usBM2qC3agHgNGNmgBRqAeoB3ajHhhbeDACYEy65JJL7KWXXrInnngi313Ji/nz59uKFSusubnZfvvb39pFF11kjz/++JgrfN5++237+te/bg899JCVlZXluzsAgGE21usBM2oCM+oBABjrqAeoB8yoB8YiHoxgVGpoaLDCwkLbvHmz9/PNmzfbpEmT8tQrjBSXXnqp3XfffbZ06VKbNm1avruTFyUlJbb//vubmdkRRxxhy5cvt2uvvdZuvPHGPPdseD333HO2ZcsWO/zww9M/S6VStnTpUvvZz35mXV1dVlhYmMceAtgb1AOIQj2wCzUB9QAwFlATIBvqgV2oB6gHxiIyRjAqlZSU2BFHHGGPPPJI+md9fX32yCOPjNm/kQizIAjs0ksvtbvuusseffRRmz17dr67NGL09fVZV1dXvrsx7E4//XRbuXKlrVixIv3fkUceaRdccIGtWLGCogfYx1EPoD/UA9HGYk1APQCMftQEUNQD0agHqAfGAn5jBKPW5ZdfbhdddJEdeeSRdvTRR9tPf/pTa2trs8997nP57tqwam1ttTVr1qTba9eutRUrVlh9fb3NmDEjjz0bfpdcconddtttds8991h1dbVt2rTJzMxqa2utvLw8z70bPldccYWdeeaZNmPGDGtpabHbbrvNlixZYn/84x/z3bVhV11dHfobspWVlTZ+/Pgx+7dlgdGGeiCDmmAX6oEMaoJdqAeAsYGaYBfqgV2oBzKoB3ahHhh7eDCCUevTn/60bd261f7xH//RNm3aZAsXLrQHH3wwFLY22j377LN26qmnptuXX365mZlddNFFdvPNN+epV/lxww03mJnZKaec4v38pptusosvvnj4O5QnW7ZsscWLF9vGjRuttrbWFixYYH/84x/t/e9/f767BgCDjnogg5pgF+qBDGoCAGMJNcEu1AO7UA9kUA9grEoEQRDkuxMAAAAAAAAAAADDgYwRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GMGo19XVZVdeeaV1dXXluyt5xXHI4FhkcCx24TgAox+f8wyOxS4chwyORQbHAhjd+IxncCx24ThkcCwyOBZjQyIIgiDfnQCGUjKZtNraWmtubraampp8dydvOA4ZHIsMjsUuHAdg9ONznsGx2IXjkMGxyOBYAKMbn/EMjsUuHIcMjkUGx2Js4DdGAAAAAAAAAADAmMGDEQAAAAAAAAAAMGYU5bsDwFB7+eWXzczszjvvtPLy8jz3Jn86OjrMjONgxrFwcSx22X0c+vr68twTAENl8+bNZsb1zoxr/24chwyORUZPT0++uwBgCHV3d5sZ1zszrv27cRwyOBYZu48FRjcyRjDqzZ0715LJFtt/7lwrKEiYmZl30gf9vsz8LMg2xflpzDosCEI/19Wm58i2rmB3O/NT/fT66/S32dfXZ1s2vmMTJk+1RKLAvLnCm86y/mAA/ctMyXZ10X5628+y0tA0WXlonTJ/4B6XvsB27txs48ZN2HUsgv6XSf+83zevn2m5/ry/HYtZLtuxG9j2w9sMgsCaOrdbXWm9JSwRmsfbXqD91O30M937H2f+bNPdV0E/P/N2J/Dm8f+/0wqyTnF+FlizJa3CKuz2+263D33oQ5ZIOMcDwD5v8eLFdu/vf28HH3zIHtUDZtlrgsGsB3Y19froL7A39YBZ/zXBYNYD0rt+19FfP/eoHpCVD0k94K54b8b9qHpAOz8U9UC/6x2keiC07n46Oij1gM6R2c/BqAfMzDqtyzqt03587Y/tK1/5ipWUlBiA0eOGG26wyy+/3A4/4sjYeqCf5q6fDUE9kJ7XW3YQ6gF54c4y2PVA9j5mpuxdPRAzfa/rgYmZ74CRY/IgjPux0wahHhhQ3/yV5FQP7FogvJ5BqgecLXrbzn6PYE/qgdDU9P/vtZQlLWmzbZYt3/6s1dfXG0YfHoxg1Js9e7b94lc32fEnnmRmgQXvXXt3FzO727uLk/7buy+wMoDuybrSr4NM+71t7Gqb9e2+UHs/D88X/pnbp5jldu9F4GzXnSdqnbr+rPuWPlKhbQd97x3T9yYEwe6f7Xq9638Ds77M+vRn6Xltdzu3dTg7Hv26zxmgd7djX+ew/t2vLbNfmWn23nr9/cv83N923PJm/a1j1/JBej3v/W8/PwucaVmXS2+jL3LZwJ1mgfUFfe+dg7v+ty/os8D6rC8I0v/bZ322e9jqc6el5/eX2z1/n6ynv+kpS9k6W2+v2xqrtEq7+/G77aSTThropQbACHfhhRfa/AMPsm/9f9+xPRnDLf2z9663/Sw70HX1P2YG3jbSl/PQOL539cB7PQyPy87Yvbf1gFn/6x3MemD3NrQmGNR6wPqZNqAawH0dsf7MwQpNG9R6wAa6jmDP6wGz/ucbxHpg1yb6H8MHqx4wM0tZyjbZZnvNVlmfpezf/+tG+8xnPmOFhYUDutYAGNluuOEG+/1999n/3vN7ixzDzaLH8UGoB2z3z0JjZnis39N6wJztDuQewZ7UA7v2Vtafdd+ybDeuHth93CLG872uBzJvyMDuEQS5vE6fGANbv+xTTvWA+dvPfR1BfD3gbGMg9wj2pB4ws5zuEexJPbDr3M2+viZrstdste20nbafzbFnW56zqqqqgVxqsI8gYwQAADMrtEKbY7PtdDvVJlijnX7y6TYhMcGee+65fHcNAAAMk4QlbLJNslPsJJtn8+yvF/+1jSuqs7vvvjt9kxEAAIx+dVZnx9rRdpQdaVtsi42vHm+HJA62zs7OfHcNg4QHIwAAOIqsyObZXDvdTrUaq7ajjzzapiQm22uvvZbvrgEAgGGSsIRNt2l2mp1iM22mnXfOeVZfMM4efvjhfHcNAAAMowYbb8fbcbbQFtjb9raNKx9n//mf/2m9vb357hr2Eg9GAADoR4mV2EF2oJ1up1qJldjBBx5sMxLTbd26dfnuGgAAGCYFVmCzbZadZqfYJJtkH3r/mdaYaLCnnnoq310DAADDJGEJm2gT7SQ70Q6yA+zrX/ya1RXX2Z133ml9fX3xK8CIxIMRAAAilFmZLbD32Sl2kvVZYHNmzbE5idm2efPmfHcNAAAMkyIrsrm2v51up9k4G2cnLDrBJiUm2cqVK/PdNQAAMEwSlrCpNtVOsZNtP5tjF336IhtXOM4eeOAB/uTmPogHIwAADEClVdrhttBOtOOt3Tps6qSpNj8xL9/dAgAAw6jYiu0Am2+n26lWYeW2cMFCm5aYaslkMt9dAwAAw6TACmymzbDT7BSbZlPtrA+dZQ0F4/kT3PsYHowAAJCDaqu2mTbdiq3Y3rWN+e4OAADIg1IrtRk23Wqt1jbZZmtqasp3lwAAwDArtEKbalNsok20HbbTFh94Yb67hBwU5bsDAADsK7bZdnvNVlmbtdlc29+e7Xgu310CAADDrNXabLWtto22yWbaTHtt82s2YcKEfHcLAAAMo27rsTfsDVtrb1mjNdhLL71kBx98cL67hRzwYAQAgBhN1myv2SrbaTttP5tjy5PrrLq6Ot/dAgAAw6jDOmy1rbENtsGm2VRbu26tzZgxI9/dAgAAw6jXem2tvWVr7A2rszp78pkn7aijjsp3t7AHeDACAEAWLdZiq2y1bbYtNttm2avbXrXx48fnu1sAAGAYdVm3rbE19pats0k20V557RWbP39+vrsFAACGUcpSts7W2+u2xiqswv74yB/ttNNOy3e3sBd4MAIAgGi3dlttr9s79q5Nt2n29jtv25QpU/LdLQAAMIx6rMfetLX2pq21ehtnzz7/rB122GH57hYAABhGfdZnG+wdW22vW5EV2W/u+Y199KMftUQike+uYS/xYAQAgPd0WZe9bmtsna23yTbZVq9Zbfvtt1++uwUAAIZRylL2lq2z122NVVuVPbr0UTvxxBPz3S0AADCMAgtso22yVbbK+iywX/z3L+y8886zwsLCfHcNg4QHIxgTHn7oIVu/fr2ZmQXBrp8F7/3/3e1dl7zMdAt2zRM4jSCzYHodmZ/tWld6/vfW5S4TvPfDYPfWAvOWCdLtzPKZ/w1C0zL78t5+BJnuBUEgyzn7lNnp0LJBf9sL3J/Lfjh9zPTNPa7Osu48fe4+7j4WmWPiHpxM/zOdDGSH0/3o05/763Z/lj4ofe7BcQ7u7n3oc3cmYj5vmrPTfTr9vQXS25X98NYp2wkfdGeezPvl/kxO+qz7EFiQ2de+XT8PQut5b3/c5dyT0X1fg75++t/PcsHu8zAw7/+ytd/bVmCB9b23I33p6WZB0Jf5mbec+UtIu8Vaba29ZQ3WYCv+ssLe9773GYDRZcWKF+z2W//bzPTSGF8PuPOmf+asI9Pe83pA+7N7bB3MesDp5nv7GfS7bNDf9vobVvqpBzJH0d2+P5TsdT3gHHi3JhjUesA9wLvbfYHzc2en9qYeMAvVBINaD/S3zaC/5Zxlc60H0t132n27lxucemDXJsI1wWDWA2ZmndZpb9paK7ESu+cP99gHP/hB/kUoMMq88847A6gH3ms78/iX1iDdNmcdmXZ8PZCZdWD3CPakHnA3N5B7BHtSD4T2wxueAtm2P5QMvB7Y/XM5Rs5Yttf1gPPeDfgeQc71gLt+d573pg1GPeDNl3nP3J/tdT2gb2TMPYI9qQd2vzcDvUewJ/WApae8979Bpt1rvbbO1lmnddlPb/ipfeELX7Di4mLD6JII3DukwCj0/e9/35YsWZLvbgAY4VYvXWV3PXm3HXvssfnuCoAh8Jvf/MZ+9rOf5bsbAEa4V5a+bNf/z8/tk5/8pBUUFOS7OwAG2csvv2yXXnqp9fX1xc8MYMx6aelLNtEm2HPtz1t5eXm+u4MhwoMRAAAAAAAAAAAwZvBPYAAAAAAAAAAAwJjBgxEAAAAAAAAAADBm8GAEAAAAAAAAAACMGTwYAQAAAAAAAAAAYwYPRgAAAAAAAAAAwJjBgxEAAAAAAAAAADBm8GAEAAAAAAAAAACMGTwYAQAAAAAAAAAAYwYPRobAlVdeaYlEwvvvgAMOyHe3AADAMKMmAAAA1AMAAIw8RfnuwGh18MEH28MPP5xuFxVxqAEAGIuoCQAAAPUAAAAjCyPxECkqKrJJkybluxsAACDPqAkAAAD1AAAAIwsPRobI66+/blOmTLGysjJbtGiRXXPNNTZjxoys83d1dVlXV1e63dfXZzt27LDx48dbIpEYji4DADBiBUFgLS0tNmXKFCso2Lf+EmguNQH1AAAA2VEPUA8AADBY9UAiCIJgEPsFM3vggQestbXV5s+fbxs3brSrrrrK3nnnHXvppZesurq632WuvPJKu+qqq4a5pwAA7FvefvttmzZtWr67MWC51gTUAwAAxKMeAAAAe1sP8GBkGDQ1NdnMmTPtxz/+sX3hC1/odx79FyHNzc02Y8YMW/PWOquuqRmurgIAMCK1JJO2/6yZ1tTUZLW1tfnuzh6LqwmoBwAAyI56gHoAAIDBqgf4U1rDoK6uzubNm2dr1qzJOk9paamVlpaGfl5dU2M1FD4AAJiZ7fN/PiKuJqAeAAAgHvUAAADY23pg3/qjnPuo1tZWe+ONN2zy5Mn57goAAMgjagIAAEA9AABA/vFgZAh861vfsscff9zeeust+/Of/2znnHOOFRYW2vnnn5/vrgEAgGFETQAAAKgHAAAYefhTWkNgw4YNdv7559v27dutsbHRTjjhBHvqqaessbEx310DAADDiJoAAABQDwAAMPLwYGQI3HHHHfnuAgAAGAGoCQAAAPUAAAAjD39KCwAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGMGD0YAAAAAAAAAAMCYwYMRAAAAAAAAAAAwZvBgBAAAAAAAAAAAjBk8GAEAAAAAAAAAAGNGUS4zb9u2zX7729/asmXLbM2aNdbc3Gw1NTU2d+5cO/HEE+2Tn/ykNTQ0DFVfAQAAAAAAAAAA9sqAHoysXr3arrzySvvf//1f6+3ttSAIvOnPPvus3XHHHfb1r3/dPvWpT9k//uM/2rx584akwwAAAAAAAAAAAHtqQA9GDj74YEulUlZYWGjHHHOMHX300TZz5kyrqamxZDJp69ats2eeecaWL19ut912m915553W3d091H0HAAAAAAAAAADIyYAejEyfPt0uv/xy+/SnP22NjY1Z59u6davdfvvtdu211w5aBwEAAAAAAAAAAAbLgB6MrFmzxgoK4nPaGxsb7Wtf+5pdeumle90xAAAAAAAAAACAwRb/tMNsQA9F9mb+0e5HP/qRJRIJu+yyy/LdFQAAkCfUAwAAgHoAAICRYUC/MeL6/Oc/n3VaeXm5LVy40D772c9aWVnZXnVstFi+fLndeOONtmDBgnx3BQAA5An1AAAAoB4AAGDkyPnByM0332yJRCJynp/+9Kf2xBNP2Lhx4/a4Y6NBa2urXXDBBfaLX/zCfvjDH+a7OwAAIA+oBwAAAPUAAAAjS85/82rGjBlWUlJiQRDYuHHjbNy4cRYEgZWWltr48eMtCAJ77bXX7Ac/+MFQ9Hefcskll9iHP/xhO+OMM/LdFQAAkCfUAwAAgHoAAICRJecHIz/5yU+ssLDQHn74Ydu2bZtt27bNHnroIUskEnbDDTfYsmXLrKioyH7/+98PRX/3GXfccYc9//zzds011wxo/q6uLksmk95/AABg30Y9AAAAqAcAABh5cn4w8p3vfMdmzZplp512Wvpnp59+us2ePdu++93v2vHHH28nnniivf3224Pa0X3J22+/bV//+tft1ltvHXDWyjXXXGO1tbXp/6ZPnz7EvQQAAEOJegAAAFAPAAAwMiWCIAhyWaC8vNx6e3vtuuuus0996lNmZnbXXXfZ3/zN31hxcbG1t7fbRz7yEVu2bJk1NzcPSadHurvvvtvOOeccKywsTP8slUpZIpGwgoIC6+rq8qaZ7foXIV1dXel2Mpm06dOn2+YdO62mpmbY+g4AwEiUTCZtYv04a25u3mfGReoBAAAGF/UA9QAAAINVD+Qcvn7SSSfZQw89ZJdccoldcskl6Z8HQWBnnHGG9fX12YoVK2zOnDl73Kl93emnn24rV670fva5z33ODjjgAPv//r//L1T0mJmVlpZaaWnpcHURAAAMMeoBAABAPQAAwMiU84ORX/7yl3bOOefY888/7/38iCOOsP/4j/+wdevW2ac+9Sk75phjBq2T+5rq6mo75JBDvJ9VVlba+PHjQz8HAACjE/UAAACgHgAAYGTK+cHI9OnT7dlnn7VHH33UXn75ZTMzO+SQQ+zUU0+1IAgskUjYT37yk0HvKAAAAAAAAAAAwN7K+cHIrbfeahdccIGddtppXgB7d3e3feYzn7Hf/va3g9rB0WLJkiX57gIAAMgz6gEAAEA9AABA/uX8YOTiiy+2wsJCO++889I/a29vt7POOsseffTRQe0cAAAAAAAAAADAYMr5wUgqlbLFixdbQUGBnXvuubZ9+3b78Ic/bM888wzhYAAAAAAAAAAAYEQryHWBn/70p5ZKpezCCy+0n/3sZ3bSSSfZM888Y7W1tfbAAw8MRR8BAAAAAAAAAAAGRc6/MfK1r33Nqqqq7Mtf/rJ9/etftyAIbOrUqfbAAw/YIYccMhR9BAAAAAAAAAAAGBQDejCydOlSr73//vvbl7/8Zfv3f/93q66utmuuucZ27NhhS5cutZNOOmlIOgoAAAAAAAAAALC3BvRg5JRTTrFEIhH6eSKRsNbWVrvooovS7d7e3sHtIQAAAAAAAAAAwCAZ8J/SCoJgKPsBAAAAAAAAAAAw5Ab0YGTt2rVD3Q8AAAAAAAAAAIAhN6AHIzNnzrTvfve7ds4559hRRx011H0CAAAAAAAAAAAYEgUDnfH666+3Y4891qZOnWpf+cpX7I9//KP19PQMZd8AROjrC7z/UvIfAADAYHLrjqFab381TS7/9aai/6NegisI/P8AANhbOrYM1X8A9t6AH4xs27bN/vCHP9hZZ51l999/v5155pnW0NBg5557rt1+++3W3Nw8lP0EAAAAAAAAAADYawN+MFJcXGx/9Vd/ZT//+c/t7bfftqefftq++tWv2quvvmoXXHCBTZgwwc444wy7/vrrbfPmzUPZZwAAAAAAAAAAgD0y4Acj6qijjrIf/vCHtnLlSnv99dftmmuuse7ubrvsssvsxhtvHMw+AgAAAAAAAAAADIoBha/H2W+//ezyyy+3yy+/3LZv3247duwYjNUCAAAAAAAAAAAMqpwfjFx99dVZp5WXl9thhx1mZ5xxxl51Chir3DDTuCwtDdsqKkx4bTdQND6YK/sMumxozpiVFxRE/WJa9LJFhXv8S22hbiUS2afFSfiHNmZ5f2JCFx7jhjMkLtiLjUW954P7nmof/XXvzaZy2X/dp6F8n/hIAPnlfr71OhG+vvnTCwoy03tT0ReKuCHc3Za7XjMLhbv3ST8LpJ/udA1Uj7vk9PVlnyNu/I86XuHraiDt6H65ixdG1lIDX8/e2tv6aSTKrcYbvn6o8Jg+eAd3X3ifAOw9HR+17ZJhOXYcCo29zvI6ZudyzYn6Tj+Q+XO5zxG3pDt/rrcpor4/xl/fs3c01ZdbP/zt7vmycfTeVC60BtwbcefLvnivhu/pgy/nByNXXnll7Mlz8skn2x/+8AcrKyvb444BAAAAAAAAAAAMtj3+50dBEGT97/HHH7d/+Zd/Gcx+AgAAAAAAAAAA7LWcH4wsXbrUqqur7Ze//KUlk0lLJpP2i1/8wmpqauz++++3X//612Zmdueddw56ZwEAAAAAAAAAAPZGzg9GLr30Ups2bZp9/vOft6qqKquqqrIvfOELNm3aNLviiivsggsusOOOO87Wrl07FP0FAAAAAAAAAADYYzlnjKxatcqCILAHH3zQPvjBD5qZ2cMPP2xr1qxJZ4/U19fHBC4Do5MGIaX6/DQsDZLSvJ6ogPCu3pTX1hCz5nZ/urstDTWtLPU/+lGB6trHUBBbTPJYT2/mGGh4aly4anevf/zcMPYi6UhJkd8P3adiZ9lc482CiACwuHD6IPD3IZTQ5BzfqAC8Xevyp7vHIHwuRYfc6fu4N8FjexMAllv4Xm4bilp33Kr0rXDn75PPtR7LvQlETSTkMxERbqyfa91q3LF19zHqHB98UdvKft7GfT6AoRYew03a+Uks1M9GT290EqeOta7CAh3zpe0MtXHB7XHHw+23dkn7qGvqlrTRgojxMC7E09uPuJRXDVCXdXnbDrL30Sx8bPV4ut3u6e3NOq2/brrvY9wuhUNx92YM89s6tniHWpaNG0ujx/Rc6wPnfAlN89t6rAezfnLlEhg8sOkDp+G9UXsU3t3sc4/VEFdA5f75zi46xFvb0WNpePnM/J1SS/T09mhPvJaO2ynnwtIjF5m4frrNqvLiyHn1XoSGfrtjnNY4cTWPHi+3BuqN+I7Wn75g4Cnp4XFp4ON0eCzNLsj5PIy6a+JP6+xOZZ1z1w/8n2iNFDFrZD2lqwnVS7Lu8PfLgd/3ibtPNlTfC4ZybM21nho8sVen/n86SP3N+cHIwoUL7emnn7YPf/jDVlFRYYlEwtra2szM7JhjjjEzs5deeslmzpw5KB0EAAAAAAAAAAAYLDn/WseNN95oU6ZMsSAIrK2tzVpbWy0IApsyZYr9x3/8h73xxhu2YMEC+/KXvzwU/QUAAAAAAAAAANhjOf/GyIIFC2zNmjV222232csvv2xmZocccoh95jOfsdLSUjMzu+uuuwa3lwAAAAAAAAAAAIMg5wcjZmZlZWX2+c9/frD7AgAAAAAAAAAAMKQG9GDklltusQsuuMCKiuJn7+3ttVtvvdUuuuiive4cMBLEBfq4oUq9Eiym7VBAqkzvcEKqUjKtQgLTNZhcw8OKnTBy3e7GHe0WpdALMfWnlRQXem3dx2IJQHPn1zA0zVgqLfLXXVnmh61192SOT48EnrV0+IFwmqPV5SxbKvugwe2hYDbdp6Lsf4VQJ2mgZdTppNuNS0zt9YJro0OBo8J2zczcPPG44DB9H0P9jlg2FNkW0a2YzNuchEOSo9cdFbZXKFP1PQ4beMfj1lXkHGt9T8OB8TGJu+4kbedw7MOBgHHr1rDG7OuOykQGhpuGPepnTMfaqHBRXVfUdTSO9kOv0bmEkes+dPT44Zmd0nbp+K/XqKghLtzH6PqpSLZVEBE2rtvVY5/I2jBLyLrixmn32GqoaU9P9DgddcnWs0P7oe+oWyPmkJX93uTs53lc0Gj4MyLT3X2KGwtyCarVIHtdVWi8jKqfovdxb8ai6OM18LD5gaw7mu7jwHcqlxDpuGMVt9VsuxR1DQOiuOdOaMzWmXWMlxlSzjgVvtZFf3dS/ji0ZyHE/c/qz6tjuPY7FXF89Dt/OGzdb5eVZL5v632MHrmP0RVRW+h9i2oJY4+rzaICsPVaUhj6juvXGqXFBVmn6WaKIuo87VPcmK79dGsknbenL3r/3aaep/EB6TqDO+vAw9T727bX7Zj7Gnpudvdlzp/Yr78xQe7u8Yq7J5KQlenQNGhjVcyxjf/K7/5g4J8PXTK87lyvVdnvMcYJgmwLDE4S/YAyRj73uc/ZzJkz7bLLLrOHH37YmpubvenJZNIee+wxu/zyy23mzJn8NgkAAAAAAAAAABiRBvQbI+edd57deeeddt1119l1111nZmY1NTVWXV1tra2t6QclQRBYQUGBnXfeeUPXYwAAAAAAAAAAgD00oN8Yue2222zlypV2ySWXWENDgwVBYM3NzbZhwwZramqyIAisoaHBvvrVr9rKlSvt1ltvHep+AwAAAAAAAAAA5GzA4esHHnig/du//Zv927/9m61evdpef/11a25utpqaGps7d67Nnz9/KPsJAAAAAAAAAACw1wb8YMQ1b948mzdv3mD3BRgyGnzkhpyb+SHoGgbW3uWHepeV+B8bDRt1aZiRhpYpN0y0qszfTnuX32cNBNdMt1YnjFwDmjQATkNMO53jo8FqO1q6vHZJsQSPWfZ91jD10hI/BF1DuPR4uf3UkLLQPsm6yksz2+rpjQ6T65KAVI2NcgO/qmSfNKQrLsi9IHsWliWiEs7MrMSZrIFnoeDtuGAq563QcEFN9OoJHS9/9riAwSheDKkGoMqx1PMlKvRbs8/iwsZzoZeAcNjowFceF57aGxHiFhdyrtw1RYe0hcP2/GOrAdSRmx1IQly/82oYM7An9Nqo9YCenu41vLtXagepF/TzqWNLSVHmQqvr0hBPDSotdq+rofBHn+5jT0qDFt15/WVDY5a0q53aRNerYZhx12i3n6mYz7de+tq7er22G/Ia2q4c21DgbuC+jg557+j2t6vrcq+7+r7EXd9Li6UmigiU12MfGRAeEygfCnnVkE/vfJFzS962lPwgXCJnL3p0jA8F20bMGxvirUHIEeGhuv+xAeLODPp5ieNeQ+KCauM+q9mji/tdm9fKpSaKOx4J71K1d6Go2UoestcxUFHnq36G9DOo9UGHjDvutULrAW1vT3Z6bR3D3O9WGi5eU1nitWsrS/1+OB8I/Q5WFjGumIWPT0mxO5ZapFAguKzLHS/bOv39VVH3TBpqy/z1yrHrlHskWk9UlmaOZyDXvuIi//jEXbGS7d3p1+FgdllXxPfScCD6wL/Tmvm1Sej7ccx77NK6NW7/U3Jeu9uKyTgP9yOicNHjoYvqrYaigsKs88Z979TzOIiYFv7OGz0YuadIuCaOrre980XONe1HSPggZJ019vt15HeO6H7sZQkQua7dzfA9rz0zoD+lBQAAAAAAAAAAMBrwYAQAAAAAAAAAAIwZPBgBAAAAAAAAAABjBg9GAAAAAAAAAADAmJFT+HpPT4/dfvvtlkgk7MILL9zrQDUgFxqs0+YEb2kwUq+EUmqwVFOrHyDe3ZMJ7SqR4KwqCUDTkKUtO9uy9jkuuL2uyg9Tc0O8uiTgU0O7Nfwq2ZU9dlGD2KICPrVfmilVU+H3WfcxnH+U2VZzW7c3pScZF0avAeqZ46fBtBqQWlLkt91A9VAIZ0wYfVQwtQaxKg3aKi7KHr6u2y3SUDINI3dDXnMMcYtSKG19T4s0mFTm18/jnvZDt6ufvd4g+vxxl48LEAwFpkZ0NBSom2PYatS6QtNlhuKIYPucc9giltXr7d4EnYYOTyL7v8mI+qzpNRBjl47xbZ3+ONTtjI9Nbf54r6GdlWX+GB8KP3SaGtKZknB1nV4i7U5nvNB9aOnwg1lTMt0dHzRYVMeO8TV+UKlyg8p1fzslbDaln33n2qDjmV4n9HoVmu4srx/9nlT09b24yK8B3HEnJdev7l4NTJf3zTl+ep3plDFer/daa7h7otPiQjs16Ne7DmvdEhM+Xlqc2bbmamr4rL4v+l70OtN1u3rNjttnfzsSHi4nW1ePHPuIwHQdHjQUNxzsnj0wNhygHjdSZ/qtn+s4br9yzQ/t1c+I82aEShrTWaPfx6i+5FLH6TUybmXRIfDcd0CY1qvt8n24u9dvu59RrQ+6e/zzVb/PaAi4O/aGgpRl/JsxoSrUd1eP06/NO9u9aW9ubPHaTa3bvXZtZaaOGSf3FvQ7f2NdeeT00HXFodfVuOBlt9Yol3sg4a9d2cc0DarXcPrQ91D5gXtPpURrBzl/tAYql/sN1eXuPRJ/2Z6IYHIz/9hqvWhBdF2n9yrc81rvNYTHMNmU8zpubFC6anefQyHwMeOMfr7cxfXY5tLPuO+des3Q4xVkbZgVynb9T1t43V6Qe0wafXdvqFhLy/W+e9R3GV1X3H2Mvck2D98/GPjK4vZ497q1lt5TOd1lKC4uti996Ut2zTXX8FAEAAAAAAAAAADsc3L+55eHHnqoJZPJoegLAAAAAAAAAADAkMr5wci3v/1t27Ztmy1evNieeeYZW7duna1fvz79HwAAAAAAAAAAwEiVU8aImdm5555riUTCbr31Vrv11lu9aYlEwnp7o//ePgAAAAAAAAAAQL7k/GDELBwqAwwFDWTa3NThtZ9fsy39uinph6eVl/undmuzP72kwg/t8sLBJGSrstQPx9LgMS/AUaJ3xlX7IW26T02tfhi5S8PPNBxN+1lemj30VT+zGu7U1eMHjXV1O+Ghsl33WJmZ1Zf4+6gBSO6mqyW4XefV46PHwA3YTbb3RM6r70VdZWnWaUqPtQZYueGsOq+uWvOgokLtNLQzFKaqIa9ucLsGjcbsY1QQaUjogMWEdBVkep5LMHt4fg1li+5HeLqz3SB7wFt//dJ2ZK9l3lA4u/sDDTyLCTwdzDwvXZW77dD+RYQgxm5H2jFZcx497m43qD3GLr02Nrd3y3T/utrclpm+RUJMt0q9UFXmj6XNbf7Y4gZV63WyUULOdTyoqfTHvFqnXVEm80pdomGj7phXUaZxj76drf4+6mc/lcweoK7jtF5X3UD1uDG8vdOvLbSecI9nOCgyOuRcA9QTzvK9GuhZoPvg96PLqYl6+/w+qxJZlw5pBYnMDzokuF3DVPVaGRe26tLPhAbdawhs5HZkMxpA7157Q2Oj7H+PvC9RAbuh0HeZV2sed1kdD3RdPVprydvqLq591NBk/QxEBd2G37PoEdHtRxBZAYWFAtQjltXjExpPNeg2Isg99L5FdzJy3txKnCDLa4w17nVI7w+8vG6n19bvuO6yei1UjRK2vmpDk9d2g5gb6vx5SyRcW8f0hHwaip0L8cyJ1d40bWvN0+LUBxu3t3nTNrd1eu13d/jHq7TYPwZlzjg9rrrUm1YrNU2N1AuhEGv3+ibXGBnCQt/T3HVpH/uyD2+7t+a1Sosy/dR7IEVyESqTOkXnb+3wa0SX1lM6VlSVZeo8fQ8LpC5ROqS5x0cv51oDheqriGnhmiayW95nKPx9L7pe0G31JbLPG7pvETEGBDHjbtT9AjOzhJd6rteI2JE5ayt8LP0f6I15v16K3q6uOqo+D9UaMbWY1hpemRNzX0Ovc4mI9ziuHsg2/2DdK8n5T2k99thjWf979NFHB6VT+7obbrjBFixYYDU1NVZTU2OLFi2yBx54IN/dAgAAw4yaAAAAUA8AADDy5PwbIyeffPJQ9GNUmTZtmv3oRz+yuXPnWhAEdsstt9hZZ51lL7zwgh188MH57h4AABgm1AQAAIB6AACAkSfn3xgxM1u1apVddNFFNn/+fPvYxz5mTz31lF199dX20ksvDXb/9kkf/ehH7UMf+pDNnTvX5s2bZ//0T/9kVVVV9tRTT+W7awAAYBhREwAAAOoBAABGnpx/Y+TFF1+0E0880dra2iwIAhs/fryVlZXZlVdeaVu2bLGf/exnQ9HPfVYqlbLf/OY31tbWZosWLco6X1dXl3V1Zf4mdDKZHI7uAQCAYTKQmoB6AACA0Y16AACAkSHnByPf+c53rLW11Y488kh79tlnzcxs4cKFVl9fb4899tigd3BftXLlSlu0aJF1dnZaVVWV3XXXXXbQQQdlnf+aa66xq666ahh7OPJooOM7Eh6mAWnHHTQp/VqD1V7XcDQJpt742lavnXKD2yRIzFr8EFMr9wNS6w+ekH7dUOOHlCndh6hAOA1tjVtWQ7wqSjPr0sCquCB3d10a3pSS7QRBdIi3O3exvA+l/qEM0XCseicErqvH70efJLF1SVhahxN6p33UQFgNyNN+FDnharquYg1X1WULo4LZ5FhL0FqnvOfutvsKooPFdLspOT5ulFy4z3FB7dlDc0OhphHBfO/9xJmmgXA6s0zX0NeC7P0IBYnJPuYyOMbkyUcGpunnS/sVaMCwMz0uHE1FhfPtTXCZLhoXqBu1fFQgXlxY3kiWS01APbCL+9lo6/TDLjUwXYOWu7oz18rGunJv2oRxFV77Xak1NDyzxakBCmTaqle2eO0+uUZXTKjy2qXlmX67IZxmZpUyDleW++366kywa9xHQfdBg8vdMNH2Tn+8a+3wj4d+7kpLMuNlStJTayr9fSot9vdBrzNuQHhLt3/sdB90DNOxxL3e6zgcF7xZ7ITkai2lfdbQdw0X7YkIhQ2tO7KXZu4v9us4XKyJ6bKwe3y0BowLQO2R0Hh9L1x6bulYq/ukY54rISGneqz1+EWJG/Pd902PR7e8ibmE00adl2bh99yvU/YuqDwqUD6Uta7rtuzHJ67GiepX6ByPCeMdaKR61Hk00lEP5C7qHoGODYft3+C1k23d/rLbWtOvNzf5weSbXvbH9DflGlQk380LnPGwpMqfVlkrtYcEuVdX+OOlG3T+zjZ/HK6SekCD3d1Q9PE1/nb0urlD7ms0tfpt9/5Ct9Q070q/3jW/XVvl3wcZ57TLSvw+67VSo8f7vOuZXFdl5vAlSMZt50JTLiHnoe9Gcrw0+F3vobj0+16PfNd2v8eHxpWYRHkdS1J92S+8cYHp7niYkj7rWNDPwl7TG0sjtmPWz/gY8f1YexEKao8aAgKt+fzJGk4fvq3hjsvR39NVLl9V4/cxyDqv0rFVz5fo79DR1ai+Te74q9v1rxjhdbmK4k7UkKG9D5Dzn9L605/+ZFOnTrUnn3zS+/n06dPt7bffHrSO7evmz59vK1assKefftr+5m/+xi666CJ75ZVXss5/xRVXWHNzc/o/jiUAAKNDLjUB9QAAAKMT9QAAACNLzr8xkkqlrKqqygrlaevWrVtjn3SOJSUlJbb//vubmdkRRxxhy5cvt2uvvdZuvPHGfucvLS210tLo3zYAAAD7nlxqAuoBAABGJ+oBAABGlpx/Y+Sggw6y1atX2w9/+EMz2/W3Lr/1rW/Zu+++a4cccsigd3C06Ovr8/5GKAAAGJuoCQAAAPUAAAD5lfNvjHz961+3xYsX2/e//31LJBL26quv2quvvmqJRMIuvfTSoejjPueKK66wM88802bMmGEtLS1222232ZIlS+yPf/xjvrsGAACGETUBAACgHgAAYOTJ+cHIhRdeaO+++65dffXV1t7ebmZm5eXl9g//8A924YUXDnoHh9pf/vKXnJc56KCDrKgo+6HbsmWLLV682DZu3Gi1tbW2YMEC++Mf/2jvf//796aro16bBF5PkoBUDWPf4gSm75TgsBIJYps10Q9Andbgr7vSCUF9bpUfzN60altUt23HU5m/99p1YKM37V0Jy6we5wexTan3+zHeCWbTsLhcuWFqGuSuoa8a0OQeDw1Vamn3Q3C7JVhMt1XqBHOGQppDf31Pwp5C82emF8uxTchnskJ+87y8JPtntkOCRjWMXkPuunsz0VIaCNjZ58dOlWowqQTQ+6Fn/ro08LQ48PvhhnJpJmlK1tUXSDB5TCi6KxR0L+eEBt2651MoaC02N8sNjPWnFESEg+7alga3OmuV7WpwZzgwNnu/dV2FumxECG44Z072KTQ1LoDemRYKco/eln7uo+hm3XVHTetvepSoML2hzlodinrAjJpgoPT8dUMrq8r9MeutzS1eWwPE3fDQlg5/zNra7IetTqjzg0r1MxY4/UrIZ6aiodJrF0lIZ+ha4Sy/w6lhzMy2x5zfbnC7jmcazFon4/BOuYaXlToB6nLcNXhar7M7nNqiqszfrjs2moXHUg1/dN/XWumzvg/azw6pGQsiwsZ1uxrq7U7XIN9QcHvMdbMwImiyR8LqNVBdg8x7nfm7e3W8ix5bo/oZjtmMHtPdfug0rQF13NYxTPfZpdeAQnnfikucelKW1aPem4o+f1x6rAqlj6lU9LF3z9Wu3ujPjy4bFWyvNU2o1pD53cmhcTcmBFf76a4toov9bsttRtUsu7ol/QoVLm7Ia+an0UGye496YGSJukeg9wfe3tLqtTfu9Mda9zOX3NbuTRs/3w9ub9no1xp98vmunJC5v9DT6n9v3/7WTq+9Uz5I9dNr/X45webTpLbolO+p+l3bvQ+in20NCx8nIfET6vx7E+5ndsNW/1jqNalEap5Wqbda2jPHpLrC326F1Acazu6ONXqdDAVgx3wRKYz80uI3iyTZXccOt639KNK2vBdusHsquhuhcUnHNHfcLpP3WIf/0D44y4ZrB1lW+qnDgXstDl29Q3WcPz1qHNfxTs/rqDFdhfYhImxdp+tmgoj6sZ9VeedIXNi6LuueT3FDXiA3zfToaH3lL6tvTPTGouq4XO4JhL9v+fOGy1i9z5F4b52Dc4Mg5wcjZmbf/va37atf/aq9/PLLZmZ28MEHW3l5ecxSI9PChQstkUgM+IAWFBTY6tWrbc6cOVnn+c///M/B6h4AABgGQ1EPmFETAACwL6EeAABg7Mj5wchpp51mBx98sF133XV25JFHpn9+/fXX27p16+z//b//N6gdHA5PP/20NTY2xs4XBAE5KgAAjFLUAwAAgHoAAICxIecHI0uWLLHOzs7Qz3/961/b8uXL97kHIyeffLLtv//+VldXN6D5TzrppH32t2MAAED/qAcAAAD1AAAAY8eAH4wsXbo0/TqZTHrttrY2e/31162wsLC/RUe0xx57LKf5//CHPwxRTwAAQL5QDwAAAOoBAADGjgE/GDnllFMskUhYIpGwV1991U499dTQPPvvv/+gdg6jnxtCVSkhXFskILW20k/TrnZCOzWYddWGZq/98spNXrtbgtjGzc/8qvSEev9f/Mw+ZbbXfn3tDq/dsTUT3Nb2mgS1a5Dm9BqvraFdnU5grIahafBYryRY9UggnBt42dnlB6LuSPph9Xr83PC0GglLq5PQtmIJJteg26QTvKYBcNrW46F/29cLIguFOUnAl/xZ4OIiN3jNn1Yk+69/Uri1098nN1C9QPZfw8F6JIxW24VOuJyGtOl7qgFf7rYSMc+lNbRN09P6nOkarqcBcMWhIFsNTXZC4WMCzqICZEMBZtGrCs3hZ8TKuaThqhL4peeTm3sbF5AXCnJ3l40JT9Og2lC/nekx2aqx4bTetJg/ox2VN6xBfXHBa6pvgMdniLNWkWcawueOec1tfqipjo86vcMJKp05sdqbti3pj/9vbfLDRTVQvKYiMz5safLrku5Wfyxta/fHiu7tfrBryfhMYKx+QEtkrO2Ti1KhE0y6Q9a7Uz6gm2Qfxtf49VNPKjNdA7+1HtDPXZ2zLQ2lbm7zj4fWA+Oq/H60O4G6GuZYXe4fDw2bLav0Bz03BFyv33p507rFnV/3VwMrdSzVuiWiTAnVPBoC3xURfK991nG3W9rutnWc1T6XFkena5c4y2vtqdf7vpgMT3cfw8dO2qGAcHfFln2ahWvm4oiBSc+XUEip1Fe6j952JJw+LuTcrfPC4ajZ60Wz6JqwuDBuu3oem7Td42OR9Dx3+6GBsNGR8eFxgGF/bNLrTNQ9Ar0/oJ/9cln2zU2ZQPW+Hv8z1vy2f/+gcmKVP/3lzV57x+Pr0q8TR0zyplVN9cPVE9KvrW9s9/vp1Acapl1f7e9jh4TRu9eCShn/9Tqh43IiIW3nUzdVQuB7ZPzbLvXUjAn+8XLHS/d+gJlZlxx7vd6710M9H4pirrO5fJcIf7eU77xFfrskkX081PqgsFCv0Zn3VbfTI+vqlnsAek13e97Z3WtRSiLC2cNB9pGrsl4ZpwoKnPsHuYzh1s/75AVz6zTZbsRNAZ0WClDXe0Zy7N0zU/chdLxEqN99ETVP1Jdr84+PHru49Ctdtd738NYl43RcKLz72dR9SiSk/o7oqH5uVURe/K51y//urZz+lFYQBFmDyMaPH7/P/RktFQSB/fa3v7XHHnvMtmzZYn1S+f7ud7/LU88AAMBwoR4AAADUAwAAjG4DfjCydu1aC4LA5syZY4cddphXBFRUVAwonGyku+yyy+zGG2+0U0891SZOnBj7RBAAAIw+1AMAAIB6AACA0W3AD0ZmzpxpZmY33XSTNTY2ptujya9//Wv73e9+Zx/60Ify3RUAAJAn1AMAAIB6AACA0S2nP6VlZnbRRRdZd3e3PfbYY/buu+9aKuX/fcDFixcPWueGW21trc2ZMyff3QAAAHlEPQAAAKgHAAAY3RJBf4EhEV5//XU744wzbMOGDeGVJRLW2xsd/jOS3XLLLfbggw/ar371KysvL49fYAglk0mrra21zTt2Wk1NTfwC+yg3WKpVwsA0LG1rkx/w9fK6nenXGryqwWsa0qWh1pt+/WL6deLA8d608YdN8drzp/lhattbMmGjb7+105umoW49bf4+FpT4YVjFTrhopYTAz5JAszoJYtOgtsCJItJATw141OPR3pXpZ1mJ/z5oeKge2+oKP7i13NlHDW3TRCYNF9VQZ1dcwOde/aZ7TMCVe7x0OxqIqqF3UYHhGjqpmVQaUuVuS98H3W7oUh8K0up/vbvWHReYnj18NpRhKstqiFsUDadXoYA093VMUHu8TD/jQtxCSzqTo/rYn705j3Mb3aO3G7WuuM1E5OMNYG4nuDGZtEnj6625uXnIx0Xqgfxz6wO9Jm1P+iHoOqZtbc7UC3ruavCorrupVYLcnYD1QhkPG+rKItfdLutKvrwl/bpqrl9r6HWkUGqgjm1t6delst2a+gqv3dXt1x46PnQ6/ayVYPYKCW4tkWXdGqCkWANQo0O8NZzdXZf2Me7ap2GibrC7hlRraGkoWNJ5rWOSdiOXa/je1gfued0ldVpcUHmRF4Adl3jqiwrE1Gmh903mjwrT1j9JpMcnqptxu6TrjsgdDa9b2nH1lLst3Qdt5/S1OyK4vp/J3jEIB9v78+pnVc+fmHIrsh/uLse9L7nVBxnJZNKmNo6nHhilNHg66h6B1gPrNrd47Sa5R9DsjMvj5Lv0zhZ/jNr55Nteu/FE/y+muGPYu69u8abpGF4/o85r63DZlsxsO/niJm9a+f5+vTBL2pOcewbhIHK/rfcL9DPnXgtS8r1d76/oWLut2b9X4wbBl5f69we0btNAebe+0OuVXkdLpF/hsPHswdw5feExf3yIC26PGv+0DomrLTSc3Q1+1+Oj447mIrlT9diF+qXnR8RFOvyVXs6fwuga0a0n9Njp26L98t6XvRxn3P3I5Tt+f6LG0lzPgVzmzeW0jv/zkNnfC11t9m/x/ax1b25UOP1IJpM2bcLe1wM5/8bId77zHXv77bfjZ9wHnXvuuXb77bfbhAkTbNasWVZc7F/An3/++Tz1DAAADBfqAQAAQD0AAMDolvODkWXLlllRUZE98MAD9v73v98OO+ww+/a3v21f/epX7Y477hiKPg6biy66yJ577jm78MILCVcDAGCMoh4AAADUAwAAjG45PxhpamqyAw880E4//XRLJBJWXFxsn/70p+2f/umf7J//+Z/ttNNOG4p+Dov777/f/vjHP9oJJ5yQ764AAIA8oR4AAADUAwAAjG45Pxiprq5O/526qqoqe+211+zpp5+29evX2xtvvDHoHRxO06dPH9V/rxMAAMSjHgAAANQDAACMbjmHry9cuNDefPNN27lzp5188sn25JNPpqfNnj3b1qxZM+idHC7333+/XXfddfbv//7vNmvWrLz2ZbSGq2nQVpcTTq6BXjskAG3zTj/Qyw2h2tYswWurt3ntVKcf6FU11T+mjeMzwaVr7nnVmxZsafPaJSfM8NpzDp6Yfl1T7v/d2U0SGN/a7ofHuWGqZmblDZXp16USzK6fVA05nynh7G4oU1woWUoCvdzAq44uP8S1s9s/ltrPmooSr53wAs+iwx01LKxCguvcUC4NBNdlo+ixDCQaKipYzMw/j3WrvXIslQakuedxXBCrvk/6PnrzaoC6HOy4cFGXBqApXdIL/otJ/woFhDrLhgK8ZNlQCHpEP+Le01D4YE5h7dEBcUHEtLh1RfU79z/nkP345RpM5+5Hrt3Y06y1ZDJpkxuGJ3ydemD49fRmv3a2SSinXguaJVy1xRlr121p9aaVSmB4m9QHGnCccvqVXN/kT9sq9cH0Wq/dLWN82cTMON3x2FvetMSsOq894bjpXrujJbOPgRyrPhkbysb5AcEaeDnRCW/fIQHxWi/UVeqYnnmt71lc6KvWC+78Wh/qdUW3VS21hltPlsrYqAHh5aUaPpt9rNBaI3R9lx9oGK23HW3HhHq7xycUJhoaWv1loz5PurAuq/WDe/6Er/fRA4COpe57odvV9ykquFbpsBIXzu6+z3HnrfZzr+JCIzoWqnFyqGvN/DE9JWG7uk9aq2q33M9QbBB7VJ0SM2vsLjodc8+PwQpbHQjqgaEXdX/ALPoegd4f0BDv7XI/obUzUx/sXNfkTetp87+nm9QH9naz327I3D8onOx/Dw99v5Fxaea8Bq89viYTBK+h56+9ucNrt23yA+YnOOtyx3czs/oav62f9apy/7t2SVGmn3rc48Z8/Ty3Ocdat1sm9YBuy71G6bJuqHt/03tDY1j2672OO/p9OUrcuBMaW512OEw8+h5J1PfpVNQXz364Y3yXvKfFUvPofQvl7qMGguux1fsYIc7iut3QfYyIL5Naw8TVT1E1QNx7qqLCyEM1TW4J6ZHbjQs9d88vXVX8EJ/9+IW7HH18ou495Brk7oavT23c+/sDOf/GyEUXXWRLly61119/3b73ve/ZOeecY93d3VZYWGhXXnnlHndkJLjwwgutvb3d9ttvP6uoqAiFq+3YsSPLkgAAYLSgHgAAANQDAACMbgN+MNLd3W0lJSX2jW98w77xjW+YmdkBBxxgr776qr3wwgt28MEH2/z584eso8PhJz/5CYFqAACMcdQDAACAegAAgNFtwA9G6urq7Oijj7YTTjjBTjzxRDvuuOOsurraZs+ebbNnzx7KPg6biy++OOu0jo6OrNMAAMDoQT0AAACoBwAAGN2i/2ico7Oz05YtW2bXXHONfehDH7L6+no74ogj7Bvf+Ib97ne/s61btw5lP4fF1772tX5/3tbWZh/60IeGuTcAACAfqAcAAAD1AAAAo9uAf2PkBz/4gS1btsyefPJJa2lpsVQqZS+88IKtWLHC/u3f/s3MzObNm2evvvpqzJpGrvvvv9/GjRtnV111VfpnbW1t9sEPfjCPvRpdNHTIDY9OtvsBoPpryxPrK7z22o2ZALRmWba01g8aa1m70Ws3Py9tJzR93Af396Z1Jf3QtvZn3vHa650Q9OrGSm/a9Aa/XV/lh4XulAD1bZsyIbEpCRardkLZzMwapL1xR7vXnuGEsWswUlKCajWI1A3Lqqn0p2kgeo8EaW1PdnrtspLM/OEQV/89Li7y225A3q7pmb5oQKwGpCYksskNBAsHnPrr0l+Y1/PWPT7hIK3o580aXOfuR1yAVYHsc3dEuKqGp4UCrTR4KyJIK/QXBELT/RncELjCUGDXwIPtNXhO90Hf86h1aRCfrjsUthqx6rjQsqjpug/h4FE5llEBcqFzz19TXH5gdCB9dKC8L7f4tOhTIPuGhvMvWVAPDD8NbXSDN8slpLNVAlEba/2w8QYnbFRrh3e3+WHsyXY/xLRLxkcv4FKmFU70x/juVdu8dvH+9V67862m9OvSk2f6y77mL7v5v1702hV/lalNiiQstbvZ71e7BMoWSk2001m+bqofVNjZ7Yfe6jhc7ozp46v9OqSkWMfl6PHQvUYXxgR+uuO/WThgt9ypTXSc1XG6u9ffRzfItbTYP7YaAqx0H7sj5td5g0ACsGX+wPn3a5Lba0FokNKaZ8D/9i107PV63xcRGJtISGB4zJgWdTy1pgmF4kaM+TqeaSmm4c69Tjh5d290TaihwFFDUWw4fUTWqtYhhUUDr3HMzAKnXayhtzKvW5vv6od+RrLXl1pb6LF337e4cGIVCsF1Dpi7D7o/Q4l6YOhF3R8wi75HoGP8tmb/t3iizpWd+oHdkPTb2+U3ghZMyDo9IdeNXhk7bfV2r/l6k4TGL5ySfj1nUrU37aj3TfTam6f54/brr2zJrKfd365+/xlf7dcDbVJPtQaZtgazl8t1o1Cv0eYrdbaVbPfvp2itodzvx3pt1GV1rNDrn3t909Ohq8e/1nXJVatEag/3GqV1a9z1312TXnP1fooOlTrWlrrjkl6upR+6z6VOrab3U7Qfqb7owHT32Ovuaz2k13dtu/3U7abkeOixd99zHbP1WIePvdQAzrEOB49Hj8s6PrrXH93fULB7RBh76J5IzBAYnj/7Z0BXpsc2amO6T2FSm0bdX8np3kNmXbFdGKABPxj53ve+Z2ZmfX199sILL9jSpUtt2bJl9sQTT9i2bbu+zK1evXpwepUn//d//2cnnniijRs3zi677DJraWmxv/qrv7KioiJ74IEH8t09AAAwDKgHAAAA9QAAAKPbgB+M7FZQUGCHHnqo9fT0WG9vr3V3d9v//d//WW9vb/zCI9x+++1nDz74oJ166qlWUFBgt99+u5WWltr9999vlZWV8SsAAAD7POoBAABAPQAAwOg24AcjDz/8sC1btsyWLVtmTz/9tHV2dqZ/JWfmzJl20kkn2cknnzxkHR0uCxYssPvuu8/e//732zHHHGP33XeflZeXxy8IAABGDeoBAABAPQAAwOg14AcjH/jAB9J/U23evHl20kknpf+bPn36kHVwqB122GH9/q240tJSe/fdd+34449P/+z5558fzq4BAIBhQj0AAACoBwAAGDty+lNaQRDYxIkT7bjjjrNFixbZscceu08/FDEzO/vss/PdhTFFAw3dYCUNt0r1+X+ebauElE0clwlbq67wQ71Xb2j22l2zx3nt7o1++GqwLRNcvv2GZ71pBe9r9Ofd2ua12x9Yk35d/PEDvWlvSKBZVZUfVFpd7oevTzwgs61tLX5ImQaNvrhyk9eeNtPfx7c2ZwJlNSB1wjg/qE6DE91taSBejRzrIgnpqizz96mrJ7OuzTv997BWwtjLJNi9tFjPiUxfNMAzYRKOJkGlvU6wVjgA1d9HDerTcDn3cGnIe5Ecy14JD9NAOHdTvXIsNdAqHGSbPZUqdp80mNRZl4Zu6ec2bt3etFR0aJseW3fTuloN19LgUU29c7/USg5bOPDMoqe7gWA6TY9XaN1euKosGwqB12Vl3QPcjplZKhTOrqGmbricRYoKm9PzoZ85ZF2RW8o6b1zg3d6iHsgvPY/c69/OVj94Va+FGtLoBnVXlvrnzUQd/+RD2FTjb6vHWXfbeH/Zt2Uc1gtN592rvHbh0Zlw1e51fp0S+mDIupr/9Yn065KPH+TPW+aPnY2HT/Ha7TL2ppwxvqvDry1KZF09EkwaOMGsLR1+yGujhLxrCHp1uQY+Z17Hfbwbav1/nV0j9YMbxhoKjhRae7nhs+1Sa+n4VyF1io5/cYHzHtlpXdINLm1p92uecumH1hZaP7n089KrwaMRNYDWhLr/cWOaO3t4Xg1i9detIbkuPe5xGeiuqFpz13al3pR1lbhh4zocRmeve6OjTosLGNfjVeyE0+uS8hUrtG5dV5lzTHRdoTBemcGtZXMNqtXQd/1+spueG4ONemB4Rd0fMIu+R6D3B5Jt/hi+cWe71+5wxrxyGdN7pvqh52Xv88PW23/3mtcumFyVft394mZvWsWn/HE6qPHHx64Vfv2wwRmHds6p96YdfZg/pk9vrPLa007KtF9dv9ObtnGHf3x0rNDv9e5381YJkNdrsH486yr9+w3uxWGc3APRz7oGqrvT9foe/t6l45K/7iLvGu3PGwomL4o+F93hQMdKPbZRY1zUNXdXP/1l9R5Bt3udzSHg2swPWNd90M9a3Jgf+i7uKCzU9yl7P8z891X3SZu6Lnec1vMjaqw0C9de3j7GBLfrukP3CJzp4WWzz7tr/uzL6lGPe8/dVet29FjH1R4uDa5XUTVhLn0266d+GuQyYMAPRn7wgx/YE088YX/+85/tpptusptvvtnMzCZOnGgnnniinXjiiXbCCSfYwoULB7eHQ+z73/9+vrsAAADyjHoAAABQDwAAMHYM+MHI9773PTMz6+vrsxUrVtgTTzxhy5YtsyeeeMJ++9vf2m9/+1tLJBKjIoQdAAAAAAAAAACMTjn8vvd7CxQU2CGHHGKHH364HX744XbooYdaYWGhBUEwgD+nMfLU19fbtm3bBjz/jBkzbN26dUPYIwAAMNyoBwAAAPUAAABjx4B/Y+TBBx+0ZcuW2bJly2z58uXW3Z35+427H4gUFOT8nCXvmpqa7IEHHrDa2toBzb99+3ZLpVLxMwIAgH0G9QAAAKAeAABg7Bjwg5EPfehDlkgkvN8KKS4utiOPPDKdMXL88ccPSSeH2kUXXZTvLoxZnU5Qkv7CkQaxjZfQshfWZP4lz1YJRC+SYM3pc8d77a11/rqSb2WCyoIn3/E7IqFlpafP9vtZkgmparr9JW9a/eJDvXYosLHI/8GW5s7064YaCSmToM3pDZVeu0nC5ipKMvN3dPnFeku7P2/4WGe2reGpSVm2RFOtQ8FjmX2cJmFx25L+se3olrB6eR/dQDD9/TQNTNV+lTrvkwapaeiUBoLrb8O5h0SDo7Rfemw1OMoNZy+TxHgNRO2UAFB3HzVIK5RLnsMv9IVCvDVoU2hwmxtEpsvq8dDQtl5n40Wy3j45eqHgsVDId2b+0PGQZXUfosL54kLgcwkXVzFZ9RJGHj2vbiscOO+Gy8UF92Xfx9z7EXUyZk+uHY5fSqUeGD5x76cb6FdeUijT/A+KhrM3Oe3aiJBus3DwaGWZBnNnwkd7ev0Q11KpS1IyTluVv+7eP76Zfh3IWFp87sH+uuf7dUvioIZMI+kvW72/H9S69c/r/X6M94PLq6fUZPoRE7JYK/sQZYuEvE+q94NtO+TYu+NBnWynQ8b0bc3+unUscbfVGzNmbXNqLTOzSqfW0CDNItmO1kSqyzL7WCrnbUrO2xIJW9XAUHe6ztst9UBHyj9ebr2g4eLhcPW4cckNavWPR3GxBtVGB5V6AeEx1wANfXXrHA3jDW1Xx5Ig+z52xZwv+u/+tN7yQoRjwlSjQuLD9WP0+6If3agg97i/6hAKOXV/oO+hnE+hOi4qjFfrOv3uF9FHd1mtD4cC9UD+6PedqHsEen9Av+PqZ67TGadSMiaV1Prr6nzV/62hoMVfd1CXqQ8KptV40zoeetNrV3xwP69dc9JMr518ekP6dULCoZc8tMZrLzrZvxdR49Q5h89t8Ka9vaXVa6/b4t8zme7P7l3vG+v82iH0WZfvqW0S1u6+b6k+vz7ScalcSg33e70Gj+tYGXqP5X11163LamC6Xr/0SuPOr2OUBsrrZcrddui7s35P1cBwCUVPOMdE+6EXdL1V0+eMh/qedssDXh3D9Hj1FWSWDwWxR3crtI/e19LQwn4zFFTuvNZ6QLpsnT1yb0LW5YXAR2zHLLpO0SXCQe16ryH7unRZ3UroHIgMidd6KbomjOp3XE57KDQ++62HkLh93j05/j7EwAz4wYiZWUVFhS1atCj9IOTYY4+1srKy+AVHsL6YYhgAAIx+1AMAAIB6AACAsWPAD0aeeeYZO+yww6ywMOrfcgAAAAAAAAAAAIxcA34wcuSRRw5lPwAAAAAAAAAAAIbcvpeWDgAAAAAAAAAAsIdyyhgB9paGa7sBThr0sy3Z5bXXb27x2m4oV3mVH1S++S+bvPaOd/xlC/Yf53fMCVPT8DSTIK1A2h1/zoSljbtwgTet6bWtXrv6yKlee70EoI13Qt90/2sr/EBYDSKrLPM/zm7IaaOEyTVLUG2VrNsNWNdg2vpq/1j3SPBal7zHFU4Y7Y4WP/C0vtrvl4Z2afhqeyoT6lZR6vdZg9c0C6q1I7OuCgnI1VCuuDBt91SNC50KBZ6FAsGcGSSgqqhQw7A0nN0JXpM9LpYNayiX/vlkNxwrHLJlkfT4hMLXBjjNzL8m5BJK1h83QC8cJJZbv6K3FZcK7obNRgeehbcbs+qIXsSHlbuhbv6UuPPa3VhcHxOJ6M9TVCC9e7ziwmOxb9H3MxTK65yEPfLWa7Cmtrc74+dfVvvhqR3b/QD1Sfv5weU7NvtBpX3OdfagAyd40yqk3aZjlrTb5mVSTnva/HG4c/m7Xrv7rSavXXNaJmw1+X9veNOSd7/mtWs/fqDX1o9O+1ZnH2Us6Cz3x8eSGXVee3J9Jow1JeN/mYSNd0mArk6vdkLPm6QuGV/j1xpJOV4aiL1uS6bOm95Y5c8rF526Kq1jnLFULn5dqeh9CAWoO9vq6fWX1bBZvc7q8XLrGh2Xw8GtftutDzSMWOuDshKtiSSI1Nm2hpr2SC2qwayh8MxE/6/N+quPstcinVJrxoXxhkPQs4fP6kij+9wt+xwVoK41YFdf9mDbYqn54uoD5dWmMYN4+Nj686ecfdT3UD/3WgN4dZxsNxSiHBF6+97G0y/dfYqtUbBPibo/YBZ9j2DDVn/M3rTT/6657e0mr93lfOcPXvPrg9AHVsbDwg/t77V778qMvUVHTfGm9a3za422O1722lO+dow//5GZ5Vv/stmbNvUUP2x9+VPrvfZhR01Lv548vtKbNmuSf19Dx783Nia9tvsZ3NbsH0sNY68s88c0DR8vcY6njm96DdextbIsUx/oOKPXpI4uP/TdXXbX8pkLht78LJDvKFovFRXJ9c/5Ah13/dIAcXfdoWt0KIhcr7PZx8eihI7/cj3v03U5446c8yUWHUav70VhRKB8XJB9oRZyjvC4HP0+JZy16/0TvX+QMH2fsm87ZdmPnVk/73nou6r7XVvWFfMFOmocj6sJ9WhHBaYnZB9Toc1mP/f0HlrUd3rddtSx2jU9etW7pw9WPcBvjAAAAAAAAAAAgDGDByOO0047za666qrQz3fu3GmnnXZaHnoEAACGG/UAAACgHgAAYHQb0J/SWrp06YBXeNJJJ+1xZ/JtyZIltnLlSnvhhRfs1ltvtcrKXb+K2N3dbY8//nieewcAAIYD9QAAAKAeAABgdBvQg5FTTjkl9HfM+pNIJKy3tzd2vpHs4Ycftr/+67+2Y4891n7/+9/brFmz8t0lAAAwzKgHAAAA9QAAAKNXIhhAmmlBRDCOt7JEwlISUrgvKSgosE2bNlltba197nOfs4ceesh+85vf2IEHHmhTpkwZ1n1LJpNWW1trm3fstJqamvgFRigNe4oKVw2FlEp70w4/xMxd9pW1O7xpnU1+WNhECQ9d98Bqrx1szoSgJw6d6E3rvfMVr52QQNCij85z1uMHwFUt8NfV1+sfj8MXTPLa25KZfmswVFunHyxWLYHpVRI05h5rDTzTULKo5566HQ1jjwvqdvutwWoaDhYOG/evPW6QqYbtlsq6dZeKizLTw2GhCZlXQ//kGhgRVK5CgWcamBqxbNzF2QsHk+2kJF29TEJfo9YdDoSL7lgoG8uZv6ggJgReA5gjjmf4XBv4sY0LJg/nfUaHtUf3K/u8uRrAv0nISvcpql/6PvTTE2kPPBAubk3+stmnJZNJmzS+3pqbm4d8XKQeGHr6+dXxoDcq/Dcmaa+lIzPuvLu9zZv2l5f9UNO2lX679uhpXtsNSW9/w681yueM89odW/06pUiCW4vKMu3eTr/G6V3h98Pq/FrDDYXV2qJbgsu7V2zy2iUL/VqjoiETzqrLdjV3eO1Uu197lE/MBJtPm+nvfygwXZbVy0y1c3z0GtQjIa6T6v1A2ea2Lq/tBmJqzVNT6dctFaX+++JuulfGzupyf9mkBJkr91Qtl1BzHVs1uL1Eag/3MxAKRI8J2nSPp25Xa6BwSLzfb3dT+lksLdYx3iJFjctxw11fRO2ly2oIsIaxu00NUy3UNNGYWsPvo9/W81j3Omq8DAfV5tBPDYiNObihmshZQK+3cbcOogJjQ6HvMl235c7tLptMJm36xAbqgX1ULvcHzKLvEWze6Y+74WBlf10btmXm3ynh4k1yP8G65L3VcPZ1zemXHXeu8CaVHr+f1+7b4tciRWf6Qe77nzAz/XrtS/4YXiCf9enzG7329p2ZcXvyBH+snN5Y5bUbasq8dnObP6a9vSVzL2NctT+m63fLynL/HkFtpT+/e63Q76Fdcm2Ur+Le93bdblePfMeVewAdcr6455denvQ7v94T6EllP1d1zI77LuWem6FxRL8Py3QNxHa7GTuW5lJDaz9CY6e/Lrfe0rFUhzet8/V4uU2tLXSfot6X0BgVE1SeSuk4nV3c/YRw8LvTDVlWz4HwOJ3IOi3q2JmFj71/fKLXpXSy2wyF5yZIOAAA3FNJREFU0Yfup0SuOtJAQ9WTyaRNadj7+wMDeuLx2GOPpf/77//+b6usrLTPfvazdu+999q9995rn/3sZ62srMx+9atf7XFHRoLdxWlpaanddttt9vWvf90++MEP2s9//vOc1nPNNdfYUUcdZdXV1TZhwgQ7++yzbdWqVUPRZQAAMMioBwAAwGDVA2bUBAAAjEQD+lNaJ598cvr1hz/8YZs8ebLdcsst6Z995CMfsSeffNJuu+02u+iiiwa/l8NEny7+/d//vR144IE579Pjjz9ul1xyiR111FHW29tr3/3ud+0DH/iAvfLKK+m/SwoAAEYm6gEAADBY9YAZNQEAACPRgB6MuB577DErKyuzbdu2WUNDg5mZbdu2zbZu3WobNmwY9A4Op7Vr11pjo/+riZ/4xCfsgAMOsGeffXbA63nwwQe99s0332wTJkyw5557bp8OpwcAYCygHgAAAINVD5hREwAAMBLl/GBk8uTJ9tZbb9m8efPs+OOPNzOzP/3pT5ZMJvf5ILKZM2f2+/ODDz7YDj744D1eb3Pzrr8/WV9fn3Werq4u6+rK/L3kZDK5x9sDAAB7jnoAAAAMVT1gFl8TUA8AADD0BhS+7rrzzjvtM5/5jPX19aX/5mYQBJZIJOz222+3c889d0g6uq/q6+uzj33sY9bU1GRPPPFE1vmuvPJKu+qqq0I/39fD1eK4oYRuWKpZf+GQfnubExC6aacfFtomoaab/rze33DSD+1MzM4EiAYSWmr7+eGifc9u9NoFbtholR/SaZPl16Lb/H0s2c8vhI85dnr6dbcEi/XK8dBw+mIJue51Eosm1ZdHrqtUAtHckMpWeV+qJGhN2xo26tL3VC8/GranoZRuQJpeuTq6/eMRCuZ21qUhbSocpFUg7cy64jKl4oKo3cArDbCKuzi7AVfaZw2Q1c+PvufullM5hMeZhYMN3elR08zCAWhuvzWIPRzyPvAgew0D08CzqLBQFQpbj9mWLC3ripoaDh6LDIGXdi7BtrreqKA1FT5dcovUHeg+JZNJmzwI4Wr5Qj0QTa9RbjikhhnqvE0SHuqegToWbJF6YauEr76+dK10zNmW1BYmYeuajll07FS/X05fSiUAtX1Ds9e2V7d7zb6dmX4mJJg9MavObzdU+Nt9W9Y9tTr9snKCH8xaJGO6hr52JTP90GM7b16D1y6UuiQcRJ2hIa96XdjZ4tdtE+v9fWzvzNQqHRKYK92wuip/W24/NfCzo9tflwa3az3l1gtal+iyeny6evz5K8v898Kl191QMLfT1mOptYaG4Gp4fZGzLh079T0NBbVqAKgzXT/XceGhflnjz6yhrnFjvFt7RR27Xf2UENiIQSsUPCrTdUx3+xHuo6xbzmMp87x+6z7EBaCG6ho36F7m1WMbVTKG30MJjNV1ywLu8XG/Q7QkkzZnyoR9th4wG1hNQD2wS9Q9gqj7A2Zmb25q8dqbV21Lv07oBUo+Uz1/WOO1C47zx/SGwzPttq1+uHrr7Su9duGCiV77jX/9jdc++Fd/k359yIJJ3rRn733Na1cfPMFrlznjpwaCTxrn3wPQcWWSjKWdzrj1+jv+g7j6av8+R6l8n66p8Ke71069TuhYq9dw91Kgwe29ch3p7okep917JkVy/WqX+ynlsmx4zM9su7vX3672M+paqfVT6DutnJra75xEfMnTIPZc7luYmZUUZfY5pYNSXLek7fZFw9V1/CuRcTkyUD7mS66+T+4x0Pcprk4J1SIJd97c3kO3RorbbngM96f795tyWzbq8IWOjz9r6D3W2iRqOypbrTFY9wcGFL7uOvfcc+3ZZ5+1Cy64wBYuXGgLFy60Cy+80J577jkeivTjkksusZdeesnuuOOOyPmuuOIKa25uTv/39ttvD1MPAQDAUKMeAAAAZgOrCagHAAAYejn/KS0zs4ULF9qvf/3rwe7LqHPppZfafffdZ0uXLrVp06ZFzltaWmqlpaWR8wAAgH0P9QAAADAbeE1APQAAwNAb0IOR//qv/7LGxkY788wz7b/+678i5128ePGgdGxfFgSBffWrX7W77rrLlixZYrNnz853lwAAwDCjHgAAAGbUBAAAjEQDejBy8cUX26JFi+zMM8+0iy++OOvfR0skEjwYsV2/GnvbbbfZPffcY9XV1bZp067MitraWisvL49ZGgAAjAbUAwAAwIyaAACAkWhA4esFBQV27LHH2p///Gcr0OQb0Zdj6M5olO3B0U033WQXX3zxgNaRTCattrZ2nwtX01C9uPDDbicwTQOsiiVUqUVCT1NO8Fprpx/KtkqCRtc94/9N1orpdV67Y3smQDWQAC97s8lvl0oA2J8y6x73zUXetKZfPO8v+okD/WVXbvHaU88+IP16pgSiFkpAXGu7v88a9lRTmQlX27jDD6KbKsGsZSUaCJrZVrUEsTa3+yG3VRHhoLpuzVvqlsC8uJBG93wKBaJrIKgEorohXj1yrmkQuQaiapRUYUQQaXjZaO7ScUFsA48HDx9rPZadGq7qHE8Nxor9XEcMI6FAeQ31jtjnuMBY3a6uW/sZNbMGxip3TTlmp3mbyj0AVacPfLtxs7qr1nnjwtizrae/den0+Kqjf8lk0qY27lvh62O5HsiVBj5HhRRqvdDd41/vm50wdp23RcZOrR/e2dzqr7s1s65yCTFtWrfTa6fe8muPvtf8APWCcU7gep0fvl44v95f1/J3/fY7mX4FEkRetNAPdbUa+dMr4/0x35xjXaDzikIJHi1z+l0k43+rhNzOmO+HsddIPeFeCnQsqKn0Q1zdgE8zs+Y2/xhUlWfm17pl8852r61hvdOl3nLFhY1rMKtbexRLn5ta/T4rDa51g0y15okLoy2ICA/Vj5YeW53f/WzGBcSGAsMjput2dIwvkXBed/aoAE+zcBCrtt26Ro9dSurHYgkz1uPldjsUiCojYrEGzruvY8bGqForbl49tqGjJ9P3Luc34tzb89V6dVoymbQpgxC2Otz2tibYl+sB9zOXy/2BXe3s9wj0/kCvfH63N3d67Xd3ZMaDd9b6Y3jHXzZ57akfnOu13/k/P4y9d+n69OuiQ2Ucnlrtt5Nd0W1nnyvfv583ad7+4732Cw+/4bVnLZqeft0mx6Omwh8PG2r82kPH2nFVmZpAryMbtvr1UUWZBJP3+vM31mV/2Fck10L9/uxeO/Rjo9dkvf2odZ17DHQM18uq3j/Q6ZXOPus4FFfHljj9Dn/v8n/S2xfdj6jv7Spqalx4to7p8rZ546fWKXH3NaIGvbh+RI0tcdeX0PfWiPExbiyMW5cXdB8zhEfVS/oe67xx9wvcGiAqp75/2b/ph2seX9T7Fgq9160McB+TyaRNGr/39cCAfmPEfdjBg494A3jWBAAARjnqAQAAYEZNAADASJTbP20GAAAAAAAAAADYhw3oN0Zcp512WtZpiUTCHnnkkb3qEAAAAAAAAAAAwFDJ+cHIkiVLLJFIyN/929WO+nvQAAAAAAAAAAAA+Zbzg5HFixd7D0Cam5ttyZIl1tLSYuedd96gdg77nsiwY+svHDLzWkMqNSipSgK+2rsy4WIafrnoID8AbZIEpv5FwtV67nwl/frdPz/rTZvxrxd4bXt5q9csOigTLtr0c1n2eyd67XceeN1r15w222tv+GUmrL3lUwd50446ZJLXrpQ8s+0S4rbdCWfdb4ofRLRpux9EWif5cOXO8XSPs1k4HLS1ww84Kyvx30c3iEynaei5hrz1JbKHZ2o4ZvgvA2rgWaat4ZddEtzb1ychf6Fg0sxrDb0389elgZehMHJ3WijUXFatYZrO/Ppni/Xzo6Fd5SX+Z8YNNgwFrcmyqZhQT3dybBhYRFi97kOPZFyVFEX/NUj3vQmFg2mQe0wwm3sMAj1AMaGm/uToaPLw358e+D84yHXR6DC+mGXdsFmZFhfqtqcB8nsTBouRR8NV9Trijgd6PpYVSyC4ny3qjS0axFpV7o9ZOyXIfMr4Sq/9lhMovvGdpL8dCTFtH9/ttQsO9ANTvbDVpB8I2/vkBq9dfPwMf1l3+lGTvUk99632tzvZH9QLJ0u4uFMT9XX5413lAX5getvbfqB8yq29GvxjNUUCYkP1g4Si73SC7TVMtavXPz66rAbGdjr7sbXb3+70Cf7xaJNg1re3ZAJl6+U9rZbg2mqpgTplW+5Y0iXT6qok6F5O7Bapp7ztlvvHp6Pbf99KJajcDW7XUFu9lmqwsX4WS53arbsnOhBW6wUdW92p+p7rutrl3Cxz9jEu8jIUNu6XcZZwQmJLTPuo9ZG/MT2v3ZqysFDrEqlj/F3yjpcG1+qQp8dW6xi3Ri7M8R8raqCu+7aFQl5j1uX2I+dxO6Lfbt0f/g6AkS7qHkHU/QGz6HsEen9Av5eWyz2COc74uG2H/324a1ad137zkt/7/ZDv4kXnzM/0aflGb1qBXtBkDLP5/njZ+5tXM+s6xb8/sKmpw2tPOmKK135n9bb06wMP9euDLRI+b+a3U6GQ70y/Nah9Un2F1062S80jb9y25ky/G2r9Gxcpec+jvntrxnHcuFOr9yqcMV/vPcQFl6tOZ+zVdWlb99G936Dh8/qVVq/hBTK/GyLf1yfzxgR1u2NH3L27hOyD3vZwx1rd39CqY75cuvcE9LwM9TJ0fyX7ZuLe49CdHPd+k8Ucy8g1m9dPHWe1o3ps3dlD9ykiwtX7411jQ/eTpPYIhZ5r7ZF1VRZEBLXv2pZ77yrmJlHM5MGW84ORm2++OfSzbdu22YIFC2zatGmD0ScAAAAAAAAAAIAhMSjh6w0NDbb//vv3+9AEAAAAAAAAAABgpMj5N0auvvpqr51KpWz16tX2xBNP2Lhx4watYwAAAAAAAAAAAIMt5wcjV155ZdaQ9Y985CN73SEAAAAAAAAAAIChkvODkRkzZngPRhKJhE2YMMFOP/10u+KKKwa1cwAAAAAAAAAAAIMpEYTi4DESJJNJq62ttc07dlpNTU2+uzNo9HRL9XlTvWk9vd5EKyr0I3HcX1zqk7N4R0uX135nW6vX3tLU6bUbakrTr5cve8ubtuQrP/TadcW1XnvBxZ/M9OPtpDet8qJDvXbnjg6vXT6+wu+4s4u97T3epMY59V77sP3Ge+2O7l6vvb05s489Kf8A1VaWeO1ke7fXrnOm11eXedNKSwq9tr4v3T0pr11Y4LxR8ttmxYV+u0Cm94UuT5npPf7JY/p7bOXSz5SeJN52tO3/QM9b9+FwUYHsg7Sz/IJdWrFz/LQfuqiuO+UeA9lQYdS8/fXTed0t85r2S7YVyAyJUM+d7cqklBzbwoKCrPPq6dAr/dR9dvdRl40b+OTUDL032bbT38YKnfc4POJmP8fjhDY74CXDfdHzNK4X7rZ0Xl3X3lQZ7qLJZNKmNNRbc3PzqBoX44yVekA/Y+5kGWasW+oD5dYPbV3+2KjjndYaJUX+2NHUmqknXntrpzdNz/XiUv/fG21d/o7XDlZtT7/u2+jXJUG3P3bqB6toTubP1XY9vd6bVva3x/jrenmr1069If2uyYzxQZNfLxUumuq1Kw+e4LXbVm7ONKpLvWnF48u9du30Oq9dXVHstcdJLeLaLnVcfZU/r15Wxjl90TqkU47tZKm93NqjXc4XrR30Pa+t9I9BaZFzvZc+9oXW5a9M6ym3zmnv9GtCrZeKivxly0sy52Lc50e3GzVOFct2dCfDdZvM7kzWOXUM17HFr/uiax7tp46XvU5drO+pvk9x3HNEFy2SYiLq8KT6pE5LZK9pzPobtxPZ55Vthd9i/yehuiZCtr8ksWu1Wk9HT49at7uZZDJpMyY2UA+MEtH3B8yi7hGErl+ypH6e3Rqgqc2vB1a93eS1W+S7+NZ/+ZM//ZnX0q/HffEkf8Nt/rK9Mg5XfM6/R9D14Bvp1x0PvuxNm/Lf53vtyQ2VXvvNVZkxPyGf3YMPmei1O2V81I9gdXlmnNYxe0KdP8a3dfrjpb4XzW2ZcVy3M07qB/1O565L16vz6nf+Yqnj3HNAa0K91JXJurpCtZlzTfKnWImOO7LyvoixQs9c9/uwbPa96Zkf6Lp0LCmMuEZrH3XcCX3nD9XugTMt62beW5e0Zbq7uO6/7lPo+AXumB49fsV9T3WPSa71QNS2wt+X9X6KcDqWyrEben8q6piE6rZQPRB9LkYsmpNQvSDTs9WIyWTSJg/C/YFBCV8HAAAAAAAAAADYF+T8p7TmzJkzoPkSiYS98cYb8TMCAAAAAAAAAAAMk5wfjLz11luWSCRy+tVXAAAAAAAAAACAkSDnByOLFy+2//3f/7XS0lI75ZRTzMxsyZIl1t3dbR//+Md5IAIAAAAAAAAAAEasPfpTWiUlJfbaa69ZQ0ODmZlt27bN5s+fb7NmzbIrr7xysPuIUURDLP3wX/+hWrmEmGrQlhuGpIFEGupdXeGHdm6UEPQVL7zr9Mlf2Tdf+oXX/vOFv/Xar95yT/r1nJmHeNNe/tzPvfZhv/2G106+tNlrjz8yE3q6fd273rSNEnDW3eMfjyPmNnjthtpMQNpOCTHt6fWDxOolAM0N3tq0o93vY60fxq7vkwYjRYWUhUJN5X0rDgWRBlmn9UkoV7uEpbnBbPoeayhZgZxPGl7vBpkXJCSqKToTOHR83DDRophwq1CAvDNDKNQ8JuRVuXNrP/SzF8rkTGhwqxsu5/dDM5M1HMwLppPNaEBcODA2OuTTFRdEGg6CzvygMGa7um73+On7oOdDLr+NGXE6mFl8eL07fyhbLiYgz123rjfUL9tziSyvse+LCls38z8b3TJm6ecodE1yAjCrEn54aEONP4YlNVy12a8Pap3Q78PmN3rT/rJ2h9fubPWDXE0CwxOzatOvCyv8sbPjnpe89kvvvuC1D+v+q/Tr4jn+eL/kr3/gtY9//ye9dtERk/x+7ejMvD7Y36eu2//iz/vRA/z21OrM69X+/nev2OS1tx3ub3dbib/PqUMz0yvL/PdJQ0x3SkhuuaxrRzKzT1rzaZjqxu1+XVPvnBMlRRriGn2975Ag165uNwDbm2Tlpf4+6tgaqk2cE7uq3F+2RwZTXVeLEzBcJnWaHluln6eiwswx0eB2pUHvUbml+pnXukXHR3fMjxrPzMy6JGA4al26sqg6dtfs2YPK9X3R4FatY9xVlennQ97TXq3rTGWmF1n0eatCIbDOtkLbiUmudY+frjcqMN6sn/BZR1TIPfZtUfcHzKLvEei1r1c+gz2p7G1ddv70Oq/98jo/ML3qi4f5/SrL9GPnL5d608b99cleu+ioyV47eeUjXrvs80dmXrfP86Y1PbHO78dfzfXa+x+YGcfXrW/ypm3Y5o93dVKXVJXJdcf5Pt0sNY1+p6uv9uspHQ9rKzP3FzQ8e7szZpv59y2Uvk86hnXKd369Prjz6/7qshooXxFxP0rPW71fUBYRgF2QkBBzGVrD1+zs35d1zpJCDS6PGTAdOs4USj+jvsfqeKf354KYC7c7Pup7rt/5/UrNP79ixwcNW5fD4e5H6Lt0zKpD91v8m50yKeZejdMuzP6WmVn42Ot1z32ftMYpiNiuWfhzn/B2Kfr7WNTxirvOR70vrtD5vYdyDl+//vrrrb6+Pv1QxMysoaHB6uvr7YYbbhiUTgEAAAAAAAAAAAyFnH9jpLOz07Zt22YXXnihnXPOOWZmdvfdd9sbb7xhNTU1g95BAAAAAAAAAACAwZLzg5HzzjvPfvGLX9jtt99ut99+uzft/PPPH7SOAQAAAAAAAAAADLac/5TWddddZ9/4xjespKTEgiCwIAistLTULr/8crv22muHoo8AAAAAAAAAAACDIhHEpbFl0d7ebm+88YaZme2///5WXp49MAm5SyaTVltba5t37Nyn/0RZXOigF24UEUhoFs6JcpfVgCEN0mrp8MNVW6X93Kqt6dfVEkq27vpn/H5JUKubEP3iA/d5kwrk2ePCKz7nL1vph2kmxmU+R3Wzx3nTOra1ee2qidVeu77a7/eBMzLLJ9v98LSkhJjqse1wjt+4Kj+YXQOOGiWMXQNU3fAsfY81/KlXUrpKi/1oLfdypQFNGtKl3H7resNikqid6V09Ekwu+1Sqwa26JucHGtQaCoXXEDfntQacqVCAVQ7B5LqshsuFM7syP4gLRI/KhI8bnfT80XCwUJiYu+7oVYeOgbuquH7lGtTmKpSTQNfVGxEIFwpPjQmXy+XY57IPcaHvUaI+eclk0iY31Ftzc/M+PS7maqzUA8odD4piUgdD56vzAx2zWjtlDJdPuwaCuqHeeo3RYO6tzf6yWou448W2B1/3uzGlymv23rfGaz/5yF3p19PLp3rTqov8euCllle89lGNR3ntkgUz0q8TxRJoecJ0v1+bWv22E9ZerIHg2/3gen1jihsqvHavE3I66UA/BL6xxq8tdkgIbKUEqLrXs2qpQ6oq/HZUoKyea1Xlfm2lQax6DkRN65LzQUPhCyVc1K1rijXVXGhgald35tjqZ61MayAZDIrlGLjlVWlxTD9SOg7LDBEf5Z5erRf8thugqzVMePzXtWcPPdUgX60t4oJr3XVp3aH7oKtyN6XB9nr+6C7pe17krCwVM/Bqfanzu/sRV1uF64XMD+JqmnDdkj2MVuuBaRPGUw/so3K5P9Df9Ig849D3wfYu/7rr3jPYuN3/br1qQ7PXTkpweddOf4xz+9n1y+e8aU8u/4PXPnrm8V679OjZXrtgUmWmIdeCnf/9Z6896d/P89oHHjIx/frNt/196JaaZubcBotS7oxLem2sqfTHQ/0+rdeslDMeBKb1k7+sBreXO2Ot9kOvo1oi6vdUt17Q67u2Q3WbvBfu+BkOX5druIzblaXOsjqG9elYEX0Nd897vZ5Hzmz+dTiXz1o/q/LHpbh+6D0Bmex2JeYrQmgcirr3EHcsc/nOGxrDZLq+r+78kcHs/XHm1/0NBaJHr8k7V3XZIv1MxNSb7jkTepQQOtey9yzufkn4MYW+57v+N5lM2pRBuD+Q85/S2q2iosLe97737fGGAQAAAAAAAAAAhtuA/pRWYWGhHX/88enX2f4rKtrj5ywAAAAAAAAAAABDbkBPMnZniex+DQAAAAAAAAAAsC8a0IORm266yRobG9OvAQAAAAAAAAAA9kV7HL6uksmkmdk+HQQ2koyWcLXBpKeqG/CoAYQaJNXZ7Qd67Wjt8tpuMNCr65u8aV09fgjXxl+94LWX/tfN6dfHHvoBb9qGVS957SmNs7z2uP/3Ib+fTuhb7cETvWk9Evoe9EkYWF25157ihJzOnuQHs7bIujTwzA1P6+iKCwv1g5BqKvxgtmqnrSFlGpZWJGFPGmLmBp7ptHBYpgk3KEq3Gx0UFR8GlaHBo7rP5XL83CCu0PEpyB6WpsvqvNrHuHB2d+nQrBq8GROS6LaiQrfMwgFgfhh9dEiZhoVq+FxfxLrijpe+j+6qdY9C515U8JpF00BBFRX0m2uAnjdvDsHscevKtahwNxWVS0f4+uiuB3INZ99T+lnvkWBNDdpscwLCm6R2aGn3Q7zV9hZ//u1NmRDUpte2+jPLdgvH+eHjqRe3ZPr038v9eRv982LnhvVee3XbG1n7OKdilteefNwRXrugptRv71+ffl220K9TeqVe6N0swe3yHpdMr02/DmRa7bRar10tAerJNv/YVzjhqlpL1Mqy4yXYvd2pgfS00xpIw2f1mlwQMS5XSGC8nnv6Gah0wu11Xv18aHimey11z+H+tlNV7h8fFTWma0anHnsd493SVXK5YwPB3SBfPbahUFOhgczu8qEQU1mX7lNUTaRjo243qn7SwNNwbSWfn9Cxdl/nFsyq206Fi+i0XGqLuH5EhdHvWqD/nieTSZs1qYF6AP0ELfvT9TPY1dOXdVpLhz+u6PflZhl31m/NhLfvuHeVv+Eq/7r6+D9fZ1GmlE1Ovz7g+i9507rvXu21E+X+WDLxK0emXx8ya5w37enn3vHX1ervwxHHTPfaSWef66v98a61wz8ek8dXem03MN3Mf29KJGxdv8dH0fdY16Xf4/Wa1Oncy6mOGe806F3HXndd2o+U3JvRIHf3HkpZiX+swvcxNBE8+3fg0H2LuOuqO03HpJgvcXHh47kI319x1isr1n6FaoCI7cRlnsfVAP6yuY2t7txx411UOHsohlzD5yO2q9sK1Skx55rWB3rs/UWz39dR4cMcfd8r2/24ZDJpUxvH5y983dXV1WV1dXVWUFBgvb298QsAAAAAAAAAAADkwYDC1weK/BEAAAAAAAAAADCSDeqDEQAAAAAAAAAAgJGMByMAAAAAAAAAAGDMGHDGyNVXX511GrkiGA4aMlRc5ARcSmiQhqdquo8b4m1mtubdZPp1d68flNW8yQ8PLTl9ttc+ef9vpF9v+X/3e9MKE/52nnn7z177pIcO8NrVH5uXWVZCuruTfohrcaUfHlZc7D/n3OGEvur+Tm3ww9JKZVtuqGlcWKjSoLGCRCaorVLWFQoElyA2DUDrdratIeYaHFVYoCHoCWdefzuhgC9pa/hToZMYqmGYBTHhYG5om5lZqfPe6Lyh0NJcwtRCfY4OTE9EhHLpZy8uJNkNLtfjowc7HB7mLBsThqZBrVF/zlED8YJAricSLFZSlH3dGogXPvey72Pcn5zUc1ED9dygSD0eOm/4Pc4ezhs6t2L6FZVzm2sQn7dt/iLnmLU3Yet6rrvXTr3m6hhWWKBBmzKGOf0qL/XHnfLScq+dbPODSeur/H421mZCv9sn+hNfWr7BaxeV+WN8anxmW1X/fKY/7eG1XnviEX6Y6uY7/aD36eXT0q8r6v2g1hce+4PXnl8512uXvTUl/bpvzQ5vWslH/HlV5fwGr922vin9unZ+oz9vWXQwqdYm7nStHTbt7PDaGvrq1hMpKUyqK/zw2fZO/z2urfLD6bWGdGlwbb0E2xdJv1vaM7WYBrXqOd8rY4sbGK7h6t3yGWiTfdIAXX9s0c+a/77o50uDywucIkn3ITR4aB3jBOyG6hBZVM+X0mKtGTP9LJJrQFyAeihgvs+teXzF8p72prLXC3H1gdYp3dIvt8zRz4DWk1ovhMLWnelFMbVpqD6IaOk+6mU/KtjdnVS458MFRpnwdwN/emGB/9l3PxvtXSmZV67J8pnbluz02j1OUHnlyTO9aW0PveG1T/7KF7324//+S6/dmcqsu+1HS71p5d88wWu3fvcBr711v8w4vu1Th3jTjlw4xWu/sTHptV+QcPaDF0zK9Em+09fJePeOEz5vZjZD6hp3LNHxr7bSH1v16tft1G76Puh1pLNbxnQZw9wxvrnND5+vqfDHxy6pGXXb5c5Y3Nnt3wMtkXGmojT7PYDelH88tObR627K9DzPPnbEhVa71/9c7i2Y9TNuu8vKwuFQ+Ogxzl1cv2vrunXMcqeHvg+H9lH6Kf1wtx09vvUjIhRdbi2E9jHqfdSaRg9laNnQuN1/n8zCtYWuK6qfeiyj7jXosuHTQepLnZy1SBycgmDAD0auvPLK0I4CAAAAAAAAAADsSwb8YMSMcHUAAAAAAAAAALBvG/CDkbVr18bPBAAAAAAAAAAAMIIN+MHIzJkz42cCAAAAAAAAAAAYwXL6U1rAvioURC0hQwfOyISWaThY2+Qar736nWav3TEuE4i6rHWNN62vn9gg19Jf/cprn9jx2fTrolNnedMWHOOHqa561Q9TVZOcALRkuwR8tfrBYxpSViOBaC4N1myVdaf6/HaFs24N/NRQylDId0QIeFSIeX/Lun8KUIPbw2G8/rKhdTmBX7oPGtodF0TqhsvpunIJI9ZAeQ0mL5Q0wlCIlzstJgG7T0KuNIityNmWBo0WyLr1PQ+cdkLD5yO201+//FVLaJscr1zOTT0/ZBdD+xw41wENOAvFiGkgakTIXSIUghsdvBYKNevLPm8oXDUyTlX6FQpai5jZooN9+QueGIhQ4KNzhlbJZ04/U22dvZHt9q5MW4M2W2T807FTg7h3NPljr2vuYX5A6qpn/TD2E85fkH79l9XbvGnJY6d67b7nN3nthVd/yWu//cP/zWxn/ev+vA0LvXYg+7DmpWfTr+dV+YGwXb951WsXnTXPa7fet9prl50xJ/26+ZUt3rTU/vVee8b0Oq9dIeN4q/O+bU92edPqqvz3Rd8397qsodXbW/yw3QoJQd/W5Ae7T6yvSL/W8b+0zO/ztmZ/3TUS9O6O0xoAriGvOj52OOdqSZE/r4YTa/2kx8cNhdX6OZCxNHrU8Y+11iH62dQ6xq3jCgs01FyCyGPGQw0Mdemkotig8sxLHeOV1hbuPsWGzcr0Eq0nnPpTaxotB0JhqvJOufus69LaK8StlzS4NvSe+tPDIfHRmwLi6LXRben5psHb7vhv5tcWZmb1453rvVwX2g+b7PfjaT/kXE0sbUy/fvr1Jd60k//ij6UVH1vgtXuXv5t+/fZJ/j9mnuT00cysWsLGU9NrvfYO5x5BTbk/b0eBfzzqqv0xa8PWVq89rTFzL6JMxuxku18PlcnY6s6vIfBx35e75X10x0sNfdf3XMdLPX/cbVXI/ZPOHhkP5frl3n/Q+kBrT1131D2BuJBzXdK9/sfda9BrtI7b2dZrZtan999CtbpuK3u/dN0aTu9O7g1i5u3LHtxu5t+r0Xm1pslliNJlw4Hq2a9VofspsmzcPTR33eFxOPrLdlQ/w/cLfHq6JCK+8yvtln6edq97sOqE6OoNAAAAAAAAAABgFOHBCAAAAAAAAAAAGDN4MAIAAAAAAAAAAMYMHowAAAAAAAAAAIAxIxHEpa3045FHHrFHHnnENm/eHApy+c///M9B7eC+aunSpfav//qv9txzz9nGjRvtrrvusrPPPnvAyyeTSautrbXNO3ZaTU1N/ALwaAijnuUakLY9mQnAbO30Qyc37/SDNZvb/OmtrZmQz6YX/cDTvqff9dqJcWVeW8PXG0oyYaPzjzvZm1Yk4aqTz5zrtTskLLPb6eekqf45VCvBa41OgLyZH+KVbIsOai8v9UPKNDys2Qlxm9LgB8BVlPr9iAttdoPYQgFVMq8Gs7nizg8VCqZ2Eq16Jd2qtNjfrgaEaminGyYWzgLVsNDskzUcO7SmUGBVdBi7K26Y0KkaVJcL91jrZnWtoXA52adExLwqrsvFToJoXFBdKNQ0yD4tHAjrr0v3KeuKLT4QLnR8IgLQ9PwIHx83BHfvUs/c3Yj6DCSTSZs0fpw1NzfvU+Mi9UB+6UdfA9GjgjXN/MBD/fz2yLo6JcTzna1tXrvNCXLVQOPtTX4Qd0+HP/bu+MHj6dcl5x3iTSus88fw1HN+7ZFa2+zPf8Sk9OveP/sh763Pr/Ha3X1+kPnOnsy6NnVt9qYde8BpXrugxu9X8Uf8AFlz64V6f15r9fe/aIYfEDt/oR9s6wZRa53S2uHXR+0S5Oq+4yUyhpdJMHl7l79sdbm/Lfd8GV/r13xdsl091/R8qqsqTb8OBY9KqrUG17phoz0S2qnX7KhhxszfJw211SBf/bxF9VtDbnWcDgdxZ++ohsJrnRcXCh+1nbj6yQtQlz6HAuQjtqXbCYWtaoB6xPEJh6WatKPPiW7n+GnIu9a9UccrrjoI1yX+dPf67G41mUzajIkN1APIWV/E9y4dl/V+QZeEa29tytwjaG7zx8qNO/z7B+/8eb3XDl7Z5rWX/tfN2TstTv7bL3vtF3/xP+nXh3zoTG9awyVHe+3D5zZ4bfceiJnZus2ZAPVJ9f73dg2xnijjtoaku+qq/NDz0PdQuc64UzW4vUO2Uyrf+UPB087rYhk79dqnoejFMk5FjZfh65fOkT0AW6/3OobpMSh2jlfc9+Go6VGB37ods5iw7ZhiQu+BRAWIx43ZWstHjX96PsSFnvv3bqLvN4XrFn969PmS/b6Finufouoj3Za+h7pTkfceLHqf4o6Pu259/8P3aqLPgt3HOplM2vQJ4/e6HiiKn8X3T//0T/aP//iPoZ8HQcCDEUdbW5sdeuih9vnPf94+/vGP57s7AAAgD6gHAAAA9QAAACNPzg9GbrjhBguCwIqLi23ChAlWVJTzKsaEM888084888z4GQEAwKhFPQAAAKgHAAAYeXJ+qpFMJq2xsdFeeeUVGz9+/FD0CQAAAAAAAAAAYEjk/GDkYx/7mC1ZssTq6uqGoDtjV1dXl3V1Zf42ZTKZzGNvAABAPlAPAAAA6gEAAIZezg9GDj/8cPvNb35jJ598sp177rmhBySLFy8erL6NKddcc41dddVV+e7GqFEkQVEapKUBRQ01mYDMqvJimeYHi2ks0BvvZIJIN5T5H6mnrrxDlvX7UVHor3tb947063kScGkSWrZt7U6vXSYB6hVOe2fSD4QLBUlK+JEbGDquutSbpiGmbZ3RoVTu8q0dfjC7BpOXSMipRi51OMG1Gq6qgU3h8LTMtkKB6JKOFgq8LMge1FYoIW4azCfdDIXLFRRktqXLFhbEJHi5k0PhoNlnNQsHb/U5+6zhenEhXMo9vLpkSjui/fBCEaODyXPJeI8LYgutW0OWnY4XyDRdd9S2QuGpsi49Pjp/VPB76H2KCbJNOG1dr/Yr/F4kss6r4gPhsk9zP9fhULbRiXpgcOl5UyIhnUrHDvfzHFj02KAhlVHBpJVlfq3RNN4fpzft9INbJ/38o+nXG97Y7q+32Q9PtcZKrxm87tcLfWub0q8LJlV506qPP9Cfd2e71653+j3jLT889qnXHrUoiyQss/jQTIB6QoJqTWqa3u1+P9a+6e/TlOmZcPaWTr/WqJLarF7qKfd9CYdB+t3SsPVW2VaNE0be2e1Pq6v066mObq2J/HU3tWbOiapyv88aEtzd64fVlzqBsUVyzgcxYexap/QFmW1VyrFs7/L3QcPqdd1ufZXq85ctlWWjxruUBtX2+eeWhtPrmB4V8hoe//zpfRHXAa0vdbvh+sCpeeRcKy6KDpTXsdVdVyBfIXQfdEzvTul1L7PtLjnX9DuWco+f9jGuNtUfZKs/c61L91XUA4PP/bxqfaDntp5lJTK9tCEz1uq1Ub+nTvnIAV57/TFtXvvkiZl1Pf6v1/fT84yUjH8Lzjs7/frd/13mTSv84H5ee618r9fx8aCZdZl5nSB2M7MpUtO8ubHFa8+Y4NcT7Z2ZewYaRF5cIt/F5Rrkjnk9Mq1Cjm2HjENR9xP0+q5fYTRsXed3TwG9vmm9kMv3Vh2zEgn/+OiY79LaU8/rqO94+p1f+6jHXuf3bkXEfE/Tz5ceW7ffoeFfjnWpvE/u+Kf3cYrl2Oq5pv3qc05WrYdU6J6aTPd2Meb4RAWV5/wdX9cdMS1REH3+RI3Tcd/MQwHzTlPfh4KC6GOtPd99jsTdZxionB+MfOtb37JEImFPPvmkPfnkk960RCLBg5E9dMUVV9jll1+ebieTSZs+fXoeewQAAIYb9QAAAKAeAABg6O1Rcnq2f7U5Vv4151AoLS210tLS+BkBAMCoRT0AAACoBwAAGHo5Pxjp09+DQ79aW1ttzZo16fbatWttxYoVVl9fbzNmzMhjzwAAwHChHgAAANQDAACMPHv0GyOI9+yzz9qpp56abu/+NdiLLrrIbr755jz1CgAADCfqAQAAQD0AAMDIkwgG8PevTjvtNDv44IPtuuuus9NOOy37yhIJe+SRRwa1g2NVMpm02tpa27xjp9XU1OS7O/u8UMCxhP30OtM1eFVDB9skfLzCCS3bnvQDUJ9+7h1/2T+u8dodv3/Jay/f/Eyo77ud+Bk/v6dghn9elB06yWunnDDRcTNqvWnhUCo/7Gju1My6NYw+LmhZw+fcsPZuCRcvK/WDs6okjLasxJ/uhi51S4irBrFpDpMb1BkXlt0r+6jHy50/HA7mN3WfNeBLw9b87frLRgVYafqVvku6j1ExVbqsble7HA5IzbT1twzDIfBRHYkOn9d+6KpSEUHu2mMNLQsF6nnTdFm/HQpMjwgF0yFY1xXOqs9+HseFkYaC2Nyg1ph59di7mw4Hs/uLxge599PZfiSTSZs0vt6am5vH1LhIPTC4QqGCcvLrddcNJW7t8AM+e2QcUnru61jiqq7wxz8NE022Z8K1n/rTOm/atPmNXrtV6pSmt5u99juX3Jp+XTffD2YNOvwQ78KGaq/dl8yEpBdOq/Om9aza7LX1w/3SGr/GOXjKoenX5Z881JvW944f6pqQ45NorPDa1Sdk/rV1QrZbXuX/KZqSYn8cdgPT9XyorZTQ857o97zTma611fiaMr9fpVrj+NzzTc/bUqmPykv8Gsg9j8PjWfRnQEO/y5x1x9UlGjau13e3BooLC9XQU3fMC4e4+v0K9yNiHJZ2XI5nqDTxlvUX1hovHOTrBkFb5Lxaa4WCzN1A1IgQV7N+jn0oRDh7kG0obHYv6oO4+sndmDstmUza1Mbx1AMYUnod0c9Na2f2a3S7jOGd3f7YoWO8e939h1m5Zfae/JUvpl8//u+/9KYdd+JZXnvq1ad67UPnjPfaG7ZmQuE1aLup3a8Ppo73x2EdHyqd7/VNrV3etGmNflC7jjtuHTNpnL+duOuXBpW7u6HX2ajv4e+t3Wu512y9Foa/W/pttx96r0GPte6ThqBn65NZeHyMyjGP+44W9d2xv23nIup7a9wt6qjvrVH3A8zCY1bUuBw33sV99476rh0Xxu6uO+57etT9Al1XaDuh7eq6si4af/8gol8ath7usy7d/32wZDJpUxr2/v7AgH5jZMmSJdbZ2Zl+nUgk+j1Z404MAAAAAAAAAACAfBrQg5HFixfb3Llz0695AAIAAAAAAAAAAPZFA3ow4v7NS/7+JQAAAAAAAAAA2Fftcfh6d3e3bd261VIp/+8lzpgxI8sSAAAAAAAAAAAA+TWg8HVXS0uLffGLX7S7777benv90KhEIhH6GfYM4Wr5Ew5LlfD1Tv8c37ijPf26VUJLUxJY+PxPnvTaTf/rB5HWnL4g/fqJu2+P7OfJf/81/wcTK73mnCOnpV9veifpTSuv8wNANTDdDe2a1uCvV4NIWyTktbPbPz711ZltaVhai4S4VVf469bw9bLiTFsDm/R90mULvACr6MueBmvpuqPm1RAyDV4LB5c669JQ+JjgNW/boQC46LBVnR4Vlql02NB+JyKm6Yij64rIJo4NY9deu5vWz3UoyF36mZJj7S6eSwCqbioq1L0/UUN06FjKdO1XOFwte6hbToFwofNBQv9ig2wzy0cFtRK+Tj2QD+7prQHPel3pkmDuHgkAdcNYNdC4s2fg9fP6LW1e+931TV573EQ/1HTHu36QeZ9zfXvlCzd408aX+EGsLyZXeu2jGo5Mvy6cWu9NKz5wot9RDZt95FWv7Y5Lm7u2eNNmf/wMv8+yzwVSx7gXmtrPLvAmFZX6NU6lBLm771NDrR/U7gagm5k1ynQdS91xukTCZPX8GFft74NcOq2yNNNPDZPt7vXXpbVFSVGmBtIgVq2PtJ8aEuwqlKDa4iJ/XToeRA0lGrary2rwcdSyGnQfH+rtbkfXroHLsu1Q8LsTJhqxnV3Ts4egF8kJEK6fovsVebC15okbl71Fo+sjDRH2ZpcuaZ81+Fh3odiZ7h4PwtepB4aDXoN0zHfb+n1Yw9W3Jzu9dqvMv7kpM12/7911xjci+3ni+Z9Nv9ax8fEbfuHP+/HPeO1JXz3aa0+pzwSd63ej7h6/Xz1y8XS/p5v5Y0tluT/u6jhTI/cA3GVbO/1jNaGu3GvHBWL73zO8SaE6TceW8Lq9ljctLog89F3UER7D/X7oON4RMU7rdTXqXoV2ORRUHvM93hUXVK73gaK+l8YFgOv0iEMbPu4xAfJR71PUPY9d06WQ8zYr9VHWOdMLZLYTeR6G91/75R77cKZ59HkbdZ8j/jt+1LSBB8RHbWuw6oGcf2Pk7//+7+03v/nNHm8QAAAAAAAAAAAgX7I/0srinnvusUQiYd/73vfMzGy//fazr3zlK1ZfX28/+9nPBr2DAAAAAAAAAAAAgyXnByMbN260OXPm2A9+8AMzM2toaLCf//znVltba88///ygdxAAAAAAAAAAAGCw5PxgpLS01Kqrq83MrKyszDZs2GA9PT3W1dXFn9gCAAAAAAAAAAAjWs4ZI5MmTbINGzaY2a4/o/XKK69YY2OjJZNJa2xsHPQOAsNNA5gKC6JDKmucEE8NU21q88PFN3/+MK9df/77vPa2n/th7FH+/E9+YOqx553ntd94blP6ddn753jTNDhKQz3dYM5NO9u9aRp8VFnmh6lp4JcbNqrbravyQ0w1mG7iuAqv7QVcymNdXbeGnLr7FAoD69NAy+jgMTeorVDOBw2hLNLzqTB62y4N/yosiAgq1aDR0Hb86bqPblOPrWZdxYWUecHcOk3WpUFbXre1jzHvm053P47aZz3sofA9OX7uVUA/LyaBeFHRYaHguYiwcTOzQNbmvueaFxuT+RcdsK790OMV8RnRfdB9DJ2bESGA+r64WYSpUEAuMPTc01XDLyV32kqLo4Oo3XDRLgnP1iBSbbu1R5WMu9ub/LGzeZs/btdPqfba7mf2iLsu96a9c96tXvuoycd47e62zLpffPH/vGn2ot+cXznXa0/4wFF+Px/OLFBXXOdv57m3vXbp8bP9lUeMnS0Pv+m1i4+Y7LVT9X5wa8J5X9+V2qGm0g+E3d7i13UTaiUE3ll8s7wvFRIC3y6BsmUl/vQ2y0zXkHe9jmot5pcH/rFKtvv7oOettt3rv44FHV3+PpTIh0I/M+7QomGzOoTpsu4uh8bwlNZL/tq0NnOPj9b1emYVy7Hu6s0ekqv7pLWX1hYuDVxOhJbNfizNzBJO8RYXNisZyjGBsv6yGk5cqOO2ux/Sx6KEvi9+Rwpluve+Oq81BBoYCqHPhZyf7uWutFj/vbH/HXdaQ6XXbu/2w9k7ujKDx4atrTn1c9ntv06/Pvkfv+5NO+Ejn/bn/d1tXvvkRVO9dsXxM9Ov9Ro8TsbDcaX+Pio3gF7D6FMp/T7kL+t+19Jg9pZ2f9zRcTph2b+zFCb8fSqWMau7N3vtZWbW5/Q7VPPJdvV65l60tT7U7eh3TR2XKksz29Yg9tD1X++ZOJP7NEBe3vOUjksRAdmh74oyayicPsj+PhVEjkLhH0R9B07E3APQ+kDrK2/ZmHB6rQG8oPuYIPtQOLt7P0U7ErP/4bD67Puk29X9jwu+z2Ve/35TbsdD92H35KiA91zk/BsjixYtsp6eHlu5cqVdfPHFFgSBJZNJMzNbvHjx4PQKAAAAAAAAAABgCOT8GyO33HJL+vX73vc+mzx5sj311FO2YMEC+8IXvjConQMAAAAAAAAAABhMOT8YUZ/5zGfsM5/5jJmZvfrqq3bggQfudacAAAAAAAAAAACGQs5/Smvnzp2WSvl/x+65556zT3ziE7ZgwYJB6xgAAAAAAAAAAMBgSwSaapLFW2+9ZR/72Mfs5Zdftrq6OrvpppvsuOOOsy996Ut27733pufThybYM8lk0mpra23zjp1WU1OT7+5gkKx5N+m1V7/T7LXX3vta+vXj11znTTt6yrFeu7l5u9eetPgUf2Nz6tIvq/Yb701qXb3Na084ZlrWPo+TgPTyEj9orFYCzzR4ub46E0zaLGH0GmBVXeGHh2q4Wn1Npi8awKShphoW5m5K90HD5TS0TAOt3JAuDcgtL9XQUn/ZUPCYt11/Zg2ligyNl9XqdjXUTcOwep0wuVAIV0yqtwbMu0trwJnmjuoAlBjgtF0/yB5MvqutC2SEdkkDPyX0rsjpuC6qAXkaXOduS/sUF5iu/Yo6PnH7HxWWFqewQMIHvWTfwduQnuPu8Ukmkza5od6am5vH1LhIPTA6xYcKZv8862dfx6xX1u3w2hpUXOaMU51dOob5Y+nS/33Ja7955R3p11Nm+uHqT696zIbKxNIJXntm435eu/S4TDuQcblQwuetVuqawyalXyfkWlcpQe16rPvk+j91QiZgt1RCXZsl9FyvdzVSA5U5tYrWKSUS+qrBtm4orAbEyi56479ZOOTbvd7r/uu8Gj4bFWJaKmHzOh5G1Q/6GYirNfR4uXS81zpNayCtedzQ9PCxs6zzmvm1mdbPKmHZx0fdlgakh8J4Y7jHTxfVfurxcts9cm5pvaDLhjPj3To3M28ymbRZkxqoB7DP2JuA4K4ef0y7pOazXrulN3tY+8mXftlrd9z3qtdet3GV1z7khr9Jv55xoD/uRgWkm4XHsInjMuNnq3yn1+9KSRkfD5pZn37d3NblTdNxRcc4/Z5f4IWee5Niay+9Zrvb0nsNOk7r2OFe7/QeSNzpocfaHWtKi/3t6vkStc/FhdHjnR4f7XfUV764oHLlvq+hezGheyL+slGfr7ivpVHjTigQXBfOYUzTPoePh7YzC+ux1J2KvZ9g7mcg+myLO/a5fMuPvZfjTgu9UVJvZ7mHkkwmbWrj+L2uBwb8p7S+/e1v20sv7fpytHPnTvvCF75gBx10kC1btszMzEpKSghfBwAAAAAAAAAAI9qAH4wsW7bMEomEXXjhhWZm9utf/9qeeOIJKy0ttUsuucS++c1v2uTJk4esowAAAAAAAAAAAHtrwA9Gtm3bZnPnzrVbbrnFzMyeeuopW7Nmjd1zzz32gQ98YMg6CAAAAAAAAAAAMFgGHL6eSqWsvj7zt/52v+ahCAAAAAAAAAAA2FcM+DdGzMxeeOEFmzNnjpmZbdy40cws3TbbFZjyxhtvDGL3gNFl/yl+IJAGGM760pHp1yUHXe1Na/3pk1678bCZXrv3VT9QveiAhsyyD/mfy8LD/T97l9zkh7YlvKBpCQ6r8UNLdR8qy/zgtTedwPkpDZXeNA3pbO3wg9k0jH1nSyZ8bVJ9hTetXYJHNXgtcBKbNMAsFCZaFP3M2A3L1PwqDbnV0POoAEwNbdOgrT6NsHLemlDAacKftzcVHS7qtgOLDlrTgK+okK7YsPWoRDQNH9bJMf1yVx0KK9agVos+B9xwVg0h0/e4W4514HRE36e4sL2EHoOE+9mUeUPrjg4tc4UC4GLCB93w2YQGzYWC+aL32V1cryduM9fwWGAki7z29TM9ana9rizcr8Fr62fytQ1N6ddzp1V50zZsbfPaR35kvteu2O9v06/bH3vLm3bSibO9dtDuj8vLbvsv21Obu7b47Q1+2+7M1EiTSid6k2YfuNBrlyya4bXbfpsJoy1okNqi0q9DSg71163WO8HvjY1+zVMkA2Jbp398OiUw1Q2y1cDvPv+SbJXl/lc693r5/7N35/FRV/f+x9+TyU42IJCwJewoIktRKa4oVFHbil1EaxWl0muL7VXUVm2L4r23eO2m9Wett1b03rpUe7X2urVKAbVFEWRVQUDCouxL9nXm/P6IzMz5TjLJ5DvJJDOvZx+pc77rOTPDfN+Zk5mPM1vlZNljcl7vahvsfnlDqrU7s4Ozz07OorChx6p29MvZD2eB0LTU0GL0kQuiO/d1FqcPHUdKSuSC6X7H9c/vb/3fpjNfOnNdWF4I2d45hrCit44xObplHdtZUD68xmvk15/Q5094MfrIWTW04LpzX2efnVksTFtVc4Eews1TOdPxO+2kK75qtRvW7AncXrf5H/bOA3KtZvrJg6y2d982q90U8p5A7Yg+1rrMdPs6k+P4nd/p472VgdujBuVb65yvyX1y7fcXtuw6Grg93PH+SW29fd2pa4h8HcrOCPbb+ZLj/D3VWRTe+TrcEHLNS3cUfQ8r4h2hUHnY75nOF0fHsZxF0hubfK1uHHqtlMLfAwi9PtY32fs6r1HOY0cqLh5+rXAcqY3Xe1/IBm39Xuq4xFnndv5bC6tbrsjt0AOE1wN3vjdjb9Dkb/3+cl7vIj0/JDvbO+/L8PeI2ipOH9zeeR7n4+LMV85zmQgvZmHvxTjWR3oOODNOWLH6VjJRrN4eiGpipKGhQWVlZday0HZbv+QBAAAAAAAAAADEU7snRs4++2wmPgAAAAAAAAAAQI/W7omR5cuXd2I3AAAAAAAAAAAAOl+7i68DAAAAAAAAAAD0dFHVGAEQW85iWDUhhTj7DLGLlL225hWrfdbXrrTaHkeBUIUUtSyePc5aVZCTbrW3rPnUaheNCRZurXcUNDtUUWe1ncUinYUmh/QPFnZ1FgD1Ooo7OYu6OYst98nLDNw+cKzWWte/IMtq1zuKoGeEFEhzFjhzFgtzFq109lMhqzMdhUXr5CwOZredBa1Ci9s3+SIXnXIWWw09lrNgVdiYnBW/woqDhXbKWTwtcpUuZ80rq0iX81gRioFJdpGusAJvzuJfjvM6hxi6u/OrIFPDCrM5+uEs+uptvXias53udRbUC25g2ihKFqkAnHN9WK0x5xiiuO99jn8TYfdXhMK2xtHrtoqthxWus54urRe15ds8gZa19W9j54Eqqz22pHfg9uHKemtd/972tbTJZxdEzesVzA8fOIqL79u4zz7xO3a2mPW3X1rtw797L3B7619es9b1SetttT+o2hxxfX5qsDjrnjr7vNWb7GK0A7baxWb7n/m5YGOwXeRVjtxSv3SH1U47yy7kXrlxf/B2np21Mvvahd1THIVbUzPtDFRVEzx36P0uSTmOYuuHK+zHMdJzot5RMD3Ncc1yniua12HnNf1YVYN9rpDCrhmO8TuzV7ojX4UWm61vjFxs1jkmZ46x4kSEHNKSpgh5K7wQuV1g2Nmv0GurM/O2VfTW4/jzxtDH1ZlbnddpvyNQetT6Nd7ZrRRP5KwR2nLeH84s4cxekYrkhu7qjOVAMrn+ka9Y7V+V/Efg9sn9xlvrau57w2rn//yLVnvUhP5W+8BP/y9wO++p66x1A0rta5jzNdpZUH14SOH3Tw9XW+v65mZabedrQVZIwfTKGvs6nJNlv+fhvKY5X3eq64L793IUjHe+7oYVZ3cWFA+5btU7r1mOwuXh7y+EHN3Y+zqLsbf1nkBo4fcGZyVyOa7xjutj6O98zqLezmM5xxT2mh5yTYtUeFySPIp8X1vr2rguO6/p9vbO338jXzAinStsXRu/Wzsuj3Zxeufv4Y5+OH8Xd7yREbEfEd+LkeQNeZzCx6SIIp2rjbeIWjhWhJXO+y5SIFDwcW3r8W0vPjECAAAAAAAAAACSBhMjAAAAAAAAAAAgaTAxAgAAAAAAAAAAkgYTIwAAAAAAAAAAIGlQfB2Io9ACqJK0avOBwO0SR1HTc/7jZqudNijXatf/5SP74BnBQltHP6mwVu07aBdAm3L+KKu951BwvXEUgkp3FDxrcKx3FpQPLRDuLAZZ5CiYftRRpDO0GL1kF+bMcRRPcxb4dBYPDS3a6SxC5iw05iwI6ix6bhW8dNSFchaQr3EUogsvShVc4CzMHl7grPWilamO6mnOYnIZYUVM7UG1XrIsvN1GXS35QvvlLNjV1s4hm4cVnnMWwAvrmL196O7OYurOOl3OwmIRuiVvG8XjnLXCQovPhRVaa6NQnfG33u+wAnBhhegUUWixshRnoVbnfRmhn86CiW0VLnQWgY20b+ihw+rSAmiXYcV2Xgj99903N8O5ueVwRZ29IDt4bR1SaOeUPqeXWu3aUwZb7R3/3GW1cy4bG7g97uKR9r6PrrPaUyvsYzvVfbw3cNvrsa/hu+v2WO2C/H5W218ZHKP/7d3WurQz7OLqHmfRV0f28p46MNg4Yt93jY7ckmrXsVX9MXt7b0iB9SbH49RQYBeuDc8twcc4M91e58xazsvfgXK7H6GF3rMcx3JmLadUb+vFeZ0Zx3mdcRbUTE0NtjPT7KxVWWOPyTlmryMjhRa69TVFvrg4r63OAuJWwVRHn53ndebN0M2dRW6dnIVtnRko9Frrc+QnvydynvI5gm6KVRTekRfDCrG2ng+cV/uGpsj9cOaF0BAQ+vwIL1QPJA/n74NZF50UuO3fZ/+OX796h9Vu3F1uH8xxTSuceWrgdsX/2de3/d+0C7unO647Bdn2sfYfrQ3c7u/4nT/sdwPHP+nQ1/8DIceRpOwM+/Xf+Xrf0Gi/ZuWF9MtZqD28uLijH86K2SGc10Pn7/zO619GyLmcvzs1Ot8/cVw7nC95oc0MZ+F2x8YNzjGHPG7O13fn/eF8rQ2/N4L7O8cbtm8bv3uHZtM233uIUDA9/HdW53kj9yP0bM7fWZ2PmzOnOK9p1qW3jV/Mvd7WC92HXxojH8s5ptD355y5xDl856E9jvwQ6XfzsPeQIry/0tYYUhz9dG5//LFwPiYdxSdGAAAAAAAAAABA0mBiBAAAAAAAAAAAJA0mRgAAAAAAAAAAQNJgYgQAAAAAAAAAACQNj2mr6gnioqKiQvn5+dp/5Kjy8vLi3R10kdCC2Ou2H7LWFfexq3TePOAbVvvsq+ZYbX9FfeC2d1iBte6kqyda7fLqRqvdEFKofOKIvta698uO2udxvIQ4C6rnhhQ865tnFwvd7igKP95xrmNV9VY70qtVlqMQm/OlLbSgVXjBSmexK7sQmbOgeuiYnTWlwgp8Ooq2Vde1XpjN2edIRcmaNwhdaa9yFkBrq1hYpMJVYYWznMeKUEAvrJiqs9BmhJrnzh6FbeoseObYIPTU4QW7Ih/bOWSrUHlY0VJnUbLW70tnsVnnsSIVbnfuH1Z83sF5bKdorv7hRdFb37mt51akgouRnvMVFRUa3L+vysvLk+q6SB5AtMILJ9rtsv2VgdtDi+zC7NEcu8JR8HrVlgNWu9FRALqyxs4aaSHFtGsd62oO1Vjthi12JlKho3L5J8Ex+UNuS5L/gF2MtuF9uxi7t0/wPvD2zbHWmQb7mp32pTH2eR0FUxVaXNtRaFuOwrRpQ/KtdmqWnTUaQ7OZ40FNzbS3zRtgP46hGcB53XFq6zU6LeRYzmzRq40iuM7rUGiR+Oo6+zF37hup284x9XLcd87iu85jR1rX1r8f5/rQMYUVD/c470tnQdTW82Qbl/gWrvHBtrPYrPO+bCsHRypu3lZh20giFWJtXu/oV8iC0H0rKipUWlxIHgBkv448cPpvrXXHtmy32n2m2gXUU08dYB+sIfgeQP2Lm61V+XeeZ7VPGNvfamc4irFHet0Ne/+gt31Nrw/pR4PjWlpebb8/MKjQvm7XN9rX7dDfS5zvFzivJWmO4uPO32lC1zc5rv/O19E6R9Hz0NfdtgpgO9vpEQqb+4zz91A52q3/Rh12TXLcH+EF1R25JmRz5/XPWUzc2TFnr0L3b+v39EjF2J3XmbaKwDsfi9CjOx9/57Haen8ltNlGFAsX6Rd153nCdm3/vk5hBeWdGSjCedrKm55Wrukta/OdIEnN18VB/fq4zgN8YgQAAAAAAAAAACQNJkYAAAAAAAAAAEDSYGIEAAAAAAAAAAAkDSZGAAAAAAAAAABA0khtexMAXWXXwarA7ZGDCqx1B8trrfYZ537Fave65ASrXfmHDYHbY66cYK37YJVdeDQ9N8Nqn3RyceD26o/sgqcjHQU+D5TXWe0KRwHV0AJOBb3sIkonlva22ts+KbfapY6isMdCiq3lZNpFTBscBc4yHAXfwgpihnAWW09Ltfd1Fn3LTAspauqoC+UsOmXfG+FF3+pCCruGFUx3FrhsqwBaCGdBOOex2yr07tjYarZVMNwuLhe5gLxPrRf4aqvou7PtcxZqCy2Y3lYhsTYqkYcWo/M6i+CGFbq39w19HMMfwzbG5BhU6P3ZVkmysML3EQrCtcW5qV+h961jXRvnda63H+fW17VdpA2A1Pa/7dCC69v3VljrRgyIXLgw9Nj5vdKtdV/43GCr/cGuo1a7b16m1U4PKWK676hdbN2pbGRfq7139zGrnTshmFuOlNnrUhzFVDPqTrLavk9DirU7rwUFdp+1r8pqpo62+9VUGSxIn+Morl572B5jqiMPpOfYWSy/f7CgrLPAZ0O9nXlqQ84rSTn5wWP1chRqz063287nS4MjP9SFFMFNdRRqra63i9x6HeuzUu1z1dQHU5HzvPWOHNfLmfNCslh6mv2YNjY5c5yjCG6DfezQ/Wsd96VzX+d9n+HIiKHHDss8jmtaU2rr2dTvDDEO6Y7Cxo1h+SDkvPaQwnKbMx/4/PYOocVowwq1p7a/UHtbMc55zW9yjKmxlazhzPxAMgt9XU4/Z5i1rv8ZpfbGdfZrtorswuV6/2DwWGfZx6p9eavV3tWvl9Xu63g/IS87+Bre0Gi/Rpc4zrv7gH1tLe4TLMbuvO44f684VmUXY++Xb1+3j1UHr48pKfZrR5bjeljf6Pz92fmaHpTheC1sdFw7sxzvRTiPbR3X+Xu54zev8Nf7kALqKc5tIxeFD32ddb5+pzqO5Xw/IT3C67+zCLy/jeuyM6qG9st5v0d6r0GSTMjRwguiK6Lw90wiHMtxMI9xXlvtY6WE9KutAvJh/fQE76+wIudtvG8RqTh7WwXjneudpwq9D5y/mzszYPhbN8EFbfWjtWLrnYVPjHSiBx98UEOHDlVmZqamTJmiVatWxbtLAACgi5EHAACARCYAAKA7YWKkk/zxj3/UggULdOedd+q9997ThAkTdMEFF+jAgQPx7hoAAOgi5AEAACCRCQAA6G6YGOkkv/zlLzVv3jxde+21Gjt2rH77298qOztbjz76aLy7BgAAugh5AAAASGQCAAC6G2qMdIKGhgatWbNGt99+e2BZSkqKZsyYoZUrV7a4T319verrg9+PWF7eXGuhsqKixe2RmKoqg493mmlwrLNrjNQ12e20Gvu7Oesag99lXVNVaa+rrbbaPq9dCaM6ZPva6mrHOrvPNdV2jRHn9wOmmeB3kFdl2N/r2VRvvwRVV9kHr8yyv3uwqib4b8Q02t893eT4HssGx/d6pqZEmAd2fMehs8aI8/s3G9JCv/Ox9cNKksfxhZHO75+uD6kx4qw/YZy1GsJqkISMuY1+hB3b2fFOqjES6bslWzpvVDVGnN10tK36FBH3bLvGSOhXuzq+PrOFGiOO7wENvYM8zu8ijVxjxCmaGiPh313a8RojTqHdbqvGiPNxjFTfJrxPwQWVn70+tvVYdSfkAXR3oblDkip6tbJhh45tZ490j51r0kNeO50Zx6nGET5qHZkntTp4Payrtdd5nDUjHN+x7qsLyTnO15c6Ry2DejsTpdba36neVBfMU94aRy2KWrvGiDN7+VLttjGpIbedNUbszONz1FxISQ25r5vsrGUaItcYcX4/eV3IsZsc17smZy00v53N/I32uRqb2l8bwpnzQvsVqW6cFH5ddn6HeEPIc8J5pLZqjDRGyIht1RhJjVRjJEKtDklKbyObhh7LOSZnbmvrOhqpxojzmh7LGiPhx2q5xkjlZ68tPSkPSNFnAvIAolVX76jX5fj9WA2OGiN11Y71wf3D/n059q11XJdrHNf40OuBs8ZIVbbdrnbUCalMC57L53Nua5/H12C/NmY6+lFVE2w3Ot4faEqzr1HOGlvOmhuh15b61MjXGefv3qH3Qfg1rK26kI7fl1Na/93J2Y+w1+yQX2qd3WirHpXz+hi6vq06Kampkf8mP/QaGHWNERO6rbMfkTmP7Ty3dayw32nt9WE1RiL8st1mjZGQnrdVYyR8147XGGnr/QXncySSSO8DtfU+RXvF6v0BJkY6waFDh+Tz+VRUVGQtLyoq0ubNm1vcZ/HixVq0aFHY8pFDS1vYGmjBmxHWvdRlvQCATlVZWan8/Py2N+wGyAMAAHSOnpQHpOgzAXkA3dof490BAGjmNg8wMdJN3H777VqwYEGg7ff7deTIEaWlpamkpES7d+9WXl5eHHvY9SoqKjRkyBDGztiTBmNn7Iy9dcYYVVZWauDAgV3Uu/ggD4Tj3whjZ+zJg7EzdvJAM/JAOP6NMHbGnjySeexSco+/vWOPVR5gYqQTFBYWyuv1av/+/dby/fv3q7i4uMV9MjIylJFhfxy/oKBAFZ99VDYvLy/p/jEcx9gZe7Jh7Iw92bR37D3pL0Ml8kCsMXbGnmwYO2NPNomaB6ToMwF5oHWMnbEnG8aenGOXknv87Rl7LPIAxdc7QXp6uiZPnqylS5cGlvn9fi1dulRTp06NY88AAEBXIQ8AAACJTAAAQHfEJ0Y6yYIFCzRnzhydcsopOu2003Tfffepurpa1157bby7BgAAugh5AAAASGQCAAC6GyZGOsns2bN18OBBLVy4UPv27dPEiRP16quvhhVba0tGRobuvPPOsI/RJgPGztiTDWNn7MkmGcZOHnCPsTP2ZMPYGXuySZaxxyITJMt91RLGztiTDWNPzrFLyT3+rh67xxhjuuRMAAAAAAAAAAAAcUaNEQAAAAAAAAAAkDSYGAEAAAAAAAAAAEmDiREAAAAAAAAAAJA0mBgBAAAAAAAAAABJg4mRbuzBBx/U0KFDlZmZqSlTpmjVqlXx7pJrd911lzwej/VzwgknBNbX1dVp/vz56tu3r3JycvTVr35V+/fvt46xa9cuXXzxxcrOzlb//v116623qqmpqauH0qY33nhDX/rSlzRw4EB5PB79+c9/ttYbY7Rw4UINGDBAWVlZmjFjhrZu3Wptc+TIEV155ZXKy8tTQUGBvvWtb6mqqsraZsOGDTrrrLOUmZmpIUOG6N577+3sobWprbFfc801Yc+DmTNnWtv0xLEvXrxYp556qnJzc9W/f3/NmjVLW7ZssbaJ1XN8+fLl+tznPqeMjAyNHDlSjz32WGcPr03tGf+0adPCHvvrr7/e2qYnjv+hhx7S+PHjlZeXp7y8PE2dOlWvvPJKYH0iP+5tjT1RH/OuRB4gD/TEa6KUvHlASu5MQB4gD5AHOk+iZQLyQBB5gDyQaNcG8gB5oEfkAYNu6emnnzbp6enm0UcfNe+//76ZN2+eKSgoMPv3749311y58847zUknnWT27t0b+Dl48GBg/fXXX2+GDBlili5dalavXm0+//nPm9NPPz2wvqmpyYwbN87MmDHDrF271rz88sumsLDQ3H777fEYTkQvv/yy+dGPfmSee+45I8k8//zz1vp77rnH5Ofnmz//+c9m/fr15stf/rIZNmyYqa2tDWwzc+ZMM2HCBPP222+bN99804wcOdJcccUVgfXl5eWmqKjIXHnllWbTpk3mqaeeMllZWebhhx/uqmG2qK2xz5kzx8ycOdN6Hhw5csTapieO/YILLjBLliwxmzZtMuvWrTMXXXSRKSkpMVVVVYFtYvEc//jjj012drZZsGCB+eCDD8wDDzxgvF6vefXVV7t0vE7tGf8555xj5s2bZz325eXlgfU9dfx/+ctfzEsvvWQ++ugjs2XLFnPHHXeYtLQ0s2nTJmNMYj/ubY09UR/zrkIeIA8Y0zOvicYkbx4wJrkzAXmAPEAe6ByJmAnIA0HkAfJAol0byAPkgZ6QB5gY6aZOO+00M3/+/EDb5/OZgQMHmsWLF8exV+7deeedZsKECS2uO3bsmElLSzPPPvtsYNmHH35oJJmVK1caY5ovqCkpKWbfvn2BbR566CGTl5dn6uvrO7Xvbjgv/n6/3xQXF5uf/exngWXHjh0zGRkZ5qmnnjLGGPPBBx8YSebdd98NbPPKK68Yj8djPvnkE2OMMb/5zW9M7969rbH/8Ic/NGPGjOnkEbVfa8HnkksuaXWfRBn7gQMHjCSzYsUKY0zsnuM/+MEPzEknnWSda/bs2eaCCy7o7CFFxTl+Y5ovgv/6r//a6j6JNP7evXubRx55JOked2OCYzcmuR7zzkAeaEYe6PnXxGTOA8YkdyYgD5AHjEmux7yzJGImIA80Iw+QB5Lh2kAeIA8Y0/0ec75KqxtqaGjQmjVrNGPGjMCylJQUzZgxQytXroxjz2Jj69atGjhwoIYPH64rr7xSu3btkiStWbNGjY2N1rhPOOEElZSUBMa9cuVKnXzyySoqKgpsc8EFF6iiokLvv/9+1w7EhR07dmjfvn3WWPPz8zVlyhRrrAUFBTrllFMC28yYMUMpKSl65513AtucffbZSk9PD2xzwQUXaMuWLTp69GgXjaZjli9frv79+2vMmDH6zne+o8OHDwfWJcrYy8vLJUl9+vSRFLvn+MqVK61jHN+mu70+OMd/3BNPPKHCwkKNGzdOt99+u2pqagLrEmH8Pp9PTz/9tKqrqzV16tSketydYz8u0R/zzkIeIA9IiXNNbE0y5AEpuTMBeYA8cFyiP+adKZEzAXmAPCCRB5Lh2kAeIA8c150e89So90CnO3TokHw+n/UkkKSioiJt3rw5Tr2KjSlTpuixxx7TmDFjtHfvXi1atEhnnXWWNm3apH379ik9PV0FBQXWPkVFRdq3b58kad++fS3eL8fX9RTH+9rSWELH2r9/f2t9amqq+vTpY20zbNiwsGMcX9e7d+9O6b9bM2fO1Fe+8hUNGzZM27dv1x133KELL7xQK1eulNfrTYix+/1+3XjjjTrjjDM0bty4QL9i8RxvbZuKigrV1tYqKyurM4YUlZbGL0nf+MY3VFpaqoEDB2rDhg364Q9/qC1btui5556T1LPHv3HjRk2dOlV1dXXKycnR888/r7Fjx2rdunUJ/7i3NnYpsR/zzkYeKLD2IQ8E9bRrYmuSIQ9IyZ0JyAPkAfJAbCRqJiAPNCMPkAcS+dogkQfIA903DzAxgi514YUXBm6PHz9eU6ZMUWlpqZ555pm4v1Cj61x++eWB2yeffLLGjx+vESNGaPny5Zo+fXocexY78+fP16ZNm/TWW2/Fuytx0dr4v/3tbwdun3zyyRowYICmT5+u7du3a8SIEV3dzZgaM2aM1q1bp/Lycv3pT3/SnDlztGLFinh3q0u0NvaxY8cm9GOOjiMPQEqOPCAldyYgD5AHyAOIhDwAiTyQDMgD5IHumgf4Kq1uqLCwUF6vV/v377eW79+/X8XFxXHqVecoKCjQ6NGjtW3bNhUXF6uhoUHHjh2ztgkdd3FxcYv3y/F1PcXxvkZ6jIuLi3XgwAFrfVNTk44cOZJw98fw4cNVWFiobdu2Ser5Y7/hhhv04osvatmyZRo8eHBgeaye461tk5eX1y1+gWht/C2ZMmWKJFmPfU8df3p6ukaOHKnJkydr8eLFmjBhgu6///6keNxbG3tLEukx72zkgWPWNuSBoJ50TYxGouUBKbkzAXmAPEAeiJ1kyQTkAfKARB6QEuvaQB4gD3TnPMDESDeUnp6uyZMna+nSpYFlfr9fS5cutb6TLRFUVVVp+/btGjBggCZPnqy0tDRr3Fu2bNGuXbsC4546dao2btxoXRRfe+015eXlBT6W1RMMGzZMxcXF1lgrKir0zjvvWGM9duyY1qxZE9jm73//u/x+f+CFY+rUqXrjjTfU2NgY2Oa1117TmDFjusVHRdtrz549Onz4sAYMGCCp547dGKMbbrhBzz//vP7+97+HfZQ3Vs/xqVOnWsc4vk28Xx/aGn9L1q1bJ0nWY99Tx+/k9/tVX1+f8I97S46PvSWJ/JjHGnmAPCD13GtiRyRKHpCSOxOQB2zkAfJALCRLJiAPkAck8kCiXBvIAzbyQDfNA1GXa0eXePrpp01GRoZ57LHHzAcffGC+/e1vm4KCArNv3754d82Vm2++2Sxfvtzs2LHD/OMf/zAzZswwhYWF5sCBA8YYY66//npTUlJi/v73v5vVq1ebqVOnmqlTpwb2b2pqMuPGjTPnn3++WbdunXn11VdNv379zO233x6vIbWqsrLSrF271qxdu9ZIMr/85S/N2rVrzc6dO40xxtxzzz2moKDAvPDCC2bDhg3mkksuMcOGDTO1tbWBY8ycOdNMmjTJvPPOO+att94yo0aNMldccUVg/bFjx0xRUZG56qqrzKZNm8zTTz9tsrOzzcMPP9zl4w0VaeyVlZXmlltuMStXrjQ7duwwr7/+uvnc5z5nRo0aZerq6gLH6Ilj/853vmPy8/PN8uXLzd69ewM/NTU1gW1i8Rz/+OOPTXZ2trn11lvNhx9+aB588EHj9XrNq6++2qXjdWpr/Nu2bTN33323Wb16tdmxY4d54YUXzPDhw83ZZ58dOEZPHf9tt91mVqxYYXbs2GE2bNhgbrvtNuPxeMzf/vY3Y0xiP+6Rxp7Ij3lXIQ+QB4zpmddEY5I3DxiT3JmAPEAeIA90jkTMBOQB8gB5IHGvDeQB8kBPyANMjHRjDzzwgCkpKTHp6enmtNNOM2+//Xa8u+Ta7NmzzYABA0x6eroZNGiQmT17ttm2bVtgfW1trfnud79revfubbKzs82ll15q9u7dax2jrKzMXHjhhSYrK8sUFhaam2++2TQ2Nnb1UNq0bNkyIynsZ86cOcYYY/x+v/nJT35iioqKTEZGhpk+fbrZsmWLdYzDhw+bK664wuTk5Ji8vDxz7bXXmsrKSmub9evXmzPPPNNkZGSYQYMGmXvuuaerhtiqSGOvqakx559/vunXr59JS0szpaWlZt68eWGBvieOvaUxSzJLliwJbBOr5/iyZcvMxIkTTXp6uhk+fLh1jnhpa/y7du0yZ599tunTp4/JyMgwI0eONLfeeqspLy+3jtMTxz937lxTWlpq0tPTTb9+/cz06dMDoceYxH7cI409kR/zrkQeIA/0xGuiMcmbB4xJ7kxAHiAPkAc6T6JlAvIAeYA8kLjXBvIAeaAn5AGPMcZE/zkTAAAAAAAAAACAnocaIwAAAAAAAAAAIGkwMQIAAAAAAAAAAJIGEyMAAAAAAAAAACBpMDECAAAAAAAAAACSBhMjAAAAAAAAAAAgaTAxAgAAAAAAAAAAkgYTIwAAAAAAAAAAIGkwMQIAAAAAAAAAAJIGEyMAEsry5cvl8Xh07NixLj+3x+ORx+NRQUFBu7Y/3lePx6NZs2Z1at8AAEgm5AEAAEAeABAJEyMAeqxp06bpxhtvtJadfvrp2rt3r/Lz8+PSpyVLluijjz5q17bH+3rZZZd1cq8AAEhc5AEAAEAeABAtJkYAJJT09HQVFxfL4/HE5fwFBQXq379/u7Y93tesrKxO7hUAAMmFPAAAAMgDACJhYgRAj3TNNddoxYoVuv/++wMfNy0rKwv7qOxjjz2mgoICvfjiixozZoyys7P1ta99TTU1NXr88cc1dOhQ9e7dW9///vfl8/kCx6+vr9ctt9yiQYMGqVevXpoyZYqWL18edT/Xr1+vc889V7m5ucrLy9PkyZO1evXqGN0LAAAkN/IAAAAgDwDoiNR4dwAAOuL+++/XRx99pHHjxunuu++WJPXr109lZWVh29bU1OjXv/61nn76aVVWVuorX/mKLr30UhUUFOjll1/Wxx9/rK9+9as644wzNHv2bEnSDTfcoA8++EBPP/20Bg4cqOeff14zZ87Uxo0bNWrUqHb388orr9SkSZP00EMPyev1at26dUpLS4vJfQAAQLIjDwAAAPIAgI5gYgRAj5Sfn6/09HRlZ2eruLg44raNjY166KGHNGLECEnS1772Nf3P//yP9u/fr5ycHI0dO1bnnnuuli1bptmzZ2vXrl1asmSJdu3apYEDB0qSbrnlFr366qtasmSJfvrTn7a7n7t27dKtt96qE044QZKiCk0AACAy8gAAACAPAOgIJkYAJLzs7OxA6JGkoqIiDR06VDk5OdayAwcOSJI2btwon8+n0aNHW8epr69X3759ozr3ggULdN111+l//ud/NGPGDH3961+3+gIAALoGeQAAAJAHABzHxAiAhOf8aKrH42lxmd/vlyRVVVXJ6/VqzZo18nq91nahYak97rrrLn3jG9/QSy+9pFdeeUV33nmnnn76aV166aUdGAkAAOgo8gAAACAPADiOiREAPVZ6erpVEC1WJk2aJJ/PpwMHDuiss85yfbzRo0dr9OjRuummm3TFFVdoyZIlBB8AAGKEPAAAAMgDAKKVEu8OAEBHDR06VO+8847Kysp06NChwF90uDV69GhdeeWVuvrqq/Xcc89px44dWrVqlRYvXqyXXnqp3cepra3VDTfcoOXLl2vnzp36xz/+oXfffVcnnnhiTPoJAADIAwAAgDwAIHpMjADosW655RZ5vV6NHTtW/fr1065du2J27CVLlujqq6/WzTffrDFjxmjWrFl69913VVJS0u5jeL1eHT58WFdffbVGjx6tyy67TBdeeKEWLVoUs34CAJDsyAMAAIA8ACBaHmOMiXcnACAReDwePf/885o1a1ZU+11zzTU6duyY/vznP3dKvwAAQNchDwAAAPIA0P3xiREAiKErrrhCgwcPbte2b775pnJycvTEE090cq8AAEBXIg8AAADyANC98YkRAIiRbdu2SWr+iOywYcPa3L62tlaffPKJJCknJ0fFxcWd2j8AAND5yAMAAIA8AHR/TIwAAAAAAAAAAICkwVdpAQAAAAAAAACApMHECAAAAAAAAAAASBpMjAAAAAAAAAAAgKTBxAgAAAAAAAAAAEgaTIwAAAAAAAAAAICkwcQIAAAAAAAAAABIGkyMAAAAAAAAAACApMHECAAAAAAAAAAASBpMjAAAAAAAAAAAgKTBxAgAAAAAAAAAAEgaTIwAAAAAAAAAAICkwcQIAAAAAAAAAABIGkyMAAAAAAAAAACApMHECAAAAAAAAAAASBpMjAAAAAAAAAAAgKTBxAgAdNCxY8d0yimnaOLEiRo3bpx+97vfxbtLAACgi5EHAACARCYAehqPMcbEuxMA0BP5fD7V19crOztb1dXVGjdunFavXq2+ffvGu2sAAKCLkAcAAIBEJgB6Gj4xAiDhTJs2TR6PRx6PR+vWreu083i9XmVnZ0uS6uvrZYxR6FzzNddcE+jHn//8507rR7J444039KUvfUkDBw7s0H161113BR6P0J9evXp1TocBAHFFHkhM5AEAQLTIBImHPIBYYGIEQEKaN2+e9u7dq3HjxnXqeY4dO6YJEyZo8ODBuvXWW1VYWBhYd//992vv3r2dev5kUl1drQkTJujBBx/s0P633HKL9u7da/2MHTtWX//612PcUwBAd0EeSDzkAQBAR5AJEgt5ALGQGu8OAEBnyM7OVnFxsevjTJw4UU1NTWHL//a3v2ngwIEqKCjQ+vXrtX//fn3lK1/R1772NRUVFUmS8vPzlZ+f77oPaHbhhRfqwgsvbHV9fX29fvSjH+mpp57SsWPHNG7cOP3nf/6npk2bJknKyclRTk5OYPv169frgw8+0G9/+9vO7joAIE7IA4mHPAAA6AgyQWIhDyAW+MQIgG5h+/bt8ng8evHFFzV9+nRlZ2drzJgxeuedd2Jy/GnTpul73/uebrzxRvXu3VtFRUX63e9+p+rqal177bXKzc3VyJEj9corr1j7rVu3Tps2bQr7GThwoLVdUVGRJkyYoDfffDMm/UX0brjhBq1cuVJPP/20NmzYoK9//euaOXOmtm7d2uL2jzzyiEaPHq2zzjqri3sKAGgNeQBukQcAIDGQCeAGeQDtwcQIgG5h/fr18ng8+uUvf6mf/OQnWr9+vUpKSnTbbbfF7ByPP/64CgsLtWrVKn3ve9/Td77zHX3961/X6aefrvfee0/nn3++rrrqKtXU1LTrePv371dlZaUkqby8XG+88YbGjBkTs/6i/Xbt2qUlS5bo2Wef1VlnnaURI0bolltu0ZlnnqklS5aEbV9XV6cnnnhC3/rWt+LQWwBAa8gDcIM8AACJg0yAjiIPoL2YGAHQLaxfv14FBQX64x//qGnTpmnUqFH68pe/rIMHD8bsHBMmTNCPf/xjjRo1SrfffrsyMzNVWFioefPmadSoUVq4cKEOHz6sDRs2tOt4O3fu1FlnnaUJEyborLPO0ve+9z2dfPLJMesv2m/jxo3y+XwaPXp04COxOTk5WrFihbZv3x62/fPPP6/KykrNmTMnDr0FALSGPAA3yAMAkDjIBOgo8gDaixojALqF9evX65JLLlG/fv0Cy3bs2KGRI0fG7Bzjx48P3PZ6verbt68VUo5/7+eBAwfadbzTTjtN69ati1n/0HFVVVXyer1as2aNvF6vtS70e0OPe+SRR/TFL34x8JgDALoH8gDcIA8AQOIgE6CjyANoLyZGAHQL69ev1+23324tW7dunc4+++yYnSMtLc1qezwea5nH45Ek+f3+mJ0TXWPSpEny+Xw6cOBAm98JumPHDi1btkx/+ctfuqh3AID2Ig/ADfIAACQOMgE6ijyA9uKrtADEXXl5ucrKyjRp0iRr+bp16zRx4kRJ0h/+8AeddtppOvnkk3XxxRervr4+Dj1FPFVVVWndunWBv8DZsWOH1q1bp127dmn06NG68sordfXVV+u5557Tjh07tGrVKi1evFgvvfSSdZxHH31UAwYM0IUXXhiHUQAAWkMeQHuQBwAg8ZEJ0BbyAGKBiREAcbdhwwalpqZaH1nduXOnjh49Ggg9F154oVatWqWNGzdq4MCBWr58eXw6i7hZvXq1Jk2aFAjHCxYs0KRJk7Rw4UJJ0pIlS3T11Vfr5ptv1pgxYzRr1iy9++67KikpCRzD7/frscce0zXXXBP2kVoAQHyRB9Ae5AEASHxkArSFPIBY4Ku0AMTd+vXrNWbMGGVmZgaWrV27VgUFBRo6dKiMMfrd736n//3f/1VDQ4N2796tb37zm3HsMeJh2rRpMsa0uj4tLU2LFi3SokWLWt0mJSVFu3fv7ozuAQBcIg+gPcgDAJD4yARoC3kAscDECIC4u+GGG3TDDTdYy2bNmqVZs2ZJkh577DFt3rxZb7zxhrKysjRixAiNHTs2qnO09NcjZWVlYcsiXVgBAEDnIQ8AAACJTACga/BVWgC6vffff19nnHGGsrKy9OCDD6qmpkb9+vWLuM9vfvMb5eTkaOPGjV3Uy3DXX3+9cnJy4nZ+AAASCXkAAABIZAIAseExTH0C6ObWr1+vr33ta+rbt6/OPPNMbdiwQX/7299a3f6TTz5RbW2tJKmkpETp6eld1VXLgQMHVFFRIUkaMGCAevXqFZd+AACQCMgDAABAIhMAiA0mRgAAAAAAAAAAQNLgq7QAAAAAAAAAAEDSYGIEAAAAAAAAAAAkDSZGAAAAAAAAAABA0mBiBD3Ogw8+qKFDhyozM1NTpkzRqlWrIm7/7LPP6oQTTlBmZqZOPvlkvfzyy9Z6Y4wWLlyoAQMGKCsrSzNmzNDWrVs7cwgx8cYbb+hLX/qSBg4cKI/Hoz//+c8Rt3/uuef0hS98Qf369VNeXp6mTp2qv/71r9Y2d911lzwej/VzwgkndOIo3Fu8eLFOPfVU5ebmqn///po1a5a2bNkScZ/HHnssbJyZmZnWNj3tefHQQw9p/PjxysvLCzy+r7zySqvbT5s2Lew+8Hg8uvjiiwPbXHPNNWHrZ86c2RXDcaUjz+NEfZ0AEhl5oBl5oBl5IIhM0Iw8ACQPMgF54DjyQBB5IIhMgNYwMYIe5Y9//KMWLFigO++8U++9954mTJigCy64QAcOHGhx+3/+85+64oor9K1vfUtr167VrFmzNGvWLG3atCmwzb333qtf//rX+u1vf6t33nlHvXr10gUXXKC6urquGlaHVFdXa8KECXrwwQfbtf0bb7yhL3zhC3r55Ze1Zs0anXvuufrSl76ktWvXWtuddNJJ2rt3b+Dnrbfe6ozux8yKFSs0f/58vf3223rttdfU2Nio888/X9XV1RH3y8vLs8a5c+dOa31Pe14MHjxY99xzj9asWaPVq1frvPPO0yWXXKL333+/xe2fe+45a/ybNm2S1+vV17/+dWu7mTNnWts99dRTXTEc16J5Hify6wSQqMgDQeSBZuSBIDJBEHkASHxkgmbkgWbkgSDygI1MgBYZoAc57bTTzPz58wNtn89nBg4caBYvXtzi9pdddpm5+OKLrWVTpkwx//Iv/2KMMcbv95vi4mLzs5/9LLD+2LFjJiMjwzz11FOdMILOIck8//zzUe83duxYs2jRokD7zjvvNBMmTIhdx+LgwIEDRpJZsWJFq9ssWbLE5Ofnt7o+UZ4XvXv3No888ki7tv3Vr35lcnNzTVVVVWDZnDlzzCWXXNJJves80T6Pk+V1Akgk5IGWkQeCyAO2ZMwE5AEgOZAJwpEHgsgDtmTMA8aQCdA6PjGCHqOhoUFr1qzRjBkzAstSUlI0Y8YMrVy5ssV9Vq5caW0vSRdccEFg+x07dmjfvn3WNvn5+ZoyZUqrx0wUfr9flZWV6tOnj7V869atGjhwoIYPH64rr7xSu3btilMPO6a8vFySwsblVFVVpdLSUg0ZMiTsryZ6+vPC5/Pp6aefVnV1taZOndqufX7/+9/r8ssvV69evazly5cvV//+/TVmzBh95zvf0eHDhzujyzEXzfOY1wmgZyEPxBZ5IHHzgEQmIA8AiY1MEDvkAfKAUyLlAYlMgJYxMYIe49ChQ/L5fCoqKrKWFxUVad++fS3us2/fvojbH/9vNMdMFD//+c9VVVWlyy67LLBsypQpeuyxx/Tqq6/qoYce0o4dO3TWWWepsrIyjj1tP7/frxtvvFFnnHGGxo0b1+p2Y8aM0aOPPqoXXnhBf/jDH+T3+3X66adrz549knru82Ljxo3KyclRRkaGrr/+ej3//PMaO3Zsm/utWrVKmzZt0nXXXWctnzlzpv77v/9bS5cu1X/+539qxYoVuvDCC+Xz+TprCDER7fOY1wmgZyEPxBZ5IPHygEQmkMgDQDIgE8QOeYA8ECqR8oBEJkDrUuPdAQBd78knn9SiRYv0wgsvqH///oHlF154YeD2+PHjNWXKFJWWluqZZ57Rt771rXh0NSrz58/Xpk2b2vze06lTp1p/JXH66afrxBNP1MMPP6x/+7d/6+xudpoxY8Zo3bp1Ki8v15/+9CfNmTNHK1asaDP4/P73v9fJJ5+s0047zVp++eWXB26ffPLJGj9+vEaMGKHly5dr+vTpnTKGWOjpz2MA6CrkgcTMAxKZQOr5z2MA6CrkAfKAUyLlAannP5fRefjECHqMwsJCeb1e7d+/31q+f/9+FRcXt7hPcXFxxO2P/zeaY/Z0Tz/9tK677jo988wzYR8NdCooKNDo0aO1bdu2Lupdx91www168cUXtWzZMg0ePDiqfdPS0jRp0qTAOHvq8yI9PV0jR47U5MmTtXjxYk2YMEH3339/xH2qq6v19NNPtysMDB8+XIWFhT3i+RCqrecxrxNAz0IeiA3yQLhEyQMSmaAl5AEg8ZAJ3CMPhCMPJHYekMgECGJiBD1Genq6Jk+erKVLlwaW+f1+LV26tNXvSJw6daq1vSS99tprge2HDRum4uJia5uKigq988477f7exZ7kqaee0rXXXqunnnpKF198cZvbV1VVafv27RowYEAX9K5jjDG64YYb9Pzzz+vvf/+7hg0bFvUxfD6fNm7cGBhnojwv/H6/6uvrI27z7LPPqr6+Xt/85jfbPN6ePXt0+PDhbv18aElbz2NeJ4CehTzgHnmgZYmaByQygUQeABIRmcAd8kDLyAOJnQckMgFCxLn4OxCVp59+2mRkZJjHHnvMfPDBB+bb3/62KSgoMPv27TPGGHPVVVeZ2267LbD9P/7xD5Oammp+/vOfmw8//NDceeedJi0tzWzcuDGwzT333GMKCgrMCy+8YDZs2GAuueQSM2zYMFNbW9vl44tGZWWlWbt2rVm7dq2RZH75y1+atWvXmp07dxpjjLntttvMVVddFdj+iSeeMKmpqebBBx80e/fuDfwcO3YssM3NN99sli9fbnbs2GH+8Y9/mBkzZpjCwkJz4MCBLh9fe33nO98x+fn5Zvny5da4ampqAts4nxeLFi0yf/3rX8327dvNmjVrzOWXX24yMzPN+++/H9impz0vbrvtNrNixQqzY8cOs2HDBnPbbbcZj8dj/va3vxljwu+D484880wze/bssOWVlZXmlltuMStXrjQ7duwwr7/+uvnc5z5nRo0aZerq6jp9PG609TxOptcJIFGRB4LIA83IA0FkgmbkASA5kAmakQeakQeCyANBZAK0hokR9DgPPPCAKSkpMenp6ea0004zb7/9dmDdOeecY+bMmWNt/8wzz5jRo0eb9PR0c9JJJ5mXXnrJWu/3+81PfvITU1RUZDIyMsz06dPNli1bumIorixbtsxICvs5Pv45c+aYc845J7D9OeecE3F7Y4yZPXu2GTBggElPTzeDBg0ys2fPNtu2bevagUWppTFJMkuWLAls43xe3HjjjYHnUFFRkbnooovMe++9Zx23pz0v5s6da0pLS016errp16+fmT59eiDwGNPyv43NmzcbSdZ2x9XU1Jjzzz/f9OvXz6SlpZnS0lIzb968wC8Y3Vlbz+Nkep0AEhl5oBl5oBl5IIhM0Iw8ACQPMgF54DjyQBB5IIhMgNZ4jDEmlp9AAQAAAAAAAAAA6K6oMQIAAAAAAAAAAJIGEyMAAAAAAAAAACBpMDECAAAAAAAAAACSBhMjAAAAAAAAAAAgaTAxAgAAAAAAAAAAkgYTIwAAAAAAAAAAIGkwMQIAAAAAAAAAAJIGEyNIePX19brrrrtUX18f767EFfdDEPdFEPdFM+4HIPHx7zyI+6IZ90MQ90UQ9wWQ2Pg3HsR90Yz7IYj7Ioj7Ijl4jDEm3p0AOlNFRYXy8/NVXl6uvLy8eHcnbrgfgrgvgrgvmnE/AImPf+dB3BfNuB+CuC+CuC+AxMa/8SDui2bcD0HcF0HcF8mBT4wAAAAAAAAAAICkwcQIAAAAAAAAAABIGqnx7gDQ2W6//XZJ0hlnnKGUlOSdC/T7/ZK4HyTui1DcF82O3w+vv/66Lr30Unk8njj3CECsPfnkk5J4vZN47T+O+yGI+yKobEOZJKmxsTG+HQHQKdatWyeJ1zuJ1/7juB+CuC+Cdmz4WJJ09OhRvkorgTExgoT30ksv6dzzputfvvtdpaWlSkYyko5X1wkU2THGWi4F2yZkQ+f64DKj0Io99r4msN3xvYwx1rFNyP7+kM6Z0P0c20U6hvlsPDLN+zc2Najor/+ns8//klK9qSHjts8RON7x28YEtwm93wLHd9xPIf0K3Gch96V1P4fcMCa4/njHjZHkDxnX8Z38Ldznx+9jf/AcMibQfwUOa+RralRq5t81ceK5SvGm2g+W4zzB/yrQL/lDnjyB28ZxjBaWHT9W4IEOeYBCx2Htby8zgTtKLfbDtLp/yJMzcF7JpyZ5+2VrvH+yUow32L/Pfkzo/p89FvKb8GM7ztP8OPitdYG++Y/fv8FxGBn5jZH1P2Nk5P9sM7/8IcuPP6/8nz1W/sD2x//nlzEtLQ+2Q8/nU5MK1VeXf/Vy5SpXf3nrLzrjjDMEIHGsWLFCJ48frx8tvLNDeeCzVYGXcwW2iWEe+GyHsExgXQ5M2DbR5AGplUzgOIebPBB6f4Zmgtjmgc/O4swEscwDCulgaCY4fofFKg9I4ZkglnlAzmMYxzljkAfCxv7ZfjHMA8Gh2pkglnlAkkpVos3aopLCEv3uid/p8ssvT/o3h4BEsn79eg0YMFA/vmtR5DwghV3bFHIdMyEbdzQPKLAs+Nrd2vW8o3kg9HTteo/AcY725gH7+I77KaRvgT4f37fdeSDkPm3PewQdyQOTzvssD7RyLT5+/Q5cx4/fDr8Ot5oH5Dhu4FjOa3MrfXAsazEPOPrS5nsEHckDx8fRzvcIOpIHmm+2nAlilQc+e8a0mAlGaqS2aItGDh2pkRqh1VVr1KtXLyGxUHwdCW/YsGH63aNLdMZZZytwgZV90Wzx4m21Qy7+joty1McK3A4GCyt0mODEiL08fLvwZaF9amO/46MwIecN3SbSMZ3Hb3VsgXsq7NzGb6wLuTHHlwUvtub4hbaVZYFtFbzYR3OMkIFHvh0adI6327wdxfGP31ZwXMF1skKGCQ0cLZy7rf2llo7RvL8JHOez/7awzISsa3W/wDn8Efc1oetk5DefBZvP/us3/s9Cjwn81/9ZoJGaY1BgXWB7ez9/IADZx2lpvSQ1qlEfa4c+1g71UR/9de1fNXHixPa81ADo5r75zW9qzIljdcsPb1NHruEKLPvs9baFfdt7rJavmcY6R+DlPOw67i4PfNbD8OtyyLXbbR6QWj5uLPPA8XM4M0FM84BaWNeuDBB6O8Lxg3dW2LqY5gG19xim43lAanm7GOaB5lO0fA2PVR6QPssX8muPPtFH2qo0peoPf3lCX/ziF/lEKZAAHnroIf3fiy/qf1/4P0W8hkuRr+MxyAM6vizsmhl+re9oHlDIedvzHkFH8kDzaB3Hb3VsrZy3rTxw/H6LcD13nQeCD0j73iMw0dwOPDHad3zHmKLKA7LPH/0xTNt5IOQc7XmPoCN5QFJU7xF0JA80P3cjv0dwUIe0WVtUq1r9/IGf69vf/rbS09PbfK1Bz8CfvgAA8Jk0pWmMRus8TVOOemnypMka5Bmkjz76KN5dAwAAXSRFKSrREJ2rczREQ/S1L39NfVP6aPny5fHuGgAA6EL9VKgzdbrGa5zu+N7tKsgo0OOPPy6fzxfvriEGmBgBAMAhQxk6SWN1nqYpVV6dOOZElXpKtHv37nh3DQAAdBGvvBquYZquc9Vf/fWFc7+gfp5+Wr16dby7BgAAuohHHhWrWOfobJ2g0fruNd9RQWqBnnvuucAns9AzMTECAEArspSlCRqvc3S2muTT0JKhGuEZroMHD8a7awAAoIukKlWjNUrTda4KlK/Pn/p5DfAM0AcffBDvrgEAgC7ikUeDNVjnapqGaai+8dVvqHdKb7322mtMkPRQTIwAANCGHPXSZE3SmTpdVarWgP4DNMYzWhUVFfHuGgAA6CLpSteJOkHnaZoylaGTTzpZQzxDVFZWFu+uAQCALpKiFA1Vqc7TuRqoAbr4/IvVL6VQK1eujHfXECUmRgAAaKd85WuKTtXndZp2abeK84vj3SUAANDFMpWpkzVO03SOalSj4cOGMzkCAECSSZVXIzVC03WucpSj008/Xad4Jse7W4gCEyMAAEThiI7oQ22RTz4N09B4dwcAAMRBtWr0kT7SMR1TqUrUr1+/eHcJAAB0sUY1ars+1h59oiIV6dmP/xTvLiEKqfHuAAAAPUG5yrVZW3RYRzRCw7WjfIfy8vLi3S0AANCF6lSnj7RVu7VHAzVQ23ds19ChQ+PdLQAA0IWa5FOZyrRN25WnXL35zzc1derUeHcLUWJiBACACKpUpS3aqn3ap6Eq1aYD7/NXoQAAJJkGNWibtqtMO9Vf/bTx/Y0aO3ZsvLsFAAC6kF9+7dIufaRtylSmXvrbS5oxY4Y8Hk+8u4YOYGIEAIAW1KpWH2mr9ugTDdYgle0q05AhQ+LdLQAA0IWa1KSPtUPb9bF6q0Bvv/u2TjnllHh3CwAAdCEjoz36RB/pI6XIq6eee0qzZs1iQqSHY2IEAIAQ9aoP/EVosYq1+aPNGjVqVLy7BQAAupBPPu3ULm3VNvVStl5b9pqmTZsW724BAIAuZGS0T/u1RVvUJJ9++/hvdeWVV8rr9ca7a4gBJkYAAFBz0bTjfxHaV321Zu0aTZw4Md7dAgAAXcgvv/boE23RR0pXmv73//5XF198MX8RCgBAkjmoQ9qsLapVrX7x/36h6667ThkZGfHuFmKIiREkvMzMTH37um8pp1eOJMlYayO07FWtLbJWGOeClvY1rSyXaeE49oYtLTetrGzpfK32r4Vjt9xfE96HVvolSaaVgbR2XzS3TWvNFreL+JiZFkYcYZt2rW9xG8fCaNe31ME2xt36eSIcw1ocaZuW1jke6Db6YsLu19a2NY7DOB+zkLbjmCbi/wfP2eK6Ftq1qlWu8rTirRU644wzBCCxZGZm6sEHfq1n//hHSe7yQKuLY5IHPmu1djmIQR5otY+dlAekli6nMcgDjpXtudZ3OA+0Z5tY5AHndrHIA61s0yl5wHnaTsgDzuPGNg801xLxKkWPPvmoZs+erZSUFAFIHJmZmXrzjTc05XOTJEXOA2FLWnhNdp0HWlht7RejPGAdo8WX4hjlgQh9k9zlgVYWha1wlQda6mS0maE91/tot3F1jAjH6XAesHZusz8dzQPNS1q/arvNAy3dOt72yacG1WuERmh11Rr16tVLSDweE/bsBBLL9u3btXnz5nh3A0A316dPH33+85/nL0KBBHXkyBGtXLky3t0A0M2lp6dr2rRpSktLi3dXAHQCn8+nv/3tb/L7/fHuCoBu7vTTT1fv3r3j3Q10IiZGAAAAAAAAAABA0uBzwQAAAAAAAAAAIGkwMQIAAAAAAAAAAJIGEyMAAAAAAAAAACBpMDECAAAAAAAAAACSBhMjAAAAAAAAAAAgaTAxAgAAAAAAAAAAkgYTIwAAAAAAAAAAIGkwMdIJ7rrrLnk8HuvnhBNOiHe3AABAFyMTAAAA8gAAAN1Parw7kKhOOukkvf7664F2aip3NQAAyYhMAAAAyAMAAHQvXIk7SWpqqoqLi+PdDQAAEGdkAgAAQB4AAKB74au0OsnWrVs1cOBADR8+XFdeeaV27doV7y4BAIA4IBMAAADyAAAA3YvHGGPi3YlE88orr6iqqkpjxozR3r17tWjRIn3yySfatGmTcnNzW9ynvr5e9fX1gbbf79eRI0fUt29feTyeruo6AADdkjFGlZWVGjhwoFJSes7fdUSbCcgDAAC0jjxAHgAAIGZ5wKDTHT161OTl5ZlHHnmk1W3uvPNOI4kffvjhhx9++Inws3v37i68gsdeW5mAPMAPP/zwww8/bf+QB/jhhx9++OGHH7d5gE+MdJFTTz1VM2bM0OLFi1tc7/yLkPLycpWUlOjH//qEMjOyP1sYXC+f42Hz2n81Yo7VWW3PwJxgw+84eaNjQX2TfaxGn70+5C9UPL3S7XVFvez24Vr7WOWOfmWnBRsFmfa+zqfmwRp7da3dTwBA4qprrNV/PPsvOnbsmPLz8+PdHVciZYKo84BkZ4Jo8oBkZwIXeUByZAI3eUCyMwF5AADwGfJAO/OAZGWCqPKAZGcCN3lAsjOBmzwg2ZmAPAAASStWeYDi612gqqpK27dv11VXXdXqNhkZGcrIyAhbnpmRrcyMz4JEuje4oq2JkXT7Y0SejJAw4gw9KY5gYxzBxxNhYiTDEXoyHW+EZLTVr5Dgk5nl6IdjjI5TGR/BBwCSTU//+oi2MkHUeUCKPDESKQ9IdiZwkQeajx1yoXaTByQ7E5AHAAAO5AFFzgOSPTESTR6Q7EzgJg9IdiZwkwckOxOQBwAg6bnNAz3nSzl7kFtuuUUrVqxQWVmZ/vnPf+rSSy+V1+vVFVdcEe+uAQCALkQmAAAA5AEAALofPjHSCfbs2aMrrrhChw8fVr9+/XTmmWfq7bffVr9+/eLdNQAA0IXIBAAAgDwAAED3w8RIJ3j66adjdiyzp1Imvfmjqp6ckI+VZtgfm/WXlVttT6HjI6ehMh0fua1qsNtp9vqwDyWFfkfoviq7H2v22vtm2k8xT/9s+1gpIR9aSnV8gOmQ/Z2hfsd3qHpCPzqc2rM/Sg0AaIO/Z77OxyoTtJoHJCsTRJUHJDsTuMkDkpUJXOUByc4E0eQBiUwAAImMPNCuPCDZmSCqPCDZmcBFHpDsTOAqD0hWJujSPOD8qhZK9QJAfMUoD/BVWgAAAAAAAAAAIGkwMQIAAAAAAAAAAJIGEyMAAAAAAAAAACBpMDECAAAAAAAAAACSBsXXuzlPujdQRMxUBAugmZpGa7uUYkfBs5x0ux1aPM1RwMzUNdnbNvntPuRn2OsP1wZv97aLuKU4CrMZZyFX+9BS75Bj76+2Vvl2HrPa3jGF9r6NvtbPgx7J4yxqBwCf8TiLcSaZ1vKAZGeCqPKAZGUCV3lAsjKBqzwgWZkgmjzQ4rnQ45AHALSGPNC+PCA5MkEUeUByZAIXeUCyM4GbPCDZmSCueYDrVJcgDwBoTazyQMxSRW1trfbt26eamppYHRIAAAAAAAAAACCmOjwx4vP59MILL+jyyy/XoEGDlJOTo0GDBik3N1eDBg3S5Zdfrr/85S/y+XxtHwwAAAAAAAAAAKALdGhi5JFHHtGIESP0la98Rc8884z27t0rY0zgZ+/evXrmmWd06aWXauTIkXr00Udj3W8AAAAAAAAAAICodajGyLe//W1J0rhx4/TFL35Rp512mkpLS5WXl6eKigrt3LlTq1at0osvvqhNmzZp3rx5mjt3bkw7DgAAAAAAAAAAEK0OTYxcffXVuvnmm3XyySe3uH7SpEmaNWuWfvrTn2rDhg36xS9+4aqTycx3sFq+NNPcCCl65h2Ya2/oKHIqn7HbocXWjtVZqzwZjgKpjqJlzmOZhmAhNnMock2ZFEfhNRlHv/ZWBk+zu8Ja5R1WYLX9245YbU+vtGAjs0NPZXQzxvn8AIDPJPvrQ2t5QHJkgmjygGRlAjd5QIqcCaLJA5KdCaLKAxKZIAEk+793AK1L9teHducByc4EUeQByc4E3SUPSHYmIA8kvmT/9w6gdbF6fejQleKxxx5r97bjx4/X448/3pHTAAAAAAAAAAAAxFSHi68DAAAAAAAAAAD0NFFPjBw9elRHjjR/ZPHgwYN67rnn9P7778e8YwAAAAAAAAAAALEW1cTII488osmTJ+uUU07RQw89pEsvvVRLly7V5ZdfrkceeaSz+ggAAAAAAAAAABATUdUY+fWvf633339ftbW1Kikp0Y4dO9SvXz+Vl5frnHPO0XXXXddZ/Uxa3tICeTOymxupIfNYdXaBs7DCYo4CaKoKKZhe1WitMj67aFtKQaa9r6OImScvWKjNk9lgH6u83t7XUchVRb3s9ifB4mphxVX32IXXnMXUTGjRt6N2sTggjMcT7x4AcME01re9UQJrNQ9IdiaIIg9IdiZwkwckOxO4yQOSo7hqNHlAIhMgMvJAz+d8CKnNm1TIA+3MA5KdCaLIA5KdCdzkAcmRCVzkAcnOBOQBuNJd8wDXOKBdYpUHopoYSU1NVVZWlrKysjRy5Ej169dPkpSfny9Pd31RAQAAAAAAAAAA+ExUX6Xl9XpVV9c8675ixYrA8qqqqtj2CgAAAAAAAAAAoBNENTHy+uuvKyMjQ1Lzp0SOq6mp0X/913/FtmcAAAAAAAAAAAAxFtVXaYVOhkjSvn37VFxcrP79+6t///4x7RgAAAAAAAAAAECsRTUx4nT++edrw4YNseoLWtLgk+Rrvl3vCy53FBrTMUdhMUdRs9Biap68DHvdkVq73WQXX/U4i7iFFDUzFXaxG09hlr2toyCc2XzYavtD+u1xbOvJtYu4+ffaX9nmPxbsd0q+47wAgIRimhra3iiRtZYHJDsTRJEHJDsTuMkDkp0J3OQByc4E0eQBiUwAAImMPNDOPCDZmSCKPCDZmcBNHpAcmcBFHpDsTEAeAIDkFas8ENVXaYV1wpi2NwIAAAAAAAAAAOgmXE2MeDyeWPUDAAAAAAAAAACg07maGAEAAAAAAAAAAOhJmBgBAAAAAAAAAABJw1Xxda/X2/ZGiB1v8KvLTBtFyUytXUxNIQXTnEXKUop72ds6iraZw3YRM6v4ut+uMxP25WqOgqlmd4V97t6ZIX22i7g1bTtitb2D86x22ikDgg1n4TnYqAcEoIfz1tdIS+Pdi27Ca19tQzNBNHlAsjOBmzwg2ZnATR6Q7EwQVR6QyARtIRMA6MHIAyEi5AHJzgTR5AHJkQlc5AHJkQlc5AHJzgTkAZfIAwB6sFjlAVefGFm7dq37HgAAAAAAAAAAAHQRvkoLAAAAAAAAAAAkDVdfpXWcz+fT9u3btX//fhnHx/HOPvvsWJwCAAAAAAAAAADANdcTI//85z/1jW98Q7t37w5b5/F41NTU1MJeAAAAAAAAAAAAXc/1xMh3v/td7dq1KxZ9QUvSvVLGZ0XuQ4qneRzF0gLbHFfZYLfTQr41LdPe1l9eb7VTPHYRN09uhr39gergtn2yrHWmynHeQ47CbI5qrCbk3KbBLo6WekKhvaujX771BwQASCARikD6GmtbXZcUWskDkiMTRJMHJCsTuMkDkp0J3OQByc4E5AEASEKtZALyQDvzgGRngijygGRnAjd5QHJkAhd5QLIzAXkAAJJAJ+cB1xMj27ZtU+/evfXss89q+PDhYRcnAAAAAAAAAACA7sL1xMg555yjjRs36uyzz1ZqakxKlgAAAAAAAAAAAHQK1zMZv//97zVt2jR97nOf0/nnn6+8vDxr/cKFC92eAgAAAAAAAAAAICZcT4y8+uqr2r59u/x+v95///2w9UyMAAAAAAAAAACA7sL1xMiPf/xj+Xy+tjdExzT4JDXfv+ZYXXC5o5aLs0hZWHGakEJsnkz7Yff0zrR3PVhjt2sa7bYveCxT6zjWsAKr7d900O5HiqMGTWhfHIXVTLV9Xue+3iEhn05y1I4DkISocZXQvA3p8e5CfLWWByTruR9NHpDsTOAmD0h2JnCVByQrE0SVByQyAZDsyAMJjTzQvjwgOTJBFHlAsjOBmzwg2ZnATR6QHJmAPAAgEvJAQotVHnB9qaiqqtKAAQO0detWNTY2yu/3Wz8AAAAAAAAAAADdheuJkW9961tqampS//795fV6Y9EnAAAAAAAAAACATuH6q7QOHjyoiooKjRo1SmeeeaZVfN3j8ej3v/+921MAAAAAAAAAAADEhOuJkT/84Q/yeDw6cOCAnn/++cByYwwTIwAAAAAAAAAAoFtxPTFSUlIiDwVtOo3/UI38aZ81UkPuZ5+jeJqzaJmzmRryrWnO4miOQq2eftn2zo5ia570kK9M89on8m90FFPzRn5uNH2wP3A77ZRBjpX2GD05aVbbt6cy2Gh01LPxUd/GFdP2JgB6mO5yqe5gZvA11sa4Iz1Lq3lAsjNBNHlAsq6XrvKAZF3z3eQByZEJoskDkp0JyAPukAeAxEMe6NHanQckOxNEkQckOxO4yQOSIxO4yQOSlQmiygMSmcAN8gCQeMgDkmJQY6SsrEw7duxo9QfSPffcI4/HoxtvvDHeXQEAAHFCHgAAAOQBAAC6hw5NjFRWVra9kYvtE8m7776rhx9+WOPHj493VwAAQJyQBwAAAHkAAIDuo0MTI0OGDNEtt9yitWvXRtxuw4YNuvXWW1VaWtqhzvV0VVVVuvLKK/W73/1OvXv3jnd3AABAHJAHAAAAeQAAgO6lQzVG/H6/fvWrX+lXv/qVBgwYoFNPPVVDhw5Vbm6uqqqqtHPnTq1Zs0a7d++WMUa5ubmx7nePMH/+fF188cWaMWOG/v3f/z3itvX19aqvD36PZ0VFRWd3DwAAdAHyAAAAIA8AANC9dGhipKysTPfee69+//vf69NPP9ULL7xgFWA3prkyU9++fXXdddfp1ltvjU1ve5Cnn35a7733nt599912bb948WItWrQobLmpapRJa5AkeXqFFBdzFqfx29WwTE2jvT43PXAzpdAunmaO1Vlt3+bD9r4ZdjG1lJzgsTwn9LWPVWkXWzW1jn7U+6xm+oWjA7f9Zcfs8xRk2v3abq/3nj8scHvuv3xeQLdkekalumh66ffHbkydee/E9q4PHqyt4Uc+r+O1uq1jRXFw5xrnplHdHY6dY3lX+qJ4/piQflRWVujOkTHsSBfp9Dwg2Zkgijwg2ZnATR6Q7EzgJg9IdiaIJg9I8csE3aV+IbqnuKWBNi400fQr/LriYlSduGtnXf/bOldb1+Fojh3tGEKvl9HeP7G9u6LJS5E38LeynjzQzjwgWQ9CNHlAsjOBmzwg2ZnATR6Q7EzQXfMAEFESvD8QrxG6ue66FemaF22/onmKtH3o1reI9m2d0M3buoZHI5r3B0LPHas80KGJkT59+uiee+7Rv/3bv+m1117TW2+9pa1bt6q8vFx5eXkaNWqUzjrrLH3hC19QWlpa2wdMMLt379a//uu/6rXXXlNmZmbbO0i6/fbbtWDBgkC7oqJCQ4YM6awuAgCATkYeAAAA5AEAALqnDk2MHJeWlqaLLrpIF110Uaz6kxDWrFmjAwcO6HOf+1xgmc/n0xtvvKH/9//+n+rr6+X12n9lkZGRoYyMjK7uKgAA6CTkAQAAQB4AAKB7cjUxgpZNnz5dGzdutJZde+21OuGEE/TDH/4wLPQAAIDEQx4AAADkAQAAuicmRjpBbm6uxo0bZy3r1auX+vbtG7YcAAAkJvIAAAAgDwAA0D0xMdLNpRRmKSW9uRCaafIHVzTYRcpMZYO938Bcq+1JTwk2Gu19PY5CaympKVbbf6TWPpcv2A+zyS6u6uyX/HbT1DVZ7aZ3Pw3cTh3Vx1rXuOZTq33Kf33Zap85boAAAMmhIs3X9kYJrNU8IFnX3qjygGRlAjd5QHJkAhd5QLIzAXkAAHAceaB9eUCyM0E0eUCyM4GrPODsl4s8INmZgDwAAMkrVnmAiZEusnz58nh3AQAAxBl5AAAAkAcAAIi/lLY3AQAAAAAAAAAASAxMjAAAAAAAAAAAgKTh+qu0/H6/lixZoqVLl2r//v0yxgTWeTweLV261O0pAAAAAAAAAAAAYsL1xMiCBQv0wAMPSFJgUsTj8cgYI4/H4/bwSc/UNso0NTY3/MFJJ2eBs5QBOfZ+FfX2gXLTg+uO2ev8lY5tHY+bd5CjUNvQ/MBt3+q9Eff176+02qnjiuzNQwq5Nb1vF2lLu2q81aaYGgAgWbWWByQ7E0STByQ7E7jJA5IjE7jIA5KdCcgDAAA0a28ekOxMEFqIXZKUk2bvG+k9Ajd5wLG/mzwg2ZmAPAAAcMv1xMhTTz0lY4wGDhyoYcOGKTWVeu4AAAAAAAAAAKB7cj2L4fP5NHjwYG3dulUZGRmx6BMAAAAAAAAAAECncF18/fLLL1dtba0aGxtj0R8AAAAAAAAAAIBO4/oTIzk5OaqoqNDEiRP15S9/WQUFBdb6hQsXuj0FAAAAAAAAAABATLieGLn33nvl8Xj08ccf6/777w9bz8SIO6beL+P3SZI8IQXSPD77wz7+fdVW2+ssgLa7IrhusKNYWi+78Jr/aJ3dh2rHp4G2Hw1Z6eywvcA7yO6H/3CN3T5SG7iddlI/a93870wVAABoPQ9IdiaIJg9IdiZwlQckOxO4yAOSnQnIAwAANGtvHpDsTBBNHpDsTOAqD0hWJnCTByQyAQAgtlxPjJSUlMjj8cSiLwAAAAAAAAAAAJ3K9cRIWVlZDLoBAAAAAAAAAADQ+VwXX5ekN998U+eee65yc3OVm5ur8847T2+++WYsDg0AAAAAAAAAABAzrj8x8tZbb2n69Ony+Xwyn3135PLlyzVjxgwtW7ZMp59+uutOAgAAAAAAAAAAxILriZG7775bTU1NKi0t1UUXXSRJevnll7Vz507dfffdevXVV113Mpl5MlLkSfNKkvwHgoXJUvplW9t5S/Ostqlrstop/XsFbvv2VNrb1vvsYw3Isfsw0G771u4PNtK91rqmXUesdtro/nY/8jPtc9cE+zn//31ZAAAgXGt5QLIzQTR5QLIzgas8IFmZwE0ekMgEAAC0pL15QLIzQTR5QLIzgZs8INmZgDwAAOhOXE+MrFq1Sn379tX69euVl9d84S0vL9eIESP09ttvu+4gAAAAAAAAAABArLiuMVJXV6c+ffoEJkUkKT8/X3369FF9fb3bwwMAAAAAAAAAAMSM60+MjBgxQps3b9bNN9+sK664QpL05JNPatu2bRo7dqzrDgIAAAAAAAAAAMSK60+MzJ07V8YY3XfffZoyZYqmTJmi+++/Xx6PR3Pnzo1FHwEAAAAAAAAAAGLC9SdGbrrpJn344YdasmSJjDGSFJgUuemmm1x3MNl5stLkSU+TJKX2yQosNw12gVRT1Wi1/ZWOrzELLajqtefDPCke+1g19rG0r9pe7/MH9/Xbx0obUWjvG7KtJDVtOmBvf9EoAQCAyFrLA5KdCaLKA5KVCdzkAcnOBOQBAABir715QLIzQTR5QLIzgZs8IDkyAXkAANCNuJ4YSUlJ0SOPPKI77rhDa9askSRNnjxZw4cPd905AAAAAAAAAACAWHI9MXLc8OHDmQwBAAAAAAAAAADdWocmRu6++24NHjxYc+fO1d133x1x24ULF3aoYwAAAAAAAAAAALHWoYmRu+66S1OnTtXcuXN11113yePxtLotEyMAAAAAAAAAAKC76NDESElJiYqLiwO3I02MwB1T1SCT1vww+Y/WBZZ7eqXZ29XaBdFS8jLs9XXB4mr+/VX2tgNz7XZxL6vt23bUanuygudu/Gi/tS5teD9725x0q+2vbbDa8+84VwAAILLW8oBkZ4Jo8oBkZwI3eUCyMwF5AACA2GtvHpDsTBBNHpDsTOAmD0h2JiAPAAC6kw5NjJSVlbV4GwAAAAAAAAAAoDtLcXuAN954Q+vWrQtbXl9fr5qaGreHBwAAAAAAAAAAiBnXEyPTpk3T/PnzW1yel5fn9vAAAAAAAAAAAAAx43piRJKMMWHLqqurW1wOAAAAAAAAAAAQLx2qMSJJ5513XuD2Bx98YLWrq6u1adMmFRQUuOocJOM3Mn6/JMmT4Q2uqLeLpaX0zrLavk8qHQcKTlKlFGbbqxyFWk15vX2s/faxvH2CxdfSTxoQofdSw4ZPrHbWgjMjbg8AAMK1mgckKxNEkwckOxO4yQNS5ExAHgAAwL325gHJzgTR5AHJzgTkAQBAourwxMjy5cvl8Xjk8XhUUVGh5cuXh20zY8YMN30DAAAAAAAAAACIqQ5PjMyZM0eS9Pjjj6tfv3666KKLAuuys7N1wgknaO7cue57CAAAAAAAAAAAECMdnhhZsmSJJGnZsmWaPHlyoA0AAAAAAAAAANBddXhi5LiysjLV19dr2bJl+vTTT+Xz2d9refXVV7s9BQAAAAAAAAAAQEy4nhjZunWrZsyYoT179oSt83g8TIy4lJKbrpT0jOaGNyWw3NTYBVJ9eyrsHe1aapKn9XN4Tyy0j7V2v72+KNdqN318KGRdvn2avHR73745Vvu73zq19Y4AAIAWtZYHJDsTxCsPNK8PZgLyAAAAsdfePCA5MkEUeUCyM4GbPCDZmYA8AADoTlxPjNx2223avXt3LPoCAAAAAAAAAADQqVLa3iSyN998U6mpqXrttdckSZMmTdJTTz2lwsLCwDIAAAAAAAAAAIDuwPXEyLFjx3TiiSdq+vTp8ng8SktL0+zZs1VcXKyf/vSnsegjAAAAAAAAAABATLj+Kq3c3Fz5/X5JUk5OjjZv3qx33nlHu3bt0vbt2113EAAAAAAAAAAAIFZcT4wMGTJEH3/8sXw+n04++WStXLlSp59+uiRp2LBhrjuY7Jp2lasptUFSczH74zzZaY4N/VbTNPqsdkq/XiEr7V39Hx2x2r6Dlfa+fXpZbe/AguC63ll2N7YetNqpJ/YXAABwp7U8IDkyQTR5QLIygZs8INmZgDwAAEDstTsPSFYmiCYPSHYmcJMHJDsTkAcAAN2J66/SmjNnjqZPn66tW7fqRz/6kdLS0mSMUUpKiu66664YdLHneeihhzR+/Hjl5eUpLy9PU6dO1SuvvBLvbgEAgC5GJgAAAOQBAAC6H9efGLnpppt00003SZJOOOEEffjhh1q7dq1OOukkjRkzxnUHe6LBgwfrnnvu0ahRo2SM0eOPP65LLrkkcL8AAIDkQCYAAADkAQAAuh9XEyONjY2aOXOmsrOz9Ze//EUej0fDhg1L+q/Q+tKXvmS1/+M//kMPPfSQ3n77bUIPAABJhEwAAADIAwAAdD+uJkbS0tL03nvvqbS0NOz7LdHM5/Pp2WefVXV1taZOnRrv7gAAgDghEwAAAPIAAADdg+uv0rr00kv1zDPP6NNPP9XAgQNj0aeEsHHjRk2dOlV1dXXKycnR888/r7Fjx7a6fX19verr6wPtioqKrugmAADoZNFkAvIAAACJiTwAAED34npipLCwUE1NTZo0aZK++tWvqqioyPr0yMKFC92eokcaM2aM1q1bp/Lycv3pT3/SnDlztGLFilaDz+LFi7Vo0aKw5Sl9spSSlt3cqPcFlvv2ltsbelOsZmpJb3t9WnB9SnGOtarx7d32Ofva65t2HbaPPTB4bN++SmudJzPNan/utrMEAEAyiyYTRJsHJEcmiCIPSHYmcJMHJDsTkAcAALB1aR6QrEwQTR6Q7EzgJg9IdiYgDwAAuhOPMca4OUBKSoo8Ho+MMS1+nZbP52thr+QzY8YMjRgxQg8//HCL61v6i5AhQ4Zo0cX/pcwunhjx5GdZ7UjBxzQ5Ht9Gu33qw1+22mecVCwAAKJVUVGhoj69VV5erry8vHh3x5VImSDaPCB13sRINHlAcmQC8gAAoBOQB9qZB6SYTYy4ygOSlQnIAwCAWIhVHnD9iZGSkhLqi7SD3++3go1TRkaGMjIyurBHAAAgHiJlAvIAAADJgTwAAEB8uZ4Yefzxx5Wfn6+JEyday+vq6uT3+90evke6/fbbdeGFF6qkpESVlZV68skntXz5cv31r3+Nd9cAAEAXIhMAAADyAAAA3Y/riZFzzz1XU6dO1T/+8Y+w5e+++66amprcnqJTbdiwIep9xo4dq9TU1u+6AwcO6Oqrr9bevXuVn5+v8ePH669//au+8IUvuOkqAADoJJ2RByQyAQAAPQl5AACA5OF6YkSSWipTUl1d3eLy7mbixImBGintkZKSoo8++kjDhw9vdZvf//73seqefLuOyuetkyR50oMPV0q/XGs7T7b9UJoG+3s9PRne4DG3HrHX9bI/omvqGq2211FsLaUgM3Dbf7jGPlbfXlab7wwFAPQEnZEHpNhlgtbygGRngmjygGRnAjd5QLIzAXkAANATJUoekOxMEE0ekOxM4CYPSHYmIA8AALqTDk+MnHfeeYHbH3zwgdWurq7Wpk2bVFBQ4KpzXeWdd95Rv3792tzOGKNx48Z1QY8AAEBXIw8AAADyAAAAyaHDEyPLly+Xx+ORx+NRRUWFli9fHrbNjBkz3PStS5xzzjkaOXJkuydxzj77bGVlZXVupwAAQJciDwAAAPIAAADJo8MTI3PmzJHUXHy9X79+uuiiiwLrsrOzdcIJJ2ju3Lnue9jJli1bFtX2L7/8cif1BAAAxAt5AAAAkAcAAEgeHZ4YWbJkiaTm4DB58uRAGwAAAAAAAAAAoLtyXXy9rKwsBt3oHowx+tOf/qRly5bpwIED8vv91vrnnnuuy/vkyUqXJzW9+XZqsECaJ8Vjb9hkF4fz9Eqz1/uD65t2HrZWpfS2C6Q2frzfaqcN62+fatfRwG1T22Cty5h9knMIAAD0KD0pD0iOTBBFHpDsTOAmD0h2JiAPAAB6uh6dByQrE0STByQ7E7jJAxKZAADQfbmeGPH7/VqyZImWLl2q/fv3y5iQi6/Ho6VLl7o9RZe58cYb9fDDD+vcc89VUVGRPB5P2zsBAICEQh4AAADkAQAAEpvriZEFCxbogQcekKTApIjH45ExpscFh//5n//Rc889Z9VLAQAAyYU8AAAAyAMAACQ21xMjTz31lIwxGjhwoIYNG6bUVNeHjJv8/HwNHz483t0AAABxRB4AAADkAQAAEpvrWQyfz6fBgwdr69atysjIiEWf4uauu+7SokWL9OijjyorKyve3QEAAHFAHgAAAOQBAAASm+uJkcsvv1x//OMf1djY2OMnRi677DI99dRT6t+/v4YOHaq0NLtA2XvvvdflfUrp00spaZ+FsJACaabBZ2+X4Si8lm63ffuqAre9AwusdaaizmpnTCixO5FpP038n1YEj1Xa11o3/1+mCACAnqwn5QHJzgTR5AHJzgRu8oBkZwLyAACgp+vJeUCyM0E0eUCyM4GbPCCRCQAA3ZfriZGcnBxVVFRo4sSJ+vKXv6yCggJr/cKFC92eosvMmTNHa9as0Te/+U2KqwEAkKTIAwAAgDwAAEBicz0xcu+998rj8ejjjz/W/fffH7a+J02MvPTSS/rrX/+qM888M95dAQAAcUIeAAAA5AEAABKb64mRkpKShPnLiSFDhigvLy/e3QAAAHFEHgAAAOQBAAASW4rbA5SVlWnHjh2t/vQkv/jFL/SDH/xAZWVl8e4KAACIE/IAAAAgDwAAkNhcf2IkkXzzm99UTU2NRowYoezs7LDiakeOHOnyPpm6Rpmm5ofJkxqcx0rpl21t50mxP7Xj21VutRt3HQ7um5tprWvac9hqpw3rb3fCWdStMVjULe20QZG6DwBAj9OT8oBkZ4Jo8oBkZwI3eUAiEwAAEktPzgOSnQmiyQOSnQnIAwCARBWTiZFDhw7pgQce0Ntvv63S0lJ9//vf13vvvadp06appKQkFqfoEr/61a8S5mvBAABAx5AHAAAAeQAAgMTmemKkrKxMZ5xxhvbt2ydJmjJlio4dO6ZrrrlGt9xyi+69917Xnewq11xzTavramtru64jAAAgbsgDAACAPAAAQGJzXWPkBz/4gfbu3atBgwbJmOaPVJ555pnKy8vTa6+95rqDXen73/9+i8urq6t10UUXdXFvAABAPJAHAAAAeQAAgMTmemLk9ddfV2FhoT788ENreWlpaY8rUvbSSy/pzjvvtJZVV1dr5syZampqilOvAABAVyIPAAAA8gAAAInN9Vdp1dbWatSoUerVq5e1vKqqSvX19W4P36X+9re/6ayzzlLv3r114403qrKyUhdccIFSU1P1yiuvxKVPqSP7KDW9uYhaaFEz/94qazt/daPVbtpjF4JLLc4P3DZ19raZp42I2IfGskP2sYb0Cdz+xr+fH3FfAAB6mp6UByQ7E0STByQ7E7jJAxKZAACQWHpyHpDsTBBNHpAiZwLyAAAgUbieGBkxYoTef/99/eEPf5Ak1dfX64EHHtCOHTs0fvx41x3sSiNGjNCrr76qc889VykpKXrqqaeUkZGhl156KWziBwAAJCbyAAAAIA8AAJDYXH+V1rx582SM0Zw5c+TxeLRu3TrdeOON8ng8mjt3biz62KXGjx+vF198UXfccYeys7P1yiuvEHoAAEgy5AEAAEAeAAAgcbn+xMj3v/99bdmyRQ8//HCg+LrH49G8efNaLVbWnUyaNEkejydseUZGhj799FOdccYZgWXvvfdeV3YNAAB0EfIAAAAgDwAAkDxcT4x4PB795je/0Q9+8AOtXr1akjR58mQNGzbMdee6wqxZs+LdBQAAEGfkAQAAQB4AACB5uJ4Y2bBhg8rKynTKKafoa1/7miTpk08+0V/+8hcNHTq029cZufPOO+PdhYgaN+6XNzVLkuRJ8waWG5/f2q6p7KDVTh3az2qb6vrgMXccsNd99kmfQLumwWqn9Mqw2r79FYHbvXPSI/YfAICeoKfmAcnOBNHkAcnOBG7ygEQmAAD0fImSByQ7E0STByQ7E5AHAACJyvXEyLx587Rhwwbt2bMnsCwrK0uzZ8/WxIkTtXLlSrenAAAAAAAAAAAAiAnXxdc//PBDjRo1Sn379g0s69Onj0aNGqX333/f7eE7XZ8+fXTo0KF2b19SUqKdO3d2Yo8AAEBXIw8AAADyAAAAycP1J0aampq0b98+NTU1KTW1+XCNjY3at2+ffD6f6w52tmPHjumVV15Rfn5+u7Y/fPhwjxgXAABoP/IAAAAgDwAAkDxcT4yccMIJWr9+va644gotWLBAknTffffp0KFDmjRpkusOdoU5c+bEuwsAACDOyAMAAIA8AABAcnA9MXLdddfphhtu0HPPPafnnnsusNzj8WjevHluD9/p/H5/2xvFke9gpXzeRkmS/2hVYLkn3X7onMXU/AcrrXbtp8HCazmnjrbWedLsb1Rr2LDbaqcM7mOf68uj2tN1AAB6jJ6aByQ7E0STByQ7E5AHAADJLlHygGRngmjygGRnAvIAACBRua4x8t3vflfz58+XJBljZIyRJN1www26/vrr3R4eAAAAAAAAAAAgZlx/YkSSHnjgAd1yyy169913JUmnnnqqSktLY3FoAAAAAAAAAACAmInJxIgklZaWMhkCAAAAAAAAAAC6NdcTI36/X0uWLNHSpUu1f//+wFdpSc11RpYuXer2FAAAAAAAAAAAADHhemJkwYIFeuCBByTJmhSRmidG4I63X668qVmSpJSC7MBy09BkbefbV261/dV1VjtncrAgmqmut9Y1Haiw2qkjiuz1Ow9Z7X/93jXt6DkAAIiV1vKAZGeCaPKAZGcC8gAAAN1be/OAZGeCaPKAZGcC8gAAIFG5Lr7+1FNPyRijAQMG6IwzztA555wT+Dn77LNj0ccuc95552nRokVhy48eParzzjsvDj0CAABdjTwAAADIAwAAJDbXnxjx+XwaPHiwtm7dqoyMjFj0KW6WL1+ujRs3au3atXriiSfUq1cvSVJDQ4NWrFgR594BAICuQB4AAADkAQAAEpvrT4xcfvnlqq2tVWNjYyz6E3evv/669u3bp89//vMqKyuLd3cAAEAckAcAAAB5AACAxOX6EyM5OTmqqKjQxIkT9eUvf1kFBQXW+oULF7o9RZcaMGCAVqxYoWuvvVannnqqnn32WZ144onx7hYAAOhC5AEAAEAeAAAgcbmeGLn33nvl8Xj08ccf6/777w9b35MmRo4Xi8/IyNCTTz6pf//3f9fMmTP1wx/+MG59atp5UE0pmZIkb3FBYLmpabC2cxZTS8nNchwnWCDNW5hrras9eNhq98qz981ccGZ0nQYAoAfrSXlAsjNBNHlAsjMBeQAAgKCenAckOxNEkwckOxOQBwAAicr1V2mVlJSopKREpaWlgduhPz2JMcZq//jHP9YTTzyhX/ziF1EdZ/HixTr11FOVm5ur/v37a9asWdqyZUssuwoAADoJeQAAAMQqD0hkAgAAuiPXnxhJpO/Z3LFjh/r162ct++pXv6oTTjhBq1evbvdxVqxYofnz5+vUU09VU1OT7rjjDp1//vn64IMPAgXbAABA90QeAAAAscoDEpkAAIDuyPXEiCS9+eabWrhwYSAcnHrqqVq0aJHOOuusWBy+y5SWlra4/KSTTtJJJ53U7uO8+uqrVvuxxx5T//79tWbNGp199tmu+ggAADoXeQAAAMQqD0hkAgAAuiPXEyNvvfWWpk+fLp/PF/io6fLlyzVjxgwtW7ZMp59+uutO9nTl5eWSpD59+rS6TX19verr6wPtioqKTu8XAADoOuQBAAAgtZ0JyAMAAHQ+1xMjd999t5qamlRaWqqLLrpIkvTyyy9r586duvvuu8P+MiLZ+P1+3XjjjTrjjDM0bty4VrdbvHixFi1aFLY8JTdbKd7m4mpNnxwJLK+oOmptl9+v2N7xs0Jxx6UOLwzcrl+zw1qXc/Jwu8/Haqz2/Os/32q/AQBA2zorD0h2JogmD0h2JiAPAADQ+dqTCdzmAcmRCaLIA5KdCcgDAIBE5XpiZNWqVerbt6/Wr1+vvLw8Sc1//TBixAi9/fbbrjvY082fP1+bNm3SW2+9FXG722+/XQsWLAi0KyoqNGTIkM7uHgAA6ALkAQAAILUvE5AHAADofK4nRurq6lRUVBSYFJGk/Px89enTR7t373Z7+B7thhtu0Isvvqg33nhDgwcPjrhtRkaGMjIyuqhnAACgq5AHAACA1P5MQB4AAKDzuZ4YGTFihDZv3qybb75ZV1xxhSTpySef1LZt2zR27FjXHeyJjDH63ve+p+eff17Lly/XsGHD4t0lAADQxcgDAABAIhMAANAduZ4YmTt3rm699Vbdd999uu+++wLLPR6P5s6d6/bwPdL8+fP15JNP6oUXXlBubq727dsnqfmTNFlZWXHuHQAA6ArkAQAAIJEJAADojlxPjNx000368MMPtWTJEhljJAUnRW666SbXHeyJHnroIUnStGnTrOVLlizRNddcE9WxKj/dqwZP80doM1LSA8v7nTnR2q5p52Gr7e2fZ7UbP/gkcDslK91aZ2oarHbGeSOi6iMAAAjXFXlAsjNBNHlAsjMBeQAAgM4Rq0zQ3jwg2Zkgmjwg2ZmAPAAASFSuJ0ZSUlL0yCOP6I477tCaNWskSZMnT9bw4cNdd66nOj5BBAAAkhd5AAAASGQCAAC6I9cTI8cNHz48qSdDAAAAAAAAAABA95fS0R3Lysr03//933rnnXfC1q1cuVL//d//rbKyMjd9AwAAAAAAAAAAiKkOT4zcc889uvbaa9XY2Bi2rqamRtdee63uueceV50DAAAAAAAAAACIpQ5/ldayZcuUl5enM888M2zd9OnTVVBQoKVLl7rqHKTcIYOU6c2UJJkmX2B5/Zod1nZpI4utdsOWT612dXVF4Hb+mGHWOv/Raqs984dnd7zDAAAg5lrLA5KdCaLJA5KdCcgDAAB0b+3NA5KdCaLJA5KdCcgDAIBE1eFPjOzZs0clJSWtrh8yZIg++eSTjh4eAAAAAAAAAAAg5jo8MZKamqqdO3fK7/eHrfP5fCorK1NaWpqrzgEAAAAAAAAAAMRShydGTjzxRFVWVupHP/pR2Lqf/OQnqqio0IknnuiqcwAAAAAAAAAAALHU4Rojl112mVatWqV7771Xf/3rX3XWWWfJ4/Horbfe0tq1a+XxeDR79uxY9hUAAAAAAAAAAMCVDk+MzJ8/X3/4wx+0bt06rV+/XuvXrw+sM8Zo0qRJmj9/fkw6mdR8fknNX1fm7ZsTWOwtzLU2a/hgj9U+WHfQag8YHfz0TtOnR6x1zkKtIwbkdbi7AACgE7SSByQ7E0STByQ7E5AHAADo5tqZByQ7E0STByQ7E5AHAACJqsNfpZWRkaG///3vuuKKK+T1emWMkTFGXq9X3/jGN/T6668rPT09ln0FAAAAAAAAAABwpcOfGJGkgoICPfHEE3rooYf00UcfyRijMWPGKC+PvygAAAAAAAAAAADdj6uJkePy8vJ0yimnxOJQAAAAAAAAAAAAnabDX6UFAAAAAAAAAADQ08TkEyPoPP76RvlTvJKk+k07A8trfLXWdg3+Bqs9eIr9CR7fgYrA7fRRA6x1J/7s/Jj0FQAAdI7W8oBkZ4Jo8oBkZwLyAAAA3Vt784BkZ4Jo8oBEJgAAJAc+MQIAAAAAAAAAAJIGEyMAAAAAAAAAACBpdOirtO6+++52b7tw4cKOnAIAAAAAAAAAACDmOjQxctddd8nj8bRrWyZGAAAAAAAAAABAd9GhiZGSkpJ2T4zAnfojRyVPhiS7mFqK4/4f8LkJVrtp12GrbXy+wO30yYOtdec72gAAoHtpLQ9IdiaIJg9IdiYgDwAA0L21Nw9IdiaIJg9IZAIAQHLo0MRIWVlZjLsBAAAAAAAAAADQ+Si+DgAAAAAAAAAAkkZMJkbefPNNnXvuucrNzVVubq7OO+88vfnmm7E4NAAAAAAAAAAAQMx06Ku0Qr311luaMWOGmpqaZIyRJC1fvlwzZszQsmXLdPrpp7vuJAAAAAAAAAAAQCy4nhi5++671djYqNLSUl100UWSpJdfflk7d+7U3XffrVdffdV1J5NZRu98ZaZkSpJyBgwLLDeNdrG0pl2HIh4nJTcrcPvb/zUrdh0EAACdrrU8INmZIJo8IJEJAADoSdqbB6TImYA8AABADCZGVq1apb59+2r9+vXKy8uTJJWXl2vEiBF6++23XXcQAAAAAAAAAAAgVlzXGKmrq1OfPn0CkyKSlJ+frz59+qi+vt7t4QEAAAAAAAAAAGLG9SdGRowYoc2bN+vmm2/WFVdcIUl68skntW3bNo0dO9Z1BwEAAAAAAAAAAGLF9SdG5s6dK2OM7rvvPk2ZMkVTpkzR/fffL4/Ho7lz58aijwAAAAAAAAAAADHh+hMjN910kz788EMtWbJExhhJCkyK3HTTTa47mOz8lXXye5rv1yaf31oeypNuP5SeDLudNqYocDs9zRvrbgIAgE7UWh44vu64aPKARCYAAKAnaW8ekOxMQB4AACCc64mRlJQUPfLII7rjjju0Zs0aSdLkyZM1fPhw150DAAAAAAAAAACIJddfpVVeXq5du3ZpwIAB+vrXv66UlBTdf//9evTRR2PRPwAAAAAAAAAAgJhx/YmRf/mXf9Gzzz6rVatW6dNPP9Vll10WWHfo0CH94Ac/cHsKAAAAAAAAAACAmHD9iZE1a9aooKBAkydP1v/+7/9Kks4//3wZY/T444+77iAAAAAAAAAAAECsuP7EyKeffqrRo0dLkjZu3KhJkybplVde0Yknnqhdu3a57mCy8xbmyevNlCT5D1cGlqefOMjaznegwmqnjbaLqX3v2cs7qYcAAKCztZYHJDsTkAcAAEhc7c0Dkp0JyAMAAIRz/YmR9PR0HTt2TPX19dq6davGjh0bWJ6S4vrwAAAAAAAAAAAAMeN65uL4J0OKiopUXV2tKVOmSJL27NmjwYMHu+4gAAAAAAAAAABArLieGPnxj3+stLQ0VVRUaPjw4brqqqv09ttv6+jRo/r85z8fiz4CAAAAAAAAAADEhOsaIxdddJH27NmjXbt26aSTTlJGRoZOOukkbd26VX379o1FHwEAAAAAAAAAAGLC9cSIJBUWFqqwsDDQzs3NVW5ubiwOnfRMVa1MipEkedKDD1f1Bzut7XqdPMxqf//Fqzq/cwAAoEu0lgckOxOQBwAASFztzQOSnQnIAwAAhItJdfQ333xT5557bmBC5LzzztObb74Zi0P3WG+88Ya+9KUvaeDAgfJ4PPrzn/8c7y4BAIAuRh4AAADkAQAAuh/XEyNvvfWWZsyYoTfeeEPV1dWqrq7W8uXLNWPGDP3zn/+MRR97pOrqak2YMEEPPvhgvLsCAADihDwAAADIAwAAdD+uv0rr7rvvVmNjo0pLS3XRRRdJkl5++WXt3LlTd999t1599VXXneyJLrzwQl144YXx7gYAAIgj8gAAACAPAADQ/bieGFm1apX69u2r9evXKy8vT5JUXl6uESNG6O2333bdwWRRX1+v+vr6QLuioiKOvQEAAPFAHgAAAOQBAAA6n+uJkbq6OhUVFQUmRSQpPz9fffr00e7du90ePmksXrxYixYtClvur2uU39P8jWdpw/oHlhfecIG13b9cPblzOwgAADpdtHlAsjMBeQAAgJ7PbR6QyAQAALTFdY2RESNGaNu2bbr55pu1evVqrV69WgsWLNC2bds0YsSIWPQxKdx+++0qLy8P/DCpBABA8iEPAAAA8gAAAJ3P9SdG5s6dq1tvvVX33Xef7rvvvsByj8ejuXPnuj180sjIyFBGRka8uwEAAOKIPAAAAMgDAAB0PtefGLnpppv0rW99S5JkjJExRlLzhMlNN93k9vAAAAAAAAAAAAAx4+oTI42NjZo5c6aysrK0detWrVmzRpI0efJkDR8+PCYd7Kmqqqq0bdu2QHvHjh1at26d+vTpo5KSkjj2DAAAdBXyAAAAIA8AAND9uJoYSUtL03vvvafS0lINHz486SdDQq1evVrnnntuoL1gwQJJ0pw5c/TYY4+1+zieNK88Kc0P002rvhvTPgIAgM5FHgAAAOQBAAC6H9c1Ri699FI988wz+vTTTzVw4MBY9CkhTJs2LfC1YgAAIDmRBwAAAHkAAIDux/XESGFhoZqamjRp0iR99atfVVFRkTweT2D9woUL3Z4CAAAAAAAAAAAgJlxPjPz85z+Xx+PRwYMH9fDDD4etZ2IEAAAAAAAAAAB0F64nRkpKSqxPiAAAAAAAAAAAAHRXridGysrKYtANtKautlrG0xTvbgAAgDgiDwAAAPIAAACxkxLvDgAAAAAAAAAAAHQV158YkaRDhw7pgQce0Ntvv63S0lJ9//vf13vvvadp06appKQkFqcAAAAAAAAAAABwLSZfpXXGGWdo3759kqQpU6bo2LFjuuaaa3TLLbfo3nvvdd1JAAAAAAAAAACAWHD9VVo/+MEPtHfvXg0aNEjGGEnSmWeeqby8PL322muuOwgAAAAAAAAAABArrj8x8vrrr6uwsFAffvihcnNzA8tLS0spzB4DGSkZyvRkSJLqG32B5Z/NQQUcqaq32g0h20rS0KJcAQCAnqm1PCDZmYA8AABA4mpvHpDsTEAeAAAgnOtPjNTW1qq4uFi9evWylldVVam+vr6VvQAAAAAAAAAAALqe64mRESNG6P3339cf/vAHSVJ9fb0eeOAB7dixQ6NHj3bdQQAAAAAAAAAAgFhxPTEyb948GWM0Z84ceTwerVu3TjfeeKM8Ho/mzp0biz4CAAAAAAAAAADEhOuJke9///u6/vrrJUnGmEAB9nnz5un73/++28MDAAAAAAAAAADEjOvi6x6PR7/5zW/0gx/8QKtXr5YknXLKKUpNTdVPf/pT3XHHHa47mcxSCnopJSVTkvTr4fcElpu6Rmu7T2v3Wu3B/YZZ7Uv+8Z3A7fzsdGtdbUOT1a6pt9tVNfa5QmVl2E+hmjp7X7+jAlx2pr19XkhfUr32PF1Wutdqp6Xa7VSvJ3jcDNdPZQAAuq3W8oBkZ4Jo8oBkZwI3eUCyM4GbPCDZmSCaPCCRCQAAiau9eUCyM0E0eUCyM4GbPCDZmcBNHpDsTEAeAAC45foTI8cNHTpUX/ziF9XQ0KBvf/vbGjZsmBYuXBirwwMAAAAAAAAAALgWkyn0f/7zn3rsscf07LPPqqKiQlLz12p5PJ429gQAAAAAAAAAAOg6HZ4Y+eSTT/T444/r8ccf17Zt2yQpUF/E4/Hovvvu01e+8pXY9BIAAAAAAAAAACAGOjwxUlpaahVbHz9+vK666irdddddqqmpofA6AAAAAAAAAADodjpcY8Tv90uSTj31VK1bt07r1q3TzTffrNRUClwBAAAAAAAAAIDuyfUsxurVq3XhhRfqyiuv1De/+c1Y9Akh1u16R2meNElS77T8wPJcb6613aDcwVb74KFPrPYz4+4N3E7zRH7YP63fZ7VzvTlWe0v11sDt04acbq0zDU1Wu6LqqH2sdLvfq4++F7hdmjXEWjdowgS7Y37Tap+Pf3Kp3Xz+6LaPJEK/nJz9TMnLstreouB9nTKswFrnGdnHavcZYbf75mVY7fzs9MDt7Ez7Mc/JSrPa6Wleq52aEqwP5E2xawWlONrOWkIpEUoLObcN29TjbLZ+sLZKGEVV4chFPaTuWkmJEk9ItKdAQ6Mv3l2Iq9bygGRngmjygBQ5E0STByQ7E7jJA5KdCaLJA5LjWtvWNTra/BCJizzg6tjOdY5jezLta76nVzAvpBTYOSSluJe9bWG21faO7B24nTvIfh4W9bW37V+QabXze6Vb7ZysYDvNa79ipXrtv91KcWYNZzaxms6coogirY7ttbR7vCqTD4Cerb15QLIzQbzygGRnAjd5QHJkgmjyQFvbxzIPtMXRj2gygSfV/r09/bzhgdtZkwda6waUFljt3Cz7MS7Isd8/yM0O5oV0x3m8YddlOdqtv0fg3DbsPYGw9wBaa0R+f6ClY0U4VGx14cWVy3jiIZt1TH2M3h/o8CdGHn30UZ199tmSpL179+oXv/iFJk2apPLycknS5s2bY9JBAAAAAAAAAACAWOnwxMg111yjZcuWafv27Vq4cKGGDh1qzXSfdNJJGjt2bEw6CQAAAAAAAAAAEAsdnhg5bujQobrrrru0fft2LVu2TFdffbWys7NljNGWLVti0UcAAAAAAAAAAICYcD0xEuqcc87RY489pn379llftQUAAAAAAAAAANAduC6+3pJevXrpmmuu0TXXXNMZh08qE/pNVGbKZ8UrQ4p0NdXXW9vtrthltfNT86x21uD+gdu+gxXWuqracqtdkGoXcSur3Wm1T8mfFLjtr6i11u2r32+1BxaWWu01n6yy2sOygusHnDLRWmeq7TE6+52SGywYanpoUV5/vV2c1hNa1MznKNTeyy6eWtPbLmrqLLDeKyNYYN7nKPDmLFLkLJbmTQ8WW3OWgnPWhmuzqGnIBtEWW49ciK2NQu5h/Yiwro19oxLDylndpQZXzy0G1mM7HhM993FrmbPoY7JpLQ9IdiaIJg9I9rXVTR6Q7EzgJg9IdiaIJg9IPTcTxIyzymlNg90Oef74nfdVgyMf1NttX3Vj4PaxqkZrnX94b6vtdfTD73je1oYcu3euXQDWUS9eXmdxduffdoWcK8XjLGobXTF2d7rHC2+ivf4DCGpvHpDsTBBNHpDsTOAmD0h2JnCTByQ7EyRjHjCOa6s5VBO4XXu0xlpXXZRjtXtl2O8XNDT5rbbfblqcl5XwAup2O7SbbRZbj/CeQMT3A1rawLk60roor5WuLq098D2CxMgSCTGIbqO7PSdSY/T+QHK/ywAAAAAAAAAAAJIKEyMAAAAAAAAAACBpMDECAAAAAAAAAACSBhMjAAAAAAAAAAAgaXRK8XXEzt6KT5TuSZckNfiDhcbKGyut7U7MGW21s4r7We3GTw4Hbqf2tQuv5ToqXB489InVrvHZxdO8fXMDt6sPHrKPlWoX+Fr/6Rqr7Sz6Vjx2bOC2qXMU8XQUW/VX1VntPQd3BG6XN9qF13qq7I+DBeMK0/tY6/K3DLHaZvJgq717TF+rvX9oQeB2r37245LrKOSe5SjElh1SfD0j5LYkZaTZ7XRH21lsNTWkYKo3xZ6LTUlxFmlrvWib5CjkHmUhNk/rq1raO9Khoirh1XaBqvYfrVMLyEdxAE8Mi5h1VQGvuNYJ66JBdrNaaAGxGn6TL0JFyCTQWh6Q7EwQTR6Q7EzgJg9IdiZwkwckOxNEkwekxMkEnSUntVe7t/V67Gt8aAHenEL7udU0zG6XD7WL9XrGFlrt7KHBYu05hdnWur65mVa7T2661c7v5SjWHpJV0lPtrOF1FGZMdWaPlNBs0UYOkUNY1jCtrWpBdNkjmiMZ0+Jm7TtWd72YdNurXHLpvs+P5NHePCDZmSCaPCDZmcBNHpDsTOAmD0h2JiAPSFk71gduj952lrVu/+QBVvvgWPs5kDvYvk7n5ASvtQU59nU3O91+v8D5HkGa49obWhQ5zXEddr5f4PU6r72eVrdts5C7HELfP2h9VYtbuLkOR/daGd0La8zeE3D5eh7L9wQinqebXHe6STe6zx3iQqxG0NgUm/cH+MQIAAAAAAAAAABIGkyMAAAAAAAAAACApMHECAAAAAAAAAAASBpMjAAAAAAAAAAAgKRB8fVuLislSxmfFVfrlx4sWjlyZH9rO9PQZLV9B8qtdkp2sEjlvr12UbJqX7XVPtRwxGqfWniK1T66P1h8zVl4zVls1eOYezvhNLsgWGgxtaY9dgG4zQfft9qVTVWtnmvc8FOVCDwhhclS+tr3pbfIcd+OsouzZ422i6/3KQ4WweuTYxcpzc60/+k7i6+HFkzPchRaS3UWVotQxFSyi6e1VSzNWeQ0UgG0tuqnRyoG1la9qrbrpXa8XJSbQlNu6mx1aYmuOBUE6/llyBKilloHtG/Q3pTk/luO1vKAZGeCaPKAZGcCN3lAsjOBmzwg2ZkgmjwgJU4miJnwi2uAJ9Xb6jpJEat4exz5wOMo1OrJSrPaarQLJDbWBB/zhnqfta4p2962wbFvfaO9fWhuSXUUeU1poxC5p5XbLbXDi61HXN2GyB0zJjQ/RXckN5eSSIXb43uNiqaifFJeTLtEpOdHrCVnJmpbe/OAZGeCaPKAZGcCN3lAsq/TbvKAZGcC8oCsa7x3QK69rti+P7ILe1nt3Fz7OdDHKr5ur8vNtq/pkYqtN3cr2K/w9wfsboa9RxBpXZvF1p3N9l9LoytcHmXB9M47dMzO2/bBuqjYepecJb6S8/oW+0E7X3c6KrnfZQAAAAAAAAAAAEmFiREAAAAAAAAAAJA0mBgBAAAAAAAAAABJg4kRAAAAAAAAAACQNCi+3okefPBB/exnP9O+ffs0YcIEPfDAAzrttNOiOkafooHKTMmUJJm6hsDymt37rO3q/HVWuyC/n9XecWhb4LazuKrfUUXvlD6TrXZFrV2ordEfLOJWnD3AWrf6yBqrfWqRPd7Gj/db7dCin+/ufcdaV5o1xGrP/se9Vvv8yYMFAEgOocWVe5rOzAOSnQmiyQOSnQnc5AHJzgRu8oBkZwLyANB5urKYNhCN1p6bPf056zYTtDcPSHYmiCYPSHYmcJMHJDsTuMkDkp0JyAMAkLxi9f4AnxjpJH/84x+1YMEC3XnnnXrvvfc0YcIEXXDBBTpw4EC8uwYAALoIeQAAAEhkAgAAuhsmRjrJL3/5S82bN0/XXnutxo4dq9/+9rfKzs7Wo48+Gu+uAQCALkIeAAAAEpkAAIDuhomRTtDQ0KA1a9ZoxowZgWUpKSmaMWOGVq5cGceeAQCArkIeAAAAEpkAAIDuiBojneDQoUPy+XwqKiqylhcVFWnz5s0t7lNfX6/6+vpAu7y8+Xs760O+F9T4g98hWm+C27bUdn7HeIMJ7ttoGq11zu8Ur2vj2A0h+zu3bZR9bGc/JPs74Dz+4HeIOvcN7bMk1VRVWu2KigoBAJJD5Wev+aYHfbl4V+QByb5OR5MHJDsTuMkDzu3d5AHn/uQBoPP0oJdUQFLPzANS9JnAbR5wtqPJA5KdCdzkAcm+prvJA85+kwcAIHnFKg8wMdJNLF68WIsWLQpb/rNdizt2wJqO9+XPR//S/o2ducbh1YN/63hHHMf+r+l8xBgAkl1lZaXy8/Pj3Y1O02PzgBQxE5AHAACxRB6IUiLkAcexyQMAALd5gImRTlBYWCiv16v9+/dby/fv36/i4uIW97n99tu1YMGCQNvv9+vIkSNKS0tTSUmJdu/erby8vE7td3dTUVGhIUOGMHbGnjQYO2Nn7K0zxqiyslIDBw7sot65Rx6IDf6NMHbGnjwYO2NPxDwgRZ8JyAPh+DfC2Bl78kjmsUvJPf72jj1WeYCJkU6Qnp6uyZMna+nSpZo1a5ak5iCzdOlS3XDDDS3uk5GRoYyMDGtZQUFB4OOgeXl5SfeP4TjGztiTDWNn7MmmvWPvaX8ZSh6ILcbO2JMNY2fsySZR84AUfSYgD7SOsTP2ZMPYk3PsUnKPvz1jj0UeYGKkkyxYsEBz5szRKaecotNOO0333Xefqqurde2118a7awAAoIuQBwAAgEQmAACgu2FipJPMnj1bBw8e1MKFC7Vv3z5NnDhRr776alixNQAAkLjIAwAAQCITAADQ3TAx0oluuOGGVr8qo70yMjJ05513hn2MNhkwdsaebBg7Y082yTJ28oA7jJ2xJxvGztiTTTKN3W0mSKb7yomxM/Zkw9iTc+xSco+/q8fuMcaYLjkTAAAAAAAAAABAnKXEuwMAAAAAAAAAAABdhYkRAAAAAAAAAACQNJgYAQAAAAAAAAAASYOJEQAAAAAAAAAAkDSYGOnGHnzwwf/f3t3HVlXfcRz/XK69pbW2t9iH2yKF8tAyLDBkWqsDNTRSXDZBnV1tBHTD4CCbCiiwbIh/DKKJCZKNkBjLYozNXCguPGUOKD6kIhAKVLRYKDYzfZhgC6wFof3uD9OrF1po4d629573K2lSz/ndc7/f+zvp70N+nlYjRozQ4MGDlZubq08++aS/S7puL774olwuV8DX2LFj/efPnTunBQsW6Oabb1ZcXJwefvhhNTY2Blyjrq5OP/vZzxQbG6uUlBQtWbJEFy9e7OtWrur999/Xz3/+c6Wnp8vlcmnTpk0B581Mf/rTn5SWlqaYmBjl5+friy++CBhz6tQpFRcXKz4+Xl6vV7/+9a919uzZgDGHDh3SlClTNHjwYA0bNkwvv/xyqFu7qqv1Pnfu3Mvug4KCgoAx4dj7qlWrdPvtt+umm25SSkqKZs6cqerq6oAxwbrHy8vLddtttyk6OlqjR4/Whg0bQt3eVfWk/3vvvfeyuZ8/f37AmHDsf926dZowYYLi4+MVHx+vvLw8bdu2zX8+kuf9ar1H6pz3JfIAeSAc10TJuXlAcnYmIA+QB8gDoRNpmYA88D3yAHkg0tYG8gB5ICzygGFAKi0tNY/HY2+88YZ9+umnNm/ePPN6vdbY2NjfpV2XFStW2K233mr19fX+r//+97/+8/Pnz7dhw4bZjh07bN++fXbnnXfaXXfd5T9/8eJFy8nJsfz8fDtw4IBt3brVkpKSbNmyZf3RzhVt3brV/vCHP9jGjRtNkpWVlQWcX716tSUkJNimTZvs4MGD9otf/MIyMzOtra3NP6agoMAmTpxoH3/8sX3wwQc2evRoKyoq8p9vaWmx1NRUKy4utqqqKnv77bctJibG1q9f31dtdulqvc+ZM8cKCgoC7oNTp04FjAnH3qdPn24lJSVWVVVllZWV9sADD1hGRoadPXvWPyYY9/jx48ctNjbWnnvuOTty5IitXbvW3G63bd++vU/7vVRP+r/nnnts3rx5AXPf0tLiPx+u/f/zn/+0LVu22NGjR626utqWL19uUVFRVlVVZWaRPe9X6z1S57yvkAfIA2bhuSaaOTcPmDk7E5AHyAPkgdCIxExAHvgeeYA8EGlrA3mAPBAOeYCNkQHqjjvusAULFvj/u7293dLT023VqlX9WNX1W7FihU2cOLHLc83NzRYVFWXvvPOO/9hnn31mkqyiosLMvltQBw0aZA0NDf4x69ats/j4eDt//nxIa78ely7+HR0d5vP57JVXXvEfa25utujoaHv77bfNzOzIkSMmyfbu3esfs23bNnO5XPbVV1+Zmdlf//pXS0xMDOj9hRdesOzs7BB31HPdBZ8HH3yw29dESu9NTU0myXbv3m1mwbvHn3/+ebv11lsD3quwsNCmT58e6pZ65dL+zb5bBH//+993+5pI6j8xMdFef/11x8272fe9mzlrzkOBPPAd8kD4r4lOzgNmzs4E5AHygJmz5jxUIjETkAe+Qx4gDzhhbSAPkAfMBt6c86u0BqBvv/1W+/fvV35+vv/YoEGDlJ+fr4qKin6sLDi++OILpaena+TIkSouLlZdXZ0kaf/+/bpw4UJA32PHjlVGRoa/74qKCo0fP16pqan+MdOnT9fp06f16aef9m0j16G2tlYNDQ0BvSYkJCg3NzegV6/Xq5/85Cf+Mfn5+Ro0aJD27NnjHzN16lR5PB7/mOnTp6u6ulrffPNNH3VzbcrLy5WSkqLs7Gw9/fTTOnnypP9cpPTe0tIiSRoyZIik4N3jFRUVAdfoHDPQfj5c2n+nt956S0lJScrJydGyZcvU2trqPxcJ/be3t6u0tFT/+9//lJeX56h5v7T3TpE+56FCHiAPSJGzJnbHCXlAcnYmIA+QBzpF+pyHUiRnAvIAeUAiDzhhbSAPkAc6DaQ5v6HXr0DIff3112pvbw+4CSQpNTVVn3/+eT9VFRy5ubnasGGDsrOzVV9fr5UrV2rKlCmqqqpSQ0ODPB6PvF5vwGtSU1PV0NAgSWpoaOjyc+k8Fy46a+2qlx/2mpKSEnD+hhtu0JAhQwLGZGZmXnaNznOJiYkhqf96FRQU6KGHHlJmZqaOHTum5cuXa8aMGaqoqJDb7Y6I3js6OvTMM8/o7rvvVk5Ojr+uYNzj3Y05ffq02traFBMTE4qWeqWr/iXpscce0/Dhw5Wenq5Dhw7phRdeUHV1tTZu3CgpvPs/fPiw8vLydO7cOcXFxamsrEzjxo1TZWVlxM97d71LkT3noUYe8Aa8hjzwvXBbE7vjhDwgOTsTkAfIA+SB4IjUTEAe+A55gDwQyWuDRB4gDwzcPMDGCPrUjBkz/N9PmDBBubm5Gj58uP7+97/3+w9q9J1f/epX/u/Hjx+vCRMmaNSoUSovL9e0adP6sbLgWbBggaqqqvThhx/2dyn9orv+n3rqKf/348ePV1pamqZNm6Zjx45p1KhRfV1mUGVnZ6uyslItLS36xz/+oTlz5mj37t39XVaf6K73cePGRfSc49qRByA5Iw9Izs4E5AHyAHkAV0IegEQecALyAHlgoOYBfpXWAJSUlCS3263GxsaA442NjfL5fP1UVWh4vV5lZWWppqZGPp9P3377rZqbmwPG/LBvn8/X5efSeS5cdNZ6pTn2+XxqamoKOH/x4kWdOnUq4j6PkSNHKikpSTU1NZLCv/eFCxdq8+bN2rVrl2655Rb/8WDd492NiY+PHxD/gOiu/67k5uZKUsDch2v/Ho9Ho0eP1uTJk7Vq1SpNnDhRa9asccS8d9d7VyJpzkONPNAcMIY88L1wWhN7I9LygOTsTEAeIA+QB4LHKZmAPEAekMgDUmStDeQB8sBAzgNsjAxAHo9HkydP1o4dO/zHOjo6tGPHjoDfyRYJzp49q2PHjiktLU2TJ09WVFRUQN/V1dWqq6vz952Xl6fDhw8HLIrvvfee4uPj/Y9lhYPMzEz5fL6AXk+fPq09e/YE9Nrc3Kz9+/f7x+zcuVMdHR3+Hxx5eXl6//33deHCBf+Y9957T9nZ2QPiUdGe+s9//qOTJ08qLS1NUvj2bmZauHChysrKtHPnzsse5Q3WPZ6Xlxdwjc4x/f3z4Wr9d6WyslKSAuY+XPu/VEdHh86fPx/x896Vzt67EslzHmzkAfKAFL5r4rWIlDwgOTsTkAcCkQfIA8HglExAHiAPSOSBSFkbyAOByAMDNA/0+s+1o0+UlpZadHS0bdiwwY4cOWJPPfWUeb1ea2ho6O/SrsuiRYusvLzcamtr7aOPPrL8/HxLSkqypqYmMzObP3++ZWRk2M6dO23fvn2Wl5dneXl5/tdfvHjRcnJy7P7777fKykrbvn27JScn27Jly/qrpW6dOXPGDhw4YAcOHDBJ9uqrr9qBAwfsyy+/NDOz1atXm9frtXfffdcOHTpkDz74oGVmZlpbW5v/GgUFBTZp0iTbs2ePffjhhzZmzBgrKiryn29ubrbU1FR7/PHHraqqykpLSy02NtbWr1/f5/3+0JV6P3PmjC1evNgqKiqstrbW/v3vf9ttt91mY8aMsXPnzvmvEY69P/3005aQkGDl5eVWX1/v/2ptbfWPCcY9fvz4cYuNjbUlS5bYZ599Zn/5y1/M7Xbb9u3b+7TfS12t/5qaGnvppZds3759Vltba++++66NHDnSpk6d6r9GuPa/dOlS2717t9XW1tqhQ4ds6dKl5nK57F//+peZRfa8X6n3SJ7zvkIeIA+YheeaaObcPGDm7ExAHiAPkAdCIxIzAXmAPEAeiNy1gTxAHgiHPMDGyAC2du1ay8jIMI/HY3fccYd9/PHH/V3SdSssLLS0tDTzeDw2dOhQKywstJqaGv/5trY2++1vf2uJiYkWGxtrs2bNsvr6+oBrnDhxwmbMmGExMTGWlJRkixYtsgsXLvR1K1e1a9cuk3TZ15w5c8zMrKOjw/74xz9aamqqRUdH27Rp06y6ujrgGidPnrSioiKLi4uz+Ph4e+KJJ+zMmTMBYw4ePGg//elPLTo62oYOHWqrV6/uqxa7daXeW1tb7f7777fk5GSLioqy4cOH27x58y4L9OHYe1c9S7KSkhL/mGDd47t27bIf//jH5vF4bOTIkQHv0V+u1n9dXZ1NnTrVhgwZYtHR0TZ69GhbsmSJtbS0BFwnHPt/8sknbfjw4ebxeCw5OdmmTZvmDz1mkT3vV+o9kue8L5EHyAPhuCaaOTcPmDk7E5AHyAPkgdCJtExAHiAPkAcid20gD5AHwiEPuMzMev+cCQAAAAAAAAAAQPjhb4wAAAAAAAAAAADHYGMEAAAAAAAAAAA4BhsjAAAAAAAAAADAMdgYAQAAAAAAAAAAjsHGCAAAAAAAAAAAcAw2RgAAAAAAAAAAgGOwMQIAAAAAAAAAAByDjREAEaW8vFwul0vNzc19/t4ul0sul0ter7dH4ztrdblcmjlzZkhrAwDAScgDAACAPADgStgYARC27r33Xj3zzDMBx+666y7V19crISGhX2oqKSnR0aNHezS2s9ZHH300xFUBABC5yAMAAIA8AKC32BgBEFE8Ho98Pp9cLle/vL/X61VKSkqPxnbWGhMTE+KqAABwFvIAAAAgDwC4EjZGAISluXPnavfu3VqzZo3/cdMTJ05c9qjshg0b5PV6tXnzZmVnZys2NlaPPPKIWltb9be//U0jRoxQYmKifve736m9vd1//fPnz2vx4sUaOnSobrzxRuXm5qq8vLzXdR48eFD33XefbrrpJsXHx2vy5Mnat29fkD4FAACcjTwAAADIAwCuxQ39XQAAXIs1a9bo6NGjysnJ0UsvvSRJSk5O1okTJy4b29raqtdee02lpaU6c+aMHnroIc2aNUter1dbt27V8ePH9fDDD+vuu+9WYWGhJGnhwoU6cuSISktLlZ6errKyMhUUFOjw4cMaM2ZMj+ssLi7WpEmTtG7dOrndblVWVioqKioonwEAAE5HHgAAAOQBANeCjREAYSkhIUEej0exsbHy+XxXHHvhwgWtW7dOo0aNkiQ98sgjevPNN9XY2Ki4uDiNGzdO9913n3bt2qXCwkLV1dWppKREdXV1Sk9PlyQtXrxY27dvV0lJif785z/3uM66ujotWbJEY8eOlaRehSYAAHBl5AEAAEAeAHAt2BgBEPFiY2P9oUeSUlNTNWLECMXFxQUca2pqkiQdPnxY7e3tysrKCrjO+fPndfPNN/fqvZ977jn95je/0Ztvvqn8/Hz98pe/DKgFAAD0DfIAAAAgDwDoxMYIgIh36aOpLpery2MdHR2SpLNnz8rtdmv//v1yu90B434YlnrixRdf1GOPPaYtW7Zo27ZtWrFihUpLSzVr1qxr6AQAAFwr8gAAACAPAOjExgiAsOXxeAL+IFqwTJo0Se3t7WpqatKUKVOu+3pZWVnKysrSs88+q6KiIpWUlBB8AAAIEvIAAAAgDwDorUH9XQAAXKsRI0Zoz549OnHihL7++mv//9FxvbKyslRcXKzZs2dr48aNqq2t1SeffKJVq1Zpy5YtPb5OW1ubFi5cqPLycn355Zf66KOPtHfvXv3oRz8KSp0AAIA8AAAAyAMAeo+NEQBha/HixXK73Ro3bpySk5NVV1cXtGuXlJRo9uzZWrRokbKzszVz5kzt3btXGRkZPb6G2+3WyZMnNXv2bGVlZenRRx/VjBkztHLlyqDVCQCA05EHAAAAeQBAb7nMzPq7CACIBC6XS2VlZZo5c2avXjd37lw1Nzdr06ZNIakLAAD0HfIAAAAgDwADH0+MAEAQFRUV6ZZbbunR2A8++EBxcXF66623QlwVAADoS+QBAABAHgAGNp4YAYAgqampkfTdI7KZmZlXHd/W1qavvvpKkhQXFyefzxfS+gAAQOiRBwAAAHkAGPjYGAEAAAAAAAAAAI7Br9ICAAAAAAAAAACOwcYIAAAAAAAAAABwDDZGAAAAAAAAAACAY7AxAgAAAAAAAAAAHIONEQAAAAAAAAAA4BhsjAAAAAAAAAAAAMdgYwQAAAAAAAAAADgGGyMAAAAAAAAAAMAx2BgBAAAAAAAAAACO8X8PWtZf9BsrQQAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig11_spectra_from_1d.pdf
\")", + "text/plain": [ + "HBox(children=(HTML(value=\"./fig10_hydrometeors.pdf
…" + ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "7014cd3d246b4f229bf7332cd5c0c469" + "model_id": "832c2602b9bb42f0993ea58fdc0e82ea" } }, "metadata": {}, "output_type": "display_data" } ], + "execution_count": 6 + }, + { + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-13T12:36:48.421528Z", + "start_time": "2024-12-13T12:36:47.295779Z" + } + }, "source": [ "# Spectra\n", "fig, axes = fig_ax_spectra()\n", @@ -307,39 +293,43 @@ "add_spectra_legend(axes[0][0])\n", "plt.tight_layout()\n", "show_plot('fig11_spectra_from_1d.pdf', inline_format = inline_format)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2024-02-01T07:53:31.582781Z", - "start_time": "2024-02-01T07:53:25.111907Z" - } - }, + ], "outputs": [ { "data": { - "text/plain": "
", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAASnCAYAAACwzMTzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUZf4H8M9sze6m9wRSqIHQa0RaEAVR7J6eZ8N2trOX+3nnWU85u57lLKfY+wnYUFBpIolIB+kECCSQRnqy2fL8/lh2duZJBUIS2M/79eJFZmd25plnZ+f57jwzz1cRQggQEREREREREREREREFAUNnF4CIiIiIiIiIiIiIiKijsGOEiIiIiIiIiIiIiIiCBjtGiIiIiIiIiIiIiIgoaLBjhIiIiIiIiIiIiIiIggY7RoiIiIiIiIiIiIiIKGiwY4SIiIiIiIiIiIiIiIIGO0aIiIiIiIiIiIiIiChosGOEiIiIiIiIiIiIiIiCBjtGiIiIiIiIiIiIiIgoaLBjhIioC1m0aBEURYGiKNi1a1dnF4eIiChovf3228d9m5ydnQ1FUZCdnd3ZRemSZsyYwfohIqLjxq5du9TY5O233+7s4nRJrB86HOwYIaIuyf9DXlEUPPbYY+rrmzdvbteGzv+D2P/PZDIhPj4eZ555JlavXn3U6yciIjpa2jZRURQYjUZ069YNZ511Fn755ZfOLt4RORYXpLUdGYsWLWq39VLztHXeFtrjWFEUhISEoHfv3rj99ttRX19/jEtLRHR8YzzQNtq2yWAwwGazoVu3bjjttNPw9ttvw+v1ttu2TkT+42zGjBmtLquta399R0REYMyYMfj000+PfWGJjhI7Roioy3vqqadQVlZ2zLeTlZWFwYMHo7S0FN9++y2mTp2Kurq6Ft/T0NBwzMtFREQEABaLRW2rioqK8PXXX2PixIn49ddfm31PV2unulp5qHPExsYiKysLiYmJ2LFjB1544QXcfffdLb7H4/HA4/F0UAmJiLouxgNt169fP/Ts2ROlpaX44YcfcNVVV2HatGldrj5OBP3798fIkSPh9XqRk5ODSy65pMVjEuh6xyUFH3aMEFGXV1FRgSeeeKLFZfbs2YMrrrgCiYmJMJvN6N69O2666abD6lDJycnBqlWr8PDDDwMAiouL8fvvvwPQP7L63//+F5MnT0ZISAgef/xxAEBBQQGuvvpqJCcnw2KxoGfPnnj00UfhdrvV9X/wwQcYPXo0YmNjYTabERUVhalTp7YaLNx1111QFAV2ux0//PCDrizaO2LT09OhKAoeeughAPphub788kuMHz9evTPz888/b3O9EBFR15CUlIScnBysXr0ac+bMAQC43W58+OGHAPR3XT755JPo3r07QkJC1PfPmjULI0aMgM1mg8PhwNixYzF37lx1vrZ9effdd3HmmWfCZrOhe/fuePnll3VlaUu757/j8PLLL8c999yD+Ph4ZGRkID09He+88w4AYPHixbq2KjQ0VG1r/davX68uk5OTc1h1pr2TceHChRg+fDhsNhuGDx/eaF0vvvgiunXrBofDgUsvvRQVFRVNrnPevHmYOHEiwsLCYLPZMH78eCxcuPCY1+MVV1yBBx98EElJSYiKisJll12GqqoqdbmDBw/ioosugt1uR2pqKl599dUmy+90OvHggw+iT58+sFgsiI+Px9VXX42SkhJ1mYceegiKoiA9PR2fffYZ+vXrB4fDgQkTJmDLli0AfMfbVVddpb7Hv8/+OKQlZ555JnJycrBz50707dsXgO9YaGr77777Lnr16gWLxYL8/Pw2fQYAcOWVV6JPnz4ICwuDxWJBWloabr31VlRWVjZbrqKiIvTv3x+KomD06NEoLy/XlcWvqaFPtd+/l19+GWlpaQgJCcG0adPUchMRtQfGA22PB1555RVs3LgRBw4cwJ/+9CcAwPz58/HII4+oyxxuu/j5558jIyMDISEhOPnkk7F+/XrdNg8nTnj77bcxffp02O129OjRA2+++aZuXQsXLsTAgQMREhKCcePGqdcnZJs3b8Yf/vAHxMXFwWKxoH///vjPf/6jW8Z/veCvf/0r/vKXvyAmJgbx8fG47bbb1M9LURS1PX7nnXcOa0jRV155Bb/++ivmzZsHAPB6vVi6dGmj7d9zzz24+uqrERkZialTp7b5M1izZg0mT56MpKQkWK1WOBwOjBo1Cu+//36L5Zo9ezbMZrNuNBL52gnQ9NNL/v1/9tlncemllyIsLAxxcXF44IEHIIRotU7oOCCIiLqgiRMnCgCid+/eIiwsTNhsNrFv3z6xadMmAUAAELNmzRJCCHHgwAGRnJwsAAir1SoyMzOFyWQSAMTAgQNFXV1ds9u58sor1fUJIYTT6RTXXHONACAsFos4cOCAEEKIvLw8dTmLxSJiYmJEZmameOSRR0RJSYlISUkRAERYWJgYPHiwuv2rrrpK3dZtt90mQkJCRN++fcWQIUOE1WpV31NYWCiEEGLhwoXqdvLy8sQ//vEPAUDY7Xbx448/NirLwoUL1fWnpaUJAOLBBx9stC6r1Sr69u0rwsPDBQBhMBjEqlWr2uvjIiKiY8jfJqalpamvff311+o5/rbbbhNCBNo0i8UiDAaD6N+/v4iJiRFCCPHoo4+qy6emporExER1+r333hNC6NsXq9UqevToIWJjY9XX5s6dK4QQbW73/OW2WCzCbDaLgQMHisGDB4tzzz1XXW9YWJjIysoSWVlZYuXKleK6664TAMSYMWPU9Tz44IMCgOjbt2+L9TRr1qxG7aP2NavVKjIyMtSypqWlCZfLJYQQ4ssvv1SXi4uLEykpKcLhcOjaZCGE+Pjjj4WiKOr7e/ToIQAIo9Eofvrpp2Naj2azWYSFhanbBCD+9re/qcudf/756usZGRnC4XCo+zBx4kR1uTPOOEMt8+DBg9XYIDMzU9TW1urq3GQyCbPZLPr166fu98knnyyEEOKRRx4RPXv2VLfp/xzfeOONZj8j/7JXXnmlEEKIvXv3qsfiOeec0+gzN5vNQlEU0bdvX5GUlCTy8vLa9BkIIURERISIiYkRQ4YM0ZXzwgsvVJfxf2cmTpwoysrKxJAhQ9R9KS8v15VF+/2T4zXtuqxWq7DZbKJ///7CYDAIAGL48OHC6/U2Wy9ERG3BeODI4wEhhKitrRVJSUkCgIiPj1fPy4fTLprNZvWag9lsFgBEt27dRE1NjRDi8OMEs9ks0tPTdb/TN23aJIQQorCwUG3H7Xa76Nevny428V8P2bp1q4iIiBAARHR0tBg4cKBahocffljdf//1ArPZLKKjo0W3bt3Udb3++utCCCGysrJEWFiYACBiY2PVz6SgoKBNde31enWvzZ49u9H2LRaLsNlsYtCgQWLatGlt/gxmz54tDAaDSEtLE8OGDRNRUVHqdr7++mt1O9r6mTdvnrBYLAKAmDlzZqOy+K+dCKGPCeR1Wa1WkZycrKuzF154ocXjkI4P7Bghoi7JHzxlZWWpQcj111/fZMfIAw88oAYRK1euFEL4Gk3/cm+99Vaz29F2jGj/KYoi3nzzTXU5bfAyceJEtbPF7XaLhx56SAAQCQkJoqioSAghxJw5c9T1bNu2TQjhC1j8AZMQQmzbtk1d53//+18hhP6H9s0336wGQdof+kfSMfJ///d/QghfcBUZGSkAiIsvvvhIPhoiIupg2gsKWVlZYujQoeqFB5PJJHJycoQQ+jbt22+/FUL42qnq6mphs9kEAHHeeecJj8cj6uvrxejRo3UXWLTtyyWXXCK8Xq+oqqoSffr0UdtkIUSb2z1tudesWaOWR1tW7Y9PIYRYtWqVWgb/hYGBAwcKAOKf//xni/XUWsfIv//9byGEEC+88EKjbYwbN04AEL169RJVVVXC7XaL7OzsRhe/09PTBQBx9dVXC6/XK7xerzjvvPMEADFu3LhjWo9hYWFi7969wuPxiBEjRujWtX37dnWbf/3rX4UQQmzevFk9Tvz1vGjRInW5xYsXCyGEKCgoUI8Pfzzij70AiC+//FIIIcQdd9yhvua/SKGt37ZoKuYCILp37y7y8/PV5bTb/89//iOEEMLr9QqPx9Omz0AIoR5zfn//+9/V74w/jvMfhyNGjBBZWVkCgDjppJNERUVFo7K0tWPEZDKJDRs2CCGEePXVV9Xl5s2b16Y6IiJqDuOBI48H/M466yx1XlFR0RG1i999950QQojvvvuuUVt1uHHChRdeKLxer1i7dm2jdd1///0C8HUW+NsV/2va6yEzZswQgO+mUP/1hueff14AEDabTVRWVgohAtcLevToIcrLy0VdXZ16g6n22oD/8/LfxNDWupb/ye/3bz82Nlbs2bNHCOE7Dtr6GRQWFor9+/er66urqxO9e/cWAMRll12mvu5f11VXXaWu44knnmiyLG3tGBk/frxoaGgQDQ0NYvz48epxT8c/DqVFRF3eXXfdhdjYWLz55pvYvn17o/krVqwAAGRkZGD48OEAgHPPPRd2ux0A8Ntvv7VpO1lZWRg5ciTCw8MhhMAdd9yBtWvXNlruhhtuUB9FNhqN6lBYBw4cQHx8PBRFwbnnngsAEEIgNzcXgG+Ii3POOQfR0dEwGAzo06ePus6CgoJG2/E/pvzRRx9h0qRJbdqH5lxyySUAgMTERHVd8iO/RETUtTU0NCA3Nxfr1q1DXFwczjzzTCxevBhZWVm65TIyMjBt2jQAvnZq48aNas6sP/7xjzAYDLBarbjgggsAALt370ZxcbFuHX/84x+hKApCQ0Mxffp0AMCGDRsAoM3tnt+kSZMwZMgQtTwtGTZsmLo/b731FrZu3YoNGzaoQ3AAwKOPPoqTTjpJ/ffoo4+2qf7878/MzFRfO3DgAABg48aNAICpU6ciNDQURqMR559/vu79xcXF6lASb731FgwGAwwGA2bPng0AjfYbaN96POWUU9CtWzcYDAb069evyfIDUD/XjIwMDB48WLcO7fCdEydOhKIoSE5OVo8PeWiSiIgInHXWWY3qraioqNG+Hg5/jpGBAwdCURTs3bsXl19+eaOEuDabDX/+858B+IazKC0tbfNn8MMPP2DgwIGw2Wy64TPcbnej433lypXIzc1FWloavv/+e4SHhx/xvg0aNAgDBgwAEIi/AMZdRNR+GA8ceTwgtzOH2y76h8MGfDFDVFQUAN85/kjihEsvvRSKorQYm2RkZKjtykUXXdRoHf592LBhAxwOBxRFwe233w4AqKurw7p163TLn3322YiIiEBISAh69Oih2+bR6N+/P7KyspCUlATANxTXW2+91Wi5Cy64ACkpKQD011OAlj8DRVFw1113ITk5GSaTCTabTb0+1NT1lFmzZqGurg533HEH7r333qPatwsvvBBmsxlmsxkXXnghAF+dyd8XOv6YOrsAREStCQsLw3333Ye77roLDz744DHbjr/BLS4uRnp6OiorK/HUU081GrMyISGh2XJqAxo/u92O6upqTJ06FeXl5QgJCcGwYcNgNpvV4KipZKKhoaGorq7G008/jdNOOw02mw2ALyDw076vubHQiYjoxJCWltamMZ6ba6faW0vt3tGU56abbkJubi7ee+89hIWFAfBdTElNTQUA7NixQ3dxwd9J0JrIyEgAgMkU+AkkjnB86J49eyIuLq7R60eSRLSt9egvPxDYhyMtP4BGF9AA3w0UrW3zaLcL+HKMvP322wB8Y5LffPPNWLRoEX766Seceuqp6nJxcXEwGJq+l6+lz+Czzz5Tk7knJSUhJSUFJSUl2LlzJ4DGcZfD4UBNTQ12796N9957DzfffLM6zx93MeYioq6C8cCRxQN1dXVYuXIlAF/7Ehsbq5vflnaxrdoaJ7RnbBIbG4tevXo1el3uhGrveMLvlVdeQXZ2NjweD8aNG4ecnBw88MADuPrqq3XLtXQctPQZXHbZZfjhhx/UjqTQ0FD8/vvvqKqqavF6ykcffYSbb75ZVzds28mPT4wQ0XHh5ptvRkpKClatWtVo3qhRowAAW7ZsUefPmTMHtbW1AICRI0ce1rYURVEDg/r6+ibnN7V9k8mEjz/+GDk5OcjJycGCBQtw00034bzzzsOWLVtQXl4OwHf3yMqVK/H888+3WI53330XYWFhWLp0KS666CI1IVp8fLy6zNatWwH47or0r78pn3zyCQDfHZ7+hO2DBg1qcftERHR8ktupAQMGqJ3rn3zyCbxeL5xOJ7744gsAvgss8o/3Tz/9FABQU1ODb775BgAwcOBAAG1r91oqDxC4WFJTU9No3kUXXYTo6Gjs378fTzzxBADgiiuuUOe//fbbEL4hgSGEUC+wHw3/nZjz589HTU0NPB6PeoenX1xcHNLS0gAAw4cPx88//6zu+7vvvotHH30UFotF9572rMeWaC9I+cu9devWRneJ+rcJAPfdd5+6zZ9//hkPPfQQrrnmmjZvE9Bf9GrqszxcctwlHztt/Qz8N7uEhYUhLy8Pubm5mDJlSrPbHTlyJO6//34AwC233IKPPvpIneePu4qKitSLJp9//nmz61q/fj02bdoEIBB/AYy7iKjjMR4IqKiowLXXXov9+/cDAK699looinLY7eLBgwexYMECAMCCBQtw8OBBAL5z/JHECS3xxyZbtmxR25Wm2h//PkRERODbb79Vt/n111/jjjvuwEknndTmbQItfyZtof2cD+d6CtDyZ+Bv26+77jps2LAB3377LUJDQ5stx6OPPoqBAwdi//79OO2001BYWKjO87ft/uspJSUl6nWSpnzxxRdwu91wu93q9yUhIaHJzi86znT44F1ERG2gzTHi99///lc3ZqU2+bo/iZrVahUDBgw4ouTrWVlZYtSoUWriMqDpBHTyOKVFRUVqEi6LxaIm+fQnYxNCiLKyMjVRmj/RWEJCgrrOpvKC5OXliQULFqjrufzyy9UEcWPGjFHXNWnSJGG329UEn02ty+FwiIyMDHXftPlYiIioa2sq2WpTmhunW4jDT7bqcDhEjx49RFxcnPqaP4FmW9o9bbmbGqNam+dj4MCBIisrS81bIYQQd911l64sVVVVrdZTazlG/LTto385/5jogC8ha2pqqrBarbo2WQghPvjgA/W1uLg4MXToULU99+9nR9Sj/7PWHhPnnnuuug1/glb/PmiPialTp6rLZWRkiMzMTDVG8ddHU3k1tHXprw/tmOipqakiKytL/Pzzz81+Rv5l/QldBw0apCaIjYuLE6Wlpc1u368tn8Hrr7+uLpOcnCx69OghoqOjG5Vf/s5cddVVAvAlpvWPy79p0yY1xurRo4cYMWKEOt3UuhwOh7DZbCIzM1NdbujQoUy+TkRHjfHA4ccD/fv3F5mZmbo2fcqUKaK+vl5d/nDaRavVKmw2mxgwYICa1DspKUnN7XG4cYL22oJ8baCgoEDY7XYBBJKvh4SENLoesnnzZjVZud1uF0OHDhWpqanCaDTqjpWm8mr4PxvtseLPKWYwGMSwYcPE1KlT21zXWVlZat4SAOKaa65pcfuH8xmcfPLJarkyMzNFZGSkmoC9qbwgs2bNEvn5+aJ79+4CgBg0aJAoKysTQghx3333qcuNGzdOJCYmqm12U+tyOByiW7duuuTrzz33XLP1QscPPjFCRMeNGTNmICMjo9Hr8fHxyMnJweWXX47IyEhs2bIFCQkJuOGGG7B48WI1H0hrcnNzsWLFCrhcLgwbNgyvvPIKLrvsslbfFxcXh5ycHFx11VWIiYlRx24dP348nnvuOQC+sUg/++wzZGZmwuv1wmKx4Kuvvmp13aeeeireeustKIqC9957Tx0r9O2338b48eMBAHv37sUrr7yijtPZlM8//xwJCQmor69Hz5498dFHH6n5WIiI6MR3//33480338Tw4cPVO9/HjBmDOXPmNNnWvf766xg4cCCqq6uRnJyMF154QR03vC3tXmuuvvpqXHDBBYiIiMCGDRuQm5urG87ghhtuUO8oPP/881u8I7A9nHPOOXjuueeQmJiIqqoqjBw5Ev/85z8bLfenP/0JX3/9NSZOnIi6ujps2bIFYWFhuOKKK3Dttdc2Wv5Y16PWm2++iQsuuAAhISGoqKjAI4880uRdonPmzMEDDzyAPn36YOfOndi/fz/69++P+++/X70LuK0GDx6Mf/zjH0hISMCePXuQm5ur3j3bkpKSEuTm5mLjxo2IiYnB9OnTsWDBAkRHR7f63rZ8Btdccw3uvPNOxMbGoqqqCtnZ2XjkkUdaXffrr7+OadOmweVy4cILL8SyZcvQr18/vP7660hPT0dhYSFiY2PxyiuvNLuOkSNH4t///jdqampgNpsxZcoUzJkzp8k7pYmIOlqwxQObNm3C9u3bER0djVNOOQVvvfUW5s2bB6vVqi5zOO1iYmIiPv74Y7WMJ510EubNm6c+ZXG4cUJLkpKS8OWXXyIzMxNutxthYWH44IMPGi2XkZGB5cuX4w9/+APsdjs2btwIr9eL008/vc152LTuvvtunHrqqbDb7Vi9enWbc7Zu2rQJubm5KC4uRq9evXDXXXfhxRdfbNN72/IZvP3225g0aRJCQkJQW1uL559/vlEuNVn37t3x3XffITIyEuvXr8eZZ56J2tpa3HfffbjssssQGRmJrVu34oorrsAf//jHZtfz+OOPY/LkyaioqEBMTAz+/ve/49Zbb23TvlHXpgjRDgPJERFRl7No0SI10XpeXh7S09M7t0BERNSl7dq1S03CuXDhQmRnZ3daWZxOJxISElBRUYEff/wRp5xySqeV5XB1pXqkjjNjxgy88847mDhxYovDcRARdXVdqR3rKvHAQw89hIcffrjN+V3oxODvlJs1axZmzJjRuYWhY4LJ14mIiIiIqMu47LLLsHHjRlRUVGDEiBHHVacIERERtQ/GA0R0rLFjhIiIiIiIuowPPvgAZrMZJ598Mt55553OLg4RERF1AsYDRHSscSgtIiIiIiIiIiIiIiIKGky+TkREREREREREREREQYMdI0REREREREREREREFDTYMUJEREREREREREREREGDHSNERERERERERERERBQ02DFCRERERERERERERERBgx0jREREREREREREREQUNNgxQkREREREREREREREQYMdI0REREREREREREREFDTYMUJEREREREREREREREGDHSNERERERERERERERBQ02DFCRERERERERERERERBgx0jREREREREREREREQUNNgxQkREREREREREREREQYMdI0REREREREREREREFDTYMUJEREREREREREREREGDHSNERERERERERERERBQ02DFCRERERERERERERERBgx0jREREREREREREREQUNNgxQkREREREREREREREQYMdI0REREREREREREREFDTYMUJE1InOO+88REVF4cILL+zsoqi6YpmIiIhOZF2x7e2KZSIiIjqRdcW2tyuWiai9sGOEiKgT3XbbbXj33Xc7uxg6XbFMREREJ7Ku2PZ2xTIRERGdyLpi29sVy0TUXtgxQhTEsrOzcfvttzf6u6nptq7nRJednQ1FUaAoCtasWdMu6wsLC2vzsh1Rz82VacaMGeq+z5kz55iXg4iIOgbjgcPHeIDxABHRiYbxwOFjPMB4gI5v7BghoiZ98cUXePTRR9t92c7Q3gHDddddh8LCQgwcOLDd1nk8eOGFF1BYWNjZxSAiog7EeKB5jAeIiChYMB5oHuMBouOXqbMLQERdU3R09DFZtj01NDTAYrF0+HbtdjsSExPbtOzQoUPhdrsbvT5//nwkJye3d9GOaXkiIiIQERFxrIpGRERdEOOB5jEeICKiYMF4oHmMB4iOX3xihOg45vV68eSTT6J3796wWq1ITU3FY489BgBwOp249dZbER8fj5CQEIwbNw4rVqxo87rluyg+//xzDBo0CDabDTExMTj11FNRU1PT5LJt2XZ2djZuvfVW3HvvvYiOjkZiYiIeeuihVsv0l7/8BbfffjtiY2MxdepUAMB3332HcePGITIyEjExMZg+fTp27NgBwPd45+LFi/HCCy+oj3nu2rVLrb+ZM2eiR48esNlsGDJkCD7//PM211Fb6mbNmjXYsGFDo3/tEfR88803iIiIwAcffAAAqKqqwqWXXgqHw4GkpCQ899xzjT6bY1keIiLqHIwHGA8wHiAiIsYDjAcYDxAdHnaMEB3H7rvvPvzrX//CP/7xD/z+++/48MMPkZCQAAC499578b///Q/vvPMOVq1ahd69e2Pq1KkoKys77O0UFhbikksuwdVXX41NmzZh0aJFOP/88yGEaHL5tm77nXfegcPhQG5uLp588kk88sgjWLBgQYtleeedd2CxWLBs2TK8+uqrAICamhrceeed+O233/Djjz/CYDDgvPPOg9frxQsvvIAxY8aoj7cWFhYiJSUFADBz5ky8++67ePXVV7Fx40bccccduOyyy7B48eJjVjft5cMPP8Qll1yCDz74AJdeeikA4M4778SyZcvw5ZdfYsGCBVi6dClWrVp1TMtBRESdj/EA4wHGA0RExHiA8QDjAaLDJIjouFRZWSmsVqt44403Gs2rrq4WZrNZfPDBB+prDQ0NIjk5WTz55JPqaxMnThS33XZbo7/l6ZUrVwoAYteuXU2WRbvs4Wx73LhxuvWMGjVK/PWvf212nydOnCiGDRvW7Hy/4uJiAUCsX7++yX0TQoj6+npht9vFL7/8onv9mmuuEZdcckmLZdCuq7W6ac3kyZNFbGyssNlsolu3bo3K09S2X3rpJRERESEWLVqkzqusrBRms1l89tln6mvl5eXCbrc32vejLRMAMXv27MNaJxERHRuMB5rHeMCH8QAR0YmP8UDzGA/4MB4gaow5RoiOU5s2bYLT6cTkyZMbzduxYwdcLhfGjh2rvmY2mzF69Ghs2rTpsLc1ZMgQTJ48GYMGDcLUqVMxZcoUXHjhhYiKijqqbQ8ePFg3nZSUhKKiohbLMmLEiEavbdu2DQ888AByc3NRUlICr9cLANizZ0+zCdC2b9+O2tpanHbaabrXGxoaMGzYsBbLoHU4ddOUH374oc3bAnyP5RYVFWHZsmUYNWqU+vrOnTvhcrkwevRo9bWIiAhkZGQc1vqPpExERNR5GA8EMB5gPEBEFKwYDwQwHmA8QNRWHEqL6Dhls9k6bFtGoxELFizAvHnzkJmZiRdffBEZGRnIy8s7qvWazWbdtKIoatDSHIfD0ei1s846C2VlZXjjjTeQm5uL3NxcAL4gpjnV1dUAfONwrlmzRv33+++/H9Y4oseqbpozbNgwxMXF4a233jrmj+MSEVHXx3gggPEAEREFK8YDAYwHiKit2DFCdJzq06cPbDYbfvzxx0bzevXqpY6z6edyubBixQpkZmYe0fYURcHYsWPx8MMPY/Xq1bBYLJg9e3aHbLslpaWl2LJlC+6//35MnjwZ/fv3x8GDB3XLWCwWeDwe3WuZmZmwWq3Ys2cPevfurfvnH2O0rdpaN+2hV69eWLhwIebOnYtbbrlFfb1nz54wm826JHYVFRXYunXrMSkHERF1DYwHfBgP+DAeICIKTowHfBgP+DAeIGobDqVFdJwKCQnBX//6V9x7772wWCwYO3YsiouLsXHjRlxzzTW48cYbcc899yA6Ohqpqal48sknUVtbi2uuueawt5Wbm4sff/wRU6ZMQXx8PHJzc1FcXIz+/fs3WtbhcLTrtlsTFRWFmJgYvP7660hKSsKePXvwf//3f7pl0tPTkZubi127diE0NBTR0dEICwvD3XffjTvuuANerxfjxo1DRUUFli1bhvDwcFx55ZVt2v7h1E176du3LxYuXIjs7GyYTCY8//zzCAsLw5VXXqnWe3x8PB588EEYDAYoinLMykJERJ2L8YAP4wHGA0REwYzxgA/jAcYDRIeDHSNEx7F//OMfMJlMeOCBB1BQUICkpCTccMMNAIB//etf8Hq9uPzyy1FVVYWRI0fi+++/b/PYllrh4eFYsmQJnn/+eVRWViItLQ3PPPMMpk2b1uTy7bnt1hgMBnz88ce49dZbMXDgQGRkZODf//43srOz1WXuvvtuXHnllcjMzERdXR3y8vKQnp6ORx99FHFxcZg5cyZ27tyJyMhIDB8+HH/729/avP3DrZv2kpGRgZ9++gnZ2dkwGo145pln8Oyzz+KGG27A9OnTER4ejnvvvRf5+fkICQk5pmUhIqLOxXiA8QDjASIiYjzAeIDxANHhUQQHoSMiarPs7GwMHToUzz//fGcXpVU1NTXo1q0bnnnmmXa9G0dRFMyePRvnnntuu62TiIjoeMJ4gPEAERER4wHGA3R8Y44RIqLD9MorryA0NBTr16/v7KLorF69Gh999BF27NiBVatW4dJLLwUAnHPOOe2y/htuuAGhoaHtsi4iIqLjHeMBIiIiYjxAdPziEyNERIdh3759qKurAwCkpqbCYrF0cokCVq9ejWuvvRZbtmyBxWLBiBEj8Oyzz2LQoEHtsv6ioiJUVlYCAJKSkuBwONplvURERMcbxgOMB4iIiBgPMB6g4xs7RoiIiIiIiIiIiIiIKGhwKC0iIiIiIiIiIiIiIgoa7BghIiIiIiIiIiIiIqKgwY4RIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioMGOEQp6+fn5yM7ORmZmJgYPHozPPvuss4vUKcrLyzFy5EgMHToUAwcOxBtvvNHZReo0tbW1SEtLw913393ZRek06enpGDx4MIYOHYpJkyZ1dnE6TV5eHiZNmoTMzEwMGjQINTU1nV0kIjpGGA/4MB7QC/aYgPGAD+MBouDBeMCH8YBesMcDAGMCgPHAiUgRQojOLgRRZyosLMSBAwcwdOhQ7N+/HyNGjMDWrVvhcDg6u2gdyuPxwOl0wm63o6amBgMHDsRvv/2GmJiYzi5ah/v73/+O7du3IyUlBU8//XRnF6dTpKenY8OGDQgNDe3sonSqiRMn4p///CfGjx+PsrIyhIeHw2QydXaxiOgYYDzgw3hAL9hjAsYDPowHiIIH4wEfxgN6wR4PAIwJAMYDJyI+MUJBLykpCUOHDgUAJCYmIjY2FmVlZZ1bqE5gNBpht9sBAE6nE0IIBGO/6bZt27B582ZMmzats4tCnWzjxo0wm80YP348ACA6OppBD9EJjPGAD+OBAMYEBDAeIAo2jAd8GA8EMB4ggPHAiYodI3TcW7JkCc466ywkJydDURTMmTOn0TIvv/wy0tPTERISgqysLPz6669NrmvlypXweDxISUk5xqVuf+1RD+Xl5RgyZAi6d++Oe+65B7GxsR1U+vbRHnVw9913Y+bMmR1U4mOjPepBURRMnDgRo0aNwgcffNBBJW9fR1sP27ZtQ2hoKM466ywMHz4cjz/+eAeWnogOF+MBH8YDPowJGA/4MR4gCi6MB3wYD/gwHvBhTMB4gJrGjhE67tXU1GDIkCF4+eWXm5z/ySef4M4778SDDz6IVatWYciQIZg6dSqKiop0y5WVleGKK67A66+/3hHFbnftUQ+RkZFYu3Yt8vLy8OGHH+LAgQMdVfx2cbR1MHfuXPTt2xd9+/btyGK3u/Y4Fn7++WesXLkSX375JR5//HGsW7euo4rfbo62HtxuN5YuXYpXXnkFy5cvx4IFC7BgwYKO3AUiOgyMB3wYD/gwJmA84Md4gCi4MB7wYTzgw3jAhzEB4wFqhiA6gQAQs2fP1r02evRocfPNN6vTHo9HJCcni5kzZ6qv1dfXi/Hjx4t33323o4p6TB1pPWjdeOON4rPPPjuWxTymjqQO/u///k90795dpKWliZiYGBEeHi4efvjhjix2u2uPY+Huu+8Ws2bNOoalPPaOpB5++eUXMWXKFHX+k08+KZ588skOKS8RHR3GAz6MB3wYEzAe8GM8QBRcGA/4MB7wYTzgw5iA8QAF8IkROqE1NDRg5cqVOPXUU9XXDAYDTj31VCxfvhwAIITAjBkzcMopp+Dyyy/vrKIeU22phwMHDqCqqgoAUFFRgSVLliAjI6NTynsstKUOZs6cifz8fOzatQtPP/00rrvuOjzwwAOdVeRjoi31UFNTox4L1dXV+OmnnzBgwIBOKe+x0pZ6GDVqFIqKinDw4EF4vV4sWbIE/fv376wiE9FRYDzgw3jAhzEB4wE/xgNEwYXxgA/jAR/GAz6MCRgPBDNmiaETWklJCTweDxISEnSvJyQkYPPmzQCAZcuW4ZNPPsHgwYPVMQbfe+89DBo0qKOLe8y0pR52796NP//5z2pStVtuuSXo6iAYtKUeDhw4gPPOOw8A4PF4cN1112HUqFEdXtZjqS31YDKZ8Pjjj2PChAkQQmDKlCmYPn16ZxSXiI4S4wEfxgM+jAkYD/gxHiAKLowHfBgP+DAe8GFMwHggmLFjhILeuHHj4PV6O7sYnW706NFYs2ZNZxejy5gxY0ZnF6HT9OzZE2vXru3sYnQJ06ZNw7Rp0zq7GETUARgP+DAeaCxYYwLGAwGMB4iCB+MBH8YDjQVrPAAwJvBjPHDi4VBadEKLjY2F0WhslCTswIEDSExM7KRSdTzWA+vAj/Xgw3ogCi78zvuwHnxYD6wDP9YDUXDhd96H9eDDevBhPbAOghk7RuiEZrFYMGLECPz444/qa16vFz/++CPGjBnTiSXrWKwH1oEf68GH9UAUXPid92E9+LAeWAd+rAei4MLvvA/rwYf14MN6YB0EMw6lRce96upqbN++XZ3Oy8vDmjVrEB0djdTUVNx555248sorMXLkSIwePRrPP/88ampqcNVVV3Viqdsf64F14Md68GE9EAUXfud9WA8+rAfWgR/rgSi48Dvvw3rwYT34sB5YB9QMQXScW7hwoQDQ6N+VV16pLvPiiy+K1NRUYbFYxOjRo0VOTk7nFfgYYT2wDvxYDz6sB6Lgwu+8D+vBh/XAOvBjPRAFF37nfVgPPqwHH9YD64CapgghxBH2qRARERERERERERERER1XmGOEiIiIiIiIiIiIiIiCBjtGiIiIiIiIiIiIiIgoaLBjhIiIiIiIiIiIiIiIggY7RoiIiIiIiIiIiIiIKGiwY4SIiIiIiIiIiIiIiIIGO0aIiIiIiIiIiIiIiChosGOEiIiIiIiIiIiIiIiCBjtGiIiIiIiIiIiIiIgoaLBjhIKC0+nEQw89BKfT2dlF6VSsBx/Wgw/rwYf1QBRc+J1nHfixHnxYDz6sB6Lgwu+8D+uBdeDHevBhPQQXRQghOrsQRMdaZWUlIiIiUFFRgfDw8M4uTqdhPfiwHnxYDz6sB6Lgwu8868CP9eDDevBhPRAFF37nfVgPrAM/1oMP6yG48IkRoiP08ssvt+vyzc1v6+stTR9uWQ9HZ9ZDW17rivXQlmXbsx5aO1baU3vWQ0vzD/ezb8s0EdGR6Kh2sLl5jAeafj0Y64FxUdtf66h6IKLgwt9CjIuOdN2Mi9q2/PFaD9SFCaIgUFFRIQCIioqKdltn//7923X55ua39fWWpv1/n2j10JbXumI9tGXZ9qyH5uqkq9dDS/MP97NvafpY1AMRdV3t/Z3vqHawuXmMB5p+PRjrgXFR21/rqHogoq6rq5/7jtffQoyLmi/b0SzPuKjl+V29Hqjr4lBaFBS2bNmCfv36ITExEYqitMs6i4uLERcX127LNze/ra+3NO3/WwiB/fv3nzD10JbXumI9tGXZ9qyH5uqkq9dDS/MP97NvabqssAxOOLFz50706NGjTWUnouNXdnY2Fi9e3G7nvo5qB5ubx3ig6deDsR4YF7X9tabqwR8PrFixAiNHjmxT2Yno+HXnnXfiueee67Lnvo76LdTebQDjotbLfSTLMy5qef6xqIe5c+fi7LPPbnPZ6fjEjhEKCkuWLMG0adMw95tvYTabAQACQODoF4G/RWCe8M9TXxfq/C9nf4Gzzj1PWpcIvO/Q+vzT33z5Bc44+zzfckIcek9g3fO+moOp088JvOfQ9r7/ei5OO/PswPsOre+Hb7/E5Gln+9YhgB+/m4tJp5+tLvPT918he8pZEAJY+P1XyJ4yHQ0uJ76f+xmmnP0HmIxmXxn8+y4Ar7zf6j5If6v7LLD8p3k4KXuavg4079G/BqxYPA8jJkwDvEJdn7pfQmDlz99jxMlTD9WRr1BCCKz6ZQGGjTlVrR94gVW5CzB89GT1vRDA6twfMHTUZLW+1v72I4YMPwVCCKxZuRBDhk+C29WA33K+xcjR02A0mgI7Dmj+lirEvwNezQfr/xvAut+XYHDG+MCH32g9gXWt2/YzBvc6Wb9e9X/f8mvzfsGQ9DG6sgmvwLo9ORickqVb57r8HAzulqWrz3X7fsXgpNG+7RXkYnDiKN+xKwTW71+BQfEj4fG4sbJwGUYkjIEBRv0+Bg5C9TWhKZ9/vpCW2VC9DgPsA/X1pF1Os+6Nzt8xwNQfAgJe4T1UHV544Vt+s2sz+pr6HJovIOBbxgsvtrl3oJexx6Flfa/v8OShhyEFXuFbZrd3D1IM3Q8ds17ke/eim9Ldtx4hsBf7kIQk1KMeG/E7GuBET/TEb5UrERYWBiI6MRmNRpx/wYW4/qabmogJOi4e8L8mxwTzvpqD0888V22f/fGAEMD8b+bi1DMCbX17xgP+PWwpJujYeGA+RoydolaqPyZY+ct8DDvptMBn5fWtd1XOAgwbfeqxiwe0H2ILMcHhxAMQAuu2LdPEBG2LBwBg7a7lvnhALSsOxQOj1fZejgcgBNYV/orBCaPaNx44VAfamGBD5VoMcAxqtJ4jiQcEvNjs2oq+pt5tigfyvHlIU9J8SzQTE+zx7kU3JVkXD7jgwiZsQhWq0Q3JWLrrZ6SlpYGITkzjxo2D0WTCPx56uF3iASGAr+b4YgLteqB9r6bZ+PrL2Tjz7HMDy3ZQPODf/tFcI2jfeOA7jJxwum/9TcQEvy39vsl4QHuNoP3igTNgNJkat3FHcI2gXeIB9eARWLtjOYb0OOlQGxooW1PxAETgGkG7xgPQl7kt1wgOJx6AADY6f0emuV+b4gEcmi8AbHVvRy9jD/ijhLZeI2gqHvDAja3YhnJUIBIR+DrnG2RlHapjOuGwY4SCQk5ODi648EJs37UHamOOwLld+1ogIGlqWh/4NF5XG9cj5OBABNavLgPfjz9NACQaTTf1mrZMrbxPtwwONSD6oAtoZp3y+pvdt2a26z1Ul5qgR3gDf6uNpTewLn+BtK9DUwa0cR3+1zQ73vLfXn3j3zgAamreYaxf2h9dsKUGCoF9C7wubRdHsg4RCGg00029JjTzmnufb/3eRsGh/F6hfQ98F0L8AYwX/gsjXvUCiFccCokO/a++ri6rf09TywJodn0AUIpSbMIW1KAGvdELv9WuhM1mO6xzDRF1fUajEb9v247U1DQccTveDvEA/K81ajcbt9kdEQ9At1zTMUGHxgP+uhL+/wNtZVOvQVOGYxIP+D+wlmKCJv9u4/o1f7fWlkOtN+08/bY7NB4AWo8JmnnvsYgHfMVpOSZoKR6oQQ22YCsKsR9pSMXy/TlISEg4zDMNEXV1EyZMwNV//jMu/uOfcCTtuL9day0eQLPvlaYbtZvHJh4Amluu6bb7WMcDgGaZI7xG0G7xQKByju4aQZN/H8a6NeU52msE7RkPqOU5mmsEzbzvSOIBAEd9jaCleKABLuzADuRhF2IRix/W/4CBAwce/smGujQmXyciIgIQgxiMxRgMxRDsxT5E26PxxhtvwOVydXbRiIiIqIM44MBwDMN4jEUt6tAtsRv6Kn1QXl7e2UUjIiKiDmKBGf3RD6cgG3bYMGTQEHRXumPHjh2dXTRqR+wYISIiOkSBggTEYwLGIRP9ccef70CUJRIfffQRvF5v6ysgIiKiE0I4wjEaIzEGWSjDQcRHxaG/0g+1tbWdXTQiIiLqICEIwUAMwCRMhAEK+vbui3QlDQUFBZ1dNGoH7BghIiKSKFDQDcnIxgT0Ri9c/aerEWWMxNdff60+gk5EREQnvihEYQyyMAIjsB/7Ee2Ixssvv4yGhobOLhoRERF1EDvsGIohmIBxaEADUrulorfSC6WlpZ1dNDoK7BghIiJqhgEGpCIVpyAbKUjBBWddgBhDDBYvXtzZRSMiIqIOokBBHGIxDmMxCAPxf3/5P0RaI/Huu+/C4/F0dvGIiIiog4QhDCMxAidjDCpRhcTYRPRTMlBVVdXZRaMjwI4RIiKiVhhhRE/0wCnIBiCQnZ2NvXv3dnaxiIiIqAMpUJCERGRjAuIRhyuvvBKff/55ZxeLiIiIOlgkInASRmMgMrEFWzEkfHBnF4mOgKmzC0BERNTVCQgcQBE2YwtccOHNN99EUlJSZxeLiIiIOlgFKrEZW1CKUvRFH0ybNq2zi0REREQdrB712Ibt2IN8dEd3/JS3sLOLREeAHSNEREQtKEEpNmMzalCLPuiNlfWrYLVaO7tYRERE1IGqUYMt2Ir92I90pGFD0QbExcV1drGIiIioAzWgATuwE3nYhTjEYf3G9cjMzOzsYtERYscIERFRE8pRjk3YgnKUoxd64reqlQgNDe3sYhEREVEHqkMdtmIb9mIfuqMbdu3ZhZSUlM4uFhEREXUgN9zYiTzswE5EIRLLf12OUaNGdXax6CixY4SIiEijClXYjK0oRjF6IB1bSrcgOjq6s4tFREREHcgJJ7ZjB3ZhNxKRiE1bNqFv376dXSwiIiLqQB54sBt7sA3b4YAdCxYuQHZ2dmcXi9oJO0aIiIgA1KIWW7ANBShAKlKQX5DPPCJERERBxgWXekdoDGKwcvVKDB06tLOLRURERB3ICy/2Yh+2YhtMMOHzLz/H9OnToShKZxeN2hE7RihoeL1elJWVARAQAhAAhPDPDbzmf1E7LdRp34uB92rW1cR6Di3SeD3q3yIw7V9OXUazHOTlhH4ZoV8mUEbRzHqaKoM0X1M/2vLp/j60fMv71sx2vf5yBjboe82/zkP74g2sS/1sEHgdQtpv3TpE4HXNTgkBwKupaO3foonXvZrXvdIyhz7jwPJovE6v/0Bo4nXN36JRGaDZXmDf1NchlQmadXjldWjrQXrdv211Od/fute0095DBZLf5xWHyugNlA9NvFe7L17hOz7ghRcCQvj+9wqv71XhmyfEoSUO/e9/3asu43uvODSv8bIicCxrl4FQxwjdg3wkIwnbdmxDz549WzyfENHxraK8HGWhYUCjmKDj4gF13S3EBB0ZD0C3nLQM5G1Ifx+LeMBfV/42sImYoEPjAf8H1lJMoL4O6W/teprY1mHGA1DrTTNPKl+HxgNAG2KCJt6r+ZzaMx7wVUXLMUFT8YAHHuzFPmzDdoQhDIt/XoyxY8e2djohouNYTXV1M9cI2i8eaOq9ckzQkfEA5O011TZ3YDwAaJY5wmsE7RYPQFPZR3ONQH0d0t+adbQhHvDXTUsxQUfGA2p5juoaQRPv0+7HYcQDAI76GkFT8YAXXpSgFFuwBV4IvPnhm7j44othMBjacFah440i/EcT0Qls586dGDRoEGprazu7KETUBSUiAT9s+BEDBgzo7KIQ0THWp08fbN++vbOLQURdUATC8cl3n2LKlCm8I5ToBDdjxgy88847nV0MIuqCQmDFC6/9G1dddRXMZnNnF4eOIXaMUNBwOp3weDydXQwi6mIURYHNZuvsYhBRB3G5XHC5XJ1dDCLqgmw2GztEiIKEx+OB0+ns7GIQURdksVhgMnGQpWDAjhEiIiIiIiIiIiIiIgoaHCCNiIiIiIiIiIiIiIiCBjtGiIiIiIiIiIiIiIgoaLBjhIiIiIiIiIiIiIiIggY7RoiIiIiIiIiIiIiIKGiwY4SIiIiIiIiIiIiIiIIGO0aIiIiIiIiIiIiIiChosGOEiIiIiIiIiIiIiIiCBjtGjoGHHnoIiqLo/vXr16+zi0VEREQdjDEBERERMR4gIiLqekydXYAT1YABA/DDDz+o0yYTq5qIiCgYMSYgIiIixgNERERdC1viY8RkMiExMbGzi0FERESdjDEBERERMR4gIiLqWtgxcoxs27YNycnJCAkJwZgxYzBz5kykpqY2u7zT6YTT6VSnvV4vysrKEBMTA0VROqLIREREXZYQAlVVVUhOTobBcHyNBHo4MQHjASIiouYxHmA8QERE1F7xgCKEEO1YLgIwb948VFdXIyMjA4WFhXj44Yexb98+bNiwAWFhYU2+56GHHsLDDz/cwSUlIiI6vuTn56N79+6dXYw2O9yYgPEAERFR6xgPEBER0dHGA+wY6QDl5eVIS0vDs88+i2uuuabJZeQ7QioqKpCamor8/HyEh4d3VFGJiIi6pMrKSqSkpKC8vBwRERGdXZwj1lpMwHiAiIioeYwHGA8QERG1VzzAobQ6QGRkJPr27Yvt27c3u4zVaoXVam30enh4OAMfIiKiQ4734SNaiwkYDxAREbWO8QAREREdbTxwfA3KeZyqrq7Gjh07kJSU1NlFISIiok7EmICIiIgYDxAREXU+dowcA3fffTcWL16MXbt24ZdffsF5550Ho9GISy65pLOLRkRERB2IMQERERExHiAiIup6OJTWMbB3715ccsklKC0tRVxcHMaNG4ecnBzExcV1dtGIiIioAzEmICIiIsYDREREXQ87Ro6Bjz/+uLOLQERERF0AYwIiIiJiPEBERNT1cCgtIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioMGOESIiIiIiIiIiIiIiChrsGCEiIiIiIiIiIiIioqDBjhEiIiIiIiIiIiIiIgoa7BghIiIiIiIiIiIiIqKgwY4RIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioMGOESIiIiIiIiIiIiIiChrsGCEiIiIiIiIiIiIioqDBjhEiIiIiIiIiIiIiIgoa7BghIiIiIiIiIiIiIqKgwY4RIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioMGOESIiIiIiIiIiIiIiChrsGCEiIiIiIiIiIiIioqDBjhEiIiIiIiIiIiIiIgoa7BghIiIiIiIiIiIiIqKgwY4RIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioMGOESIiIiIiIiIiIiIiChrsGCEiIiIiIiIiIiIioqDBjhEiIiIiIiIiIiIiIgoa7BghIiIiIiIiIiIiIqKgwY4RIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioMGOESIiIiIiIiIiIiIiChrsGCEiIiIiIiIiIiIioqDBjhEiIiIiIiIiIiIiIgoa7BghIiIiIiIiIiIiIqKgwY4RIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioMGOESIiIiIiIiIiIiIiChrsGCEiIiIiIiIiIiIioqDBjhEiIiIiIiIiIiIiIgoa7BghIiIiIiIiIiIiIqKgwY4RIiIiIiIiIiIiIiIKGuwYISIiIiIiIiIiIiKioGE6kjft2bPnsN+Tmpp6JJsiIiIiIiIiIiIiIiJqN0f0xEh6ejp69OjR5n89e/Zs73IfV/71r39BURTcfvvtnV0UIiIi6iSMB4iIiIjxABERUddwRE+MAIAQoj3LccJasWIFXnvtNQwePLizi0JERESdhPEAERERMR4gIiLqOo44x8iwYcOQl5fX6r+hQ4e2Y3GPL9XV1bj00kvxxhtvICoqqrOLQ0RERJ2A8QARERExHiAiIupajrhjxGq1Ii0trdV/FoslaJ8uufnmm3HmmWfi1FNPbXVZp9OJyspK3T8iIiI6/jEeICIiIsYDREREXcsRDaXl9XrbvGxOTs6RbOK49/HHH2PVqlVYsWJFm5afOXMmHn744WNcqhPXSx+ubnH+X/407Jhtq6V1t7bs4azraMrRnjpyu+25rVk/blP/vmpyn2bnAUDNgWrdtCMhVDctv5+6PvkzDsbPsLPOGcGO8UDX1pHtcEvtEOnxnH10tMcmz/VEXQPjgeNbS9cbOutaw/EqGPaxozBeOj511c8tWL+bR/zECDUvPz8ft912Gz744AOEhIS06T333XcfKioq1H/5+fnHuJRERER0LDEeICIiIsYDREREXdMRJ1+X5ebmIisrq71Wd1xbuXIlioqKMHz4cPU1j8eDJUuW4KWXXoLT6YTRaNS9x2q1wmq1dnRRiYiI6BhhPEBERESMB4iIiLqmdusY+cMf/oA9e/a01+qOa5MnT8b69et1r1111VXo168f/vrXvzYKeoiIiOjEw3iAiIiIGA8QERF1TYfVMXLRRRc1+boQAmVlZe1SoBNBWFgYBg4cqHvN4XAgJiam0etERER0YmI8QERERIwHiIiIuqbD6hj54Ycf8N577yE0VJ+IWAiBJUuWtGvBiFpzOIkljyaJ0DPP6I/tu+6a0Ox8eZ6zsKrFdbeWjL2ldUUPTWpx3a0lpG+pHPUer/r3fz9Z2+b1AI3rS8dh1k3edcMY3XRrn1NLiWufeXW5bjq6T2yrZfUrW7xL/96J6bppeVuHU7cyeZ+eeewn9e+7/n6Kfp60TzK5/rTkhF6yRvXXwnF8tOs+nHVp33u0yb8OJ9FxawnQWtrn9trftsw/msSPjgR92/3a7A3q3646V4vLtrSPX/6qf1r07NGpLZZD1trx5FdXU31Y6yVqi6Nph+VzZWvnLO33qLXY4mi01kZpyyW3M621y82tp6llW6svrUaxgxQvoJXzrPb9cnzU2nm2bE1hs++tOaA/7zRqw6VyW5PCml1W1qgcOfr8AdqYoFE8UKAvl7WfPubRnsNbi49aa8O0n6vcNhyNw9lua9s+mra0tfhae3z4CqI/NrX12eqxtq1EN20ND+SacJbU6ufF2vWbPYx2Wd6ufBw7K+t10y3Fk9pYAQCuP6/li/jamKC0yqmb11rs3lI5iNqitXa4pesHzzywQDct/x4UQuimb7k0MCza4bZ/LZ3f5O+n/D3RnjcabUtuO0vr9NMxthbXdTTnePk8o12X/N2X97Glc3Zr8VJr59mWztGHc+0BAGLCAkPbyec3mVwfLWltuy3tU2taOtZai3Faa0ta+owbfSekzzw0IUw3bQkP1K3c7rb2mWu3fbhJzVvax8Npd4Gju3Yhv1d7vtGea4611o6B9rrucbSfk197XR84rI6R7OxshIWFYcKExj9sBg8e3C4FOlEtWrSos4tAREREnYzxABERETEeICIi6nyH1THyxRdfNDtvwYIFzc4jIiIiIiIiIiIiIiLqCo4q+fr+/fuRmJjYXmUhOip5eXn4/vvvUVRUhJKSEhQXF6OiogJ1dXXIyy/BqdOvxNDRkwEAq1atwjXXXIOQkBA4HA7Y7XY4HA6YzWaYzWZccMEFOOOMMwAAlZWlWL58LoxGEwwGE4AVMJlMMBqNMBgM2LPHiNTU/gCA8vJyzJ49GwaDAQaDAatWbYWiKDAYjDCbrdi8OR79+vUDADidTmzcuBEAYDQaYTKZsL8gD0aDEUaTGTZ7KGx23yOGQgh4vV4YDIYOrlUiIqLj1/r16/HYY4+hqKgI9fX16j+32w2j0Yjbb78d119/PQBfHPHSzBthMplhMltgNJlhMplhNJphMpvRu/tQDBgwFgBQU1OBxx57DIqiqP+Wr/U9+q8ASOmZCcD3OHpVVRVee+01NTawWq349dddMJksMBrNiI1NBuB7GtvtduPXX39VYwxtu68oCmJjY5Ga6huuTgiB4uJimEwmmEwmGAwGKIoCZ71v6AyDwQCzJTA0ge91gerqagghIIRAXW0VhBAwGk2whuiH7iEiIjqeud1uzJ8/H1u2bMG+ffuQ0O9s9ff1Cy+8gP/85z9oaGiAoiioOFgPRQEMihFGoxk3pryA7j0zAAArf56PpV99rsYGRqMJm5Ylw2KxwGQyIbT7RMTGdwcA7N6xERt+WazGBkJ4UVe3BF6vF4qi4JJLLlHLt78gD9t+/w2OmHCYzRYYDAbUFNXAYDDCoBiQkt4f4RG+YZNqqstRXJQPe0RoID4xmeGtbIDJZIbFYoMJ0lBaRETUqqPqGJkyZQrWrVvXXmUhOioLFizAjTfe2Oz88rID6t9VVVVYs2ZNs8tmZGSoHSPl5UVYsOAddd633+qXPe20K9WOkYKCAlx99dXNrjcyshjPPPOMuuyIESOaXXbsKRfgj9f8HYAvELrv3slqJ4vBYITJbIbRZAIUBVmTpuOqye8CAOrq6tC3b1/UOr0wGowQEIBmSNTMoWPxhyv/qk4//cAV+PiVCISEhMBkMkFRFOBQIDdy1GjE9z1bXfaD1x+Gx30oF4GiwGQyY+PSRFgsFvTt2xc333yzuuzPP/8Pbrfr0IWaQ/+svvWHhUdj0LBsddlvvvkG9fX1WPvbbhgMBhiNJhhNZvz8cw0iIyN1SQl3bd0ARTFge5qC0NBQhIaGwm7nxRwiomC3e/duvPzyyzjjjDOQnZ0NAKipqcEnn3zS7HvKysp0f2/ZkNvsspbJVl3HyJNP3t/sspOmXQrA1+FSXl6Oe+65p9lls7KmA7gWAFBZWYmxY8c2u+yll16K999/HwDQ0NCAhISEZpcdMuoUXHv70+r0PdeOgxACd1/TeNmefYbhpjtfVqfHjh2Luro6lBysO9TeW2CxhsBssSIlvR/OuOAGddnbb78dNTU12LTzIJRDnTMGxQBPrQtRUQmYOPFiddn7778f5eXlaqePL64xYOXKAoSFRSM7O7DswvkfoLqqDEIIFGz7XO3M8Xq9iI6OxoMPPqguu2TJZ6ioKIaiGOBYFQGDwQij0Qij0YSaTT3wl7/8RV3291W/oKaqAkaTCQajCXW7K31xlcmCKkcZ0voMUJctLytCQ4NvXGwFwM6dETAYDPB6vfB4PLo6rKgohhClMJpMsDsiIITwxVRERNSh6mqr8MvCOXjqvv9hz55A3pv7Zo6GLdXXMXLw4EFs2bKl2XV4PG717/17dmLdykW6+TmLA3/f9o/+asdI3rZ1+O67/+qWnTcv8PeoUaMA+NruvK1r8emsmc2W4YrrHsPg4ZMAANs2/4b333yg2WUvvvg+jMo+CwCwcd3PeO+/92uuAfj/8LVJ5/3xLmSN9S27ZUMuXn3qVuBQe2UwGHwdL2Zf58s5V96KCdP+AADYve13vPb4HTCZLepNJP4OGniAUePOxIgxUwEAB0v2Y+67L8FgMOK3L6JgNBoPdRQJrF5fiL6ZWcgc5It3KsvL8O3Hrx26zmHAzkXxMBqNsFgs+OWXfKSkZKB3b1+eherqarzzzjtqPLB80354RSA/aqQ1CX37jwYAuN0uLP7mExgMRigGAwx7E2EwGGCxWBAZGYn9BTVITO7RbJ0SUXA4qo4ROQEVUUfav28nig/kY9DwiXjm1eVwNfTFgMHjEBYeA4fRAYc9AiEhobBYrDBHhSGxWy816dOSHdW47rqn4HI1oKGhDl4b4Gqoh8fjhsftxoG6BDUBUlSPbhh/6h/g8bjh9Xrgqm+Ax+OBEF4I4UX3fv3VZJsOhwNnnHHGofkCuwsqfI22x42GBif2lJjU9ZaVFCIyKh4CvkZdeD3wuH3b8Hg8UOq8cOYdBADUVfku3AghfGX0uOFyBRJ+VRwoVddbV1uNvXv3NltvFSXFalIlt9uNWy7dgN07ml62oKwOl5vHq9O/LZsHt7tBt8zyRb7/+2SOhIg6WQ2q5s9/G7W1lU2uNyU5A4MSRqrTN954I/Lz8xst99LjQFK33rjrfl+njzU8BP955HYU79+Dh6VlLdYQJHRPx8OvfQnAl8DpnHPOQVFREVJSUlBUZEBERCwMBhN+mB0GmyMUY6ecr75/07ZfUVvnK6+y1w5f/5CvQ2fZF1ZkDh6nLrt54Y+oqj4Ig8GIkB4xameVx+OGu96NwcOy1WULd2yDy1UPg2KAV3hx27pVEMILBb7OpyGnBXI2/WPmXDQ4a6EcuksoqlcsDAajb6YQsHhD1YssVRVleOK9H9V9ryush8ViU+8utmiSwwGtJ8nVJht95tml+srdJyUmPUOfHKts7X7d9LPbSwPL9o7RzTucVkNOXFjv8eqmP1qkP3AParYLAFHSto9GS4nYZIeTqP1wk7Ffe/EQ9W95/1tLVNvSuuVkqvK6Wko+uEeq91mtJCNsqGx+vjbxHqAvc2VlJW6W30AE4Mk3luCTWY9jdc4CCOHFtwuW44Z7/g0AqKmux3mX3Ynw8BiYrSHA/nqYTGYYDEYIIeCy91OP95qqSlx502NwuZxwu13wuF2oL6uGx+OC2+1CxqgxansfHhKPkyedd+hive/c5KlqUGPj5NB0zXrLMWrcmeibFgm3242GhgZs2lSorjcuLgXP3OW766K2rgoxEUnwKoH1CiEQFm6F1+tFbGysmojV6ZSSqkq8Li+clfWNkqs2xW4NBWpcaplX/LYKrob6Jpd11umTRL///vsoLS1tctmUtP7IPvNyAMCzr+Xglf+8iYNl+5tcNiGpB7LPvMw3se0gViyei6IyXzyz5Ef9stFxyYjpE7hxY9WqBdi7t+kLXN+FRsLZEDh3fvHi09iZv6HJZc1mK/714iJ1+pN3HsOG3wJt4iN3BZY1GIx447vf1ekPH3kMq36er07fd4MRjtBI2O1hMBiMuPPBd2Ay+e7mzVkyF3u2/Y7Q0EhERSUiISEdCd16ICTEob7/2ddyAhvbXaErp3WQvkNM/k2mTdR683VZunn//WStblq3HTSOH7Tk83d1vr5cxlD93cqeQn1SzOiTUtS/5XZFXndLbZhcZkjtW2ttqTYmarQuSWtJX7XktrPRuqTk4tp1pUgxyzmjU1tclzbJOQCcrVm+pQS5TU23tG65XZZjsVf++6tu+s7rT1L/fruFugIa14e8bq0QI5+ap9Z5vV7M++I1LJz3AZz1vrYqLi4OkydPRrdu3aB4TOr1AHvvCfjrsx/4bjQEcOaI7hBCwO12w+l0Yu0em/pd6tVrJC6++m9wu1xq2z2ifywaGhrgdrtx09WTkZ6eDgDon1CGgvzt6rUCg8GoPj0CAEvXVSM6PAIAEGqLxqCh2VAsAi5XA4TXC2dVHYTXC6/XC4c5kKDaZLYgJjYZHq8HbncDPG4X3G433G7f+yJ7x6nfqblzizDrP/rf7FpGq0GNDXz77NIv4Ay0/4O72XDV5D546cPVqCwsw/78vGbX+6c/TFPPr399/CMs+fZTAMCiJpaNSI7FuD7nAAC2LPgV8z+fpc6T7kPFqedfidEXngkAeOLOL/DPN/6C5pw86TwMyvKdtz01DXjnuX+o896Slh2WdRquvvUJAL5jJywsGnZ7GMzmEN+NmhZfvGg0mdGrz1D84ZZAEPDqw3eqHTkGgxEDMuJhOnQsZWZm4tprr1OXffrJJ5H7825YLCEwGIwI7RF96DqDgsiYeDz7WqD927huKSxhVpjMZoTYHLCHRkDZ64LdFg6j0Xdd4JLreqnLv/zCMt0+zYKefL7XxgfyObi1Nsxs07fxMS3EC/K1h9dm6+OumiJ9O6X9LSrvg0xu47RtaWtJ4FtLiK6d39rvYTluaSlxubys3LbKdZvULVz9W667K8/O1E3L1wTk+tGu21Wn/67Lx0dL75XLIu+DfC3GaDHqprWxhfw5yfsoX5toLjl7e10fOKqOEd4FRZ1l27ZtePHxGxBic2DAUN+Fe7PFiqtufNK3QKl0sSDGppu028OQkTFanfZf6GhKbHw3XHTVfep0g3TRT/sDMi0tDd9884063VLjEh2bhEdf+k73mnO/5kSkOWmFOiJRUlICt9sNl8sXBL367q++O1mEUB8JBgBriA33/vMDmCMs8HrcUBQFlXsr1O+rwxGhLqsoCr755ht8Mf93uBrqfR00QvhOckIgKi4RCNwsgzOnXIuQVN9JWngFPG4Xastr4PG4EBPXTbcvQ4dNhtNZC8VigNfr6yjyVNZDCIG4aP2yo0ePRmpqKgqKqg7dhemGx+2Cq6EBYeFRumVj47uhwVkHp7MWzrpa9WJAg7Mergb9Z7Nr1y6sW7cOOTmNf/TGJnbXdYx8v/hd7C3c2mg5AHCERuKRpwO3+vyw7GPk7W36oorVatd1jHz99SvYvKnpH92KouDN0wIXcuZ++jzWr1nU5LIA8OzbOTCbLQCA2R88ixXL5LARsFhCYHOE495/vo/wSN+j10vmf4IfPn1YHcJl1apV2LFjJy684l6MnXwBz+VEdNyqqqrCq0/dirxtvou9fQeMxrjJF6rzHaEROGXaZeq0c3OJ7v3WuNjAsmGRGDl2mm6+toNWGytERMXhkmv/oV/20M0MMkdYJK648VHdD6ZnnlmiX6jA1/7bbWG475r/AtH6zoy7/n5K4L2HOkasVhueemUZLGEW3w0ZXt8TDM4qJ4QQjYbffOq/P0NRAhfRFcUAV1Ftk23An+98Fl6vBw15BwH4bspocDkhEqxwhEbolr3//vtRU1ODpd9vORRHHOrQCbcgMipet+z4Uy5Sh+/y1vjKKSAgrEaEhunb+1EDpqC6thyKomD0Kb6LAP4nTX7fpe+cGTnydPTuPRxe4YEwAB6vB16vB16PG2bFols2Od63Lv8yHpcbHq8bHo8LJoc+XrSG2GCz+340CggIj/fQcCi+cmifCrFYQ2CzhcHtcR2KqTyoqixFVWXpofoO1PPmDTlYu/KnRvUeERGHEFso7rx3Fkzw/aD87svXsX3dCgh4YTKaER4ag5jf05DcvTdSevRHXGIq23EiIgDrVy7Cd7PfAAAkduuJfz78N1x66aUICfG1qf72EwDiklIQlxTorD35ZP2Ft62a3/Ep6f2Qkt5PN7+5C6yTJ0/GpgPRLZbT3znTt/9o9O0/GtF9ArGIfMOZ38AhEzBwyIRGNzs4EkLh8bihINAOnHbaadi9e3ejdbw9x/f7VduO98oYhkf+7ftN2VDt9P3G97hx6fn90dDQgOTkZHXZpJTeuO3+N+B2u1C37yA8bpev/XS7ceoZfXSjYYRHxODMC2+E1+vFqIEJ8Hq96nBia/PKkDEkcC3GZgtDdvYlh54C8UC43L422uOGMdqCHhmD1GXNJgsG9/XdsGhQDAjpFgHFoMD3NIxAeo/AsopiwIAhE+D1un135xkAIbzwuN2oralEXGLg86+rqUR19UFUVzcdy9lsgQvIXq8Xvy79Wjf/Z80NHNPOOANXazpGHnvkYdTXN32zSf9hJ+Ha659Tpz9+5zHU1lQ0uWx66gD85ZoX1OlJ48djx/b8Q0OzmiAgYLT6RgxJ6NYDNz0QWPbFB25EaVEh3PW+a0x2RzhWLc1AYmIihg8fjksvvVRdlk+8UrA5qo4Ros7w66+/Yvr06agsL0FoeBQanHVQYGz9jccxg8GAmBj9nWRx8YXNLGtESo/+ut7fg9am7+Q0Go0444wzsLM8Sfe69r1lOYEnOcaffIHubj+gca+y3/nn3wEAsCYG1iVfkPL7/PPPATTuSPIHjVo3/fVltYxCCDTU18FZXwdnfW2jOyZnzZqFXbt2IT8/H1988QsqK0vg9XpgibQjPEofsKZ26we7zbdOWHwBhf9O4BCbvic9NTkDFrPVF7jZjfC43RBeDwwmE8xGfc+5wx6BiIg49SKVwWiEojR915vFaoPNHua7S+jQXUZer+8Ck3+MWj+T2QqrzQEhvHA56wMdRA31aGioR0H+diz94TPs270V61ctbnJ7n8x6HP0Gn6Q++k1EdDwpLi7GGWecgbxta2Gzh+HGe19Ejz6DO7tYHUo7xKafcDb9Y9Ya4rvor20rhcnV5LL9Bvnu+nYaDuhel59UAHxDaQHAM9X6mz2U9MhGy048NTC2uijRdG5IN7AAwKRRF6h/3/XEGbp5crwwbnxgWdilnze1bt3kuafd0Ox8JTNWN+vmh17STcsXrLQXDq7761M4uMMXb7lcTtQcPIia6nLU1VXD6/HoPqPhJ01FXHQKqqvKUFpagAMHdqGyshQVFcWorCzVLXugcFfjmzE2Bv58/JUfEHroJpKKg8VwhEWCiCgYDR45CdPO/zMioxMwJvtcXHPp8M4uUocwGvXtnt1uV/ORaUXHNr4mYLZYERXjyxvcYAncZKgdytrPZg9F7/6+zg9nqL4D4eqrT9FNR0TF4fTzfJ0DLd1JDwChoZGYPl3TNtcH2mX52oPDFo4rpgduWpVHMtBem7DZQ3H1jU+o0y09ERliD8Vdd81CTU0FXC6n7+YKM9TROqKiNfGPEDj3T7fD4/HA6/HdZDG0fxzcbl+5M/plaBYVuGLGDKzM3QFnQz2E8MIcYVVvJEnpqe9wS03PhNNVA7erAfV1NaiuKkddje8mHfkaws4d21FcXNTsPmnt27UNRQX6Jw23b1kJAOjfv7+uY+Rf912M/fvyfEO3G82wWm0IsTlgc/hG3bjqtpkIi2i584/oeMKOETqufPXVV7j44otRV1eHlPR+uPHelxBic8DparoHnk5siqLAarPDarMDaDxs0vDhwzF8uC8gdrsDAZl22Ci/86dpHslN1neEyHdMnHXKterf8kUi+YmiS/70d/26HM0nxbtkhv7uY+3dQ4A+0PvTdf/Adff7Aj0hBIo2FWD75t8w/5u3kL97E17+102697700kswGo2or6/H3XffDY/Hg6nnXtvoSR8iouPBgQMHMGHCBGzduhWhYZG48d6XkNozs/U3EnUAs9mKyMh4REYGnpjRxhKDh2djQE/9EBZ1DTUoKtoDl8upW3biaZdgSNoYKFDgcjegsroUFaYq7N21GfW11QiLiFY7uz5+85/Yvnk1+vYfhf4DT8aQ4foLVUREJ5qKCt/Q1ZGRkVAURZcDi6itjEYTkpJ66l5TQi1NLmswGjH5zCt0r2mHO9atQ1Hwwksv4+WnA08KR4/U//7WDkF03S3Pwh7n0M2vXFuI+vpqX+5YjdlffY3338lRn9wBFIT3jIaiKAhxSMNR3j0TDfV1qC6shNcrUFtTgREDw7Fv3z51iC6/qooy31PDTg+AetTVVgGH+sF6ZgzRdYocLC1CVIz+6WCi481RdYzIXyCiY2nJkiU499xz4fV6cfrpp+PUP9wPawiTbhMpioKcpXPx1f9ehPfQUCp2Rzj6DToJvfoNR1RMAv785z/DbPZ1ytx+++2tjiFKRNSVxcbGYuDAgXA6nbj8L88hITm9s4tEdFRs9jCkpQ9o9Hp6z0EQBv0ds/6bMrRP/3i9HhTu2wlnfQ3Wr16E9asXYd7c1xAT+i9cdsWV/N1GRCccj8eD6dOnw2g04vvvv+/s4hAdE0ajUTccut/wESOw/Gf9DcLRQxKbXEfG4FEAWs4x4ve3Jz+Dx+2Gy9UAt7sBLmc96utq4PLUIzYh0KlTVVGOP583HnZHGLJGDceQIUOQmZmJ8PBw2O12ZGRkqLl3iLoyRTCDepdUWVmJiIgIVFRUIDw8vPU3nODq6uowePBgbN++HRdffDHee+899SIvADzzmH6cZu1Y3EDjxzXlxEDar4E8bqf8BIA4UKMvnFMzBEOqvsGSEw65D0pPtpTqx8iGV/N1LJOWHRCnm7TG6juF/ONF+nl2BB5vNfXWP+rozivXrztSSsyqTcokJVyCy6OfdkuJEj36U4qSELjjQeyStivfhVEhJWVuYmgNlZzAuVoaDkR66gPaJzV26ssRfWZf3XTZRumRVClJlW6fpTL2Ga6/A2T3Nv3wYd4Gff1df0VgLNa3527UzVOM+idVavbrhy2zahJebfk9Fy/+80aMHDcN2dMuwaCs0WoyQQCoq9XvQ/W+St20WfNZRCTqc+5UScfpjRcM0k0/90aufv7Vo9S/P/xxu25ebYn+++OU9ik8I/CUTGV+uW6eLUp/zNcV6vehx0n6R8aLCgLz5e9i5W79uk0O/bEY11M/1n29M/C5+YdK8csYqR+KbMuP+gRofSYF7j7avrpAN6/3sGTd9NlSstXCCv15IErzOckJdK1SArTrpuvvnn9h1grdtG88Xp/QZH07Ey7Vh8Wkf3R7//5A3gWLtGxvaV0j++rPXd+v3KubLtAk77VIT1QZzYHPra6mGjedMzzo2kXGA82rr6/HwYMH8eFH+vPMXXeOP+J1Pn3dF7ppw8jAdzSqd+MnE7XkoSXloSO0Y5vLTyKKGqmdkdsdLae+HbH2i21mwUOLa/KkyG6+fZxu+rV3V+rLJf1MCIkMtHlyAseGJfohGpDayvFarUkMK+d6k2ILY6T+/OYpl2IADfnJzEZ1K8V1imbIT93wXgBCeunjJ7ktqVkqjeGeKMUe2vfG6dswT7EUA8rl1CaijtffPWqUzrueQ/ltvMKLvYXbsOnAGqxa8T1KS3xtTlJCT5wz7Sb07jEUaaf2wjsv/hNL589FcmpPRIYmIz4hDb16D0Vy9z4wa4Ya8Xo9+H3ZUuzYuQajRk5D8kD9kB9et/5YlJN0Oquk5L+a4ymsm/748EjxUaPjqzzQHhqkz8EhxS2uav1n7JRiRoMmkXd4WiRaEiUNvTJ+kP6i0ydfbVL/PmV8D908i1nfdsZH6GNGs6n5hOJyMlWDdM6or9LHB9bQQDlnSElKW0pq3pQPfwqcUyOl/T//pDTd9Fcr9N/7s0YF4hj591e0tK4y6bsoJ1eV1+1XW12FP54yMOjaRcYDjb344ou49dZbERYWhpUrV6JPH/0x9Oxr+jyPd15/UrPreuaBBbpppZv+vCLHANrrCXI7Y5XaAvn3zs23jdVNa7/vZT/ov/swt9Kprdm20lffZjW61Le+WD8tn4N6aX7/7JbyXEi5z+RYBNK1CWjb03r9kJaN2KT7tTXn6EbDYzZ6r3Stolrf7mjbXu31EaCJayQF+nhJkfYprHvgWk+d9PvYLSe1jtcfA9qE2a0ly07roz/WtsrHRFggBrBGt3yjcKNrWdpjolAaEj2q5c/YIZVrxaLv8fbL/6femCmb/oebMPXca5ucdziJyuVk43KsarQGjhH5yZ15K/J100VSTCxfmzBr4qsRI/TXdTZI13USpM+4YK/+O6ONY67741DdPPl3vMep/46Ep0aqf8v1kSTFT3uka5tyLCbXX0vluOgs/bLLN+mH1D1Hc61CTphena/f/+Rh+lFa7JrPafdm/bnoVs01MaD167f+71ddbTXuuGzMUbeLHEqLjgtFRUUICwtDcnIyXnvtNV2nCFEwq6utRm1NJTKHjcV9T32sDiWj7RQhIjpRlJSUICYmxjdMQEgIkpKSAGxv9X1EwcCgGJCanIHUESMw+bTLsWzpF1gwbxYKD+zE/qJd6N1jKAAgJi4JFWUlqCjT/8jv0WsIRoyZgtHjz4LVakNV5UG8Oeuv8Hq9WPbLbPzxmvsxPGtKJ+wZEZHe7t27cd99vlwTTzzxRKNOESI6toaMnIR/vboIhXt3oN5ZgLztv6Mwfzec9bWoKq9CRFRgiK2Na37G5+88iRl/mYm0Xo2fjiXqTEd95eyUU5ofu9Zms2Ho0KG45ZZbkJjY9CNdRG2RlpaG3Nxc5OXlISKi8WOERMFq/ty3sOCrt9G7/3BkTZyO6LhkWCwhqKv1QngF7KFhra+EiOg44HK5MH78ePTp0wdvvPEGEhIaJwInIh+T2YKJp/wRI/tMwrIVX2LMyOnqvOwzLkTG4BEozM/DxuWrUViwA1s25SJvx1rs3rUBJ004BwAQERmL4cNOw75921C4fyfeeeVvWPfbQlx4+b1qwncios5w++23o6amBuPHj8f111/f2cUhCkpWqw3pvQYird8k3ev5h+7w93q9+HXpV/jg9YcBAHM+eh633f9Gh5eTqCVH3TGyaNGiRsMB+Akh8N133+Htt99GTk4OUlJSmlyOqC3MZjP69u3b+oJEQcLr9aJg73YoioLtm1Zh+6ZV+ODVR9T5cYnd8dzHi9Tpn+f/71Ci1hiY3FaEhkbBYg2B0WSG3ROmS6RGRNTVvPTSS9i8eTNKS0thtVpbfwMRweGIwJTsy3WvhYZHoE/mUPTJHIq0uNEAgIryYqzI+QY19ZUwWwLfrz9edB88HjcW/PAOflr0IVb/ugAb1yxFUkpv3P63Nzt0X4iIAGD+/PmYM2cOjEYj/vOf/8BgaH5YOiJqfw3OOvy2fAG2/b4CYRHRGD42C2MmTQMAeNxubFq3HJUVpVgy/xPs2ekbLtxgNOHsi//SmcUmatJRd4xMmDABK1euhNPpxODBgwEA69atg9VqRf/+/bFhwwbs378fjzzyCN54gz2DdHjmzp2LtWvX4p577oHN1kK+CaIgZDAYcOM9/8bB0v1YmTsfuYu/QmF+YAxSebzP+f+bpZuvFRPfDQ+/8LU6vWPTWkTHJSIqlndkE1HnO3DgAB566CEAwMyZMxEZGdmp5SE60URExuHU02focoz4GY0mnD71GgydMAUf/PdhFO7djprqwFjSQggs/ekzZE08E6FhkR1YaiIKNg0NDbj11lsBALfccgsGDOCwPEQdZdvG37B84VysWr4AzvpAnpWiA9vUjhEBgVeeuFmdFxLiwOnnX4eJUy+BycQh8anrOerk66+++iruvfderFixAhkZGQCAzZs3Y9SoUXjiiSdw+umnY8iQIYiOjsbu3btbWRv5Mbka8NzbOfjnPeejrKQQZ//xVkwYdaFufkvJVZ95dqluOnqIfig3ObnfSx+ubnZdzvX6hEN3zTxdvy1NMlVs0icFQoT041JOXF4rJSLTJheTE5GWS8nY5YTpW6Rta77aopWEZ4qc5FxbLjl56h59wmtICVF1CeTlcsoJ3uRk63J9yfO1ySPrpbqU90HalqIph5ASQ0F+6k3erpxsLiTwOZmkhKjufH392AfE66Zr1+3Xr8uuCQ5CpL5qKQkspIsV2n2CEBBCwFlf6xt7P9IGo8EI46HgQwjgy49fRGnxPlRXHURlaQlqairgcjnhdrsQE9cN9z32iW8fKuox87FLUFqyD3FxKejVayh69RqG7ikZCA2NQmhSjO5JQbeUUFCJCSSBcyTo6ycsSv85lUqfRZgmgapRSj4fYdcnmy0+WKebdtXok+1ZNPXVT5PADADy9usTr1WX6dcVLiXbG5sZ6CBau1P/XTsoJfnrJX1384sDSd0qpM9UkfZRTj7rlc4ZaX0CSZbzd+kTCNYW6ZPHpQ3VJzwzSduq12yrdJ/+uE2TEkzKoUJaQmAf+3ZreXjDTxbv1E2H2fUB8RmjAk+TvvvtZt28yOjA8VJbU4Wrpg4JunaR8YDPtddeizfffBMjRozAr7/+2uLdoboEqlJbKccDZTn6pIxy2xHaN/Cdk5MKOrrrP4+avVL7KNteFvg7TfreHNB/fxvRJiP3SO2slGxcTi4Oua60MYFVSuoqt9PSPmJXeeDvlhKtNrUuOaH8EE3HuxzDSMnXGyU1N0jttvb8J1/YN7dyJ7Em0aYpWt9GueV4QUp6bkvR10/dtsBnLCdtlUMNq3RsyglSteS2oTWmkMAx4ZYSi8qJfG1S4vK6jUX6dfUMDJnl3lgEr9eDorJ98Hrd6HWGLxZf+O0H+PzdpxAXm4LrZjyB6Cjf98wsJS92aRMUS8eDKUZfX+5yfbsckhA4Bsyh+s/YES4l9ZY+t+gU/fftgCbppzVC/zkIKY5N6qEfMqxgZxma072Xvu0sk/ahXorlTZpEpO56fX0ordwBHyt9N6s0x4+rVr+umAT996dOOp76p0TqprvFBmK376TEtfFSHOeWErvXahLINrj087zSuetPk3vrpn/eUKibHtk3EEP/b0kglqirqcYtF4wMunaR8YDPQ89/jf88eQvqaipx773vw2YLHN8tXR8A9NcIFLntbIWcfL1sreY3nXQ+s0rnDfl6AkL1bUlL722UPFtqa6NPCsTRZYt36Vcm76OUJL4RbbstxwdyMnY5KXyotC3tusKk/S3VnxstA/W/lxs2aNohObm69HsGZdI1kj7SMI/a6zPJUiwh10e4vpzWZP33zKmJ4+yZcbp5tbvL9euSk9Nr23zpt2Ojz0lKAi9TUgNtmkmqnzApMXfZBunY0yTyTpqYrptVvEPfvmljD6/Xizmzn8CyBV+qr8UnpSBr0jTU19YgIqIbsk+/RJ33zANXwmy2Ijm1D6accxUyh+tHftn+2z7ddHRGIN6Wk9G7pTbNK7U7IZrY7erzB+nmzZIShFvD9W2+fP1AS05a/uGP+pyGchsm/+atrwgcm5Fx+msiNdI5wyUdE2Gaa1tGKR44Z0yabvqjRfobX2OkOLhUcw65JLuXbt6CVXt108VSnGKTrk9p2/UrT9Hv/zcr9fGCR2rzazTxQb0Uh8hxrlOKn1xSffUZ4rvOUVtdhYuyB3R+8vWZM2eie/fuaqcIAPTr1w8pKSl44okncNNNN2Hs2LFYuHDh0W6KgsySBZ+grKQQkVHxmHDaxUD54f0oJAo2iqIgxOZrdC2Wxnd8nv3HW9S/nVJnhikqECQ4nbUICXFAURQUF+ejuDgfOTlfqfMTk3vg//75SXsXn4ioSRs2bMCsWbMAAP/+9785ZAZRJzIYjEiMTdW9ljEoC1ExiSguyceLr/4F11/9FBITenRSCY/Osp/+h4/ffAwp6f1w/d0vNOoYIaLOFRvfDff96xMUFeyCzRLa+huI6KgZDAaER8bAYDRiwunnY8LpFyBz6Cj1Zsli6YaEux55p9E6aqor8eoTf8fS+YHOlQmn/BFnnX9Lo2WJOtJR/7IsKSnBli1b8H//939YuXIlVq5cifvvv18dA9rPbre3sBYivZqaGvzw1dsAgDP/cCOsIRxGi6ijWK123H7nG7jltv+gX/+TGs3fX5DXCaUiomD1yCOPwOv14vzzz8fJJ5/c2cUhIg0hBMrLihAZ7bvjt6q6DD8vn9O5hTpC9XU1+PjNxwAA+bs2I2fx3E4uERE1xWQyIzm1T+sLEtERcbsaUFK8FwfLAk9GXXTdXXjkP//DdffORMbgkc3mmm5OdWW5rlMEAJb89DHKDx5o5h1EHeOonxiZPn06PvvsMzz11FN46qmnGs1zOp1YuXIl+vXrd7SboiDy1ltvobqqHLHx3TFq3JmdXRyiTuF2N6C4rADVNQfhbKhDg9ENuz0c/TKy1GXqaqvg8Xrgdbvh8bghvF4YjEbYvDaYzFbYHYFhLOrralBdVY7y0v0o3rkbFRUlcHtcEF4vIhMTcXL2eQB8uUkevP8s1NVVNyqT2RKCAYPHHvudJyKC70aJnJwcAFBzjBDRseUVXtTX18DZUAf3vjI46+vgcjlRv/MA3G4n4mNSkBDje2okb9s6vDzzJgCAohgwMHMsTpl4SUur77JCbA5cdsMjeP/VBzB6/Fk4edL5nV0kIjqkpqYGH3/8MVymgTCbmx+Kioj0PB433O4GeD0eeGvq4BVehIUGnobcuGo5tm5YhV2/b0ZxUT5Ki3xDbwNAvwEnYcYN/4LZbIXFGoIeGQOPuBw2eyjOvfTPWPz9HFhMDoTY7Bg95ixERjGnKXWuo+4Yee211+B2uzF79mzd6+effz5effVVFBcX4/7778egQYOaWQORnsvlwjPPPAMAmHzmFTAaj/owJTpuuN0NeHfWAyg6sBulpQUQQj+GZq+eQ3UdI089cikqDhbJqwEApPUaiHsefVedfuyeC1DezLIp6f3VjhGDwQhHaCQaGpxI7zEQfXoPR+/ew9E9pR9MJrNu2C0iomPJ4XBg27Zt+OmnnxhLEh0jbrcLzvpaOEJ945aXHdyPf708o9nlxw8/B+ec8mcAQFL3ngixOTAm+1yclHkGYqKTmn3f8SBr/HRkjZ/e2cUgIsmbb76J2267DT0zhuKOB97q7OIQdbh6Zw1q66pQrxxAbU0lqqrKUFtXgaqKMtTX1+D8S+9Sl/3u0zfx++pfUJi3EwfL9sPrDQxLbzAY8MSD36vT8794D78tnd9oe2azFaUlBVi/ZjGGj5py1OUPj4zGjFv/jhm3/r1RjhGiznTUV5wjIyPxv//9Dzt37sTGjRsBAAMHDkSPHj1QUlKC7t2747bbbjvqglLw+OSTT7B7926EhkZhaMYkNRdCS8nUZv24TTdtlZN0SlpMtp6nT2jcKEGq5ObrAhepX35hmX6mlLxISY/UTcvJ03TJxXZI5ZDJicekZGHa5O2KlBDWOlSffLbRPodpErf/XqKbJeSEqMVSMmk5edjeQPIwOQm8IV2qWymRFqqlhGjawf+kRzfFtuaTYQIAtIk55STncpkz9Mn1GiWM1SSidkv7b+wuJTHVJD2tq6tGmbcQpcX7ULR/N4oP7MGBwl2Iik7EFVc/CsVighlm7Nu3FRXlvsSgIVYHIiLiEGK1wxYZhm6pGbClRfq23eBGdaVvvxVFgdFogmIwwuvxPT2ieBXUl/rKF54eBRgUmMwWRMUmINwRi4jIeFgsIVAUBbHdU2A4lETPGh+K2x74L0LDo2AymRsl/QuJlIa2k6a7axLC7dQkOAWAIqm+5ORp2sRacqLyKim5XNKhelDnW/RJAOsqA9+/Fb/s1s2zx+vPEXI5DkrJ2X/UJAQLkbZTLSU93yUlBY7SJIkta9CvN0I6V9VJyeUSpURtRZok8WGx+nkJ3fXfpzgpGW2olPS8VvN9jJYS2ebt0Z8TBvfTJ0VctS1wXtheoD+/VEhJ7EKl75tXSmz73W+BRG1/Pkuf5E6bxE1xs5M8mDRupxPV1xxSImE5SaMuuaaU4FOXLBWtJzmt/l3TmSwl0qyVE5NK5yxrv1jdtLNQ8/3fWa5/b89I/bQ8X7tPrSXtlKbFdv33WdGsS+RLCeOlvO6NBknQtL1CTkwuNeGK3NbKsZkmvhBSO6vIyVaLpHhJHgy4Qdq4Vpn+GIBFKpfmvOs+ICUqj5ZuBJDOb3VbpaTxmvcbEvXnaI90fq/LkS4KxEvDDkdozsu1+vhJjrXMUiLfBk05jFIbbY0MgRACRQW78fvaZdjw5jLs2LISo06ejvMvuRvWfrEIr/BVsNFoQojdgRCbAxZLCMwWK8yWEIT2jEfoyamwhlthhx3//l8OzBYraor19WeLbn4o5fqD+s9FePWfoX6P9Qnl5dE7Du7TH8cNctJzqS2N1iRRrpPKISdjr67Tl8Ri19e1XXOziEFq/yOldSWk6c83BzTltFv1x+We/HLddFpqZIvlStDEBPm79N/5Gin+dknTqzfpb5op0STv7ZGoj2uLKvS/beRYw6ipgyED9PH06h3678usORt1045o/bGqjQ8yNPtfUy2de+mE53K58PTTTwMAhg2a3KbrAwDwzGM/6aaV2MA5qdHvcDlZthw/yG2vtp026Rslp7yslIRYXl67rnqpzRZS26FI5/sSTVuqyHGJfLKUYnBFTpiuXbd0boR8Y5xLanel768uWbv0+0+uj4Z9UrJxbTnkeMAlfU5CqlspXjAOCfyGsUXp26TqbVIbLu2Ss0iKLw9tq76+Biv/9xPWrF2IogO7YXdE4LY/PK0u9r8fXkZhbT4MBgManPWoq6tGg7MO9XXVsNocePiJb9Vl33zlHmzbvAJCsx/+j01RDPho0WbsWlsIAHj/xYeweWMOmnPOBbej7NBvtM2//YoNq5Y2uZwQAiH9I1G43jeEVXxUT4zMmoa4+FTExqcgNq4bIqMSYQ8LV4fLEkLgwBb9dSGv5jewRbrO1SAdP3m10ndCavMrdgeOe3ucPl6Ml37zyx/5fs3v0k+X6BOgW6Tvi6dBuh5l1n8XheY78vJ/luvmRfbRx/VysnU5BWKDZp+jHPr2v4cUExuk7+oqze+PJGnZr3P36KZPG95NN/27FANof4vLydZPG95dN11Ypv/+VEqfW0b3SPXvHUX67638uXSXYq8DmmNCSOGhR44Bo/Tnkyjpc/QnlK+XzwdH6KivMtx44434z3/+g549e6Jnz57q63v27MGUKVOwefPmo90EBZnhw4fjsssuw8HyMJjNjRNIE3V1QgjUVJcjNCzQAD796GUo3LejyeUPlu2HEEK9AHXBn+6F2RKC+JAEhIfFqAGJrWe07n2KouDpN5dBURSYrfrGoq64Gl6pgXnsje9gMpmhKAoqd+obTIsUzPrHCici6iz5uzajW2ofGAy8CEZ0tLxeDzatX46NG5dgy/pfUVZSqJtfuHe7+ndoeBSefTsHZrNFd1FByBf3DjFbGK8T0bHz0UcfIT8/HwkJCRg58vTOLg4FoYMHD2DLqmXYtO1XbNm+Am5PoMOqoUHfCbC/dDd27dsorwIAYDLpf7O73S64GpxNLivn8LDZw2AyW2B3hMNmD0NYeDQcjkiEhUfDZg+DwWBQO1hGn3wW+vYfje59+iA+MRX20AgYDEaYbRYYDl3Bd8J30fuUKZf7NygVoIUKITqBtMtQWiaTCS+++KL62ubNm3HaaaehoKDgaFdPQSgzMxPvvfcennm26R5uoq6qoqIYvy3/Abk/fwmDwYi/z/yfOs9m891xFxoWhZi4bohLSEV8QipiY7ojPiFVt54BQ3x3P4lS6e6aJrQ01JxBum2B4/ES0fGisqIUzz18NSKiYnH7P95ERFRcZxeJ6LghhEBh4Q4cPHgAg8ecor7+2fv/Up9INZnM6NVvGHr3HYV+mSchsVsvdTlFURgzEFGX4PF4MHPmTADA7bffzhsnqd3U1lZh3vf/RVHxHsTGdENcXAriYlMAADU15Rg4dALsDt8TdN9+/RpWr/pBfW98fCqGDJmE3r2Hw2TSP9VyxrgZcCYZILxemK0hCAlxIKlXIkLsoTAoCho0D6r8acYDMIUZfZ0ghzomYhNCIYRo9Fv+T1c96Ovc0Nyw4JKfTjqk34CTAAB2aYQBeZ1E1A4dI3a7Ha+88goURcG///1v/PrrrzjzzDNRWlqK9PT0digiEVHX4PV6oSiKevPE1q2/YcOGn2EyWVBSshebNueoOUFMJgvqaqtgNfuCkUuveRghNgdsdmkIJ6c8WAQREf30zbtwNdQjNDQS4ZGxrb+BKMgJIbB312asypmPVb/Mx8GD+2EyWfBE1kQYDEYYDEaMzb4Qtc5yDBw+Hr36DYM1xI46eagxIqIuZPbs2di8eTOioqJw00034Y3/ru3sItEJYvGST7A8Zy4AYMeOxkOtJ3TrgTTHAABA/8yTcLC4AH17jcSg/uOQ2KOP/omOwsCwUj26ZcIyTD90eaxmOKjC0sAwSWHh0bBLQw7FJoSjKXyCmujYOOqOkQULFmDatGl4+eWXUVhYiPnz56OqqgpDhgzBvHnz2qOMFCRWrlyJ119/HTfccAOGDRvW2cWhjiIEjB4XPKaud2ei4nFDGE2oqSnHnDkvYsKGn5F5wZ2oHzgOLqsd+Xu34Jflc3Tv6dlnKE6acA6GjDgFFmsIvIfGX42M4tBURERtUVNTg18WzgEATD3vukZDCRBRwI5tq7F2zY/Ysj4XJUWBsaMtFhu6p2SgtqYKoWGRAIDTzpwBa2RIM2siIup6XnnlFQDAzTffjPDwpi8YE7WVx+2C8dATHlMnXozuO9cgNW0Aco1mHCjdh5KSvVAMBoSGRsGkeXJy+IgpGN57YmBFjE2JThiKEHKKlMO3Zs0aTJkyBaWlpRBCYPLkyZg9ezZCQ1tOgE3Nq6ysREREBCoqKoImAMjKmo5ff/0Gw0dMwZ/+dH+jBOp/+ZO+s0SbcF1OpgopgZecXK1RQlAtKWmZaObxRHVdYS08zislNxQN+uRAik1fDqFJHqTISUqlxJuNkrZJiZG8JYE7AJUwfaeDEiMlR5OSxOsSj0nJxBslMZV/YMvjT2sT2UqPbkaV7MHZ38zEzvRRWDp+BlDvhrmhDhFVRSiJSWucINWumZaDEfkzlZPEa5PVm6W7LTxeGNwuJBRsQ3L+70javRFJBZuxvc8Y/HDq9Xjjo7/h4J618Kf18ioGlMWloMbrgdNZC0V4sd8ega8vfRjxUfoEVpDqXt62yRGY75GeHpFPz7YYfZYqtyYZn3yhw2DSb8cpJcuUE5EpxsBnY3NISf12tpyYziEdqzGaR3adUkKsOilZqE36DoRo6qe6Xp9s0CUl+Yts6bsHwK75Lsst3W4pKVl4rL5uHSH6R6K1Scv2SueTZCk/S630Pdd+jvXSvFApoWCYVB8VNfo6MGk+pwNSctkwaV29k/Vtx9qdZbrpcE0y9qG99AlSk6SEub9s1J9jCzTnAad03J45Jk03vWu/Pinu0F76u/9/XBNIQBwifT+iNUldq6uqMGFwj6BqF4HgjAdee+013HDDDejduze2bNmC5/61WDffKiV4lDmXBRL2CinJYqMk3RZ9u6TE6+/aE3s18YTc7spteqP2Un/e1SVQldv/cv340o0SomraVlGlb++VSP25UMgJZOVyanNGSHGKYpHaR3mftSdTaV6jDiyjNC0nbtXWRw99UkpIbRakpNaN4hZtAmh5H+T6kJPTausgQf/5NzpepNxdipSIO6l/YMi3Yumc65ISzMttqdzGaxPMN1Tojw/tMBoLvpyFuR/92/e6xYohWZMweNgpyBw6FhZLSKME6MKj37BRSvotz6/X1LUcOzT6FSm9kJSk/06UVgb2wywdP9r2DQDqpLbFoWmHSw/oE+LapSSdcvtXIh1PJZp9ypTOJ+uk5LID++rbrM17ynXTNk25nNJ37eTMBH05pVh1/m+Bjiw5yXmdtK4Ih/6cUCklZB4/MHB3slyXW/bqyxwfqT8mftuqT76eoKnPuAh93eZs1i87TIoftIneHdL+Ll2tH2Y7UTrfhkqxV0ZKpPr3urxALFpTXYULJ2QGVbsIBGc84HQ6MXjweGzfvgr3/e1jREUl6K4RtHR9AADKFu/STQtNQnDDyfrfbGKd/tiG/HtZIvID8a0i/RYQVU3njFDnS/G97ner1N4pcnJo6b2K5tzgrXQCQuDkrXNQEtYNe/sMR701cG5RpHNlo2sVmnZKiQ5B1MECWJ3VOJDQG95yabvyb2+pzdetq7t0vErxkZKpP8+KrZr2s0eE/r1ymy5dezBIsUbB5s1YsvRTVBbnI6SsAGsry/Do0/MRYnPgkn9dg+T8TQCAWkcktvYbh62ZE7A3dRCEwQhESL81NXGOSdqORfpd6pTiFI87UG5HvP63s1v6HAzSOTymm77+rJpjori4RjdPbpfDpGsEkZrf+cVS2xgXoV/WJB2L+6Rhvj3aa1fSdZ5YabtyuCC38aX7At8nkxQje+r1n3mPPvp2Z/umwHc3qpv+eKmXYq9Y6btqlX57Fmk+t57SNY78En1du9z6vdL+tgaAWE1sWlKpPyekS+selq7fp+VbAvskXz+okK77WaTrPvLnGq/5LHpKcdkeKZ5ySd8nOfbQtsuxDv0xPyd3t256wqAk3XS0vfkboXcW68tRJe1jhLStxEPnssrKSiRERx11u3hET4w88sgjjV475ZRT8OmnnyIsLAxZWVl49tlnAQAPPPDAEReOgkd5eTlWr/kRADBmzDmdXBrqCImFm3HBFw8gxFmDdQOnqq8nFW3DH75+EL8NPguLJ153zO/GUDwejF3wFkYu+xRGr77Ridq/HZ/PewHb96xFX5MFvyX2RZ+KA4ioKkZs0W5oQ7h9Ey9BfEJaowtQRETUdkIINW/dzTffzLGQiTRcLifWrVyIlD790C2tLwBgwLDxqKkrR78hJ6HfkNEIsYeiVvrxTkR0PLJarfjz9c+gsrIU4eExrb8hyEVVF6LCHoeo6v0Yt/kLiBUK9sf2wrqMU7G+76ltWke/nT9jwLaFSCrdjhCnry2pCo3BmoypyB18HqB0TlxWX1eD3bs2oLaiAnV11fB6PbBabbCYQhBitSMmJhmxsd0RXlKA0XNfR/SOdaj0eKCUF+EuIeDvOo4CcLBsP5K69cK+HoMRXn4ARo8b9ppyDF35NYau/BrVodFYP/R0LD/rGogW8nkS0YnhiL7lDz30UJPDGiiKgurqajU5FsCOEWqbTz/9FK6GeiQk9kB6+sDOLg51gMHrvkOIswYCCgqS+6uvp+1dAwAYue4rrBpxLqrCju0QVOEle5G19CN1enu/k7HZHoNfd63BtwWbsW7f7wCAMdPvxeK+Y7EYgMNQhdj9eTAIj+9uEgjs7TlUXYe9+iAaLDbY6iqRvn4VUrevQp0jApuHnYqCPoMbPTlDREQ+ubm52LhxI+x2O6666qrOLg5Rh3C7GlBVUY+wiOhG82qrK7Hht5+xecNyrF+9GLW1lYiN7457HnsfjtAIJKf0xh9v+FsnlJqIqGOwU6R1iteLPyx/EiaPG6HOct9rEEgq2Y740rw2dYwYPS6MXfUxoqp8T4q7TBZ4jGaEVZdi/MoP4VWMWDH43MMqV3r+aqRs3g6vYkC9oqDeFga3IQJ1IWGo9LjxXXEe6vbY4HI1wFp2AJbyYlSVHUR5fRVShp2Fk3tcCQAoKyvEG6/c1ex2Joz7A84+62b0z/kOg3K/AwB0k5ZpMJnxyF+eR31SDwDAL6ddhSVn3ACD14OUHWuQsfIH9N68DKHVZei7+Wesm3Q+qiPiQEQntiPqGElNTeV4z9Su3n//fQDAqJGn89gKEr+NugDpu1chrLoUl310J+otDjRY7LA0+B7R3NxtCHa6XXAV58HpqkV9Qx3qUY/uib0RF+179LmwKA8/Lf8E9Q11aHDXw9lQB6/X40syqhgwduTZGDHYFwSWVxRhweL34XTWoa6hBrV1VaitrUB5eRE8AK4H8O5Nr6E4sRd2b9+Ac1Z9hUcAeAActEWgbuVciFVfweSqh9tmw2fX+p6Kg0FB740/o/vONdjVdzRiDuTh/Pf/DpO7Afaact0+D/t5Nj6/6VnszswCAMTt3QYbnHBZ7TC6G2CoqYXJ5YTLakNBz0Hw8A4VIgoy33//PQDgvPPOQ0RERCtLE3VdHrcbRQd2I6lbL/W1Nb/9gB3bVqOyogQVB4tRWVGC2ppKuN2+IQOefzcXZotvuIAfv34Pv/08D/l5myFEYJiVyOgEjBp/Jkwmabg1IqITyM6dO+FwOFpfsJMlFm+DuUaB0dMAo8cNoSgQ9R4IAPUhYdgf10ddNryqCC5zCOq8lkM317WfiOoDMHlcCHUGhgtzGS3YnTwYa/qfrr4WeXAfuu37HWFVxQgrL0JYTSnmTvsbPEYzPEYztqVlwV5fgdVjzkNJbDoUITB85RwMXfU18hMzfftRXYSEgt0Iqy6B2eUEhBcGRcDiqkNS/jr8re8EFNRUobK2DNcWrMeF1cXNlvtZAJsO/f0AgIc182qXvIXSvStQmJ6J3VEJ6JXUE8IWDrs9FAaDCQ0NdXDW18LprEVUtO+ZkA3jzkLq+l8wpzAP25N7IDSxD6YbzThp6afI7zcKPQ8WYUdDHVwhDrgtviGGvEYTdvcdid3Jg/HDGbeg59Zc7Oo9Eu7W4lAhWhzdQvG4EbV/D+Lzt6DaHo7dmSe1vD4i6hRHdNVt165d7VwMCma7du3C0qVLoSgKhg1v2yOeHcXqrEbazhXosW81HHXlWDHwbOxJHgwACK8uRs/8laiPjEaDxYawqmJElRcgsrwQIc4qrBx2LrZ3G9Xsug1eN+KKdyO+ZCd2pQxDdah+bE3F60FoVSkszlrU2cNRB8cRBVAerxtelxcGg/FQp5MC5dCQUQoARTHA35y7PS7U1lehrr4Gdc4a1DZUo67Ejdo632tDBk5AgtH3BEdBcR5Wb1kMg80Kw6GnJrxeL7weD7zCg2EDJqF7ki8Q3LN/Kxbkfqx2WAgINLiceMMehT963Li+oRYhDTUIafA9rrsXwLh9axH33g2YB+B7AHcCqAVw7qk3qB0jdc4arP59UbP7PqjfOPXviqpS5K6a1+RyNysKlp50PoYl+i5exMekwJbUFw3Fu2BxNyC2rgLIX68u77Tqg/QRSz9D913rsOjMG7E/sS/s1Qdh8rjgVQwoTMvE7oxRiCgtQLed65CfMUJ9X9b8d5Gx6qcmy+QMceCdf7yPquiEJucTEZ2IHnjgAUyfPh1Wa8s5hKjrU7wepBRsgCK8yE8eCC9O3KTf9fU1KCspwL6SNSjYsxOb1uRg05oV8Ho8+NcrP6mdHZs2LMfK3KZjEcA3VIh/2byt67Bnp++p1YSkHug/cAz6DzoZvTOGwxre8tj3RETHu7/97W/4/PPPcc65t+PkkztnqO2w8gNI2rcZ0aX5iC7JR3RpPgq79cOPZ9yqLnPJvH/A6HU3+f78pAH4ZPqj6vSfvrwPobW+PIf1ZgfykgZjbZ/TkB/d76iHjy4PT8KrU55HRsEK1FjDYXHXY0/GKLhNgXgqbfdqnDf7wUbDR6fsXYddab7fqL8MuwhukxUi2grDoWGzfhowGS/XulC0OxfVW+bjoqJt+HPFXjSnrngHfjz0dwKAavguPNoBZEQlo4ctCra6ShhcdegT1xNhSfEwmSzofmA3yndtgtHrRYjHDbvXDfv2NUjZvgajARx8+HNUOXxPcCTt2oCokr34fdhU3bZrIuPw2X3/9e0vAO/Beli+9A3R2mvDL+i14RcAgDPEjnpbOOrt4ciddCm2DfIlVvcazdjeP3ANIbSiGH3WL0H83q1I3LsFUUV7YBBeKELAGeLAq68sVJe1lZcirLgAyb//hqTVOUjevhYWpy8v445B49gxQtRF8XZk6nQffvghAKBP5kgk9Ouhvi4njnr2tRzdtPeXQGMspITOQkpuJCcINcTrkw569wfGYjbBhQF7lyFz3y/odnAbDJq79NbHnwyvyfdEQ9z+TTh15X+b3a8V/c5Sk6332ZWD/nlL4TVb4DEYEVl5APHFO2D2+O4QnHWxr7FWIkOQsfprjM/5GGG15TBIlVBnC8d717+CJfm/Y1nuHNQ7a+H1BzZmA4QAGpy1uPL6meid5UtGt+ynL/DJrMeaLedNf38Rg6dkAwCWLvgcH7z3cLPLJqT3RvfsIQCA0tz1WPjb/5pdNjG1D7r3HwRzryjUrd6KTXkrmlxuOYD1F92MiaMmw1RRgZJta/DPT17AQaMRNWYrfvB4cL3LiWyzBXek9EFk3zSY+8XCVeNCbFgGzr7gNlhD7LCFhSIkxAGD0Qiv1wOP242EpDQYE3x3ekSFp2PaudfDGmJDSEgYbPYwOBwRiIxOQFRsPIyapzPiBidg/cT/Yb0QsFWUIqpsP0IP+BJEu0PsqPWYYOvpG+7CZDfD2S0J2LUO4+a/iQ///g4+/b83EFFSgPx+I1EfqrnTxOtFiCYJqjMhAQeT0mCur4XHbIHHbIXbYkVoWRHcFiuMw/sh8lCQ3OvHL1F1MB6FA0aqgXOoJsm5/H2xSIn6oqRke1VSIjJtKG6TEtNG99AP7WGSkuuN6KPv1FuzI5Awzywlj+spJdhtkJKz12gSsRmkhG9er34nu8fqO6jKq/Xf+3rNulPi9AnOLNI5QZvkGwA251foprXbignXX9yrqNFvV06oXl4TSB4ml2NET/3QAN+szNdN9+2uv1NJ+/4aKTm9nBBWTlo2aYg+Adqu/YGk0oVl+mR6NikZb4qUJNCh2Uc5meyqbfrEtZlp+s+8TEpIeVK/QOdfuVSXtZrjQT7u6MSkKApGjBiBlz5cjUXrVgMA7vrbJN0yz9z3nW5alOiPX29JXWBCig8gH0ZS0kWxu1I3bdAmm5beK+Sk5jUuGD0N8Bh971Fibcha/TlqbREoiUpFWWwqGiz2Q+/VJ7g2JEp3xUrlgiaJvJIm3cEoJak0SEm8hXQ+gyYJoyLnxZK++5ATyGqTMMqJyQ/Vj6W+GgN/m4dhv8xGZLlvOI4Pr34BheGDDxXId4elSZM8012jP19B2gdDiBHlZQegKArCImJgz9C3O9rEpQ1S0klzkv787pLOjUbNtuxSMmjXoQTXXq8XpUV7sXvb79i7ZwsmT7sCdkcYbDF2fD7racz/Yhaa4giNRGlZAZJTeiM0PATDxp6C+JTuiIxOwLChfRCXkISIqGiEhUdgd6kbBmPgc596wdUYOX4qemYMQUxCsm69cpsfIp2H3aHNJ7iMluq2wa3/HLWJWQGgLjIQP3ikxOyyymp93dZICWVjNG2tR2rT5eSisVISWKum3Y6TEqLvkpKHysnWvVKFaZOe7pES1w7trx82RW6z+khJcPcfDJxvUqV563eV6abjpPhhcM9AfFUgJbVNkY7FOinhsHwM5Gv2Iz1B32aXSvUxJE0f1xmlIV7Nmrp2S5+5nEx1r5QwNU5zvMiJaM+Z0EM3LR97Din5+uY9B9W/szSxQmUlOwZPdJWVlZg7dy48Hg96DxuGkKTAMa099lu6PgAAokp/TtImKnd9vkk/T3PcR1cXYsz2uei/PxcGKW20s8EEz6r9EIfarTJbAgyKgNtghsdg9N14CAFFCJRZEyBK6oBDv8sUT+B7HOKqQf89y9F/z3IURSRhWa+TsaTHSDitJsREJSEy3Hcuqgirw9qVP0EIL4xGMwxmI0wmM7xeL9wuJzL6jUJKD9+w1AV5u/DkD8XweArhUdzwbtkCr/DC63EjvbYKN21fC6PXgwOJvbEnKgk/F2zGXsWAJSvewb6V78Pr8cDjcaGq+iAmTbwEp066DABQ42rApys/UMueAGA8gHwAlQDiknogrfsAeI0m7IlNwYEtuTg5oRvCI2Lh+H/2zjq8imP94589LnH3BA3uTtG2QKlRd/f21nvbW29vb+V3a7fu7gI1aIEChRZ3dwgx4naSnBzf3x8HcnYnQIAkWPfzPHme7NnZ2VmbeWfemfcblcBWczRRkfFERMRRY7KyNCZUF44EjHv6FQ3Ap4A9MQzJ7ycqfwexG9aQsHUtkYW7sLRLwGsII6yimHM/ehBLvYNIo5s1Z13VmJ9ZqGf1HXSsG/Acebuuo+Nfv5Ex6xciCnZhdjkxu5zojDoqTp9AuM2OTrQJfX56T/6RQT++yr6QkNGZgscY7SbGPfUgKWuXqNJ4rXYqO3alqmdvwvcIgydRhzs6rrFP7xPaQ58/ALKMpaqcsKICLKtyCSsrxmux0RATh6dzFxztghNQUwQx7TrB7o0R7AFlXztBEEiPDlPbS3qhLx4j3Ftl21It2FaJwtiDWL/vFrTQknuG6vjiKnWbFSbYuWI/vv+ANPaHLIvfr7otdQrbvRXtcmK02l6Ki1RfU25prWq7XZL6WZiNoXL37Xhgu+WPdUWq7QiFLZYqjHk4BeF68TmN7aO2GS2K8RiX0KanxanthTU7K1TbmYnqa1JWh7kVgv3UQRgT2q4eE6hT2ITj+qufWU6Ruv8l9vvFsQrznjq1Vhj/OVw0x4jGUScsLIzU1FQGDp94tItCYs0uLlj+AjZPqJIrD0thZ0JvysPS2B0VCofgNIWzJWkAVn89Zq+TOks01dGpVEUm49MZyUvu2Zg2tiafzrnqRhLAZbJTEt+e6shk/lzzMzOWfcU73gb2Dnl4gRqCImF6wNrgwG0Jo95Zw66CjdwIxAJTgC2KfOvrQ4MggUAzYuCKOsdmD0fS6bBaw7BYwrDZI7BZw7HZIrBY7cTGhjpDCUkZjJ5wGUgyfr8PSZLQ6fQE6n1IOl1QiHwPKRmdufiaR/D7fAT8fiRJwmS2YosIx2yxkZjSjurYRPyxPgJZXbj/5IvQGwzg8xK1dTV17z1Odk05PxVsZ6akY8eefCMiYxk59iIg6KBQIgfUlX50TCLjzrw2eE986gZSr9+P5ock0RAVhzcpmdJufRt/dlerG+vZ97+I8akGMpb/yYQPHue7+9+hNKurmFsTbZEF1/5L1VjL/j3/BwKEVZY0Gkt6t4uhb/0Hc52DmuQMtpx8DltPnkQgbP9GgIaGhsbxRiAQOKbE1vV+L3E1xVg8teTHd2/8vX3RSiKdZdicNVg9tYS5qoloKCeyoZyyiHS+HhnS1+u9aSYR9aGOQU14AjnpfdmUNYLCxJbPEG0pdXXV/DbzfcoqCjGZLFxw0f2YTBZ+++19Kip2U1ddQV19NbExKYwefiHd+p60z3z0Pg/9F35PUs5aUneswuYPOhQaLOFUx6RQkNyJL798kr69T+beNXOIq9xNUZc+FGb3I7fnMHyEnntlZTHbtiynsryQstJ8ykryKC8rwOsNdn4uvuYRRk68AICaqjI2r1tCu/a9iYlLblqwg8Trde9Z/Rokb8dGNq9dQkVxEUUF28ndsRFXQ6gT23/weGz2YGfRZg8OhtvDI4mJSyEuIY32nXvTsesAUtI7qt7pASdNYADBkCZ9eqhXhOqqq1Xb7Tr3pF3nnmhoaGj83fjhhx9wuVxkZ2c3DvofKaSAn4uW/Zdwd9AxtzuiHeVhqVRGpFIZlkylTV13fzjwSaRw9YCyZNi3LfPm2e+gC/jIL1rOuuUfcaG7lsuQSagpwrlyMq+unEwAmDTuFk4aNAmAyvLd/PztvgfmAc423tF4j+rrqpn/x3dNrwn4hOCKjYL0Hnx/+XPsrirm+bev32++DkdogDQyIp4+vcYQHhZDeFg0VlsEbyfGYw+LJCw8mpKoBLYpxnnPHjIJlPdEcJofDLJeT1VWZ8pTO7Jl3HmKvNzUxSSyafTZ9J32GcM+ewlbVRlLLruTwAFCTNZkdWJ9p2zWX3MnptoaTDVV+ApL8FpseG17Bp5lmd7fvkdB/+G4wyIJL8qny4zvyRs4irKO3Snr2J3KzM74jUbcdR5khRC95PcTnbsNtz2c4p4DKek/lOI+Q6hu1xl0Olx77kG7+TMY9ebjrLv5AXZOuhSA+NVL8ZvMVHYLTkC1VFVwwbn7X12yc+L5LHvwv4d8TzU0NPaN5hjROOrccccd/OMf/+D1L5a3+blM3gZi6ouIra0kpqaQuKo8asISmJN5IRB0gshIVFvjWJV1KluTB1Bj3bfgVmFMNoUx2UiKAXnlLBQlOan9aDBHIOn8OGp2s74qn8llOzjlzCdJSegIgEFvxO1t4C3gLUlPucVOrTkMqy2CCGsUZw07h45h0XjMNrp0GsRVthie/P1tkhxlPAMUxySxpmNvdnbohTO1Y+O5h405hyGjziQQ8Dc6C4zhQQ+0HJCxWEOe8L6DT+HN71ZTX6qwbMQZoXtIy+xCWmYXjIJDwplX0yRtTGwSQ0edTcCrzkt0ZgDBgYk9NkbfWd8w8ttXcdmCgw5Gj5sBv37MjoFj91mmoZPfJDFnI1Nvfx6v8QiGYZEk5t3+by74xyQS8rdy4XM3MOO6xylP73x4+el01MUlNwYdMTY42XXSeNrNm0ZkUR6DPn+FAV++TsHQsWw7/UKK+w5pjJGqoaGhcTxSVFTEgAEDGDduHC+//PIRP3+/nJlEOMuxumqxemqJcRYT5SxFh0xpZAafjH22Me2YdV8QU1e8z3winerZUau7jSd99wbiqvIId1YSWVtKn40z6LNxBrnJPfnutCcAsLhqGbr0a1xmO1XRqVTGZ1IZnYrP2LZ1+4bNC1my/NfGbTkQoLQ0j02bFlFVGbrGmtpyduauZVThRUw87QbVKkuAlD+/ZsTsj0P5Al9Ep5B489v4jBZyc9exZu1c1qydy5NAEpBUsIW+s76hSpJY0mM4hefeTnV8Gvm7NvLdF88isvec4RGh2XwbVy/gszcfByAyOh6bPQK9zojBYEJvMHDWubeT1TXoXNi8fjEL/5iC0WjBbLbhrKuhsmI3lRVF1DoquevBD+iaHNQA27JuKZM/flF1foPBSHJ6R9IysrFYQ7P3Rk+8mDFnXIrVFoZHMfgjCzNANTQ0NDSaJxAINNoBl19+eZvqj1o9tXQrXkxm5Sam9b4Rj9GGrNOztN1pZJRvZEGHsymJyAJAMrWOJkhAZ8AXFs8ct4M5wD+BSZKeXyzhRBnNGExmzinczOlvXU9tZAIV0RH0Se1AodXOJrONLToD7kAAnT64ciQhKTQZMTIqnpNPuwq93oheb0BHcOKiTqfjk5oKblm/mJkXPk5kVTHpxdt4f9g52Px+rD4PFp8Hi8uFKeBj/pDz8HXoEbpP1jAuv+hR1XVIccLq1Dr17PE2RZJYeNndNETEMOyrV+gz9TO6/PETjqR06lPS+eOhlxsnJKYs/RODu4GivkMhOgokCU9EFJ6IKBxhSapsu/z6DQM/eZmBn6jtUK/FRmGfoZRk98YdEVwJ79arJ0rKej1ffPFXcEOnw2TZ91BreNluTHW19Hn13zgTU0j7Yxrtfp1M0cARzH3xYwACe1aPypKEMz4JR2Iq9fEp6N0N2CrLcLQ7zDEGDQ2NfaI5RjSOCXQ6Hfq2EpGUA5y+6l3SqrYQ2VDRZHdFZBrscYz49Sa+GvogVfakkJ5HC/u1pdWF/FmykW1F69hZvBGPL9SIJuxa0ugY6d1xOJ069yfcHo3ZaEXSC8aXzcDe0sfFpBAfFs/aBgcNWxaQkbOapMpikpYWw9IZyF+/QE6fEUy752X0egNGk5GY/O3UxqfgtdgwCcsk9zosdOI5jyI6n5e+v38FgMXpwG2xsbP/GFacdvk+05ucdQyaGgxl4Ve8S93m/0JdVDx53Qe36czchuh4fnvsLcb95x/EF27n4meu5fW35jfuH/X1S8Tnb6U2NZOa5AyqU7KoSm1HTWJak9kt7ZbNwdRQj9kkofP7KMvuyfy7nmLBNf+k/cKZZP8+heSNK8lY8DsZC35nyZ1PsPmsywCwlRYRs30jDe07UpecjmzQqnkNDY1jn//973/s3r2bTZs2HRXR9b45s4itL2ryu8toozxcvTqvKKYjZZEZOA1hOE0R1JsjcVjjcEQk4LCpl5Ev7XMeS/sEZzpafPUkl2whe8dCOu9YGFwxsgejp4F+a35pcv7asDgqY9LY3HEE67vt0WGTAxi9brymloeTycoIrYQ5fcKN2MOiiIpO5L77PmHpkqnE2ROxWsJYtf4PFiz9iXnzviHg93H22bdj8LhYtH4uS5f/Rm5uUIdrIbAjMh7rmCvIzurf6NiJiUpk7OhLWbx0KiOdDoYCw4HTgXayzIR182HdfHZ0H0bZGdeT3W0IsXEpxMalkpCYSXJWB2LikpEknUqI3GiykNmhO/k5m6mpKqOmSi3w2uAMTfQo2b2LNcv3resFUFdb3fh/RvtuDBp1OhER8cQlpJLVqSfJqe3B39SOsIVFNPlNQ0NDQ+PwmDp1KmvWrCEyMpJbbrmFr2fmtf5JZJmeu/9izLZvsXqDA/oZlZvYnhjU2ViReSrL009t5VPKjU6elOhMbp/wNOHWaOzmMEzxUfTe20+NMDH860eJrcgntiKfLKC/Ih+/3sBHj3xBTXzQNrHEhGyByKh4Jk66JXROjzrkzk9DrgRJYsDC7xi06Nv9lnXbKddTvsfGyNi+kpS8DSwec8XhX3wbserMq6hLSmXku//BUu/AsmMDzqpSVZSGXl+8SeL6FfhMZgpHjiNnwnmU9B+GvI9xj4oOXSjv2I3w4gJ0Ph86nwe9z0fsri0Mfe85qlOyyO8/AoCI0kJknY7a2KTQGMNBrHpee/ZVpG9fQ+pfvzPin9c2/l6XnAaBAOh0eMIi+G7yIjzhEQSMJrxODx3m/Iy9vARHQz0JKxeRMfsXlt/7FN6+/Vp4FzU0NLQRM42jxqZNm9i0aRNnnXUWhrYcvJV0xNUVNDpF6syRVEWlUhmZQnl0OmUxWarkleGprXbqvLJtvDbtQdVvdksEXTMHMKDLWNond1P9brfHilnsF1mnZ12/iazrNxGTq572VevpsHY+STnriSrfrdK20Pm8XPhQcKnm9qHj2HTOFZR17tXCq2tbAgYjXz3yMSa3k9iCHezqNQzZsv9BIGtddeP/st4AgQDW2ipGffUSZpeT/C79WXDerRS377HfPFpKWXYvvnroIyZ88DhxBTtU+5J2ric5ZwNsXaX6PaDTU9h9AL88+k7jb4O/e4vY/O2KNDrm/fP/2DZ8IltPPoetJ59DVN52evzxA+3mTKWiY+g9Sl32F8Neejh4nN5AXWoGtSkZONMyqU/NpHTAcBzttVkmGhoaxw4NDQ28/35Qs+vBBx9s09mhAAa/h975c1mVMZYAwY7xhrThWLz1NOhsNBjDqLYmUB6WQkNMfBOn+q8DgoMOTTRGRF0QAbc5jF0Z/dmV0Z/Zg65Dpwh16THbWNL/fGwN1cRUFRJdXYitwUF4XTnhdeXsTgjV2xHVJdzw+lXUhseyo/NQNvc7hcLMHgfVIRdJTMgkNaUjhbu3U1aWj3HPakuz2cqIkRdgKyrmtCnPoQsE2NR5ML/s3srA9K4M+vI/ZG5Zxo/ZQ8jJXYck6Xiq61CGDT6bkR36BcNHKWIJR0UmMHHCDZw2/npc7nrq6qrZbnLzXG01/YpzGbN2EZ22rqCwY2/i07O54baXVOVUrjCVpNB9HjB8AgOGT6C+2sHugh143Q001NTh83rw+XwkJoc0DTp26c95l/8TZ20tHrcTizWcmLhk4hPTiIlNaQyJBZDdaxDZvQY1aozsxe/ft8CuhoaGhkbr8NprQe3NG2+8kdjYWKB1HSPRNbsZt+Rd0ks3AlBmT2V98jBKwzNCiSSJFs+OVODz+5iy4n1spjBO7X4+FrudjLhOitOp7YyZZ9xDfOlOwmorCDfUE1ZVRkzxLuLztqH3unEowltLfl+w73sw7DlPdUwKBek98NjseM023GYbXrMVj86Mz2CiNiI4ySOiqphzPnkQg9+L22Jn1dBzW3gnWp8dw8azq/8ooopyCS/bjUWvjlBR0ak7ZkcVUXk7yZz1C5mzfsGRlsXclz/DYVLrIJZ16cOPr4Y0VOWAjKmuhg7zfiVj+Z8U9BnWuG/gD+/R7a9fcEZEs33wqeyaMInSLn32OxEzrHQ3cTs2kt/vJJY+8gIn33QeEbu2U92hC0vvfYqKHgoHh06HKyY00abr1C8Z+lZTzdgOP33F5sNwjOg8bgLG/WuRaWj83ZBkUY3mMFmyZAmDBw9ujaw0CAqORUZGUlNTQ0TEiTkT7dprr+Wjjz7illtu4c0332yy/+PZ21TbFd9vUG0HakJCO3J16P8IZxnj1n3Mr12upd4cdA60r1qHT2ekJDwTt9GGJIpSKsUhhZigkvXAK1l0saEwF9W+GipqiuiQFgzbEDDCM29fQ0JsOp2z+tE5ewBJCe1C8abFhlN57hh1+AyTELu0UY9iD0rhUaujkrAwPXXxQaPJWlLEhQ9egs0REoEs6dSTTaecS0GvoXg6qMUQIxX3RxS8zhBEmEUBq3pBDKpOIfItik5tKahWbZfXqMWTYsLVzylBIehYJ4iH65ctZfT151CflMrMHxbg9QcwOmro9snrdJzyGXpvMLxF+YiT2Xj17VT3CGmG2ASxcVGEskG4xijF/RGr0JjwPc9tz4yPyD3CWYZ1azBu3kzlynXY8nKw7dqJfdd2DM56/GFhrF6d0ygWnvHyM4RtXIfRYkJfXY11+RJknY78V9/DcVbIIC2pcjYqEBr2vDsJv0wm/eO3sObuRO9SL/EF2P3i69RcdDk5xWqxMOW9TopRC3yJwpqimJooABanEGbLF44VBdV7tVM7AyscoTIrBU0BLMISdlF4zS2EanO6Q+9IkiCeJorcGYRyNQgzrJTXGGlXf4tWk7ozIoqNKsVnE4TvuEwQDHMLYvSiOK1BoYdTWat+vhE29feSGHXg56T8huIEMb2VgliaKLCuTC9Gi6kWrilFEPoVy1mlCD0TLtS3SuE1h8NBYkz0Cd0u7ou/gz3wwQcfcP3115OVlcX27dvR6/UqG6Byu3q1p39WjmpbFmNXK99Jxbcd4Syjd8lf9MqZi91dw9yel7A4Si3sLhkE54bieF28EDZCEJYWHSNK+wAA0wEGLgSRQcJMWJwOoisLiCnPpyw6i9Kk4ArTtMK1XPTFA6rkjoh4NvcYy5oBp1PbrZNqX0nFThb98SPRcUn0Gzqe6KhQ6IiI1Ag2r1nKf++7AlmWufnB/9FvWGiWbKcpnzP6o6ZhrfbyyUU3MCMmgX7Dx2G3qAcYAkJ9ZhCE3X2uUB1ksBmxlxVTH5cIkkTAG0Dn9RIwBuuEcH89GYvnYPC4qI9Lom7QUDyRofP5FbpiZuE5iHaMUWg7lPWsODiVKtRfWwrU4ULFOlqJfT9hNPaiE84lCpeHKcKzJghC5GL76POLbUUo7waPH72rAUtNJfUJKdiFetYi3C+DXrSBQu+5TXiGYcI15gtiqpGCkLtSIDReEDHdkFul2s6IV9siXoVQd3O+U1EsNLdEbfMo23GHIBgr2hK9O6jtlHxBbDU5NlTOrfnVqn1iOS1CHVClaC/Fdy9cEJsVpPNU7zyon5soxBoutLuikGtNvfoeuBR2r2jzlVar370Oyep2SSncmhav7jPECjbQ3LW7Vdtd0tV1SJLi3LsUz7Cu1sHALhkndLu4L/4O9kB5eTnt27envr6eHTt2kJWV1SSN0j440PgAgOxQvNtygIGbf2FEzk8YZB8enYkF7c5mWdqpyDp986GyhO9Kl6j4joS2QIqyUF1bxvqdS9iSu5IdhevweIN2++1XvkxmgjBJTfn9C31ckhTfkSxjq6/GGR4MKWl0O7nsvdtZP2oSq0+5iCihXyX2ncQ+r7VJ3yq0Xbunje74wWtkv/U8siSx9N+vUXjKGQBUCu2QJNwfu6I/FBeh/vadbrV94PX6SFz6F3q3C3dkNGFpSXhj4/BFxTRpZwvK1SLMiYKAeOf0KNX2ym3lIMtEbV5H9qwfSJg6BYOjhtKzzsfx7oeqtGJ/qFAQl1a2Qxm3X0f09KlIvlAb2ZCWSeWQEdR3yEa+83YADEW7SbvsfMybg464+nGnsfT59zHU1hCxZiVVQ0cSKwhgK+0DyeOh00n9MBYVUnfyeDzt2lNvtOCNjqX03Evo0ydLdeyijSWq7di99oPXS+LrLxI5azqW9Wtxd+5C6RnnUnHmuXjSgk5BcWQ4KUZtA4lti7LfKrb3oli22C8VxdiVeYltUrxgA7kE+1LZbou2lUvo04s2ok8QI/conrFoH3TLULdRLmGMqFood1L0/if1imMxYtpaRR/DLVxDutC2rs2pEParbSClPVEr1C/RQiSZKsEWTY48+JC+orD7gRDPI9ZNTZ+ToBG85110OBwkxbZ8fKDVpulfcMEF5OW1wTJHjROS8vJyvvzySwCuuKL1lmXG1BVx0dLnCHdXM37rp0zpGWyQdsa1/eqIbYVr+WTmf9FJeu678g0i7NHodHoevOnDUCzuZjrJrUVDRAwoOvP1MQl89M5sEnZsoOeMr+i0aAaJ29aRuC0Y+uKve55m24Tzj0jZ2gpTTTWAasaMNyKSNbc/zLYLrqbf52+Q/PO3xP01m5F/zaZ00AhWPvk/PDFx+8mxhQjOFV/P3vh69iZnkGJZtiyT4KzGWKzuGObd/RAAcZEWCARIuvd2Ir/5gvQ7b2R7l264O4fCr4i97tIzz6P0zPMI+AKYS3Zjy83BUpBLfGkBuvo6ai64FF2tA8nrRdZmimhoaBxlZFlunB162223oW+DkI5hrirGr/+I9mVrkfZ4TRzWGKqE2NLHGi5bBEW2bhSldQPFIEJBZm9ev+d7knZvpsuGuXTaspAIRxmDFn7DgEXfMfXGp9nedzR+v4/vPn+OZYumNR7789evYbNHcPO9r5K5J354l96DOO2iG/jtm/coKdylKsP6Uy5ACgSwVZdjcjmJL9xORHE+RT0HsvG8q/F36sGeAF+4a9UDUodKfXzoeRgb6jn78Wupj45HFwiQtm4JOsVqjTmvfklZ3/0Lk2oE0XncDH/+UTrPCM6ALex/EkuefQufzd7MkRoaGhpHnri4OPLz85k3b94+nSItQyKzegsG2ceOmJ7M7Hw5Dmvr9wNlWWb6os+Yu2IK/kCo3QqzRXHysIvJTO0KwsDuQSNJjU4RgJ7LfyW2KIdRX79M52W/Uzj2NKrad6E6qxMNsfFAy22q7df+A3NFGVnffszAJ+9G8vsp7zcEfcCM39RyTU9TdSUn3X01MRvXNNm37oNvqRh0UovPgSRR3bUXO4cMonTSRfS5cALxU6fgzH8CX3pG88fvg12vvk+ux0PY4vnE/PgdkTOmYS3IJfX7XGp69KV4j2PEl5CIvrQEWacDScI+8zcyO/2P3OvvoHLEvnVTlYTN+R1jUSHexCQK3/sU2Wym8gD2VtSS+fS94cLG7dw3P8QXE4erWw+ifp6CeWcwKoV562bSX3qG9JeewTFgCDtfeAN3Svph3QsNjeOdQxqlvfDCC/f5uyzLVFZW7nOfhsa++Pbbb3G73fTr148hQ1qnY2t3V3PB8hcId1dTZk9hZud9a1G0FTOWfYXLXU96Yie83lBjJQqUHk1KO3Rn9q3/YcnV99F11mQyVvxJwvYNlHXt05im48wf6DLnJ0oHDMPRvjO1yenUJ6fjP8Y70bJeT0CvJ6wwl0EP3szGy2+mqkvQIeZMSmXTky+y69rbyPrgdVJ++oaEpX+RsHgeBRPPO3qFliS8Scl4k5L3n0ano/iFVyHghzongbAw2p0/EU9WeyyJabhSM5ENevRyACngp7ZbLxradQSdDskfwL5tM5XDRyP3vwEkCfPmjaTecAXmQSPZ+M9/H7lr1dDQ0NgHa9euZc2aNVgsFq699trmDzgMTt74OR3Kgh3uXQk9WdP+ZLan9COgM0BJXTNHH5u4LWHkth9AbvsBzDrTR/ttS+i9fCopBRsp6BxcEVlWkkfXRdOYCMwEjJ17s3nrWtz1DhbN+JLMW59pzO+cq+6g37BTyGgX0hxpcNahw8j6U85H1umx1FbTcfMi0lYtxFRXS/+P/8fMp99vk+vruGA68Tmbic/Z3Phbecdu1CWkBFeWJIV0XzpO/pTqjPaU9B+2r6z+1kRt39zoFAFIXTGf+FWLKRp+8lEslYaGhsb+iYyM5Kyzzmq1/CQ5gCwFB6V/zb6adlUbWJ847LDCTx4Mu8q2MHtZUL8jK7kr3doNIrvLIJIT2qGTWvecK4edhxwbzohvXiF5x3qSd6xv3CdLEr98P5+GhGA/M2bjGsJdDmq69sITFbO/LJsiSWy493EM5WWkzZnGoCfuBGDmo6+TNzTYllgry4gu2ElxzwEHH9ZrD4nzZ+/TKeKNiKKm36BDyutgqOvRh113/IvqoSMJO0ynyF5kk4nakWOpHTkWR0kVcX/Nwr5jq3ripV5P4cdfEejcmfBvvyLusQdp/8bzJPw+jdzr/kHl8DEQtf9Z+bUTTid3yq/oqyqRzc07ojI+eVu1nXlr0LYOGI3ovF7qxo6j5OEnsa5ajn3Kt0Qu/IuI5YuJnvkrxVffdHg3QkPjOOeQaq1Zs2bx2WefERamXrojyzJ//vlnqxZM48Tmxx9/BOCSSy5peSxxOUD3gvmM3vINdo+DKlsiX/W5nwZTePPHtiL1DQ4Azhx5HbFRx/Ys1IaoWFaefyMrz78Ro7MOKSFkHKUtm0fCykUkrFykOsaZkMyWS27Ae+NNyMYDhxc7GpT1H8baux6nz4uPkTp3Oqlzp1M8YDhFw8bgCY/EEh+Lo0cfNv37JdZffw+xq5ZQNHr80S72waHXU/zSG/jrnFhXrcC+dBH2pYuI3kfSHf98nIJ2wXArpopSOj3/ODwPnswsnEOGE/HzD+ganCTW19OQmELJmPE409vtIycNDQ2NtmevPTB+/HhiYg6ho36QRNcX07lkBQBfD3qA/IzerX6Oo43fYGJb1xFs6zoCa30VLnswjGhSSnuuS8wguySPJwC2KgYelsykZsd6fvz8d2SDEYPRxChHFfo/fiFgMLDFaOaBlx/k0tGTeG7dYjxhkSRvWa3SRQGQ/P5GAdPsuT9RmdaBso4t1/LadMp5eKx2kraupTY+maLhY6hJb9+4P2zP0v/wvJ30ef1p9D4vBcPG4g2LwF5ejK20OJjPNbeza/w5LS7P8Upl117Mffglen/xFgWDR1Mfn0TR0DHNH6ihoaFxhPH7/a26ajSirpQxyz/BZQpjeq/rAKg3R7E+aXirnWNfpEZncem4e6lwFHPqoIuDP9rbqO8sSawbcx553QfTeckMkqvyid65hYiCXegCftzRodBanb7/mKzffwKgqltvtl17O46TxzcfmxBAr2f5Yy8iBfwkLfxD1fYDdJg7jSHv/x+u8EhcEdFIyOiQCRhM1LTrRMHdD+LMDLbhOrcLndtPwGQGSaJo9AQ6fvIm4Xk7G/PLv+ZW8v5xH7LJ3DRmbytQcPNdAOwd1TQUFhAIC4PwxIO7H/sgYLNROj7k0FOq1roGDMKg11Fz463Iej1Rzz1N2NaNdH/gVgD8EZF4MjLxJiQRsNmQbXZqTz2N2gmnA9Aw+OAnfmx9+Fmyn7yPiPWrkXxeGnr1xVhchDlvV/Ca58xENhoo+OBLCs6+iLBli0n4+hPKLrjssK5bQ+NE4JAcI6NHjyY8PJyRI0c22der17Et5Kxx7FBdXc0ff/wBwNlnn92ivCzuWs7983lSy7cCUGFPZnL/u2nQH1mnCIDLG4yzaTHbmkl5bOG1hWFSGAArr76LmgFDiFu9DHthHvbdeZgd1dhKi+j15nOsO/MM3BlZR6/A+0E2GMg5/0rK+w+l82dvkTbzJ5KWLyBp+YLGNGtffI+yUybiSkiicHzL3r0jjl5PwB6GK7sr+a+9h2lXDoGtW7HsLgBZRtLrkfU6PHHxjYe4E5OpHDqSqOWLMeXuwpS7C4C6kWPI73cSXf/3FB0/eIV5U/6E8NT9nFhDQ0Oj7bjsssuwWCz07NmzTfIPSHo2pgzB6PeQF9uNtpV1P/o02KNV17jztKvQbV5C6sZlmJ116H2h2MKyXo9sCA3W9Pn0NeK2BmebjtDpeCsQoOevnxOvyK8iK5tdQ08OaphZQjMXbeUljHj3aYweF7l9T6I2IZUGewSu8ChqEtIp7twbv/nQHF87hk9gx/AJAJhEbbg9uKLj2HH2pXT84TPSFs5pst+vmF1prixD1umR49oohOaxiCSRM+YMcsac0fiTvY1mSWtoaGi0hDvvvJNFixbx5JNPcsYZZzR/wH4w+DwM3PwLgzf+iNHvJSDpWN5uPOXhac0f3AqYjBb6dRl9RM61l5qENJadeR1RmcFpc5Lfj9lRDYqwyQ0JSdRltCcsbyfRG9cw6L7rcXTpQc6Nd1E2pnkHScBsYcmzodUISo0Rnd+HKyIKi6MaS61aiysydzt59z/euN3ppadI/+YTAEqGjWHZs2+z6Ll3idi5mZ5vPEd9chru1HQClv3rMxwSsoze7SJgMIBsbnKd5tUrST3vDHT1dchGI3J8QnBlhizTye+n+PFnqR0/sXXKIkk4rr+ZzSMmkvHJ20SsWUH08kXoHTVY16/FytrGpOGzZ7CzWw+8GZmHdApXajpr3v2mcXuvxoh5y0aif5pM1E/f4zgt5MCpGziEuoF7Iri0vg9KQ+O4oNXE1zValxNZXO2LL77g8ssvp3v37qxfH1ruKYqtl3+xVrUdqGoqJI0c4LI//028I58F7c5iecapBHQGZIc6rSSIO8k+9YxHnUKYWRKEf2RBVEkShJV1e5Y+PvjhxXh9bh68/F1iIxKDO/chpqrOXPj8lKKEQlpTrNo4EEVM9YJ4ml0hlBQmCG0qhcNALQ4NYFXcA7vFgKHOQcqMnzHUOii8/h+hdLk7MXbrojpWFO1MVYhS7hLEL3u3VwvElQiCjhFCuXNLQyFPRCFpUeTUmJ9H7JcfYyrIR++oweCoofiJZ2joN5AqIS6nKEwnPhaDQf0cjYoZMtGCkKQoiC0Jw3BxgoCVcq9JEJkSXx+n8C4aFfda0ELDqnw/6urQzZ6FbuZM5Kx2+O+5B+m0iZjnzALAPXI0eV9OgT3X1VSES32/OiWp66RC4bkpxTXFY0VBNFGozaK4pmWCAPjAjurBLFHgS3yvyxT1QIPwvojPuH2S2plqE56F8lyisJooDmYUHly5I3QPPEJM4TRBAFW8X1bhO1cK35bVqN81g3Be8VsUhc2V4r2i4Fm4Vf1c6lxqoTalGJ3yG4em4mg19epriglXfwO1DaG8RGF21Tk18fW/1XW/8dWqxv8bpu9Q7Wsiti6Iaava7YY9374cAElHoEZdXynbfwBZ+L5RfkdCRSsJ4shiZ1u0J1T7BFtCihTCI4jxx5VhFsQKX/jWD2hbyDI6rxezqx5rfTWVWR0bd439/mViKguIKN9NdGkBuTFJDPF5uMlRSQMwPymDzhffzMARp2EwmvAr6lVbVRmDP/sf2fOnIe2ja7HutEtYfNujACStX07fb94mvLgAo7OOTRMuZOnZNyDrQvfLFqd+Ln6hfvcLdXpczmbaLZiBxx5OfWwi9XFJ2KrK2TVkLPa44HfT870X6P7ZW9S060xZn0HknH4B1V16Eq2wt0qFelUUvBaJFGYBK+voOsG2Eh+b1y9jLS7EGxaOLywCsUumbFtE8VlR9Nwv1LtR4aFrEu0QsT3UCQUT2xalTVhZ68bkqMZSWYYjs2MTUW9RyF1sH5XnEkVdRVtMFF9V4m7SlqqjGWzYpQ7xbBTqCGVbLL6tYplNRvWxvQRx4227Q4OAMYL9JNYJRYKQb0DxzJOEumiLIOSeJdgpovisQ3G/xNX4bsF+jBPCthRXqEVylbaHKNRqF+wS8f4oX+MwoZ6rc6rzihfEeEXh4y0F1Y3/K6+hvq6WiUM6/+3axRPZHpBlmfT0dAoLC5k6dSqnn356474DjRGI4wNxNflMWvYKMXXBVYO50V2YlX0Z5WHBCWCyUkxZaFeaiKsL32STNl/xrkthB14RIgltWhMnRJSynRYOThCO9QjlFjuMCkxCv9MSZcFSXUHPnz6l27QvMTUEv/3cwWOY9cSbmBRtS5TQRzMb1HVjgiAWHWc3YFyzGsnjBkmisMKJ3lmPbcdWyq65ufGa2z9yN4nff9l4XMnFV7H+wWdUeSn79SXV6meckaDud3jqXUTP+g1rznb0tbWYG+qoHziEqnMvAsC7aSsDThsKgKzTIZvMeFLT2Pn5ZCKyOxB1zx3YJn+Hrtaxr1vIrpfepHJSUFLA5agLrmKRJBKF90McixBNoRiFLaYUdZfq64go2Y0+dxe6sjIkZz0GlwupwYl3wmn4Bw7C5VU/8waFGLdJtIGF84rC5aWV9UHjxmBo0oar+tL19VT/PhdZr0fyB9C5G4jUB5DcHryds/H27KUKRye2O+J5RURbJPoAfUCxz98gtGlW0/7tbYtgI1cJguqiDaTsx4r940ONdKPUgrEJbWdJtbrdFcdflH3iUmGsJUPoex+K6HlziKLoZqGNF69Dfay6zy9ekxJx/FEkVqh/csrUoY+T99iQrTU+cOyIH5xAvPXWW7z11lvs2rULgO7du/PYY49x2mmnHd2CHSMsXboUgEmTJrU8M0nHb/1uxOPWUWtp/RAcB4vX58brC1YEFlMrzW44hvCFRZB3XlCzZW/1FrFuJYOuOIvqUadQfO3NOIaOOOylp22BJy2Dovsfa9wWO8V/K8LCCJw9icDZkxp/cjz2BNEF+Ri2bsH851xiXv4vlfc9ePTKqKFxgqLZBMcIrRzX+7hFkgjoDTTYI2nYE3JrL3POvxt9uAlbTQVXPHYJmZXFTB99Fo9Z7cyc+zOu4jwW/u8h/pz+LQ/89wvVsc7oeGbf+hSrT7+C1A3LsNRVY3U6sDiqidu1haKu/RrTGtwu0lYtbNzu/83bJK5fwbQHXj9sIdeKDl2p6ND1gGlspUUAROZsJTJnK+2mfsua2x+m6tKrkA1HvkuU+cu39H/mfjzhkcx9bwq1Ge2bP+hoIsv0+uBlenz6BgDl3fqw8vl3cccnHuWCaWgcH2j2wP5ZsWIFhYWF2O12Tj758DSQskrXMWnJ/zD53dRaopnT8zI2R/Q9Yv1Tf8DH5MXvER+RzMAOYwizRjZ/0FHAFRXLsqvuZu2kq+n1y6d0//EzcoefGrpPsnx498xgwNt/QOOmY4/TuGr4aFV0ipzH/0vev54kfNkism+9isSvP6G8Rz+Kzzz/kE8ZtngB6f+8HUtBnnqHLDc6RjzxCY0/S4EAkqsBy45txH38Hp5nn6P6pVepfulVcLlwFxahryhH8nhAkmjwBkKRMmSZ3hdMwBsbx+ZXP4To1okSItvD8Hfrjr9bSONNdHa0Kjpds/o6UmkJhq1b6Hzl/rVY6y67kspX3mzt0mloHBVa1AsoLi4mKenY1lI4GqSlpfHcc8/RqVMnZFnmk08+4eyzz2bVqlV07969+QxOcF555RVuvfVW7PbDE/MOa6ggo2wTDlscBXFdqAxPQZb2P6vsSKDTGUiOyaLcUYTFeHyF0jpcolavQNbpiJo3i6h5s2ho14Hycy+m+tyL8CanHO3iaTSDr08/ah98hOhrrgAg7LepmmNEQ6MN0GyC/XP//ffTp08fzjnnHKzW1p9U0CdnNpXGBAqiOwWF1jUOCmdkLLOveIAz3nqI3nN/5pmTz2XEm78x//fJbJv2KVenZJK+/E8Ce2asyzodzshY6iLiqEjvSEVmZwB0ypn3stzY6Sjv2I25dz1NbXwKkbtzGfnGE6RtWEZ8ziaKs/u02XUtefhFVt/2EInrltNu6rckL5pLv5cep+6nL9l676NUDhvdZufeF+2nfAaAqbaGlHkz2HLFLUf0/IeKzu2i2xfvNG7HbVxN4oI55E265CiWSkPj+EGzB/bPd999B8Bpp52GxXLgmeb7Y+iWHzH53RRFteO7YffjMoWDuMK0DfAFfKzcNo8563+ksq4UgM4pfY5Zx8he3JHRrLjmHjaddRnOmJDzoNfHr9Jp2re40jKoT8mgtmM2uZMugejWmYQqG434TUaqx45n9423k/rOq3R/5E4sRQXsuuHOQ3LKxH77RaNTpGrUKTR06IQUFUVDzz6NaQI2O4uWbQe/nyhvPZ0njkJfW4t13WpUb4fFgi81DV9qKOSac8+sdvPObbT7x/XYtm2GbRC+ahlknNmS23DMItXWEt/xwOG7AnY77sFDj1CJNDTanhb1EseNG8fatWubT/g348wz1ZXk008/zVtvvcXixYv/9kbPXrKzsw/72OSqnZyx8m0KozvyxagnWq9QB0llXSmbi1ezctdfXD/qQWxY0Ov0nDHkKswWG3r932PwJe+KGygbeTIdv/+EuClfY83ZQfqLT5P20jPUDh/FrpfewhcX33xGGkcNb+8+NJx7Pr6u3agYf2IadxoaRxvNJtg3u3bt4vnnn0eSJAoKClrdMWLx1DJuzUcAvDL2DdyaY+SQ2D7gZKbd/AxDp77PmjOuwGaPYNyka7gjKoqxbz4Jc37a53Ez//EM24YHZz+ba2sw19XgSEpXDXS4ImPYdso5yP4A1uoKAOqj4ijt0PbfgzsqlsJREygcMY6Okz+l20evErZjCzFLFxxxx8iWK2+l27sv4omIIm/ioc+UPdIELFbm/t/7DHrhYYoGjcJrDyP/9P3PJtXQ0FCj2QP7JhAI8NVXXwFwySWH72hd3e5kcuN7sCltSNAp0sZ4fG6W5c5j7rZfqGkIhu8Ls0Ry1oCrSI3JavPztxbOWMWqP1mm3Zyp2CpKsVWUErNmOQAdP32bHTfdTcF5VyAbW09IPv/Of6Fz1pP82QdEbFzbuFrFum0zCd9+jiurPf7ETOoyO+KKS2ganvDOfxIxazqGWgfR82aha3DiGjwUJAnLhnXIZhMevx5PQiKyPQyPNRZX567YVq+g9JY7OdAaVX15GWHr1hPx5x8kfPgWOm8wFGDuHQ9QfdIYEgH8fiRnPXL4iRPazrByOb5OnTFs27rP/e6Bgyn58Vek5mKNamgcR7Sol6jJkzSP3+/nu+++o76+nqFD9+9VdbvduN2hmGwOx75jHB7vOJ1ObLaWraiweoLx5RqOgMED4PTUsbVsPdvK17OjfCNVDSHdg2U5cxkVfy4A2Wl9msQ5P9FpyGxP7mPPkn/Pw8RM/4W4KV8TsWwR5l078cWEYjBLtbXI4UfmeWkcPP72Haj+8FMAvEIMaQ0NjdbnYGyCv4s98MknQeHNsWPHkpLS+qsME6t3AVBlTcBtPLwVqn8XdmxfRVlZPgMHTURPKKbvtoEnkzvmNNVARCAsgpLs3kh+X2McdJ3Pi626HKujijrFrNMOi2Yy6t2nqI1LIq/vCAqGjGZ378H4LCE70OKoxmMLY+PYcwkYWm+wpVl0OrZfcDW548+h9+QPyb3q5iN37j3sHnMau8coQugcB/2q4oEn8fM38xq3w1txgExD4++EZg+EmDNnDvn5+URFRTFx4uGLXG9KG9aKpTowRTV5vPvXM9R7gvqZEdZoRnc/i8GdTsFkOLyQkMcEksRvb3xHWFE+SRW7sRXkkjb9B8JzttP1v4+R/NuPLP34p9YLT6bXk/vIM5T36E/FiJMbQzzZNq0n+dP3AGi3J6nfaAJJQkIm540PcZwyAU9mO9ZNnknS5x+Q/Ol7RC5dSOTShU1Os+6D76jZE/a78LGnkQ1GXN17qh0jQhsc/e6bxL7+cuN2zehT2PbQ07jTMxvTp06agHndGkpeexcuOPYnOBwM3lFjqFwRdFLllziQfF6MxUVYt28hLn8HhpwcdFVVBLTIQRonEC1yjByq+MzfiXXr1jF06FBcLhdhYWH88MMPdOvWbb/pn332WZ588skjWMIjT35+Ph06dqZHj5O4+NKH0OsNSApRocDy3ar0/gK1ULe0R9DK6goahc6AhcAeMW5JEAqWBPE+SRDH1IlCpQpkmx7dnljkmwtX8eEf/4cshzziOp2ejJRsemYPZ3DvCeBVhIoQRLcQxA2JUW+bBEGigCgCp9wniG5hUX9/fkGESim87BMEmfSCyFScKPqqQOyni999rdMLOjM1E88nZ+L5xJQVYCouwuOXwe+ntLSGLsN64YuJJav/EBwDh1I7aCje+MQmAk1iuUSx0S7pUY3/K4Wj90WicO93Fofep46p6qXNtYIIl3jNsqCCFx0WylspHA2QlaB2AInDHGLMUKXQqyhELqIT4oEqxbZFUW8R0ZEtCnErxbGaiLwKacsFMe0DDeY0JwAuCqYryVY8b2heWEzUkWkfHxJjbe5Y8f4UVu1fEE0UvRXfW/EbSYre/0x48fr1+oMXOGtO1E4UmxPvwYHKJd6PeKGuUr7HogiuW6irUoUYvGI5EsIPLmSC5wD19rHOodgEfwd7IBAI8OqrwZA8iclDefF/f6nsAVDbBLJYT4gCl4L4KgYdiVW7ACiJzFIJqkrC+yZFCe2fIGKqiw6lD1Sr6z5RbFUSRJubCKIeaPKEaD+I9apSWFIUmTxUe3zP8bm5G5k+4322bV0BQM7OdVx285OqtqZBsMW+qfTzQlZ/2rfvTfZA9WCeQRdAliTkPd+4va4Sv8FIeHkx3X//ju6/f4fPaKImNYv6uGSWPPxfdl18NQVnX4CzvA6dQuDRr6hXzI4qUnI2E7N9I7JOT21qBo7ULKqzOjWmCSjEMhsq1fV3vXDfLYp2yGMLZ9k1dwc36jzoZJnkJfMoGjoGAKtlz70OBECnaxQiT5n6PRGb15Nzz6Oq2bNK0WpRHFRsW8Wn5hbe84AifWy4+j3NK1OLeHdKVc9WVYqaikKaYl5ifZ8Sq66zleLaopBmIHBgZ45oqymFu6tq1d+Tx6e+X6INoBSRr3epJ3P4hZmr4rEG4VtUCtl6hfPGCHVEQXmdsK2+90rB+Vih/7GrRP39pAiCqfkKMdEmtoPwHER7yn8A4dLstCjVtlMQuRWF7ZOFcjkUdvHAzurV32Kbn1OsvkalTZQSo87XnqKu58T7s2xLqWo7MSZ0DxIUQu211uN3prJmDzTlgX/9F4Cu3UfzxtvLDmgPgHqMQBLazkCF+vtE+G4kUyi9FC2MHwj9YdmprmfcJh8WY/A9TLRmYjAaiTYlMLr3JAZln4zRoMhPFEy3CU7kCPW5lPaDNUawz4W6wSwcaxJtDwUNwrduEvphotSETpLwRUZTHRmNFDYQgF1X3UraT1+T/e6LVJ0xibA9/VWxHhZNkQ4pof62XjiReKzh2itR9qDNfXtRc9udGLdvw7htK4ZdO9F7Q9cSH2Yick8/r8bWDWfP58m7/gYsSxejX7AA+5oV6GsdSF4vkseDJdJOwGYkNdYOY0c05lNR6wKfj4gfvyfm1ZfQvf0Bnt59AQhkd8HboSO+Dh2pv+wqGk4/E7vLx95aTa/XUXfFNVjvuJmkG6+iuq4G59XXNebtFK5RKRAeLoxdif09sc0KyOo63G5RjkWozxMnvB/iOJCyv2wQ+rAWq7ocKXvHNVJioF93nHsnxOz58ylsgLIaRXsvy1jnzyP8hf9DV11F7Z33Il94oeqFO5BgenMcith6jfAcRJF3sV9qMoSuSWyXRXtJHF4Qn1uMwt4qq1H3VTKFMaMDiZEr2799lVnEI9iTdYp3RLTjxO82OuzA41FKxDKLeVcIdl6q4jos9gM/B3E7OUZdp+59zq01PqDFFWgjsrOzWb16NTU1NXz//fdcddVVzJs3b7+Gz4MPPsg999zTuO1wOEhPTz9SxT0ifPbZZ3g9LmpqylsUbsruDjpGGoxhzaQ8eKqc5fyy9jPyq3bSv8NITut7KQBpsR0ASIrJIDu9L51Se9Guaz/MSoF1b9vHLj2ecKdn4U7Paty2LV+CsawUY1kp1i2bSPzyI2SdjrJzL8b/xhtgPo5n1WhoaGgcBIdiE/wd7IG//vqLysoiLBY7PXqObNW8jT4XqZU7GLb1RwCKI7NaNf/jFb/f12h7+f0+PvroITZvXgKAXm9AlmVWLJuOLSKC8y7/p+q4qqoSyssLKCvLZ8XyGRQUbGHIkLP4bvLzlJcWAHDrfa/TpY/aUbLqkltZe+61pKxbSvqyeWQs/5Pw0t3E7tpK7K6tLNizcsRnteOxq3tmptoaxj96Iwlb9h2ytyEqhm++X9w6N2cvsszg5x6g3fQpbL7wOnYPH4vZ7yWsIJd2P3zOmnuepH74CEwVZXR/5kH0LhdRm9ez5tWP8Z9AYTQ0NDTaDs0eaEr/AePxej0MHHT4IvQmr5OkmhxqG0xU2Fp3Farb5+Lr5W9RVJvHA5NeRa/To9cZuOn0fxMTnohepz+hJwzLBgP5511O/XkXIptCg5kxs6eT+O1nFNx0J7V9B7bqOT19+uLpE3RQSABuN/rSkmCYLauRwN7IFH4/pg3r8HTviTe7C97sLlSfc6kqL3GwWrUvP5fU66/Esm4NABFvvUb52x8CUH/xZbguvXy/x0qOGuouuBjLkoWEf/Ep0XffjuT1Un/DkV+Beszh8xF1640YCoM2Ysz1V+F78f+o++xL/F26HuXCaWg0RXOMtBEmk4mOHTsC0L9/f5YtW8Yrr7zCO++8s8/0ZrMZ8wk+QPztt98CMGDghMPOI7VyK73y5gJQZWk9/YrNxatZvzsYQ7OoKq/x9zBLBI9e8T4RtuhQYtP+Z1lrNKV+2Ag2rNiCfdlizIsWELF0IfZN60n4/ksavA3BUE76w58xoKGhoXGscyg2wd/JHujVezQm0+GJrO6PC5a/QFrVtsbtwqhOB0h9fODze9ldmEtRSQ5WaxiRMYlERcZht0ViUMxQXbNuLh6vG4vZitlso7KymNz8jeQVbCY6Jonrr3kOCDpC8vM3I0k6+g8cz7jx17Bzxxq+/vJpTOaQjTNv5lf89M0rBAJNVyTW1VU1OkUAFs79oYljBMBvtpA/YCT5A0ayUJaJ3J1LeFE+tupy/Jb921PxW9fv1ykC0BDdBhpmkkRtWhYAXb79gC7ffqDa3fnzt1k1fASe2HjWPP0aPR+/h6iVS+j28B2s+9+HTafeamhoaAho9kBTsrsMIrvLoMM+XhfwcebKN+hQupZqcxxv9/9PK5YOCqp2srE4uLJyZ8lGOiX3BCA+svXDgB7LBMIUk1JlmYzX/ot9y0Zi/pxNfcdsqi+7iqpzL8IfGdX6Jzeb8adnBMuxZ5WQfsMGwm+4lri1a6g970JqL7oUf1Q0tj2RDVztOhHYXyhvWcb80Qe0e+hf6Orr8EdEUHnbXTgP0qlh2rGN9EnjqL77fhxXXov9h+/ROZ1Yp3yvOUYAjEZqH3wE06qVmBYtxLhxPYZNGzH+Ok1zjGgck7TIMaLXBjMPmkAgoIoR+ncjPz+fNWvWIEkS3bsfXvzP2NpCzl/yPCa/m5y4HqxL2L9my6HSNakvP0uf4pf9DMtWO25UThGNw8IfF4/jtDNpGBucCRQ5dxadb7sKy8zpGDZtxNej51EuoYaGhsaR4+9sE8iyzNSpUwHo0XNEM6n3j8HnpnP+ErrkLuSnHrfi0wcdBAXRnQl3VZEf24VtSf0pjD6+HCOyLKtmnn407Wm25K3G52+6OjU1pRN33/p24/bMOZ9SUrprn/mKx5955q1kZHQlISUYvTsmNhl7WBTtevRpTGMPjyIQ8GMwmIiNSyU+Po34uHSSk9vTs+dIVmyYxbpV8+jQuS/DxxyECLckUZOaRU1qFgAHmmayu88Q/rrrKTr9/iPusAgsdTWEF+UjSxLuqBjmPfzyAY4+fDZecStem52OP34JgGyx4DeZcXTIZuMt97O351M6ZgLLEpMZfO15xM/7nd63Xk756HE4R4zG1b5jm5RNQ0PjxOPvbA+0BpIc4IyVb9KhdC1enZHfOu5/hv/hkhnTiQhLNA5XFdXOilbP/7hEktj88nukvf86cb/+iH37FuxPPkTyc/+m+oxJlF91PZzUemM1+yKQkYF3wEAMa9cQPvlbwid/q9ov6/XU9R1I3cgxOE6ZgKtbj2DRi4sIv+l6THNmA+AcOITiV97Cm9UOs9GArroKfD4CcfufgBE5+Rv0VVXEPvZg42++rHZUP982tsnxSMNlVyJ5vdg/eBcA97nn47pRcxppHJu0yDGyatWq1irHUWPt2v3PRtsf3bp1w2DY/6178MEHOe2008jIyKC2tpYvv/ySuXPnMmPGjJYU9bjm119/BSAjsxv2sKjDyqPalsCOxL6Euar4YeBd+Gv2H4fvUImyxdIvYwTLcueycMt0uqT2abW8NZpSM/oUtr/0NjHZ7RudIoaNG9B5PPhTUgnExrWeqJuGhobGQdAW9gBoNoFIVVUVycnJFBWX0rFTv8PKw+6s5NLfHyOqvgyAznHL2Jg6HID5nc7lz+4XhxIfQMfoWMEf8LFhy3wWr/mVakcZD1z/XuM+n9+Hz+/BZg0nLbkTbo+LmtpyHLUVVFer4/F3aNebqMgE3B4nbpcTuz2SzPRuZGR1JyNDPUNvwICmq3e7dhuCQaGv0KPPCB559HsiIuJCuiOK+MonjT2fk8a2jdiorNezdfz5bB0fzF9/gBjqrYokse38q9l2/tUAmIXzKp05jm692fLYf+n2yJ3ELppH7KJ5VCw/na2vBcNwSD4fKTN+pLp7H+qzNGeJhsbxgmYPHBl8Ph8vvvgipeUJJKd0OKxwVGM2fEmXomX4dAZ+GHg3ufr2rV5Og97I8A7j+W3D18zb8DP9249s1CP9O+Nq14HtT79MzgNPEP/LZFK+/wLr5g3ETP4aY/Fuak76rU3PL4eHU//q61ScexHW+X8S+ckHyDodASQkrwdTaQnhyxcTvnwxhqpKdj/+DAD6/HxMc2YjWyyU/etRqq67ORi9wu8n8tUXiXr+GSS/H398PN4u3fB26079BZfg7RuyWcv++TAkJxP9f/9BDgvD3bM3NW+9i9wWq2WOY3SVlTgvvgzPkKH4r7teG9/ROGaRZFFB5hCpqamhpqaG+Ph4rFYrkydP5s8//6R3795ce+21rVXONkOn0yFJUhMhnQOl37p1K+3b77/Rve6665g9ezZFRUVERkbSq1cvHnjgAU499dSDLpfD4SAyMpKamhoiIo7/uMVnnXUWv/zyC2deeBvjJ4VEqVxLCxv/lyvUAo2BWvXsxkCFE+QAhoAXn96MrBCAliyCoJkwEKJLEPRIBCFOXYyVsprdPD/lTmQ5wN2n/5eU6Kx9XosUJ8xxVAoUiR13QWzdEqcWIbQKIkI2heCVVxAcihCF6ATBy4DwDtsVYnQuQQDUIghWRQp5h4kCcQokQS60QRB0NAt5KwW/xGuIUty78EsuwvzLTwAEbHa87drjadceb/uO1J86AVf/gcRGhu69KFImiliL8URbEvu17q+FRPzzHjwjRlH78GMYzIpyi8LkDrWwljioIqZvK5oT3hY5kICqT9gnCsiLom5KRLHQltDcNSnFQqHp+3YoiNd0oOsQBXVFMfaWIF5znSf0vTURYj3Ecoh5HwrNvU+Hcl6nQshVd4AyOxwOEmOi26xdbAt7AFpuE5xo9sBeXvjgL6y2UNvc8Nt21X6lCKrsCH3ber+Hi35+hJTaHGpNUaxKHc2asAHUmaL2eR5JaCtEIVadIGgoCfWbrBAWbCLULrwqOkEwVRZEr6UohU2gl6itr2Lh2l9Zsm4GjvrKxl1P3PMtYYkJABTu3obRYCI+MSPUjkkSgYAfr9eN2WxrItwuisAbzEK77A59c5bIA4cykwVR64jkUFgKr0e9zyqIdtYIAuHhgph0XWXI7rNHq++daNO4xHsp1BVKQVm/WD8JzykuSn3NSnFI0T6yC++PSxCeToi0ELZ5PTF/zSF6yXy2jZrIzjMuAiC2MIdTLzkFgE3X3sGGa+9SDQqI5woX7p9OkdaxVzhTltF5PfgM6vZNrLaUgp+i+WMXbOaaevVs9ao6D7bd+bjiEgiYzMQoxDTD7epjRQFZ0d4URdGV+5trZ90eP+bd+ZjKy9C5XMgNTnQ+H67EFMo6qh19ouBnmmBvizajUqxYFAE2CnVAoSC2Lt4/Zd61Der3VCfc/CihnMr3S7T7RaFW8ZocojC04t20C3WCKJAqNrXiuVIV5xLt64paddpYQaxeeR21QhkjBbHVeKH+Ed9jry90TbkKofq6WgfDumdp9sBxzvz58xkxYgQ2ewTPvj2rUQdLOT4A+x8jGLD9N8au/wKAn7KvZ1PCINX4AIA+OVK1LdfvXxtUEvpoyja/wePkmZ9vw+1t4NpxD9E1oz/4FSLN4YJ9IHyDGISPTnj3DfGCWLsCq/Dt643qOsqq6LdbTerziv1Qo9A/tgvXrEzvFtq7cGF8QOw7RliNmJcvJeLD96ibdC61p0zYmxCDuwE5LGQ/pAhjIKKAeEv6y3uFp6WdOzHMnoXu999x33Aj3jEno9NJ6HJ2Yn3sERoefRxPhz2rip1OoiadgXHRwn3m6Tz/Iqre+4hYxXN2e/1QWxtsZO12JN2B+2XK9k9s751uccKv8JxEO0/xv1hLHUo/VKzfxfavNTnQWAOo7T6nu2kIVyURwruorKqPF9+L+H2JNtChPEexb10tfE9Riu+pJX34Y4m919xa7WKLNUZuuukmvvvuO5YuXcru3bu54IILGjtu5eXl3H///S09RZuzZMkS4uObj1UsyzI9evRoNt0HH3zQbJq/Ey6Xi9mzg0sVu/c9tLAZkhygd85sVrc7ec8POnz6tom1Gh+ZQq+soazJWcCc9T9y+Yi72uQ8GvtGDg/Dl5CIvqwUnbMe84Z1mDesAyD6zVfIWbkJIjOOeLmkZcuIGxN8b03Ll2FcvQrHDz9ruigaGicgrW0PgGYT7A+lU+RQGLv0Q1Jqc2gw2Piy7/1UWxMICAN1xwNbdq3gs2n/h8vjBCDcHs3gvqfRt8dYbLaQYZ+asqfTLvSPdDp90CmicdSp69KDui49yLvhDoqrQgN4eo+b8j6DiFu9lK4fvoqh1sGaux4/6HwjViyh95WTaEjPYus1/6CuXUfCdu2g95P3UjJsNKuefAVvK89ONZUWc9LdNxG3Zhl1aVnMf+sbCDvytpd1+xa633UTYVs3Ntnn6NaL8g9/xFaYR31Gu+NnFETjuEKzB9qeadOmAdCt9/BGp8jB0nH38kanyJx257Ep4fA1Sg4Gq8nGkC7jmLfuJ2avnhx0jGiokSTcAwdTNnBwcHvPAGzss/8mbOavlHz0Bd5O2UesOHL79njb34j3mutVvwfataf+sy9VZcRmw5+RgX79Ompf+B+uM8/GsGUzuo0bMP8xB8dDj4LLBf4GiIoKZbY/DRMNDY3jihY7RlasWEFUVBT9+/fntddeQ5Ikxo0bx4wZM/jkk0+OecfIqFGj6NixI1HKCu4AjBw5EqtVE98+FPx+P0899RSzZ88mNePQYn23K1nLuLWfkFy9k2mZV7RRCUNM6H8J3VL64fYef4Msxzt1735ATb0HPB6M+bkYd2zHsGMH5rWrQafDH59wVMql//ln1bb5j9noCgsIZGQelfJoaGi0DZo90PbU1NTg8XgOarBpf3QoCAqgrk0eQbX16LQLrcHyTXManSKXT7yfHn1GYdAfmRWFGkeGms7dWfjiR4y59izCc3eQPusX1tz52EEP5CdMmwKANX8Xvf99n2pf4sK5RGzdQMXA4a1a5ojVy4lbswyAsIJdxK1YhLPdkXeMRM6btU+nCEDExrWMG9MDb0Qkq596lcp+g49w6TROdDR7oO2RZZnJkycD0KPfoeuNmfwuSiIzKbRmsTR1XGsXb58M7Rp0jOSWbsHrc2OUDn9l+t8FXU014VO+xbi7kNRTR1H+3IvUXXjJ0S7WPql78RVM/Qfi7dUb7HZ8/frj69MP56VXYNiymYRTRqFrn4V3yg+aQ15D4wSjxY6R3bt307lzZwDWrVtH3759+e233+jatSt5eXktLmBb88cffxxS+r1aGRoHj91u55577uGee+7hja8OTZemW8ECADyGI2NsxkUkE2c5fgdajnv8fsInf4tpwzr05WXoy8soe/xpPN0ObiZWW+B76CGcYZHIOh3GdWtouORyzSmioXECotkDbc8HH3zAAw88wL333kt674sOK49Fvc7n1CXv06N4IQuyzsLbRqtI25ohPU9jc84KJgy7nD7ZI0Fzipxw6BucDL/7KsJzd+CzWFn+8Av7HEwxOqpJ+GsW6fOmE7lqGbk33U3hFdez897H8EbFYN+8HrmhgbCc7ehdDbjiE9l29T+oGDCs1ctcfspENt78T0w1VfgtVnaPPY2oVj9L85Rcdi3G3FxMZSXEzW4ap97Q4ETWG8j65iOqu/eGsOOzHtA4NtHsgbZn2bJlbNu2DZvNRs9+Iw/5+I3pJ7Ex/SQC5XVHbJA6JjyRJy//mAZPPQa9CU6MiDRtSiAyivzf/iD5Hzdg/WseCXfcTNRrLyHdczf+y6+AY8mhKEmE/d+z6O6/F19WOzzjxuPO7ork8RDx1OPonE7kshLIy4NMbSxAQ+NEosWOEZPJRHV1NW63m23btjFp0qTG33U6TZRK4/CxeGrpVBScGbohfbhmfJzg6Ip2k3L11VgX/Kn6PeXqSymYMg1f+pGfsQiA1Ur9bberfmpxxamhoaHxN0OWZT7//HN8Ph8ZGRlNYiIfLGs6jyOsqJA1ySMbnSKpdTupM0ZSY4o5bmbxdUjrwWM3foLRoNBSkeUW6WFpHFskLZhN7NrleMIjWPjyJ5R37dO4z1JWwsh7rkTWGwjfuRWdPxRfPPXz9yi8/DoCdju5dzwAKDRG9tBcrO7DRqdj69W3tU3eh4BssbL9kWfROZ3Yd2zBUpCHKX8XprJSnO07UtKjP7XtO2thTTU0jlM+++wzACZNmoTZ0oKwkEdQBF2SJGyWcGyWveGT2qgePsHwJyRS9O1PRL36ElGv/w/Ttq1wyy0YHnsM76uvErjgwqNdRAAkZz2e4SdhXL4Uw64cDO++jfLNdI0aA198DklJTQ+W5aDeyAmg/aOh8XekxeN7Xbt2ZcmSJSQmJlJfX8/gwcHlzAUFBaSlpbW4gEcSWZb5/vvv+eOPPygtLSUgCAZOmTLlKJXs+OW9995Dp9NxxRVXYDKZcAuC6kpB1UClOnzV4HU/YvR7KA7LoIgU0hpyGJg7Ha/eTF5MF/LTe+OwBcNxBKqF0FfCxDHvxiLVtmRXJ9CVBgXQiusLqYl0kRiRSmx4sNHTpQqxI/2CEaTsnAoCVtSrO7Iut0O17XaoBeKcCjFypcApNBU5F4WlTYKoW21DKH2YINglChyLwpNKITaXR31eUXRSFOlKj1fHjVcKS4nXELYnL9306RivuRqprAzZbsd/w43IaWnUh0fhT0rC0i4DjEaVwKWr1gk+H9iDgnSyy4Xxpx/x9+lDoHM2AVl9jaL4nJLmRL1FUU9VWkFoNEIQixPHLpqKxIfO3ZrjYYcqrHUg0WtTM+JfrSmwrqQ5cfAm+237F6O1NiMmJ96vQ7kmURxNHLBSPtfmBj2bexcPVK5DFX0/0DvSEmH2Q83Lpvg2jxVBOM0eaH3mzZvHqlWrMJvNXHjhhXzze75qv5S2/86kd0kBUa5y4hp2sz2qJ/NSzgru2NN2nZn3GdENZZSGpbE6fQwbU4fjMQZnIfrL61R5SUId7NtWqt4vtHG6iNBsRkkQyxTFVWVh8BqT8O4r3yOTAaM+JL6au2k1Uxd8zHljbiE+KhU96rbUL8m4PU6slrAmArEItoQs1EFeURRWUS6f0P6bBWFyv2Be1ZYohKiFy/PWq9vZ6AT1NYhCxtEJIUHZBkFo0yjYNDGCcLtY3ylzdgjiumK9KQ5lKQWgbYIgulKYHSDKZgL/nrLq9U3EopNjQu9L/dnnscXjpK5zN+Te/ekUEXoOJk8ZETu3Nm7XdszGefqZRE79CefQk4g1Q7EzdE+SotXXL4p2ivejUlFuUWzXaj6wOG9ClHoGb6yi3GWCvS0K/Xr96nJZjILArEIEPD5SfR5RfDY5xgaEQ/vE4LmVAuENXpRWsihMu23FFlJ/nYK1qADJ78cV8CMFAjSkZVJw3uXY05Mb04r3Urw/SYJIsNm4/zYtWljBJoq+55aq6yOlAL3JoH4OEYJQuXh/bGYhvUKMVvzWRBFgURReFEFXCs6L5UgW7oexiWBsaDtaONYoXGNVnfr7Em0k5XWkxITqi1rDgYV5WxPNHmh9Kioq+PjjjwG48sor2ZC7//EBUI8RhDVU0nXXAlamjsGnNyEpvrEoZwnhdidFMR0J6IK/y8L3rTTKffkVql36GEH7rKJetakT2jRdkkIUXfgem7T/oo0ufM8+5RiJUGc7y9T1hjlCaKe9oXcyIAxbuITrF+sksR9fVOls/D/KLvar1PWI2O6IdViDMIZQfcMd6C6+hrhvPyfxk3cB2N1jAP6KeixCW6I8V6XQDscK1y9iEq5J3FajKHO7DJgyGW9hIf7Zs9Ct34C0cQNSURH+Cy+C++6jwQ/s6fvr5QCGX37GOHky+j/n4hsxEuenXzRmZxXsCXFbSbhVfa+P1BwZ8fk3bTvU6Q36wy/YgcYaAJyKsStRXL25/vGB7pfY/onvbXN5H4jmjlXub65PbxdssUMph5g2SugnHCgv0QY60JiZSEvuXUvz3rvdWudssWPkkUce4dxzz8XhcNChQweuuOIKFi9eTFVVVePqkeOFu+66i3feeYcxY8aQmJiozdprIXV1dfzrX/+isrKSiIgILrjggoM+1u6qpl9hcBnz/KyzGLf1c/oWzWvc36N4EWyEals8M/teT46pY6uUeWXZYv5a8zvd0wZy6dDbMRq02KHNoa+soMu4YfgjItk2eTokHroImW7JEqSyMgK9e+P98ivk7KAwW4PQYdqLtGIFEeefj79rN+p/DGqA6HYXEnbNlQC4L7sC1zvvajMJNTQ0DgvNHmh9nnrqKQCuu+464uLigPwDH6DA4qvnhvVPYZB9/JUykQUZZzbuMwQ8NJjCiXBVklBXwLhNnzF667csbn8Gizue1dqX0SbIssz3f7xJUcUuXvjy9n2mkSSpscN6y02v0KF97yNZRI09SF4Po8b3p659Z1a9+ilE7MfmkWWQYfcFIX28zNuuo3bYCCovvAxvUjLL3/4GyeuhIT0TZ0Z7kuNslN77UCgPp3MfGWsckECA1Ef/Se8vPt5vkoLzLkdyNSCbLcfNCjONo4dmD7Q+mzZtwmaz0bFjR8aNG8eG95Ye9LHDtv9En7w/SK7dyfLUUyiPTMNtDDooehf+yZDcYOi99RkjmNH3evy03vMqrNnF0ry5SEic2f1ycW6AxkEQCA+n9LpbcN96G/qKcvwJiY37pNpa5GNBzDw1lcCVV+07WMke579u6xbCJpyKrri4cZdh6dLGWXmG337F+M2XeL/8SmtnNDSOA1rsGJk4cSIFBQXk5eXRvXt3zGYz3bt3Z9u2bcTGxrZGGY8Yn332GVOmTGHixIlHuygnBDNnzqSyspJ27dpx7rnnHtKxcXUFGAMefJKBKmsi7aq+BmBtyknUmaLIrNpEas0OopxldNq9jJys1nGM6KXgQPqGgmU8/dNtnNz9HIYnnovBoMX+3h/2lcsIhIWjr6vDsmUTdDn0mJu+Rx5BjooiMGECNDQ0m143fTq6/Dx0+XmEDR+Cb8Jp6Jcsbtxv+vpLXM+/ANHRh1wWDQ0NDc0eaF1KSkqYM2cOkiTxwAMPHPLxsQ0lGOTgTLIONRtYQMgx4tOZ+HzIY5i99Yze8g29C//E5HfTu2DeceMYkSSJq09/iG9nv8quos34A74maZSz+NZv+EtzjBwldF4vdR27Yi7ZjS0vB1ePXk3SGMvL6PSfB6nuN4SCy69v/D1i1nSipv2Iu31H6oeeROUghXB6IIBl/Vr84RF4M7OOwJWcmOganMR89xUNiSm4EpOx5+6krl1H6rK744mJI+GP6XR87VmSfp/K1o+/p753v6NdZI1jHM0eaH1OOukkcnJyKCwsPGRHU3L1TgDcBhvnrX+NDclDmd35UpAkArrQhLhu+QuY1+MS6nVh+8vqkGnwOlmcOweAnMqtnDPqRtondWu1/P9WGAz4E0MhqazffEXkEw9T/cL/cI2fCBzbk1ONs2ernCKB1FQa/u958Hiw3n0n5o8/RDYYoLpaG4/Q0DgOOCzHyKuvvkpycnLjCoC4uLg9s/+ChIeHE77H2/vdd99RVFTEHXfc0QrFbVsiIyNp37790S7GCcOCBUHh9PHjx6M/xJn7eTFdqbAmYvPWYfXV80n/R0iuzyUnricAfwEWi59IZxkuox08B87vYBmbNhFbXAyLtv9OVX0Zv6z6lAU7ZzBxxNX0yj4J3RGMY3q84Bh9Cu6sdkgeL66u3Ylr/pCm6PX477wT47XXoP/0UwLDTyIwYgTm/oPwDByMHBWlSu6/6y7ktWsxTf4ew6qVGFatVO13vvG2ZoRoaGgcNpo90LrstQd69OhBRsah60UVhrVjSofr8OlM1Bv3HXLLbbRTGN2J3oV/UmOJ5ac+R18n4VCIjUjklnOeJiAHyNm9kc9mPh/8PTqFU0dcRmpaZyqri1mxZhbjx117lEv798Vvs7P8nW+IXLuS2uzu7GvaTOzcmcTP+pWY+XOoGDGWhsxgXVI3fCQRc2YStugv6gcNJWzbJqLWLCdm2QJili3AVF1F2U3/oPjhfx/ZizqBCNjD2PrrHxTKVmSdnlNO7kXM6mXErF6G32JF72ogYvN6AKJm/ao5RjSaRbMH2gabzUanTp0O+bjVmWMZv+4jehf9BUCSIxcJGRmJRVmn071kMZHOclZ0mIDTHAliKK0W0CG2K+f1upbfNn1LcW0+b019lH4dR3H20GuxcwyJiB9vBAKEvfsm+uJiYi+/GH9iIoErrsB/1dXIXboc7dLtE/cNN6IL+DC98Qa6XTnoCguxX3IhstWKtGeSp+/NN7XxCA2N44TDcozcddddDB069KBCI7300kssXbr0uHCMPPHEEzz55JN8+OGHWK1a49ZS5s+fDwRnhRwqsk7Pj91vwWGJxWMIPou9TpG9eIw2yiL3rE7wuMQsDguj3sTobmcxosvpLM+Zx8x131FZU8IXU/9LUlwmSXGHvhrihMdgwN0xu+X5BAIQCCBLEroF89EtmE8MIOt01N99L7WPPBFKa7fj/PQL3LfchmH+X+gKCgjExSHHxuIbOgx/337a8mYNDY3DRrMHWpeW2AMASBJbYkIDmPubX7o+dQRGn5tNqUNxmVpvluiRYOG638hI7ERaQkc6pPbgiXu+VScw6AgPiyYzrSuYW7zgW6MlSBI1vfvvd3fxeZeSMP1nohf/RZfH7mbVh1NAr6fq7POImDOTpFdfIP7Dt9HXqePG++1hSL7QaiFz8W6Sp06m5NTToYcwK1mWiVgyH9lkobbfwFa9vOMdd8dsPBVOLEUFFI89jbAdW7Dn70LvasBntVFy6hnUXngptQOHHu2iahwHaPZA6+J2uzGZTIcdkmxd2ggGb/uFKFc5taZIfup1C/KeiYtDd00j0lmOwxrDgq7ntWaxgeDqzkEZo+me1J/pm79nWd5cVm6fR1lNITdd+hwWUwtE5P/O6HSU//Qb4f99FttXn6MvKUH/wgsYX3gB7113wSNPge4Y69kbDHhuvxPPP+5Av2wpxq++xPD9d+jKypCNRpwffYL+4ouOdik1NDQOEkkWFXYOAp1OR1paGtdff32zad977z12796N33/kRNIOl4aGBs455xwWLFhAVlYWRqN6HtjKlSv3c2Tr43A4iIyMpKamhoiI/QuSHqs4nU4iIyPx+Xz8+9VpxMSnBHcIr5trZUgU3b+tMrRfksClfmfkPYKp/fJnkR/VmVJdKCalLIiH6uIObUBEUghP+RVCax6/mwUV86j11DCp02XBtDFqo1gXHRIAk+IEg0gUahXFv8RthdCUOd6u2iUJQlFmQSgxLEy95FQpLGUTRCl9/gOLMirPJNqt0cJ5RDF2UYw8UnZjXbcGV3ZXpDj1ehJR7MnrC2DOzyVi8XzCVywhYuVSzLuCS6aL738U5333N6Y1CPdDFNISBb5qFGKsMeEHFm0TBb9agig4L4p6ahwdmhMEP1ZEwNuSAwnCtdV59nWuAz0LZVqHw0FiTPQRaRc1e6B1KSgo4JH/+4z4xHSyOvYI/ijaA/PVmiP+fMd+85MUIqe6gA9fhQsUKzoD9SF9KkkUERTeN0l8/8R2WVlMoa0UBVJFVW8pXBDTVLRLkj30TtU4K3lmyq0E5AAPXPcu8dGpKnsAaBT7BEAQSEe4Rn2EILYuXJJVIWTuqVUvuQ1PVsf3Dgj2grchlF4nCK1a7Ooyi+2yaGsohSfFdtcutJWiLVIv2IjK/WJeYjvs8qrrIKUQtShULgrXmoVr9gpCzOnxQfvTWJBP5/HD0dfVUfDwU5RedwvReIl74B7Cv/sKCDpCGvr0p37QUOpPGkVl197IirrGX1VFp3/dTvSfsym99Bp233YPvphYzLk76fjMo9jn/I6s05H/y+9Uduuz32uOEd4Hj09d5ugw9f5ap9qm9vhC98DSRExW/ZwcwrHiOxCmEAStrFVPaooWbLP6BnVeyvcnLU5tI5dWq8OwWoT3p6HKgTFvF970DGSbXWWr+v0Bon/9iYi5s8h/7BlMscEZvvryMmSjiUBkpCov0XatUIjCJzYj1G4zG4XtUDlFIXJRbF0UOQ8X3nPleyw+Y/G9jrCJoujqvB3O0HdeWq1+TqLwsZi3W3Fu8frF/odPsAfimhFVbiyfZg8ct/bA3XffzceffsnE829m2Jhzgj8eYHwAFGMEe97xzII1DMmZxrzOF1JkD05ajHKWct3iRzDIPn7odANbYoOTKZqMEUSE+vHiMJgk1GdNBNOF7yqvdiefrHmFem8dfVOHcXG/W0KHJgn9eKF9JFpwsim/FaGe1UervwtJcBIobQtl+w6gF/KKFcYPxG9QWceLbYNYJ4vtgU0YE6hV1COpQp0tCjw31u8eD7ZZMzB/9glRs2cAUHnrHVQ8+lRj2jCr2E9XP6co4V4fyAknXr/YZtW51PVweJNzh3DWNWCY/xdybBz+Xr2wVZVjuuAC/Geeif/++/H69t/XEssolkO8BGX7YGvB2IJ4/aIg+IlIk+/+EJy0zY0fiLSkf32w/eNDzau5Y4+UoHpr5dta9sBhf0WFhYU8+eSTzaaTZfm4ESm76qqrWLFiBZdffrkmrtZCli5dis/nIyomgei45IM+7tL5TxFdV8zkIfdRbG26OiOhNpeTtwZFrN7t/QTVlvjWLHYTTHozJ2ee0bid59hJZkz3Nj3niUTyFx/Q4emHG7cdE86g4JW3kW32/R7jTs+kLD2Tsgsuw24xEvv+myQ++wSezHYtKkvUpx+S9OA9VF15Hd7X32hRXhoaGic2mj3QuqSlpTFw+GltkvegLVPpmLuEWZ0uZXdkhzY5R1uzZNssAnKA9KTOQaeIxnGPNy2dggefJPPhe0l95jFknQ7vrbdR9sa71J17Pv6EJKrbdQZDqCsmCwPh/rBwaoaMIHbODJI+fY+4H77BMXwUMdN/aUwjBQIk3nUrlb/9BYcYtvbvhGy14snu2nSH10uHW68matZ0AAoe+U/jruRH/knktJ8oue9hyu+870gVVeMYQ7MHWpcFCxZQXVmK0XRwTjCAjLKNXLzwWVZnjmFmn2vJjetBbtyeSRZ7BptrLLHM7XQBqeVb2RLTty2K3rRckR24ps89/LD5E8Z3aT6SisZBYDLhnHgmBSPGEfPjt6Q+/xSOy68+2qU6OIxGfGPGNm4aXngB3aKF6BYtRB4wAEaOPnpl09DQOCCH5RgZOXLkCWkUTJs2jRkzZhx+qAeNRrZv345er6dDl34H/a5IcoDkqp3kxXUlq3QdxZlNHSMn7fwJHTIbEwa2uVNEZG7eb0zfNYXTPBcxuvOZzR+gQfy0H1Tb4TOmYSwpxtPu4AevKq6/ldpTJuDJak9LFiiH/zwFT3oGET9PpkJzjGhoaBwAzR44PoiryWPopikYAj6iXGXHrWOkqr4cgPzirbz97UN0SO9JVvuetM/oiV6vrTI8Xqm4+EqiZk0n8o/fSX/qYSr9bqrv+icNJ48LJhBmojZBkqg+aTTVQ0cStehPDLWORqeIc8Qo3J27Ev3B25i2b0VfXYU/9rBU3v7W6B01RM6d1bjdfdwwvFlZeBOTiZz2EwBR33+lOUb+xmj2QOtRVlbGihUrAOjY5eCdFxnlGymKak/7kjVIckBcnAkEw3CvSD+V5TEjW6m0B0eUJYZ/DHwMne3YFgs/HqmcdCFV488gPDa4ak9yuZBNx899lgoLQv8vXKg5RjQ0jmEOq7c1d+7cVi7GsUF6evpxuyz1WOP666/n3HPP5fUvFh/0MbKk45WJ72D11AZjgwv9xYTaPDqVr0ZGYn77SU1CVrQVHr+b6Tk/sHD3bABcvoZmjtDYy9ZnXqXX9RfgyWhH2OL55L/z6SE5RfbiyQqJHlrn/UHUKy9Qd+OtNIw/7aBnSBa98ha6BheSx83+16toaGhoaPZAa/Lcc8+h0+nwhvUhKiah1fLV+72cvvRNDAEf22J7szFhcKvlfaQ5s/+VGMKsLFk7g+15a9ietwbdQh3/+dePmmPkeEaS2PH2p8R99SkJn76H4+rmQxDvRdfgJPv+fxCnWB1Sfua57P7HfRhqqjCeNBzbH7OJ+P4rqm66XXOKHCb+2Di2fjqZlJeexVhagiUvB2N5aeN+d/uO5L/76VEsocbRRrMHWo+ff/6ZQCBAeruuRMcmHfRxC7MnsSD7HGLqivfoiajD2ekCPgK6I9tWev0elhTM4/edP3Jul6vo015znLUFsjU0LTLqvTeJ/PgD3BdfjPOSy/F36nwUS9Y83jfexHfvfUhbNhO44MKjXRwNDY0DoPW2FLz44ovcf//9vP3222RlZR3t4hz3xMTEELtXW+Qg8RnM1Br2xLNUxDRGljl565cAbEocSJUtCerd+8ih9ZBlmU3Va5mWP5kqdwUAE9tfwKhuZ7fpeU8kXFnt2Tx3ObLBgM7VgC48vGkirzcYSuIgVxZFvP8W1vl/Yp3/J96sdtTedCt1194IzRjEvtT0xv81x4iGhsaB0OyB1sHn8/H8889TWVnJHY++16qOkeEbviehJg+nKZzp2VcedBtyLGIzh3H+qf9gVP9z2LJrJbt2b8QrezEZQ6FGqh1lREUc2ZWyGq2A0Uj5lddRftnVREXuGeCRZRJuuoaaYaOouvCyfYrKBswWJK8XV0oaOq+XXU89T/XJExr3R0sSzrGnkDdnEb6kZPC0XgzoiB++I/6/TyFbrDiHDKf4ultUE1RONOoGD2frN1MxlJdiKiwgrHQ3xsICvIlJOM6YpIUo+5uj2QOtx5QpUwDoPXBsMynV7HV6VEQ0DTXZvnwNp2z9itmdL2ZHXJ8Wl7E5vH4PS3bPY17eb9R6agBYWbyI3u2Gn5ARVY4l7DN/w7i7AONLLxD20gu4hw7H8cLL+Lr3PNpF2zcxMcgxMcEwWtBEo0a3aSP6+X/hveGmo1A4DQ0NJYclvn6iEh0djdPpxOfzYbPZmoirVVZWHrGyHK/iam98vRqv14PRuO9ljq6cKvUPBbWN//pza1S7lKKl2XkLOWvhq3h1Jt4f+h8c1jjVihG5QS0eKjY8ojCpJCx31UWGxMV08TbqXQ6+mv0Km/OCy32j7HGcPfRaemQNbiJ4pvyEJFFILV3tCDALoox+z/7FQy1CXqL4ukUQQReFt5TCi1F2dVpRID1cEIlXCqqLIpMiJuHe2i37d1CE20zoKsoJ++kHTOtWY1m3FuPmjfhjYql85U1Kho5SpY8VhDjLHS6MhQXEfvYBsV99gr66GoC6UyZQ9d5HyArHi1EQSFXeW1EA1iyIToqGrSi+qhReE3X5mhPLFCtcpXBpvSAQGBCqZ1FQPsyyfwG4lgiLNUeD8P5YTUdn0KAtxcE0jj2OpNiqZg+0nDe+Xs2W9Ut57embCAuP4pXJi1SrH8p/2axKH1DYAwCysh0XxLL7587k5PWfAzBl0F1skTup9uvsoTZddqrtg4BgL+iT1MLKkk0Q/Va0+U3qVbHtENo/WaiTdLGKdj1cEEgX7RZFmKW84q28MeVfjBh6LuNPvgajLNS5QhuPWWj/BLFQk8J+EK9JbGcMQjtjUgh5NycOKu4X7RSlULdBEHAW204RUSxaadckRlnF5CoiBfupTlGOeqENNwjXUCuEv4oQ7CdlWxspPJe9oqYRM3+l/U1XAOAeOJjK/3sRb+++BATbpKiiHsnjQdfgpFf/jqp9K7aVqbbjI9XXrLRbmhO0bnxO9fVE3H8P1s/VKyR2zFuGp0PwGzMbdaoHLdotWQlqu1e0F5RWkNN9YFtCL7wTJsU7kVOiri8So9X2tUew2xKEd6JWISIsphXf0xJB2L1aEElPjg1NtxF71V7fgW1o5blE4XrRVk2PV0/ryS2tU20rr8NsEm3z/YsiA0Ta1fVRSZWz8X9RgDleuJei+HqN4jrEOsAv1ImikLFDEHdW9kGUaWsdDjqmJWr2wHHECx/+xYM3nYzP5+WRFyaTlBpyth5ofAD2P0ag93u5etp9xDhLWJI5gbmdLmzS0ZKFiZRKMXZJeO8R6gJdYqg+21K6lvXVq9iYt4y6hmB5osPiObnf+QzscjJ6ndAui0LucUK7JNQzxqSwxv/FMQCfUDdEJYeptj0KG0nsZ4r9covQbxf7mvEKcXaxPrMJeYlC3WJdqmynRdvCJdT/yYJovLI9bKxHXC4s03/F/s1XmGfNQPL7kY1GXA88iOufD8Ceb/NAguotESoH9fiKyXBgO6VBsCesinNLW7ZgGjWSQK/eeGfObKz/I887m/qHHsU0TFwFfWBxdlXKZrr8dYpv4EBjCXDs9rV9fvXLKdqQxwOHIuR+rNz3Y5GjLr5+IvLyyy9rnv5W4MXHrsJoNHHJDY+Skt6x+QOaweDzMHpVcABkcdbEoFOkjTHojWwtWI1eZ2BUz7M4uc95qpmbGodP/B03Y/99huo3Q3ERCRedg+fZl6i67OoDHu9NTaP4X49Tc++/iPz6c+L+8yhhs6ZjOv0USn/8lUBMbBuWXkND4++AZg+0DmuWzQGg54DRrRYSqnfeH41OkUWdz2R7ygAorGnmqOObzXkr8ft9zJ3/LavXzeX6S58mKb6pDpvG8YFjzKkUPvRvkl/5L+ZlS0geexLOM87GccU1uEaNUa1QkE0m/EciprrTSezYERg2b0KWJBz3PoCnV29MK1fgaR+05fWVFSTffBWuwUOpevCxti+ThsYxgGYPtA4bVs3H5/OSmNJO5RRpCf22TifGWUKdKZKF7dpW/3NlwXxWFy4C9jhE+p7PgC5jMOgPPLCs0YpYLLgmnYvn3PPRFRYQ+c+7sfw6Fet//o3xt1+p/X0OWI6D8RqHA9PE05DKy5Fyd0FDAwR0SLW1mH+fgfn3Gbje/wDfFVce7ZJqaPxt0BwjCq6++ur97mto0HQlDobiwhwKdm1Gp9MTEdk6A9RGv4t1HcYSW7qLpZkTmj/gMNhdncuyXXM5q3ewATIbrZzS7wL6dBxBfNjBx0DVaB6d4lvy9OxF5UuvE/XkI5jWrSVi1oxmHSN7kW02qq+9EVff/qRccwmmjRuwff8NdTfe2kYl19DQ+Lug2QMtx+/3sWrx7wD0OcSwGQfCozczv8t5+HQGlnY6o9XyPRaRZZmduzdQU1fe+Ft1TSl5BZs0x8jxjNFI2Q23wSWXEPXkI9i//wbb1J+wTf0JX2oaZW+8h3v4iCNaJP2uHAybNwFQe+Ot1PzrEQAaJp4JLh+WVSvIOvtUpEAAfUmx5hjR+Nug2QOtQ3q7roydeDmRrRhSs/uuPwH4q8M5eAwHXinYUvqkDsMeFU3X9P50TO2JXmdAOg5nqZ8oBFLTqPriWyyTv8X+21QaHnvi+HCKAFJODlJuLgC6HTuwhIchllw/fbrmGNHQOIJojhEFd9xxB6+++mqT3+vr6znjjDP4448/jkKpji+WL/gVgK69hxEWEd0qeTaYI1jY43wC5c7mEx8mP6/5jJ1lG8mI6UT/hFMAGDfwYgDkZkJJaRwaRV//QPpJAzHu2olhx3Z8mZmU/vgruqpK6otKmx4QCOwz/vZeXH37U/D1j4SvXk79lde0Yck1NDT+Lmj2QMvZsm4JtY5KwsKj6NJzSKvluyl1GBik41pT5FD4etb/qHIE20a7LZJTRl/GgD7jjnKpNFoDf0oKFe98iOOuewn7+ENs33+Dt117PH37H/mydOuO48VXMC5eSPV/nsO4eSO277/FsCuH+JwcLBvXIQUCeNMzKPnoyyNePg2No4VmD7QOiSlZnHvFva2Wn9lTT1xNAQDb43q3Wr5Kluf/SZeE3oSZI+ma2IfuScPb5Dwah4kk4Tr/Irj44gOOFRxryL174/ltOvoXnkeqqkK3cmVon81Gw3U3Enj4oaNYQg2Nvx+aY0TBtGnTiI6O5sknn2z8rb6+ngkT2maVwomGLMssW/AbAANPmniUS3PwFNXms7NsIzpJR2Zsp+YP0GgZJhP5C5Zj/+VHTGWljaGvAtExeAxW4t58hbAlCzAU7cZcXETdrf+g7p8PHjBLT5du1PcKCa8ZN67HoNPh63GMirFpaGgc02j2QMtZNj84UaLf0PHoDa0cauIEdor4/b7GsGOSJDG0x2mUVxfSb8gE2mf1QqfTQxPdBo3jGW/X7lT934tUPv4f8PmQbbbmD9oHpq2b8SWnEAg/vBjLDdffSMN1N4AvgD43l8j/vaDa75h4FhWvvYV8mPlraByPaPbAsUlyxXYkZKqs8TjNkc0fcIgUOQv4bv17mPRmHj71NSzGtl2RotECFE4R0wfvY8rLxfnoE8e0rRg49VQCp54KHg+4XNTW1CO53QQio8Bux2Y+OvqdGhp/V1rFMVJeXs5rr73G4sWLyczM5I477mDlypWMHj2ajIyM1jjFEWHmzJmMGDGC6Oho7rrrLmpraxk/fjwGg4HffvvtaBfvmGfRokVUlBZisdoZOuF0zBZrj9OMMAABAABJREFUE1FP19oS1XagOCQcqE9VCzbKDV6kgJ8OBSvYHd8Zh1o7DbnW1fi/KJ6mS1CLkjVBIVK2ID8Y6qN70gCi9dHIdWpBQqljjHBiQahUIZamFwS99IL4oVUQFjMJjV6MQoy1qtaz330AYYIAmkcQeAxXCMyLwokWsZyC3VCvEBc9VKE1UXzcphD1ahRTNRkIXHwJfoOE8o7EvfIGtueeVB1vKSlqFI4V78E+y+HzYb/zFnRr1+K96268jzwKdvsBRcrEa2hOUF4p6ibejwjb4ccCD7Me2uCh8vsS4x+3ZTzkoyW2LqIJkR0ax6qAnrJcx0qZNHug5Vgj7BhNZkaddT5hCWGUL8lXJxCFSQX0SSGhYX9hyFZIqt6Jp8ZLpSWJwB6xU51VXe+qRM+F9k4nbMs1YigU9eCHrBAA1cUIAyNi42lUf2O6MHWdHqhU2C1OdVspZUVSVLKTL79/lpNHXUafQacCMDbz2mACpVBpuNDOCJ+NXtjvP4AjRbRTZEHQUgwVUlccEsWNTFEPkDtrXKptnUGdt9urLqhSuDRZEM+urlfbQLEHaP8BDIq8xNavVhCu3V2hXoGcEBUKYiEKXouCnilxagFsMb3S1qgRrkEUKo8WrkmyBd8vCUCW6fDGf/EmpVB5xTWszalgf+jr60j69z+J+OozvBlZFEybhTcqFM7WJdg4ZYKYeOdU9aBigzeAp0s3HNfeiC+rHbaunQl06oS+a1ckh1t1f3WCreGsqEZXtJtAcgpyWBg24f1yK4RrRTHeOuH+2Mzq78dkCKWPEuxaURBdNIEqHC5hfyhBbDPi9Kmx6meeJrwDShF58X0QhcnFc5UryiXauOL9qBHe44x4dV9H+ZxF0WTRBE6JUX9vpcK32zEl9E6Iz0ms9kQ7WPmtFlWqv7Vk4bxin0H8zpX9EeUz0x/B2eGaPdBynnrqKRzmdLr1HYpOrz+k8QHY9xhBatU2AArD2yMr3iPl+ACALlr9vUqKfqkk9O+ksFDbuWTlZAC6JPXBagvmIderv0EpU1F3RgptlLBtEMXWhf6i2BYrSUhX19GRNnXdqPz2xXrEL7TpYcKxYh2u7POK335zJEapbSRlG28U7AHx2xfbKeV1iHXM/pC2bMF05z+QAgHM1VV4X3sd9PpW9Y80J7iuxHowQu8mE5hMhB9INLqgAP1XX6GbPQu5bz98d90FiYkHXQ6R5gTXlRwr/TKR41FsXaQl97Y54fYj9dyOZDnaehyjxY6RXbt2MXz4cIqLiwEYPHgw1dXVXH311dx3333897//bXEhjxQdOnRg+vTpjBkzBp1Ox1dffYXZbGbatGnY7fbmM/ib8/nnQTHU/ieNw2xpnVkV8dV5TJr3Am6jlZcHvwxS6xrCdW4Hq4uCQmontdNCUxxN9KtXYX3mKQCc//wXvuHD0WdmEEhLD6V5523kztkExozZf0b19QSy2qFftQrTiy+gnzcX118LQKctkNPQ0Dg4NHug5Vx73zNccsuDWGzNTFQ4BKSAn8vm/xu97OeNvs9Qaw6F7DT5GvDoza1uJxwplqz4lSlTX8Xv9zFzzqf0GjA2uDpE42+JZc7vJLz2IgBhf/3Bjn+/gC86pkk6c2E+3a85H2t+MF65MW8XyZdfwM7vpiFbD98W92VkUvl/LwXPEblvx4GurJROE8agr6jAMfEsfEnJRK5cgmnBfABcZ03C88mnx03cdw2NfaHZAy0jJyeHxx57DEmSeOnrv4iOO/wBXSX5id1YmT2BXF3r6201eJ2syg3WY0Pbn9rq+Wu0DXJ2Nr433sBw660Y3nsX6urwfvrZ0S7W4eP1YrzyCvTffRf6bdYsDM//F+977+G/5tqjVzYNjROMFvce77//foqKikhNTW30/p900klERETw+++/t7iAR5pevXoxdepUHnroIWw2G7/99ptm9BwEsizz008/ATB4bOuJofbaNguAgoSubTLY8evWb/EFfKRFticzWgujdTQxrliO5PfjT8+g4bEn8J4yjkDXbhAenCWkW7USw513YrjxBigoaDodbi+RkTR88RW+8y8AQL98OTgcR+oyNDQ0ThA0e6DlWO3hrbd6TZYZv/ZD9LIfl96C0xhyuMTX5XPb4n8yccvHrXOuo8CylTPw+30kxGVwy7Uvak6RvzmusadSeutdAEROn0q388Zj3bZZnSgQoOPDd2HNz8Wbmk7Ja+/gj4nFuHMH5i2b2ryMhoJ8THm56OvriP7uS+Jfe7HRKQJgnvEbkmZ/aZwAaPbA4bN3fKBL78Gt5hQByE/qwZxB17IlrvU1mdYWLMHjd5MQnkL7uC6tnr9G2+G/7nrkzp0B0E8/zld0NTSgmzOHQI8eBEaOQjaFVhnpZs48igXT0DjxaPEU6lmzZhEXF8emTZsIDw8tc8zMzGTXrl0tzb7N6du37z477Wazmd27dzN8eEhka6VCGElDjd/v5+mnn+bdz3+gS5/BrZJnZG0xPbfPAWBp97NBjHbRQnZUbmLF7vlISJzV47I2DT2k0TzusyZhv/8+AplZSLW1yMKS0kCnzpCQgC4nB0tWJnJEBHJ2FwI9exA45RQ4cxIYDEg5O7HedSeGmTMA8J09CaKjm55QQ0NDQ4FmD7QOfr+fvLy8Vs932NYf6JX/JwEkpna4Gr8uFArgrM3vYQq46Vm6iF+7HJ8z6GSCzv6Jp15HeJjWZv3tkSRK/vUYNRPPIvOWq7Hk59LtgtPY9fhzOIaPxhsTj33TOiJWLsVvtVI4+Rd8We3xZrbDl5iEKyW9+XO0EE/f/uz8aSb2BX8i+f3oK8qx1Vajq6pCtlqo+9cjmBIS2rwcGhqtjWYPtB4z9wzg9ho86iiX5OBZmfsXAAMyR2njA8cT1dUYr74K3ZYtAPjuufcoF6iFRETgXrMWzGaIjkbasgXjpZfgv+BC/LfeerRLp6FxQtFix0hDQwOdOnVqMmuirq4Ot9u9n6OOHSZNmnS0i3BCYDAYuPrqq5EyTmq1PEes+gp9wE9OSh8KE7vCrupWyxsgwhxFu+hsEuzJ2mqRYwA5Pp6qDVuQk5IBMP4+A/Nv08Bmw3vV1QS6dsPz2ecY77gdafNmJIcDadlSdMuWIk+diuvscwHQr1yJYeYMZJMJ7wP/wnv/A0fzsjQ0NI4TNHugdVi+fDlDhgyhXXZPHntjcqsMKkQ4yxm67WcAZva6lu223o377J4aohtKAfik78MtPpeGxrGEq1cftv8ym7QbryJi6UI63H87uY88jfOy66jv3ps1383AunMbhqz2wfSDhgQP3BOvXVfrAHPTEFytRUO/gTT0G9i4LWpo7FN1LRBQieVqaBxraPZA6+ByuZg7dy4APQaMaJU8E0u3MXTZ1/zZ73IqotJaJU8lFXUl5JRvRkKib/rw5g/QOGbQzf0D/dSpyGYz3tdePzFCTSUlNf4rZ2fjWaE5YjU02oIWO0Y6dOjAhg0bGvUl3G43r732Gjk5OfTq1avFBWxrHn/88aNdhBOa8i/WqrabiJzFhuIfywpx0KSyrXTJXYSMxJyks/DtqgZRYEchwOMrrFLt0lWoRdt0UWqxP31KBAn2DG6OfxRfwIteKSBqFwSpSurV26IAXHVI5E0viKPJgghjdU6lajuuc7xqWylMKgp+iyKMIqIgtlIAtEwQl42wq7uqNkEcTCkWJoqMKYUQoanImxjgSnm8GP2qifhXlkJPZN0ajO++A4Dxk4/xzJ6DPGoUnjVrwe1G2r4dafMmdIuXgNWKaa9I50UX4tu0Ef+llyJnZ7P3ruh+mILhtdfx3XMPgTPU4d5EsfXmOFgRuLZGeT+PpQlNx6KYdks5kLjY8XKNx0M5D3SfPW383Wn2QOswY0ZwtV5sQoraKSIIgMu7a1XbklUQRa8LtXlDt/yIXvazK6Yba5NHENhd3bivT8kf6GU/+bZ2FAYSoMaJdABhd0l4j2SfUK5KdZuvV4gQS2ZBqNy9f1HzfaFLUNgiQlvKXlHqei9Uu5vcL5RtfIPwLYv3ThBbNQhtrV7RxkclCELSgsBzXLRap8Ibt//wMUkZ6pUuTo/6GsW2U2mn+APqazIL7XKNUy1kbhaEXG2KvBxOUcRbnTYyTG0DuRTPsYkgutC2ugWBWFEEvFYop7oc6ucgiqA7hXdir63mj4xh15c/kPzfp4iYMQ1deBgx4XscEAP6IQ/oR0CwN10ePxF/zKTdfbex+z8v4Djr3MZ9FsFeLBOEtw2C3acUNjcK+6KF63c0EZxX3EC3m4QnHsL+9RfUXXYl8qNPIEeGvi+zkLdYztqG/dvBFuGbF+1aURTdq2gPxXzFeyk6d8V3IF6hwdJEUNijzqtOOJfyPRcFqUXR92rh3uoFYWSlvS1ev4h4jQn70ZE5mGMPdP/EPoTHp/7OxWPFcodZQ9+M8j0V73Nro9kDrcOCBQtoaGggOTmZtHadG38/lPEBUIwRyDKjFn1MeslGnF4z07KvaTI+IH5Hvt3qMQKlfaCPFTTQDDryS7ej1xloH9uFqFj1ijcpXHD1KutsUXxdaKablEvo1yvF16Nj1NffILSlYruUpmiXxfPYhfbfKrSHZqMgCq8QtRb7x2Id7RVsDfHcynrXLJQ5QhCBD5fFOuvQO7aBSefgfeo/BMaNQ+7fvzEH/Qfvo//wI7wvvog8ZMgh59tanIj9478bhyoA3lrPvLnzNieC3pK8D8SRfI/b+lwtHmW44YYbkGWZq666CkmSWL16NXfddReSJHHttSeAl1ajWRoaGnjppZfYsGFDkwbxcBm1POhoW5c4lDJ7684GyavNAcDtcyFJEkb9PuezaRxlAiedhO/RxwgMGIBUVYVpwnikveH5zGbk7t0JnHc+vuefx/fvf4cOlCR8Tz6JnJ3d+JP+qacwXXABuj/nYbz0EqScnCN7MRoaGhp/E/aGzegxoHVWkIbVV9CjMKhbsKDjOap9OtlPv8oFAFSb45DkQ3NUHEtkpXTFatZi1mvsB6ORoof/zZY/V1B18RUHdUj8Fx9hqK4i4x/XkXbnjUgNzjYu5AGQZVIuOY/wD99D53QS8d7bxA7ojX5z22uhaGhoHB32TpQYN25cq6webV+wkvSSjXh1Rv7MOrvF+e2L3imDeeSU15jU/co2yV+jbfE/+CBy/5DujP755zHedBO6JYsx3qaFn9LQ0Ng3LXaM3HHHHdx8881A0Eu8d2D8hhtu4I477mhp9m1OTEwM5eXlB50+IyOD3NzcNizR8cfcuXO59957mTBhQqvkp/d5cFoiaDDY+Cuz9Y2eX/MmM3XdF/y67qtWz1uj9ZBHjsT3+ON4ps8g0KcPUmkphuuvD4ZgOET0f/zR+L/kdCJt3nyA1BoaGn9HNHug5VRVVbF48WIAureSY8TmdrA6fTRfDnyQQiHspU72YwgEZ132rFrGjZufJaV+V6ucty3xB/ws2TSLr/94rfG3iSddTWZKV6LC4w9wpIbGwbPjrU/Zfft9yHo9UT98R/vzTsNQVHhUyiI5nZhXrVD9pi8twbBxw1Epj4bGgdDsgdZh/fr1AIwfP75V8uuxbTYAK5NHU9uGIQJtJjtxYUkEZG1W/3FBSQmGf9yG4bHHmowT6P76M/T/mjVHumQaGhrHCS0OpfXXX39x4403cv/997N8+XIA+vfvT0pKCk6nE5vN1kwOR5fq6mp+++03IhVLuQ9ERUUFfv/xOyOxLZg2bRoAEydObJXZIH6DiV/G3Id/exmydGghjg6GU9PO5P1N/wOgb8YwsmKzD3yAxtElKgrv199g6tsH/dw/CLzzDv5bbjmkLLzvvotp6BCkqioCgwYTaCUDXUND48RBswdazowZM/D7/XTr1o34pNZZ7Vka047irvueIe/Tmfiw4330rl6CS2+jwpzAblvmYQRgaDvqGxys2DaPCFs04VFxOOoqmLnkK8qqggPUAzqPoWNqD/R6A5dNvF9bNaLRehiNFN31L1wjx5Bx81VY16+lw5mnkPPhlzT06N388a2IbLdT/NHnBDpnE/Pw/Vh/n0Hdk//Bfc55R7QcGhoHg2YPtA7Tpk1j06ZNpKWl8cPy0hblZfC5abc7OLC9MWFwaxTvgKwqXMiSJXO5Zsy/sJqO7fGsvzu6P+dhePvt4P/ff4f/tn/gv/JKCA/H98qr6H/9FQDf7bcfzWJqaGgcw7TYMTJ69GiGDh3KggULyMrKavx96NChLFu2DJ+vbWOAtgZXXXXV0S7CcUtDQwPffvstAGeccQaVzaQ/FNrCKQLQITKbgZmjWZY7lx9Wf8ydY59u+dIpjbZBlpE2bkTu1AnfM89ivPsupLy80P6KCoiJaVZgQ+7YEfe69RAXF0yriX5qaGjsA80eaBmffPIJAGeeeWaL8zL43KSXbCQvqXtjqO7BO6cS7SzB7/QiSzpy7Z3YFNWXucktP19r0eCux+v3EGEL6m2UVhfy88IPm6SzWcI5ue95ZCaGVsFoThGNwyYQIHzKt7i79cDTrYdql3PwMHb8MpvMay7GsmUTHS44g63T/8ST2e6IFrFh9MkY9Doq/vcGhvx8dAP6N3+QhsZRQrMHWo4kSXTr1m3PVsscIxlF6zD63DjscZTY05s/oAW4fQ38suEL6j21vDf7P9xw8sNYTVr7fKwSOP8CvJs2Y3jlf+i2bkV35x0YHn0E7+uvE7j0MlzFJcExAA0NDY390GLHCDQVWgKor69vNb2JtiRwGGF5NEJ88cUXlJWVkZGRwWmnncY7369X7Zc6qZe5BlaXqLZ1HUJCnf61pZi8TsLc1VSGpYAg7meqd9C37C8iPNUYAx5MVtDJAYqiO7Ck9+mqwfFAqVp8PVCtjqs8znIK63SLKarJY8XS6QwYEAoDpk+NUKVFEOlEED9EIVjoLlOLttrS1DONLFFqccP6CnX6qLDQ/YgSROCdgsirRRBEE7835eodUcRUEubTip+q0s8gCiH6BKG1QF09EaNPQiorw3va6SROOpvAyaeAxbKn3CHnqE94pqKApUqY1evF/I9bMXz0EYGBg/BMn45/8GDkgQODDhNJwjRkMJLHg/fVVwmcPYkDkpR04P3HITpd28yLbokI1+GkPxY5WmLrLb33xyMHusaWiMkdKpo90DK2bNnC9OnTkSSJG2+8kZ9ml6kTCELKiPWXQvATOcA5Pz1FpmMrJbY0fu52E5W2JNqXrCbdsb0xWe+qxeSk9MNrVs/m9NeE2nydXS2IKgvtji5aPdjRRFxV2eYZ1e+jZAldU3V9BX+u+IXFG2cyMHss5468CSLNmN2R9O4yEkddJbWuanx+L4OGnMHYMy7DYlUIvwoOfr8gvm5U2ATWGPX16kRBeeFd9tSp7RafQvC4Ir9Gtc8iiK3XCwKxSttCJ5S5WhAeF8XEM+LV97rMERL1Fm2YFOEazcL7I+ZdpyhnRoJaUFcpHg5NBcRjI0K2WWWtWojcJIi8WwWR7+JKtX1pJkD4kgXU9xuIPVxdDr0wKcPp3r+YOIBdIUgsCuiK9pP5oX+R/P4bNLTrwNoZi4hRiMhX1rohLpnaL3+h453X481qhys9s9H4E+9HhE39DeSW1mIqzCdgthCVlQr60D0RP2O7VV1OUYw9EJAhPAq6RREmizah+r11CdfoVnwTScL7IVpDolix+H7FKETjq+vV74d4b43CO2A8QLvkFcTFDXp1yUS7TZneKtjbFbXqcon2uLhKX7nf4VS/Wy7hfiREqb9zkSpFnRFlV78P4jWECe/moQQPSGymHMrHphS5N0uefaRuPTR7oGW43W7q6uqIjY1t/K1O0Tc/lPEBCI4RdNyyEIBt8X1BpvHlkF1e2jk20aFmIwbZi8kqYfB78BrMrOgwgbJMdWSIQFGoHL7d1eqCVwVfXj1wddbNfLTzLfIrtvPur09wfa97sWUKYuyKb67Ja1+v/gYDqeGqbXOk+t03KsYbxLowM17dluwW2p2C8tB4glhPWIzq+iwgq79nsY1zOEN1RbiwUMYj1G9+oV8fH6Ee5ziUukByu9G/8w6BAQOQhw8/+AP3nMj/2GP477kH/aefon/9NXRbt2K86SY8w4YjKyZvH03+Dn26E51jdUykOTH2A5WjLUXhD+XY5mjre3nYjpGxY8c2/r9x40bVdn19PevXrycqKqpFhdM4tpFlmZdffhmAO++8E4Oh5X627OJlnLb2A7YkDeSHDtc3/h7hquDyjf8lwlvd5JiskrUs6XTGIZ3HZrAzMu5kZpZO4/fSX+njPxmD3tj8gX9TDN9/h/G1V3G/8ip0Vs9ENH3zNfoNwRjR5k8+gk8+Qrbb8d7/AL5/PXjY5zRffhmGH6YAoFu2FONll+L5ZWoogdOJVFiI5PFgOu88vE88if+RRw77fIY770Datg3vN99CeHjzB2hoaGhoNNK5c2dmzJjBsmXLaN++PYiOkUOg95bfyXRsBSDRWcBVK//Dl73/yerkUeyI6YXe72VE/i/o5QCxDUUUmzu01mUcFgs2/sYviz/GHwgOKBRV7EKWZSQgJbE9V0za0xYmh9oWg9W0j5w0jneyHrid2J++x5XZjq3T/0S2tn0IFstf80h+/w0ArDk7MOftgu5Nw8T6wyPY8u6XmIy6xhErfWUFmOLBeGAbOPvsUzBWVjRue9t3oGTGH6AY+NTQ0NAA+Oqrr7j11lt54IEHePzxx1slz9KIDIojs9iWqF5pNrbgBwaXztnnMXlx3bAXNqAL+NiZPuCQzpdiTeOGXvfy/roXKajL5YtNb3N9xqOtEjZcoymG227FsGfVsWfKFAJnHYbObFgY/ltvxX/zzRhPPRX9vLno33kH37PPtnJpNTQ0TjQOeyR77ty5SP/P3lmHWVG9cfwzc2u7i6W7EUEEAWmRUkkxQVFR7O5A7Pyp2AImpRIKmDSogHR353bv3pr5/XFx985Z2GXZu8n5PM8+e+fOiXfmzsx558T7VRQURSEjI4OlS5cWStOnT5/S2Cap5GzatInt27fj7+/Pbbfd5pMyGyRsBiAx2BibPNSefMZBEQCr247J7cBtKlknw2WR3fgnZQVpzlTWHl5Op/q9z8vmCwEtNg7Hs8+jHDpUaGBEj4sjY+ES1KNHMP/zD9b5P6MeO4b1hedRsrPh2fElmzICoOuoa/81fKVu3OgRVPtvxmVAAPbkFKxdOqNu3oy6YjnnHd1X19E6d0Z7+BGUpCR0OTAikUgkJUJRFPr27Uvfvn1LXVZ4+nHWxvUgMvcU9dN3YNXsxGYdZnONy1F0jZGb3slPq1cCRZE1uxbh1lzUi2vGFZeMpEmttrLz5AIldPEfAPgdOoA5ORlnrbIfGLHs3mnYNmWknyUlYDbDfytE3G4a3DUai8tJ4kef42zU5KzZVLtxJY1l/z5MJ47jlgMjEolEYNq0aeTm5mIpZsC1JKyv35f19U/7F2m5+d/Xytp/1jwD1n8GgKaozLriGQ7Fl0xbqUZQLfrVG8qsPd9wJONAyY2WnDPqli0FnzdsPL+BkfwCVFwff4z+4URcEyb4wDqJRFLdOe+Bkf/ibn799ddER0czYMCA/H0BAQE0a9aMMWPGlN5CSaVl7969BAcH06tXr3MWpysKk9tJvSRPo3gguo1h35HQJsyveyP1M3bRMnWtYV+uJZDIzBMkhNUtUX1W1Uq3qN78evIn0vN8qY5S/dAuv9yzZFlRQFie7xwwEAA34Lz2OrQPPsD8/ntYH38M9e+/wOEAm+0MpRaBomCfNh2/Af0hIgL3jTehXXaZURskKQn1119QN3sG01wvjD//A1QUtBHXgsOB7udXfHqJRCKRlBlLL70F6+b93LnxeQA2xV3OljhPaAVdUTkS2pi47MP83uAGTgbXq/ChkZy8TACu7nIbdWIaF5NaUp3ZO2kaKCp+e3fhrFW2cfD/I3PUGKxz5xCy+i9ymjYnp3kr/HQdy/59uGrE4wkMUxjbgX347dqBOSOd+N5dSX7tbbJuGHXGtIfemEjUjG9Qa8ajRUeTPexanC1bS40+iURiwHvC7LBhw8q8vjkNxtD1xK9kW0LocvJ3wz63YiI1tAYpobVQtfObPrc1aT0A7eM6ywkPZYjjhx9RMjNRNm/yvJOXEr1pU1wTP/SBZRKJ5ELgvAdGvvzySwCWLFlC+/bt87clFw7Dhw/n6quvJjk5ufjE50Dd5O3YXHlk2sI5EVYf0u3EZB3BabKS6h/LlshObIvowKJaQ7BoDvxi/VB1N0khtXGfp1B7h/BONAtuQUzzZj45hmrNOTiD6r69UKsmrgcfQq9dB/eVV4KlhIMip9E6dsLx2+8QG1sQG9Qr2LBp5kwsD9wPgOuuu9A7dz6vegqMV/N1USQSiURy7rz99tucOnWKMWPG0Lx589IXqCjkWEOY3fRO6mTsZmWDoYY26K/aA9kc04UMv8oxWz3H7olZHmALKialpDqiOJ3oZjMoCtmXdAIgu/2lvhFyPBcsFnZ+MQ3V6cQd7NHJC//4faJefgHdYiG29cVkdOxCWrdeZLXvmJ/N3qgJO39bQcOnHsR/2WKiHroXZ+Om0P3yQlWkDbiatAFXExV6Bk2I/3wz2WkokVzw/PHHHzidTpo0aULTpoVD+p0PDU9t4EhkMxxmz/PH5sqmRtYhDoY2I9Mazq91b8DitrMhqgv+cf5YXHYcZj/SAmMg/PxX7Wm6RlRAHCeyj9I5vlfxGSTnT926HumYVq2KTVpiXC7MTzyBduWVaD5Y1SyRSKofpfbZDx486AMzJFWViZ+sOf1pn+ffbmHlhc04YKHGGoU3dS8BtMZHPGXtibgIS1oGvU/Moc2BJdgt/nwx4D1ytDAA8ogkD0jddzp++alkFEEME0HMx9KqhnH/6Xc4CxAAaKcK7HC7jEJipuZCx4sg1IqXOKYqCJ5pgtihcQsiaxiF3jO9VmM4BPFHUaBQFD/0E4RJg70EMMV3VVHUTRRn9xY7FEXfRXFI02k7LB9/iN+TT+B+6GFcr7yCPmI4KhB0ukDzc8/hHjMGvUEDzhW9Y8ELvHLwIIrdjn7aydYbNkRr3Bitc2dcr8rYob6kOHGr8hII92U9JS2rogTySiNaVlVF/byPQzwG7+2qenzVHV3X+eSTT9i/fz+JyWG0vqi7Z0dCdtEZrYKQuSAArQTZOBzUlsM12xLuSqbznrmsanQVKUHxuPZlkIYNsj1ttyYKhHu1U5rd2PIqwcYBcF1opxWXsY3TvdpALSXXsE8NtuFyO3G4PGGG/PFH9xIFVwTBZ+/G2JVkPF61ttEfMFnOPhffLQiPq6I4stCmR9Ywhof0dglE4e2sXGPZYYJ4vcVLTDpa8EtEoe0c4dyKfou3GLtZeJ5pwrkTxaNFMe1orw57Ma1VOJfeouZgFMCOjzT6eLl2sd7/DNQIWL6Eet9/h9+Cedh79SF9yjf4RRT8jjlC3lyH0Z8S/TbFeAkYZicfPJVp2CcKpNerF2vYThl+AxFvvYZqzyN4/RqC16+h5if/I/mNdzk6cnR+Ond8TY5Om0Xs/XcRMmsmUfeP49AfK9D9C85nuJdQeaogTm86dpQGd43Ccuokp+56gNSbb0X3WiUsCnOnJ6USsHkj2e0vJUu4b0Vhew4epOYzj5DbojUJDz+J21xQ1oGTGYakUYLob5pwLXofAxgF1k8kG4WM68QYBzidxbQ92V73o3jdImyKWqPeu83C/SFuuwVB8Gzh/HlfEyEBFmFf0SGNRLF27/TiO4QowGwVniGuIs6XeJ+LacXTJz6fJJWfefPmAVCjZjveeX9lwQ7vPoIS9A+Epx9n2Nr/YTfZ+LDTO9RN20m/fd8RlJfGilbX8k/9qwDQgBwgY18inrd7gKQi+whMccaIF0qAkFaDq9uN5ip9lOd5LPQREOh1c/gLeYOMz2hduG/E9tDq1W4HCWWJz6AmtYx2e9834j0V5G+8980mY715QrsU7HXvC9rqaELZJuEYnC5jWd73u3i8JcLpRF28GGXPHty33AJBJZuEYpo4EfP776F/9inOn+eh9ZKDXJKqhS9F34sTPS+JkHtpRN+Lq1ekrPs9fOJtOBwOlixZwtSpU/nmm28Mf1WJXr168eKLLxb6PjU11SAuL4GsrKxCL6WlQtdolLwRgIPhLbhl/Uu0ObAEAJszl9b7l/iurrNwMvsY+9N2l3k91RW9dh0UhwPTu++gbNxo2KdOm4r59dewtm6F+t2351W++bbbsLVsgTr1OwC0fv1w7NiJa/IUCAkpJrdEIpGcO9IfOHd27NjB/v37sVqtNGnWoUzquHT/L7Q69hc9d0wvk/JLg6qaePKaidzf/zX8rGWvJyGpeMwnjlOv2yXUumEo/nNnozidmHftRMkpZjCwnFCSk9HNFnZvO8jelRtI+t9HZA8YBED4i8/it2uHMYOqkvjyG7hi47Du20PU6+cWk92UmkKToVcSsGUTloRT1JrwNE16dMCccOrMGRwOmg3sSZPrrqbOkw8WfQy5OTS47mqCly4i5uP3qDvm+sK95hJJOSD9gXPH7XazYMECAFq0LOVK/tM0OuyZOHk8pCHtji9l+LYPCcpLA6Ddnt9QNXHaoe+RIbQqDmXNGmx162AdOADLgw9g7XwZ5OQUn9EL9z334B44ECUvD8vga1DWri0+k0QiuaAo9cDInj17aNy4MX369GHUqFHceuut+X9VTWNk6dKlfPjhhwwePJjs7IKXG4fDwbJlyyrQssrH7bffTuPGjdm5Y7WPSlQwn3Zs/Fw5hOUlAWA3+7O5fg/MmrOIvKVnyeFfeG/deHambC7TeqozrkFX4RwwEMXpxDpoIMqBApE6vV173L16o9jtWG6/HXXRopIVruuoBz3lWR5+GA4d8qXpEolEYkD6A+fOotPP8+7du2Ozlc3AQHj2SQD2xrYrk/JLg6qoRAbHUjuyIaqi4nTZK9okSRljPnkC637PSmlnq9akffktqbN/RouJLSZnOaDrhNw3jgZ9OhOw5h+c9eqTddNoEr+cRm7Xbqg5OcS+90ahbFpYOAlvvgdA0Py5qGmpxVZlTkrAkpRo+M5y8gRm4bv/UPJy8TvgOW8hyxYXWbYpLQ3LsaP52/7btoD7/DQCJJLSIP2Bc2fz5s0kJycTEhJCvfqtfVKm6XT/QIAjk/jMAqH1/XFtSQmOz99fFmi6xomMI2TZ08usDknRKLt3oSQkFGzv3AnpJfw9rFac3/+Au29flJwcLDffBNmVYyKDRCKpHJR6YOTJJ5/kyJEj6Lp+xr+qxsKFCzl58iSdOnWSYcKK4K+//mLfvn2YTD6KoKwoLGw4kumtH2ZLXBd+bnYHLtWMzZXL8cjG/N1yuG/qOQvrT/0DQM2gOmVaT7VGUcid/CVa69YoJ09iGTQw33HRmzfH+fvvuK+7DsXlwnLtCJRNm0pUtmP2HPToaJTkZGzNm2F++GFIPPPLt0QikZQW6Q+cG3/99RcAl19eWJfAV5wKqQdATHrlHhQ/kriXV3+8h51HN1S0KZIyJO/i9iQ9+jQA5m1b0W023A0b5e9X9+yusNUNSkoypp07sJw8Tp0bhhD96njPgIKqkjjlOzJuvYMj73x0xrzZfftz6o3/cWT+IrSw8GLrsjduxs55i9n77SxOPPQER59/hd0L/yavxZljxOshoez7cgZbV2xg35RpRZbtqhFPwn0Pe7RbgMMfTQZzuam2SCQGpD9wbkRHR/Pqq6/y4IMP+qyPYFPTK8gz+RObfYQTQfU4FtIQgNDsBGb2eBanuez0Ib/9933eW/Y0m4+vKT6xpEzQbrwJ5/sfeNrZnr1wP/Ms1KhRfEYRmw3n1GnoNWui7tmD+cknfG+sRCKpspR6YGTFihWYzWb+/PNPAC6++GKmT59OVFRU/ndViRo1arBs2TJat25Nhw4dWLp0aUWbVOk4fPgwR48exWQyUaduC5+VuzWuC4fDPaKtO2M68H33Z1jbuD9b6vf0WR1nIiHjGIm5JzEpJppG+GZ2ywVLeDiOBb+g16qFumsXlhtvKJjhpyg4J01G69wFJT0da5/eKP/+e85F6xddhGPZctw9e6E4HJg/eB9b40aYXnlFziKUSCQ+R/oD58Z/AyNdunQpszqOh3s6nePT9hbaF+SsPDM5l239mazcNKYsfI1/dv5e0eZIypCUhx4n7ZY7cF7cDkeny/K/t3z7DcFtWhHcvClht99C4Af/w7ZgHn4/zSFo5jTU9LT8tGpSEpYD+0DzXZxkPTKKlJWrSRl9OwBRH79HzE3XomSko4VHkPLm/9ACPPH8A9aupvGgXtQYfR0xjz+I/8plZIwag6tG/DnXl9e8JZldu3Py/sdIvPVOHA0bF5k+o0cfnLVqk9u6LWgaNV98mtbtmhCwoXBok4QHn2DrvlNs236I7M5lN/AqkRSH9AfOjVq1avHUU0+dMfTY+ZLrF8pfda8GoP3xxfzQ6n421+/JnC6PoKumYnKXjvjQugAcSdtXpvVIikBRcN9zD/Zjx3H++SeuF144/7LCw3FOmgyA+ZNPUFb7KvKJRCKp6pR6KD8tLY3mzZvTu3dvFEXBYrEwcuRIXnnlFV599dUqFXvzv/iRNpuNadOm8fLLL9OvXz+eeKJkI8qvvfYas2fPZufOnfj7+9O5c2feeOMNmp4Wja7q/P333wC0bdsWW7IbKBBIKyRiGmkU5iTdGGJC8xJXU2MLhLT87RmcSI7mSI2hcCr7jGWrQV4zRERBL0F41LHpmHF3vaj8z9v2exrFRrXaENSmtkFoFUA/ZVxqqQgiZqgF44ua3Xh8eZlG8UdbnFEsTBRI8xbiFEXKkjONZdeIMJ5bpyDqlppVkF4VYqOGCYJwKYKYprcYu0MQUgsWj99sPNdpoVGYp35PZL/emH77jbwZM3GOGAmArpjJ/XEOwUOuxrx6FdarBmHfsxeCPcKw4iozMaZrTt0GMO8XzIsXEfjCc6gb1oMCuqIUEkgNsMmZhWVFeYlg+7KesrS5ODGwosTFS4MvBc98SVURui8K6Q+cG0eOHMmfKNGxY0c2/L4if5+eYowBrYgC4LWM2lDutSeM+70Eso9ZPKs5YzMO02H7z6wK7QZ4Qm/et/Ml0v2jOBTVglPBdUkPiCLdHEG6XyQukw0twyiYrqUKbbrN2KbpQnvo7U+odmPbKfZnj7z0biyKhbUHljH7ny9IyU1iwGWjUJXT94S3aLogrurtDwFoov/k5U+4BKFkS65x2yq08SePGgePAr38LUW4X82C2HFCmvH8GeoRRM2DBUFwkyDyahX9BS8/RRRyF4XLQwSBeYvp7B1iorhsoCAAnpFj9M3CvMo+mWo83khB1DvUK63+4UQSUjLQAwPhtA/mSklFV1XUQwfxP3QQ/x+/N+RP+WsNrthoj53fTyViwnPY27bj1Mw55AYbBXUDNBdhLz5H9rXXU6tde8O+bOE3N/pxKhETJ5LerSsh99xFwMLfie/fi5Sp3+Nu1JiIYM8xBSQeJ2DrJtjqWcEbMu0bkhcuw326LtusH7CuWE7O+xPzFbi9Re6haD8WYN8Jo0j6f3UDRL3wFIFffe75HB1Gmln1hAL7ahJqRgbqM0+fTui5XrO9rglv8XSgkEJ4/Vjj8yYrz3g9eYsGBwvC5OJaH1FAXjxGQ95cY+5cQdg40CbeEwXPAdHvF/1YUeZAtMv7PUC8f8R7T/zdihJnF9OKYutJGcZnZlTI+c/gL0ps3fu+zRTu4bLEV/4AVH+fwMBxY5vm/R5fkv4BgE1tB3LpiT8Jzk2hZe5Gfq19g0dpPSer6P4BQBHuEy2r4HrV043Pe8VsFIGvHd0IdsPhtP0oNhOKKLDu9rrfs4Sw36JyuXBp5yQVFcrJeH5ChHdvsV32bsNswvMpO89oV4Dg82hFrG60CP6Bn7+xbPE57BKPmYJnh1UYxHIIea2WYga5wsKK3n+OaFdcgfvGG1EXLEDZuwe9Y0eflFvelNW7ZVWlOpyP0rzHl1RQvST1+FJAvTScrd/DUcyxnyul7jkMDg5GO/1mGBQUxM6dO1m9ejWHDx9m376qNboudso+++yzNG/enNGjR5eonGXLlnHPPffQoUMHXC4XTz/9NH379mX79u0EBgYWX0AlZ+7cuUDZzQ5tt+dXLt8yk5V1r+bfWn3LpA5vtiWsB6BlvUvLvK4LBVfbi0n/+HPUY0fRhl9r3BkaSuZP8wm6bgT63ePyB0XOGUXB1bsP9iuvQNmyBf2ii3xnuEQikSD9gXMlKyuLBg0aEB4eXqbHk2ULI80virC8JJomrcsfGInJPYaGQlhuImFHjLHeNRSWNRrBqvDuZWaXiNlkZkTHu4gIiuGPLT+wdOMcEtKOMvjysUQEx5SbHZJyQlU9gyIAuk7gtG/IHXMHecOvxbJpI8qGDVi3bMZ0+BC6nx+Kvz+6X0GnneJ0olut2DauJ3bYVRz9ajqu+Jr5+3V/f5TcHOKu6Eb6Y0+R/uSzJTLPPmIkqQ0bEXrDtVh27yK2w0UkT/2enH4DAcjr1oPEaT9iSTiJ/5xZ2JYtIfTB+0hZ/jemAwcIHTsGxeXC3bEj9htvPq9T5L/+XyK+/JycTl1IvfGW/O8Dv59O4EcTAcgc/xKuJp6OYb/V/xD95CPoikJmz+64O5fdSjSJ5FzwlT8A1dsn2LhxI4sWLeLuu+/G39+/+AwlwG2ysKrZNfTYPBWrK6/4DD6ibqRnBVxS1glOpB0mPqBhudUtKTucb70Nn34GPr5OJRJJ1aXUAyO1a9dm//79uN1uWrduzT///EPnzp0BqF+/fqkNLE8OHDhAdHS04bthw4bRrFkz1q4tvMT7bPz222+G7a+++oqYmBjWrVtHt27dfGJrRXHgwAF++OEHAG699VYWTT/p8zpUzY3Vbadm+t4yHxjJdmRyJN0j5NaybocyretCI2+oRxfGT5ziBhAcTNb8X/H3O/sMtWJRVeOgSGYmlr9W4Ow34PzLlEgkEqQ/cK40b96cnTt3smfPnjKva16z26mXuoOjoQVaDoeDG/Ne69epaz1JnZQdhGefIjQ3kZjMIyQHxhOfvhfKcWAEPLOL+7QaRkRgDD+s+YztB/9l56F1PHXT54Tb4srVFkn5EfTZR4Q/8wSOb78i/ZtpOPr0xdGjjyGNTZgRm/7w4+QMupq4a/ph27qZuv16kPDSG2R364kWHg66juPi9vDd14S+9Rr2DpeS17tkfrGrXXsSF68k6J03CfriU8LvHovj9yW4GjdBi6tBXlwNXCYVV7Pm2JYtwbTXo4/irl+f7CefIejlFwm6/x7cDRriuqxzic+L5dhRjk38gshPPzB8bz7g8b11sxk1IwPrXysJTEvHstfzLFF0HfXIEWSgVElF4yt/AKq3T/DGG28wY8YM9u/fz0cfnVnHqDRsqd+T3bU6kuMXCqeyis/gA06mH8n/bHedffWkpIoRIyeqSCQSI6UeGBk9ejTLly9nz549PPPMMwwZMgSHw4HJZGL8+PE+MLH8qFu37hm/b9myJS1btjzvctNPC1BHREScdxmVhQ8++ABN0+jbty9t27Zl0fTfis9UQrL9PYKPNnfZOyB7k7ejo1Mjoi6hQZFlXp/EC68BE2XDBsyvvIzj8y8gvHjBz0JkZREysB+mDevJ+nYazsFDfGioRCK50JD+wLljsVho0cJ3emNn43hIQ46fFl3FKzyWw+TH/piL2B9TMFCu210o6KiaG7JdYlHlQrv6lxNfpzHz/p4CQHhwdDE5JFUZV+MmuMPCsf67hojuXUj7fjaO1m2Lzeds0owTvy4h5pYbsG7bQvy4MeS278Dh2b+AzULWLbdh2bmD4C8+IfLeOzmxYg1aVMmuJS02jsxnnse26m8sWzYTPWQgCQv+xF23Xn4a29IlADi698z3z7IfeRzzxg34zf+ZkOuvJW3RMmhespA/GVcNQcnLI/n2uw3fpz/4KH57duE3dzaB775F4LtvGfePGoN27cgS1SWRlAVl5Q9A9fEJDh8+nD9x8o477iiTOtwmCzmm0OIT+ghN15i/eSoAHev3ol5UNQx3dqGj66i//orWs6dcPSKRXOCUOiDXQw89xJw5c2jWrBn9+/dnx44d/Pjjj2zdupX27dsXX0A1R9M0HnzwQbp06UKrVq3Oms5ut5ORkWH4q4yMHTuWsWPH8thjj5VZHXaLp2GylcPMjBYxF3Nb+0fpd+mNZV7XhYSSnAQOB+g6AWNGE9K0Eeqhg2dO7HZjufkmTHPnYut8Gcr27SWvMDAQV5s2KJpG0K2jMK/6p1T2SyQSia+pbv7AggULcDjKL857iVAUdEXFbSrFqkQfEB9VnzuvfokxAwpCIKVmJPDZrGdJTU+oQMskviavd19OLVqBs1VrTAmnCLt2KKYjh88pr6tefU78soiMwZ6VtmpGBqaU5Pz9aS+8hKNZc0wJCUTedRsBs3/w+Finifzwf9QZ2p/GLepSr09nol5/CfO/awwiOHpoGMmz5+Fs2gzziePEDB2E6fhxcHriz9uv7EfW3feRc/1NkJOD348zUY8fI/3zKbjaXoyanERo/ytQduwo8bnR/fzALMzFs9lIn/IN6ZO+JG/YCJyt25B7aSdyevYm+ekXSHrj3cKiGsXhcqFklc9McomktJyLT1BV/IGJEyfidrvp1asXbdu2rWhzfEJGXhq5zmxsZn+ubDmios2RlAJl61bM4+5C2bbN8L1lxHCsV1+FafLkCrJMIpFUFhRdDJxZQlJTUwkJCcHkJYK4bt06Xn31VX7++WecTmcRuas/48aN49dff2XlypXUqlXrrOnGjx/Piy++WOj79PR0QkJCzpCjcvDOhEXGLwShckKMYpmkCHFBvQQy3fvTAKiZupsb17xKql80n3V4JX+/lphpzOslUqhYjS9cohAbgiiP6m+0S40siOuq1jAKpCs2QQxMEDW1tCpYjmkShEgtglioiF+w7az7RJFzUezRJggUhocYy/IWXBdFF8Wy3IJYmr/XflH80U8412Je2xefYn7gAQgLwz1yJOaPPwbA/t009OvOPPtP2bAB67ChKIcPowcF4Zw8GW3YcMSnU1GPK1XXsFw7AtNPP6HHxGD/ZxWcZZaXpGpQWcTEJZWDjIwMYiPCK327eDaqkz/wX9jUBg0asGPHDqxWT1tn8AlEf0AQW9V2JRu2FaFtde9P9dpp7CBVRPFjr7a34akNHLPWJdfq0a/S0gUR+MCzt7sAiq0IcVWxDRLtEo5B9B+UMBtf/DqB3cc2ERUSx7hBLxMS4FklqYjCo8L58harV0WfRjgfiiDibBGElRUvuwPDhXqEvmh/UQDa67Movp4nCE3XiAgwbIcI4uxur457UXhaFQxxuIxlKxj3ewtEi2X5C35LgJ9x27suf+FcimLQopi26AO509KJu6ov1q1bcLVoServi9BDPbOcxeN3uY15zSoomzejN2kC/v4GYdvcNeuIvaI7yukBkezUdDitSWC7/jrMs35ExB0bR+7tY3E/9hjYPNe9cvw4Ab17Yj54AN1mw9HuEo7M+dWQL+rALkI7X4pWrx5pq9bhSE0javAgLDu3o0VGkbR6HXq0x/cVhexrRxt9aPH8eIue7ziSatiXnmUsq15cCNb1a3HXrI07NlbwR43l5iQkU+Oa/lgOHuDUl1M50KaTYX+dGKNd3n6xU7i2AoQwr+nZRrtEH9rsdUyikLEokC6KE2d7icJbzMbr1ukypg0Urtu0LKNgdbDX9SUKG4uayKKAuli2N2JZ4j0QKrzraF6V5YjvYwLi+TlXqro/AOfmE1QFfyAzM5NatWqRkZHB/PnzGTjQo2FUZB9BCfoHoKCPYODmz6iTsoPfG97I3kjPKtGi+gcAdOHdwbvPQOw/KJQ32p+TGYepFdbAszvGqAOjBHjlF97Dxf4Cgo3b/sKz0uT1XBHbZfGZEyq06ZGhBdpVEcFG8Xm703gPiu1OWJDRbu/7V2xLw4R73aQWPXjtXZfZVMKBbl+RloatfTuUQ4fQY2NxLF+B3tCz+tj02adY7rkHvVYt7Lt257eTkupFaYTJqyq+FHI/m+j5uZRbEjtKavN/6TMyMggNDS11u3jeK0YOHjxImzZtiIqKIiYmhp9//pmkpCSGDBnCpZdeyty5c/NF2S9U7r33XubPn8+SJUuK7AQBeOqpp0hPT8//O3LkSJHpqzN2s+dF2s+VDXrZX0PZzqwiO9wl5455+jQs996L4najJCfnD4oAmObOOWs+/eKLsa9eg7t7D5SsLKwjR2K56UbIyTlrnkKYTDi//gatbVuUhASsQ4eAq2JCqEgkEok31c0feO+99wDo3r17/qBIZcDfkcngtR9wz9+PEJKXVNHmnJERl99NeFA0SRkn+eLXCeTkZRafSVJl0IODSZj6A67YOMzbtxEyZnThAbWzoSge7bQzhPRwtmpD0rczyO03gLyu3QxpnLffTuZnk0hduYrMSV9iHzocLTgY06mT+M36Abwmr+kxMWS+6Jl0pNjt2P75i/AP3iFo1sz8NO7mLVB0HdOBAwQ+8iBaVDRJC37H0fZicm67I39QpKzxW7KI+Ct7UPPS1piOHS0ybdSjD2DbtgU1O4vYUSPx27+3XGyUSM6Hc/UJqoI/8OWXX5KRkUHTpk3p379/mdbl58wm2J5GoCO9TOv5D7Nqzh8UkVRNzM88jXLoEADKqVNYrhqUv5rSfdPN6EFBKEePYpoxvSLNlEgkFcx5D4w8/vjjbN26FV3XSU1N5bbbbmPYsGH89NNP6LqOxWLhtttu86WtVQZd17n33nuZM2cOixcvPicRepvNRkhIiOGvMrFlyxbuvfdefvnllzKvK8M/EofJir8rh7YnV5RpXUeyDvLe1pdZcfD3Mq3nQkE5HS5Lt1hwfvIJ7htuyN9n/vGHokMwREfj/O03XE8+hW42Y5oxA1vvXpCScu4GBAXhmDMXPSwMddMm1IULz/NIJBKJpPRUR3/A4XCwYMECAO6+++5iUpcvjU+uw6S7SQqMJ8MvqqLNOSNhQVGMHTCekIBwTqYeZtLvL3Mi5VBFmyXxIe6atUic+gNaUBB5144seUios5DX50qSpv5A4k+/glrwCqf17oP9hptwX9QW+8jryfz6O5IOHCV98ldkvvF2fhgr6//eJSQ+lvDRNxjKjXz1RWLvuxPLgX2eL8xmMub8jK4o+H33DRFjbkb38yfxl4VkP/2cT47lXDClpeCs1wAUFTU1tci05uPH8j+reXlYkxPL2jyJpMSU1Ceo7P4AwNy5cwHPChhVLXWU9iJJDooH4NJjf2LSyjYqSY4rm5+2fitF16s4SrKwOjk9HXJzUdavx9qzR0H4Rbu9cGaJRHLBcN6t14oVK1AUhZtvvpmbb76Z5ORkVq5cic1m4+GHH+bAgQN8/vnnvrS1ynDPPffw3XffMW3aNIKDgzl58iQnT54kN7fqNqy//vorH330EZ999lmZ1+Uw+7O88Qh2RV7Mnsi2ZVrX4az9ZDkz+GXnDLadWlemdV0IOB99HNezz+F6/Q3cd4zF+c235Bw/ibtzZwDML44vugCLBdfLL+P440/0iAj02BgILaHQXu3auG/0aMaYvv3mPI5CIpFIfEN19Af+/fdfsrOziYqKol27dhVtjoEmJ9YCsDO6QwVbUjRRIXHc0e95/G1BHEncy7uzH+ab39/E7ZarHKsLjrYXk7JhC/aR1+d/Z5o4EdM775Rswsf5YrViHzESZ89e+V/poaEomZloIaHkXdmfrAceJnvsODKuu4msQYOx7Nmdn9Z5xZVkffUdutWK/89ziWtWn4AfZvhskOdcyB48nGOrN3Js5b84W7UuMm3Cp1PIHHE9GTffQuL7H5PR4bJyslIiOXeqm0+g6zp+fn7YbDb69etX5vWtqj+ILGsokbmn6HJ4fpnVo+s63+75lL8P/snP26aWWT2Sssc5aTKusWOxr1uP68GHcPz1N6ap32G9rBPq+vXoYWE4J03CfcfYijZVIpFUIGcPKFoMSUlJNG7cmK+//hqAVatWsXfvXn766Sf69u3rMwOrIp988gkAPXr0MHz/5Zdfcsstt5S/QT5g8eLFAPTq1auYlL5hfZ0+rI3qVuYvYJ1je5KYd4rVCSuYvvFT7rj0CerXaFumdVZrzGZc48cbv4uKwvHBh/h1aI/pxx9xbdyIXowwn96tG45Vq9GiovNDQKh//oHpo49wDxmC+/obwHL2uMTuMbdBaBjum28u5QFJJBLJ+VOd/YGePXuW+ezQkmBzZlM3ySOsuTu6cg3YnIm4iDrcd/Vr/LZ2GlsOrMKtuTCZztstl1RCtNi4go28PMyvvIySlIT5zTdw/PY7tGlbrva4rr6GzHbtyGrSwhBey1vnwhvHsOFkREcTPHI4amYGoS88S9LgoehhYZ4EmkbQ/LmEf/AuAEd+WexbgxUFFAV3rdrFJnXXqk3SR14T8lKEUKy6jpqSjBYeYVhtI5GUJ9XNJ1AUhV9++YXc3Fz8/PyKz1BK8qxB/NFiFEM3TqTTkd85EtqEfdTxeT2KotC31tVM2vk+a48sp0XsxbSMa+/zeiTlQFAQro89953rotO6NK1ao914I2Rm4pz4IcTFFVWCRCK5ADjvNzC3201ERET+9n+fL/RBEShaILoq8sHUtSxZugyABEdNPp65qWDnCSE2drRRlEw/mmHcLwhvaQkFM2R0URnQdVpfRNe54uBMtjbuxanQgiXHWmJWQV5RnEcUMRXQvYQWB9UcRpo7jV3JW5j871uMUR6lXkST/P1qhODoCSKEzr0FM/+ccUYhtbxUo5icRRBiy0s1zhAKqxOW/1kUe9QRRF2FMSNRiNRQryCyKIqpOV3G85fndYwmQQjJJSxdLny5G78IsFmgdRtcI67F8v1M1Ndfxz51mscO4SC87dIbNDAckWnWj5gXzMe8YD7uXxbgnDY9PzxEIQsuuijf+ZFUXaqLGFpJRMrOt1xfl12elNX5qQxUN3/g45mb+HbGzwCYQpoY/QEw+gSiP3DM6C+IbaueLYTF8Gq3zK2iDbtc24z6IQrQ8NRGTxitoJokm6PAfro8sbG0GzuBdUF4WVQpVrzvM1HkXBQsFkSJdXE7t6BuxWoiighuansvJxsMxhQRgH66LU7PTmbxijn0aTeckECPf62nF4R5cIcZz51bEHkn1Cgg6swxntvA2ILfJuVwmmFfZN0ww3aucL7MXufDIfgOoq/hFu7n9Oyzh6rwFsMGcAp5RXHoAEEUPjmjwN/ShX5+URRe7Bf3FrnOsRuvFz9BnFcUrbYJ2xbv55m3v+jSsb/0Cpb3/odp106sV/YlZ8HvuL1WQiRnGn3GAFvBBJDo0KI7HW2WokXjAagRCzViCRe+DhfEd72F7Ondk8zFy7BNmYT9ljEE1YgGTcM0ezaWV15G3bYVgJwXXiQyIqjQuc46egLTqZM4GzUBq5XI4IK6mtc2WiIO0Ii3rvdvrmmiMLlxskyNiADDdnpiGrGN62K/sj9pU2cS7F9wPhWlaAFwf6tR80X0mb0F1+3CO8KpNKOfHxFsPNfe4sVm4cIMCCjad48JM9qV5vXeIAod+wv+QoogdC9qKGfmFjwzxN80WBB+Tsk03tdur99GvG7F380tbos+gNdFIN57VZHq5BMUav9FiugjKEn/ABj7CPZEt2N75CW0SF7LtVs/YN7F49gZ36kgr1f/ABTuI9CyCp6zhcTXvdLWD2jI5TX6sPzEn8zaOJnareMJccUakivhBde3KvY9CNe+IuzPTco2bAd79QHY84xttvgszHUI/r/XPXoyxVhuaKBN2Db2J+QIdRnaVuF6zco1prUKx+Qv+EgVJrheDHrnzjg7dao2g+QlEcs+0/7zTVtZqQ7HIFLSYyrLYy5J2WWV1ju9r461VE+DDRs20KBBAxo0aMDGjRsB8rcbNGhAw4YNfWGjpII5sGczDnseQSHh1KhV/r/pxaeW0/7UMm76awLtD/x27iKW54hJMXFj67tpEN4MuzuPyWve4kTGYZ/WIQHHcy/gePwJ7BM/PK/87vsfwPn8C+hWK6bZszE/+si5ZUxKKp+wFRKJRFLNcbucHNrn6Qht0vLSCrbGSOOTnnCYu2tcUmhf1+MLeGrdvcTmVD7hWoC4kFrEhNXM3/5j3Uz+3voLr0+7m6OJUkS6WmCz4bx1DDnLV+Lu0AElJYXQqwag7t9X0ZYVi9aiBblvv4vWqhUAlqeewHbDdfmDInn33o/9ljGoe3bj/8B9kJeHcvIkwc2bUKtJXWpc3pHYgVeAq/xCxSnr12N+9lnMY+9A/eUXlDxPR6vt918JevH5crNDIqnOJCccKz5RGfBLw5vZENOVDGsYB6NalVk9V9QcRKx/PNmuLGYd+BaXJsNdVhsSpQ6VRCIpoFQDIw6Hg4MHD3Lw4EHsdju6rudv//cnqfr8tWg2AC0u6lIhYTN2RF3C7vCLMOluem+fxnWrXiMm/aBP67CabNxy0QM0CG+Gw23nz91zfFq+BPQmTXC89DJ4rTQrUf6WLXE//zzOqZ5Yr+YPP0RZubLoTElJWK/si/XKvnJwRCKRSEqJyWzhmbdmMWDYncTU8H34itIQ4PDMQE0OqlFon1O18lGrCfi7sgrtq4y0ru+Z/epw5ZGaKV/eqxWhoeTM+wV327aoSYmEXDcCJTOz+HyVCasN3TucaXYW/uOfJ7R9W2xffIZ18hcouTmYDh3MT2I+Ws4TjrKyUGfPwjxlCtarryKmfi30/0KznjxRvrZIJNWQY4d28/z9A3nvxdtwu8pWCF3EpVr5vcGNfNnmGfKsp6M16Botj65A9eHghVm1MLz+zZgUEzvTtvLVuvewu/KKzyip1JjefRdbyxYoGzZUtCkSiaSScN6htLp164ZSjgJ8korhyJEjrPvndwB69r+hQmzIMwcyu8mdtMtaRc8d06mTspPRK19gS1RHlte6mixrmE/qsZpsXN/yTlYeX0ifxoN9UqakCPLywN+/+HQC2pChuMaMwTxlCpZ77sbx71qwWs+YVklMRDl+HCUxEeuVfXH8/sd5D8xIJBKJBKJiajJwxLiKNqMQy5qNRFNNJAfVhAxj6Je1MT3QFBMZtogigk5WHo4l7QcgKrQGLepWbiF5yXkQFkburLn4d7kM847tWGf9gP2WMRVt1TnjfGE8WtNmWD54H3XjBvy+nFKwb8BAXN26o9VvQPrufbjnLcDZoKFHPP0s4U/LAr1bN5zzF2B++SWUVatQd+9GcbtxNW1G5pvvElxulkgk1ZNFC74BICQsCpO56HB0ZUWeOTB/lm+LY/8wcNMXXGaLZmntIewOv8gnWqW1guoyqsk4vtvzORn2VNxy1UjVxuXCNHcuSloa1gH9cSxdht60aUVbJZFIKpjz9lCXLl3qQzMklZWTJ08SF1+PoJBw6jRoUXGGKAob6/Vhf0xbuu36gRbH/6FN0ipCHKnMaPaAz6oJtoUyoPlIn5UnKYy69l9sDz6AHhziER89D1yvv4Fp3jzUbdswfTkF9513nTGd3rw5joWLsF7RB3XDBjk4IpFIJOeJw+EoPlEFcjyisdeWUXjZrVZMp835kGvPZtnmnwDoe8l1UpC9mqLXrEnm1BlYli3BPvrWijanZJjNuG+6CfeNN+JathzbF5+juJzk3fcAWqfL8pPptWqTdcttFWam3qABzilfApBx5ATmrVtxtbmoQDxeIpGcF0ePHuXfv34DoPegURVsjQe3aibLFkqEPZGhez/nRGAdtkVeyo7QtqWeRNkktAV3NHuQsJgaBFiDis8gqbyYzTjmz8fapzfq+vVY+12JfdlyqGNcBa1s3Ijepk210SGRSCRFo+jVSQWsGpGRkUFoaCjp6emEhIRUqC1vv7+SnJwMAgNDAfCPLXAIctcIsUX9jKJbeoJRAEwRRAc1LzFWb1FSACXI2JHhvb9Gyl56bp3KkpY3cCKiEYrFRI3kvfRb+xkJYXVJNMWSGFiT48ENyLUWnhfmTjXapXsJgiqnBRx1XSfZkUhMXH1DWnPjSKOd/l6dFk2N+/xijOKzFkHg0iQKuXqpH4qCZkH+xs4RsyDC5Gcxbkd6ib6JaUXRUpcgWuQt5O4n2CgKJQb6WcDpBLcb/PwKCaR6pzepCsqBAwQ0bYyuqtgPH4G4OM4HdeYMlCNHcT/wAFgsuNxGu7wF35Rt27Be0QclIQHXmDG4Pv/ivOqUlC++FE+TQmyVp+yi6iqqnoyMDGIjwitFu1ieVBZ/4PLLLyc1XeGqwfcSFeXRw/D2B0DwCQR/gDRBeFsUW00yDmaoXkKt7sPpxrTJxrSKcL16t/GKIOot6pSJ4quKIOKsBBWsSBTFU7U0IaSGcEyKvzAg4yWQ6i3a6rHTcwy/bZzBoq2ziY2owyPXvoeqnq7TW2BdEF8vdExxxt/FIoitmryOwyz4FqKArEX0FxwFvphNOFehgcZt0fcQhVvDvc6tXRC0jhT8RYfTuL92jPEYs7wEZEWfJsiv6IGxXK/fRRR4FoWnowXBa7GuQK/zlVOEcD0UFtO2ohlWVYi+GgBuN8qBA+Rs2Ix5105c9Rtgv2YIYYJ/WVaIwuOiyHuucL5EMd7SkJFTMDgr/qbiuRRFvsXfwtvHFgXTg4X7VnxTLmoSuvhaXZroCsmCqHmA6I8LdVm8ri+xVvGdQsQh/K6lETr3Pvfi71Ic4vnz3vQuS/oDFXvcTzzxBG+++SYNGrXl7vs82pFF+gNg8AlK0j8ARfcReO+zOnO5dM98Ouz9BYvmaRN0FA5Ht+CHLk+gqyZch1Lz06vhAYZyXYeSjfUI9423v3Ay9zg1Yhrk3+OmuqHGtLHGPgCijHUpQjtu8nreBwltuCa840YLZYV4PbPEdsYs3MtRIX5F7vd+torv/CbhfhbvV3G/d/tgEgYY8pzCM1nw1UrzDDonEhOx9uyBunMnWpMmOCdNRu/cGQDTW29hfuZpXC+/gvvxx8vWDkmlpjr2H5SWc31vF9OK+Opc+sofkEOgkmJRFCV/UKSycCKiEdO6PseJiEb539U/tYmozGO0OPI33Q/OYfi2D7lrzVOE5pY8PneWK5OJ+9/mw/3vku2sGjHJK4zcXKKjQ4mJCcO8fl2xyfX69T3Co5qGacaM865WG3kd7kcfBUvxM4H1li1xTpsOgGnmTKk3IpFIJCVg9erVrFy5kp3bV2G1lE8HbElRNRcXH1tCn91TMWuVe3XL2bA78/h7t2clZb8ONxQMikiqPUp2NsFDr8H/xRcK98T/l2bNGvxsVmzNmhJ+/QiCxz9H+OgbCXrt5XK2tuqjrl9HQLcuqDt3VLQpEkmVIisri88++wyAHj2vr2BrjDgs/qxsPpzPr3iXha1u4mhEYxR0VM2F7sP2dHnCIibueoP1p/7xWZmSciY6Gsevv6HXqYO6eze2bpfDkSOefZERKJqG+fnnULZtq1g7JRJJuSAHRiRn5Y8//iCzMgtCCrOw1je6klmdH8XpFTLDojmwuksukhZoCkJVVJy6gxXH/iy1qdUai4Wchx7B2aEjSkY6JCbi17snlmeeBrv9jFlco0YDYH7zDcjIKL0N2dlYH30YkpLOmkTr3h2tZUuU7GzM418ofZ0SiURygTDj9CD2RRf3IiQ0qoKtOTOaotLx8K+0P76EzqeqZrtts/jxzJBPuLPP87Rq0KmizZGUI7YFP2NZtBD/N18neEA/TP+uKZRGSU8/Q05Qjx4pa/OqHyEhOJ58Gt1yZo06iURyZn777TfS09OJjIynWYvLis9QAWT7hbG+4ZVMu/x5Zlz+DLWTd1Er0XeDoC7NhY7OwkM/S82Rqkzt2jh+/wM9Ph7dakX9528A3DfehB4QgOJyoSQkVLCREomkPJADI5Izcvz4ca688kpiYmLIza0CKyZ0nTxrEPvj2zGz+3MkBdRgTc0r+LbtkyQG1S5xcYqi0Du6HwB/n1hMlsMHnffVFbOZ7OcnkDbjB5w9emH+aS6mFSuwvvUmfp0vQ91eeKaF69YxaI0aoyQkYH7ttVKbYBk9CuvED/C7+UZwncVBVRScX0zCfdNNuF6cUOo6JRKJ5EJA13V++smjedG6TbcKtqYIFJXFjTwaYZclLiIy72QFG3R+2Cx+NIprVaoQPJKqR96115P18afoViuW5UsJ7XE5liGDUTZvzk+jXXEF9vUbcD31NKeOnOLUgWNkj72L7MeeqkDLqyZao8a4BgxEb9iwok2RSKoUCxYsAKBVm26olVx/werMpfemrwHosGeBz8rtGtOTQHMQqfZkNiX+67NyJeWP3rgx9i1bsR89hnatx4dUF8xHyclBj49H61aJ/V6JROIzKndrJqkw5s2bB0Dbtm3x96/cImPNjv7DVasnop6esXEishGTL5nAkobXciKkwfmXG9SCWn51cGoOlh77zVfmVk8UBT06BgB1/fr8r01bNhPYuROWjz80hoawWnG8+aYnzfvvoezfX6rqXeNfRA8IwLx4EdYnHwftzDEL9UsvxfnV1xAeXqr6JBKJ5EJh27ZtHDhwAJvNRpNml1a0OUWyO6odeyPbYNLd9Dv6w1lDEkkklRHH6FtJ37gF+82j0VUV07x5WNu3w/zkk/mTPvQ2bXC99BJ6SAh6RASZb/0Pd/36xZQskUgkvuHjjz/m559/puNlV1W0KUWjawxY/xnRGUfJ8gvjj4tv81nRVtVKl+geACw98iuaLnUHqjShoRARkb9p+uYbwLNyBE1DWbECsrPPllsikVQDzqDqJ7nQ+fiHTXz02bcAxDa4FPKMM/BzFhV0Yisto42Z9xq1G3RRbFVA8RYTFfsvRLFDQSDUfTSDFgmrGbRrCio6B9y12BDRxZNWEEvTixH3sTSJLagnpCB+er/oG5m0/DVWn1xOt9pXEmoLx33EuHpEjS4QQFN3G4/fKQqeCkKa/sHG/arXDNGQAKN2RqCQVxQ0DBHqyrUXiEn6CyHhLYIQkihqGuh1rkUhtYhgo12i0OZ/AyP2997H9NuvmH/7Deu6tYV+E666Cnfv3pgWLUL5+mtcL4wvVNe5ordqhXPyZKzXX4914geYV6/G+fHH6G3bFqTxup4UxfOF+scfaH37Fq2kKakwfClwVh3F0sRjKkrg7EzpfZVWUn35+IdN/Db7CwAat7wUm24x+ATe/gAIPoHgD2ii2GqYsWFSBSFSPTW3YF+I0IgJQqR4CYQubDOausueom72XtrYN7E14NKzpgXQMo3hNkXxce1UQUhRsR1TI43iqmqUUZhbTxd8IG+fR2h2HK48Pv1zAvVjmjHg4hsxCb6XEuDlA1iEe11o//XkXMO2OdIo1OoXXmCnI8Noo2IzGmYWBOWDvcTH3cJzQvQHgv2NdnqLrYOxXY4TRHAzso06MaJ/cDzZeD15C7eGCCLw4uob0X8K9CvYVoW0omi1eMxieu+rS8wriqmnCceoKgrUqovjo88wPfgIAS+/iP+cWbhXrSbb7gavSyIssOgQUC6ve0S327FMmYTpr7+wj38RvWEjQ1pRQL0oikvrS7F1UdjX+/wVt6JK/I39rGd/5RXF1lME0XM/4Zhswu/qfW36cqVXZHDZ6TmJ51a8rvH6nUsiPg8lF1w3lq0I2wWfvQXiRbF4Sdnz8Q+bvLbqEBOadu7+ABh8ghL1D0CRfQRn6h8A6HroZ5qcXIdLMTOr3u2kJwCkgte1rqUY2xFTjCDcK9wX3uLrnQOuYFniIhJyTrAtfRNtMoxhxRThGlXtxvZRF9p4l5egek5SjmGfLdToHyWcMkbzyPHyn0QR8zChPTwlHFNwgLEtycp1Ftgo3Pzis1AkRCjL+35WMNZrFUXiheeGw+n2TAgwmwu1pWVKQgLqr78C4L7+eqwXt/UItDdvjnPOXPRGjYopoOKRguGloyTi4pWVklwDJe0/8N72Zd9DcZT1dV3qFSOapjF58mRuuOEGevfuTa9evfL/evfu7QsbJeVMbk4mu7d4Yhu3vqR7BVtzduIz9nPV6UGRjWEd2RDu+zinjWNbUy+kES7NyYL938sZIeeAfdJk7JMm4xo2HPtP83B+/jnODyYWTqgo2N9+l7wZ3+N8vvSaH9qIa3F++il6cDDqmtVYO16K6bNPz5xY17HccD3WgQNQp00tdd0SiURSXdm0ZgkAbS7pUbGGnCMZAdH8VWcQAN0PzEHR3cXkqBxk5WVwJHkvK3YsQFXkgu4LHXfjJqR9+R0p384gbdJXYDrPjqGcHAK6dcHvwQew/PA9AQMHQEpK8fkkEolEQOwor6zUzNhH18PzAfi9zkiOB9bzeR1+5gC61O4DwNwd35DrlCsKfIlp4Z8E9O6JacXy8q13zmwwm3Ffey16mzZoXbsCoO7YgbXzZXD4cLnaI5FIyodSv3k9/PDDjB07lpkzZ7JkyRKWLl3KsmXLWLp0KUuXLvWBiZLyZuXCWbhcTuJqNSCu5vmHoiprLJoD5fSUkWj7SUKcaT6vQ1EU+tUfioJSZZzBikZv1cojrh4bC4qCe8xtniWq/+EomCGpt2yJe+jQgilheXmUBvftd2Dfug330KEobjemd96BnJzCCRUFrc1FAJhffhncVaPjTCKRSMoTXdfp0f96atdvTusqMjACsLZWHxyqlWBHGhF5VUM4M8AahMVkQ0dn/YEVFW2OpJJgv+oatLga+dvq3j0lym+dMB7Txo0F+Q8ewP/2MWcNOSqRSCRnIjcniwkPXsNvs7/A6XQUn6ECMWsFqx6Cy6B/4D961r+K6IA4nJqLY2kHy6yeCxI/f/I+mAhqOa4WAbTmLXCs34Bz0mQAXK+8in3nLrQ2bVBSUjC/91652iORSMqHUg+MTJ8+HV3XqVGjBl26dKF79+5069Yt/7+kamG321mywDODvvegUZVa/PNQWDNmtbibPHMANXMPcdu+t2mYud3n9dQLbcytrR5gRNNb5SzOkpCRgem3Xw3b5jvHYhkw4Mwv5GlpWLt2wfTSS6WLC1+zJs6Z3+N89TUcCxdBQMAZk7nvuw89IgJ1zx7UWT+ef30SiURSTVEUhY7dr+LJN6YTEhZZ0eacM27VwsJG1zOnxTiyLGEVbc454WcNoE/roQDMX/8tuXY5+1TihcNB8IghhF3cGsufv59bnqwszDNnAJAzey7Zq/9Ft9kw/7IAk5y8JpFISsDKhT+ScOIw/674FZOpckdjPxTWjDnN7uR4UD3+jelRZvVYTBZuuuhenun2PxpFtyyzei5E3F27ol3UFneXLuVar96tG3rTpgX9B5GR6I0a4Xr1NQBMX06B9PRytUkikZQ9pe7ldbvd1KpVi3379rFixQqWLFli+JNULVavXk1mRiqh4dF0uHxARZtTLHsi2/Llxc9yzL8ONi0Pl1IQRzPIkYZZ882MliYRLbGaPLF+dV1n9o6v2ZOyzSdlV0sSE/G/rBO2YUNR/vkHACUxEdP06ZiWLsH0aeEQV+aff0LduBHLi+MxP/546epXFNyPPw516hR85zLGciUoCNd993vqfv11KdIrkUgk1YgtcV3ZHdUOu9m/+MSVhG7NryI6JJ6svHR+Xz+9os2RVCasVrTwCBRdJ/i6Eai/n8PgSFAQOes2kjfxI9wDBqJd1Ja8Dz8md/pM3L16lb3NEomkWuA9cbLP1aNQ1co/UXBXdHu+afskDpPHB1A1F0P3fU6z1PWoPgyxGRtUE5vZr/iEkiqNduWVaC1aoGRmYpoypaLNkUgkPkbRSxkf6N5772XmzJkcOHCAoKAgX9l1wZORkUFoaCjp6emEhIQUn8GHPPfSbJISj9GoSTsAHrnXOFL/zkuL8j+rccbfXNuRZCxMEB7Tsxxn3y8IrenZTmNaQSDcW7hVSc+lTsI2DtbwhEfC7mbwqnepm7CVQzGt2RN9Mfti25JrDfZUezT17HYI4l9qiLFT5d+Uf5i94ysUFHo1uIo+TYbkryRRBGFRURBOaRJh2DbFGs+fxSu/IgiehsYY04p3riiQ6i0G6S8IfkYJQrZuQYzWW4gtO9f4OwT4GcuqKYjP5thdoOtE3j6KwJ/m4I6PJ2nZP2jRMUR99TmWBx9ADwjAsWkzWr36Rjvee5+gxx4GIPP9D7HcMw5foM6cgWnCS+T+uQg9JqZAPDQlBVuD+ihZWTh++hlt4ECf1CeRVAZKIohWUkGzihCmy8jIIDYivELaxYqkovyB5557jq07s+jQaSA2m6cdLMofAKNPUFJ/QGw/NS8BcYPwOIWFW7VUYxhGxaud0u3CoLggEK67REFUY5une13fqr8geC20nYji7KJ4spefI+7TTp+PvYlb+eKv11EUlQeGvkmt6IaeBF6C6TiFTh1xda8gZI8gvqoGFGxbhfNuDTHmDRL8BW+xcasgxO0UngXmYsRVXV7nL1jwLUIEcXHR9zCrZ6/bKVxrTvE3Fn42P6/fxeEs+hhEoW7Rf8rxut5qRxv9NrEv0SR8YRPOp7fAtNWsgsOB9frrMM/7Gd1mw/Hjj2j9+p+2w6ueFctRL+2QP+M1V7jmvQXSlS1bsDdtbjBOFJQ3mxTIyICQEI8grheiGLt4S5hKIcRdEjShYlEAPFsQOg70up68heqhsD9dXNmS8kf6A+V73FOmTOG2224jJDSKp1/4HrPFWiJ/AASfoCT9A1B0H0ER/QMAnBY9b3ZgJYNWfgBApl84O+I7sTvuEo6HN4TT7/Huo2lGm3MFP0UQNle836/9LKTak4nwiwJAjTBGLFBjjduKcH4MD88Y47u1n9Bf4Bdu7JuweD3TA4W2MiLIeD6ChDZM3PZ+ZpvFNl5oS8U2TOxv8G7zbYJ/JG7bhbalOKH3isA06QvM992H+8GHcL32WkWbUyZI4fYLj4r6zX0l3O4rf6DUw/1BQUFkZGTQtm1bHn74YSZMmGD4k1Q9wsJj8wdFqgqayVwwKAKga0RkHsfqttP4xFoGbP6CexbeR5MTa0pd18U1OnNJ/OXo6Cza/zMzNp1F4PtCRlFIee9jnI2bYDp+nLA7bgVdx3333WiXd0PJycF8553gNHZA5d11N9nPjwcg6NGHUP79t/S22O2Yx4/HtGsn/iOGQlZWwb6ICNx33gWA+c03S1+XRCKRVAOOHz/OG2+8wdwf3+Pk8X0Vbc55YXNm0+jkOrrv+YHgvOSKNuecaRTdiotqdkLXNXYd2VjR5kgqE1YrjukzcF19DYrdjnXYMJSdOw1JLB+8T0CfXthqxHl8LKcT86KF+D/8oEHjDYCEBKxdu+B//cgiqzU//jh+EeGYPvzQxwckkUgqO7qu89ZbbwHQree1mC3WYnJUTo7EtuTvNsPJsoUSnJfKpft/5aa/X+K6VW+gaKVbQZLlzOSDjS/z7voXOJYlxbmrK+4bb8K+b3+1HRSRSC5kSj0w8uabb+Jyudi/fz/vv/8+L774ouFPUnU4depURZvgOxSVKX3e4uueL/NXs6EkB9ZA1TVaHV1Z6qItJgvDW45hZKuxqIrKphOrOZS61wdGVy/04GASv56G7u+Pbeli/L/5ElQV58cfo/v7Y1q8CMudYwtN3cx99AnsVw9GcTqx3H4b2O1nqeEcsdlwzpmLHh6OafVq/K8eZIgN6nrgAXRVRTl4wDMjUiKRSC5wpkyZgtPppF6D1tSt36qizTkvLG4HAzd9TqdDv3LbP8/T6vhfVSZk4qBWN3Jxo8vp0XZw/nebdizn2KmqOUgl8SGnB0e0Dh1QHA5UUSskNwcAJTsba+tW2OJrEHzVAPw+/RjzUmOIY9PkySjZ2Zg2bCiySj04mLykZPToKF8eiUQiqQIsXbqUnTt3YvMLoFPnayranPMmOyCcvy+6ls96vcvc9vexPf4yXKqFOsk7qJO8o1RlB5qDsJlsuHUXn295mwPpu31ktaRS4e8P8fEVbYVEIikDSj0wUqdOHerUqUPdunXzP3v/SaoGBw8epGbNmvTr1w+Xy1l8hqqAopAQVp+/mw9j/sWeVQG1U3ah6L5ZHnZxjcu4uEZnABbuneuTMqsbribNyHz6eQBCH38YZe1a9ObNcU6fgW4yYf72G8zjXzBmUhSy3v8QLSoadds2zD6YlaE3a0bOT/PQQ0Mx//0X1r5XQPLpGcTx8Tg2bMR+4CBcQMvxJRKJ5Ey43W4mTZoEwGVdB1esMaUgyy+cb7q+yLHQhtjcuQzcPpmLj1YN7bsQ/3Bu7PMwJtUTSsLldvL9L+/xvyn38MtSGdv6gsdiQWt/CQDK8WOGXc7HnyTvy6/Ro6JQ9+5FSU1Fi4nBPuZ2NKFDR2/YAACtdu0iq3M//TSEhqKNvM6HByGRSKoCn3/+OQDtLumLn39gMakrP26Thd01OjC/3Ti21uoKQO2UncXkKhpFUbilxX00Cm2OQ7Pz1fYPOSwnTVZrlPXrsQwdAjk5FW2KRCLxAaUeGDl48CAHDhw465+kajB58mTcbjdutxuz2VJ8hipGQnAd7GY/bK5cojKP+qzcXvWvQlVUdidtkatGzkL2PfeT138Qit2O5aGHQNfRBg3C9dln6BERaH2vLJRHj4oi69330Dp2wj2y6BAP54p2aUdyfvsDLSoKdd06rL16wokTnvpatiwc/FsikUguQP78808OHTpEeHg4bS7qUdHmlIrUwDimtn+Sf+oNAKDnnplEZR8rJlflIycvk8b12gKw+J/vWbttUdEZJNUe9+BrcL7xBu4BgjaaouC64UbsW7fh/Owz7IsWk77vEDkffozWqjXoOsrBg56khzwhX4obGMFkKqxjI5FILggee+wxxo4dS6cuVXe1yNlY03AAk7u/xsqmw0tdlp/Zn1Et7qFhaFMcmp0pq9/iePohH1gpqXQ4nViHD8P088+YH3ygoq2RSCQ+oNTi65KyoTzF1V77YhGvPjKCrMxUbnvoTZqHG/VF/JsYl87fPbJAy+OdB+YbC4sXhMQOG0MTFRJbDfGKUyq+dImXpiAOph3xKlsQTtROZRm2sZmpn7SF1IAY0vxj0AVBccVL/Ee8JbSMXMO2KAg3++T3HMzay+C619P0osuM5QpicYogYkqsceaNKT644LMg3C6KPQaKYuzGkvFOLQqYiUJs4n5vsTVRXFURfqcwUTBXEKl0uDTUjHTiJjxL+nMv4o6Ozt8XlJOJHlEgSK87nGAp+J2dTpdhwCLCqy5REFVEFBv97ziUHTvw63cl6onj5L70Co5HH8vXu7PM/hElKxtt1ChDvaJ4qBTerH4UJzxWEWLj5UlVENuTYqtlf9wTZ6zjvfG3s3/XRnoOuIGBncYY9hflD4DgE5TGHwCDT6AlGWfkKYLAp6j4rKUUtNtaUjboOiN2fUTDtG0k+MfzTesncKme+nSHIM4u4mWHGmIUPBWF29UA8RiEsrzbU7FtLU5oVFX4bfNMFm+fg9lk4e6rXqZOTBPPPsGXQBBfFYVrvX0mRRBq9ws3bivCpIEatQquQYeraKFyP0FcNVc416FeIvBZgjh2uOBbiC6hKMYe6iXWnpFt9PHcmtFOUSDWWwQ20M/oa+bYjWX524z7XcKzMtzLDpdwXYr+ZYAoVCucP+/04rkuzjfz5j9RW+XQIQKHD0E9dYq8/QewPPYY5k8/Ie+xJ8h78aX89KJP6O3XKYoCbjckJUFsLClZxnCnkcGCn1sCxN+4osZixN+0OH9TYsT7ui3quiwN0h8on+P++IdN+Z9zdyYZ9pXIHwCjT1AKf8CTwethUVT/AKALbYvi9bwXfQtMxnq0dGMfgOgDaGkF+fU8T1thd9v56tCnHM49SIApkDsa3U+MXxzmWuFGO8T3fG/B9RijUDtCO22LNrb5qqXgGRUs7BOav0Li7CGi+LrXORDTWgTxeVGMPSLYaKe/zQx5eeDnV6ifQuwv8PYHAHLsBb+bqRjfIvDTj9AGDUJv0ICz4naDyYRTaEst5vN7vquLFmHpdyWKruP46iu0m24+r3IkEl9Qkvf4snznL03Z55u30oivA6xYsYKePXsSHBxMcHAwvXr1YsWKFb4oWlIOzPziFbIyU4mv05g2HXpWtDllxoGo1qQFxPr8TWtArSE82PJZGgY38Wm51QktJJTjb080DIoAhkER69IlRHXvjJKdXZDAu0PGR2O4evPmZC1eQt7Tz+B45NH875WjRwl4+CEC77qDgB6Xo27Z7JP6JBKJpKqwZMFU9u/aiJ9/ID0H3FjR5vgORWFBg1FkW4KJyT1O/bTtFW3RedG39Qha1GyPy+3kqz/eINeRXXwmSbVGWbMG8xOPo/7xB+TmFplWr1kTJT0DJTERywMPoP79NwBanbolqtM6fCh+jRuizp933nZLJBJJZcDsdhCam+iz8mwmG6PrjiXe37MSz6lVkxDl50HA9O+o0b4Vtr9Lr/F6NtRtW7E8/BDWthfBqVOov/2G+f77PBqluo76xx9Y+l2JLSQY9eeffFav1rs3ruc84cItd98NR30XkUQikZQ/pR4YWblyJX369GH58uVkZ2eTnZ3N0qVL6dOnD3+fdrgllZdTp06xee0yAG65/9VqGUarrPE3B2BSCmYuuNwXrgN0Tug6AYv+wHTsqOG74BeexbJ9K8EvGTVH1NQUom65kfiLmoHTN+dWr1cf+3Mv5A+Sqdu3EdLpEvSAAPTgYExr1hDQ6VKszz8HrmJmE0skEkk1oX6TNnTuNYRrxzxJZEzNijbHp+RYQ5jf8BZW1+jDnnDPzNaY7KNcu/cTRuz9hG7H5+PvyiqmlIpFVVSu63QvUaE1yMhJYdH6HyvaJEkFY5o7B8u772Id0B9bVCTmhx48u99iNpP3zLOej1Mmo27ehG6x4OratUR1at16kJecWkrLJRJJZeb+++9n0ruPcXh/1ZxIcK5cfGwJd6x+hssOzi8+8TniZ/Ln1gbjuKPR/dQMKCZUYTXG3rkrqe98gDsyqvjE54n6n2ZoYCBKZiaWIYMxf/wx1h49sLZvh3VAf0wLF6K3aAGKb1f/uZ95Bu3Sjig5OZi++sqnZUskkvKl1E+HCRMm4HQ6qVOnDuPGjWPcuHHUrVsXp9PJhAkTfGGjpAyZPXs2uq5Rt2FLatZpXNHmlCntD/9J9z3fE5N5uEzK13Wd5bsX8O4fT5BtzyyTOqoDkS88TY0bhhN771jPslYARSHzufEABHz2MZZVBYOqWmgYtr9XYj52FPWff8rEJuu8n1FTUlAPHSTrm6k4hwxFcbuxvfk6/gP7Q0JCmdQrkUgklYmGzS7mxrteoGP3qyralDLhQFgLltQdlj8o7u/KomHGdhplbKfLyd+5e+sLdD/2c6UeIPGz+HP1ZZ4QZ+k5KYXCM0kuLLQePXCNGu1ZDWK3Y544EcvwYWcVhHWOvgX7nDloHTrguu9+HDNmojVtVqI6XQ895BGAH1Q9nxMSyYWO0+nku+++Y8OqP7HnVWNxaV3nohPLMelucqzBxacvAQHmQGL84nxaZlXDXbceef0G4CphG1MSXB07oQcGoiQmQno6zjlz0UNDUf9dg7p5M3pgIK7778f5w49oV/m4zTKZcN09zvPxm699Ft1CIpGUP+bikxTNmjVriIyMZNOmTfkxvdLT02nYsCGrVq0qtYGSsmXBggUAtG7cldzdnhF3/2ZCzNARQszQN5YWbIgxQI8X3ZmgxAkxxyMKYlHqe1OMaWuHGra1XcmGbTWiIM6nlpZn3BdljM2ppdtpcWIV8Rn7ORlUj1MBQkgn7w0hnp0pVIjzKcaAzvXERbW7cvlr6y+kOlL4dvHb3NpwHNY4YzxR1U/QHEk1hj1wBxas2NE0Y5xmW7DxXNuFuM5RguZIRk7B6gpRbyM9xxjL1WQy1pXnld4sxFsNFGKRpmYa7RDjc3vH0M7Oc5Fw/S0Ef/c1/n+vJOeVl0l59CnPzs7dsVx/E8HTvyPs9ls48dNvUK8eqCp5PXsT+ONM7D/NJ6VNB6Bw3OLoEGNcUzH+tvf5EPfZH34Mdd1abPPnYZ73M+nfTMM6+0eC7rkL87KlKB07kLJyNXpkJFC0xkiQcPz/xfYuqFu4BqRcSaWgKE2RM+2vblT345OcG//5Af9RIn8AjD5BCf0BtZGxvXSvPFKw76JYY2YhPrmooWGq5aXXJcSt9rYrPduPX4LuwuJ20Hr/EuLSDtD51J+0T1rO3/WvZk2dKw0zDN0n043HIDzvNbtxpr6oQaJ4Pf8VIRa3LrQF3j4OgJ5Z0G43oTEPdJlAfEhdtKOZqHkuFm2ZTWhABG3rdcESJPgtgcI58NLvEAdWHEL7Zg01+gcJXhpuJkGLwirEI3e7i9b28NZuiAs3Hq/oa4hxwUXdh2yvOPKRocZzK8Yyz84zrj711u8QNejE+OOFdOiEst1e22LaHLvxerAIxyDqrAR4nV9VcBbyy+reB7r3IdBmQp07B8vNN2OaPx+lb18cP/0EkZGF6tGvuhrHoKvyHRDj2TL6gGD0mUSfpTSaIiJl6Q+JGi3e5yRLuB7EayuvmNXKot9X3ckRnnOiVo4vdUVyveoSnx+SsmPRokWkpqYSHBROvFqH3N3JpfMHoEifoKj+ASi6j6Co/gEwao4B6OkF763RegKROSdxqWZ21u+Knm28ttUg4ekoPO8NGqVneTfUdI1NqetISUujb/3BBXmF9lP3ep9WTKJDYNy2CxobJq/+hWzh+WUW2tIM4VkovtN6a32I/fw5wrPSKtiRlGHsj4n00lb1t5oLClWUQvWKelX56SncJhmymszYe/XBb95POOf+TM5Tz2JeupLAlyfgat2avNvuwBZzut/HrRvaaABV1EYV3tvF9N79HE6XGwZdgyU4GHX/fpQVK9C7dUMiKW9K8h5flu/8pSm7pH0x/+13+EgHrtSl5OXlERERYRA6CQ0NJSIiArvdXkROSWVg1qxZjLn5FS5u06uiTSlbdJ3I7GMAJAXGl0kVfmZ/bq4/FqtqY3/Wbhae+KVM6qnUuN34r/qL6Ldexm/92jMmcTRoxPFX3wEg4n9v4v93gR5RyoTXcNZviPnoEeKGDMB0xLO6J/eKKwEIWPxn2ditKOSMuxcA2/czUDIzcQwdTvqSlbgaN8Heb2D+oAi5uSgZGUUUJpFIJFULXdd55ZVXOHRkxwW1AiE7MIJt9bqzseEVfNvnFWZ3eZSTwXWxue103f8ToXlJxRdSASiKQnxIgS5EriOHhZtnMfPvj3ll9t38uf57snLTiyhBUu1QFLQhQ3H8/gd6eDjqqn8wTZ1aZHrD5t69KLt2lbGREomkKvD9998D0LplN1TVVEzqqkvTE/8CcDC6NQ6LfzGpz48Tucf48ch3LDm0gFPZx8ukjiqB00nUrTcS37oJtuVLfVq048p+ANh++xUArXFjMr/+ltxHH0cPD4eUFNQtmzH9/DO2ie8TcMcYAm6/FXV38W2eaecOAh+8D8uKZWdOEBhI3kuvkDPje/ROnXx2TBKJpHwp9cBIw4YN2bt3L4888ghr165l7dq1PPzww+zdu5eGDRv6wkZJGWKz2WjRtBOhIWUX+7EyEGxPweb2DNQFOcqusyDOP55hdW4AYHnCQk5lHSuzuiojDR66k3rDBxL1/tuELJh71nTpQ64l9dobUTSNuHvuQM30DDRooWGcmLMAZ/2GWA4fIvbqfqiJCeT17I2uKNi2byVo9g9lYruz6+W4GjdBzcoi+ObrMf+7BnezZqQvXUnWG2/lpwv4+EPCWzVDPXigTOyQSCSS8mbDhg08++yzfDL5YeyOogWcqy2Kwr749nzd4Xl+bX4LfzS9iXT/mIq26hzR6dNmGKEBkWTlpfP72um88f29pGcnF59VUq3Qu3TBsWw5rieexH3ffeeW6fhxbM2aYmvZAtOXU8rWQIlEUqnJzc1lzpw5AFzUqkfFGlPGNDq5DoDDkc3LrI6aAbVpEdoGHZ3Fh3ynY1LVCHn/HQLm/YT55AliRg7BfA6DEueK48r+6IqCZcM6LEsWFdpve/45Ai5ph/+Iofg/8RjWqd9hnTaV4M4dUdevO2u56uFDhHXvgv/kLwi5agDms6R13nkXrmsGg9V6xv0SiaTyU+qBkTFjxqDrOu+99x4dO3akY8eOvP/++yiKwpgxY3xho6QMcLlc5OXlFZ+wmuAw+ZFl9Sy7vW7D21y9dwrBjrIRjmwddjF1Auqho3Mi80jxGaoRtiOHAMju1IWEZ18qMu3xCW/gqN8A88kThH/4Xv737viansGReg3I694TLSISLTKKnMHDAIgddxtBP870vfGKQvYzz6ErCtZFCwkZPgTy8tBDQvIdHcuqvwl68XmU1FQZR1QikVQb3nzzTQBaNe+Cny2gmNTVHEVhc3w3tsaXTJC6IvG3BtK79VCeGjKRPq09bWWeI+eCWv0jKUBv0QLXK6/krwpRjh/HNGXy2f0WkwnXPfegx8aiy44dieSCZtKkSaSlpVG3bl3q121Z0eaUKVl+YQB03TWLegmby6yeduGXApCUc7LM6qjsKO6CEFWK0wmq74TQtdg47EOGo1ssKI7CoQ/d3bujqypavfo4rr6G3Gefx9WlK0pODtYnHj97wXY7ymm9LsXtRsk4w+RaXUfdsd1XhyKRSCqIUj+RHnroofwBEF3X81/CxowZw0MPPVTa4iVlxNSpU6lfvz5ffPFFRZtSLtgtgUzu9BIbavZAR6FFylr6HiyDzvXTBJgDAXC4L6xwchldugPgiosveCHPzQWHo1BaPSCQpOdfBiD0q0n5q0bAMzhy/NdFpPzvQzB5lnAnfzKJ9NG3AeD/98oysd8+dDgp/24g76ZR5D7wEPh5xZZ1uwl6/FFPutG3oNVvUCY2SCQSSXmya9eu/LAZvbpfX8HWVC7MbgcXHVvGVVs/qxKD4SbVzNHk/QC0a9SNsKDqvRpYcg7oOtY778B2153Yrh6EsmF94TSxsbje/wD79h1oN95U/jZKJJJKgd1uz58o8eSTT1brMFoA89rfy4GoVqi6RkpQ2YTahgItU1W5cHVyMu68G2fjJgCkPfcirkaNfVv+p1+Q9vMv+WG1vHGNuJbsrFxydu0hZ8YP2J9+luyZP2K/7Q7yZnx/1jK10/b+h7PL5YXSWL74nMAO7bH+793SH4REIqkwSv10VlWVSZMm8fTTT7NunWd5Wfv27WnQQHYaVlZee3cRb778BGmpp5g7bx29+rYw7M/dkmDYfi99jbEA/yJEBnOMomU0CDNu708zbnsJUSoRxlmq+kFjWltf4zXlXF8w60KNF0TbBDEw5VgmToJZVO8etiQPoMc/U1jW4jrU0wKlutNLeDPTuJLGnZ5jLMtqvG0Mwmyn67VaPXFKHY48dC/BMD3dOECgBAkz87yEN3VB8FMTBGRducZznXA807Bt8xI8swkCb3mCsJgo+BntJVyanm202SLk1bw6i05d1oMan75P4LJF5OTYMaemUO/uUdgbN+XUOxOxmI0xrZN7XUnA4OGkjLyJHL9AbN6CcKERRNgKhNqU7FyynhtPzti7cDVrgUsQf0wWROBDhPPlbz27c282ee1r2QJtyhQU4L8rMnfl3/j9MBPLxg1ooaE4J7ycL6IuCq+KIp5+wrWoCZ1rpiJEKkUBOFWYXWMWxfkkPkOKkZ8/F5pwfVVn2Ijb0XWdFq26EN+04vwBbacQ9slaxNydOiHG7UPCLD53wXNW22NcHarnGJ/RuiDqidf1qroc9No9HavmYHt4O/bFtDMkVQThabEsRXjeK17i5GoNo9+ipxnbMG+xdQDF38v3EMTm9SzPMbncTsyYURUTfVoMzT9WRRRf925bHEXPkXILguHegusWUXQZQbdCaN+yBV/DW1A9VGizE9KMvpgoiB3oZzwHNq+29liiUeTXT/DbnIVE4QvyBgvXtHgMLiFvkJDe5eUTiOLzfoIfIgqCiyt8krz8mrBAo78YIFwDor+QryGiadD7CtSlSzH9/jv+v/+Ou1MnnOPuxjV0GFitBcLuwSGg6YXsrA5YzWe/zsXfXCRPmNtjOovI8pkQx1PLUmC+vBDF1ssSKbhevkz8/F+69BjNiqXfk5bbBEtoQRtXKn8AjD5BCfoHoOg+gqL6BwCUYOOz07sddmZbmdXjKWJTD5AZEYea4XnmXnLwNzbU7oUzQ5jgKNz73s9sNdDoDxiE2k+//6oaaBmecKVKmFHYXfF+pov9A/7G+8AkPKNtoQX6KAHhRq0Ul9DOxEcVvSrYu12qGWU8JlGIXCQkwGh3UkZBaFY1MISDy//1tElAuNCGWYU2Ls2r/yHIz3j8hd6lVQUC/NEu74YJT1ur7N2Lum0b7muu8ew3ecrIf+ePi0b/7FOU/44pORnCwws9cxy//4GycSN6vboEhRjPnd+PM7E89ACKpmFSFYRWWCKRlILi+g/+2++rfobz8jYmTJhArVq1GDNmDBMmTCi0f8eOHfmfn3/++fO3TlImLPrjG9JSTxEWHkvXHiMq2pxyJyGyPjMufbJM6+heux8d4roSE1yzTOupbGS0aYc7KBhzagoBWzdhykjHb8M6/Nf9i6NpM1LvvNeYQVE48sHnRZZp2rmToHvv8gikz/8TLTyiDI+gMMqhQ4SNHI4p0fNCkPXE0xBTVeLOSyQSydmZP38+27asRFVNDLxmXEWbU+lwmAPYHtWBtgl/MXznJ+xMas+y+kNJq6TaI2aThVEdHySdDMICIyvaHEllQFVx3Hc/riuuwPbaq5hnz8K0ahWmVavQnn+e3IWLoG7dirZSIpFUAhRFoUPH/lxyab9Cg8LVFV1RORlRoItbO2UnvXbNwGHyY2PQpT6pw617usxVpfoNOpeY/yb5ud0EPP8s+PmR86yP+wsTE/Hr1xclI4Ocyy6DuNhis9iuHoS6ezdau/bo7dvjHjwYvVMntN69oXfvwocxfRqW0aNRNA3XbbfhfuQRAJQ9e8BiQa9Xz7fHJJFIypTzCqU1fvx4Jk+enP/5xRdfPOufpHJx4MABli6aDsDgYQ9gtfoVk6Oao+s0PbmG0NxEnxYbH1SHRuEtCPUr3078ika3WMjo2gOA2Mkfk9m1BwkvvgZA9KsvYko4VWR+6+6dxI+6FpwFM3r10BDMmzZiWfUPATOnoWRmYtm4ocyOQUSPiMDZrj0ArqbNyBkrOw8lEknVx+l08uCDDwLQrddIYuPqVag9lZUl9YazOfoydBSaJa1jzLoXCctNKD5jBSIHRSQiWrPm5H79LVl79mN/YTxaXBzqoYOYFv5Z0aZJJJJKgPfqhwtlUORMxGYcBKDt0SU+K9Otu1FQiPKrnJMqKgK/Lz4n4P3/EfDGa1gWLfRt4RER6BGRKGlp2O66E9zFrOVwu1F370ZJT8e0ZDHmt9/C1rUL6uxZZ0yubNtWMCgyejSuTz4FRUE5cABb82bYGjWEIxeWzqxEUtU5r4GROnXqEBcXl/+5qD9J5eKdd97B7XLSuEl7WrYpHCfxQqP3jqlcs/FjBm6fjKL7PtyLpmtk2MtG5L2ykjT8etyBgUQsmEvYHwtIGzMWLSAQxenEnFTEAJSuU+P2mwla+DthX0/K/1qrEU/uQ55ZGBEP3kPUzSOJ7dudsMmflfWheAgOJm3a96TOnEXyL3+ApZil4hKJRFIF0DSNe+65h1q1m3JFv1sq2pxKi93szy+NRrE74iIAFF3DrVa+8C6pOYmkZCeglYEvI6k+6HFxOJ9+htyly3GOGYPr1jEVbZJEIqlg9u3bR/Pmzfl75dxCIf0uNHKsnlCdqua7trRRSFOeaP0SQ+pc57MyqzpKXkGYLSUlxbeFm0w4Pv4Y3WrFPH8e5nF3Fa0TZzKRe/wkuWvW4nzv/YLvc3PPnN7PD6ye0F/qqlVw9CgAuqrievgR3DfckK+RKpFIqgbnNTBy8OBBZs2alf/5wIEDZ/2TVB4SExOZMmUKAL36jrqgZ4P8x9p6fXGYbNRO280lh//wadmZjnQmb3yHzze8hd2VV3yGakJGz74cf+gpkoZdT1qf/piPH0PNyUY3m7E3anL2jIpC2ti7AYh6dTwBSxfl78p58hnsQ4ahOJ34rViG4nZjb9GyrA+lALMZe78B6FHR5VenRCKRlCE2m42HHnqIBx+fjM1WdMzpCx0FDZdqQUPh5+Z3kGmrfKtBF+/6mdf/eIg/d8yuaFMkVQC9fn3sn3xWIHqRmYn5pQlFdx5JJJJqybvvvsuuXbvYvmXlBd8/0PiURzN3b0xbn5UZYg0jxBLqs/KqA/ZBV+d/dvbo6fPytUs6YP92KrqqYp4yBfOTxYRRt1jQ27ZFrxkPgF67NtqIawslM332Kdbu3XC98SZ6rVoeba7o0/0DdevievNNnN98C/Hxvj4kiURShlS+KW+SMuP3338nNzeXWvFNaBTbEtJPC4qFGoW1/Fsbl3nmrj9hLEgQ9TIgCGty3CiASYhRWCv68oK4xomL9xv2KTWDDdtOQVxV9xbbFkQV9WTjCL+ebRRb/U/ELN0vnsWtb6Lfxsl02z+HhJpNOBzb1GhHllF1UbeLwq0Fx6ylFQi1Ky47idknyXCm8fP2bxlW98ZCL5yKIDxmcEUFEVeH25jXv6YgPiuUrXsJEWWlGY/B7Gdc9ZCJ8ZgsXiKnkSHG6yMx3TjIEymIz2ZkO8i4dozHnjw3ges3ApBbvyH+QcbOt1y7UdTu5LAb8Pvzd0L//JX4W67n1Lczye3pieuZ+f6nxCckYPtrBVl334e9U2fiHrgL/79XcGz2L9iaNjKUJYqamr0E80yCiKsqiqsK4nKBghCb3Uvk1K3p+H85GduvC8h48130+vUMaUWhuqIE013Cb2wVhNvF/grvsksiBiqRlJSSCKpLsfUqRrrXc7g8/YF4o/g4Qlur1CmoO7pNnGFf4o/bDdu68Lw3iKKbBUFwQbS0kPi64E8omAEz81vewfrk7hwLaQQuTx49o5hJD3bhHOgF4Utdm4wCsWq0cD6EtkP3ft6HFQ6DmuTwhPeKqXUGvQihLTEIuwptuFsQp1eE86GaC8rSRBuFZkjsXxMFw70RxVSjQo3HKAqZi+m9CRREgK1mY71anvEYvScGp2YZ/RIxryjifSo1x7DtLUxtdwp+iND+hwpis07hOg40lGW8TkXfQtwfFVJw/rKE4/U3GX0al6bjd/99WKd+hxYUhOvBhw379f37sX76Mc7bbienntHXEn2PQEEkV7SzKvoqpRGjv8D7mCVVAO+Jkz06DT+rT1AqfwCMPkEJ+geg6D6CIvsHMIqtA7hPeNUtvHdFn9xN4wRPuOZdwW1QQoztkJ4r9Cd4PXd1ivZ91RDP+XFpTsyqBXKN/oGeVmC3aLPoT7mFNt3llT5bWHwRGm18904Rzk+YIBqvU3BOjidlG/b5Ce/Doti6+LwP9rd67TOen+TY2iSfKPjtQgVfLNjrmETN94Binsn/vdfrQ4fi/ORTrHeOxfzO2zgbNUa543ZjWrFNSkhEDw3FPXgIusVqEK9XEhLwu+ceAExTJmNfvcYTpsu/mGtfIqlgvN/j5Xv6mTmvFSPepKenc/jwYXJPLzWbNWsWDzzwQL4GiaTycNNNN7FlyxaGXHXfBT8bxJvNdXuwr8bFmDUn1y17mf4bPiPAnl58xmIIMAdybb1RKCisS17F1tSNpTe2KnH6GlNcHidS8w/A/6fZhD37JBH3j0NNTiqcx2Ti0EdTSL+iP6rDTuyokfgv9sQd1f38SJkzj6SFS8l85XUiJzxHyA/TsRw7SsRbr5bbYYn4TZ9KyIP3Yvv9V8KvG4aSkVFhtkgkEsm5cP/99zN9+nRcLlfxiS9QFF3j4iOLULXT50hRPYMilZTEtGMARIXKWYqSkuPu0AEA29NPoa5Ybtin7tmN9euvCLjyCtTjx0pWsNOJ6ZcF4OtQKRKJxCd89NFH5OXlcckll9CwftuKNqfCUDUXA/d8jYrG9qhLOBXk25Dw6XkpTNr4Dq/98xiZjtL3M0jODfeY28h7waN7bJ38RbGrIt1j7yTvZALO518otM/6ekF/g3bxxRAZaVgZYvr6KzhWwjZSIpFUCko9MHLnnXdSv359tm/fzrx58xgxYgQffvghY8eO5c033/SFjRIf0qpVK+rWblHRZlQuFIX5He9lUwPPyoTWR1cyavnzBZ0hpaBBcGO6xfYBYO6RmRdUSK3/cAd6ZvUEbd5A9G2jCPn0Q4KmfUvkXbed0TnRrVbP4EjfAah2O7Gjr8Oyd7dnp9WK85JLsS5dTPhnH+bnCZ41E9Phw+VyPN6oRw4Tcu9d+dvmHdsJfPH5crdDIpFIzpVVq1YxceJEbr75Zo7JF7iz0ungAvrumspjy+9i0PYv6HpgLhedXEHDlC2E556qaPMM2J25ZOR49MyOJe6TOiOSEuO8cxyO665Hcbvxu+E6lEOH8ve5L+uMrqqoJ04QfPedJSrXes/d+A2+hoAG9XxssUQiKS2pqalMnDgRgMcee+yCnjjZ5sgyQOdocAP+bOB7LZBgWxi5rmyynVnM2P4FdtdZ9CskPsfx2OPkvvc+2QuXnNsyPrMZZf9+w3JSJTERyxefe8qbORPXpMlgLljVYvroIyy33Yb1mqtBiIghkUgqP6UeGFm3bh1hYWG0b9+eWbNmoSgKffv2Rdd1vv76a1/YKCklJ06cYNu2bRVtRqXGYQngj/a3812vCaxoOoxM/wh0fOMc9q4xgEhbNDmuLDac+scnZVYlMtt1IK9mbQCcTZqS26cvAK7GTVCczjPm0a1WDn04mZxuPcnpP6iQE6OHhKCrBY8v3WZD97OJxZQ5up8/eoBnifJ/9ujhlS/2vEQikQC43W7uOR0GYPTo0dSte4awSxIAMm3h+Z9bJqymy6H59N8/lRE7P+LmLW/6ZPKErzCrFmLDPe3s7BWfMfHXpzmavL+YXBKJF4pC3kef4G7dGjUhgcAmDTFPnuTZFxSE1rqN53NAyfSI9Lg4HK++hrtffx8bLJFISstzzz1HSkoKzZs3Z+jQoRVtToWS4R/J7GbjmNt0LLmWYPyc2Siau/iM54iqqAxtegsW1cq+tJ189u8bZPogQoXkHDCbcd51t0c0/RxQNm7EdnkXrFcNRDnlmQij22wQ7JnsqS5ZUiiPNnAgenQ06saNmMeP95npEomkfCj1wMjx48epU8ez1HDLli1cfPHF/PrrrzRt2pTDFTCDW1KYRx99lLZt2/LJJ59UtCmVE10jJu0gACciG/NPk8FM7fI8unr+MYW9MatmOkV3A+DvY0vQLzBhy5gfp+F37AiOmDhO/rmcxBmzObp1L6mvvoVutZ41n261cvL7uSR8/hXOho0BsKxZje2X+TjbXcLRXxZzZMFC8tq0JW3c/WgxseV1SAU2RkeTsmg5CccScVzZn7yBg8h+8ulyt0MikUjOhc8//5z169cTGhrKa6+9VtHmVGq2xnflfz0+Ymabh1hWfwgb4ruzJ7wNJwNrsym2K5p6eqagrtHl0LwKHSgxmcw8MOxt+l96IzaLH0dT5KCI5DwIDCRn1ly0OI+mj9/dd6Hs2I555gzMy5ai+/uT+crrJSrS+eIEnI8+hn3GzLKwWCKRnCdHjx7l008/BTzhtMzmC1t6dn9MW9L8Y8g6PSmi98EfGPfXY1y+dzYhuWcI/3we1Ayuw9i2jxJoCeJYxkE+Wf0KyTkJPilbco643ZgfeQR16ndnTaLs3QMmE6Y//iCgQztMf/4BISHkfvUNAOZPP4XMTEMevV49nKf72kxvv4U6f37ZHYNEIvE5pW4BrVYraWlp2O129uzZw+DBg/O/V9VSj7tIzpNPftwMwO5ta5k2bRqKonAoI4xPftxMbBfjDNFTC3YZtseMu8yw/dGBNMN2dIea+Z8TVxwy7CPCOBJvqhtm2BZFPb3F1Aql3WAUJkUQ7VK8xUMFoU0EAUsE4WA94/QSR12n185pXHxkMfNa3MGumA6FxNXFvIq/0JnvJWBkijcew3+ibB0CuvPn8fmATpY9nWBrqOeQUo2htUzeQueCKCdWox2ObOMyTYsggKZ5CcpFxxqF7LMFIU5RLC0jp0AENyTAeG79LEY7RAFUf0Fc1ZaRhjMikqTrR5Fn9fOck8hocLoJDrB4flddB5OpsLi4rhecX10n8Okn8V+7moQXX8N17/0AJC5aAU4nNlX1lKProKqF7PLeyhEEcUOE68cpiFIVFpMrSJ/TojkqkD3je3C5UC3GskShUVFANjuvYDtIFNsrxNlFTEUR3EJichJJKZBCbVWX//yBzPQUxj/2BABXDhvHrOUngZMGn6A0/gAIPkEJ/QESjCLW3oLrhXwN4Vlp8AfA0F6qtUMNu/RUY/gKkyA47y3OrhHO4YxIDtPR84WXOKgJ0LOd1EnezuWH51Ez5yCzG96By+Rliyh67v2cFp7RroPJRrtqGO1WvUS/3UeNL+RqlD8WTPRqOYRLG/Ri54mN1KrVJH9/zv6T+FkKxEG9z5cSJawAEITdXUJb6vA+98I+VRAmdwkCqapiTO/dTovtrODyYRHKTst2GLbrxBSI16cJ4rKiGHuu4APU8hK+T0wzXh9ivaKd0aFG0VVv/yJMuC7FVtklCP+Kq2O9RdMtgi8q+hY24VrzFmM3CeWKxx/kfX4a1MMx9yeso0ehdboMtU5tbPd6Vpm5Hn+CoJZNKRHedes66o8/og0dBqpKapYD9egR9LBw9KAgwsX7WCKR+JT//IH/ePilr9i24S92Jkeys5g+glL5A2DwCUrSP3DG9N59BEX1D0Ahf8HUJDL/s55mfA9Xa3raAkVzU2fTPoLtaXQ+OJ/LDi7gQGwbNtbuwb6YtgWTJ50F/oOWaSxLF961/9uuZa3NXS0eY8qOD0jOTeCL1a9zZ9OHCQ2J9jomoW0V2+mDaYZNR1ZBe6gLPk+G0PD4hRrb+DShP8E7nJrLZrTDLLRDaVnGvN7tjohLeI/wF4Tc/axi3oK6xLbS4TKmFdtpoWisXvuVb77F/P576BYL9voNoHNnQ1pN19GGDcfdvAV+N92IunULAVcNxPm/93Dfdx+5M39Aa3MRnEzAFBCA+cEHUDdsxDF1KtrgIbjGjcP8ySdYRt2MY9Vq9CZNkEgqGu/3eD/hPpbv+B5KPXLRvHlzDh8+TGxsLNnZ2XTs6Hl5PHr0KLVq1Sq1gVWV5cuXc9VVVxEfH4+iKMydO7fcbXC7nMyc7BGJ6tJnGHUbtix3Gyo7XffO5pLDf2LS3Zi1M4d18gV+5gDuv+R5Hmr/Yv6gyIXCyfsfY8vaXZy895FC+8wHDxA/dCBhn0wsviCXi7zWFwEQ9cbLmP6Lja+qYLOhHjxAeJdLCe/RBSW9ApYmm83nvERXIpFcOFQGfwDgp2kfkJudSa26Tbm874gKsaE6oisqTtVKg6QtjNzxAbYKjhse5B/KJU165m+fSj3C6z/fx6q9Cy+4FauS80Nv3x771m04J01CSU1FXbkCXVFw33prqcq1vP4a1uuuwzLq5vxBtZCnHyemVRMs/672hekSSaWmsvgD/1G/cRsGXTuuQm2ojOiqickjPuCnTg9wMKYVCjoNTm1i6Nr3uWvRw7Q+vKxU5Uf5x3BX04eJtEWT7coiKU+uGiEvj/CH7yN44v/AXfoQZkpS0hm1TN033IBryFAUpxPrDddD0plXA+ktWpD719+47vJoiZoffQRl5Urcg4egN2iAXr8+5nF3Yf7kE9RV/2AdOgSysnC98y5a5y4oGRlYhg8rtLJEIpFUTko9MPLss89iNpvJyMigfv363HzzzaxatYrU1FQ6derkCxurJNnZ2Vx00UV89NFHFWbD4l+mceLIPgKDw7j6+vsqzI7KSv3EzXTePw+AP5rcyLa4zsXkKB1RAbEXtKgdpsKhyfz/+Qv/f/4i4tUXsW7dfIZMXlgsJL70BrmXdETNySb8wbvB5TUz8/oRWLZuwbJxAwHvvOlr6yUSieS8qAz+QNKpo/yz5CcARt7+FCbThR0yw5cciWjG95c8ht3sT+2MvQzZ9ekZX8YritU7/yTHkcXsfyex8dBfFW2OpIqhBwXhfPMt3GPHQikmvCnbt2MZ/wIAWvtLPCtJdB3L+nWoaamE33AtOBzFlCKRVG0qgz+QlZHKiSP7Kqz+qoJmsrC7Vkd+6PY0X/R7l9VNriLbGkywPZWozKOlLj/YEsKtje7m9sYP0CC4sQ8srtr4rVxG0NdTCBv/LCHvvFGqstSNGwjo2AHLe/87w04Vx6TJaI2boB49iuX2287us/n745r4Ie4bbkBxu7GOvBblxAnQdayPPYJ5yhR0VUUPD0fdtAnL6FFgseD4/nv0+HjU7dsxTZtaqmORSCTlQ6nfjAcMGMCxY8c4fPgwLVu2xGaz0bJlS/bs2UNkZGTxBVRT+vfvT//+FSc0ePzIXubP8Dhdg298gKDgsAqzpbKSawlCQ0FFJ9CeUeb16bqOprkwqRdeh5TicBD/5gRyb70dZ6MC5y/zuhsJmv0DAcuXEPrlJBLe/qDoglSVU6+/S51BffBfvJDwxx8i9Z0PQFHQwguEcvUSioNKJBJJWVHR/gBAVGwt7n/uU3Zv+5eGzS6uUFuqI8fCGzO9w5PcsPoV6qXvomXiarbFVI7JQTUiCkKjBFiDikgpkZyBiAjcDz/s+ZyairXzZRARiV6nNu6bR6H16+dZuVscoaEQEgLp6VgeexR1xXLCUNHDI+DoEY+w7QWucSCp/lS0P6DrOtM/f5kt65dzw9jn6NTj6gqzpSqRFhTH8jbXs7LhYJodX8WOmpcVn+kciLBFEeEVzVPX9Qt2EqWzeUtyBl5NwIKfcdWug5KcjP/kL8i74UaoUbJBeT2+JvZ3/4er31nuteBg7NOm49e5E6b583HPmI52/Q1nTqsoOD/+BGXbNrRLLkGPi8P85RSsEz19Fq7PPkNr1hxr/35offt6Bv3j4nD8OAslJwetR48S2S6RSCqG8/JAJ0yYQK1atRgzZgwTJkzI/36+IDKkKArPPfdc6Sy8QLDb7djtBXEaMzLOv6M+NzeXL955FKfTTou2Xejca4gvTKx2nAxrwJ8tRnPl9q/ocmgembYwNtXsUWb1pdlTeGvVU0T6x/DwJRMuKMen5usvEvPVZ9hXLOHIL4vQg05rnigKqQ8+SsDyJQT+NBtlwuvFDmo4WrTixEeTiL/9JoK+noKrTl0yH3yUjE8n4T/pc7TadcgbMbIcjkoikUh8jy/9AW+atu5I09YdfVKWpDAJIXX5u9YAehyeyxUHZpIQWJvEoIoNKbv32BZ+XOER1+3dcghN49tWqD2Sqo2SmIi6Zw+wB1avwvTDD2iNGuG++x7co0d7Bj/Ogl6zJrnLVuA3bAhKXh6mn3/GW50lc/xL+EttSonEgK/9gaW/TWfD6oWoJjPxtRuV1rwLDrfJwrbal5dJ2XvTdjD/wPeMbn4vUVx4kxjcNWuR/NVUkhUFFIXwd14n6NWXsM2dTeLC5WCzFV/IafSYGFzXDC46zUUX4XzmWazjX8DywAPYe/WG2NgzJw4KwrFkKfj7g6LguvEmXPN+Rr/6Kty3jgHAvncfREUVlH/ppUZlUE07t0kEEomkQlD08wg4rKoql112GX/99ReqqhbZwev2QYzAqo6iKMyZMydfmP5MjB8/nhdffLHQ9+np6YSEhJSoPl3XGd7nXpatm819171DUEAoxBc0sI882t2Q/r0pawzb7i1CnMv64cbtdC9xMeHqMcUbRb7dh9KM+wXxNEPaHcYYj9GDjGJVWQnZhm2Hl7immJcA45ifLgiV6ukFeTvvmEWXnbM5FNmCmZ0eR882ilKKAmi6Q9jvJYCpC4KWipe40b6MXUza+T5RAbE8etlrnv1BRkFQNdxLHLWR8byrMYGGbbMoOC/g5yWgGiwIrYnioYGCMJ23yJnZZLy/vQVOAeyOogXQgvwtmBITqNevB5aTx8noN4gjn30NqkpEsA00jeiLW2E+dJDUz6eQd+11+XmdLqMYlLfoW/DnHxP8xKO4WrYiZfFy7GbbWdMCBlFPUXxdfIL5WY3nI08Qk8vxEtQLCzLW6xBstgjnTzwmPy9xWrvTuE8UUxUftUX9TiLik/4CGpeTVBMyMjKIjQg/r3axslDe/sDMmTPZ8Fs60eFeoqjxxme4t09QKn8ADD5Bcf4AwcZn5yOPC77JpAJbrELaXKEsf8G3yF1/omBDEOLWs0VBVGN7ILbjeo7XttAWKIJQucmkM3LZy9RM2s3vl9zBpqBLMWYoePAqNiG8pLCtZxntVLzbVuH5rQQY/QElyEpC+jE+/PUZch3ZtG3WjRsHPl7gr9u9jkM4BoQ2SqkXdrZDwBZizBsh/OYBggKqv7VwSM2Cao2NVJDgl4hta2igUWDX5lW22N6JQuWiXd4+kSbYkW03/g5Ws/EYwgUfwNu/EF+xRLFZ8f3JKvhPeV7+lXg+xGMSzCbX4Ksa06ri9SNsizqcFvPpBDk5BG/bjJKchLryL0xfTsnXdNNjY3EsWVq80KzdjvLvv6hbt3ieF7qOHl8D7ZrBJXJMcgXfs6hrS1L9kP5AyY979erVdOncFbfm4prud3B5u2uK9AfA6BOUxh8Ao09Qkv4BKLqPoKj+AQD3cUHjwbsddxgfdnpSjnFb8A80oS68nkOK8F7uTjTWqwjvlni9p+q6zmeb3+RQ1n7qBTXkjo5PYVILnmlKoLFsU23ht/duH2KMEwzNUcb+g4BooT9BaFu821bxnVVso8R2KURolx1e5zpUaCtFMXax/6DRI+Pw/2EmAHmPPk7ehJfz96UKou9Rgi8i+hPeLYuhXXY6Ce7WBdPePWR9Ow1Xv/7iZYtZaDAt//kAuk5CRh7mQwcxHT2CvcvlRJ72VZWEBJT9+1BOC7sr+/ZhHTECxxdfoLdv7/muhC/i8j1eUt05X1F4X/kD5zVsWadOHeLi4vI/F/UnOTeeeuop0tPT8/+OHDly3mUpikLniwbw2KhPPIMikiL5u9lQfmt9Kz9e+jAonluibsp2Wp78G0U/txvyXEjJ8zh1kf4xPiuzquCOjuHYF9+gWa2E/DafqI+8Yn6qKrnX3whAwNRviy7I4cC66h/QdXLH3UP65K9IWbTMM4NDIpFIqgG+8gfWrFnDzTffzHvTHiQx9ZiPrZScCU01M7vLo8zp8ghb6vcsPkMZsv/UdnId2dSNbsrIfg9dUKtUJWVEQAD65ZejDR6C6+23sR8+gvPjj9EaNYKsLJRzeVbZbOhdu+K+axzuceNw33032uAhnl6e5GQsAwdg6d8Pjh8/axGmTz7B/7FHsP3vHSw/zTXozUkk1Qlf+QPJycmMGDECt+aidaPOdL1YhtA6Xzoc+p2HFt/FlTu+9lmZiqIwosFobKofB7P2sfjAzz4ru6piOngg/7N1yiSUtLTzK0jTsL37NsFtW2GeJ5xXi4XsKV+TsWbd2cNunQ1FAbud2Gv6E3dNfwLmzfV8fewY/j174D9oIMq6dQCYn30GdctmbFf0QV265PyOQyKRlCnnFUrr4MGDZ/wsOX9sNhu2EiwRPBNHjhwhIiKCwEDPTACzuegVBZLTKAqb6xo7MDofmk+d9N3UTtvNb01G+6SaFLtnYCTPlYvT7cBishaTo3qR1+4STrzyNjUfu5+Yt14hu/Pl0MOzHDn3+psIfv0VrMuXYjp0CHfdumcsI+TF5wj6eCLpb7yDfdzd2GXILIlEUs3whT+QlZXFyJEjcTqdtG7UgaiweB9ZJykOuzWIffHt87cVzY2uKPkTL8qTyOBYbun5GBbzheVvSMqJwEDcY+/EPXgIyvHj6G3blqo4y+23Yfr9dwCUYcNw/PNPoTTK8uVY7rsX7zec3MefhFdfKVXdEkllxBf+gK7r3H777Rw5coSosHhG9n1QDpSXCh2r5qBxwnpy1EC2xXYiJaBGqUuN9ItmcL3rmbn/Sxbvn0eN4Dq0imlffMZqiunIYQDyhgzD/sab6GFh51WO7dOP8X/2aQACR99E+u796F46yFrz5ob06r69aPXqg6n4VYgBvy3AfNQzWBnxxMPkXn8temQkWq2amPfuwXb1VeRt3Ybzs89RkpIwLV2KdeBAjzj7oKvO63gkEknZIAPdVRNyc3MZPnw4rVq14t9//61oc6o2us7B8BZoKFx0ciVNE9f6pNg6QfVRUDiUvpfP1r9Bniun+EzVjLTrbiZt2EgUXSfuxWfy14W669Yl+/axpH31He4iVprljhhJ8vQfcVzSwbjD6SR44v8ImDmtLM2XSCSSSo+u6zz++OMcPHiQunXrcm3fB2QnSAURlXWMmze8Rrtj5TtD8Gjyfmat+pwcexa7j28uFNJJIvEpMTGGQRF18WLUBQtKXIweEVHwOTrqjGnU0zNwvdFqVqyWj0RSmVm/fj1z587FYrEwatCT+NmK1nKUFM2h8ObkWgIJdGbS+cgv3LH2eS47XPLn3ZloG9WBS6O7oqMzffMn7Ezc5JNyqyLuxk3QQkPJfuRx9Fq1Mf/5BwG33IxyrGQroPXggtA6Sl4eehEDjabVqwi5vDOB997t0QQprmz/gntJCw3zrCLx8yPvh1loTZuhJCRgfvUVCAnBMW8+7sGDURwOrCNHoi5eXKLjkEgkZct5i6+fK88///z5VFHlycrKYu/evfnbBw4cYOPGjURERPg8xFhOTg7XXHMNa9asISQkhBo1agAJxeaTnAVF4Z96gzBrTjofXsCVe77leEgDMm0Rxectgubhbbj94keZuvUTjmYc4NvNH3HH5U9dcB1Wp54aT/Cv87Ht2oF5105czTwzNTLefq/YvM627fI/ez+8/KZPJWT8s7jDI8jrfQVaVLSPrZZIJJLzozz9AV3XefLJJ/nkk08A+OSTT9j+p+9CQkpKRp20XdTIPEhM1hFOBdfhWFgx+gs+wuGyExNak4T0Y0xf+QHrj65k2BX3EhF6FmFRicRXHD6M5frrUJKTcV9/Pc533oWYcwsh63r1NfSmzSAvD/eYMWdMo3XqhOuBB3HE10SrWRN3k6ZorVojA6pKqgLl6Q/8R7t27Xj22WcBCMtuUCZ1XEgkhNTlo67v0ihpI62OraRRyha6HZyLwy+Q9XWvKHX5V9cbSZ5qZ/Opf/lu84eM6/AstQIb+cDyqkXa11NRHA60uBqYgICxt6OeOolp/TpSVq47ZyFzxw034v/kY6ipqThuuhmCzi5sr548iZKZie2br9CtFnLefR/Us3eX5va+gsxbbsOUcIrMMWPJV28JCcH+9jv4XzUQ80cf4R57J3rjxjimz8A68lpMP/+MZchgHH/8id6x47mfFIlEUmact/j6uXbmXqji60uXLqVnz8LxpUePHs1XX31VbP6MjAxCQ0OLFZHJzs7mqquuYsmSJVit/tx+99s0aNSWgFjjQ3/c8Db5n79bus+wL2l/smHbnWMUmkTsU/ESIiskeLrbKI4Wc7kxJFLCikPGsryEKE0Rxtca9wlBLE0QEC/KDhFRqFWsy/VXQcxWpZZHHE51u7ju64eocXw3h8KbMaPdo55QGIIQme4lDKRnCsJzgoiQlp7Dcfsxvj4+iaujh9Iq9hJj8piC39pUyyhiKoq8EmsUT0MQLbN6XQO6IEImCq+Jt7PF63dRhZ2iUHukIIprFuzwFkj7Tyw8duUi0pq1IrqZ0UGPPC2eZjpxHC00DE3QDvEWInV5z+RwuWg0qBf+27eSOnQkx977tJCd3kLmomip+DxzuIzPrTBBTM47vyhkL4q+ewuke9Ibrx/v86sKdol2SiQXMlVVbLW8/AFd13n00Ud59913ARg84iG6dh9epD8ARp+gNP4AGNti0R8w1RDE2MU2XhTq9iqrkJhqSq6x7CL8h0L1Cnn1PcZjVgQRT3Ic+R+1NEHIPdNh3M4Wtl1urtn5Oc2T1pFlCeHrds+RZQvz7BNFBYt73nuJeisBxjZJCRVmQLp13JqLZft+YdGen3BpTiwmG4Na3UCn+r1RowtmOSpCW4lFCB8RYTwf5ppnvwb9BD/NEmS0M1LY7y3s6ieIZ4si6FaLKPpqDBeb43UtBgjHJLatYtnegrEWoQ0XyxLfmkQBWW8fQGzDRd/CIgi5u4WyvPNn5hrvRVFAXtz2dmtCAs4uiOuxQxC8dBrt8D5G0Y5CwrRuF8HjnyXw049QdB0tLJysV14j76ZRoCiFbLnQ8X4NF31RUfhY/J0uZKQ/UPxx67qOoii889Hf6LqOrmsE1TBqjxblD4DRJyiNPwBGn6Ak/QNQTB+B2D8gItjl3ZYitOkECM/7o4KAup/wzD6aSefdc+m6ezanguvwbecX0E53pIvC7WIbr2UYfREtOavgs5+J6Ue+wqJaGV7zBqyxRqF7UYxd9To/SojwjBV8IIR22SL4D34RXv6BYLOfUK/YXloF/yHI63cU23jvd3oAp/B+7C2oHpKZSvP2TfO3j67aiKthwWBRrt14rk2qAm53fjgsi+4Gi8d23eUi/K1X8Vu7hsS33sPVwDjoFPzDDKLuHYui6+T0G0jK51+iBxb0m3j3CZhNxvOTkePEtHcPusWKVrcu4SMGY/3jd+wDBpE580dPn0FeHmHXDsW2bAmuy7uR88dCUJRCLqDYn1AaHEJbYpVtiaQaUeHi6+f6d6HSo0eP006I8e9cnJ5zJTMzk/79+7NkyRJsfgHccc+7NGjU1mflX+hoJjO/DH4Sh2qlbupOLj30u0/KjbfV5OG6T9IyqLVPyquKnOraG3vUmWeu+v/xK/HdOhI+/plzL9Bs5vjr76ErCuGzZxLx1ec+slQikUhKR3n4A+CZiLJvn6dTY+jIR+nafbhPy5ecB4rCL01GkxBQkyBnBoO3f4JJcxafzweYVDO9Gl/Ng91epkFUc5xuO3M2fcmPG74ol/olFyg2G5mvvUXyouU4W7VBTUsl5J67CBkzWoqkSy54yssfmDp1Kn379iUnxxO2WVEUVLV4zQRJyfm78TX82fJmZnR8Mn9QpLSYFBPX1RrNiJo3YlLk7xb09/L8zzvW7TIMipyJgKULadiqPrEP3OVpd04PiqgpycSNHEL4/97Cf8Uy4ocOwnzooCFv9rXXk/jF1+g2GwG/LSD6mv6oCafOyU7bT3OI7NiOqA4X4ff9dLJfeQPdbMb2y3wsf5zuR/LzI33a9zjG3knOzB8Kz06VSCQVwnkNjBw8eJADBw6c05+k7Hj00UdZsWIFISEhjL3nf9Rv2Kb4TJISkRZRk0VNbwDAz4eaIDa1YHZGij2ZxSd/u2BjgAeu/xdzcsEsIt1qw5SWSsiXX2Bb9fc5l5Pbtj0Jj3kGU2q88CTWzRt9bapEIpFUWsxmM99//z23jXubzpcPqWhzJKdxmvyY3WIcueYAambuZ9DOyeU2OAIQHVSDsV2fZlCrG1EVE/Ujm5Vb3ZILF2e7S0ha+heZL7+KbrHgN+sHQq8bAc7yu/YlkguR3bt3M2rUKBYuXMjnn8uJYmWOorCh/hXYLYHFpy0BZtWMqni66jRdY96eGRzJuDD71gL+XQVAynWjMGWkF53Y5SLuvjsxpacT+sN0wr/4GAAlJ4caQwYQsGIpWkAgznoNMB8/Ro0R16BkZhiKyLlmKCdnzccdEYFtwzqibhpZvJEnThA6ZhSKy4VitxP6f/buOz6Kau0D+G+2pvce0ui9944gxd4RsWDBhoqiKFbUa3u5NvRaUbGhWMGCoogUpYTeIRAg1FRCetl23j8WNjMnFUiyJPv73g/X7NRzzu7OeWbOzjyTbwPKSlF67/0ou+FG2Lp1cy0q/PxQ9tb/gJBze0w7EdUf3kfVhG3Y4EwK/v777yMhqbObS9N8bYsZgg1xo7C5xXDXtLi8FHQ7vqLyMxXOkNVhwScH3sHSzN/x+/GFHjc4Evfc42h/7ThEqO7wKBt+AQpvuBkAEPDJmQX02VOmIX/cZVCEQMAH79ZrWYmIzncmkwkdOg1wdzFIkucdgZ/a3wm7okf7nI0YcPi3Rt2/TtFhaJuL8MioWeidMNQ1/e8tP2Lury9i54Fk2O38NT/VM4MBpQ88hPzPvoTw8oI9MdH1y10iahibN2+Gw+FAz5498cADD7i7OB4lKv8geqYtQULOznrd7srDi7Hq6BJ8tOVV7D+5p1633RRYElsBAELmf46WV42FUlRY/cJ6PeyqXKPWOOcTbALfeg2m3btgC4/Asd+W4vgvf8Ca2BKF10+E8Kk8qFXebwAyfv4DQlGg2KxQiooqLaMREABHZMXTMByBQRARESh54SUUffARRGRU1esJAeP778L09FM1b5+IGhSTrzdhv//+O7KyshAfH485X+xwd3GaL0Vx3TVyWt/Df6B17jYk5e7Eb21uRrnBp5qVa2bUmTA0YhR+OvoNVuUsh36fN8a1udZjErIX9h+MiM/nIPyLj5B5+z1AQLRz+u13wf+rz+G76GecyM6GI7yOydQVBTn3TkXg7z/D95cFOPHKqxD+TefZw0REZ+Ott95Chw4dMGzYMHcXhaqRFtwRP3S6Dxcc+BYbYy9wTTfay2HVm2tYs/6E+VWcmAshkLxnCXILM7HzYDICfUNx49jpSErw3Md8UsOwXHIZclesgr1Va7gissxMIDQUMNTPo2eIyGnLli0AgM6dO0NXxwTVVD8ScnZi2N7vkOsbhY96Pw9RT48vGxB7Afbm7sCBvBR8svUNXK+7G11j+tbLtpuC3BtvReDPP8Bny0ZAUWDcvx+Wbt2rXlhRkP7+XAgvL5i3bkbRJVfACCD//mkwpB9H4dXjYe3YCQBwdMVaCCmfqZq1XQccSz0CERRc7TIuvr7I/e0vmJcthS4nG2VXXwfExGqXEQLG5DWw9h/omqRfvw7eD04FANi7d4f9aj4Gl8gdmHz9PFVbcrXXnpTyXUjJoX3ahmpel6SokqDmS4nG4mu+cOwtJW4t3ZRe8UJOLBZSfecCoHKCtBzV46mkZGCQEl5WKse/FYnaHn77Ms28Nz9ap3lt35pRc7lU+xK52gTqjhOVH6HVa/9iDN85H3phR553OH7udi8yApMgpORfokz7yABHnnZbp5OvJuetxi/ZCwAAw8JH4cLIi2GI1CbI08dJ75OcQDxK+rVDqCp5mpQszSC1rVH6/OhUCb8UKbFYYIh2EEhOBiknG1W/NEuJRo06oM81o+CXugfHrrsFxW++5ZoXf9EIeG3ZhKynnkfuPc5fPKkTtRn0Onhv3QTvrZuQe9PtmhyAYR+9i4LRF8GakFixvOrkQE6mKictlQ+LJeXa45g6kbucTE4+MsrJ2R3SttVJYOWDsZzUTj7sqhOzlVm0nz05qauXlLhWzvtbrkrGKreHXDL5+C8nn7WqEs4bpc9PfSaTK5KSwPp585eozVlTTbZ6rmqLB06ePImw0DA4hANP3PspQmK1+d1qjAcAbUxwLvEAoI0J5HhAPq5I/SXkxK7BqvWzi7XzwrX9XaUkr2uPuP6W+3QlQdu3yhz7T2onqBNRSwksISVidWRp+3idlNRUlNudd5oqCoTF+ff4Tf8FoOCfNlcjPahVxbKlNTxySG5LqV9RpASocgwgipxJ4jMKj2Fj5ipsOvIvisoLoNcZMH7AveiRNLhiYbmPU8dqUmJ2SPWVk8SbA6T5qr5ETtRu9tGWWY4t5L5EnQRV7sOC5W1LdSqXYgs1OQF2aIC2zgUlFs3rENV8s0Euo/Z1uZQEXe5bzZp+u+bzLruUuFYdW8jJ5+VyyGeCcr+tbns5uW6plEBXTmzvK8VbRaVWwOFA4OgLoLeUw/r+BxC9esnVqXdyol91m7gzEa06fqrP+OhcFanOX/y8zr/YivFA9fWOiUhCenYabrj8MfTsNEJzjeCM4gGgxpjgjOIBoOZrBDVdHwBqvEZQqRyq/h8AhJxgXXVclftGR6Y21tCFac95HSe0CdOFur10Cky2Utz51zT4WIvwS+fJ2BVdcQFcjnnkc03FVFEne4b2cVG6EF9YHVZ8u+dj7DixCQoUXNruBgyMG+lcV9UeitTP6uS2k68XSO+Ll6o9bdJ76B2qbQ+9dG5pMGmP9+o+TO6HdFJ/Jx+H1X2Ln7cBEAKmvFwIRQe/Ftq7L3zMBnhv2wx7cAgscQnILy6X5le8z3Jf6eftbB9zyi5EP/ckcqc+jJIBg10n3YWq2DTyk/egCwlG/uXXQHh5wb+WOOVkkaocNhtaP3gnvH75CXkfzsWJS69yzQp9/mkEvzsbDh9fpP+5HNZ2HWqNeXzMFX2x3JYy+VqE+r2Q+2yzUb72IJ/za5eXE9A3Frnc8ueLPAeTr5PrsQelZcU4kLYNa9b9gnUbfsex4/tgt/EZvg1pY6uxmDfkGeT5hCGoNBsTk19A/wO/QOc4u0dR9AsaiIvDLwcArMj+Cyuz/6rP4p6/dDrse/wFAEDMd5/DvG2za1bejbcCAIK+/BSQgpjTWl42CjFPTUfwl3M103PuuFczKEJE1Fz98ccfcAgHIsPi4e8XgqPH9iIr+7C7i0XVUZ1khpRkIO7kXiTm7sJNyf/BVZveRExe6jk/prOuovxjcUmXiZgx+k10ju4Nu8OGr1a9hT+3fedxj/akxqNPTYV+bwp0mzfDNKA/DNOnA+Xlta9IRDU6fPgw0rPTAADtkpwDjukZB/DP6h+wZ+86FOafcGPpmj+LwRvrW40DAAw8h+sCVTHqjJjQ4U70ix4GAYGfU+bhrwM/1dv2z3uKAktwKKzS3RuGk7mIf/AutLt8FNpdNBRee3ZVzLTZELHox2qvI6iFv/sm/P5djvhrL0X8FWPh/8tCwFLxwwd9YQFi3/o/tJh+P9oO6gav7VvPrPwGAxzhEVCEQPDkSQh56Tng1A/ITzwxE6WDh0JXUoyISTdAKS6uZWNEVN/O6v7ltLS0ei4GnamPvnkapWWFOJqxH3Z75UGQaZFz0bpDTwBATuZRFGVnISy0BW+prUcZwS3x2fAXMHbDHLTL2oih+35A64xN+KHL/Sgxnflo5YCgwXDogd8zfsKfmYsQGtYC3aL6NUDJzy95fQYi4+KrELXoR0Q8OR1Hfl4CKAoKr7ga4c8+AUNGOoxHDlca6FDKy6GcunATuOgnnDg1kKIhBEyH0mBJTGqEmhARNb5ly5YBADJzDuPJ/14Bh3Cgf59LcM0V0wAAdpsVs564ETHxbZDYujMijS0QE9USBoOpps1SI8j1jcaHg17BoAM/ofPxVWidvQWts7cgyy8O62NGYndEX9h1Df9rbZPBjBv7TcVvO+ZjZeoiLN3+IzrH9UVMcEKD75s8j71tW5zcsAVBTz4G/fz5MLzxOpStW2FdsADwrd8ExkSeZPny5a6/fX2c56LH0lPx06J3nBM/A0LCohHfqiMSW3dGlDkOcbHtYTbX8sQHqrPNSRei7/7fEVqSgftXPIDU8O5Y1vZ6lODsHrutplN0uLzVDQjwDsGSAwvw14Gf0CakExKj2tdDyZumdlNvR+C61QAAfVER4h+9D5lf/w4AiPz1B7R/6iGUvfc6ti9JrnE7mdOfgt0/AMHffAmfDcnw2ZCMsi7dkPLOZ7BEx0LodDh+33REf/gWjNlZiHrxGZz4+czyxeW/8iqEtw/8/vcmQt56DdDrkfvYU4DBgOwPP0XMyMEwpu5D8LNPIP+1t2rfIBHVm3q5Sv7PP/9gxIgR8Pf3h7+/Py644AL8888/9bFpqkZUeAIOH0txDYoEBUagfdu+aNOqJ3x8AtAisaKD/HvRPMyafSueefEKzPlsBpau/QZpx3bBVsWACp2ZcqMvfup+H37tcidKDb5QIGDRe9W+YjUGh4/A8PALEWoKQ7uwrvVY0vPb/mlPw+7lDe+N6+H3288AAOHji6xnXkDaHyuqvPtDqJ5LLUyVLxzpiosQN+V2tB3eB6GfzmmwshMRudMFF1wAo8H56ASHcMDHOwAGQ8Ux8fiR/ThycA+SV/yCbz5+GW+9PwVP/ucy/O/DB/Dbnx/hcHqKu4pOAAq8w/B7p9vxyeCXsDN6ACx6EyKKjuDivZ+iVe72RiuHTtHhki434Op+d+L6gVNcgyJCCGSePFLL2kRnRkREwvrlPFgWLITw84P+76UwjRsH5OfXvjIRValnz57w9w3GHeNfcE2Li22HTh0GITwsDoqiIDcnHVuSl2LhvNl4/5NHsGdfxeOni0ryUVCU646iNxsWgzf+7DoJ5QZveNlK0Tl9Ddpkbaq37SuKgpEtL8WUPk/jth7T4HcWP8ZsTorbddS8Lk+seCRp2alHy3qlHYB/8qoat2NtEY/0F17F/jVbkXPfNNiDguC1fSs6XnUhfDevh8PXDxl3TEH6sy8DAHQlZ3FXh8GAgv+8hLzXnYMeQXPegy7P+fhWR3gEct7+AAAQ8OnH8P554Zlvn4jO2jlnvPv3338xcuRI2O121233y5cvx6hRo7Bs2TIMHDiwli3Q2bjkgjswuPflOJGXgaiwBPiGh7nmCSHg5V3xqwS7zQqj0Yyy8mKk7FuPlH3rAQAmoxd6dhiBiyc+AG8f/0avQ7OhKNgVMxDHA1vBatfBpnf+CtfLWgSHzX7GidkvjLoYQ8JHwsvg/PWO3WHHxvR/0SdmLAz68+85v/XBEh6JI7fchZjfF0B4VfxqKX/iLZrlvPbuQVmbds5Hkej1yLn1LviuX4MTd9xbaZsOL284fH2hOByIeeYxeO1PReZzLzPRJxE1K+PHj8e+dUYcy0xFWHAMAqNiNM8EDo+Kwz0z3sKh1J1IS92BtJRtKCktRNrhnUg7vBOmwQbER7cDADhOPW6Ad5c2vlzfaCzqehe8LEXoenQFWmVuxr7Qbq75ZlvJGccTZ6N/m1Ga1ylHN+PjJS+iW9JAXDXwTvj6hVazJtGZc1x6KSx//AnTxRdBt3oVjLffBuv3P7i7WERNUufOnfHUfV9AUfXhkREJuPXG/wAAlBZmHDm4G4dSd+LQ/p04uHsr4mIrfkyZvG0xfv/nM8RFt8Wg7peiW/RFMBrNlfZDNUuJ6YeUoO6Iyd+PdlkbsTV2GGCp37y7cYF8GgIApD3xAmydu8Jn2yZYwyORc+tdrnn5fQbg+DUTEfP9PCTOmIqdvyyH3afmOMoeGYWcx59B/o23IPbWG+C1eycCVq9EcY8+AADToTQAgCXu7FMGlEy6Hd4ffQjzrh0I/PgDnHx4BgCgbNgI5N8/DQHvzob++NGz3j4RnbmzSr6uNnr0aPz1119ISEjARRddBAD47bffcOjQIYwePRqLFy+ul4J6mrokV6vJe99v07y22204dmgfUndvQurujUjdvQlFBScRHBqF5/73K/R658XinKxj8M4xQKerSOj08NMjNdt67T9LK17IyVKjax5g8Y6WEqSlF1U/b4+UEE5KzCYvr1lXTgBXpE2OKSd21yRULdE+D9SeJSViC5LuCDGoEljlVCRlG7ntc3Q6/C/WJY3DpsQLYTF4A1KCKtsBqY6qi1mOU4nDNhSuw08nfkSwVxjGJF2JrhF9oFN02gSoABR/KYG6OnGtWZssE5HSowqkpNU674r2MUjzFCm5lV5KYlrptSoJqt5QfUIvfVkpvL2NcJgqAnBfVcLHoO2b0O/u65B+wUXY8cTLKNZrA/UQP+1ru8MBCIGET99Fm9nOX3fkDh6B3a9+gFIvbVDkJSWL85YSt8rXCNWPKpXnyUlfFSlhqpASmetVG5CTmMvMUtJTdeL34jI5+bq2YJWTq0kJdVXvhZy/TE5oJpdTLzWCt6pccgdTIiUf9Jc/e6pdWaUEb3IS3NrqqE5U56jl+bLSqpq2PVfqXraW/HhUAyZbrZ94QAiB7Iwj2L9nM1J3b8SQ0dchsXVnAMD2jSvxw2evYvCF16B1+x4ILg2B0VjRt9QYDwDamOAc4gEAQL42abpabeXQq/ZtPyz9Al1KLAl5vzJ1vCCHzHK8cLxQ81qRYg1RWBGLKMHaWMIhJ5tV7cpgL8ftyU8jI6gl1rW6CBl+iZqDiajlgoso1cZAOv/q72yVk74vy/oTf+75HgICAV7BuH7gfWgd2clZB6l+ipR8Hf7SaykW0UVUxCImKaYxSAmfFel4HyDFYuo+TE4GKvcNMj9VPyQfow1S/1cpPpATpqv6jtr26yvV0SR9No2Gim1ZpETtUcHaOEbuW9UJZo1S0lY5gbqc9FZO1Koml0Mmt4+8vHrf6vZRtm6F+Y7bYP3mW4jWrZ0Ti4s1j9YqVdVRTghbn302nf8YD9RPPCD75uOXsfKPbyGE8/jh5x+MARdcgY7dByLMEg5v74p++4ziAaDGmKC2eKDGawS1XB8oXXlIuzNVXyOOa/cjJ2OX+ywhJ6dXHTuFnJjdqj3vUMx6mKwlGLNxDv7qcSuKS7V9nlAd3+Tk64p0DFd8pHP+0Io6y32lTmoPRU6+LsUiUJ17GaX3TCdt2ydMuy35sqJZ1R/I52xykm85ubi6by21aPs3Xyn2CJDaw6BXnCfrOh10RUXocskwmI8dQVGPPtj/3qewhUe6lpX76RBV8nqluAh+n3+KvMn3uoKDtjGBAICMex5E5mNP11gHuT9U7yvo1wUIu+MW2CMicGzbXhSfrqLVCq9dO2Dp0UPalvazqT4Xl/crxy1yTFRSXtEvy+f4XlJ8IK8rn4ur+2I5lpATyMv7skvXE9T1KJNiB7lcla9NqOIJKY6Ty1Eb9ee4TIqv5feU3K++4oFzfmfXrVuH0NBQbN261VWQ/Px8tGrVCmvXrj3XzVM90esNiG/ZAfEtO+CCiydCCIF9uzaipCjfNShis1nx/NTLodMZEBPVEl5mX5SXl2DuN0BhYSGuv/56/N///R8AoKS0EP+bMxXCYYfD4YBOp4OX2Q8+gYHw9vFHm7a90W/ApQCcB5clf3wKb28/BLeIhJ9/EMKj4hEaEeu29mhoisOO2BN74WUrwdB9P6DbkeX4fNBzKPU+8y+rl84L/voAnCzLwfzdc/DPkT9xZdubEOfXtv4L7kZ2L2841Ce2djuAiiDA50gaFJsNLX5fgIjVy7D/qpuQet2tsAQEoe1XHyIoLwepjz0PANCXFMOh10MYTTh06xSUxCeh85MPIOTfZWg//R5sfutTXqEmIo+kKAoiouMRER2PASMu18xbs+wnZKUfwo+fvwbAeedIZHgCggIjUF5eioee3Oy6m2T69On4dO7X0CnO47YQDohTF2PNJh/ccd/r8A8IAQBs3rgEBw9uh15ngMlkho9vIIJiIuAXEITgsGhEt2jZWNVvkuJP7kFA6QkEleagffo65HuFYl9UL+yJ6ovjwW0adN8XtLkM7cK74qtN7yCnOANz/n4BA9uOQZuoLoiNao0gX95BQudOdOsGy/oNml+bmMaOBcrL4Bh3ERy9ewMDhwB+1f8oiojOzfjbH8dF19yJVX8vxL9/fofcnHQs+Wkulvw0F4EBYXj6kfmuZYcMGYL09HSUl5fDYDCgqMDq+mFlVGQibr70cdey8xe9jjKUwcvbHwaDATq9AXqdHnqDESEh0Rh57U2uZWv7IVNTNnTHN2h/NBlh+UfxTbdpKPIKrn2lKmSWpmP7yU1o4ZuA9oGd67mUTZ//ujVoNfUO5I0ah7TnZuHAmx+ize3Xw2/zenS4YhT2v/8FSrp0r3U7wtcPeXdO0Uwrad8JPnt2Quj1iPrvC/Bb/Q/gcODQ+59CtIircxlLLrsS+dP3oGjizYDRCNhODSQajSjr1sOV70ApKYGo5S4XIjp35zwwUlZWhsjISM3oTGBgIEJCQnDkCJ9JfL5SFAVtO/UGUDEqmpt9HHqDAZbyMhw6sqvSOgUFBRUvhEBWzuHKGz51o4Zeb3QNjFit5fjz948rLeofGIL4uI7o0m0Yevcdd441Or8InR5fDH8e7dNWY8yOTxBYdgLt0tdhS8tRta8s6ezbFW2922OdfjOWHf4Nx4oO4YMtszAj9HX4mZvhr6SEQKsFXyIqeSW2zP7UNfn4RVehPCQUnV95Er5HD6HD3LcRtXoZ9o2/DV3eeQUAkDXmUlhCw9Fl6m042asfUh5/EQCQPfIibItpgW63XInQf5ai1duvYP8Dj1e1dyIij3XTlOfRvks/bF3/N44c2IOiwpNIzzyI9MyDAIDi4mL4+zt/QZieno6cE8eq3ZZBdadJ6r5NSF7zS7XLPj7rG4SanT+WyM46AkVREGII4SO9TjkQ1g2fD3ke/VN/QcusrQgsO4HeaX+id9qfWJc0DsuSrmnQwf7YoERMHfof/LxzHtYfXo5Vexdj1d7FuG7wFPRpMwKAM5a0263N9pGf1AjU3/esLCgb1kOxWqHb5Hw+vyG2BYrnfAzbsOHuKR+RB/APDMXYK2/HhZfdgu0bV2LdykU4cmAXIoK1jw5KTU1FRkZGlduQk7nvPbix2twlUdEtNQMjs5+bjLKiYiQkdkKL+PaIjW2NhPDOmtxpTdWmVqPR+vhGhBUew+1rn8K6+LHYHDcCZcYzG/A9XnIUf2csRrApBG0COtRP0uBmJGHmozDlZCNi/uco7N0fJ6+4Frt//AOt77oZ5iNpUKxnn2c3ZcGfiPj4PcS++oJmeswLz+DY+3PrviG9HvkznqpxEeOhNLSYcCWyH58J+zXXnk1xiaiOznlgpFWrVtizZw8efvhhTJgwAQDw1VdfITU1FR07dqxlbTqfREQn4LXPVuHIqq04lp4Kq80Cby9f3Hj7YAQEBCAysuK2Q7PZF/fc9jp05XYoig52hw2lZcUo9bKhtKQQYeEtXMs6HHYMGHQFiovzUWYrRlF+LjKPp6EwPxc78/+Ff0Coa2DEYinDnFcfRmxCW0SaYhAb3QahITFN8uKIUHTYHTMAgSXZGLrvB8SdTMEWnPnACACYdCaMSLgYIV7h+Hr3h1AUBSZ983zmq9/RNPR8fSbsJjMUmxVCFQjn9B+K5T8sR9LXH6Pjmy/AlH8SVn/n4JDNxxdF7TohaMMa+KXugV/qHuT16IvMsc5fRBd26YHUJ19Cq5eexInBF7ilbkRE5zMvLx8MGX0thoy+FkIIZKzbjaPH96G4JB9msw9MporBjpkzZyLIqzfsDjsUKFAUHRSLHRACZZYSmM0Vv3Dr2GkQ/ANC4bDbYbGUuuKB4sI85J/MRnRcK1iynI/O+uvPz7Bx/WKYTd6IjmyJmOjWiD31LyoiAQaDqVK5PUFWYAJ+7nUfDHYLEjO3o336OnRMX4PeBxdjd1hvZAQ07PPGTQYvXNPtdrSP74GlOxcAAjAZnHFImaUE3/77Lsw+Phg/+sFKjzkiOmMRESg/fAT6hQugrF0L/dKl0B09Cr+Lx8IyfgLKZzwOR9t27i4lUbOl1xvQrc8IdOvjHPwu3KF9TPX8+fNhMBhgNptht9vxxZy1sDtsUKDAS3pk8RWj7kGRsQxlpUWwO+xw2O1wOGywWMrh5xfkWs5msyItdTtsVguOHtmjKUt0XCt07D4Il9/wQMNVuoHlBsTiq+EzceXq1xGRfwhDDyzAoIM/42BoJ2yIGoG04E512k6MTwvoFQNOWnLx7cHPcH3IFOh1fJzgaSUdO8MnNQUAUNrG2U+UJ7bC7u8Xw2/bJhT3PJUv5NgR+KxPRnGX7ihPSKr8fOwqCLMZRX0HVJruOMe7OgJ++gHlrdugvFPXimk/fANT2kFEzpiGjKFD4YiIrGELRHQuznlg5LbbbsP06dPx5ptv4s0333RNVxQFt91227lunhqZTqdHRHg8IsIrfhUyatTISsvp9Xq0Suxap+eHenn54urrHgFQ8dxPq6UcR9NSsHfjBkRFV5zMpx9Oxa4tq7Bry6qK9c0+aBHTDvGtOqNz1yGIT2haA26nH3MRczL1nLeVkrsdANAzcoDrgkRzU9QiERa/AJiKCuCfmoKC9tItwno9SmOct6qWhUYgo/9wFMfEwff4EUT+tgDpV09E2uSpSJwzGx2em47Cth1R0tL5HmRcfQNyh1yAopDwxq4WEVGToigKggIjEBQY4ZpmNlf0O23atEFSQhftSuqYQHWC2anLYHTqMliz6Ol4QAihuZAuHA4YjCaUW0qRdmQn0o7sdM0zGEx4fsaPrtd5eXkIDAw8uwo2UTa9CamRPZEa2RNpYR2hE44GHxRR6xLXD13i+gGoyDFyPDcNOw6vgxAOJMZ0QP8uYxutPNSMhYfDPvlOYPKdsBUVQXnwIZg//QTm+V/BeuNNHBghakTyHRvDhg3TvP73Tylflyoe6Np+cK15xwDnAMgzby7E3nXrcfjQLhw9moLjx1JRVlqEo2kpmsdwCyHw7scPITQqHvEJHRCf0BExsa3PomaNq8A3HJ+PehFtU1aiX9rviCw6gtY523AgsGOdB0YivaMxseXtmHfgI2zP2wzdjjm4rvNkDo6ccvClN3Dgv+/AkHcStpBQ1x01Dn9/FA4e7louYMVSJDztvEZV0r4Tdv3wJ4Dar68U9+6HnX+vQ8xbs1Dcsw+Cfv0J+aMvOuvy+s77DKEP3AtLfAIOLloOR7DzEWsn7nsIfr/9Aq9dOxDy8FTkfP41HwVO1EDOOfm6w+HAnXfeiblz57oeyXR6UOTDDz/kr8bO0rkmVzsT7363VfP63mu7Nej+apKZmYmFCxdi8+bN2LJlC7Zt24bS0opkZrNmzcL06dMBAM++/Cv27FqLlq264sWZ12o+a5USwEkJ0ColX81VJUwL0d7+Kw/+6NuEaF7bVlQ8UkxORAqzHkZLKe77cAJ0woEPbvwIRX4Vz+O2SkniHeUV+3Lka5O4wW6H1WHF9tLtiDPFIbZfL+262VKS+HBVQjTpe6iTE7fLdQ5SBQVyQks5yauPNlA2RtX9dmCDT9W3RV/y4j2I37oGK+96GrvHXOeaHnwqUWv0qqXoMOdNnGjTEaseegGdvp+Lfh++gtyktlj4/s9QHA6Mffw2RG9Zi6KIaCx77j1kt+xQUUaT8/0POpCCTl9/iLWPvgKH6rEvPtL7KCeI09RX+nWJVXo2rpyY1SglMVMnLpeTgzmkw3OB9Fn0U5WzSEq+Licpkw/Fdmnb6oTpcsJ4i037nvt51/12dl9p2ZMF2sSFclurk5wF+WmDUzm5apGUJFhOPme1V2xLrpPctnLyPTm5XHxExedaTgovJ5eVE9eqk/FapbYM8tXW0SLt1yy9j/7eFe1VLh3XbNJnT35Ms12a4KNKICdHAnKiQzl5r/qzKifAk8nblpPzqdeXQxL1cZ3JVj0nHrDZbHju7Z9x5OAeHD2YAlFyFJs3b0Z0dDR27qwYKBk2bBhSUlIQk9QVrTv2Quv2PRAT3xrlhwqr33i6dp73QO0zoUu3Z2mXj6j4FaB3pF/Ny8qJqaUDr8iouHCkSMnDRbY2+bqQklKqk7EL6XiPU8eNxOztsOuMOGxuqdm34mOEyVoCi8ELUHSa9UWZ9jgqJ2oXJdrXarrwigtdK44sxuK0H6FXDLi79+OIC0iCLlQbW+gipaSv6mOB1B6VXpuk44Z0TDKrlvcKlPYr9bvyuUmgKuGu3I/IfYOcIF1Ocuplqjiu1tany/uySe+5vyqhrHzclBPZ6nXVb0vejxzTyP2OvC8/VZL4cmvNiUiL5c8mtHVWJ8mV21buO22OynGKsmED9N9/D8uLL7k+44YP3ocIDIL96qudz2pH7f2SOlm9TwMmU5XfU/m9oLPDeKBx6q2OCdwVDwghcOjQIWzevBnBwcEYPnw4ACAtLQ1JSdofBQQEBCA6tgNatu6O9h37I7ZFG+BkmWYZ7/Zhrr9LV0uPfZeOfQiX+iwf6VhxUJUkXf5qt9LmDxEbtef8SpgztgjJOYx2u1dia/sxKPE9tY50TC5bug9V2V20E/OPfQ477Ojq2x1Xh10Hg6+271Sk8wxdgNQ/hmvvdNCprwnI1zXkOsrzw6S7JlT9hRKgLZdBXlem6i/l8wi9dD4ob8svRFsOdd+i7v4Tl/6CDgu/QOie7dDZbfjjrfnI79lXuy0v7Xms+vxILpfcx8tJ4r1V53QFqnNYY34eRtx+OXyOHkLOgGHY9PYXKDt1rhmwdxeG3noZdDYrNj77Bo6OuwoAoO7igny113X8pOsrxaXafll97l0snUvb7NWfwwKVz0vV/afch8vXHuRzSSHFByZDxbblWKNSYnv5+pRmv9ody+e03ibt+2KV+ml1vy334fK5tXydQ46f1G1SUKyNp+XrHDJ1rFYpopHqKCeyl6/V5Kn27Sd9LuVrHnJby/GmOmaU39NzufQvl0N+Hw36qjd+3iRf1+l0+Oijj/DEE09g48aNAIBevXqhZUsm0qQzFxkZibvuusv12mazYdeuXUhOTsa6deswYsQI17x9KevxzZfOHBJzP5iKQYMGYdCgQejbty/sdjv0+vPjVxNWkzfW97wSRX5hsJ3jI0CMOiN6+vasp5Kdv7JadUb81jWI2LddMzByWvqgkdjXY6jr9b6xV6PnZ7MRcnAvoratQ0a3flj55BsY+9ANCDx6EOOmjse/D72IAxdc6lpHZynHBY/dDt+cTFj8g7DhgWcapW5ERFQzg8GA6BatEN2iFfoOuRj3XtsNQgjk5lY8o9xms2Hr1q3Iz89HZuYSbF67BADg5e2H+BYd0LHjAAweeJW7qtD4hAMjd3yJ0OJ0HPdPQnL8WBSaQ9AxKxlJJ3citDgdub6RWNfyYmwP6w+Hrn4vBg9tMQaHiw5iV85mfLntf7iu02S0Ce1Rr/sgEr17w9a7N3D6YkNBAYxPPgGloACOJx+H7aFpsN1zL1DPn28icg9FUZCYmIjExETN9PDwcPzyyy9Yt24dkpOTsXbtWhQUFKCgIBkpu5NRUpzvHBgBUG4pxe69yUiK7wxvhFWxF/fJDYvHmiE3AiXOi7feJXlIOrABu9rX/tjnDn6dMD7mJsw//jm2FW9BgD4Q43wvb+giNxtpIy/F4VGXYciz9yFhxWJEbkmuNDByJqJX/432X76PstAIrJ35Jup6qdUaGIQtr85Bv0mXIWzNCkQt+QVpF1wCACho2xEpd0xFh/dfRZfXZiKn10CURUSddRmJqGpn/bOVtLQ0fP7550hOTgYAtGzZEtdeey2uvfZaZGZm4vPPP0daWlp9lZM8lMFgQNeuXTF58mTMmTMHvXv3ds0zGs1ISOoMvd6AjIwM/PDDD5g2bRoGDx6M5/97HfYf3IrUg1tw6Mhu5OVnwW6Xf8XWeP4deAu2dL0YZV6130asVmIvwfbibfgq63P8nb+09hWaiczWzsdntdiyGsaSolqWBix+AUi98AoAwIVP3w1jcRHKQsKw6J3vcbTfMJQFh2Hofx9F0KGKx5k5TGYkT3seANB+weeIXe057UtE1NQoioLQ0Io7Lg0GZ9+/cuVKXHr9FHToNgBe3r4oKy3C3n3rsW/fRs36m7csxd59G5CVewRllhJ5802e0W7B4bAOsOmMiCk8iCt3vodLds9B76N/IbTY+UvVkOJMjN3+Ca7b/DpMtvptA0VRcF2n2xHmE4n88pOYs2kWvlwzG8XlNdy9Q3SuFAXWaQ9DRERAd+QITNMegumaq4FCfu6ImjNfX19ccskleP755/HHH38gNzcXmzZtwuVXT0WX7sPRtn0f17KHjuzCl9++gP+8ej3+++RNWDhvNrZvXInj2QdRXFpQ6W5ld/EuycetX96LsX+/hfijW2tc1iEcyChPR77tJK4Kuxb++gD0C+jfSCVtXjK7O9ut/Y+fIf7PnyrfClIHods2YMijdyB82wbELfsNMf8uOaP1i9p2xMFb7wMAtHvtOfge2u+al3rTPTjZsRtMhQXo8trMMy4bEdXurH9O88orr2DOnDlYsWJFpXklJSW49dZbMXnyZLz//vvnVECi6nTpNgxdug2D1VKOQX2MWLVqFdasWYN///0XJ0+eRER4PN768D6czMsE4HyUjtFohk6nh15vQExUK9w1aZZre5/+8iKKSvKhN5ug1xtgMJz6L/QICgjHxcMrcuYs//NrlJcVw9vHH6bDFngZfWDQG6AzGWAyeiEpquKxTTl5x+FwOKDXG2AUevg4bLB7+UOvM8AhHNApFeOTewp2IqssA8dLjuBo8SGctFX8OjZdn44RARd4xOPpjnXui8KwaPjnpGPYuzPx18OvVr43Twgk/vMHTrTuiMKYeOy4+laEHExB5M5NuPq2Mdh0xyPYP/pK/P2fDxC6bwe8MjNQIuUWOTbgAuy87nZ0+vZj9H1zJn7t1hdW3zMbvCIiIvfw8vLCkCFDsD3Deeu0w2HHscP7kLJqDQICKgZRTuSmY97X/9Gsq9cboNcZoJ9jxPBxE3DJdfcCAAqLTuLT7547NV8PnZczFjCZvOAV4Id2Xfqi75CLAQBWmwXJm3+Ht9kXfr5B8DcHws83CCajFxRFB73BAIPeeTu7EAJWm/NRgnqdAfV9T6vV4IUlXSZhVdurMGbzR2iTswVF5mAcDu6Ag1FdkR7cCu2PJ2PQvgVIyNuD6za/gS97P16vZfAy+OCe3k9iyf4FSD62HEdy98OoP7c7ZYlq5O8P2xNPwjbtYRjmfgLjY4/CsOhX6IYOgWXhT0BCgrtLSESNQK/Xo0ePHhgyvARDhl+rmWezWdEipi2OHt+LtH3bkbZvO5b8NLdiXZ2hos/XGXDTpTPQOt6ZBHv3nrVYs/Zn+Pj4w9s/0Hnub/KCwWCCIc+G9km9EOTvPL8sKM7FiZPpUHQ6KLpA6HQ6KIoOEAKO7GyEBkTBx+x8JGdpWTEKik7AaDDDZDLDZDVAeAdgX6uB6LrzD1y05DV8cd0bKPYNRb41D0fKDuGE5QRyLFnIsWQj25KFMofzsduTIm/HQ7HTYdTV/VHHVCFt5KVou/ALBB3aj17/fRJZvQaiLPTM8pGWRETD6u0DY6nzRydCf+aXWQ/deCcil/wC/9QUDLp7PNa88xUKW7aFMBiw9dEXMey2y2AqyIOurAzw9qp9g0RUZ2c9MLJs2TIEBARg8ODBleaNHDkSQUFBWLqUv8Cmhmc0mTFkyCAMGTIEAGC1WvHI/R/C3y8YQYEREMKBgsJcOBx2WKwVzxktl34xeiQzFflFOVXuIzIsQTMwsmblQmSlp1W5bIh/JJ6YUDEg+OUfr+JoVioUAA8BuB9AfwD7Afga/PBUz4rBmSXpvyKj7Lhme6GGMHTy7YwuXl08YlAEAGxe3vjzwf/DJS/diyM9Blf5wMJuX72HXp/NxvFu/bB41mcojE3A2nuexPBXHkbg0TQM/u8MxGz8F6sffgk57bvB3rpLFXsCtt46FfH/LoH/8cPo/tFrWD/12QauHRERNQSdTo+4xPYIE9rHDBQVnUTbNn2Qn5+N/LxslFmKYbfbnHeSWstgs1Y8Y7msvASHju6qdh9mLx/XwEhpWREWLn6n2mX7dx+Ha8ZNBQCUlBZi5hcTXfMURXfqYoweiqJDt7gBuKb/nQCc+ftm/z4DJoMZRoMJRr0JRr0ZJr0JRoMZMX7x6JNQkfh29cElUBQFOkUPg94IszEAbQCctJdjbsxwxEa2AgBsaDkOO/1iccvWD7GqxQWwOKxQHHYoig466CrFGDaHFdllx5FlyUSJvQRWhwUWhwUOONDeryMS0LlSnX2Nfrii/U3oGzsM5T52mAzOZyjb7FYsXfMF+ncei2D/M7vgQFQrLy/Y7rkXjl69YL76Kui2b4d58CCU79oN+PMHL0SerGO7/ujYrj8KCk9g78ltOHbYOUCSm5GO4tJ82B022B0VT5bQqXI25Zw4hl27V1e77duvfM41MLLnwAZ8+8fsape9eeR0dEnqf2rZ9Zj38/9VWuYZAGsAdCvNxyV/vopvL38BB0v24/uMrysta1SMSPBOgk7Rc1DkHFj8A/Hbhz+j47cfw+Hvf8aDIgBQGhWL5GfewMCnpiBt7JXI6jWwDmnctezePtjwwbfodc8E+O/bjYB9u1HYsi0AIL9DF/zz4fc42akHoNOd/WN/iKhKZ5183dfXF61bt8bWrVXf5te9e3fs3bsXJSXN73EFjaGxk6s1dw6HAzk5OSgqKoLNZoPVaoXZbEbr1q1dyyxduhSFhYUoLy+HxWJx/ddisSAoKAiTJk1yLfvKK68gLS0NeXl5rn82mw12ux2xsbH49ddfXcuOGDECW7ZsgbWsDIvKyjAMQDKcgyMBXsF46tJ3Xcv+8vcc5FtPItorFjH6aMSYYuCtdyYQE1JCK3249kRPHyV9TtQJjKSkpYqcmNtbGiNVJWVS5GTqcrK0Iikxq5x4Tb28lLFKLyUHU6Tkocb8PJT7VNTTJ6IiCV5saTbGTroIhvIy7LzpXqy6dgoAQGe1oNOvX6HX/HdRFBGNP57/EMXh0QhI3YNBc17GbzPfh87PWUavvFyUBYWgxba1GPPoJAhFwaK3v0V2e22CQTlJlfqdkJOcl0rJ6SslYqshyae8rJzgTB4fUjennAC2REo0Jm9LTgJfrvq8yAlj5TrmSu95mL829DPIyQvV+5HaR07qpu6SCqWEcIE+2l8ey0lfS8u1dVYnTJMTscoXAOWht2IpIbE6oa6c0Mxf+hxn55VqXqvrqJP2a5ESqMvJ6AOlhHrqj4hFSuTuL5UrX0ry5iMlECxR1VFuD7mOcoJ5dYLd8EDtr5aKpfdBjjLKrdr5msS+cgI41ftWWFiAzkkxHtcvMh6of0VFRTh58iSsViusViuCgoIQGRkJACgsLMTSpUthsVhgs9lgs9lgsVhQUlKCkpIS9OzZE6NHjwYAZGdn495770VeXh4yMzORmZmJ7Oxs13Hs7rvvxnvvvQcAOHHiBMLCqn+2+U033YTPP//cVYaa3utrrrkG3333HQDnMVMn9Z3jAPwGYCeAq1v3wW3t7nfNe3rxnTDYy6COzscAOAYF5YndMXnAYwAAi60Mz3x/OxxCSih/SqghDA9ETdXc9arz1yZ1VVTHzQ0n1uDHI19DBx1CvMPhpfeC2ewLX5MfhiSNQ3xEG826+ggp6a0UxyBAuuSg7g+k5OI6KS6RE7cqquSRitRXyEldjdLxXif1j+rEm3K/IycLlRNNmqRtqZOTywlA5WSrMnX/KCesNBqkuEU6ZntJ5VTXQ+5nyqS+QU7EKVMnQTVJ5ZDrJMdTZarX3mbtuupkqrqjRxF6wzUomzARpfc9AABwFBZBvz8Vts5dAJ1O04fJ/Z2cjD1P6kvlvO6+qj6sRGrLUCk+kk+7S8or6iQngJXjukoxj6X6vrby2X31SW6Byu+5OgFvdQlPq6NONivHk/WFydc9q94NqaysDNnZ2a54wGq1omXLlvDxcfYbu3fvxr///ovc3FycPHkSubm5KC0tRXl5OcrLy/Hcc8+he/fuAID58+fjmWeegd1uh8PhcP1XURQoioIPPvgA48aNAwDc/9zbmPva07CUlcJq1R5jWgPYZjLD21KOxTPfwy+/HcOifd8g2CsU4b7RCM4zI8wQhnBjOAyKAYpXxbFTkc6VhHQ+ow/W9q1ycnZ9rL9qnjTYIl8DkM/3gqS7GMw13BsrHXcV6Tij7otN0nHULh1n5T7dKCW1Vm/LS6qTXUo2rleVQ2cph82g3ZZJFV/IibatNofz4Hv6nMrhQMTmtchv1Q7lQaGaJNY1Ja025uchYmsysi4Y55qWJ517q8/r5WO03JfKSdHV56ImKV6Sk54Xl2lfB0rt53BUfylZjoHkJN5yP6WeL58vy4najVIuYavdXu08+X2ySLGXfP1Fvu6hVlyu/T7Jie3lflodM8l1KJeuAcjUbSDHPHIfLsdxcmymjj/l/crXHuRtyZ8J9b7NxppjPjmRu/rahdkoxdfS5zhTup4ifybCTl1/KCwoQMfEaPclXzcYDDh06BAcDkelEzK73Y60tDQYjRy5pvODTqdDREQEIiIiql1m5MiRdd7ejBkz6rzssmXLXH//tnA1rDdciH6lJVj86sdYs1J7oBkbVZEcXJRKAw4eSD0oYiwrARzewKnjTVFsAjZOew79Xn4Mnb54F3neQdh5yUQ4jCZsv3ISDoy8FB1/mYeAY4dQHBaFoe88C9/cLOitFgg4g90LXpyKzE69sOX2h5B64RVovWQh2v0yv9LACBERNR9+fn7w8/Orcp6/vz+uuOKKOm0nPDzcNUBxmt1uh8ViOfUIzYqTh5CQEBQUOJ9lbrVaXT+8sFgsEELAX/Wrdi8vLyxevBhFRUUoLS1FSUkJSktLUVxcjJKSEnTs2FGzz16DxkAIB+w2G6xWCyxZ2cCxvegEICw4ulK51YMiYQC+BBAAgdn5WYBwAIoOJoMXAryDUFZeggifaPibAmHSmWEocaDUUYpO3p1cgyI2YcMJ2wlEiYRq72wNNUegdVAHpObtRk6p8xGnOJVCbGfmJtwxcAZahrWvU7sT1cTRogVOLl0BmCsuaJl/+xXBk2+F0OvhCAuDLTQcthZxyH3kcaBfnxq2RkTNmZeXF+Li4qqd36FDB3To0KHa+WrXX389rr/++jot23fYOPQd5rzw7bDbUXCiAJbyUggICAHs//JtdF7yA+I2/oP4oAtxT58nXOta9xyvbrNUT1qsXoq+bz6Lfx5/FZnd+tV9xVMxUNC+Xej92tMI27UFJeFR+Ovd72CNbVGnTVgDgzSDIr4HU9HzuUex4eHnUZDUFoaSYvSa/SyOjrwEmYMuOKN6EVHVznpgpEOHDli/fj2efPJJvPzyy5p5Tz/9NAoKCtC3b99zLiBRc1IaGYMjoy9Hy5++Rru/f8c236vdXaQmIW7PBoz+9AWsv2UqUodd4pp+cNw18M7KQNeP38DAOS8jq20XZLd1PhO2NCQcG295EADQY947iErZCodOB2NpMSzBQdCXlyHocCqit69HWVg4Nk6ejqxOPbFv3LVVFYGIiKhWer0e3t7elaYriqIZ/KiJ0WjEmDFj6rSsoii487HXNdMKN6fjp93/osg/FFe26AD7uoqLKP8Z+yFM17SHzWaBcDhg2LgXuX+9h7ADGzH95DFs3jAXf/W+DVAUPDj2/2DKsGkGO2yHsiuVYUPReizK+xXBJ0LQxq89knxaIdAYhEARAn9jAAw6I5L8WqFVzDScKM1CfnkeLPYylBtt2Ja+DoXleYgPblWn+hLViZf2l8v6Y0chzGYo5eXQZ2ZCn5kJ864d8F65DEVPPI2SKQ8AhrM+LSYiOms6vR5ePr7w8qm4m+N43+HovOQHtNi0Cuh0oRtL55li1yyDb3YGhr7wEJa+OAe5bTvVeV2dpRwXTJ0IU1EBAMAnOwM9Zz+H5Flzzqos7V9/HuHb1uOiW8Yh9bIJaP2z87Fqfof2c2CEqJ6c9ePprrvuOgghMGvWLPTs2RNTp07Fgw8+iN69e+P//u//oCgKxo8fX59lJWoWMgYMBwAE7t/j3oI0IbH7tiAgNwNt//650rxdN0/BoVGXQhECAz6eVem+zG7ffIhe8/4HAFh1x+MoCXHeNWQ3e2H7NXcAAPp88Aq8c7Ox95LrIfQ13PZLRETUBKR2GIyMFlX/ylWn08Fk8oLZyweO0Bb45boXsGTs/RBQ0CN1CfrscT4O1MfsV6fcZhnWDOihx0lrLtadXI1vjn2BD9Pexn93P4dntj2Mf7L+di0b6h2BlkFt0T60K7rHDsCNve7HbX2nu5LUEzWE4gcfRsaRTGTu2ofsFatx/PNvUNp/EHRlZfB9600oBQXuLiIRkUt6597IatMZR3oNgSJqfuQO1b9Ndz2Gky3bwSc3G2MfugFRm6rPMyNzmMwoio3XTCsNizzrsux4+v9cAzOnB0UAIH1Y3X5AQ0S1O+uBkSlTpqB79+4QQmDr1q343//+h7fffhubN2+GEALdu3fHlClT6rOsRM1CUVwSAMDv6KGqHgJMVdjd33k7aez2ZPjkZmlnKgq23DMDNpMXonZvRkSKM+9R4JED6Pnl/9DnszcAAMk3TcWui7S3N2+/5jYc6n8B9FYrhv3nQRhKixu+MkREROcTRcG2Hhdj+Uhn8vfhW+ah8/5ldY5Rrgi5Ek/EPoWb4u5Av+BBSPBOQrAxBAbFgA4BXTAwfFi16+oUHbyNPtXOJ6o3JhMcMbGwdeuOktHjcGzBb8h8410UvPk2REiIu0tHRORi8QvAT69/gzV3Pg6hnPUlOzpLVj9//DH7axzvORDGshKMeHYKAtP21Xn91c+8iaVvfQW7wfmjj9TLJ551WcojopH8+CwUxCUho/dgrH18Fn75azv23nzvWW+TiLTOOvk6AOTl5WHKlCn47rvvYLM5k7QYDAZcd911ePvttxEcHFxvBfU0TK7WjJWVAT4+gBB4d+ZClPpXfE+s3+50/e0oKtOsJqTER/IFC2MrKX+KnFBdRfGp+ZeZOj9V0i458ZqckMpLei0nLo0PVO1YSqQlJb/SVUqIWrH81c/dhph9W7Hqpoex9eKbEByjfSRJ+yULUJTQEie79AIAdH14MhL//RMAsGnSg9h1y30VVVAl4TLln8ToSRfBN8f5zPMl//cJjvQYpK2ilPAqNrTiIk5RmTZBlZyETE48JieOUr80SQmq9FISKvlorU5OLid1lZOty4nF5KTf6uRYcrcgJ+WSE6bLCWTV25LbQ142QEoQJyf4UpN/uCy3hzr5KqBNZConufOVkv7JiW2LpMTv6nLLyePCAqRHdkjveZEq8aGchEyug9z28udHnYy1ts7b1yy3h3YNdXvWFgrI5TCrEq/JyWblJH9ynWsif47Vn9uCggLER4Z5XL/IeIDOVJl0PHvnleWIO7gFmTFtYPHyg2NrpmvesBe1+dUMN96FnskLAACf3/MBspUozXz7oXzX347sIs08R3G55rVwOGAVFph0zlwPDh1gFzYYdc7jvs7feexcnb4MOpMR3SP7uwZJdFJydcVPStTqJyUfV8cqcmJ2OVG5dLzTB1ccw4V0nJSTvjqktpWTvqpfG7y0ZfaS+lK5r5CPlerjrtyXysdsuV9SJ8f0kWIYOQ5JP6lNcBkRqO3T1P2j3GfLZZYTlxdLiX/Vy/tK7SEnl5VjIHVfWyj10cFSsl25bcul2MNftW91knfzb7/C+7dfkPfqbNfjuOTYI0BKblxQoi2LmpwgXY5FylTz5e3KCdHlOsl9ujp+kj8fleMSbbnkeEH9eZIT0cpxmpycXh1/yrGV/D7JSXDl+CFAdb6iTghfUFCA2PAQj+sXGQ94ptfeWqV5XTZ7VTVLAoq/9vitSEmahU37/dUHan+YoKj6T31L6VqeHM5L512Vkq2HVJSlUlJ46btvlPp0g+qYZJCuaZQXamMNo3ROZ5Bem1THe4dDQLHbEXjkAIROB5OfDxwmEywBQXCYzJX6tPzcQoyZcRuit69HQXQcln+0EJYg50C6nBBbPsdVFAW+R9IQsWYZDl53q+a4LJ92ycdgOaG6fJam7rfkZc3Se+7rLcceqiTn0nsqxwfy9QL5eoK637I5pPe0lnNeq9Q/BKrii3KL9nMqX4uoKem73K/IydfLpG2bpD5O3S/LydTle6jlYpRJfb46+brcv8nBhVX6bqrrKMdW8raMhurrAGg/P35SW9qkWEJuvwDpuqG6XHKVLFId5O+Tet9yHKfXVb9sVcufji8KCwrQwZ3J1wEgKCgI8+bNw3vvvYe9e/dCCIF27dqxoyaqiZcXMHUqEBYGYecvQOoqZdA4xOzbirb/LMLWi2+qNP/IJdrcIPlxSTjRqgP2jb0au6+8GdUNBVkCg/HPk69j7EPOX3IEHDuEXlvWIW7t38iPa4nlj78GgI/XIiKipqnjliUY9/0ryIpqia/v+h8sNSy7fOzdAATi0rYiO7IlkOVM1R6aexj5/pGofui6MkVRYFJODYoIBxYe+x65lhzclDAZZn3FxZfFh36E1WFFu9AuvHuE3EYpKEDwlLugyzsJw+5dyP38azjqmCyXiKhBlJYi7FgqcmJbu7skzcbg/z6GVn9pH8/t0BuQ17o9TnbphW3TnnVdtHYYTfj7mbdw2f3XIiD9CNp9+T623/dEnfdVHJeIg3G3Ag4HWn3zCVosXoh9N9+LYyPG1b4yETWaeskyFxAQgN69e9fHpog8wxvOxzuVvbbSzQVpOlL7jcLQL15FeNoexG1djaKYmp+ruen2h7Hp9ofrtO2sbn2x4pm3ELp3B3p+OAvGMuevJ0MO7kVuYluk3P7AOZefiIjIHbolOy8ARGQcQJeNv2Gjz6BqlxU6PZZddB/gcLguDMQf3YrLf38Je9oMxeKkG8+qDLmWHGzP3wyLoxzP73oMEeYoRPhGQ1F0sDqcvwIzGyonrSdqLCIgALlzv0DIbTfDtGkjInt1QfmQYSgfPQblo0bD3rKVa1nTg1PhaNUKtvsZHxJRAzlwAGjXDjcKYO4T85AfFuvuEjULYSnbNa+FokBntyEkZQcMlvJKv+QvDwzBkv98gHaL5mPPXY+c1T5b/PkTurz5HwBAn6emIPPPbbD5+p1dBYio3vHn6kRuZrCU1b4Qocw/GLtGXgUAGPrxi1BstlrWODOHho/D0X7DYCwrRVlAEA73Gw4A6DHvXQTt21Wv+yIiImosh1v2wMnQWFhM3jia0LVuK6luaRdQYLKWoeuuPxF3Ys9ZlSHMHIFbEu9C35CBAICs8gzsyN2M7Sc2AgB6Rg+Cr5EXCci9LMMvQPayf2Hp0RNKeTm8/voTgY8+jIieXaA/fNi5kBAQMTEwPzwNxpnPMF8gETWMpCSgf3/o7TZcOvdp6K3lta9DtVp73zOwevu6XhcktIbNyxt5rdpjz633V7lOXkJrJN/7FITRVOX82uS36ej62+IfCJs3744lOp/Uyx0jRHQW7Hb0//NTdF7/O7588EOU+QbWvo6HWzPxIXjn52LD1XdBGGo/fEVuX4/C6DiUhEXVuiwAhOzfDQDI7NQTS599FyP+MxVWX18UR/FRCkRE1DStuvA2rBp9O4zlJbCafYDszNpXUjnSoiu2dhyDbrv+wJjtH2PukBdh15/5xYFE35aI90nE0PCRyCrPxAnkotBSgE6h3ZEQ0f6Mt0fUEOwJichZ+g8Me3bDvOQPeC35A6a1q2Fcuxr2+HhAUSCMzge0ml5+CQEn81Hw0qzKD2snIjoXigJ8/TVK2ndB5NG9GL7gbSy97uzuWKAK6b0G4ef3FqDDwi/Q5o8fXUnV9eWlODbykkrLm/NzUR4Q7LqTRLFZ0WLpIuRccmWdj/uFrdph5Qffo6BVWxhKSthfEJ1nzin5OjUcJlfzAEVFKOzYFf5HDuLIBRch+T/v4OAba1yzbak5msUdBdrkmI5i7Z0mhtgQzWt9fEXCNFGsTVak85cTkWpfKur5UsIqJVBKaiq/Lqv+Tg6dlMTNISVslIMEvZRs1V5UUQ+dlEjMv4V2YCnsaCquuPNSOHR6fPbHLpSqkoua5WSqp5JM+acfRsy2ZJQEheFwn+FQbFYIg7FSMlZ1ErjQYO2jPyolobLWnOBLneRbTkQqJy2Tk5Spk4nJSThrS7xZUzn9pKR1xdJ76ie1vZxsTp0sq8wqJ6LT7tcsfb5sqoIZpDLLSbnkOskJv9TLy4lp5TLLCfTkZGElqjaQk7bJCWJDpWTs6gS6JWU1JxozGGpOemcyqhLXmqvLnOMkICdmrT4Jqtx2cvvIdVYngauULFVKzisngJPbVl3j/BLtMcFPlby4sLAA3VrFely/yHiAzlWlZOz3/+L623FCG1voWkifsVN9g6m8GLfOmwK/4lys7XYV/u0zEfa9uZpF5aSujrwS7Wvp+22Iqui3dYFSX5ovlStIO1+R+ilN3GKSjjHSMbmSUNW2faQfXcjJZaVrGXLydZNvxXFVZzyzCx+K1JcYvSvqpJeTqxtr7tPkPk9N7jvlpJ5yUlNvVR3lWMOrljrq5NhDtW2575CTnMqJuyslLlWR4xY5cXmJFMeoYzGzFJfJ+y0otkApL4PQGwCDAX6nEpGGffEJ4mc+CgA4Of5GpD//CgIjtLF4pfdFeo8VVVAk71d+n+S+U6ZZv1ICXe13019qr1I5Ga3q8yPHbfJnQI7j1OWUk897Sd+nk0XaX8DLyVbVie3DVN/jgoICJESFeVy/yHjAM1l+XwzTRc6cFGWHj2D2zX9o5lvTKq4Z6KQk55COb5COBTo/bf+o7scN7cI18xQ5fg/Snk+Lcu22FfW5VZz0A1DpWAjpWAm/6n98YZTO4+3lUqJpqaswqxLKG6R+xlRWhNYrf4PicGDf8EvgCKm4VuGXcRQDPv4/xP+zBKljr8KaR19BeakNl027HhEp27Dy0f/D/tFXupaXz+PLpbZWn9fLCa5rO97L/YO6j5eXlfcrH+/V1wjkRO1yknP5+C8rLq1oe/l8WL6OIffh8r7U5ZKTict9WJCf9jOg7mtqS1Qut4/dXn1sIZ+Xy21dOV7S7vtEQcX1Orl95NhDXre4vKL/M+q1yzpEzdd95G2prwmUyt9T6T2W62iQyq1TrSD36XLMp64/oI3V5LaTr5HJyejlz9Ppz0hhQQHaxUeec7/IoUoid/Hzw9rn/wehKIj7+zcE7uXjms5U5MGdCMw6WuW88N1bAAA6hx1he7bVaXuF0fFIGXMtDvcZDgAQBlUgIQS88nOrXpGIiKgZs5h9sXTYXQCAPtt+QviJg24uEVHjEWYvQLpTOeem25D26jsQOh2Cv/kS7bu2RtD9d7uphE2Xcc9u6I8ecXcxiM5bjtGj4ejdBwCgX/y7m0vTvFh9/bF73HjsungCrL7+rumBh/fj6skXIf6fJQCA1ot/ROevPgAUBWkDRwEAen3yOvRlpVVul4iaFg6MELlRftuOODLqUgBA5w9fdXNpmpZ2yX/g+v+7Exd+/mKVz3fWWyt+mdpi3fK6b9jhwLhn70K37z+CV94JAIB3Xg7GvXgvxrzCJJtEROSZUlsNwN6EftALOy75+w0owl77SkTNWO5V43FkzhcoT0iCrrwMcGh/1Ws4lOaegjUR+vTjCJzzHkJmvejuohCd1+wXXQQA0P36q5tL4hny41oiq2MPpPcciG03TQEA9PjoNcStW46dl9+MwogY+OZkottX77u5pERUHzgwQuRmu26bCofegOg1y5CUvsXdxWkyjrfuCofegLi9m9Fu/ZLK83sMwN/PvI2TCa1xtN+IOm83eucGxG1ehX5fvImrH7wG3idzoDgEWmxZjaiUrfDPrPoOFSIioubur0F3otAnBAfjesDgqP7RmUSeonD0RUj9ZyP2L16Jogemuaab1iUjtk8XhN05Cea1q6HPyKg0cOJWVmvtyzQwe2gYTj4yA9n/ne3uohCd1xyXXw4RHAzRgnkvG4Wi4K9n3sHSWZ9g620PIuWyGwAAw199DD4nMpF8x2MAgC7fzEHwgT3uLCkR1QMOjBC5WVF8S6ReNwkAMGLbF9DxQkOdFIZGY924WwAAw795A+aCk5r5+QmtcWjoGCz8aBFy2ndFQMYRjJ31IBLXL6txuzmtOmLFfc8hPzoeviezMeL1GSgNDEF6J+ctzC1X/VHj+kRERM1ViU8QPrruHSzvfyusenPtKxB5AkVBWacusLVr75pk+mcFFCHgt+B7RF86GnFdWiMmOgSRPTsjZMI10O9Pbbzy2e1AeUU+D+PSJQgNDUDg2FFQsrMarxwykwn26BjAzGMJUU1E164oP54O21tvu7sonkMBLphxB9ot+AIb7nsSWZ16IK9FEuxGM9IGXYhDg0ZBZ7dh0GtPQrHzDlqipozJ189TTK7mGVwJUfPzYe7QHrbcfHwzdiYywtvClqJNvm47ps1vofPVJktTvLSJtfQxFUnOFDnxmpQ8WyclOBOqpFSKlOBMTmqKICmpqZx8XZ3wS0qypQ/QbltOPKpICZxsqm2b/M3Q2awY/+QNCD26HykXXI4VD77kmu8vlavztx+jy/+c8zfceD+2TLjHlW3KICXp1OkUBBzej4vvvhLGslJsvv0hlAWFYsBrTyG3dQcsmvNzRRmhLWOk3B4Si5w8TZV8u7yG5OFVUSfSkpNf6qRMWnLCr8JS7fsUoHqfiqT3UE6Cbpe6DTlpl5fq8yYnRFVqy+Km3o/0y0q5t5KTy8oJwgNUCQjlpHU1JbEDAJOU9M2s+owUSwnU5aSusshgH9ffUlOisFS7LZNUDjmBnDo5vZyoL79Ym9g4Qk5WLO27RJV8Tc6BKLeHnPNW/fmSk7LJidbkcshJXrXb1b62qRLiFRYUoH1ClMf1i4wHqL4t2XLM9fe21Ye1M6XjmV+rYM1ru+r7W3qkQDPP9lNKjfu1nyjSvBaqZJmG6CDNPMVH23fIlCA5Bqo4VipSbFHpZ2DhvtrX8gFQzVeKraRy6aRkkOpk7Ho5AaiUIFYnJa3Uy4nM1cdZOUG61IeZpPhKfQy3WOX+rvoE4EDlhJjqvkZeVu6z5GTbch+mXl8+BZUTpsuxR5mqHgFSbCHHOHIyVbn/Uyd6r5SoVypHrtSnyeVUJxuVYy+/lB2IfPt1+G7bBGNGOhRVXLN59Q6Y4mKdL2w2+Ppp+0qZ3C/Ln9oThRXlDPJ1fgf0x47Cd97n8P3yM+RNmYqCO5w5UCwp+9B+SE8AQHliS2R+uxC2xCTX+ur3Rn4PS2pJdKxugmApQa78+ZGT4Mp1UscL6nIUFhSgdYsIj+sXGQ8QALz2pJR8/a8Drr/tJ4s183QB0rmA1GcJqS/RBfmoFtbuV99C+5lTpGMhYvy0r9XxhHx+LPWtcvJ1Y3BFuW1SsmiD3N/5aq9j2KTzNKOqv9AZdDAXnETwkf3IatsNvhHaOqn7jta/zkf/156CUBQse/Z/yOzcC8aQIDiMzv3ZDx/F1XdcBFNJETbe8iD2T9Y+cls+dqrPU/2kazGFJdoyy+ddch+mTkTtbda+D/Ix2Uu6DqS+3qCT3mR5W4F+NQ9a5xdVDLjLSbsr9Vly/yi1gfqcTz5Pl5OtF5Roz3nltq5pv3I55VhEfV4v10FeVi8nvpfOcdWXcuT3RS6HfN3Dx1zxuZXP+eX2kS/oV9529deMLNJ3zyptW0587+OlzcFb0359pe9qdn5FnOItvWd+0rJye8nXX04nfi8sKEBSTDiTrxM1C4GBsM77Ch9f9RYywtu6uzRNhsNgxN93PA2hKGj390+I3by62mX3TbgDRy68DADQ+8u3ccEr06AvL6t2+YL4Vlj3wEwAQLe5s1EWFAqH3oCQ1N0IOLy/fitCRETUxEQe3o1LP30KptKi2hcm8kClHbsg7b252LlqK7akHMfWFZuxe95PSPvPa7CFRwIAdMVFSLjpGgS89XqVOfPOihAIfP4ZRHfvgMD/exGGY0fh+/MC12xrXDz2//g7LHHxMKcdQMzFo2DavrXOm/f9ZSF8/mASaKJGJwSijqfAWF7i7pI0WaP++wgue2ISbr2+DwY/eTe8czKrXC714vHYc8kEKEJg8KwZMJSVugZFACDo8AGsue8ZZHXojv0XXNpYxSeiBsCBEaLzhGPECBT5hrq7GE1OZpuu2HbheADAkHefq36wQ6fDsQsuQllwGACg5T+L0XHR1zVue/+Yq7B/1OXQORwY8fQ9EKdG66M3Vj8AQ0RE1Ow5HBg3/yW03b4SQxcx+ShRrQwGWGJaoKjvQGRff7Nrsv/vv8Lv3xUI+c8ziLp4FLyXLoHuRM45DZIY9qciYPZrUBwOlA0agsz3PkbGtz9VLKDToaR3P+z/cTFKO3aGITsLMZeNhe+C72vdr2nndkTdcTOibx7P5PJEjW3sWEz8dCo67Kz50dBUNZ3VithtyQAAvc2GuH+WoP8LD1e5rKG0GPvGXYOygCCYigvR+Zs5rnkd576FcTMmAQAWvfYViqKY+4WoKePACNH5oqAAsZm73V2KJmntdVOQG98a2y+/GQ5D9Y/f8E9LhddJ5yPKclp2wLEeA2vesKIg+cFncWTgBdhw7xPQW63IS2iF432G1GfxiYiImhadDn9fMRVCUdBtzc9ot3mpu0tE1CTlX3M9Mp54Fg5vb3itT0bk9Vcivn0i4hMjETOoF/QZ6a5lddlZQFn1dzufJvQVj0PJ/v5nFF99HYRX5Ue92iKjcODbX1E6eCh0xUWIvOtWeP9Vcy49W0ws0j/9Ghlz58EeFn4GNSWic3bRRQCA/qu+ht5mqWVhkjmMRmy/9EYUhUa6pqWNuaLKZQf/5yFcOuVqeBXkwaHT42j/EZWW6fLtRxC1PPqaiM5/1T+MjYgalf7DDzHht6exo/UILB4yxd3FaVKs3r74YfaPmhPBqhwddSmEXo9dPUegICahTtu2+fhh+YsfAA4H8hNa4XjvwdoHRhIREXmgw217Y+3ImzDgr88x6vvXcKTrUyjw4p2vRGfqxD1TYZ1wIwJnvwqfnxfAkJUJXUkJTHtT4AiqyPMT8J+Z8PptEYrvvBvFd9wFEVL1982emAR7cAj0J3Nh2rYV1h69qt23IyAA6V//iKC334D36n9QOnJ0xUybDZDz2wSHoGTcxRUTmK2UqPHcdRcKnnkRAQXZ6L7xF2zsd7W7S9TkrLljBnZefAMsPn4wJsZWu1xhbALKAoOR3yIJ2yfchWN9h+F0BpZ910xCu68+REjaXtw2tj3W3/4I0m66E8LAy6tETRGTr5+nmFzNw5SXA0lJQHo6MHcuMGlSRWJ2OnMOBwcviNzES0q8di7HMvW2PLVf9NR6U+OQv59n/P212WAaPhy6tWvgGDQYlqVLgVMXBuxS9tBiKbH77sO5rr+PndA+Lz0+XJvE1SolhzRJicoz8yp+RV85abc2caSfV/V3ljrkhOBGOUllzadN6uSZchJKOcGlWdq2nCC1WJXk2iRty+aQy6ldV52oU6erOeG1nGxdblt1PeSEn6VSolFjLXX2ViXrlZOYy+UKkBLqZuSWuv6Wk3TKCVLlRLbyvvx8Kj4D8pmw/Npqs9c4X52s3WTQ7qdUSlQuJ1dV81UlCFbKymA4fgzGzAwU9x8EwNn2rSZdh8CVfzu35eOLvAk3wdIiHobsTNi6dkPR5c6LpGVWO+LvugX+fy/B0VffhnLDDdo6yDs/XSkhAEVBudUOpagQ8WOHo+iGm5F/932A0XiqPWo+Jqg/b95yu3trv3uHsrT5ieTl1Ule1d+XwoICtIxh8nXyUB9/DNxxB9C6NbBvH68Z1BerFfpP58J+w0TA1xew24EafnRpeOQRGN58AwDg6NYNlg0bK2dJJ6oHZxqb1+e5eEOprzIWFBQgMiSYydfPZ++88w4SExPh5eWFfv36Yd26de4uEp2vvvjCOSjSogUgnbw0e8XFQG5u7cvVke7nn2Dq2gXKhg31tk0ionPBeICaLYMB1i++gPD3h27Vv9C/8krFPCGgW78Oyt697isfURMkvLxgSWrlGhQ5bf9HX+HgW3NQ0rEL9CXFCP34fUQ/9wTC350Nv8WLAJsNxoP74btqJfIvvhx71m5D/qnBEl3uidrzlqgu6gV88xVM+1MR8p9nEDtyEMzrk6tepbgIEY9Ohffqf86t0h6EMQGdk2uvdf4AMDUVOHrU3aVpHnJyoH/7bRjvuQemAf2dx8pankRhmzrV9bf91tuAvDwYb7oRukWLGrq0RFTPODDSQL755htMmzYNM2fOxKZNm9CtWzeMGTMGWVlZ7i4anY8++8z536uuAkymmpdtLhwO6D/+COakRJhjY6D7+qtz36bdDsOzz0K3Zw/077177tsjIjpHjAeouRNJSbD+738AAN2a1cDRo9D/3//Bu1NHeA8aCO+e3aGfP9/NpSRqepSyUphTdiHox28R+9IzCPhnGU5eciX2/PI3Mp76j2ZZ/4U/oGy+ow0AAQAASURBVE1cKBIH9kTLCVegxcP3weHr69xOfh5i28SjRbg/oru2Q9SIgQi/6hKE3n07Ap97Gn4fvQ/TurUVGxMCpoP74TiVl8S0ZzciJ15b5cBK0CcfwHt9MmImTXD+wppqxJiAzllAANDr1OPx/vtf95alKSsvh/6Tj2Hq1hVeUZEwPjodAGCfcEPd7vyIi4P1rbdhv/FG2G+7Dcb7pkD/9dcwXn0Vj4VETQwfgtdAXn/9dUyePBm33norAOD999/HokWL8Mknn2DGjBluLh2ddy6+GPj3X2DOHOetsV26uLtEZy8/H0pKChAcDJGU5HqkhpqyZQuMU6ZAl1xxEiYGnEqELgR0876ELmUvlL0pUNLSIGJiILp2g6NrF4hevSESE13r6b7+CsrhI1DSj0O3eQt027ZB6PVwXMVnrhKR+zEeIE/gmHgjLD4+cAwbDnNcCyjl5QCcSaAViwVeN98I2zP7UfLwo3zUBLmHEFCsFujKy2EotkNXUgyHrx+soc4E4saMdES9+wYcegOg10Ho9ICiwCEAoVNQ0G8w8gcPdy6bk4WYj96BYrXAaLcCdgfsfn5QAoNgDwhESa8+KO3RGwCgL8hHxLxPoFgsgKUcOosF+sICGPLzYCjIR96gYTh+94MAAF1BAZJuvAqGEyegzz0BfbH2UVO6sjIUjLgQUBTkX3ktol54ulI1HV5e0JWV4cSkyRBe3gAAw+FDEEYjYLPBcOwocKzyr8xLR16I7G8WOF8oCgLmz4PuVKJ3a1w8iibcdOq7Kz0ib+QY2GJawGv71lp/YU2MCaiezJgBXH01kJNT6yOfmpXycqCwEEphIXQrlkO3dCmsn3/hiisMjz4KCAHb/fcDcXHOZU+cAPLygMBAiJYtAQC6pUthvPkmKJmZrk07EhMh+vWD/b776lwc+733wn7vvc6/b7oZSmoq7HfeyUd6EzUxHBhpABaLBRs3bsTjjz/umqbT6TBq1CisWbOmynXKy8tRfuokEgDy8/MBOJ+ZRh7g7ruBv/4Cli4FBg8GfvwRZR07Aad+qdXg7HZnQFFdJ15YCCUnByI2ttIdLcqaNdAvXQpl6xbodu+Gcvy4a57w9kZ52iHXc4mNd98FZft2KHv2oFwICF9f2B5/Ao5RoyBCQoBTn3fzjBlQMjIqdrJxI/DLL86iDhsG64KFrlnm++6Dcur7Ajgvwlg/+giOIUNc2yOixmOpx+eaWqQcIwDQlFKjMR6g8538/Tyn7+/IUQAA4/DhUPLyYZ04EbZLL4Xpv7NgfPddiBefR8mwEbC3aw9YrSjLSIfQ6eHw8UFJcUWOEX1pKYq9HK4LHd779sB/22YUt2qL8oho2P39YfX30wywlBSrcoxIAy9lUo4Ina3uOUbsUr4Naz3mGLFJ27ZLeUJKVPkprNK25Pwt8rpnnWPE4QCK82HMzYFis0LodCiPjoXtVAJwe5nzwr7dywvQ62vMMaIvKYbx4H4YT56EzmaB4nDArAMUmxX64mKU9+iJ0rYdnOtlHEfY/C8hjHoIKFDsdnjpAdjsMORkI++Sy1HSqT8AwCv9KFo9PRWWiEhYg0MBIaC326DYbVAcdpwYcxmKB1wAAPDfuwsdnp8OU0EejPl5UKQcH8cffAwnb70bAOB9JA3mLz9BdQptVhR37wUhAHNGBvw+fb/aZctumYyi1m1RWm6HKTMdAa+/VO2y5QlJKC4qhLAZYDiRA9uWTVBnJrH7+qK0fUeUtu2Ign4DUVRYCACwenkhedsBAIBiLYfJZoVit8EREooy+6n3tNDZb+gTkpC7fS/0GRnQnzwJJS8Xutxc6LIzYcjIgD79OOyhYSg8tbzFasfh2++GJTER1j79YI+JcW3PJucYiYt3/hs9DigsgKL6vNmkz6XDqv3uFRVqB37sUo4Ru6VieYs6x8ipNmhK8QBw5jEB4wGq1qhRwKJFwMCBKCsudndpAABKaiqULZuB0DCIpESI2BauawAy3YoV0C3+3Xnd4NRABwoLoRQXA8XFsCz6DaKDs3/Qv/UWDC8475BTbLZK2yqfeCPEwIFATg7M/3sbisUC8eYbgE4HRXXnhn38eFjfO3Xcjo6GOScHiImB7e57YL/xRiAoyDlPiLO7hjBwILDkL+ffp45RRPXhTGPz+jwXbyj1VcbC+ro+IKjeHTt2TAAQq1ev1kyfPn266Nu3b5XrzJw5U8D5Exz+4z/+4z/+4z/+q+bfkSNHGqMrrxeMB/iP//iP//iP/xrmX1OKB4Q485iA8QD/8R//8R//8V/t/841HuAdI+eJxx9/HNOmTXO9djgcyM3NhdFoRHx8PI4cOYKAgAA3lrDxFRQUIC4ujnVn3T0G6866s+7VE0KgsLAQMad/udpMMR6ojN8R1p119xysO+vOeMCJ8UBl/I6w7qy75/DkugOeXf+61r2+4gEOjDSAsLAw6PV6ZKqeWQgAmZmZiIqKqnIds9kMs9msmRYUFOS6VTYgIMDjvgynse6su6dh3Vl3T1PXugcGBjZCaeoP44H6xbqz7p6GdWfdPU1zjQeAM48JGA9Uj3Vn3T0N6+6ZdQc8u/51qXt9xAPMCtQATCYTevXqhaVLl7qmORwOLF26FAMGDHBjyYiIiKixMB4gIiIigDEBERHR+Yh3jDSQadOm4ZZbbkHv3r3Rt29fvPnmmyguLsatt97q7qIRERFRI2E8QERERABjAiIiovMNB0YayPjx45GdnY1nnnkGGRkZ6N69OxYvXozIyMgz2o7ZbMbMmTMr3UbrCVh31t3TsO6su6fxhLozHjh3rDvr7mlYd9bd03hK3esjJvCUtqoK6866exrW3TPrDnh2/Ru77ooQQjTKnoiIiIiIiIiIiIiIiNyMOUaIiIiIiIiIiIiIiMhjcGCEiIiIiIiIiIiIiIg8BgdGiIiIiIiIiIiIiIjIY3BghIiIiIiIiIiIiIiIPAYHRs5j77zzDhITE+Hl5YV+/fph3bp17i7SOXv22WehKIrmX/v27V3zy8rKMGXKFISGhsLPzw9XX301MjMzNds4fPgwLr74Yvj4+CAiIgLTp0+HzWZr7KrUauXKlbj00ksRExMDRVGwcOFCzXwhBJ555hlER0fD29sbo0aNwr59+zTL5ObmYuLEiQgICEBQUBBuv/12FBUVaZbZtm0bhgwZAi8vL8TFxWHWrFkNXbVa1Vb3SZMmVfocjB07VrNMU6z7yy+/jD59+sDf3x8RERG44oorkJKSolmmvj7jy5cvR8+ePWE2m9G6dWt8+umnDV29WtWl/sOHD6/03t99992aZZpi/d977z107doVAQEBCAgIwIABA/D777+75jfn9722ujfX97wxMR5gPNAU+0TAc+MBwLNjAsYDjAcYDzSc5hYTMB6owHiA8UBz6xsYDzAeaBLxgKDz0vz584XJZBKffPKJ2Llzp5g8ebIICgoSmZmZ7i7aOZk5c6bo1KmTSE9Pd/3Lzs52zb/77rtFXFycWLp0qdiwYYPo37+/GDhwoGu+zWYTnTt3FqNGjRKbN28Wv/32mwgLCxOPP/64O6pTo99++008+eST4scffxQAxIIFCzTzX3nlFREYGCgWLlwotm7dKi677DKRlJQkSktLXcuMHTtWdOvWTaxdu1b8888/onXr1mLChAmu+fn5+SIyMlJMnDhR7NixQ3z99dfC29tbfPDBB41VzSrVVvdbbrlFjB07VvM5yM3N1SzTFOs+ZswYMXfuXLFjxw6xZcsWcdFFF4n4+HhRVFTkWqY+PuMHDhwQPj4+Ytq0aWLXrl3i7bffFnq9XixevLhR6yurS/2HDRsmJk+erHnv8/PzXfObav1//vlnsWjRIrF3716RkpIinnjiCWE0GsWOHTuEEM37fa+t7s31PW8sjAcYDwjRNPtEITw3HhDCs2MCxgOMBxgPNIzmGBMwHqjAeIDxQHPrGxgPMB5oCvEAB0bOU3379hVTpkxxvbbb7SImJka8/PLLbizVuZs5c6bo1q1blfPy8vKE0WgU3333nWva7t27BQCxZs0aIYSzQ9XpdCIjI8O1zHvvvScCAgJEeXl5g5b9XMidv8PhEFFRUeK///2va1peXp4wm83i66+/FkIIsWvXLgFArF+/3rXM77//LhRFEceOHRNCCPHuu++K4OBgTd0fe+wx0a5duwauUd1VF/hcfvnl1a7TXOqelZUlAIgVK1YIIervM/7oo4+KTp06afY1fvx4MWbMmIau0hmR6y+EsxOcOnVqtes0p/oHBweLjz76yOPedyEq6i6EZ73nDYHxgBPjgabfJ3pyPCCEZ8cEjAcYDwjhWe95Q2mOMQHjASfGA4wHPKFvYDzAeECI8+8956O0zkMWiwUbN27EqFGjXNN0Oh1GjRqFNWvWuLFk9WPfvn2IiYlBy5YtMXHiRBw+fBgAsHHjRlitVk2927dvj/j4eFe916xZgy5duiAyMtK1zJgxY1BQUICdO3c2bkXOwcGDB5GRkaGpa2BgIPr166epa1BQEHr37u1aZtSoUdDpdEhOTnYtM3ToUJhMJtcyY8aMQUpKCk6ePNlItTk7y5cvR0REBNq1a4d77rkHJ06ccM1rLnXPz88HAISEhACov8/4mjVrNNs4vcz5dnyQ63/avHnzEBYWhs6dO+Pxxx9HSUmJa15zqL/dbsf8+fNRXFyMAQMGeNT7Ltf9tOb+njcUxgOMB4Dm0ydWxxPiAcCzYwLGA4wHTmvu73lDas4xAeMBxgMA4wFP6BsYDzAeOO18es8NZ7wGNbicnBzY7XbNhwAAIiMjsWfPHjeVqn7069cPn376Kdq1a4f09HQ899xzGDJkCHbs2IGMjAyYTCYEBQVp1omMjERGRgYAICMjo8p2OT2vqThd1qrqoq5rRESEZr7BYEBISIhmmaSkpErbOD0vODi4Qcp/rsaOHYurrroKSUlJ2L9/P5544gmMGzcOa9asgV6vbxZ1dzgcePDBBzFo0CB07tzZVa76+IxXt0xBQQFKS0vh7e3dEFU6I1XVHwBuuOEGJCQkICYmBtu2bcNjjz2GlJQU/PjjjwCadv23b9+OAQMGoKysDH5+fliwYAE6duyILVu2NPv3vbq6A837PW9ojAeCNOswHqjQ1PrE6nhCPAB4dkzAeIDxAOOB+tFcYwLGA06MBxgPNOe+AWA8wHjg/I0HODBCjWrcuHGuv7t27Yp+/fohISEB3377rdsP1NR4rr/+etffXbp0QdeuXdGqVSssX74cI0eOdGPJ6s+UKVOwY8cO/Pvvv+4uiltUV/8777zT9XeXLl0QHR2NkSNHYv/+/WjVqlVjF7NetWvXDlu2bEF+fj6+//573HLLLVixYoW7i9Uoqqt7x44dm/V7TmeP8QABnhEPAJ4dEzAeYDzAeIBqwniAAMYDnoDxAOOB8zUe4KO0zkNhYWHQ6/XIzMzUTM/MzERUVJSbStUwgoKC0LZtW6SmpiIqKgoWiwV5eXmaZdT1joqKqrJdTs9rKk6Xtab3OCoqCllZWZr5NpsNubm5za49WrZsibCwMKSmpgJo+nW/77778Ouvv2LZsmVo0aKFa3p9fcarWyYgIOC8OIGorv5V6devHwBo3vumWn+TyYTWrVujV69eePnll9GtWzfMnj3bI9736upeleb0njc0xgN5mmUYD1RoSn3imWhu8QDg2TEB4wHGA4wH6o+nxASMBxgPAIwHgObVNzAeYDxwPscDHBg5D5lMJvTq1QtLly51TXM4HFi6dKnmmWzNQVFREfbv34/o6Gj06tULRqNRU++UlBQcPnzYVe8BAwZg+/btmk5xyZIlCAgIcN2W1RQkJSUhKipKU9eCggIkJydr6pqXl4eNGze6lvn777/hcDhcB44BAwZg5cqVsFqtrmWWLFmCdu3anRe3itbV0aNHceLECURHRwNounUXQuC+++7DggUL8Pfff1e6lbe+PuMDBgzQbOP0Mu4+PtRW/6ps2bIFADTvfVOtv8zhcKC8vLzZv+9VOV33qjTn97y+MR5gPAA03T7xbDSXeADw7JiA8YAW4wHGA/XBU2ICxgOMBwDGA82lb2A8oMV44DyNB844XTs1ivnz5wuz2Sw+/fRTsWvXLnHnnXeKoKAgkZGR4e6inZOHH35YLF++XBw8eFCsWrVKjBo1SoSFhYmsrCwhhBB33323iI+PF3///bfYsGGDGDBggBgwYIBrfZvNJjp37ixGjx4ttmzZIhYvXizCw8PF448/7q4qVauwsFBs3rxZbN68WQAQr7/+uti8ebM4dOiQEEKIV155RQQFBYmffvpJbNu2TVx++eUiKSlJlJaWurYxduxY0aNHD5GcnCz+/fdf0aZNGzFhwgTX/Ly8PBEZGSluuukmsWPHDjF//nzh4+MjPvjgg0avr1pNdS8sLBSPPPKIWLNmjTh48KD466+/RM+ePUWbNm1EWVmZaxtNse733HOPCAwMFMuXLxfp6emufyUlJa5l6uMzfuDAAeHj4yOmT58udu/eLd555x2h1+vF4sWLG7W+strqn5qaKp5//nmxYcMGcfDgQfHTTz+Jli1biqFDh7q20VTrP2PGDLFixQpx8OBBsW3bNjFjxgyhKIr4888/hRDN+32vqe7N+T1vLIwHGA8I0TT7RCE8Nx4QwrNjAsYDjAcYDzSM5hgTMB5gPMB4oPn2DYwHGA80hXiAAyPnsbffflvEx8cLk8kk+vbtK9auXevuIp2z8ePHi+joaGEymURsbKwYP368SE1Ndc0vLS0V9957rwgODhY+Pj7iyiuvFOnp6ZptpKWliXHjxglvb28RFhYmHn74YWG1Whu7KrVatmyZAFDp3y233CKEEMLhcIinn35aREZGCrPZLEaOHClSUlI02zhx4oSYMGGC8PPzEwEBAeLWW28VhYWFmmW2bt0qBg8eLMxms4iNjRWvvPJKY1WxWjXVvaSkRIwePVqEh4cLo9EoEhISxOTJkysF9E2x7lXVGYCYO3eua5n6+owvW7ZMdO/eXZhMJtGyZUvNPtyltvofPnxYDB06VISEhAiz2Sxat24tpk+fLvLz8zXbaYr1v+2220RCQoIwmUwiPDxcjBw50hX0CNG83/ea6t6c3/PGxHiA8UBT7BOF8Nx4QAjPjgkYDzAeYDzQcJpbTMB4gPEA44Hm2zcwHmA80BTiAUUIIc78PhMiIiIiIiIiIiIiIqKmhzlGiIiIiIiIiIiIiIjIY3BghIiIiIiIiIiIiIiIPAYHRoiIiIiIiIiIiIiIyGNwYISIiIiIiIiIiIiIiDwGB0aIiIiIiIiIiIiIiMhjcGCEiIiIiIiIiIiIiIg8BgdGiIiIiIiIiIiIiIjIY3BghIiIiIiIiIiIiIiIPAYHRoioWVm+fDkURUFeXl6j71tRFCiKgqCgoDotf7qsiqLgiiuuaNCyEREReRLGA0RERMR4gIhqwoERImqyhg8fjgcffFAzbeDAgUhPT0dgYKBbyjR37lzs3bu3TsueLut1113XwKUiIiJqvhgPEBEREeMBIjpTHBghombFZDIhKioKiqK4Zf9BQUGIiIio07Kny+rt7d3ApSIiIvIsjAeIiIiI8QAR1YQDI0TUJE2aNAkrVqzA7NmzXbebpqWlVbpV9tNPP0VQUBB+/fVXtGvXDj4+PrjmmmtQUlKCzz77DImJiQgODsYDDzwAu93u2n55eTkeeeQRxMbGwtfXF/369cPy5cvPuJxbt27FiBEj4O/vj4CAAPTq1QsbNmyop1YgIiLybIwHiIiIiPEAEZ0Ng7sLQER0NmbPno29e/eic+fOeP755wEA4eHhSEtLq7RsSUkJ3nrrLcyfPx+FhYW46qqrcOWVVyIoKAi//fYbDhw4gKuvvhqDBg3C+PHjAQD33Xcfdu3ahfnz5yMmJgYLFizA2LFjsX37drRp06bO5Zw4cSJ69OiB9957D3q9Hlu2bIHRaKyXNiAiIvJ0jAeIiIiI8QARnQ0OjBBRkxQYGAiTyQQfHx9ERUXVuKzVasV7772HVq1aAQCuueYafPHFF8jMzISfnx86duyIESNGYNmyZRg/fjwOHz6MuXPn4vDhw4iJiQEAPPLII1i8eDHmzp2Ll156qc7lPHz4MKZPn4727dsDwBkFTURERFQzxgNERETEeICIzgYHRoio2fPx8XEFPQAQGRmJxMRE+Pn5aaZlZWUBALZv3w673Y62bdtqtlNeXo7Q0NAz2ve0adNwxx134IsvvsCoUaNw7bXXaspCREREjYPxABERETEeIKLTODBCRM2efGuqoihVTnM4HACAoqIi6PV6bNy4EXq9XrOcOliqi2effRY33HADFi1ahN9//x0zZ87E/PnzceWVV55FTYiIiOhsMR4gIiIixgNEdBoHRoioyTKZTJqEaPWlR48esNvtyMrKwpAhQ855e23btkXbtm3x0EMPYcKECZg7dy4DHyIionrCeICIiIgYDxDRmdK5uwBERGcrMTERycnJSEtLQ05OjusXHeeqbdu2mDhxIm6++Wb8+OOPOHjwINatW4eXX34ZixYtqvN2SktLcd9992H58uU4dOgQVq1ahfXr16NDhw71Uk4iIiJiPEBERESMB4jozHFghIiarEceeQR6vR4dO3ZEeHg4Dh8+XG/bnjt3Lm6++WY8/PDDaNeuHa644gqsX78e8fHxdd6GXq/HiRMncPPNN6Nt27a47rrrMG7cODz33HP1Vk4iIiJPx3iAiIiIGA8Q0ZlShBDC3YUgImoOFEXBggULcMUVV5zRepMmTUJeXh4WLlzYIOUiIiKixsN4gIiIiBgPEJ3/eMcIEVE9mjBhAlq0aFGnZf/55x/4+flh3rx5DVwqIiIiakyMB4iIiIjxANH5jXeMEBHVk9TUVADOW2STkpJqXb60tBTHjh0DAPj5+SEqKqpBy0dEREQNj/EAERERMR4gOv9xYISIiIiIiIiIiIiIiDwGH6VFREREREREREREREQegwMjRERERERERERERETkMTgwQkREREREREREREREHoMDI0RERERERERERERE5DE4MEJERERERERERERERB6DAyNEREREREREREREROQxODBCREREREREREREREQegwMjRERERERERERERETkMTgwQkREREREREREREREHoMDI0RERERERERERERE5DE4MEJERERERERERERERB6DAyNEREREREREREREROQxODBCREREREREREREREQegwMjRERERERERERERETkMTgwQkREREREREREREREHoMDI0RETdSVV16J4OBgXHPNNe4uCoDzrzxERESe4Hzrf8+38hAREXmC863/Pd/KQ1QVDowQETVRU6dOxeeff+7uYricb+UhIiLyBOdb/3u+lYeIiMgTnG/97/lWHqKqcGCEqJkbPnw4HnzwQXcXw+MNHz4ciqJAURRs2bKl3rbp7+9f52Ub+nNQXXkmTZrkqvvChQsbtAxERFQ1xgPnB8YDjAeIiNyJ8cD5gfEA4wE6P3BghIioGvUdLEyePBnp6eno3LlzvW2zKZg9ezbS09PdXQwiIqKzwnigfjAeICKipozxQP1gPEDnE4O7C0BE1NgsFgtMJlOj79fHxwdRUVF1Xr579+6w2WyVpv/555+IiYmpz6I1aHkCAwMRGBjYkEUjIiI6Y4wHzg7jASIiak4YD5wdxgPUHPCOESI3czgcmDVrFlq3bg2z2Yz4+Hi8+OKLAIDy8nI88MADiIiIgJeXFwYPHoz169dr1l+8eDEGDx6MoKAghIaG4pJLLsH+/ftr3N/LL7+MpKQkeHt7o1u3bvj+++81y3z//ffo0qULvL29ERoailGjRqG4uLjW8tZl28OHD8cDDzyARx99FCEhIYiKisKzzz5b5zapyz5kw4cPx3333YcHH3wQYWFhGDNmTK1tN2nSJKxYsQKzZ8923eaZlpZ21mWoSk3tDABbtmzBjh07Kv2rj6Bn0aJFCAwMxLx58wAAhYWFmDhxInx9fREdHY033nij0i9iGrI8RESejvEA4wHGA0RExHiA8QDjAaLGw4ERIjd7/PHH8corr+Dpp5/Grl278NVXXyEyMhIA8Oijj+KHH37AZ599hk2bNqF169YYM2YMcnNzXesXFxdj2rRp2LBhA5YuXQqdTocrr7wSDoejyv29/PLL+Pzzz/H+++9j586deOihh3DjjTdixYoVAID09HRMmDABt912G3bv3o3ly5fjqquughCi1vLWtu3TPvvsM/j6+iI5ORmzZs3C888/jyVLltSpTeq6D9lnn30Gk8mEVatW4f3336+17WbPno0BAwa4bm9NT09HXFzcOZVBrbZ2bkhfffUVJkyYgHnz5mHixIkAgGnTpmHVqlX4+eefsWTJEvzzzz/YtGlTg5eFiIicGA8wHmA8QEREjAcYDzAeIGpEgojcpqCgQJjNZjFnzpxK84qKioTRaBTz5s1zTbNYLCImJkbMmjWr2m1mZ2cLAGL79u1CCCGGDRsmpk6dKoQQoqysTPj4+IjVq1dr1rn99tvFhAkThBBCbNy4UQAQaWlpZ1Teumz7dHkGDx6sWaZPnz7iscceq7d9yIYNGyZ69OhR7fzTamq7+iiDels1tXNdjRw5UoSFhQlvb28RGxtbqUxV7f9///ufCAwMFMuXL3fNKygoEEajUXz33XeuaXl5ecLHx6dS/c+lPADEggUL6rw9IiJPwXjAifHA2WE8QETUPDAecGI8cHYYDxCdOeYYIXKj3bt3o7y8HCNHjqw0b//+/bBarRg0aJBrmtFoRN++fbF7927XtH379uGZZ55BcnIycnJyXL8EOXz4cKUkXqmpqSgpKcGFF16omW6xWNCjRw8AQLdu3TBy5Eh06dIFY8aMwejRo3HNNdcgODi4xvLWZdunde3aVfM6OjoaWVlZtbbJmexD1qtXr0rTzqTt6qMMajW1c1399ddfdV4WcN6am5WVhVWrVqFPnz6u6QcOHIDVakXfvn1d0wIDA9GuXbsz2v6ZloeIiJwYDzgxHmA8QETkyRgPODEeYDxA1Fg4MELkRt7e3ue8jUsvvRQJCQmYM2cOYmJi4HA40LlzZ1gslkrLFhUVAXA+PzI2NlYzz2w2AwD0ej2WLFmC1atX488//8Tbb7+NJ598EsnJyTWWty7bPs1oNGpeK4riCjrqax8yX1/fStPOpO3qowxqNbVzUlJSnbdzJnr06IFNmzbhk08+Qe/evaEoSoPsh4iIzgzjASfGA4wHiIg8GeMBJ8YDjAeIGgtzjBC5UZs2beDt7Y2lS5dWmteqVSvXMy9Ps1qtWL9+PTp27AgAOHHiBFJSUvDUU09h5MiR6NChA06ePFnt/jp27Aiz2YzDhw+jdevWmn+nn48JOAORQYMG4bnnnsPmzZthMpmwYMGCGstb122fS5vU1z6AurWdyWSC3W5vsDJU184NpVWrVli2bBl++ukn3H///a7pLVu2hNFo1CTuy8/Px969exusLEREVIHxwJm1CeOBc8N4gIjo/MR44MzahPHAuWE8QMQ7RojcysvLC4899hgeffRRmEwmDBo0CNnZ2di5cyduv/123HPPPZg+fTpCQkIQHx+PWbNmoaSkBLfffjsAIDg4GKGhofjwww8RHR2Nw4cPY8aMGdXuz9/fH4888ggeeughOBwODB48GPn5+Vi1ahUCAgJwyy23IDk5GUuXLsXo0aMRERGB5ORkZGdno0OHDrWWt7Zt10eb1Mc+6tp2iYmJSE5ORlpaGvz8/BASElKnNqyLmtq5IbVt2xbLli3D8OHDYTAY8Oabb8Lf3x+33HKL67MWERGBmTNnQqfT8VcjRESNgPHAmbcJ44Fzw3iAiOj8w3jgzNuE8cC5YTxAHs/dSU6IPJ3dbhcvvPCCSEhIEEajUcTHx4uXXnpJCCFEaWmpuP/++0VYWJgwm81i0KBBYt26dZr1lyxZIjp06CDMZrPo2rWrWL58uSaJlZzUy+FwiDfffFO0a9dOGI1GER4eLsaMGSNWrFghhBBi165dYsyYMSI8PFyYzWbRtm1b8fbbb9epvLVtu6ryCCHE5ZdfLm655ZZ624esqn3Wpe1SUlJE//79hbe3twAgDh48WG9lqK2d61tV+4+IiBDTpk0TQjgTrN1www3Cx8dHREVFiddff1307dtXzJgxo97KACZXIyKqFuMBxgOMB4iIiPEA4wHGA0SNRxFCCPcMyRAReY7hw4eje/fuePPNN91dlDopLi5GbGwsXnvtNdcvkM6VoihYsGABrrjiinrZHhERUVPDeIDxABEREeMBxgN0fmCOESKiRvLuu+/Cz88P27dvd3dRKtm8eTO+/vpr7N+/H5s2bcLEiRMBAJdffvk5b/vuu++Gn5/fOW+HiIioOWA8QERERIwHiNyPd4wQETWCY8eOobS0FAAQHx8Pk8nk5hJpbd68GXfccQdSUlJgMpnQq1cvvP766+jSpcs5bzsrKwsFBQUAgOjoaPj6+p7zNomIiJoixgOMB4iIiBgPMB6g8wMHRoiIiIiIiIiIiIiIyGPwUVpEREREREREREREROQxODBCREREREREREREREQegwMjRERERERERERERETkMTgwQkREREREREREREREHoMDI+Txjhw5guHDh6Njx47o2rUrvvvuO3cXyS3y8vLQu3dvdO/eHZ07d8acOXPcXSS3KSkpQUJCAh555BF3F8VtEhMT0bVrV3Tv3h0jRoxwd3Hc5uDBgxgxYgQ6duyILl26oLi42N1FIqIGwnjAifGAlqfHBIwHnBgPEHkOxgNOjAe0PD0eABgTAIwHmiNFCCHcXQgid0pPT0dmZia6d++OjIwM9OrVC3v37oWvr6+7i9ao7HY7ysvL4ePjg+LiYnTu3BkbNmxAaGiou4vW6J588kmkpqYiLi4Or776qruL4xaJiYnYsWMH/Pz83F0Utxo2bBheeOEFDBkyBLm5uQgICIDBYHB3sYioATAecGI8oOXpMQHjASfGA0Seg/GAE+MBLU+PBwDGBADjgeaId4yQx4uOjkb37t0BAFFRUQgLC0Nubq57C+UGer0ePj4+AIDy8nIIIeCJ46b79u3Dnj17MG7cOHcXhdxs586dMBqNGDJkCAAgJCSEQQ9RM8Z4wInxQAXGBAQwHiDyNIwHnBgPVGA8QADjgeaKAyPU5K1cuRKXXnopYmJioCgKFi5cWGmZd955B4mJifDy8kK/fv2wbt26Kre1ceNG2O12xMXFNXCp6199tENeXh66deuGFi1aYPr06QgLC2uk0teP+miDRx55BC+//HIjlbhh1Ec7KIqCYcOGoU+fPpg3b14jlbx+nWs77Nu3D35+frj00kvRs2dPvPTSS41YeiI6U4wHnBgPODEmYDxwGuMBIs/CeMCJ8YAT4wEnxgSMB6hqHBihJq+4uBjdunXDO++8U+X8b775BtOmTcPMmTOxadMmdOvWDWPGjEFWVpZmudzcXNx888348MMPG6PY9a4+2iEoKAhbt27FwYMH8dVXXyEzM7Oxil8vzrUNfvrpJ7Rt2xZt27ZtzGLXu/r4LPz777/YuHEjfv75Z7z00kvYtm1bYxW/3pxrO9hsNvzzzz949913sWbNGixZsgRLlixpzCoQ0RlgPODEeMCJMQHjgdMYDxB5FsYDTowHnBgPODEmYDxA1RBEzQgAsWDBAs20vn37iilTprhe2+12ERMTI15++WXXtLKyMjFkyBDx+eefN1ZRG9TZtoPaPffcI7777ruGLGaDOps2mDFjhmjRooVISEgQoaGhIiAgQDz33HONWex6Vx+fhUceeUTMnTu3AUvZ8M6mHVavXi1Gjx7tmj9r1iwxa9asRikvEZ0bxgNOjAecGBMwHjiN8QCRZ2E84MR4wInxgBNjAsYDVIF3jFCzZrFYsHHjRowaNco1TafTYdSoUVizZg0AQAiBSZMm4YILLsBNN93krqI2qLq0Q2ZmJgoLCwEA+fn5WLlyJdq1a+eW8jaEurTByy+/jCNHjiAtLQ2vvvoqJk+ejGeeecZdRW4QdWmH4uJi12ehqKgIf//9Nzp16uSW8jaUurRDnz59kJWVhZMnT8LhcGDlypXo0KGDu4pMROeA8YAT4wEnxgSMB05jPEDkWRgPODEecGI84MSYgPGAJ2OWGGrWcnJyYLfbERkZqZkeGRmJPXv2AABWrVqFb775Bl27dnU9Y/CLL75Aly5dGru4DaYu7XDo0CHceeedrqRq999/v8e1gSeoSztkZmbiyiuvBADY7XZMnjwZffr0afSyNqS6tIPBYMBLL72EoUOHQgiB0aNH45JLLnFHcYnoHDEecGI84MSYgPHAaYwHiDwL4wEnxgNOjAecGBMwHvBkHBghjzd48GA4HA53F8Pt+vbtiy1btri7GOeNSZMmubsIbtOyZUts3brV3cU4L4wbNw7jxo1zdzGIqBEwHnBiPFCZp8YEjAcqMB4g8hyMB5wYD1TmqfEAwJjgNMYDzQ8fpUXNWlhYGPR6faUkYZmZmYiKinJTqRof24FtcBrbwYntQORZ+J13Yjs4sR3YBqexHYg8C7/zTmwHJ7aDE9uBbeDJODBCzZrJZEKvXr2wdOlS1zSHw4GlS5diwIABbixZ42I7sA1OYzs4sR2IPAu/805sBye2A9vgNLYDkWfhd96J7eDEdnBiO7ANPBkfpUVNXlFREVJTU12vDx48iC1btiAkJATx8fGYNm0abrnlFvTu3Rt9+/bFm2++ieLiYtx6661uLHX9YzuwDU5jOzixHYg8C7/zTmwHJ7YD2+A0tgORZ+F33ont4MR2cGI7sA2oGoKoiVu2bJkAUOnfLbfc4lrm7bffFvHx8cJkMom+ffuKtWvXuq/ADYTtwDY4je3gxHYg8iz8zjuxHZzYDmyD09gORJ6F33kntoMT28GJ7cA2oKopQghxlmMqRERERERERERERERETQpzjBARERERERERERERkcfgwAgREREREREREREREXkMDowQEREREREREREREZHH4MAIERERERERERERERF5DA6MEBERERERERERERGRx+DACBEREREREREREREReQwOjBARERERERERERERkcfgwAgREREREREREREREXkMDoyQRygvL8ezzz6L8vJydxfFrdgOTmwHJ7aDE9uByLPwO882OI3t4MR2cGI7EHkWfued2A5sg9PYDk5sB8+iCCGEuwtB1NAKCgoQGBiI/Px8BAQEuLs4bsN2cGI7OLEdnNgORJ6F33m2wWlsBye2gxPbgciz8DvvxHZgG5zGdnBiO3gW3jFCdJbeeeedel2+uvl1nV7T6zMt65lwZzvUZdr52A51WbY+26G2z0p9qs92qGn+mb73dXlNRHQ2GqsfrG4e44Gqp3tiOzAuqvu0xmoHIvIsPBdiXHS222ZcVLflm2o70HlMEHmA/Px8AUDk5+fX2zY7dOhQr8tXN7+u02t6ffrv5tYOdZl2PrZDXZatz3aork3O93aoaf6Zvvc1vW6IdiCi81d9f+cbqx+sbh7jgaqne2I7MC6q+7TGagciOn+d78e+pnouxLio+rKdy/KMi2qef763A52/DG4YiyFqdCUlJQCAe+65B0ajsV62efz4cUyaNKnelq9ufl2n1/T69N9WqxVA82mHukw7H9uhLsvWZztU1ybnezvUNP9M3/uaXv/12RIAgOCTJYk8whtvvAGg/o59jdUPVjeP8UDV0z2xHRgX1X1aTe1gs9nqVG4iatp+/vlnAOfvsa+xzoXquw9gXFR7uc9mecZFNc9viHbIy8vjo7Q8AAdGyCPs3bsXJpMJiS1bQW/QAwKQL4FWXBMVznnSMuL0xFP/36f/QES1SIA4PVWo1pXWFwB69R2A0Og4advCuV0B9OjdH4ERsZqyCAF069UPfmExmmmAQJeefeEdHO3aXucefWAOinIt16l7HxgDIiEAdOzWB3r/CAi7Dd37DIQ+IBKKTu8qm2vbp8ujqdOpWqnro5reqlNPlBpDNGXT1FFUtIoQQEL7HshXggCH0KwD4fw7vm03nLT6n5pXsdO4Vt1wosy3onACaNGyK3KKfSqWBRCb2AXZBV6ufccmdEZWnhlCADFxnZGZa4LdrkerNj2RfdIMnU4vN4Lzb/UbW+3fFevEhLdDxkGH9k2Xt3l62eA2yNhjrTRdqP6O9m+F9G1llcoT7dsS6RtLNG9GtHcS0tcVa9oh2pyE42sKnX+bEnF8VUHFtg0JOP5PPhwOO1oGtkPmvwVQFJ20L9UH7tRrATjfN01bCM2ykZZoHFl4TP2F0m7z9GdEABHWcByen3bqMyNOLSJcr0LtIUj9ai+E6n+nP09BjkDsmrfDtQ4g4O/wx7Yvt7i24Sd8semLja75PsIbGz5ff+pzLuAFM5I/WwsTTNBBh5ZBLfHr6l8xYMAAEFHz9fzzz6Nf//7VxgSNFQ+oFtXEBD369EdgRAvX69P7FHDGBL6hMZpy1Fc8cLo8NcUEjRsPdMdJm79rZ6djgrjW3XCizK9iw6e226JlF+QU+zRgPADNPquMCc4wHoAQiAlqg4zd1jOLBwBE+7ZC+qYSTfmivVvWGA9AANHGBGdMUJ/xgKa9nK8jLdE48tPxSnHC2cQDOBUT7PsqpU7xQIDwx/Yvt7r6++pigvWfr9PEAzbYYIQRcaFx+Pjrj3HddddBp+OTp4maq/fffx/t23eot3gAwhkTRJ6KCSDPl7bhrnjg9P7O5RpBfccDBUpQRd+ibtsa4gFAdY2g3uIBr4rjfo0xQePEA676Aoj2b+2MB6TyVBUPqK8R1Hs8AO20SjHBOcQDEAIRtnAcnn+wTvGA69MlgCBHIHbP26lZD6jbNQI5HrDDDm94o3VCa7RGK2wo3ggfHx9Q88Tk6+QR1q5di6uvuQapaYdx+qCrPbYL1TFZSMdo9WuhOdZX3lYdtyNUB3mh+q8qQBACcKimy8udXqbyNHWZallPswzgUM/XBGBVbFPefrV1q2a/pzpPcWqGEKenVXSKwlko17ZOF0g9HaoyoI7bOD1NVfGa/z7d0Vf1t/Ntr2LeGWxfqk/FdJzaprZuFdOl/eJstuFcX7i2c+q/VUwTqnnVrefcvkPVNlWvK9TrQMAhHKc+f87/OoQDAg7nd+DUfx1wQJz6r2u6a1ntOlUtC6Da7VlhxX4cwAEcRBhC8efWJejateuZHmqIqAnQ6/XYtS8V8fEJOOt+vB7iAZyeVqnfrNxnN0Y8AM1yVccEjRoPnG4rcfq/FX1lVdOgKkODxAOn37CaYoIq/67j9lV/19aXw9Vu6nnafTdqPADUHhNUs25DxAPO4tQcE1S7PThwBEexF/tggglf/foVLrroIiiKcuYHGyI6rw0dOhS33Xknxl9/A86mHz/dr9UWD6DadaXXlfrNhokHgOqWq7rvbuh4AFAtc5bXCOotHqhonHO7RlDl32ewbVV5zvUaQX3GA67ynMs1gmrWO5t4AMA5XyOoLh4QEMhBDnYjBWUow+vvvI477rgDJpPprI43dP7iT2CIiMjjGWFEe7TDSIyAD3zQo1sPtFBikZqa6u6iERERUSPRQYcExOMCDEccWuCqS65CqC4UK1eudHfRiIiIqJEoUBCOcAzBIHRBZzw25TEEm4PwxRdfwG63u7t4VI84MEJERHSKGWZ0RieMwHDooEO7Nu2QoCTg2LFj7i4aERERNRI99GiJJIzECEQgHCOHjUSEEoGNGze6u2hERETUSBQoiEYUhmMo2qIt7rr5LgQbgrBw4ULXHVjUtHFghIiISOIDb3RHNwzFEFhhRXyLeLRSWiInJ8fdRSMiIqJGYoABbdEGIzECAfBH3959EaNEY8+ePe4uGhERETUSBQri0AIjMAwJSMD1V16PEF0w/vrrL3cXjc4RB0aIiIiq4Q8/9EZPDMJAFKEI0eHRaKe0RUFBgbuLRkRERI3EBBM6ogNGYgRMMKFTh06IV+Jw6NAhdxeNiIiIGokeeiQhERdgOKIQhYsuHIdwJQxr1651d9HoLHFghIiIqBZBCEQ/9EVf9EEGMhEWGMa7R4iIiDyMF7zQFV0wHENhhQ0tE1vi77//dnexiIiIqBEZYEAbtMZIXIAgBGHAgAHoqHRwd7HoLHBghIiIqA7KUY4MZKAIRQhHGLy9vd1dJCIiImpkdtiRiSzkIheBCECLFi3cXSQiIiJqZAICJ3ACmciCN7zx+u9vuLtIdBYM7i4AERHR+cwKKw7gIPbjAEIRgo2bN6J79+7uLhYRERE1IgccOIpj2It9MMCA73/+HpdccgkURXF30YiIiKgR5SAHu5GCUpTi1bdfxeTJk2E2m91dLDoLHBghIiKqgh12pCEN+7Af/vDH8n+WY/Dgwe4uFhERETUiAYF0ZCAFKXBA4KN5H+H666+HTseHLxAREXmSk8jDHuxBPvLRCq2woWgjfH193V0sOgccGCEiIvp/9u47Tm7ibOD4T9t3r/de3HvHGFNswHQw3XRCCYTQSQiQSiAhofOSEEIIJIQaei8G00NxAfdez9d7v9u+ev9Ye1eaO9/hbvDz/XwMp5VWGmklzWhmNI9BhAjlVLCOdThw8uZ7b3LsscdKj1AhhBBiP6Kj00Ajq1mNHz8P/uMvXHrppdjt9r2dNCGEEELsQe10sIY1NNDIAEpZ27yOtLS0vZ0ssQtIw4gQQghBtAKkimrWsBYNjadefJozzjhDeoQKIYQQ+5lmmlnFGjroYAiD+KZ7ocQWE0IIIfYzXXSzlrVUU0MxRVTWVJKbm7u3kyV2IWkYEUIIsV/T0amjntWsIUiQh//1MD/60Y+w2SSLFEIIIfYnbbSzmjU00cQgBrKpbRPJycl7O1lCCCGE2IN8+FjHesqpIJ98NmzaQGlp6d5OltgNNF3X9b2dCCF2t0WLFnHggQcyZuy4bSyhG/5r+qjn5+o3t/WlrVO9fLnnV/Ret9Hz6jQst6306cb/mRfqdRumxXpPR//f1c2f9ZoW9Xt6Lx9+t/mxj3q7femmBbb5m26dv+1tKDvd33d7bFv5YHu2vY3v6v3M7zndyw/Q13f13j6Pr0Pvb7ltrau3bZtWoRs+1s2fmzajGzbzHf7b67VlXkoHQoQIEmQIg/nWt1CCpgnxA+fxeBg4aBAOR2/X+p4tD/S+rZ558Z4oD/RMZy9lgj1cHvjOy+zJ8sD2fn83lAdMf/aZryt/7M7ygLpsX2WC3Vwe6PXTHtdWz/KAjk4nnZRSwtz6eWRlZSGE+OE6+uijWbd+PenpGb3M3T3lgdgn/WRbe6Q8sGWy73y993Ts6vJA/GvbzhP3SHmg322o+dt2fHdnygN9fH/PlwfM6+m1TLDHygPxbWyrTLAj5QGATjrJJosPV3zEyJEjET9c0jAi9hsff/wx7e3tezsZQoh9jMVi4cgjjyQxMXFvJ0UIsQcsXryYsrKyvZ0MIcQ+aNKkSRQVFe3tZAgh9oCKigq+/fbbvZ0MIcQ+aMCAAYwbN25vJ0PsAdIwIoQQQgghhBBCCCGEEEKI/YZElBVCCCGEEEIIIYQQQgghxH5DGkaEEEIIIYQQQgghhBBCCLHfkIYRIYQQQgghhBBCCCGEEELsN6RhRAghhBBCCCGEEEIIIYQQ+w1pGBFCCCGEEEIIIYQQQgghxH5DGkaEEEIIIYQQQgghhBBCCLHfkIYRIYQQQgghhBBCCCGEEELsN6RhZDe47bbb0DTN9G/48OF7O1lCCCGE2MOkTCCEEEIIKQ8IIYQQ+x7b3k7AD9WoUaP48MMPY9M2mxxqIYQQYn8kZQIhhBBCSHlACCGE2LdITryb2Gw2cnNz93YyhBBCCLGXSZlACCGEEFIeEEIIIfYtMpTWbrJu3Try8/MZOHAg559/PuXl5Xs7SUIIIYTYC6RMIIQQQggpDwghhBD7Fk3XdX1vJ+KH5r333qOzs5Nhw4ZRU1PD7bffTlVVFcuXLycpKanX7/j9fvx+f2w6EonQ3NxMRkYGmqbtqaQLIYQQ+yRd1+no6CA/Px+L5fvTr2N7ywRSHhBCCCG2TcoDUh4QQgghdll5QBe7XUtLi56cnKw//vjj21zm97//vQ7IP/kn/+Sf/JN/8q+PfxUVFXswB9/1+isTSHlA/sk/+Sf/5J/86/+flAfkn/yTf/JP/sk/+bez5QF5Y2QPmTx5MkcddRR33nlnr/PVHiFtbW0UFxdTUVFBcnLynkqmEEIIsU9qb2+nqKiI1tZWUlJS9nZydkpfZQIpDwghhBDbJuUBKQ8IIYQQu6o8IMHX94DOzk42bNjAhRdeuM1lnE4nTqezx+fJyclS8BFCCCG2+L4PH9FfmUDKA0IIIUT/pDwghBBCiJ0tD3x/BuX8HvnFL37BZ599RllZGV999RWnnXYaVquVc889d28nTQghhBB7kJQJhBBCCCHlASGEEGLfI2+M7AaVlZWce+65NDU1kZWVxaGHHsrcuXPJysra20kTQgghxB4kZQIhhBBCSHlACCGE2PdIw8hu8Pzzz+/tJAghhBBiHyBlAiGEEEJIeUAIIYTY98hQWkIIIYQQQgghhBBCCCGE2G9Iw4gQQgghhBBCCCGEEEIIIfYb0jAihBBCCCGEEEIIIYQQQoj9hjSMCCGEEEIIIYQQQgghhBBivyENI0IIIYQQQgghhBBCCCGE2G9Iw4gQQgghhBBCCCGEEEIIIfYb0jAihBBCCCGEEEIIIYQQQoj9hjSMCCGEEEIIIYQQQgghhBBiv2HbkS+Vl5dv93eKi4t3ZFNCCCGEEEIIIYQQQgghhBC7zA41jJSWlqJp2ndeXtM0QqHQjmxKCCGEEEIIIYQQQgghhBBil9mhhhEAXdd3ZTqEEEIIIYQQQgghhBBCCCF2ux1uGJkwYQKvvvpqv8uddtppLFmyZEc3I4QQQgghhBBCCCGEEEIIscvscMOI0+mkpKSk3+UcDoe8XSKEEEIIIYQQQgghhBBCiH3CDjWMRCKR77zs3Llzd2QTQgghhBBCCCGEEEIIIYQQu5xlV61o3rx5u2pVQgghhBBCCCGEEEIIIYQQu8UuaxiZNWvWrlqVEEIIIYQQQgghhBBCCCHEbrFdQ2mdddZZvX6u6zrNzc27JEFCCCGEEEIIIYQQQgghhBC7y3Y1jHz44Yc8/fTTJCYmmj7XdZ3PP/98lyZMCCGEEEIIIYQQQgghhBBiV9uuhpHDDz+cpKQkpk2b1mPe2LFjd1mihBBCCCGEEEIIIYQQQgghdoftahh59dVXtzlvzpw5O50YIYQQQgghhBBCCCGEEEKI3WmXBV8XQgghhBBCCCGEEEIIIYTY1+1Uw0htbe2uSocQQgghhBBCCCGEEEIIIcRut1MNI8ccc8yuSocQQgghhBBCCCGEEEIIIcRut1MNI7qu76p0CCGEEEIIIYQQQgghhBBC7HY71TCiadquSocQQgghhBBCCCGEEEIIIcRuJ8HXhRBCCCGEEEIIIYQQQgix35CGESGEEEIIIYQQQgghhBBC7Dd2qmHEarXuqnQIIYQQQgghhBBCCCGEEELsdjvVMLJo0aJdlQ4hhBBCCCGEEEIIIYQQQojdTobSEkIIIYQQQgghhBBCCCHEfsO2sys48sgjtznP7XYzfvx4rr32WnJzc3d2U0IIIYQQQgghhBBCCCGEEDtlpxtGPv30UzRN63WeruvMnj2b//znP8ydO5eioqKd3ZwQQgghhBBCCCGEEEIIIcQO2+mhtKZNm4bH48FqtTJhwgQmTJiA1WrF4/FwwAEH4HQ6qa2t5Q9/+MOuSK8QQgghhBBCCCGEEEIIIcQO2+mGkXPOOQdN01i2bBnffPMN33zzDUuXLgXg4osvZvny5Xg8Hj744IOdTqwQQgghhBBCCCGEEEIIIcTO2OmGkTvvvJPCwkKGDRsW+2z48OEUFRVx9913M3DgQA455BBqa2t3dlNCCCGEEEIIIYQQQgghhBA7ZadjjDQ2NlJZWckvf/lLZs2aBcBrr73G6tWr8Xg8seWMfwshhBBCCCGEEEIIIYQQQuwNO90wctJJJ/HSSy9x7733cu+99/aY5/f7+fbbbxk+fPjObkoIIYQQQgghhBBCCCGEEGKn7HTDyKOPPkooFOK1114zfX766afzj3/8g4aGBn77298yZsyYnd2UEEIIIYQQQgghhBBCCCHETtnphpHU1FReeeUVNm7cyIoVKwAYPXo0AwYMoLGxkcLCQq6//vqdTqgQQgghhBBCCCGEEEIIIcTO2ung61deeSUAAwcOZObMmcycOZMBAwZQXl7OoYceutMJ/CG466670DSNG264YW8nRQghhBB7iZQHhBBCCCHlASGEEGLfsNMNI48++ijXXnut6bPVq1dzyCGHsG7dup1d/ffeggULePTRRxk7duzeTooQQggh9hIpDwghhBBCygNCCCHEvmOnG0Y8Hg9///vfue666wCYP38+hx12GFVVVZSUlOx0Ar/POjs7Of/883nsscdIS0vb28kRQgghxF4g5QEhhBBCSHlACCGE2LfsdMPInDlzSEpK4uGHH2bWrFkcffTRNDU1MW7cOL766qtdkcbvrauvvpoTTzyRo446qt9l/X4/7e3tpn9CCCGE+P6T8oAQQgghpDwghBBC7Ft2Ovj61KlT+fTTTznmmGN49dVX0XWdGTNm8Nprr5GYmLgr0vi99Pzzz7Nw4UIWLFjwnZa/8847uf3223dzqn64/vbcoj7nX3PehN22rb7W3d+y27OunUnHrrQnt7srt/XER/Gh/S6ZMWSb8wC66jpN0wk55nuZ+n2x71N/4/3xN9xb94z9nZQH9m17Mh/uKx8SZnLP3jnGc1Pu9ULsG6Q88P3WV33D3qpr+L7aH/ZxT5Hy0vfTvvq77a/X5g41jPzhD3/o8dmRRx7Jiy++SFJSElOmTOGBBx4A4NZbb925FH4PVVRUcP311zNnzhxcLtd3+s6vfvUrfv7zn8em29vbKSoq2l1JFEIIIcRuJuUBIYQQQkh5QAghhNg37VDDyG233YamaT0+1zSNzs5O7rzzzthn+2PDyLfffkt9fT0TJ06MfRYOh/n888/529/+ht/vx2q1mr7jdDpxOp17OqlCCCGE2E2kPCCEEEIIKQ8IIYQQ+6YdahgpLi7utWFERM2YMYNly5aZPrvkkksYPnw4t9xyS49CjxBCCCF+eKQ8IIQQQggpDwghhBD7ph1qGCkrK9vFyfhhSUpKYvTo0abPEhISyMjI6PG5EEIIIX6YpDwghBBCCCkPCCGEEPumnQ6+LsTesj2BJXcmiND9939umr7xxmnbnK/O89d09Lnu/oKx97Wu9PF5fa67v4D0faXDF47E/n78hSXfeT3Q83iZJNhNkzf+dKppur/fqa/Atff/42vTdPqQzH7TulXzZ2Xm704vNU2r29qeY6tS9+n+P30c+/vG3xxpnqfsk0o9fkZqQC9Vj+PXx3m8s+vennUZv7uzwb+2J9BxfwHQ+trnXbW/32X+zgR+TMhJNE0/+try2N9Bb7DPZfvaxzfnl5umTz6wuM90qPo7n7bydnVu13qF+C52Jh9W75X93bOM11F/ZYud0V8eZUyXms/0ly9vaz29Ldvf8TLqUXZQygv0c581fl8tH/V3n21eXPOdv9vXdgGceUmxv/u7J/dIx9wK07SxTNCjPFBtvh86h5vLPMZ7+M7m2cbftb+84bvez7d3u71te3vS0Vde2l/52nh+RBNiPjeN5c1+z7V1jaZpZ3I81oS/sds8L9Nj3ux25MvqdrvqzOeLv91nmu6rPGksKwBccVrflfjGMkFTh980r7+ye1/pEOK76C8f7qv+4P5b55im1edBXddN09eeHx8WbXvzv77ub+r1qV4nxvtGj22peWeT1zyd4e5zXX3dZ/uj3meM61KvfXUf+7pn91de6u8+29c9envqHgAykuJD26n3N5V6PPrS33b72qf+9HWuqWnsLx3b8xv3uCaU3zwxJ8k07UiOH1s13+3vNzdue3uDmve1j9uT78LO1V2o3zXeb4z3mt2tv3NgV9V77OzvtNWuqh+QhpE95NNPP93bSRBCCCHEXiblASGEEEJIeUAIIYTY+yx7OwFCCCGEEEIIIYQQQgghhBB7irwxIn4wIpEIZWVl1NfX09jYSENDA21tbXi9Xj6bv5HREw6jdPAYADZt2sQjjzyC2+0mISEBj8dDQkICdrsdu93O2LFjGTFiBAB+fzfV1RuwWm1YrVaWLUvDZrNhsViwWCx0dbWRkJACQDAYpL6+Pjavs7MVTdOwWKzY7U50XUfTtL12jIQQQoj9SXV1NbNnz6a+vh6fzxf7FwqFsFqtnHTSSRx99NEANDQ08OHbT2KzObDZ7dhsdqy26P9tNgeptkyys6NDxQWDfhYsWICmabF/FWVrYttNTEqL/R0IBFi9enWsbOB0OmltrY9ux2bHbncihBBCiF2vs7OTzZs3U1VVRTCYgt3uAODdd99l9uzZBAIBNE1jyYLK2HO71WrjpOHXkJGTD8DmdStZOW8uNrsDm9WO1Wbj9YRyHA4HNpuN7i4nnoRkANrbmqgr34DFYgE0dD3C/PkuIpEImqYxbNiwWNq83R10drQSsKZhszuwWKz4vF1oW8oLVqt9y3qEEELsLtIwIn4w7r//fm6++eZtzk9KTo81jFRUVHDvvfduc9k777wz1jDS0FDBww9fE5v3f/9nXvbooy/i2GMvBWDdunWMGjVqm+utrb2B/9uygvLyciZMmICmaVitVmw2G15/JFoYs9k54ODjOP70nwDRQtNjj/4ci8Ua++fOSMRqtaFpGkPHTuaSGb8DohUwV155JWvKWrFYrOgAhjEKiwaM4OAjTotNv/3iwzSvL8blcmGzRdcXJlrJU1paCsTjBXzz5XtEImGAaLptdl5zl+FwOMjKyuLAAw+MLVtTswFdJ1YRpGkW6LKjaRp2u5OU1KzYsu3t7WiaRsDvRdtSGJVCoBBCiO2h6zofffQRAwcOZODAgQCsXbuWH//4x9v8Tk5OTqxhpLKykjf++5dtLnvkkedzwgnRfLmlpY4DDzxmm8secfz5/O7a4wCoq6tj3Lhx21x2ypQTufnmI7est4WioiKsVmss/9xK0zRmzZrFI488AkQ7Y0yePBmbzRbrsKFpGjUNXQAMHjGRk8++Nvb9/7v9UnQ9wnN/S0DXdXRdp7q2HR2dwqJhnHn+LbFlb731VgKBAAtX1oMGNpsDh9OF3eEkI6uA0RMOiy37+uuvEwgEWDy/PFqZo1lAg1CLD7c7iQEDxsSW/eCDD/D5fIaygYbFYmHt2uU4nR5KSuJlqLINy/D7uwGd999vj6U5EongcrmYMWNGfNmy5fj9XiwWC6laNprFEu3QYrOxIjdgKpt1d0bHY7faoh1eIpGIlDmEEOIHpqp8LZdc8leee+45AoEAAL+77zWy80oAmDt3Lg899NA2vz/tgnNjDSMrvv2Cl/9zn2n+f/4W//v63z7G4BGTAFg0dw4vP3WPadm/GIoW7733HpADwJIFH/PsP2/fZhouvPwOxk2Mlg+WLvyEF576Eza7A6vNFuu8YcWKzebgmGMuYeTkaCyGzZtW8NF7T0IwbF6h3QrAIYefzrCRBwFQUbaad176O5qmYXPZtzzjxzuITDnyJEZNOgSA+upy5rz6JHa7A6vdHv2/1YbVbifcHWHAkLGUDIrmt92dHaxc+CWaxUJ650qsViuapqHrOiuXrSYzq4Ds3FIA/N5u1i3/NlqGsFr5n6MWq9WKw+Gguno9iYlpJCdnANGyT1lZWaw8UFW2ET0Sj48abI3E6hkikQiNdVVYLNFt19QkYrFYcDgcJCcnb/O4CyH2L7usYWTevHlMmTJlV61OiH75fV7aWhvIzi3m/n98TWdkOE6XB09CCgmuZBI8ybhdiTjsTmxJCWRmFMeCPr33XhXTpp1FKBQgEPARsoQIBHxEQiHC4RBrquIBkJxZSWTlFBEOh4iEw4TD0WV0XUePRHClJcWCbeq6js1mIxwO9wjQBrBiY1tsvY31VTQ3N29z/9qqavFvagGgq7OZdeu+3eayIW84tl6ft4t///vf21x23MQjee6xPwAQDoe59vx/8f4bvS879sDp/OjkW2PTz/7zdkKhgGmZJ7aUJwePmMT1v30MtrwR88gjP6O7u63X9RblD+P6H8cLoqNHj6aiwhx01GKx8vOLbRQUD+OaX/wDiAaIu/NXZ9Pe0sDNCYm43Ak43R6cLjdOl5v0rDzOvzaa3ktmDOGuu+7C6/VSVFTE/PltpKRkYrXa+HPFRqxWG9n58Uafru72aKOPBp0Lg1t6AFvQLBbuXFGJ0xkPVte1uoJQKIjVYsU1Oi/aQGXRiITD+Nu9uD3xYGJ6lzmo9QOPzjVNpx9UFPu7vwDyasAzYxCqlvVNpnmOJHMP5P6C5BqDjd7/wP9M86hSApOeYA6O1byk1jT9gCEt6YMzTPN6XhXbpgYu9IUjpun/frrBNK0egzRl2zujr0Bsqu0J1L69wdgvOzteuaruf3+BavtatxpMVV1XX8EHy5Xj/kQ/wQgD7duebwy8B+Y0t7e3c3Wfaxb7q4eeXci8z9/k43efoaZyA4ceNYuzL/kVAM0NXYwYezBJKRk4nC4sHWFsVnu044CuU9edZciXKznwsJkEAz7C4RChUJBgl5dQKEgoFCSrtCSW37u0JNIz82JlAQA9osfyflvYHltva3M9SSkZuJ1WQqEQgUAArze6DQCr1c79N74LQJe3ja6urm3uq9frjeUVgYCPJUuWbHPZxIQ0/O2+WHDVTeuWoOs6m3q5RSV50qArGEvzXXffSzDg67kgcNi06Tx4V7zDyGWXXUZTU1OvyxaVjOCGX0XLJA88Opc//upHtLbU9bpsTt4Abrr12ejE5jZefOIO6puiZYPHlLqrjKwCbnvwrdj066//lcrKNfTmvoQU/nj/7Nj03/98BRvKl5qW0TQLNqsdd0ISv787vt5D77mF1Uvmb1lGQw/qsYodgHv++3Fs2af+citLvv4Uq9WGx5PMw3ekkJCYiseThMViZea512K1Rh+9ytYvo62lkcSkNNLTc0lOzQIl3zaVF/oJtq6WOY2BWq++3Px89vgL5nNGLZeo5Qcj9f59/1+/NE1bE82Bf8M15nQPOXpw7G81X1HX3VfQUjXNKPlbf3mpcd091qXoL+irUX/5sBpc3LiuIqXMcsqBxfTFGOQc4GTD8n0FyO1tuq91q/myWhb7++PzTdM/v+Kg2N//6eNYQc/joa7byGWVxkvx3axb9S3vv/44a5bPi32Wnp5OQUEBXS3t+BOieZs3aRAnnXclVlv0vjx+QDq6rhMKhfD7/Tj1xNi1lJKYw7jJRxIKBgiHQoTCQbJSHQQCAUKhEBedPokJE6L3lQT/Yj56J3dLY34kVim/9Rl59peVFBVsGW3CG8Tp9BAKBWJlAiNrMD7SRDDox+/v3tJhoCdbjj12Tb3xRj0P3fPFNo/R2AOnx8oGXR2trFi87WVPP/YQLpkxhL89t4i69eV89PrT21z2jjvu4JrzLgDgl3e+wN//cB0AD/ey7Inn/ZThhx0AwJo583ng7ngnFrX76oxTL+T8a6KdQP9w9X+547GLtpmGg484jXMviy7b3dXBLecfEZt3o7LsAYccz0VX/QmI5qMHHHAsbncSDocr2lnV7djSYdNGTm4Jh5x+Suy7n776oqHTqoVjpw/Caok2PGVlZ3PA2ZNjyy6YP5/XX1gRW2/6uHw0iwZo2O0OUz7k83aRmJO85Q2iLfe9evNvfu7lg2J/P/wXcz78hLKP6v3eWD5Q78FqHqayu815fEYf5QU1D3/0teWm6a56cz5lfBZV90HVV51If0Hg+wuIbpzf3/Nwf+UW4/Lqsmreqh7bvIJ4w5167C46eaRpWq0TUI+Pcd1Br7luSj0/+vqumhZ1H9S6GKvDapo2li3U30ndR7VuYlvB2XdV/cAuaxiZNWsW5eXl/S8oxC7Q3d3NP+67DpvVztW/+jsAySmZ/OG+2dGHziav+QsZbtNkZmYBJ58cv4S2VnT0prB0GLc+EG85CCiVfsYHyFGjRhEMxm82Dz27EF3XCYdDBAN+rNb4zSE1PZtf3/0yEK1UCUfC+Bs6Yw0vyY74zdDlTOC5554jFAoRDAYJhULM/njtlgKUTk5eaWxZq9XGzLOvxeq2EAmHAA1fszdWGMs1LBuJRLj++uv5ZlkFgYAfPRJB13WsLivoOiVDzG+/DB08CUti9Lah6xHCoRD+bh/hcNCUBoCkpDSsVis6ESJb1quHw+g6OBwu07KRSM8HoUgkTCQSxuc135xDwSCdHa10drT2+E52QYlp+vnnn99mpVFmbiH3PBOv0Hj8v7+horr3SpWExFT+cN97seknXr6dTZUrel3W6fLw5wc/ik0/+eTvWL/uWywW65bjED0WaNHGn4ffjDd4vfzs3axeMTf2+rTNGS8Q6XqEW+54Hpstmjm9+swDLF/8GQAOpxub5sDhdON0uvEkJHPGxb+IvdK9dsUC/v73r2NDuDidTj6dvYhREw4jKyfeMCOEEN83uq7z2rMP8Ml70Qp1p8uD2x0v5Kdn5XPVLfFunf7VjabvGyuYM7MLufCn5p6bxgZaY1khK7eY2//yjnnZWnN+tVVqejZ//vsc0wPT/fd/TiQSIRzeUmZoiP7f7UzkV5c+jp7i2JI3RhtbLvnpQUQiEZKTk3nxnUogmt//5LoHsTitRCKhWF4a6g6gEy0XGf34BnNvV02zEG71ARrJyemmedOPPYdwKEiooQvQCYVDBIN+ioenMniw+eHkkEMOobW1lYrNzfH8Hh2sGjl5A0zLFpUMJyU1C12PEAmG0SNhdEC3QEZmvmnZ7IwibNZonpedH83Ptr5p4o8kmJbNyiqKlRsi6NH/h8OEIyE8HnMZr7fKJ12PEAz5sQbMD4BtzY001VX1WD7+vfgQqe0tTbQ2Rxt9muj5nZnnxN/e+d/HL7Fw3vuxaZcrgZzcUrJzSnC7kzjplKuwEi0zLl34CXVr1xDRdWxWOylJGWRFBpNXNMg0ZJsQQuzvVi39mkfuuRZdj6BpFmbNOpOf/exnHHRQtMHO2Alt5MSDGTnx4Nh0XxWq4yfPYPzkGab526pgveSSS+hyju8znVs7ax548EkcePBJpA/JJBKJEImEaVpcHXtmNA61OXrcNH75hxexuiyEgkFC4SDhUBBbopVQMEDRoOHx9I4fz2OPPdZjux/Pi9bXDRwWT19uwUDOuzzasTDoDUaf8cMhDp2cTyAQ4OCD48coNSOHY0/5MaFQAH9zJ6FQkEg4RCgcYsjwDNPbmXa7g4HDxqNHdHIy3Fv2LzqcWGO7j7SMnNiyVqud/PzBW94CiebfkUi0Q6pu1UlIiteLaJqGyxktA1g0CxanbcubqhroOi5DGVCPhLHbnUQi4dhbp7oer3ew2Rzx38TXzbfffrDN32zcxCNjDSORSISn/v5b0/zHH4z/fcKJJ/LKG2/Gpo8/+qhtdnoZMeEgLrsiPiTJnbfOorMj2jnW4XSRkJiC256Ix51MXs4ATjn+qtiyv/v1r/n6y3XRt4isNtB1nPM96LpOanoWx5x5SWzZ9154nM72FrzN3aCBx5NMpnstOTk5jBo1iqIiqRMQ+6/tahg566yzev1c1/U+e74LsSu1tLRw6qmnsn7Vt7hcCXi7O7AQfZDd2hNvX7F13HGLxREbz3Qrm81OXuFA02d+l6FSxdCaa7c7Offcc03LdkTMbxfElnU4OebkS0ytv2rrbXy9dh588ME+e7g1z42/yXHpBXeY3nCAnq3KW91081MAOHPj61IrpLbauHEj4XCYv/93YawQFA6F6G7tue5rfvUIPm8nmlvH5+3C5+0i4PPi93lxOM0NLpdffjnLli2joqKChQtX0dbWGC0oWy24POZKFWMhSaXGhbFYrGho0YofRSRsfmW5u7sdr7f3Y2SxmFvROztattmTFjC9JtzZ3kxDTcU2lz3tRz9jw5pFVG1ey0tP3t3rMq88fR9/fGg2qenZ21yPEELsqyKRCDfccEOsUeTEM69k+rHnmN7a25dFK/m3VnoEt3xmJSM1D9LN+dnW4T2j4g0jQ0ccGOv1udXWChfVuAOivSaNbxcEttGYc8o50V6e/mXmPOnqO3oOH/bGG9HOI/f/6WPT51qmp8eyF//0rtjfeqOhB6TSgQXg4tN/F/v7xjuPM81Tyy3nXxB/uxWPuSyo5uFXX3Af4XCQ8NaGlC4/4UiYYCiAPtA8tMa5V/8Gb1dHdERSXadtXSP6loodTcnDz/rJLRx22DmEwyG6u9rpam2ms7MVn7eTcCSMZhiuKzO7kOIBo6L5fnMdPl8Xm8tWsLks2uli5qnxN3IWLZjD0kWfmA/Olv46aRm5/OKPT5OkNGwJIcT+aODQcQwePpGklHROPuc6fn/9iXs7Sd/Z1ob/bcUdc7o80X9Knt/bG2AlJSVcdtllPT73eXq+EZCans3Uw08FzB1AjW9/bZWemcdJZ0U7l24d2WKrG39zpGk6J7+Un90afWO0r570AOnpufz85/8yJDTegUGte0hJzOCOq1+Mz1dGMjC95Z+Uyl0PfRqb3tqhNRQK4u3qiHUchWhnkZkzr6Krq41gMPoGT8QaiY0aUlxq6KWv6wwffRDhSGhLI06EzDRXrOPFgEGDDIvq5OblUV/bhD/gjXUe2frGsaaZ34YLheJ1QAG/j4DfRwvRslgobB6545mnnqS21jxyw1ZFg4abGkY+e+d56qvNHdnffT06NOugQYNYv3597PMX/v1nmhtrYg0uTpcblzsBT1Iybk8SB884lYTElF63K8T30XbVIn/44Yc8/fTTJCaab766rvP555/v0oQJ0Zvy8nKOP/54Vq5cicudyE9v+gtuT9I2KwHE94PDEW00crrMlSgua8/KrWjvkpx+hwEAuPrq+FtB998fv0cZh43a6obLoi/56rqOnpcAhgKLOgDUT8+9C03TiOgR7CMzCYdCRCJhrDYb4W5zw8gFF9yGt7udiK5HC7wex5ZXZ6PDrhjNPONaZhx/UbSXUCRCYkEikS3DCmgWS+xVb4DjTv8JR599EXokQsDvo2lTHR3tTcz/8m0qNq/i9p+dYnrb5rTTonFlfD7flrFtobBkmBRqhBDfS4FAgIsvvpj//ve/AMy6+JdMO7r3DjxCGGmaFg18v/WDSLySScsxv2WTV2TuwNIcNFdAGBtdsvOLsXsNnS4C5g4Xxjgmx5/6E449MVppFQoGaKivoK5iI/X15QQDftN6h4w4ADcuNE0jGAzQ3tlES3cDjXWV+H3dpkaRl568m5amOoYPn8Lw0QeTmiYdH4QQP2xbG/s1TcPp8nDlzQ9htdl6dEATYiubzU5SirlDgdPlZvr0s02faYnmjq1bWazW2KglWxmHOzatQ9NYvnoND99nqIs4oMC0jLET6+33vIMjzUkoFMDb1UlXZytNy8ro9nbgdpnrP67/+Y189MEygqEAkUgYDQ1XdgKappneyAE49Lgz6Gxvxd/qQ9cjdHW2k5ESpqqqiowM81COyxf9L/YGrCo9M48jTzq/13lCfF9tV8PI4YcfTlJSEtOmTesxb+zYsbssUUL0pqKigqlTp1JdXU1BQQEXXnM/BcVD93ayxA9MtBeooeeGtWdv063TFs2CzWaPDW8FEPCbh1pLSkojyTDUhZZgHqbDKCOrgAziBaW+Yoxk5xabGoe+rf+IN158kJbmaKWNz9tJQmIqA4eNJy0jh2effQK3O9ojt6uri3+/vqbHfgkhxPdFe3s733zzDTabjfN/cjsHHHL83k6SEDvEZneQVzCI3MzSXucfPO109EFHmz5zDs/E291BU311LOZJJBJh8bwP6WhvZvnC6FCbY8YfznFHPMqgwYN7W7UQQnzv3XTTTdhsNu66K/pGot2x7bgHQuzrbHYHLrcH8JCYlEoWhWT5eu/kcMPPf47dao4xkj4ut9dlTzrvSqD3GCPqsOannf8zAn4foVCAUDBIIODD5+0kEPQyeMTE2CgtoVCQX18xi7yiAaw/6hDGjRvHyJEjSU5Oxu12mzqECLEv0/TeIkSLva69vZ2UlBTa2tpITk7u/ws/cLquc+KJJ/Lee+8xcuRIZs+ebRoHUR2+QX2VU31dUx1ayngZqK+nqjFF9DplfEh//FVPrdjc+14NOBRqUd5saVKCpxnfIGhWlh2VZZp0KkNUhHzmQErhDfHXW22DzT0iQptazetONe+zcRgvlIBLBM1vRBBShqAKm28pWk6896RepmxX7YXRpgRl7mVojRg1gHOnef/JV94oMTZIbDSnI/1EcwNb84p683eVIFWmfVbSOGSiuQfI5nXm4cMiAfPxu+JHk2J//+cNc9wSzWpuuOhShjxxGgJeffjuU7z+zINkZOdz0OEnM/nwoxg4bAyWLXFtvN3mfeisajdN2w2/RUqu+U2dDuU8vfKMMabp/3tsnnn+pfFgc899tN40r7vRfP2oY/InD4s3BrVXtJrmudPM57y3xrwPAw4yByqtr47PV6/F9s3mddsSzOdi1kDzuO0+f/x3a9lgvn8MO6DQNL3mI3MAtCFHxHscr19UbZo3eIJ5TP2TlWCrNW3m+0Ca4XdSA+g6lQBol59kDsz2lycWmKa3vrkEkJhvzmeSlePhsJkLtrW18bgLDmXZwcq6Dhhqvne9/22labq6os2wLvP9xmqP/27erk6uOmXifpcvSnlg28rKyli3bh1Ll5nzsBt/ftgOr/O+y181TVsOiF+jaUpwZJU6tKQ6dIRxbHO1YVrvUvIZNd8x8pvzkfTppX2mwxgnRXX1DYeaph996lvTtPqY4EqN53lqAMfA50qsweJ+ztdOw5AQaqw3pWxhTTXf38KtShnAQO2A0OPY+s0xRrSMeN6iK2W+pKHmDgoRpQzU9b/N5nUbhg9Vy089ApM3KGVA5XfFWAZQyktW5b4brmpH13Wqazewat08Vm36hvKyFdG4cVYbhxx4KkdNPx+PO4lBxw7mg9f/y6olC8gvHog9nEZOTikZWQVYrTbsSjDVjvIGKivXUFoyGnehOW+MhMxpVoN0+jvMw35gOJ9SByrDfylPpF0N5vM40BrPD+3K8XClm8sHwU7z7+hXyow2V7xvoJr/qdKU43HYGHOl0wtvrYr9ffR08xtGVqUcV5BhHsa1L2owVYtyz/B1mMsHzsR4Oi9WYiX0FdS8N899HC+7nXekuVFNDYL+1gLzdT9zcrwc02O4HOVYNivXmxrjQV33Vt2dHZxz5Oj9Ll+U8kBPH3/8MTNmRGN/LFu2jNGjzQF7jUGtoffhoba6/9Y5pmmtwJwvqWUAY32Cms8Yh5KGns87V19/iGnaeL03f2i+9rH38+aLYdvaUPN9tUdV37IG87RSvmeQ4R6/uc08Txnis0eepQ6faRwu09cztpeJW+mvbbzPePrpy63WVXSa8x1rVjxdxvoR6KWOpNpcXlKHBE0qjNf1eJXn45Aa1DrbfA4YA2b3Fyy7ZIj5XFurnhNJ8TzQmd5z2FKjHnVZxnOiRhlONa3v3zhBSdfcj97myb//epvbPumsqzn2lB/3Om97ApWrwcbVsqrVGT9H1Dd33ltgHnq8XikTq3UTdkP5atIkc73OcqVeJ0f5jasrzdeMsZx8+TnjTfPU5/iwUjZNLk6N/a0eD2NgdoBypW5TLYupx6+vdJw107zs16vMbw6dYqirUAOmd1aY9z9/gnmUFo/hd9q82nwvus5QJwb9199uvb683Z387IKpO50v7lRAhtraWnJze2+RFGJXWrt2LZ9++ikOh4NXXnlFgkMJscXWIHZHn3wRmgbTjj0blzuBpIy+C0lCCPF9V1paSmlpKUuX/W9vJ0WIvU7TNAryBlOQN5ijTruMmuqNvP36w6xZNY/Pv34ZTdOYeewVALQ01vHpe+ZGwOTkDA4+7DQmHXY8mdmFWCwWWlvq+dMdZxAI+CgsHMalN9xLRlZ+b5sXQog9qru7m5/85CcAXHnllT0aRYQQu9eYCdO5/IYHqCpfS3NzGWXrV1FbGe8wYgxu31hfxdxPX+fIEy/EkyANu2LfslMNI8cccwxLly7dVWkRYpuGDRvGsmXLWLBgAcOHD9/byRFinzHv8zf58K2nmHL4SRw47URc7u/eG1EIIb5vzj//fKZOncpVV10lr+gL0Ye8/IFcftX9rJ73OR9+/ixHHnpObN7UI0/AYrFSXbGJ9ctXUFe3mfb2Jma/8ziz33mcOx/+CE9CMqlp2WRlFVNdvZ7KyjXc/dtzOe3cn3HQ9FNkOE4hxF51xx13sGHDBgoLC2PDaAkh9hy7w8noCdMYPWEaJcOjIwREtsQ/3biqGrs92jDSUFfBH35+CgDVFev5yY3/t9fSLERvdqphREbhEnvSoEGDGDRo0N5OhhD7jEgkwgdv/oeG2nLe/O/fePO/f6No4AgcTheappOSlsnP/vSP2PIVG1djtdlISslAj2hSqSiE+F557733eO6553jxxRc57rjjGCxxE4To1/AhBzJ8yIGmz4oHDqV4YHQY0Q0LKgmFgixd9Alzv3qTbm+7qTfnZZfeTTDo59nn/sjm8hU8/8QdzPviLQYMHsvMM6/Zo/sihBAA69ev5/777wfgoYcekqHFhNgL2lsb2bBmEYnJaSRnTSItIxuLxYLL7SEhMZnO9hY+ePPffPLuM7HvDBs9ZS+mWIje7VTDiPQUErvbqlWraGlp4eCDD97bSRFin2OxWLj5jmdYsuBjFnz1LmuXL6BiY3ys64wc83AXT/7ld2xeFx0LUtMsJCSm4HC4sNrsZOUWctUvH44tGwz4JXihEGKfEQgEuOGGGwC4/vrrpVFEiF3IZrMzcfIxTJx8DDYlfkdSYnTM+auv/CtfLnmLd195hE3rltDW0mBqGKmuWEfxkBHyfCiE2O1+9rOfEQgEOPbYYznllFP2dnKE2G8E/F4Wz/+YeZ+9zarFX6Pr0RhWw96ZyN2PvwaA3+fjhh9Nic2DaIPIGRf+grxC6egs9j07FXx97NixMpTWbiLB1eChZxfy0J+uYN2qb5h10S1MGXuiaX5fwVXvf8A83nj6OHMsHDW439+eW7TNdfmXmQMO3XjnceZtGYKpssocFIgUpWJZDVzerQQiMwYXUwORtirB2NWA6WuUbRsubb2fgGeaGuTcmC41eGq5OeA1SkBUUwB5NZ1qgDc12Lp6vNT5xuCRPuVYqvugbEszpENXAkOhPsSr21WDzRmCdtqyzUNXhSrMx8czKts03b201rwujyE4lktpq25UArMqQSuN+4Su09pSz+aNy9EsFpwJThxON8PHTNk6mwduu4S6mjK6O5X9B7JyivnNnS9H96HNx1/+7ycEg34GDZrAoEHjGThwPImJqdF9VgKzhZSAgsZAtgk55uOTlGb+nZqU3yLJEPhdDVqa4jFX1jS0eE3TwS5zsD2H4XgNNwQwA9hUaw681tlsXleyEmzvkJE5sb+XbDRfay1KkL9ByrVb0RAP6tam/Kaaso/hgPm8VgP9lgyJBwKuKDMHEOyuNwePKxlvDnhmU7blM2yrqcp83pYoASbVokJJTnwfhxak0JcXPttomk7ymAPCnTA5HjPqqXdXm+alpsfPl+6uDi45dtx+ly9KeSDq/vvv5xe/+AU5OTmsXbu2z2OhlgGM1PJAsxJIUb3/JxqCb6tBBRMKzWnoqjRfR7Yk8z0rtMhw/1cCfqIGSA8reWmoj+DJSrDxHuWFvt4OVO4LPfJpJYAshvtZj4Cnap6lrkstA43Kiv+tlmHU76plHouSbuP9T8krsffzdqQh0KYt3ZxHhdTyghL0PHGQORh554p4MEk1aKtVSUf6APN3mzY2m6bthjwvqOQzYSXouab8xlZHPFhvSAksipKXupWYZN4V9abphPHxa6br22oam6tZuX4eVquN46+5CoC1y7/hwd9dxtjR0znrtJuw2aLnhqPYnD+YAogqgWrtyvEKKnm8Kyd+LjqU39ijTLcp5ZIU5Txu2BA/3+zK8dCVcmye8jtVK7+TzRW/DnKVgKjNreZ98CnXps0QiDTkMx8P9TdVZSr3nw5DgN1gt3ldGTnm/fcqZY2xA8z3o3xDkPi35242zctWynFh5Xh1GfYjEDTftyLKfe28GeYG7i+W15imDxgaL0O/9008gG53VweXHT9+v8sXpTwQ9bv7XuPPvzwLgF/c+ATZOSWxeX3VD4C5fKCpeWc/1ODrzUsMebpyP3Mq9w21PgGlAbqv7/YInq3ktekHxcvRzZ+VmVem7qMSJL4HY97rVIK+q8HY1aDwicq2jOtSykM0me+NjtHm5+XAckM+pJY11HJLs1LmGWI+fqb6mXylTKMej2RzOp355uvMvz5+//eMzDLN697cal6XGpzeWI5R8vQev5MSBF6lGfJWm3J8ktR8aLly7hny4bzppaZZDRvM+ZvxuVTXddaVf8HTD91Bd2e8vFsyeAQ+bzcDh07g/J/8Pvb5zy+eSsDvI7dgACefcy3Hzzrd1HFi/TdVpm2lD4uXt9Vg9CElT4uEzXmLy1B2u/T0MaZ5TygBwp3J5vKkWn9gpAYtf+6j9aZpNQ9Tn3l9bfFzMzXLXCfSpdwz1HJekqFuy6qUB06ZWmKa/u+nG0zTGUqZqMlwDzn3cHPD1JyFlabpBqWc4lbqp4z5+kVHmvf/nW/Nge7DSp7fZQgw71PKIWodiF8pPwWV4zVkXLSeo7uzg7MOH7V3g68LsTstX/g561Z9g93uZPSEwyDc/3eE2J+lpmWTOulIAJzJPd/2+PltTwAQDgVp3lhNV1crwaCfUCiIIzVeIeH3d1NVuY5IJExtzSa+/CIaoDUtLZfExFSGj5vKiadfuQf2SAghoKmpiT/+8Y8A3Hnnnft1hZAQe1tmej7TDjzN9FlzQw2RSISFiz+ko6OFi867DZfr+xnzrL62nE/efYbC0uFMPVx6oguxr8nJL+VXd71A2bqlpkYRIcTuo+s6X3zwOt2d7WTlFnLoMacy/fjTyCsaAEB9eatp+dv/8g6ehCSsWzpKaJpGwO9j/udz+OCN/9JU20goGODE065i5OhD9vTuCGGyUw0jVqu1/4WE2AGRSIS3XowO63P4ceeRnpWPX+n9JYTYMVabneTkDJKT4z2fjG+BOJ0ebr39NTasX8yC+e+wetU8AFpaamlpqaWiYrU0jAgh9ph7772XtrY2xo0bx0UXXbS3kyOEUIw98HDGTTmCRV9/yLoN3/LBx09x8gnfv3KCz9vFH2881TDdyQXXXL/3EiSE6FVu/gBy8wdI/YAQu5mu62haNDbpFb+8i68/eocTzroUi9WKzRp/k0EdRjMpJV1dFa3Njdz3W3Nssv88+kt+e8drpJPZY3kh9pSdahhZtGjbww8JsTPeffddairX43IlcNTMi/d2coTYq3RdJxQK4O/0oqPHxvvemfV1drbS1tZAKBRE1yO4O5IpKI4GYo1Ewrz84r1UVa6jpaW2x/cTtgypJYQQu1tXVxd///vfAfjjH/+IpZ/hZYQQu08kEiYYCmDRLNjt0TdTKzet4e5bLsDvjQ7vkuBJYejgSXszmTvM6fIwaepxfPv1bDTNwpARB+ztJAkhtohEImzevLn/BYUQ26Wro53ayk2s/XY5DXUVNNZX0tpST2tTHaPGHsopZ90AQEZ2Piede/kOb0fTNIoHDaN8w5rYZ6PHTceT0PewzELsbjKUltgn3XXXXQAcetSZeBKS+llaiB+OUCjI3K/fpL5uM3UVG2loqqCjqzUWvGzI4IlccfkDseX/9fAvaGupJxwOEQ6H0CORaA8Ou52CkqFcdNUdsWUfve966qrLaG2uJxg0j1dbVDqCG299EgCLxUpF+Wra2hqwWm0Ul4xk8OCJFBWNIDkpnfSSgj1wJIQQAhISEvj000959tlnOfHEE/v/ghBip7W2N/CfF2/HH+gmoAfw+7oJBnyEQ9HxoWccfA7HH34xAInJafi93eQVDeLQSacycfxRsUaT7xtN07j4mj9z8TV/3ttJEUIo3nnnHU499VQOmn4K5172u72dHCH2Kl3X6e5qx9vcTkd7Mz5vJ6PGx2PsrFkyn83rVrB52SqaGqvw+71EImEiwSCg8bMrH4kt+48//4KFX33c63Y+//gFCoqHcsBBJ+x0mrNyC/jrcx8APWOMCLE37XTDSFtbG21tbWRlZeF2u3nllVf4/PPPGTduHJdeeumuSKPYz3zxxRd8+eWXWK12Dp50SuwV2b6CqT3x0TrTtFMNFqroM9j6JnNAY0r6bsG++vIpsb8f/suX5plK8CKtNNU0rQZPMwUX26CkQ6UGHlOChRmDt2tKQFjneHPw2R77nGQI3L7SHJhWVwPANijBpNXgYZXx4GFqEHhLqXJslUBadCoB0YwdhZXXNfV15mBhPRhjbqhBztU0DzMH11MD6hkD24eU/bcWmhvyvErQU0thMt7uThrqy6mv3Ux9VRluTxLTjzwHzWHDptuY/e7j+Ly9vxqu2zXcJakAhINh1q/5loDf2+uydpsLX1M0fcmlaVSWr6W1KR6ALTExDYfThaZZSMvIwbIliJ4zO5EzL7kZlzuRAYPHogXNPbQTspXrK9UciLPQEBBu4+oG07x65XipwdOMgbXUQOUdSnC5vC3HITbfYR7e0dsev/4WfGXuYeZR9kFNR4sSnP0jQ0Awl7KdTiXoeZkSFDgtMX7uNQfM61UDwnqV4HK5SqC2ekOQ+KRM87ycQvP1lKXEmUlUgp53G67H9ETzspvKzfeEscPNQREXGgJWr68231/alCB2icr1FlECtc42BFT9yUxzkDtjEDctJH059ifmfFpjwKQL+PvzSwBIUAIJq0Ea8RjOFSXApylYKj3LCwElb+k05o9Knt6tBiZV7llWJZh0KKGPPL5YiZuysdU8bQwYqgb0TFEqodU8rtx8jZIZv2frFco8Zf81NQi8UasSHFSND68GUM9XOrqsix8DXQk6qamBadXgqhFlY8ayiXo8lDJQj0CuhvtuqEkpl6UoQd/95nJMpxo03nAOWHLN92g1sGT9O2vN380zHx/T8mr5SQkCb1Pu7wFDOmxKcPWtgct1XaeuuowvXvuMNSvnM3DwOI487ke4RmbhataprFHSZ9AYqifxgALsbjuZBfnccv8zDBs7uUfQb2NgcjBfu/42pYys5J3BNnMHDuO6HErA9JYq82/sbzb/js5U8++YNShezmtvMOfhTuU371KOvbptj2EoUrtyzqcq68opMb/xW2cILupxmq/b6nrzfa1Aue91es3pyjGUCSrKzPcXdR+CyvT8Zeb7YpEheO+AXPN5Wa/8bmpZw/gzjhtlLk8v2Wi+Xp54fYVpOiHdXJ78cFG84qzIsH9dLvVmI37odF3nzjvvJBKJ4MT9neoHAO7/k7myVzPkyz2ew9W8VS0/qAGzjfm0cu371WXVvFTNHw3r8q03X7+6cl9V88dGw7O6ppZLlDwdpQyuqQHTjetuUZ4v05T8MKhch8r1awrWrjz/qccjUKWUJ4zpUPPsoPI76cqxrVfKYuPizzDuNHN+2LlOycOVXfIr92HjtmqWrGPZss+pqyvD5U7gxAkXxObNX/4B7Z5uNM1CIODD5+1EtwTxdXdhdzo56+x4w977b/+L2rr16IZ1O7fkd5pF45d3P0bZkhoAXv3vfaxZNR+fr5PurnYiYfOxuOfh/9G85RntjSceZvXyr9kW18h0apZtqRcIRofZzswpJiu7iIzMAtLSc0hNzyElLZvUtOxomWGNuV4oYngGdij1XAHl/NnUrVwTSjmubXP8vPdkmfO7bOWZX/3Jaw3PpS9+bg6A7lCul3BAKU/ZzdeibrhGHn7EfPxSh5iH+1KDrasvtQcM+5yWYM7/ByjPHxblWl24sj72d56y7Nvzyk3TR080d1pdqZQBjM/iarD1oycWmqZrlPJTu/K7DStMjf29od583aq/S6FSj1FnOCd086VIWDkfQmnm+0ma8jtuDSjvU+8HO2inaxmuuOIKXnrpJebPn091dTWzZs2KjS/X2NjIzTffvNOJFPuX5uZmCgoKKCyaSHKyjDUofhhefvZuqirW0tRQRVdXm2leZlYh0488B4j2Vjxk+hlEImGyk/LJzi4hNSULp9NDyrA8LJZ4gVfXdS655i40TcPudGC12tAsVvRIGG9zJw6nOUO5+Po7sNrspGflYm13YLPFMxiHUpgdP3lG7O+A8naJEELsCeFQMBa0UQix83zeTpYu/Zg1y+azasnXNDfWmOYdedyPgOhbIFf84kGc7gSS0lNwuRNwOF1YLQ4cDic2wxshmqYxfNyBe3xfhBD7jy+++IKvv/4ap9PJYdPO3NvJEfup5pZaVq2bz5IVn7KpfHmsMSMxMc3UMLJgxYdsqlrR6zrcnkTOOjs+XbZxGWtXzut1WTVuR0dHM431FabP3J4kkpLTcXuSsFptsTQNHjYJh8NFXslAsvOK8SSmYLFYsDkdWC1W09C0Z1/wa6xWW8+GNBm9Vuwndrph5NtvvyU1NZVJkybx0EMPoWkaxxxzDO+//z5PPvmkNIyI7XbyySdz3HHHcfc9H+7tpAixXXRdZ/PGFcz74k062pr58bX3xuZVbF5NZfnq2HRScgbZucVkZRWRnVMaDWy2Zd4Jp0UDlupKz1VjowhEC0ujxh8KgNWuvC3R0PONk5ETDo793d7dzxtJQgixFwWDAe68ZRZDR01m5tnXkpAo4w8LsT10Xcfn7SRpS4/+cCjEH285ja7OeOcMm83OgMHjGDbyIIaNmmL6fMyk6YC5t2VE7SEshBB7wJ//HB3e7uKLL5aOk2KX0XWdFSu/oK6+nMyMArKyisjKLETTNDo7W0lMz8C2pYPOC/+9iwXz3zV9v6RkFIMHT8DlMvfoHzPkYAqGj0TXI9gdLlzuBDLyM3F7EmLr22raEWcxedqxoGloW2oDklLdgI6mmVsmjj7hEg474iySMqMNIYnJabCN/ouHH3UeAB5lhAGrMvIBEG0UEWI/ttNXQHV1NUOHRgP2Llu2jAkTJvDee+8xYsQIysvL+/m2EL1zOBx4PBJbROzbGhoqqK8rx2q10dhYxbz5b1NTG32l0mKx4vd7sVuiFRLHnHQp4XCYzOxCMjLzcbmjhZSIMiyHEEIImPvZGzTUVRAM+Dnjwpv2dnKE+F4Ih0OsX7WQbz59hxXLvyQcCfHnhz5E0zSsNhvDRx9EZfkaRk88jOFjD2LIyEmEu/pfrxBC7C0LFixg9uzZWK1WbrrpJl5/o3pvJ0n8QMz56Ck+mPPENuff8PPHKCwaBkBObikWzUJx4XBGjziUcQfMIC0tJ75wTTwznTbxVBwTzEOXZxqGg6oxDJM0YszBeJQhh7LzleFVt8gvHAKA3dBhIegP9LqsEOK72+mGEYfDQWtrK36/n3Xr1nHqqafGPreog6wJ0Yfq6mrmzp3LzJkzsdtl6Ayx74hEwnz77Rz8iz9iwqybSUiJ9lRatuxz3n3vMdOydruTsZOOYNJBx0V7X2wZa3HU2OgYuOoY2kIIIcwikQifvPsMAEeffAl2x/czkLMQe0JXVxtlK5ayevlcli74hI72eMw1TdPobG8mKSUa6+Hsi35DQkayaXgOb1fvccqEEGJf8NBDDwFw3nnnMWjQIEAaRsSuccCkY5n35asMHDCGpvYmGhor8G6J82mxWPH54o0dUw46kSkjjsbt3vJ2iBqjVAjxvbXTDSMjRoxg3rx55OTk0NXVxZQp0dewKysrKSws7OfbQsRdfMlvmPPBfxgzZhoXXXxHvwHUjQHX1WCqKAG8fEpwNU0NTGqkBC3TlQCp981/xbyupD4qbJTghhElyKnmNqdDNwQP0tT971beLGhXegcogZEiX8cDK2lJ5mBF/mV1pmk1oKwx8Jg22BwoSmtWHqCVgJY9gst1xN/v1JTGUpvPyyFfPk1HUhYLJ54CnQG0SBhN14lYbeBQfifj76YGiB2Qal5WDRJvDFavDDu1Nei7FgmT3lBO/tzl5FWtoi5vKEsmnsS7Hz3OvPkv0wZE7jyHhsIR1BUOZVBjFSckZaDpEVrtThYcOouJo4/E497ytlOdD1059rqybZsh6HVYfXtEDXKntDXrhoDhVmU7yQPSTdNqkNMkJUCaZo2v3K0EdW1UgmV6lSG+EpRz1W8YaiOz2LwdrxIs1K1cAy7D8elUgmwFlSE81JDAiUpwvmzDuakXmdOxWQlKlpJt7qmToASMNQYtq1TuJ0OGmV/p71YC7AZC8el0JfiwmuZCJVhzW5cSjN0QRNcYtBV6BjVPUgLELtnYbJpONgTrHT/IHCB12tg80/RXK8z3WJvhfGlRzq0Tp5aYpstqzfe98YPMx+ujxfHgqh8tNT/s5hv2t9Oxa4KriX3f7NmzaairIDU1lSce/h3/+Mv87VvBsobYn7oSZJGA+T7iW20OJKkNMud5ujG4tpLv6JvN8aK0fOVeuKDKNK03xq9ZNV+OfFNjmu4RENUQmFVvN4+boK5Lzf905d6pGe5RupJna04lCGWHsi1DwNge31XHplYDIqrBaA2b0sbkmOcp9xXUTgVquUXpbWmi3FfVch6G+6xa9tLVfVD2Wc17c6YWxf5u2GTOZ3oMQzXAfK65lSDpxh6hXTUd25z37pvP8eHbT8amE5JSGHfADCZMOZoBQ8aQWmC85yZjV4bRUIONG8sWAH5DEHS7UhEUUIICq0qV41luCHSerPxmxnwFwKWkK8GQDzfXm19zSSsw964dMMkciNShBDpeZigDTBhr7tW7VAkuO3yoOc9aq+S1xnSrQc4nKHmrmuevrYzfQ9ITzc8TRTnm8kKC+sygFIIOGx3fD9sE8/6vqWw1TWenms+1lZvN5YMkQ/kgK8Ucg66h3Xzt5SvDtBiPQbdSrq1VfrdS5RrwKNfm0ML4/CUb479Ll6/v8078cPj9fl599U0A0tIP4f4H/tdnHYGxfiC6AvM9PPJV/PnYcrC5rkpfWm+aJkMJJt5mzg+NQdE1JVaj3tR3g7OuBhs35ttKfqcGVNeV/E8z3JcjzV7QdYobV1KXUkow13z/UtOp1lXodfFrVFP2X681X7896lOUMpHuNRyfQuUNiGZlH1LM9z99reGeNECpa1FvfmoQa+X52VfTyoqVX9HYVElLRz3NzbX8+Kf3YrM7OOfDp/h90AfrvmHjiINZPWUWK/OHEna4cbsS0VJdsXzf7UiE7PhvY1O24yg138/8yu9UvSJe/5KQbU5zSPkdaje3mqYLRpnLSE5DwPCGBvPvoh6eJKWuJtXwnN+g1GNlKfmuTTkXq5Q6gHBRfJhbtZ6nRAlUrj63e5X8oakq/ryoK4G4GyvNz5IDhpjz1npDuUYNYq4ejyyl7OFU6mbqDb/biCMHmeZVNJqPdTBkXnmiUn9QOiE/9nejUnbPUs6fCaXmfQoa7gk+pW4hHDGXp5cqz/gNShnaWCcyMM9ctvjfMvPzR1Ap56Yo5b5OQ/47KNu8rmWbzOkoVcoxEweY99FoozIMfIdSt5mSYD5XDxoRvT+1t5vPjR210w0jv/3tbzn99NNpb29n0KBBXHjhhcydO5eWlpbY2yNC9CcUCjFv7tsAjB13xF5OjdgTPF0tnPLGH8mvXcMHM66OfZ7TsIGTPryfjw+9jI1Dpu6RtBRtXMz4+a9TsmEhTn88w/d0t/Fvh5tP57/MSMBntZMUDlK4eRmFm5cxybCOpQeeiPOQ0yEglbdCCLEztvYOvfTSS0lI6KPCW4j9UFtrIx4tCU9C9IFz2JgprFj6BSPGH8SYydMZMWEqgVYZWkMI8f3ndDr51a9fYNXKrygqGrG3k7Pv0yOgWZi69g2KGldTlzmIsvxxrBp0GM2p363TckpHHUM2zyOvbSN5NWtw+rtYP3gqiwceRU320N28A32LRML4utvxejuJRMI4HG6cNhcOhzs2Wo0lFGTIwk9wt9QTqKugctFnHN3VShFQDIwBWlrqyMouQkPHEYxWWA9f8jHDl3zMCQ4364cdzNIJx1OVOnmv7asQYs/Z6YaRE044gcrKSsrLyxk1ahROp5NRo0axbt06MjK23SIkhNF7771He3sjCYmpjBlz2N5OjtgDDv76WfJr1wDQlhLv5VZctYyUjnpOmX0X/8z7N12Ju/c+ktpUxVn/+UVsOuBwUZE1gG9sDt5oquC/b0UDqOdMmcU/p11MWnM1eW3ryardiBYJo1ssaDosmH52fKWRSLRnsaaR3FRN8bqFeBNTKRt+IGG7W02CEEKILTZt2sTs2bPRNI2rr766/y8IsR/o6mpj7cr5LJz/ASuXfsmIsVO54qa/YLFYGD7mIP74z3dMyweQhhEhxA+Dy+VhwsSj9nYyvhfO/upuOl2pWCNhLOjkNa4nr3E9k1a+w18vfKbf71vDQc6afRspnQ2mz0et/IgRqz7h5WN+S3nBuO1KU2pbDcnBjUQsVkI2Bz53Ml6/g4DDQzAcpLGthvDmRkJBP11d7XR2tNC5qYqO7laGlUxkxIDob19VuY7/u/uSbW5n+mFnMfOkq5g05zkOfe2RbS53xclXkpAQfdNhwbRz+PbQM7GFAgxb8glDl3xCcnsDI5d9xJBV/+OJwqfpSM/d5rqEED8MO9Qw8te//pW8vDxmzZoFQGZmJpmZ8VelkpKSSEqK9mJ66aWXqKmp4brrrtsFyRU/VM88E82oJ008BpvN0c/S4odg44DJjFn2PhY9wqxXf8eaIYfgt7rJbVgPQGtyDl53/PXMcDiE3+vFarXjdERfB2zraGLtpm/xB7z4I378AS+RSBiLZsGChaGDJjGweAwAXm8nazd+i9/vxRvsxuvtoKu7jc6WGibbHIwNBfjm4DP5/JjLWb9uCcc+ezN/Ai5DozOjkFS7G23ey9iCPiIeJ5+dcGU0YRaN5OYaQvZommwBLye+fCe6ZiG9oZyMxvLYPvjcibx+xd1UDR4PRIfuUlnCIXRAt+50u7UQQnzvvPDCCwAcccQRDBw4cC+nRoido+u6aYix2upNNNSX097aSFtLPW1tjXR3tePzduIPdnPLn57FaosOW7Dsm89Zv+Jb1iydz6a1y9D1+LAK3V3ttLc2kpqe3XMIMyGE+AEIBoPfr7ijegRrOIyuaUQi0f+D1mMYzt0lra2aksaVPT732z0sGXa0KZ2Jnc0kdTSS1FxHYlcjC8eeDJpG2GqnPG80BXVrWDHuaGryhhGxWJk8/2UGbPqW9PaaWMOIPeglqbMJW9CHputYLBHsAR8FVct4d+g0mttaaOtu5tTVc5hVs6JHusIWK0GLjfEhP2u2fPZz4E9ACPADtZu+QQ9VU1s6Eq87AY3okEx2uwur1Ybf3x3LG+326FA7FcOiYzrUAG9abVhSsjksNYvhG5ewZuIMRk6aQXtCdGiv5pz48L+1RSP4bPql5FWtZtSSOSw+YOYuaxRxtzejebvpyMjrf2EhxB63QzVvN9xwA1OnTo01jPTlgQceYP78+dIwIrapra2NN9+Mjh06cdLR/Sy957l97ZRULSHB10pZwXiaUqPjR9uDXhK8rfjsmQTtLhI7G0lrrSattQaXv4P1A6fQmFjU98p1naTORrzuZEK2fS+4bCgcxNvZQre3HZ+vi8yMAhKINlx1dLVQ21yOpdWN1WJFRycSiRAJhdD1CLlZpSQnRd/2aG6rY+Wm+WgWKxaLFV3X+TToY+HQwzivYikjulsYtu7L2HYDwFmRMNVPXsZN3g5m6xFejETHoTz9mKs5eOJJADQ0V/LCOw9sM/1OpyfWMNLYXMXTL93R63KHA9eNPIyk434KQGZaAYWeFAZ0tzEAHZoq4IunYst73UnMnfGj2PTRrz1A/uYVvP6jO0hsrmfw6q9i8yIWKzXFI0huqcXd2UZjfryi7/in/siQxZ8RdLmxhoLYAn4skTBBu5PNIw5kznk3050ib94JIfYf55xzDrquM2KEDJnxQ2ANBdDQ98kyzu7g93mpKd/IysXzWPzF59RWb+I3d78aG+Lj4/ef4tt5s7f5fa+3i8SkVAAWfPYucz95MzYvr2AQI0YfzOSDT6Bo6PDduh9CCLG33XzzzXz22WdMmHgOI0fumeGVe+P0dZLeWEF6UwVpjRW0p+awdNJJsflX/fcSHCEvtnCox3crckfywsz48+c5b/4ae8iPz5aA15nEprxxrC45mBA73wDUkpLPU9NuZ8KmD2lJzCXR28yGoVOpyB1FxBpdf1J7PWe+8jvSWypN363MG0V99mAA5o85jc4paYRy4/EqqzJLsS/7mhXuFDo3/I9jNn3JReULtpmW33zzEp9u+TsHGEG04tEDZFmsuCNhrFv+JToTSfF4sNnsFAX85LXF4wkNbq2Gt/8Zm0686XH8GaXYbHbcna24O1uoS83D5+/GtqVTYe3A0fz14c+ob6gmLbcE2gL4X70fNi5h2MKPGLLoE2pLR9KZkonXkYTPk8TGEVOpLh0DmoWawpHUFI6M70wkQlpjJTmVa8ipXEt6QzlaJILFphFyOHn72vvMOx+JkLF5LTkLvqJw7UJyNq8msbWBlQcew3uX3PYdfkkhxJ62w12SKyoq+MMf/tDvcpWVlf0uI/Zvr776Kj6fj9yCAQw6YGKs55saKOmBR+eapo3B03QloLMamBQl6KIl2xx0MGIMJmbVSOmqZ0T1XAbVLya/ZQPalnBRb49z0VAYragurFvEGd/83zb3q8OaTMOQaMCl7KaN5DWsI+J2EbZYSWmvI69uLXn1a3H7Onj29HuozRmKluqioGI5o1d8SGJnI0ntjTh9HXQ6E/ClZOJLTOOT465iVUsNa9Z9g8/fRWRLcCotyYGu6/j9XmYc9yPypwwBYNnCz/jonSexWKxoFgsa8eCpGhqnXHAtAw6M9vxYNPcj3nr+b3R1tOPt7iDgNweO+9EldzDp8OMA2DxvOf955bfb3P9zz/0Nk4qOxT4ojYZFa3n903/2WOZtor1C/jLtZMaVDsfW0UZX5QbuX/AhH3XUkwxkAC8ARwI3AKFUK/bhmQS7gqTYSxg+cipOlwdXQgJOlwerxUpEjxAOhSgaPw5rafStE4ctjYFDxuN0uXG5k/B4kvEkpJCank1mdj6W/IHY0qK9RwrG5rBq/MtUNNSQXFtJalM1iXVVoGmEnC68VjfugdHCos1jJ7W7CUfAywmv38vTv3uGz61e0mo3Uz5yCuUjD8TvSYoGdq/ehHVAPlvPPk/Yhy0UwKYEpLUH/RStX4RzdCmOLT1HUzevp1VzEnbGg2clGgJeqteLw24+59PSzEN4dXjNgSuNfZncSpC/dCWQu81q7vk0SQmutnhDPPCWXQmmOlAJtBlQAtt2GQKxWZSAb2pw8UIl4Gdrp/m69xnWXZRlDnKnBmJNTzZX2q2uMAcQNG4rI9kcLK2ty7xdNbhqa1f891XTMWmgueHrnW8rTNNDC1NM08bvq8FHV5e3mqbVoGVHjDP3UiqrjQd+rGk2B9NzO83FgyIlSGCCYR89SvDFhevMgWtHlph/82YlmPNBw+MBBVuVY2kM3Kqed+KHqbS0lF/96lf87blF/O25RQDc+Gtz7LH7f6VULCtBPCMt8WldDQ6tnkZqT85Kc0BUzf3di8qmYKFEA5fm1a2hMyGdjoRMNON9RgmQbsnqJ0C4YXmt0BzMEOUa1JQg3nqVEpjQsC2tQxlySbn26VLmG/ZB6yPwdkbtJiZ+8Qojln4E6Lx48X3UFo01LWPLjt9XQ+p2lH2wecz3Vc948/0sYLiv+FrNZRe7EmgzpOR/ltR4/ujJUQKiKvvY0dpKVfkaSgeNwe5w4kp18b/3X+bLOa/SWFdJe2sTqtrqDRSWDiMhO5Gc4hJKmkaTmp7NkCGlZOXkkZKWTmJSMs1eC6kFmdgd0Q4og0aMx2azM3D4OEZNPIS0zHjPVTXPdynnQMgQnF1d2Bh4Fcz5LkBaonl+t+H4hJXA7Kp2pTxTrwQALTD8rt1KTDY1EGumEgTWmC41QGxlozkPa1S2q17mJYZzol4JkDtVObeqlGCrg5TApbUt8fMtXzlvV1W0mqbTlGM/dmC8fKUGS81VgiR7lSDSajmmwhCAt1Q5j9uU32Vciblctyho/l3TDesOKb/5IaPMPagrlYCpWYbzJVm5bk+ZNsA0HVDugwlK4NrV5S2xv6ePiQex3VXBVsW+KxQK8fzzz1NbW8uBMy7ClRc/p423tL7qBwB0JY8zBioPvrzKPM9w3muRMCM++5qDyt4ls6vatNymzNEs0g5A35Jv2YIBbJGejSIAkbCG3uiFLc9l2U1lOELxa314+dccsfApVo6cwZLRx9GcUQzJ5vtEKN9JU0MVuh7BZrVj0VxYbXYikTChYIC0nAwSk6Nl7fLaVD7fkEAoFCQSCRMOBNAjKwgHwjj9Xu766EXSW6qJaBbaE9Oosliod7iZu/49VtSlEwmGCIeDdHS2MHbsdCaMmwFAZVUFD372YCxNNuAioA1oB+wuDy53ChGrlcqsErxr55OZlkNySiafpmaxOCGDlOQsUlOyyM0ZQG5JIa6uNmxBPxek5WBJjt6T3W1NPNfWhCfVid3bReb6lWSuWkL22qUk1VeTNWIAra407N4uTn34lyTXV/Hur/5G3dj48F7OLc9piYOj9yqrzcKa0lvwfzaWgZ+9S+aKReRvWh4/vg4Xm84+n6T8TCxKIG49olPy9Yccc0/vnbwDLg+WLYG/7QkODv3rrZR+8QGuTiUQvaaRoPtJKog+16WluUwZU0h5xjXdd3WdYHUdiQ01BN0evGmZkBW/h+creVKXEshdzXeMeX5uqjmfSVHyf6vyLJ6uPAM3GfKtVuW5M0epe1Dv79VK3po3Jv48WNtizg8TlbK4mv9NOmDb8XN0pQzkV8oeallknCFfzkkz5+mZKeZ92lxvfmYYkGv+LZz2eLonDDbXl5TVmfPOT5Qg6MmG361AqfPoVspL6u905Ph807TLUB/jU/L0wkxzeWHJRnM5tkQJoI7hcG5uMv+G4wcpdULrzXUCnYZz85hJ5t9sU405X1ef+9W6CueWe2qHUv+zo3a4YaSqqorbb7+93+XUV8iFUM2bNw+AyYecsNfPlZTueo5Y8zxDahfGGkMA6pOKaEwqoCUh/jBgjQQJWF04wtEbd8hioy0pl+bkPMJWO5sKJsaWHVC5iMMW/bfXbUY0C43pxSzfNJdvNnzGTVWrGN3dalomsbsVWqoA+Pj4a9hcuZoPPn+aqUTfrvhWWef4A44if8AgANpaGti4dsk29/nI9gtif4eCfqrL15vma5qGy52Iy5WIzR6/QTtdHvIKBxHRo2+JoGlYrFYIg0Wz4HDEM87k1EwmHHgU4VCYSCSMhobD5cadkIjT5WbTpCPQho0n7A/R1dlGySEncrXdid3hJLzoc3j3Sa4AzigYyLsTDmPr0cnKKeayq+8Helaa6BHzTT+/cDDX/vLR6DEPmTNIq9KIANCVmUtXZi51IyZgUzJyv/IQ/er/vcgZ159BSk05hz93H+9f1vPeqFusNBUOxlj9Pudnd+PoaMXu6yZsdxCyOgk5nCQ21ZJSW4G+pVEEXeeo26/G1dbM+mknsOao02kcPKrHNoQQQux61nCAsNWQ/wW68Pjb8Pg7cAc6SPS2kNLdQHJ3I12uFD4ed1Fs2dM+uBOPrx2/3U1TejENGaWUFU9gU8FEwta9P0RIJBJh2YrPaWyqwmF3MemgE3C5Eli18iuamqrpaG6gs6uVzPQCJk88luTk/G2uK7tqLQWbl1Ow+EOGVa6Ofe53eKjPGci8+e8wetQhHLZwDu6uNurGTaJ6yDgCHvNDVyQSpr29iabGahrqy2moK6exsYL6uujQlDPPvIaDjov21vX7vPh93bis5ge7neXt7qSprorG6ipqKtZTtn4FFWWraKqPlsV+c88r5OSVAtDSWMvGNfFyltuTxMBh4xg8fBJDR00mv3hwbN7J517DyedeA8D40fFKAICVSuP29OPPhuN36W4JIcT3wscff0xtbS0ZGRmMHLtn3xbRImEu+ur3ZHfGG1k6nGk0JebRnJhPbYq5ge+Jyb8nkuQhZLETttjQ0LFYNTRdJ6KZnzFfnP5rXIEuvG1ldFXM44T2aoqD3Uxc8haupe8w1eqgKxLilGN/ysGTZgKwecNyHrn/mm2m99TzbuCok6IjGTTUl/Ovh3/RYxkNeBPIB7oS0nj2xw+xzt/NfY/+JLpAQ3mP76Sl58YaRpKTMvB4kklKTCcxMZU1rgSOTk1DT8kgMSmd4tKRlCRHR0XQdZ0zAc1Yia40zoYcTjod2bHprUfJm5KBNyWDhC2Nu7VjDyS8peHWEgwQsdmhK4AlHCZss+PqamfmH3/CBzfeT/mEQ7d5jLyZOaw642I2nnMpCdUVZKxajKOtFeoaaM8tpD0/PqRW5trlNA4ZBZpGasUGZtx9IyGni6YBw2kYPIrmkiGE7Q6CvhAR49DXkQilX83B1dlGwO2hfuxkascfRMOoCbQMGk5nOFrmS6yr4vBbf8vSn95C8+gJANg72rEG/PgysqLTne1Mu/063M2NJNZUYveaK6A3HXcG839z7zb3VwixfXaoYWTatGl7vQJb/HD84x//4Nprr+XN/9X0v/CuoOt4vG2ktVWR1VKO3+FhRUJ0LMqQ1cHA+iVo6GzKGs3a3APYmDWODnfP4YzW5h3I2rwDsTnBEfLicyRCYu9DRbSk5LG2+ECsWgRLOEBNOMinvi4yDroQb9F4wlY7ze31LF/3NV8Ba4BKoAJoBXIsds6cejqDElLxupMoyBvE1Ikn8si6eYzraKTO6eGr3BK+yClmfW4JmVkFsW2PGDOVy392X3SYqy0xLWxbenvrkQglhgr2oaMP5IbbHgOfFZc7EU9CMi6rG4tF6bkKjBx3CCPHHYJdaZDoLm/rsWzxgJFcfNWdRJQeaWpjBkBCYgojxx4S/d7Sr5hYtorGgkFkVm0gs2ojM574E6/8+rFej3PJsq/IqNzAkhmzCO3BWDUhl4dPfnYXJ//yAkbMm03Q5eHTc34eLbz1IehOIOCK90TQw9EGG39iCk0lw9hanPQ01mEJBXF2dTDqvRcY9d4LNA4YzvqTz2HTjJMJJib1snYhhPj+8Pv9XHHFFRx77LGcfvrpe3z7WW2bSfC34/a14w50kN5VS0ZnNZld1XS5Unhyxp2xZS/49FbSO2t7XU9zorm3eU3WEEorF+MMesmvW0N+3RrGrXwfnyOBZcOP5vODoo0otqCfosql+F2JNKcW4HOm9bb6XW7x0o957sU/x6ZHjjuMivJVPPHEr3ss+/nXr3Dehb9j2IgpPeYNW/gBJ718V2w6DHycmE7TrN/SnppDTWstL71yL6+/+VeWojE86INPniGMxtcZuSw7/Cy6p58JFgsLF3zA80/3PvQlmHv/rVz0JY/86Tpy8kspHTKWhIRktIgFq82BzWZjwuRjyPYUA1BbtZGNaxdjszpxOt10dbbT3FRNS3MtLU21nHn+TQzMib7V8snbz/HGM3/pdfvpmfmEgvE3SSYcfBQFpUPJzCkgNSUXT2IymqYRDvSMIyaEEKJ///jHPwA4++yzY3GXdgtdJ727ltKmFSwpPZKIxYZusVKRPoxEfyvzS45jceER+O0eNEfP52GAVnc2mttcB6DZena6A6jJiI7osM5h57GlL6ABRwPnAb/UI7RveZtkXM16jnj/EdpTsshKsrLRncgmm43KcJhQOEQ4FMRisWKzO2JDNQK43UkUlY7EarVitdqwYMFitaJpVha31jGjvpLXz76djuRM0lprmTnxGFIAjx4hIRzGEwzh0iOsLRhO2tB4J8/k5Az+8JvXzfuYqbyduuWttd1VTxgxdND0Jybz5q8e4bi/3EzJki854c5r2HjgDFrzS/EWl7D2uGh5AsDZ1hztgOiJNrZ05RfRlR8d7ry9xfyGac7yb5h584X4klPxJyYTsdnpzsim7KAZrD72TFoKB8XT0G7uKAkw53cPE7FaaRw8Enui+e2CrY1DE156lKzF8zno99fy4eNvkPPNl4x76A6qDjmKBTf9CQAtHCb/my9NX+9Oy8Tm68bh7SaQkroDR1AIsS071DDy6aef7uJkiP3dqFGj+HRpoP8Fd4QeYXTFlxS0rCWro5L0zhpcofirWDWZg1kxOdow0uVM5f0xl1CbOpCmpC2NC3pvK40LW+14t/T67K0YoOs6n6cU8q/cUayrW87GunX4g9FM+ISWCo4snQzAkMKxnDbjSrwJaTS7ksj0JFPoTMDjSsLpcNOaYI+9GTKodByD80fi9HUSXDeXHH83p21exWmbVxGyOahf9hXlEw9lwamXk5FdQFae+VU1R5K58La1wSIlLZOUtEw66wyvBQb6HjZhd7GEghz+3/tJq4sPLdSZmsnKw07udXlrwMdJD92MLehn8dHnxj7P2ryG9oxc/IkpvX5vV6kfPo6vL/slBz92J2M/e5XSZV/x77vfiM0f+eXbJLQ20FU6gLbcYlrzSwm5Pb2uy9nZjjUUwB20YgmF6MrK5cX/fEjuN18x7MNXKf36QzI3rSbzL7dxwD/u4usb72DjjFMAsAT8aLoO9t7XLYQQ+6J//etfPPnkk8yZM4dTTjllj2//1G/+Slp3fa/zulw98w+/zU23MxmvM4kuZyptnkzaEzJpSTC/BfDacb/BEg6S1lZDZkcV+bWrGbrhK5K6mnAG4q/Ru71tnP72H2PT3e5kWtILaU4roDm9iMq8kdTmDdtFexuXlBQfMmD0yEPxeJIYNvxAbvjZY7z33uNkpxbgciWwfNUX1NRt4vF/3sRJJ1/F9CPOAaCicg2r187noflvMRZYDiwEvhw6hYwxM5hQEo3z5a9aQ0HBUKqq1nIvcChwCDAUnUObajj0lb/Q8tnLLJ52OpsLh2KxWEnPyCMjs4Ds3BJyCgeQnVuMZrGSZ4jVVVdVFv1/dRl11WU99q94wGiyC6MNI+tWf8vLT929zWPR1toQ+zstM4eklHRS0rLIzC6kdMgYigeMJK9gMAlKeaJowHCKBkRjfoR8vQ+nIoQQ4rtZvHgxr732GhaLhauuumq31RGkdddxzOqnKW2OBixvSC2hMj2az345+DQ+H3QGAZu7r1XssPy0Uo4ZexbJ7jQ8ziTmZWVwvjMRu82BLTWB0z56nDGL48OGbo1s2Z2YSkPJcN6/6Hd0pkXfuHAmxRsMsnNLuOFX/45N6wFznvREWQ1eTwrT5zzKAXNf2Wb6np52PvVF0XzN09FMRv1mKgZO2Nnd3qVCLjfv3vgA05+8h5EfvcKgeR8C0UaTtSecFVvu8NuuIXfpAmrHTmbziWdSMf14Qp6EXteZWrmRiNWGq70VV3tr7PMxbzzFmDee4oNfPkjZwVti4uq6eZxGi4W6URPpz9xLbqJw5bckVZZx/HlH4eiIdirNWLUELRxGt1oJeRL44lf34k9JozOvkJa0PJztrXia6nG3NJBTs4kx/7yPlT+6GtzSQVKInbXDQ2kJsbNaWloIhUJkZWXt3g1pFg5Z9yop3vh4eToa7YmZNKYWUZs1xLT4iqLDdtmmq5vLeOKju2jtMo+vl5KQwaRhRzB2YPzV4LyMUvKKDWmx9N7TZCvdYuWd03+NLeinZNNCBlcsYOCyL/F0tpK/aTneDMNx1XV+dP2JtGcVsPLwUyg/eqap18W+KGK18cWZ16BFwhSvXMCaKcdQO3wCei9vrwB4OlqxBf1bvmsFXccSCnLiI7/C1dXON8dfyOIZZxNyunr9/q6w4qTzaXRkcNzjv8PpNY8bOeLrdylaYx70rDMjh5b8UmqGT+CbWT+NfT7rtxeQYmgQ6srM4b0//5uq8VOpGj8VZ0crQz55i5FzXiJ18wb8KfGKrZIvPuCwP99IV04+HUUDaS8eQGd+Mb6iUjoLSugsLEW3ya1fCLHviEQiPPTQQwDccssteDy7v2E3o6OSpqR4p4HmxHyCVic+ewJeeyKtnmwaEwtoziiiOcn8Fsi/j7pnm3lRbyJWO03pxTTnDGDt4EP57OBLKKpYRqcn/lZI2GqnNnswCd2tJHU24vG246laSUFVtMLmm4mnxhpGPJ0tnPzi7bRkFLJh2FQ2jZ5KeAffkhw0YBzJSRm0dzQxeOB43FsesAsLh3H55feitXuZ9PUr6KOm82ZyFi+s/4YBBYMZOf89Bi/+nAtdicxbGK28meJKYtjk45l64EyOyigAwxsTxQXDuOHaR6mqWktTcw1vdbbwAt1k1FdyZl05x1ZtJK2xiqJ1iyiedjp3PvgJVsMQFb29YQpw3JmXcdixZ7L62/lUlq0mEPDh6+gmGAoQDgVJTo7nj2npOYyeMA1fd1d0+C13IhmZ+WRk5ZOekUdeQXzIq4OOOJmpR57SI8ZIOChvgQghxO60tTwwa9asLZ0nF+3S9VvCISavfJOpy17GFgkR1qxUpA1DN1Ry+xyJsTf5d5VvNn1GkjuVYbnjSHQlc/TYM2PzNGNMoWQHG0ZOx5eUSWJHI0nBNhJbG0huqMbT2UrR6m/xJSTvUBq8nmjDfsAR3V7EYiHg9BBwJhBwuAnYXYRtDroTUgFIbGvg7H/eQEJnMy9deh81xfvWUM4Rm53Pfnora6efRPa6ZSTXV2FxmssLli1veOYuXUDu0gVMfPB2yo49jUVX/6bH+tYcdxblU44koaEWSyiIJRDA3drEoM/fIW/ZAqrGHxxb9rBn7qdkyVfUDxzBuinHUH/4jH7rV2y+boIJSXx51z+Z8ZPTcXS0EXY4WHHh1aw693J0a7RsGbE72HTMqbHv5X71Gcf95rIe60us2syyex75zsdLCNE7TVej0Yh9Qnt7OykpKbS1tZGcvGMZ377u97//PXfffTe33347t9xyS4/5//lonWm66eUVpulIWzzQjt4a/9sSCTFx/ft8U3hUrOJi6ua3cYR91CaX0uzJpTW7iJBhvHCMPfyUV181d9+v71oy4hXtEaeFLm87SQnRyg6/FuT3fz0bgIFFoxkyeBJDBkwgP3dQ9LVX9VVT47bTzRX46lseamEt5AuBrpPaUEnuphWECvOpGnsQAK76Wi656pjYst0p6aw8eharjzqdzqy8Hus2Bt5SA14XK0GY1QBWahDPTkOQUzXo1JrKVtN0Y5s5eFJ6krlwkW0IENapBg9ftIgjLz4Jb2Y2s9+aTzAcwVNTyaG/vJzUDWuiac3KoeySq1l34tlEXPHj61GC3FqVRimvso+phuOj3kLTk1xYGxtwrllJ9yHTSdkSOMvz2D9wLF5IYOUa3OWbcDbHG8uCGVksnb8K35ZePaMuPYuUuf9DdziiDTyBAKHsHDa+8BaBQfHGs7rmLhLWr8ZXUIyWFP1dih/9CwMe2naP2IZf/JrGG25mU605WJjxWOemm3vRqIE11WBqagCwTMOYshXKd9WA6mMHmIepazK8llyrvN7sUl5hVwOv+ZWh2rr98XMkVwmepga5synp8io9rIz7mJJgvl7cDnNDkxps1BgEL1u51hqUgGF+pdItrKbTEDytucP8Cneyx3y95KT2/TsZr6FMJZjeQiVYmhpg3bi8kkRalX1Sg9Gq6WwxjDucpNxvjYHX2tvbyUlP+0Hni73ZH8oDH3zwAcceeyxJSUlUVlaSnJxsKgM0rzcHAgx/utk0rSt5hykyq+GaQdcp6lrPhA0fMLxyHi8fchPrLebOEZpyPRtfBe0RIF0JhmzaVm/LOwzz1fzfMG0L+kj31ZHWVEF6UyXpjRWsGXYY64dFh5nMq13NeU/cEFve50xg/YhDWTl2BhUDxmMpMJ8nmgtWLfmKtMw8ikqHEzEEXkwtSObD157hqb/ejt3h5Df/96IpJsbI/z7GIc89aFpf2GbHGoreP+499kyeaWlk8rTjGTvxCByGzgcRJcCj1Wa+h4d88XuQyxJk4JcfsPGQYwi5PD3KOHaPHU9DLbaAj67MXDyZ5rc2jD+5GrBRLcfYlbzDeJ9VhwAZohzLReq5qKzb+G31vqkGx7Qp50tzh/k8TjB8P1sJNq4GNe8rHWoZJkUJxKrmfw4l7poxD/M4zfuUqOxjhRJMVd2W2xDYNkUZfnalIdA2QKlS3vQZ9kM9lhGlLKYGC91cZy7zGPPxdiVgrFqWGDfIXE6pUIKt5mXEy0xrlWDr6m+snhP1rfFyjnruJSnBZu3K9dPtM5eDjdtSj0+Sku+qgVzbuszHwHis1TKfMc0Ag/LM14gxcGthlvk3zFDKQJ8vNQ+jPLQo1TSda9h2meE37OxoZ/Lw4h90vtib/aE80NTURGFhIT6fjy+//JKDDz64xzLG8kFf9QMAersSELpmDSeufoLM7mhA9U1pI/lg2IXR4bC2MVRWjHJdWXIM15F6D051oes6ja3VrClfyJqqJazdtJBwOMgV597JkIKx5nUbr3/lGZfc6HVkC/rJqC8jtbmGNWOP2LLdCDM+fZQVh51CY/FQUkvMw3Cqz05bn3mtPi86Gs4kj2nbDsN9psMXRAsFOeDGy8n+8mP8yal8/ujLdJRGywjNynOaphyfBMPzUGay+drvVspPwXAEi9+HFokQdrlNz/xq/lbZaA7CnJNqzh/V+8jCdY2466opeu81Bs5+BffmjQBsvvZmgr/5rWlZ9XmoyhBcWuvuijUoAQw6ZyZJ876K70NyKvVHn0jzwdPxFhSTMi1aD2NtaiL9bw+Q+NEHONavo+k3t7H07J+Qsmg+WXPeoeqci0kYO8K0XYvxfNB1Bp5yDO5F3xDKyCSckUnA5SaYlsHmW25jxDHmGDxzV9WZpmMB0yMRPAsXkP7J+7i+WYB/9Fiqjz+VrjHjY+eAWjOcm24ux6p5i/G5Vc3v1WDZ6nOpGozduC41T8pSykA+5XnZmG9blLzUpzzTO+1KWVQpqwZC8Wm1fDCy2Hx9+ZTyVauS7ty0bb9xptbFqMt2GMpefmUfipS8demmJmW+uQxkLE90KPeXNKUs1qLEA8pL+e6ditXA7n1Rt6PWx/X8nZQYwVvOxfb2dnIzdr5+QLoNi70iEAjw6KOP4vf7KS0t3WXrtYf8nLrorwxoXE5Gdw2zh18MwNcDZ5qW06y7/m2Jlo4GnnvzQQIhP9eecx82qx2nw8VV591DXlYpdrsTXLv5ktM0WrOLaM0uwm2ojPQlpfL8Xc9TuvB/jP7wJRKb6zng5Uc54OVHac0vYf6Vv6ZyyuG7N227maMt+kAdSI5nWN15hcz599sUffQW4/71IO6qcobdcyul/3yQ9Rf+lA3nXgbW797r97sKZ2bRnTnd9Fn35T+lG1i5uRkAW3srCZs2kFW7GXttjakksuLx58FiITPFhaW5maKzZuJauYIBZ5/MxtfeJ1gUHRYETaNrSLQgtfXMKv/JddTMugDXxvV4yjbgLt+Eu7yM5JpyLJ0dNP/4pwghxL5ka+/Qiy++eLdU9miRMBM3f8j4zR+T0RWviMtr2cj6jCF9fHPvCNld1KcNpj4v3kCB4aGvNb2At874LXlVqxi24jOSOhoZvfh9Ri9+n8asEj66+FdUDxkPwML5H/DM47fGvpudW8zgEZOYefa1sSGhZpx6PovnfsLS+Z8z5/Unuei6+JBey445i7w1i0lqqsUa9JNasxlrKEhnRg6rT7mA/ONncf2WfDegNIpu1z67PKydcWr8A11n6n/uoyOnAEs4zOCv3yd7zdLY7M/+70nqJu+6N3x/yEo/fZdD7/8Ndm8XC35yCxUX/7Rnw5wQQuwD0tLSeP3113n33XeZOnXXBl3X9AgnrfoXGd5auuxJfDTkHFZlT9kt98O15Yt564t/UdNYZvp85OApDCoZB6Ht75scsjupKxhGXeHw2GdjvnmX8R+9xJhPX+WbEy6m7qSTaSseRMTRe9zTrcKuLZWw/ey7brOz8K6/M+XKc0lbvohDbvgRn/3zFbzZeX1+b3tooRCjHr2fIc8/jjUQIOxwEkrPIJCewYbf3UXr6J0fwsubk8/ai6+m5bqfk/PSMwy57SYK/v13yq/4KZHMzP5XAOieBDBUmm/662O4V68k+fOPSXvrVRz1dRS88iwFrzxLx7CRVH8SbTSJuN2kPvkvLL5oh4b0O/9AyuBxtE2aQtuEAwHofWCvqISv/od70TdEXC42ffQV4azsHh0pjByN9ZQ+fB/OmioCWdk0/eEuIsnJoOuUXnY+tpZoXYRn7pekPf4IvuJSGk8/h5ofX4nu3D1Dxwmxr5OGEbFXvPXWW9TV1ZGfn7/LgqxqkTCnLHqIAY3LCVidrM6evEvW+129/uXjbKpeidPupqahjKLcaGVLcf6uHxN8e0VsdppKhtFUMoxFMy9i8KLPGDX7eXJXLyK1ejPBhHirc87ybyheu4SGAw6mfeBQIo7dN/TUrmTzRXutpGxcQ+lrz7Lh2NOJOJ3oVivlx5xK98mnkf/6C5T8+2+4qysZ9dCf8adnUnnCGXslvaHkVNrGTcJy6CE9ZxreWImkp1P5whsUnTkTPRxGt1nJ+ut9BEoH0J2ej7ewGN1qw0YEImEibg/B9Az8qRl0DR6Oo6GO7oFDyM1IAF1H83nJu+Gn+MccRPWJe2ffhRBiq6qqKt555x0Arrnmmt2yjcPWvsJBG94GIGBzsaroYBYNOpqG1BKo6+zn2/seryeFtSOnsXbkND476nIKK5czfNknjFj2MZkNm+neMnxUfe1m1jx+K1OB+YDF7qS+tpz62nLCoRDnX3EbEO2pftnNd/L5ey9z5EkXmbYVdrh478YHYtOZHbUMm/MqvpR0NKsFf7K599yuMmLOK4x7+2nTZxGLhbDdid3vxZsRj+WSvnwRHUUDCCSn7pa0fJ+lrVnOEXfcEJue/M+78Y8YSf1B07f9JSGE2EssFgvHHnssxx577C5ft65ZeHf4JUyq+og5Q87D59g9sRmaOur415u3E46EsFpsDMgfybAhkxk6YCJ52QOwaBZg1wzLuH7kIQysWMjghZ8y5a1/wVv/ImKx0lFQQndmDvNuexB/enR4bUdbC5aURCLbOax02O1hwYNPMPXS00kq38jxp0ylfcAQ/nf5r6kZH30rwhIMYNEg3E+DTG/yP3yL4U/9PTZtDfix1lZjb6zHW1Sy3evrk6ZRd+b5ZL37Gq0HTUN373hDQCgrh46sHDoOO4KqX96G9vHH5Mx+k4QNa+gujXds0T0eGm/5LZGiYhLefYukV19i/OVnUXXuJZRdcQOhfsouvhGjaLzhJghHCGdl95uuobf9gszPPoxN573+AhG7He+4iVg6O+iadgRdJ8zE/fUXeN5/D1d5GYUP3kUoJYW683+8w8dDiO8zaRgRe8Vrr70GwHnnnYfd3vdQVd9FSnc9R694ioGNywhaHLw47udUpQzu/4u7UGNbtBfq+SfcHGsU2RdFbHY2HHIsGw45FkdXO/krvqVhWPx13oEfv82It/8bm/ZmZNGVV0RHySDWnn0pZE/aG8nuV+OEKZQfdzrFs19lwj2/Yfi/HmTt2T+mZuoRBJJS0PIyqTrzAqpPPYeUd98ka/7/aJzU8/XsfVE4I5OKF98g0tSCvaqSnPv+BEBRL8uuv+UPVF0YHYM0Yf1qJl58Gr6cPLxHH0f31EPJeOh+XKtXMuq9t+kcNIyOwcPQbTt/DQohxI5488030XWdqVOnMnTo0F2+fmewi4ll0QfErwfNZN7oUwnaf0A94jQLlaXjqCwdx+dHX07xxoW05kTfKkzLyOXetBymt9TRYbURyMylKxigK+DHvnk1/sf+wKLf3olus5Oakc2smefg72gnYrPREonw2H03M3Pmjznnm0/wJaZQuvAzctcvN21+xWkXxRrz0zevpT23iNAu6HG47rATyF63jJy1S+nMyqNqynQ2TjsOX2oGjs52XNnRxh97ZzuH/PoKLOEwyy+5nmBiMomNNbjro2WyshNn0TxszE6n5/uqo2gAa487k6GzXwagfOqRtI4Y28+3hBDi+0+LRBi3+WNCFhvLi6YBUJ0yiOqUQbt1uxE9wvih02hoqeKyU36Px5UECbvnWcubmMY7V9/N8K/fY/Tnr5NZvRFnZzspFRtJqdhI2BUfQWL0v/6PQW+9QPvgYdRPPZxN5/4Ysr9brNdgajpfPPgUR1x+Gq6mBpI3rcPmjw+lNfB/szn44dupmnQY3emZaLqO3aoRsdlpGzAE7wkzCaal97rultETCbk92LzxoZeaDzuSykuuIpSW0XPM3p1lsbD8iVdA08hN2EUx7axWWg6aRstB02IfFRhmt1xxDTarhe4jZmDp6CBhzmyKnv4nRU//k/bR44mUlhIoKiGUk0vE40H3JOAfOgz/iNGE0zNovKlnPJRtqZl1oalhBKJxVhK+mQeA56v/ERg2gtp/PEFbbRN5/3yIrFefp/0geQtX7L92ScNIY2MjDz30EHPnzqWkpITrrruOhQsXcvjhh1NcXLwrNiF+QAKBAG+/He25edppp+3UuqzhAFNWvsGUlW9iiwQJa1beGn/lHm8UAfAFopl5csLu6T25OwQSkik78AgchkBhdaMnkdLaQOaSBTg62nA3NeBuaiBz+UJKZr/Ksne/wDdg9xYod0QwKYXFt/yJlhFjGPLcY3jqqhn397sY9/e7Ysssu+cR6o89mapjT6Hq2FP2Ymq3Xzgrm2BaFs7VK2iZdR6Oso3YNm3E2VhvWs5qKFSGklIIO1246mpwPfMEac88Ef08M4tNZ/6IQy84nqZJU5n/8LPArh9eTggh+lNQUMCRRx7JiSeeuFvWn95Zi9/ups2Tyf+GnYm2Czpj7KsCrgTWjzyMre8c2u1O0kdNwbvoU5K62qFmM7FoCe3NdLU1s9DQMH7kLZeRuWYZAJUJSfyhq4OiRV8x3rANXdOoHzaOzqw8dIcDTY+gY8Hq93H8n69Bi0RYcspFdGQX0p2QjC8plc7M3O1uLAm5PXx29e2xabthrPJAUgpOW/QRxtXUQCAlnZRNa5n04G091tNZWLpfN4yEPAl8+Ys/8+WN0Q4VaFqPccCFEGJf8M9//pNNmzbxox/9iBEjRvT/hT7kN6zhqG+fIKeljJDFTnXqIJqTCvr/4i6QlZzHucf8DF3Xe8QO2i00jdUHn8Dqg08gtTgVT2MtKeUbcbU0EvLEB2lKqizDEgqSuno5qauXM/D5f1N59kVs/tFPCaZn9LGBKG9eIR+88Akp61aihUPUZ5TG5uUtnY/D282AL97v9btfH3hgrGGk+Ol/kvHRbMJOF3UHH8Gmsy9hwW/vI2f+/xj4RrRzpq+whLYpvYyqsKsYfhdLawv5554Ouo41N5dIVhY4naDr5PkCtJ59Id4Ju6ZjqJ6YRO0zL9L56tsM/Oud2DraSV6+GJYv7rFs96TJlD3/Jrpr+97waZp+NJ8uq45NZzjAXldD8pz3SH39ZTzLFhPOib51G0lMpOqGW6i+5sYtsU13Zu+E+P7a6eDrZWVlHHLIIdTW1gIwZcoU7rnnHqZNm8YvfvEL7rnnnl2S0P3NDzm42pw5czjmmGPIycmhqqoK65YYD2qw9cZnl5qmIy3mQJMAjqCXH390M0m+FsrSR/DhsPNpSshHbzcvqynBnfSQ+fVViyEws6YE/tGVoEqaEljZsiXg12+fOB9fsJtbznuErNT86EwlACiJysOoevkZgxIqyzoyzJUKNiUAplUJrpZgCJSUqAQ0DobMgZGMgTUB3FuOgb29jcymKjxV5eS//xaaHmH5g/+KLxiJkJxkzqzVQJMFhqCUZUrwy3EDzYWwOiWgY7KS7s318SFP1EDSxiClWiBA6usvkfnUv3BUlmNtb0OLRCh75hW6ph9JizIupxqYTv1ZbDbz72g3xCVJUwJJqgGxNczfzVQCWBnnOpQgU+rp062ci3arBfz+aIB2mzUaL2VLz1331vPD68XyySdY3nsXywcfoJeWEnziP0RuugXPC88B0Hndz6j51W3xfeoRhMt8vIbkmu9JVcrvZgyuqX5XDYimVtC4DOfPAiUA+OTB5jFg1QBf6nndYLgPeJXzRf2NB+aaX6f3KL+FcVtqYDU1OJhd+eEa2+PHIKAEiytUAqCqx8utXOfGwLcNSvBdNeCwei2qgc2Nwe3VgGdJbvPv0qkEeTUGozNe49AzOFpbl3mf0pV7Roc3vi41MLtpmxJ8fb/a74f/uyj2t3f2BtM8XQnYhxJM25Rv+0JYIiGSfc20erKJKPd/ixJoU1fywx43YgNN7QGqxBzUlODJxgdO9btaqjL8REBZWbLh2lD2F+UepN7gtAQbmTUbcfq6sIaCWHz+6N/hACuOindQOf/OS8ktXx2bnp2Vz2UN1bwA+DULS0cdgP3yX+AaGm1oCHTF7wtpFes54U9Xk9xoDqYMELbaWHTaj1l08fXRXakqo3TuRyTVV+Po7mT1cbOoGDjO9B23EoQyotxXQoZ7uhYKMvbd5xj46TsEEpPoysilKzMHd0sj8y++EU9JdCz0Ic//i+IPXqdx/BQaxx9I3ZTDCLvcpBjKdQ3t5vNDDdyuSlbKhImG8qYa4NKqnEtqnqUGmE0yrMur5B1q0HNVkiFdajkkHDFvV71nNynXiNMQjF0Nlqmmw6Wci2r+aDEEblWDuqplMTX4qpG/R15qDkS6oqzZnA5l3ca8WD3uaprVYPRjB5jLrsayrZrPquP3NyjlJbch701UnlVWblaC0SvlFDX4bLvheKmVsX6l/JipBCtu6lGeiO+zeh6rQXDV8pQxkG2icn34lIDLhVnm8oPbYT6f1lS2xv42Bv3t7OjgiAkD97t88YdeHpg4cSKLFi3i3//+N5dcckns877qCNT6AXvIx4xlTzN282cA+Gwe/jfoNBYVHI5usaIbgykr9+AewdXTzPeoPvP0xL6vfU15ju8R28NYBlCznWzlrQa1fNBHOcVhvF51ncxgCzkrFzLm9SfJ2rASgKDTzeLzrmTpWZfjMNzTU5VnNKfNfG/MNubTuk7ehhW4Pv0YzecDi4XmTj/W7i4SNqxlzT+egS0dGgb+7kZyXnom9tUNd9xP2cxzsPh9OGur8efm406J39PrWs2/cXG2+b7hD4SxNTfirCzH1tGB29dFoKAQ77iJ0fkbyhh205XoNhsWtxvd4SBQUETNL28lPTuNjAvOxv3u29s8hpseeISWU2cB5ufJHOX8SFDyQ/XemG54Pq5q6gJdx75uLY71a0morsC6uQxLQwNadzcWrxfN243vFzcRPOlkfEHzb+41BON2qGVgZbvqPbt5wWIiaelEMrNIUp67TOUSXaeioTN6ruo6WjBIlgs0v59IeoZp6G/ome+o21Wpz+ZpfTwDqs/8XiVPcyt5vJFLeR5uUQKqW5Tr3lgmUp+Pt7eh0xgLxqM809e1moPTq/UvxmfieqXsUKw8e29P0PP+qOU8p1IGUvfD/F1z+VHdJyO1/lGVodx/NjWYhz7O21KG3FX1Azv9xsjNN99MTU0NhYWFVFZWAnDooYeSnJzMnDlzdnb130uPPPIIjzzyCGVlZQCMGjWKW2+9leOPP37vJmwf8frrrwNw8sknxxpFdlTA7mbOuIuxdPtYk33AXgsmGY6E8QWjNzeXYxe9krkPCCan0J6dQfuIsdQedRKWgJ+txT5nXTWTfjyLhh9dRsOs84kkJva5rj1JdzhonnU+zbPO3/KBjtPXhb6dY6p+Lzi3ZDjbOvXdbiInnEDkhBNMHwcnToItDSOJf/0/EsYfQNfxJ+3GhAqxf5Iywd4Xsdho9fQ/LvMPlW6x0lBgGOLT3/vDyLO/+jeOBAc5G5Zz5h8u5biGau468wrO+eZTKsvWwPL5WH9+HoceewYXXnub6bstRYN57v7XGD3nRQqXz8fV2Yarsw13ewvO7g660uPHP618PVOeuD82PfCzd1hw1lUsPP2yHSrH6TY7y06/hGWnRyvSdKWie2upLGvhV6StWU7amuUMeeFfdOYX89W9j8Ookdu9zV0hZfUyJv3hRroKivn2tv8j7N53ylHbkvPtVxxw/+9wN9Wz5qxLKbviBhmOU4jvSMoD27Z582YWLVqExWLhpJN27Hkkpaue0+b9H9ntFQAsLZnOZyWn0e3Yc41ISzZ/TWZSLvnpA/bM2yLbQ9PozM6nMzufDdNPpHjBZ0x8/u9krVtBQmPtztWjaBrBSQcQnHRA7KPN1W2xvx2GRpXacy+m7dDDSfpmLnlPP07pHb+lYfh4uoYMx1sycLs2a2uoo+DuO8h6/UW0cLyyvPH8i6na0jAS9iSQsnB+j+8GSgegX3cdzY/+G/uqlVgaGwhV12BtakQLBEDTCIR1vMNHxb5T8PjfIBKh6rJdEBNP0wgOHUZw6LAenXjVxo5dKTTku8W/ta5by6QDxhGx29HCYTRDp4pwZibtV11Hx3U/313JFGKP2umGkQ8//JDMzExWrVpFUlK8J0tJSUks09/fFBYWctdddzFkyBB0XefJJ5/klFNOYdGiRYwaNar/FfzA/fKXv2TEiBEccMAB/S/cC1s4gCPoxedIIGKxsT5vUs/eo3tYJBLColnQdf0H1TCiihgCqhW+8BSeys2U/Pl3FPz1HppOnUXDGecSGDt+rzVQbZOmEUn64fWs2hndV1yJ7vGQeu2VAGTcd6c0jAixG0iZYNveeecdDjjgAHJycvpfeAekddbSaklDt+xcJ4z9iqZRN3gM3868hMlv/osLXn6UkadeyhPnX88Hrz/B5hULSNCjb2lYQtGe5LpmQbdaCTucLDnxQpaceCEAFrsVdJ3ExhqCrnjvtpbiwayffiKduYUk1lYy+LN3mPL836gYN5WGwaN3264tvOnPlB8zn+zF88j73xwSq8s56kcnUHnWhWz6yc+2Of757jLunt+SvHEtyRvXUvr6f1lz7uV7dPvby+L3cfgvLsESjjasjX7yb4QLCik/9dy9nDIhvh+kPLBtr776KhDtYJuV9d3iXqiOWP4s2e0VeO2JvD7leioyR+yxOoLGjlo+Wf4689d/DMDlR/2Oofn7cDwnTaP8wMOpPPhISr94n4opR8RmFX/2HoVff0KwZADdBUV0DBpO+9Bd14Gge+QYvKPG0HzMibg3bSD1i0+YePlZLH3gcdomHrhd6yr40+9JfyMaQyuQnUswNQ09JYVAcWlsmXByCqsefBwtHCYh7Cf/tl9h7e4iZfY7tF53HXpCAoEDJgPQpbwhv7VXuxYIkH//n8h57OHo58NHwSkzd/QQ7Nt0nay8jOioFETjk6isjY2g7b7GGyH2tJ1uGPF6vQwZMoSEBPPrPJ2dnfj9/m1864dt5kzzTfJPf/oTjzzyCHPnzt3vCz0ARUVFXHPNjreyFzes4My591ObOoCnDv/jLkzZd9fYUcu3m//H0SPPwALYbU5OOPBCdAvYbfvH2M0bf/ozfPmFlD77GO5NG8h55t/kPPNvvENH0HTG2TSeexGRxKT+VyT2mtCIEURS0wiOGEnL+Rfv7eQI8YMkZYLetbW1ccYZZxAMBlm7di2DBu3a2FW2cIAff3QzYc3Ko9Pvp9spjePbY/5pl+Npb2LE529RPeoARo4/hJHjDyHzzX8x6+m/wnsvmJb3JqfRlZrJl+f/nMqxB0U/1PVoD9Ws6PCiWx862gtK+eSme9EsGtkrFzH4s3cI2Z205xTt1n3yZeVQedRMqo6eycof38CkO28h78uPKf7vE9hbW1hx59926/ZV9QdNJ33lEgAaJ0zZo9veERGHk1XnXs6oZx4BoHnoKOoPPqKfbwkhtpLywLY991z0Lfazzjprh9fR4c6gMn0oc4fOpCJz52KUfFf1HdV8vOZ1FlV+xdYR6icPOoLBebuvkX+X0jTKDjvO9NHwV58iZ+k3ps/qDj6c9T/7HV2DvtvbBt+JxcL6e//GiB+fQ8LKZQy/45fMe2kOWK3YG+tJWLEUX8lAtMRsdFvv1ZYtp54Zaxhx1NdSe8GlBA46mO6xE0z72HRMtPOf3w45f7kHa3cXbUcd238aw2ES531J0e2/wr1uDQBtBxxEx4TJbHuQoO83x+x30RMSsXR39zq/69Qz6Lz4x4QG7nsxZ4XYUTvdMDJo0CBWrFjBM89Exwn0+/089NBDbNq0ibFj9+FW8j0kHA7z0ksv0dXVxdSpU7e5nN/vNzUktbe374nkfS+5A9GxfLsde27IgU5/OxuaVrK+cRUbmlfR1BmNqZOfWsK49GkAHD7u1J7jfv+A6Q4nVWdeQMeFF5P85WdkvfI8aXPexb12FXkP3U/jeRfv7SSKfgQnTaZuU2W04srbszeIEGLX+i5lgv2lPPDSSy/h9/sZOXIkAwdu39AJ30VWWzkWPYLXnkC3Qxrp++L3ddPV1UZ6Rl7ss4jNzsc//h0Lz/p/9s46zorq/ePvubndy3bQ3SUpJYiBip3YhWJjfu362YrdhYmoiNKClLR0w9LbHXdvzfz+uLB35izssrt3C+b9evFi586Zc56pc5458XxuoyTK+3uy5fhdAf5F+fgXaTURWv87lzO+fYvDXfqxv9cQMvoNwRmgnUiVutwTdnf3oDHYg0N9dUrVYo+IYvmrnxG9ZhndP3yVtNsbPhzEjhvvZvfVtwASrsAgqEbPpNGRJDbe+iDbr7gZt9mC2+pHUBUxwXV0dE6M7g942bp1K2vWrMFkMtVpYGRBt+t8aFXV5JVm88fGb9mavhblqChIh/iejOx2ManR7Zpe9ISTRVHYftF1HOk7lMisQwQcPkDEhjXELF9EixWLOXjxtWx/5HmfnZ8rIoot380g8elH2T/hdo9eJhC8ZiXt7rkZgK5mC6VJqZTFJaIYDASYDWTcdT9lPftQNGwUO9/5jNivPiZk7UqS33gRANlsxh0SimKx4DZZ2PnyFIp79gWzmYz7H8WYn0fOjbdTleR8xFuv0vatVzE4PKuOnJFRpD34P7IvuKxCdyPqyUewbNlM9uvvQEcfDho1Io6zz6Hgu58wlBSTnVeK5HJizkzHf9dOQtJ2Yv1vLfnP/x9ybGxjm6qj4zPqPDByyy23cN999zFhwgQkSWL9+vXce++9SJLEjTfe6AsbmyWbNm1iwIABlJeXExQUxK+//kqnTidegvjSSy/xzDPPNKCFDU9JSQl9+o6kR8+R9Op9FkajCUn1QSWvOaJJ7z6kFeqWjgpaBZQfHRiR/ZGPinFLglCwJIipiiKnBuOJBzDUaQ9k7+L3dV9xMGtXhdMDIEkG2rXsRXjbVFCLMolimIK4IRHabYsgSCSLInDqfYLoFn6CmKYgQqUWTnQJgkxGQWQqKvTEcx5EAS8xXmpxuZvi3oM53HswpkcKSVr4JwZbGeUWf3C6ycwvI+W263AkpRDeqz/FvfvjOhquQhRoEu0SBTE7JIVV/K0Wjj4eMcK135vhfZ7aJGg7X4oFES7xnBVBBS88yJu3WjgaILWFtgNO7OYQY4ZmqQQvRSFyEYMgcqYW2xZFvUUU4aREgVC1OJZ43YOEtDmCmHalC6axsWoBcFF8Vk171f2G6oXFzMK1bRXtHTyt7ljx+hzOP7Egmig2Kz634jsSK4gIqxHP32g8eYGz6kTtRLE58RpUZZd4PaKFukr9HIsiuHahrkoQxAlFO1oEn5z2j6OKerupUxOf4HTwBwBeePEdAFq2PpM33l6q8QcAlE2Z3r/FekIUuCwU6iSTRExBGgCZIakagUiD8CwbogSRb0F82xDiTS8Xa+t7UYhVEt9Xk9BxoKobJHEihSA6jFsYrFafsyjwLF4fMW9x/1E7HY5ylv31NQsXfEdZWRGXXvEwQ87Tdkpl2QPhsLcz7rfonky7/S0iQiKJSPGsBDG4nAQW5hJcmk92K+8s3YTd6wnJOkzI37/S8e9fcZvMZHTuTW6bTpRGxbJ/3GVsvOsxMgeNIN8aglElnukW6hWz4iZs/24Uo4HiuGSMwkp1t6peKRdEKgsFYdpAVVt7pMcAcj79zXNvbC6MBglLYT6O0HCgspj4MbHs4B1b8MvKoHTkGGG/9z6VCloubkHkHLMFt9ljiwQ4XdpzLlaF9AgX/IMD2aWa7bYJ2hVRapHrfEHEPCJIm5fY7ohtg1p8PDzICioR8OrE6TOFexGges7zBZF3h3D+osi5Q/Uci+FOREF50X8wCc+AWshWvO4RQpt0KEcr+HkkT+sfWFTPSKTw/aEWZgdIjNI+t3vSve+WKL4eG6ltO0V/yl2FcGn7xDDNdpnwLIrC9lGh2nteovJt+7bThjUS2/yDgiCqmrbxVQ92itdny748zXYLlf+g9h8tUuOGUK4Luj9QmYl3PQ9A+w79+XrqdqSAvZr9VfURSII/IOdq60aE90ZS1UFSuNB/IHwPK2XaekbdR+BnCmZn1kYUFDqn9GNU70tJatHGmzhKCK0dILTbgg+v9gn8I6oWareGCD65+cThQm3Cu24R/IfK3zBwaLhHl/LYt0/AgTQ6THmJ2IWzsBgh6Gh7JIpn5xZpRdJbq95/o/ANq6nDQ/1xfPIpcar9ARHBODp3wbRnN8by8oqwk8cw3XYLrlhPu5dz+aXkDT8Tx68/47d6JdYVyzFnZ2HIzalIH2gCAswkRAbCrTcBkADkFntsNh0+RMQH7yA9MBk51mOJKTwcg8OBYrVSeuW1FD7xFG6/YI4F3TQaDSjBIQQsX0LCuDHk/jIDV1fvxPAyoZ1SC4QHC31X4vee2GbJivZaB/qp+yK05UQJz4fYD6T+XhZ9HL9j7f2wwQAEqZ4fN5B3tMk3HP3nUvkA2YXa9t5UUkzgZx8jFRRQetsdmFOSNfurEkyvjpqIrRcK90EUeRe/Sy0mdZ+f9j6I38di94J43yKCvfciu1D7fqQIfUZViZG3CNPWCdX1azgEv189AVYURBfHOMODTn7Ci2izmHeu4OclqM7DL7Dq+yBuHxNbrzj+6H32Vf9AnQdGJk2axI4dO/joo48qHhRJkrjllluYNGlSnQ1srrRv357169dTWFjItGnTmDBhAv/8888JHZ9HH32U++/3zlYrKioiKal+Qwo0NNOmTWPH9lXk5h6hT9+zqz/gBBxbMWIz+27FiFt2sWrfIg7l76VVQmf6tB4GgJ8lkANZnkY4LjKVtgldadOuDy2TuuB/LF52I+ubNCVcIaFkXa6drROwZiWhc/4EIJr3ASjt2IUjt06CG65pcBt1dHR0Gpqa+ASngz+wc+dO9qVtQpIM9O59ls/zN7oddD64DICM0FSf59/ccbtdLFs2nYV/f0dxsbcjctqPrxIQEULvgZV9NJfLSV7uEWbP+pyNGxYydOhlBOwMY9nf0wiLiOHme14jsq32eV57/X0c7DeMxLVLSVq1iNDD+0nYsIKEDSsAOHDeJR5Nk14DKBM6VCS3i86/fUP3nz7Gr6igkj0Fya35/YvZPrgaaL4KU2ZNp9ebT7Pk1c/I6d4XZBlrXg7tvnmfvZfegNy6FaaiAno+eCsBhw+w/44H2H/nA813drCOjk6DovsDlbFY/QkICKFP3zqI0FcxSauuKIrCirT57CvazdVD7gEg0BrMpUMnEh/ZkpjwRCTjqdsGlCW3ZN2rH5O04z/KU1pW/O6/cxuhK5aQddm1yH4nnmxVG2xjz8U29lyQZUyHDmLeuQPjkcMgSfj7W3B37+FN7HDgbtGCwtsmev6V2DEfOYyxuAjJ6cDkclLersPxC3K5iH7xGcI/+xDJ6cTkZ6XguZc9533xpdjOPgd3QmLFShaEQYjiG24h7N03MWVnEX3eGHJ/nI7jjBNHiTltcDppMbiP554BQR+9R/lNt1D25DMQ1HBRX3R0TpY6D4xIksT777/P5MmTWbPGE4uwd+/etGzZspojT20sFgtt2nhmDfTu3ZvVq1fz9ttv89FHHx03vdVqxWo9VSMVepg6dSoAffqeXWn09WTxtxfRNn0tAKVm38ULX73vH35d/wUATslZMTASHRLHVSPupXVCV0IDj84PqGKWtU5lyjt25sDbHxO4ajkBK5bjv2cngds20/a+Wym0F1F2+52NbaKOjo5OvVITn+B08AeOxRJv36EvIaFRPs177IZP6HhkBSbZ8/GaEXpq+KOyLFNYlIO/fxB+/sefhV1QkIXBYMQaGIjF4k9+fgb7D2zlwMFtWC3+nD3GM0vSYDAya9anOB3lhIfHMvrsG0jbu5FVK/9kw5qFFQMjG9csZPGsH8nNOUxeXgaK4p29dejwTvYuXg9AcVEev33/Fjfd94rGHmdAEIf7DOFwnyGsvO1Rgg+mkbBuGSHpB/HPz8EZeOIQZ/HrV9D/01dOuN9SeuJZ6rVGUUj6eybmshJGTLwct8mM0eXtBLEUFbL1xXdw+/mTPXAYKT9/TcoHryObTBy87V7f26Ojo3PKofsDlRk95npGjLwKqQ5izgN3/sqAXTPI82vBZz2f8qF1sC93B79t/AqAwR3GkhLdDoCebYb4tJymTnFvrRZWyuvPE/7PfBLfe4PsCy+j6NoJ2Nv4OJyUwYA7OQV3ckrFT6ZjM82LivB74XmSf5lG3v+epeTCiz2TFCQJZ0Iix1pvcVXMMYzbt5N86034/+fpWyobOBjbmHMq9suRURB5fB/VUFJMzMSbyH/4cQ6u3EDioN4YigoJefIxcuYurPt5N3fMZmwXX4Z1zl+gKJh37cT//XdRoqKxTX6ksa3T0alEnQdGFi9eTEhICD169CA1NbXid7vdjtvtJiAg4MQHn0bIsnzaitEDFBcX888//wDQvUfthBqtjlIuX/EykaXpFPuFsznad0KV8WHexrZtnHcJpCRJ9Gp3ps/KOR2Rg4IpuPASCi68BJvdhSk3m/iP3iHuy48IefQhHAMG4lLP+tDR0dE5xTndfYKZM2cC0L3HiDrlE1SWS/sDK1gTOwKOdqi4DSZMspMSayi74nqTFtW89e4WrpvOnkOb2J+5A1u5ZzDAzxpIaGg0qalduPTiByvSfv7N4xzJ2AN4/Bf1kv+42FYVAyOSJNGr5yjiE9rSf+B5mEwWevUZjZ9/EAPHjK84pqQ4n507VldsWyz+REcnEhfXmhEjr+HnX14hbfdGomOSGTKq+rjwRQmpFCWkVmz7VTFJJqtDdw72GULSmiXH3b/y7v9VW16NkST+fe49Bjx5F/HLF2oGRUrjkzg45kLAo7G27dEXKG3Zlk6v/I/Ud19BMVvIGXk2tG2rrx7R0dE5aU53f+AYJlPt9Yp6ps1j8M5fAdjc4gxfmVRBdHA8JoMZl+zE5iit/oDTAUUhb8QY/HftwO/IQeK/+oj4rz6ipN8Acq++gcKx5wMnFyq3thgOHcQ0+y+Mhw8Rc/uNxNx+I+7wcJSjIXjK23WkaMgwSocO94ixH1v14XDg//67BDz/DJLdjjskhMyX36T4wosJsJqrKNFL1GsvErBgLgEL5lb8pphMlN50q8/Ps7lS/Mjj2M8YQOTVHv/QnZKCffzFjWyVjs7xqfPAyLBhwxgwYADLli2r9Pvq1atxuU4cK60psHHjxhof06lTJ0ymE1+6Rx99lLFjx5KcnExxcTHfffcdixYtYs6cOXUxtVkzb948nE4nUdGJREfXbgmw1VWGye3p7PhhwKOU2H23YiQ5og1tojuzO3sLR/L2+Sxfncq4IqM58OizSLJMQNuW3kERWcYTZVtHR0en4akPfwB0n0AkLy+PDRs2ANChY+0mOBhkF2ev+JCO+5diUBQyz0jgYKRH22JVq3NY3XYs+YGxng5qR9VxeJsKxaUFrNk8n7zCdC4efXfF75v3/Mv+jB0AGCQDsiJTbi+lPKuUcnvlDhpJMqAoMoqiYDAYiY9vQ0pyJ1qmageILr1ssuePo+E/jEYT4y68C4sqLnrbTn257IqHiYxMIDo6keCQSCTF207f+8RnPjt/EWdgMHOf+7hi2+oqJyj9EBgMlIdGYA+LqOLo2uP282fpK5/hn+mJaW8ICMBtseL28weDAfWa4QNXXE/Y/t3E//gVrd54jlZvPEfe2eezZ8rnngSKgjU3G3tktD5YoqPTjND9gYZBURTWr1+PLMuVdBRPlvZHVjJq8zcALG97ASujx1RzRM0JsobQJ2UoK9IWsGzHbDok9PR5Gc0OSSLr8uvIuuRqwpb8TcxP3xC+aB5Bq/4laNW/lEwdSMHsefVqgtypMyWr1uJ+6WX8li0lYOk/GPPzK/YHrVlB0JoV8ObL5F5+DYf+720ATGtWE/i/xwAoGT6KzFffxhWfAIBl1QrCnnwMqdyGs0MnnB074ezUGfvgM1H8vR5Azn0P43foAIGzPeHCXfEJ5H/xLY5+vpu429xRAgKwrFmFOzIKx5Ch2N79ACUsrLHN0tE5LnUeGIHKIjQApaWlx/29qdGjR49Ks+qqwmAwsHPnTlq1anXCNFlZWVx33XWkp6cTGhpKt27dmDNnDmed5fs42s2FP//0NBpd+wzFL0YliLzqsDeRIN4jCqYX5AbxTdeHCHCWkOsKQymvYnaNIDgkCrMpkvZ+GyL8GdH7EnbP3sLK3QsY1fVigvw8oSqUEkF4TRRYVwu1ieJnIdrZL36CcJK/ICIUoBJydQqCQyGCUJQoeCkLz3Cgys5yQZjdTxCsChXyDhIF4lRIwuCFKLxmFfJWC36pRSlL/u81TMFWjpUUdMP1mP9egCsuAWdSMs5WrXGktsLZqg3lvfqg+PlhUC2FFcVBqxLxBmgdd+KBtLBqRM8LDmUS+N47OAYPwXHmcE3/RkKkVkgzR4iTbhWeCVF8vUU1AtpqREEvTb6ieFo1wtuVRN1Uz5NYiijgJQqEisJt6nsuiq2LiILpasRrVd05FZUJej8BJz/7TAzvFyo8E+pnzyBcIVGsviZhhsXzDxNmzInnXOLwvm+VhFgFO8qp+p0Q864J4nNd1T7xPonllqmEXA0nWO5+vHx8TX34A6D7BCIRERFkZmbyxMtTiW7jFWK0zdqtSSdFeut4KUDb7g7/6wM6H/GsJDgQ2g53oR1Z9qymyCPQM1uwwCNqLAn1lSQ8f6LYuiQ8v3Ket04XhVkR3jkpWBCQFzTIpFDV/qPP2v707Szf8Ccbdi3D7XYiIXHe2bdhTfb4IAOHXUwPWzEtW3YlLq41LpeDwpJcCguysdvLwGJACvO0Iw88MxVFUXA57ZSXl+LnH4jF4odREPV0q9ptf0HgWVGdU1xyS2LiUzT7Q1XC22KdI/oWBYJAeHCkIB5Z7n33g8K0baGgpY2tVMEW39r7g92NRwrUg1Xlt4i+lSKInosipwUqcdFj7U5ptEd8NTjAjBE4dmai0OSeR56jPDGFiH/mEbJhLUcS25B2VFA6ODeTsy4YQFlMPGufeI3MXtq448eE3I8RJwjuGlTtkujHRQriqgWCwK7arxHz9bNoz7+wRPsOZBVotyNV4qGifxgWqLVDvD4BojCyqn4tE9JaTNrrsX5PjmbbaXdicDmRrX4a8XSAMEEsVBQ5twgd1urrIwq5i2241XTi9g60PtD+LK2YuBjCRWxduqZ6B/hEv19EFHYPFOo2tSh6deNwakFYgKwCrWiuWjRZ9AFFod9kQUBWfR67jxRp9on3KTUmuMpth+qc9qtE3sV75mt0f6Bh2LFjB7169SI8Kpan35yB0eh5TzX9A3DCPoKE3B2cu+5DJBTWxg1jccw5KMK3gDFOG3pSUdWVilBvVmrTw73v3NAu41i5byHbD/9Heukh4iJStP0N/oJ/IE7KkIWyBF/EGO1ttxyCYLG/UJ8pQl1hVNWzoii1+K6bhQouUPhOU/vw6joFPO2hGs+3ownH2WM5ePZYSgpzCP72K4K//hz7BRdq+giMwvmKdbRYr1T3/eg9oQB44VlwOrHv2gUGA04FcDgwLl+OacF8jAv/xjJqBIlRQRgMEobQEOSICGzPv4TtmusIkSRwuQh45SUC/u8lpKMOiGWTd4DUNvZc8r77mZbHfKDYYBzTp1O6dAlKRARKTCzW6GjUV1v0NdR9FQFC+19mF+s04T4Jbal6b3X9GOL3ologW+w/Eb9LRTHtqjhun8Zjj+B87BGksDD8qqlO1d+4ZXZ3FSkhRHgW1VW1+L1Y3XepSFUh/8V91bgHGqKF6yO+X6IPXRMq9ZEIPmO8qg/Sl9/T4nMpEinUP/X9LV8Xaj0wMmKEN/zB1q1bNdulpaVs3ryZsGYyIrhy5Uqio6OrTacoCl26dKk23Wef1d8MuuaILMsVAyOde9Q8FmdE8RHyguMBsJmDsZlPHJO6LrSJ60pSVFsO5uxiybY/GdvzqnopR+coQsNiPHQIY24uxtxcrJu1M7Xc4RHs/2clhCTT4GRmEj2oL8bDh+HVlyl66lnsD05ueDt0dHTqHV/7A6D7BMcjIiKCzj0H1+rYbtvm0uvIIhQkpneZyO7oniilzS8MSV5hJj/MeZO9hzdX/JYU355eXUdoOuN69x7t+UPyruxoERBIixbHbw8lScJi9cNird8QFjoeFLOZQzfcwaEb7sBgKyM7x9sxHnhoP4rBQEDmEQbdN4FV/3udQ6POP+m8zXk5tHnqQYq79eLg2PHYo2OxZmcy8MKhbJv4MPsuuQ5qOcv6REhOJ+0/f4c2337E4ZHnsfHBZyC44TUODKUlpL77OrE/T0VyuzCUl2M4GtqssGtPln0xw9sToq/G0akHdH+g/jnWPxATl1oxKHKyRBQfYfyKNzApLnZGdmd+6yvqtS6ICo6la2p/Nqb9y6KNv3HlsHvqrazmijsunoKHHqXg3geR3N6O2cDZfxI0bxa5L7+B4ldPvonZjNKpEwDy0c5+uXMXnLfcirPcASp73F26UnjgiKf9PNZR63Zj+XMmkixju/xK7BeOx7htG8atW7AuW0zpbUc1URXF+5xJEu4hQ+vnfE4VwsO9fzeDSfM6py+1HhhZtGgRkiQhSRJFRUUsWrSoUppRo0bVxbYG4cwzz6RNmzYnPYgzdOhQ/P118e2aUFhYSI8ePVi5ciVtOvaq0bEtCvZz3T//Y1736/kv2PcxQ9VIksSY3lfw365/KLTlV3+Ajk8p+ukXynbvw3TkEKb9+zDv2Y157x6sWzbhTEzCHd2iUewyvfuuZ1DkKCHPPEnu5VcgJzXCII2Ojk69ofsD9Y+iKFXOxDoZBq37EYC1iSPZHd18w1nMXv5txaBIv85nMWDABSTFt2tkq3TqguwfgDPY+3zn9jqDP+ZvZvgN5xO8fw8933yaQyPPO+nOu9S3XiLq7zlE/T2Hlm+9hDMoGHOJZ+Cl62tPUZrUkuwBvtXBi5rzBx0+fsNT/h8/kturP2WXXenTMk6GmK8+JvHTd4+7L3TTf/S+/0ZMJUWse/UTnKHhx02no1NbdH+gYfj9998B6Nyj5hMlOh1chtVZxuHglsxofzNKHYTbT5Yzu45jY9q/rN+zlEuH3InJN8FXTj3MZhSzGdwyhsICYu65A2NRIdaNG8j89GtcrVpXn4cvMZk8/45xvAkFVivFn32F+Y8ZlN19D1gscM55uGQFHA6QZUIn348xIQ73E080nO06OjoNQq1r8wkTJgDw1VdfER0dzTnnnFOxLyAggA4dOnDjjTfW3cJ6ZuHChTVK/9dff9WTJacu4eHhzJ49m5KSEr76Y1eNju18cCkGRSY1c1O9D4wAtIvvTvvorvVejk5llPBwHJ0CkYM9K4KUwCBccfFkvvle5ZgaDYj7mmtwrV6NobgYy8oVlDzwEPLROKQ6OjqnDro/UP/88MMPvPnmm9xzzz1g6FSrPHal9KPH9rm0zV7H4lbjcRobfja7L2id2IV12xfSJqkbl42+B4JrLzyr00RRFDp89jbB+/cAsGf8tSccFLFmZxC/dB4h/60m/bLrKOxzBkeuupHwJX9jzcpANhorBkUADo25gLzufXxucv6QEeT07E/UfyvJ79SdrH6DCar+MJ+TO+4Sor//CmvGkePuj1nsiV3f//bLWf7lDAjS3x8d36H7A/XP/v37WbJkCZIk0aPfyBofv7TTpfzXahTufDuuBvIDEqJacdXweyl3lGGQDJVj4+lUQg4NI+PjL4mdeDPWzRtJHDGQ4iuvRZr8AErrBh4gqQZ327YET/+ZgE8/xD72POxnjUZp3xHJ4SD85glYNm1EMRqRr7kGJTW1sc3V0dHxIbUeGPniiy8Aj+PQu3fvim0dnRMRFFSzTyuD7KLj4X8B2JJcu5AbNaWuM1l16oDbTdibrxLx6oua5bd+q1aQ8fFXjWaW0r49+dN+14RsEGN16ujo6OhUz9SpU1m9ejXbt28ntlPtBkb+6XcdsYd2sDppNE6DpzPUKDtxG04yHnUToU/nUcREJpMa37GxTdGpJxLn/k67qR8BsHHSE+y8/KaKfeaiQjp+8y6K0UjEhjWEb1xbsS9g317W/TSb0g6dWbXwPwDsJWUEHNyHsbycog5dKK+n+SKu0DCWvv8DBocd2WIFSWqUgRFHYjKr5q3Gf/9eoub8gd/hg1gP7MOSk0VZy7bkdOtNfo9+FHbogmLWB0V0dJob3333HQDDhg0jPDKmVnmU+oUjW8p8aVaVGA0merZWhQV36yMjJ0PZmSM49PdyWtxxE/7LlxL62UcoX3yCfMEFuB59DKVXzSKK1BeGffswZGdjyM4i4LOPCfjsY81+d2QU7i+/1AdFdHROQSTFBwrpdrud5cuXc+TIEdxurdDLddddV9fsGwxFUZg2bRoLFy4kKysLWZilPn369AazpaioiNDQUAoLCwkJObFodFPnWHzWY2J0b3y8UrNfXukNUSRnakU6u+2az9k7v6bUHMz7A17FZHDTKWMFTqOV/eEdKYuO9R5boBW8FnHt1wo4SoJYpCHYE+/S4bZjTonAZPR2sBgSBE0T0QlSCaaLQmoIAvIIglaSELfZoprxFhKnLVcUohbF2C0m7aBOsc0rYBUkCCOJAsdiNdAi3CsAV+7QCt6JYo+iaFeKIJyoFpYShdrjjgmkZmRgvu46jH8vAEDu0gUlIQF7WCRybCylt9yOnJioEQATRaUUtxspPx8lIgIkqdI5ViUWXZ2od1WIdoja0YKOXyUhTvUgiz4up6Wm4uDifVM/1v5ViLwf79i6IIvijZL676pvcl2eRV9S3bWviV01uY9V5VtUVERMRHiDtIu6P+B79u7dS7t27XC73Wzbto0F/2nFfss3ZWkPMHufG+fs3UiKG4vbjt0U4FFHVr1L129+CYurnD0terI+eTj5ofEV++RMrRiyiFxatfi6IczbHhqitKLekig6KAonCiKnktonEMopzstmxeY5jOhzKUaDEcKFONzqOkwQ9ER8xQRhagShbkmVl0kQOPUL14aDcZUJgqCqssT6zGDWGhIuiKuKdaO6/RNFu82CTyMKc4silWqB6BJBxFVsd0VRV7W/EChc25wirX8pipyKEyUsqmvgttno+MjdFPbqx+FrbiZM5cNY9qfR8Uztio+yXn0JWLcae2ords9dSobNe72iBNFO0fcQzzGvyPtci1FDokK191j080TCVb5qTqH2eoh2idfDITyLamFuP1EQVRAiFa91tqps8XzFpvVIbhnBu7bhf+QgktuNSZGRFBlbQjLF7TsTEuYd7lGEad9G4YLFRmjfe6v5xG2a+IyL4rv7s0o02y719RCe6SB/7fmLosrid4H62ot+fYnwfonfBXmC2LP6WocI90EUvTWLItKq6ye2nWbhPS4Q61/pxN8n6jqguKiIlvHRuj/QTHE6nbRr1459+/bx6aefUujWarSo+wdA20dgctsJyzlEdlDS0R+8z5vZbUcJCUA2eJ9vRahXlFJv++A6mKvZZ4yoehjYIHzjGmK8dYMktJ0I4tpiH0ClD0Z1XSr4DkZ/7ftqDdHWu0ZVPRMg9C0YhbzEOilUeJ9zVXWBWAeLdZRYD4cK/Ss2sW1RFIKXLabFZ+8T+s8CFIuFI9P+oLz/APwsWrsiVH0iYv0UGVKPGmqlpRgWzMf4889IW7Ygbd+O5HDgHjYc59df44hWDeJJElJWFqZZf2FctBA5tSXl/3uqYndNxLTFHtnG6hMQ2w7xs8xkrD/D1L5bkOib1uH72C2Lbbz2HOqSd3XHqveL+0S7AmsoEl8Xu9SIIvBV9ZnVpZyacrJ5+6p/oM6BEXft2sWoUaM4dOhQpX2SJDWrgZF7772Xjz76iOHDhxMTE6OvHqgjsixz4403smPHDqZPn864ceNO+lij28HA/X8A8G/KubTNWc/I3d8T7CisSFPkH8ne2B6saDeOQh/NZ1t0eDYLV85icPuxjOs1wSd5nvI4ncS/8hzu4GAyJ95fqyzMjz2K8e8FKAEBuKZMwX3dBJAkCktOIKibm0vAfffh6ncGjltvA0DKSCesbSvk+ARsz72A66qrantGOjo6pzm6P+B7XnrpJdxuN2effTYdOnRgwX//nfSxBtnNldvfIqEkjeltb2V3dI+KfSa3g+jiQxgVNxH7ZtN332z2RXVmebsLORTZoR7OxPcoisK3c15jz6FNrNo6n6jQOMrcpRxO3w1Ay6QumMxmsnIO0TKlCxdccDfBwRGNbPVpiqLQ9ZGJOCIi2fHQM5UnxKiTWqxsff2jih6OyG+/oHjQUBwtW+MOCibt+juRnE5sSalkDR9DZMfWmA8dwJl4VMPM1nAzoU8lQmfNoO1zTxJw5OBx9y+buQzCdD0fnZND9wd8z/z589m3bx8tWrTgyiuv5MNvN530sb32zWfY9h9ZlXgWK5PHYjOGVOiL9Dz4N4P2/UFOcALrWo9hW9Ign9pdaMvjYMFe/M0BtI6q3arX0xpJonjwmRQPPpPoA7sxZhyhvP+AxrZKS2Ag8rgLkMdd4Nl2uSAvD6KjPW35sU7kkhL8HrgPy9feqBbudu0qBkakrCyMs/7AfcutDX0GOjo6taDOAyOPPPIIBw8e3/FsbnzzzTdMnz5do5eiU3uWLFnC1q1bCQ0N5cwzayYOmZS3nRB7Pi7JxN6ILty4+mlMiot8/xbYzIHEFu0jxJZLj7QFGGQ3s1pd6xOb7W7PDKllO2dTUJrDWV0vJSGhs0/yPlUJXTiXFp++B0BZjz5w6ckPgB3D+eprkJ2N65lnUTp3rnaahOmttzB9NxXLd1NRQkOQk1MwHV1tYjhymMCbrqdo9GiUqKian5COjs5pj+4P+JbS0lK++srz8fhELUQrE0r2klTi0WkYfPhPzcCIy2jh3ZFTSM7dRs8DC0jN3Upqzhaiig/x/ujjizc3NSRJYmCXsRzK3E1+cRb5xdrVM2kHN1f8vX7TQvz8g7jk4gca2kwdwFRUQPi6lZTHxhGybRNl3XpWTqQoxPz0DaXJLSno5+2Yi3/2cQwOOztnLsTWpRu7Jj2mPU6WcUW1qOczOLUxFBeRescNAMhmC24/f0qTW6L4WUEBv4wjBG/dRPLrz7D/qZdxJCQ1ssU6TR3dH/A9Y8eOZfny5aSnpxMQEFD9ASo6HV4OgNPox6Ub32JD4pmsTxwOQHzhXiyucuLz9xC/5n0ORHWixOS7lTWHC/fxzZq3ARjUcgxjwq/G3xJYzVE6x8PRsRN09A4umTdtIPjVlyl4613kiMhGtEzAZIIWldtly6efaAZF5IQEyp99ARQF87SfCJxwLYok4b7kUggPb0iLdXR0akGdB0aWLFmCyWRi1qxZnHXWWfTs2ZPJkydz991388MPP/jCxgYjNDS0IuSTTt1ZvHgx4HF+QkNDa3Rselhryo3++LlthJbn8kP3B2ibv4ElrS/CbTBjdZaRWr6b0NIsMsJ9d88GxA4jW85hV+YmNh9azZZDa+hzcBRjBl1DWLDeyX48SvoPYu9n32PKy6Gkb39qNYc1MhLnHzMxPv88povH47rpZuQhQ6BTd/D3r5TcPWEChq+/xnD4EIE3VF7ZY7/mOn1QREdHp9bo/oBvWblyJU6nk6SkJAYNqvkMzvTAFDZEDcAsO0kLrazJYTcHsiu2D9HFh0jN3YosGVje7kIfWN5wdG87mLZJ3TmcvZcNu5ayYsucin19e4yhTeue7N23gY1bljB40PhGtPT0xhUazqqvfiNu5i8Ut+3A8QIOxH37Ga1efILy+ETW/Po37kDPquby9h0I2LSBgP/WYOvSDRQF/8MHiFi9jIiVS4leu5ycm+8kZ+J9DXtSpxBycAgHX3yDjOBoSlq1Y9h5ZxCyYwtlqa0oS0wlaPd2uk2+HYCSHr1Jv7N2K511Th90f6B+GDCgdisF0qK70aL4IAP2/4kBGfOB+WxIOBNFMvB7tzu4e/G9+DtLSGvRjVK/MHD5LrRLm6jOdI3rx6b0VSxLm8OGjJWc1+86erUZir6OqA7IMuG33oR5+1b85s3Bdt4FGG65EXnY8MqxIJsIzsuvwDRvrndi5uHDBFx/La4hZ2KaPxcA+eqr9UERHZ1mQp0HRgoKCujYsSMjR45EkiTMZjOXX345L7zwAi+++CIjRozwhZ0NwtNPP80zzzzD559/jv9xOmN1asbSpUsBatUJYjcHMr/tVRRbwzkQ7gmFcTiqvWp/ALsi+noPqEZj5GSJ8o/hlhGPk1l4iHmbprHx4ApWb57H+u2LueeaN4mNSvFJOacS7tAwikaMrntGsozx55+QDh7E/LRnGWqs2YyzR0+KH3kcx8izKpIqbdpQtOY//N55C+N//2HYsR0lKgo5MhLX4CHY77mvUsh1HR0dnZNF9wd8S138AfCsCjmZlaErW51DbFEaq9qcx6HI9tWmb0oczt5DTEQybZO60zqhCxdeOEmjd4bJQK9uI7n0ggcqa4zoNCjl8Umk3XrvCfdnjr+S+K8+wu/wQVq9/jy7nnwZgPwLLiFg0wYS//cQQcv+ocOaVVhztKuDAlctrxgYkVwugnZsoaT98VcuG2xl4JaRgxpDHr3pknfVBHJyywhM240rIAhzaTFBu3cQtHsHAOUxceRddBl551zQyJbqNAd0f6Bpsar1OfTYPx+r245bMjK743UVobQ6ZK7G31mC02BmXo8bfC7UYDFZuabP3ezM2sTvm78mpzSDH/55h/1ZOxl/7t16mLXaYjCQ//FnhN15K5bNmwiY9iNM+xE5JQXnO+/AkFGNbWEllLg4yv6a7em3+OZrzD98j3HnDszzPJNa7DfdgvL+e41spY6OzslSZ/H1yMhI4uPj2bRpE6GhoUiSxJw5cxgzZgxOp5PS0tLqM2ki2Gw2LrroIpYtW0Zqaipms1b0Z926dQ1mS3MXV3O73YSHh1NcXMwjL/1AYurRDgrhcStfl+49ZleeNpNyQSzt6IyPuMK9ZAcl4iz35qWUa4U2DVE1+0hUC5G6c73P7IGSNGYf/g234ubOHo8iSRJShNYpNqgEUiVBmBVBLK2S8Jq4rRJAs0Zrl+ZKopi4IHgZFKQVSFMLSwUIIosutyisJYhFq/8WfLxwoRxRjF0UBA1WnZMoyimKPblKy4j6fRqhy/4heO1KLFkZAMgWC/u/noYyYrg3L+F6iEJaovh6Yamj4u+I4KpF20RhybogCs776x1aTQJfios3V6oShKuvco5XVlX3Qp22IcXXdX/At8yaNYtnXv6ADt0G0HfQWM+Poj+wVBuW1X24yLshNESSIGgpZ2u1GBS1oK8gIihZROFyqept+cRusiS24eJ+sS1RpZdU/oHDZef5X27HZDQz8apXiQqPB6GtRd2WiMLswjmaBLF1EX+VKLpdEBcPjtWKy8qCv+C0edtSk9Ce+VUhag7gdovi6979wcK1EkXQRV+kzC6Ij6sSBAl5lQvtcLkgCK7O2yrc0zLBp7EI9ZUoRBoV5vERA5cvofWVno73Pd/+QsngYUQV5xE7fADGnJyK9LLZjK1bT0oHDyN/wBBKu/dGsXjuvWHHdjrdeBnuwCAOPvwUhcNGeYx1uWj581dEvvIiclAQB+cuplDQnFH7V9FhWr+1VPCZw4OsVe5X+3X+wvsjissWlVUtfK8WVM0XdOTCBDvE+6amhXBOucXa5zjAerQcRcF48ACu9Rsw792DvWMnbIOGUur0PotuWcGckU7QqmUUjD4Xa0hQxbHH61gVfdfCEu87ESn45qLAvOiPq6+neD3KRP9RuNaiP6kWJxdtFIXaRQFms7C/qMx7Tmr/GSA0UBSF1+ZVpBLQFYXqxe8Pl+APRJ2kqLLuDzRff+DDDz/kqx9m02/oebTr1MfzYxX9A1C5j6Dftj8Yumsacztex4a4oQBYXDZu/vcxgh2FLE48n+WJntBnlfoIQrx1h9gNVq1/oFp94pKdLD44h3l7f0NBYWTbCxnd4WLvobHCd3yg4A+IYu3qd0UUORfafElYRaHuI/CP1PZFmIQ6J0IQZxffQXWdHiHUyWpxbDEtQIDQJ1CsqkeSWmj7ZsxCW+qWFVAULOvXEfz9twT88hOm4iIUo5HMN96l+DKvdqgozI2wXkfsq6gK8fzFNqukXFsPB1cq+yiKgn3laizTf0GOjcV+510EGBSML7+MPHw4ypAhOKtYvSQOqol2iE2RTdMun7xYtoh4/mJfzalIpfe+BgOa1fUfiPhSQL0u+dbkm7+hBNV9lW+TEV9PSkpi7969uN1uunbtyr///svAgQMBaNmyZV2zb1AmTJjA2rVrueaaa3RxtTqyadMmiouL8fMPJD65zUkf12vvXGIL0ljU+QrKjiOoHuAo4rL1b2AzB/JD+0kU+tVvuKTkoJbc1n0yNlcZkiThdDuwoM8WOlmCNq6jzatPE7B+Lc6YWHLuup/8a048g0ex+pF92TVkX3YNKAph2enEPfc4IXP+JHj+bIpUAyM1xW/Df8Q89gC5E++Fyy+rdT46OjqnPro/4FvGjh3L3sK4esm79eE1xB/cyr8p5+IwNc/2+b+0pdjsJUSGxhIRFtvY5uj4gNKBQ8i57iaivv6M5HtvZ+83v+Du15vD29II/b8XkAMDye/aG1u3Hih+nudW7My2tWxD+rW3kPrqM7S/9WoKBwwh65obSX3yIcy5nsEVQ0kx0Q/fR+H7X1WyQQeQJNzJKZRGC/WP09vZFf3VJyQ/+ygA61fvgKMDI5EfTSHsp+9If+E1ygYMbjCTdZoWuj/gW6ZPn86Kf+aR3KqTd2CkGkLKchi+eSo7EvqzPeEMVqWOZW3yKNxGS8VghdltJzM4BWdpOivjz6omx7pjMpgZ0fJ8As3B/LHrexLDmle/V5NEknD07E1uz97smfwUyf+bTMSvPyIHBVd/bGMjSbh79sLWs1fFT8aPP8L87DPw7DPYd+6C5NTGs09HR6dK6jwwMmHCBBYvXsyuXbt4/PHHueiii3A4HBiNRp5++mkfmNhw/Pnnn8yZM4fBg3Xnt64sXLgQgJZtu2MwnNwotqTIjNr0DXmBsfRMW8Cy1MpL3Afsm4mfq4wC/yiKrLVSs6gxkiQRYA5kX+Eupm77iCv7TqR1dKfqD9ShzVMPEbhjCwCWI4eJf+wByvr0w96xS/UHSxLO5BQOTvmUsN9+Jv/ya6iZPJ+WmMcfwn/9OhLuuJFsfWBER0enCnR/oHlgdZRw1rovCLbl4TBa+Tf1/MY2qVbsPLIBAJujjEWrfqF1UlcSWnXEZPLd6kWdhif94ScJXjgf68H9tDt/BHmvvU3ptddT+Oj/ACgTZuJXQpLIvOQqwpb+Tdi/Swg9+g9AsVgoOed8gn/7haBZMzFlZ+KKjqnvUzrlMGVlVAyKACQ/+yiutu1wxcQS+4InrGvi3beyc83WxjJRp5HR/QHfUV5ezvLlHvH01u17nPRxPdIW0D59DYl5O9kR388jam3UrgootYbxS/d78CvMw21ouLazX8KZdIjqRliEXv/6EsXPn/2vvEP21ddjHHBGY5tTKwyzZ1X8bfzyS3jy6UazRUdHp2rqPDBy3333cd99nli4HTp0YNu2bfz333907tyZ9u2bV3znpKSkZrsstalx6623kpKSwt9rMk/6GEUy8MPARzDKbgoCW1Ta7+8oovthj6D7P60vrYgn2hBsy93Ad9s+xik7WLz7L31g5CQ5OPEBOk66sWI7d8LN2NvX7Nopfn7kX+GNLW/evZOAv/7Adt0NyBGRJ51Pzv0PoxiNmA8eOK5Yqo6Ojs4xdH/Ad8ybN4/o6GgURfH5TNtRRwdFcv1jWJPkA62rRmJ4lwtILzpAdv5h/lr8BQBms5UnH/gRf39dP6K5IgcGsXfqdOKffZyQRfOx9+1/8gcrCi1++oY2Tz5Y8ZM9MZmMCbdisJfjvPEmQr77huDffqH0rLNxRVX2m3WqxxUdw5F7JhP/9iu4QsOI+GN6pTSZjz3VCJbpNBV0f8B3zJ8/n9LSUsIiYohPbnvSx21MGcbm5KEk5m4/+v3vPn5CScJmbrg2M6PkEL/vmMoF7a8mrMFKPY2QJMp69ObYepGgGdMJ/Hs+zmuuxTFocJMVZj+G68mnkMeeg2H1Ktw33lj9ATo6Oo2Gz4Pdt2zZsiKE1rZt2+jYsaOvi6g3Xn/9dSZPnsyHH35IampqY5vTrAkMDGT8+PGkO9bX6LgD0SqBSUFjZMje3zDLDtKDU9kX0QnKqplp5wOKnYXM3j+D/7JWANAhoitX97273ss9VcgddQ7b5/+LKzIKy/40nL371jnPkI8/IPTLT5Ff/z/KLrmc4tvuxNmh+sGW0hHeZdUNs9ZIR0enuaL7A75BURTuvPNOdu/ezS33v0H3vrUPhyjS4cAyOh1YjiwZ+LPTzTiNVetqNGUSI1vzwA3vs2rjXLanrWHfkW0E+AdrBkXqY2BJp/5xJKey79OpWPbuJrCD95so8KvPKe89AEfL1sc9zlBWStIHb1ZsZ157EwcfeBw50PNMRAT7UXDXvThbt8E2aIhPRYbN+9KIeP9tZD8/bAMG4eg3GDn4FO0YliTSJ00m84bbCf53Kf47t+GfeQTz4UO4YmLJeuARXPGJjW2lTiOi+wO+45dffgGgR78RNWrPCoI8qzHygiuH5IwoTaffgdksbjWeMmuobwythoySQyzY9webstcAMH37V9wZ/ZTeRtczod98QcDSxfDjVFxJydiuu56Su+4B/7rElKg/lH79cPfrh5uJnh9EjRGbDcPuXchduzW8cTo6OhrqLL6en59PSEgIRqN3DvbatWt54YUX+OOPP3A6nVUc3bQIDw+nrKwMl8tFQEBAJXG1vLy8Exzpe5qruNp7P6yvcn95Wr72h0PFFX+69xdqdknB3iWyLfLTuG7OY0goTO39MIfC24PqyVVswiCJ2PCI4qsB2uW3hlBvh4ohOgC328XyLbOYs/p7yh1lSEgM7HQ2559xPSaT9lj1KySJQmpJ2piY1ghtw+0WRD3V/pSfkJcovu4nCIuJQooO1TUIE4QSKwmkCyLxakF1Mea1iEW4toF+Jx5vDQ6wgKJgStuDddNG/DZvxLJ5I+7oFhT871nyg8M16SMFkfSconJCZ/xCiw+n4L9lIwCKwUD2k89TPvFuzQU0m4R7rrp8oti8KLYqOrblTvF6ea+PqMsnimWK4nJihasWrRQFT2WhehaFbIP8TrxUvC7CYtVhE56fuoi+1YX6FAfTaXo0pNiq7g/Unfd+WM+Rg7t5cfKlmMwWpkxfiX+At6M/54/tmvTykRLNtqKuZ4Q2Pb4kjUuXvozVZWNZx/EsDhqp2W8I8rYdon8gl2oFjk0JYVrDhTZMbHs1CHWQ5Fd1XajxEUQhVpUosaIolOTnEBzgaROLy/L55M9nOe/sW2nXtg8IdXClvAQBWUk4J6vKvxK/AsTzNQn+gVUlxmoUhMclQQBVFCYXBVPziu0nTGsVfAtRiNRiEkW/vfc5JqxqrZmwYCEEi83bbpcJQqvihNRimyjEKorEe+0UxcSPnYP/lo20GzcSTCaKJ91P8X0Pgr8/gmtCxs79SC43fvv20OZKbZi4tbuyNdvRodpzVvstolC5eM/V19467SeC7p6IocTrnx/4Yz7lRye2iD6fKMabGqOdrV1mF31I5YT7RF9CfL7UwvcHsks1+6IE0XOH4LeJ16BYZbeYVvSnswu1wu55gtB7fKRXZFm8h05X1T60uqxi4VqKQuVJ0Vox5/1Z2jpTfR5Wi+iba9898b6JgupZ+bYT7osWrqVZuE+FZd68xffWLfhpopCxXajr1e+1Om1xURFtEmN0f6AZ8c63q3n0jrMoKynknv99QluVvkhV/QNQRR+BonDx/BdolbuZbTH9mNH19kofWorQ5qvF2KVAYUKFUBcYYrzf8TZnGXtcu1i/Zxmb01agHC2oW6sBnDfgeiKChVV7opB7lNAuCfWMOdZbd4p9AK4y7fsaFqetZx1O73sjimdbzNptP6EOF7811XWlLFRoAYIvYRa+n+2Cb6LebxQa03KHti2NFfpI1GUfq0csK/4l4Ptv8f99OoaiIgBcbdtR9tEnuM8YUJG+KkF1sX6vKer+FYup6hUrNqFPwF9ddmkpltGjPboqS5dSdPQe+7/zJuU33ExAtLZPRGy3xbpVTXWf/CWqd6CqvgRout/aYvso+pDNgZoIuTeV694UaXTx9X379jFu3Di2bNlCWFgYX3zxBQMHDuSWW25hxowZtTaoMXnzzTf1kX4f8OPnLxEUHMagkRcTFuGDpf2Kwsi1XyKhsDWmv2dQpJ4psRXy+7LPAEiMas34QbeSFH3yIvI6JybiyUcJ++i9Sr/7/z2f8k++wdazaiG+wnEXU3j+eML/W0X4++8QNG8WLZ5+jOK9u8h/9S0w6oGydHR06obuD/iGDasWANCh6xmaQZG6EJ+3i8tWvYrFVc6BqI6saH8BHC6p/sBmhCRJFYMiAPNW/ciR9N18/MVkevUYxfiz78LPL7CKHHSaMu6gYIoHnUnIkoWEvPYyAd9/S/EDkykdfxlKsLcjzhXuCRfqjG6AMFmKQtCkifh/+TkA5WcMxNmpC5Z1ayjv1qMiTcgHU3C264BtZP2LG+voNAV0f8A37N6+jrKSQoJCwmndoadP8mx9ZB2tcjfjkkwsbn2RT/I8Ed+tfY+d2Rsrtru1GshZvS8jLjKlXsvV8eI4YwCOMwZQ9Mob+P/+K8FPP45p106CRw7DftckbC++3Dz6AdxuzJdfhmHlCuSBg7yjHnY7wU88SuDLL2D/exFyjx6NaqaOzulErQdGJk+ezObNmwHPqpGbbrqJTp06sWSJRxTQYrFw3XXX+cbKBuL6668/4T6bzXbCfTpeSoryWfb3dGS3iz6Dz/FJnkE2zywSmymQRW0v9UmeImWOEvZmb6NLgmdGXGhQJK3iOtOr3VD6th5+0gLyOtUT8Pe8ir8dXbtRcvV1RDzyIMasTGLe/D/2ff1z9ZlIErb+A7H1G0DYx+8R/ewTBH/9Ba427Si+Uw91pqOjUzd0f6DuKIrCupXzAejed4TP8m2dtZ6s0GQcJj9m9L8H2eDzqLBNCqfLQXJMO5bzJwDr1s8nKbYdQ86o304gnfrDkdKSvV/9TNLiOYQ+/jCmw4cIv38Sof97lLILxlN0/2TcLVs1qE2m9f9VDIrY+/Qj6/dZYDr6btldGIoKib/hKgL+XYorLp5DG3c2qH06Oo2F7g/4BrfbTVxia1LbdvXZd3Xf7TMBWJ0ymoKA+hU/79CiG/mOXDpnl0tTAAEAAElEQVQm96Zv+xHERaRA05a4OHXx98d2xVWUnz2WkMcexu+fhbjbtAVZbhYDI9LatRhnzwbAsHwZluHDCTOZkAo9K6MMJSWYn34K+2+/N6aZOjqnFbX+mlyyZAmSJHHNNdcA8M0337B06VKsVisTJ07kgQceIC6uchzIpsykSZN45513Kv1eWlrKeeedx8KFCxvBqubFuhXzkN0uklp2JCbONzMoSgIi+H7UMyjZJfUmuD5z41TW7V/KXSOeITm6CwB3XPA8kiShVBNKSqdmZH71PfHnnYUxLw/Lpo3Yzjqbg1dei2Xtamx5hdVnoEaSKLjtLtxR0YTO+4uS626oH6N1dHROK3R/oO4cPrCT9IO7MZnMPh0YWdLhUiSzAYPiPuUHRWRF5v++uZ2CYm/YpI7tz6B3t5FVHKXTLJAkysddSPlZYwj88jMCv/gU8+5d+C+YR/E9DzS4Oa5u3bGPuxDz0iVk/fIHUkkxls2bMO1PI3DPXoJnTMeStheA/CeeaXD7dHQaC90f8A2dug+kY7cBOJ326hOfBAa3i7jc3QBsihvskzxF8sqyiQiIBmBAy7MYOujieilHp3YoYeEUvv8xdnsZBAdXf0ATQenZE9eDD2F8601o0QLD0iWoAxa6U1vifOKJRrNPR+d0pNZflDk5ObRt25avvvoKgBUrVrB7925+//13Ro8e7TMDG5I///yT8PBwnnnG6/CXlpZy9tlnN6JVzYvVSz0zGvsMGuvzvOtrUKTYXsh/B5YhK27K7N5wHPqy6frB2aYdR6b/RdiHUzCWFONOSQXAPnQYxWUO/DauJ3DVv5gzjhCUnUn52HOxXXp5lXkWX3w5ziuurAiqKRXkQ2Ag+FcdZ1xHR0fneOj+QN1ZvfQvALr0GkpAoI8/WCUJWTq1B0UADJKBdkk92HngP3r1Poue3UcRF9uyssaITvPF35/SO+6i9PaJmFb8ixwegatN29rlpSi1F2E3Gin69nuk3FyUoCD8f59O9I3XapI4E5PJ/uJbHD161a4MHZ1miO4P+A5JkrBY/KpPeBLEFKRhkp2UmYPIr4fVIsXOIl77+3HiQ1O4+YxH8DPr35RNFtWgiHHdOqTcHJwjRjWiQdVgNuN6+WVcjz2GtG0b0qGD2IptSA47clw8jhGjCPSvWvtDR0fHt9T6q9LtdhMREVGxfezv5jooAjB37lyGDBlCeHg49957L8XFxYwZMwaTycSsWbMa27wmz969e0nbtRHJYGDo+eMJigqqJABdvjFTsy1neAcijAnajhPF5gRFwewqx2n2RxEErBSV+KEonmZoUU0sc5VI2arD/+CWXSSFtaZtWCeUEq1Qq9QmQnusKIitEkszCoJeRkH80D9SKyxmsWr3RwR7zyO/2HHCfQBBggCaQxB4DFYJzIcLAqB+op3Cd3SpSnxUFFoTRd1E0UpRfDxAJepVIUTeozslH36K2QgBaqHSRfMIuUQbHsQYF4PpOs/KNPEanMgO/4kPYVyzGvuUd5FHeeJgVyVSJp5DdYLyalE38XqEBGhFKmuCKExbHer3SxzIq8+BvcYSWxfRhchqRlMV0FPb1VRs0v2BurN7+xoAhpx7MUEtgshZeVCbQBQmFYUlY70aGu50rYaI+0iRZtsQInRYqEQ7JVEAWyhXLtbOXjWIwq2qv6VQoQ0ShTeFtkMS2nilQCXaLPoarcJwOMqZNe8z+vUeS1xqOwDGXXUfFos/BpfKkiChnRH8EpMgLi67TvxemYV2xy0MuhiEeqM4wyuKG5agFTksE66l0SyKrZ5YmDUxUquZkleizStSaP9FIdJw1TUxCO19cZn2WqfnasPfRKuEu0XRVrGNT4wWRG+Fa6sWYxUFrgtLBb8uRN1BKKEMGHj0r6NlrVuGOyICe7cebErTCjyLPk3IjOlEPfM4tjMGkjnlY81+u+DjZOSVabbbJYRW2ECLaOQyJ86UVjhbtcGVkoqpXRvktm1xXXMtTlMA6pJFO0RBdT/BX1DbIu5TC8ICBFi1z6af2VtWSIB2X6EgsCwK/eYWaQXT1T5SZEjVHbVxgihwQpT2WVX7zCJOwcEWy8pTvTOiry5ej0JBgDlZeBbL1eLrQl0k+rnxwjllCQLzreO977boT4rfDOI7on5X04VnTbyW4jeD+G2jLkpth3h/6xPdH6g7ixcvxhwchtXfc/9r0j8Ax+8jSMjbBcCR4FYoqrZF3T8AYAjXvq+S6rtUEp83VTuydtsi3IobyWDAP8CThyy024aUUO+G6B8I2yZRbF34XlT3GYifcC2SQjXboUL9p373xW9lUUA9SDhWQluY+ltUbEuro0Wo1hdTt4dinVQi1JtiO6UWgT9ZpLQ0LBeeB4WFOL/+GvnSy2qcR3VUJ7iuxr86ofeQEJT+/VH690d91yq1SIqCtGE9hgULUHr1Qh4+HOrwmV+d4LqapvJdJtIcxdZF6nJtqxNub6j71pB21Hc/Rp2m2/3333+0auWJgZueng5QsQ0eB2bPnj11KaJBad26NbNnz2b48OEYDAa+//57rFYrf/75J4GBushldUydOhWATj0HEB7lm5kbIaXZ3PLr3WRGtuLLjg+Bj1eNuGQXKw7+DcDgls13UK/ZovL8pMxMgm6/FQDngEG4+vRBSk7C3aevN83KlSjx8ZCUdOIsc3MxLl6MIf0I/ueMxTlpEo7X3qi/c9DR0Tnl0P2BuvO/96axde1yOvY8w6f5Tpw9EVmW+KrrI5RYwnyad2Ny8PAOvvv5JbJzDrInbQP33v8JBoNRJbKurxI5nbCsXEHUDVeiWK1kP/Y0ReOvOe5qEMleTqsnHiB6xjQAgn+dhhwUzKEXXq/96hHA0a07h1euB7QDR6gHGFwuWjzzGIbyckoHDMYd3QL/XVsIeuJRJFmm6K0pcNttdbJDR6ex0f2BulFQUOCZOCsZefGL2US28E2odbfRTF5IHIdCWvskP03espuVexcAMLDVWT7PX6d+UOLjkYcPx/jzz5ivugpXfj7uW29rbLPqhPGzTzE99xzSoUMVvylhYTjmzUfp2bMRLdPRObWo08CIw+Fg3759mt/U280xFFG3bt2YOXMmZ511Fv3792fmzJn46+F4Toqff/aIZg8YOc5nebbfvwIJBVky+HxQBGD5gXkUOwoJsYbTNa5v9Qfo1BvW337FkJONOz6Boj/+Aj8/zawMKT0dy8XjkTt1xjlnzgk/tJXISErWbyRgwjWYZs/G/M47OB55DFpEN9Sp6OjonALo/kDdMJnMdOt/pk/z7HxgCYH2ImQknAbv/Dp/RxHjtnzMzuhe/JfoOz2ThmTm7I/JzjmIyWTm3DG3+kycVqd54uzYCXvXHvivWUnsI/djXrKYfS+9jeyvnXGf/NrzRM+YhmIwUDz+UoJ/+YnQb74g74JLKOs/sF5t9Fu+lMhP3gcg/JvPK+0Pufduis89F6WKySw6Os0B3R+oPTNnzsRutxOf0oaI6Fif5bu+/RjWtx+DS1hN5wt2Zm6kwJZLoCWYrgn9fJ6/Tj1hteL8dirSf/9h2L0b00MPNe+Bkbw8TLffDgkJKFYrkt2zwlAqKMD0+GM4/9JXrOno+IpaD4wMHTq0WQ58iPTs2fO452G1Wjly5AiDBg2q+G3dunUNaVqzwul00rVrV/YfPEKPM4b7JE+Lo4y+W34HYGNb38eJzLflMHf3rwCMbj8e4yku4trUcQ71dKAZigqRHA4UP2EhaWkJ5Odj/HsBUreuKB07onToiNy1C/LwERAa7knncmH54nOMS5YAIHfqDJGRDXkqOjo6zRDdH2jatMpcz9j1nwKwMv4s7CZvp9SY7d+QmreV1LytzXZgxOXyhOi4eNx9tG/bp5Gt0WlslJAQDv74G+GffUTUK88T+edv+O3by+4PvsYRlwBAwJaNxH7jeSfSv/yestFjsXfviTs6pt4HRQDKzxhIzqQHCf1xKs6UVIw52Vj27UWSPeENil95AyUxsd7t0NHxNbo/4DvmzJkDQM+BI+un76geJk6u3e/5huyZPAizsfYhknUaGEXB+MEHSEcnasvnnNO49tSV8HCcv/4GVityv34Y/vsPy6iRyB074nrhxca2TkfnlKLWPcGLFi3yoRmNx4UXXtjYJpwSmM1mpk6dypcLdvnM6em7dQYB9mLyQuLY0mooHCiu/qAakFVyBKNkJDG8HX2Shvo0b52a4+7YkeIvv8U5chRKSAiGnTsw7d6J4h+Ae+hQlDZtcb3wIuYHH8CwbRts21ZxrBIYiONIJlgsmD/9BL9HJnvyHDgQ+8ef6mEcdHR0qkX3B3zD7t27GTt2LK26D+bKOx7ziU9gdpUzdt3HGBSZzUmD+Sf+gop9JtlBq9yNAMzqcH2dy2ps/P2r0UjTOW1Q/P3Ju+tebH36EnfTdQRu2UjXEX048MSLZFw5gbKOXdj3+PP47U+jbPRYAApvudNzsLMBQq9ZLGRPfoLsyU9U/BQZ4geyDEc1IPx0/0unGaL7A75BlmXmzZsHQJc+Q3ySZ2BZHm13LGND21HIRt9ParQ5Stl6ZC0AvZN9Y7NOw2D4birme+8BwH3ZZTg//qSRLaojkoR83nkVm/LQoZQfOAjx8Y1olI7OqclpP0X+qaeeamwTTinEDpCcqRu1+0WRs0jvjE+1cFpQaS59tvwBwKKEC3EeKAZRYEclwOM6nK/ZZcjVirYZwrShB4zxIXQI7M1Dsa/hcDswJatEzQIFQarMUu22KACnElM1CuJoiiB4ViAs941qpw3vZFeJwouC36IIo4goiK0WxMwu1AqNhgRqZ78ECOJgarEwUWRMFJkURd4EPVTN8aJYaiXxr2uu5Ngvxj9nYP6f52Nb7t0bx9x5uO+9F/cll2DYvBlp+3ak7dswrFyJkpCAJfDos3TLzcjff4f7phtx33AjhmMCjQcOYPz2W+SrrkJJTdXaaK5ZyBJRaLKxUF/PptT30BTFtOtKVeJizeUcm4OdVV1nRz2/d7o/4Bvmzp3L7t27MQVGan0CQXhbydK2rZKfIFRe5m1reu6eR6CjmPyAFszudANKdhngeZ475qzELDspsESwwb8HSn4pklpgXWiHRcF0RehAdudp2zijWoRYFFMXhKYRH1Gh0ZOiAk64r8LHKXVAQTkIPoBGcF0QYUZo00VhW6PQxqu3w6K1MfJLBIHw6HBtuBhnpPccxFOIS9amFYW4RSFXtXimU6ifggVReFF4WvR51ELu+YJwu5g2XBCnL1WJpIcJAtiizTaH9vmIDNGes1roXRRyF8XERVF4cdvv6HNs63kGZTMXkHLrtfhv2YTVVV5hp/2Oidip/EHncLmxpu0h4fknyHj+NZyJyRX7REHYbEF42yS8I2rReNH/CQvSXssC4dobBYHU4Dl/EvT9VEqumYCk6vCByj6hKM6ufgZEX1O8thpdFCBfEE1WP2+iALjLLby3gn9VLtRl6rIq56U9uMQmCsx774XDpc03IVL7bhYK76YofK/2t8VnXtwWBZlbhFYtQF8V4veJW3X9/CzaZ018J4qruB6gFYIuUJ2/WF/4Gt0f8A0bN24kMzOTwMBA2nb26iHUpH8AtH0EA1Z9T/ed84ndt5k/OtxcuX9AwHVE20eg9g+MkcJEBJOBjQdW4JKdxAYnkhDXRuPHSELbgfqbWBRfF8wS22WX8N4YVT5QmNDuinWOWCclqdpx8d0OFOpVf8GPEd9Rk6peEb+Pg4T7JLbx4jm6VdtiWxoiiMAriknY9v59st+48mWX4/7iS+Tzz8c9aVLFgdKWLRh//hnXxIkQ3Xihtev8fWww6IMijUxNBcB91SdSXbnViaDXJe+qaMi+hfou67QfGNGpO7Iss3XrVjp37uyzPAeu/wmz7ORgSGt2RvbwWb4Adnc5AYSgKArBfmE+zVvHh8THIZ8xAGnbVgxr12IZNw7H7NmQmIicmAhnn+1N61B9LPr54Vi2TONFGf76C/O11yAVFiJ//RWO1WsgWDvApaOjo6NTd46FzejSZ7BP8jM7bfTb+xcAy9tcgKwOe6ko9MleBMCmyP4oUvPV5QgODMdYD7NfdU4NnEnJ7P5zIeaDB3CHR3AyT3ri/yYTsuwfgkYPJv3ZVyi45Ip6t7Mqwl99kYjXXgYgYNZMys85j6IPP0UJDa3mSB0dnebI3LlzARg+fDgmc91DUkUWHKTrrr8BWBc3rM75HY9eiYMIsni+EU+FsPGnFWYzzrlzK1YsAhjmzcN8wTgkhwNp8yac035pRAN1dHSaKk1j2nMjEhERQU5OzkmnT05OZv/+/fVoUfNj3bp1dO3alU6dOlWaKVAbjC4HrQ+uAWBhy0t8PhX+q+3vsy1jPSvSFvg0Xx3f4p5wPY6lS3HMX4ASGoph2VJMjz92/MQWwdkWnhnTc88hFRYCYNi9G8OC+fVhso6OTjNG9wfqjsPh4O+/PZ0WvhoYic7fj80SzL+tzmNr3ADNPotcToztCABD0mcx5sCPtCg75JNy65ucgnTWbPX6IeNH3UliTBusZl3QV+cEGAw4U1KRQ0KqTwscfP5VSvr0x1hSTOL9dxD35GRwuao/sB6QSksIf/NVzW9+f83E71e9k0qn6aH7A75h9uzZAIwePdon+fXc+hcGRWZnZA8Oh7bxSZ4iJoOJTrG96BTbq17y16kHFAXD779hmDVLMygCYHzlFaSjEygNM2c2hnU6OjrNgNN+alpBQQGzZs0i9CRnK+Xm5uJ2N0Dc3mbEn3/+CUCnTp18MrPCbbLw4WUfE73hP46EtKpzfiJdInvx5fLXsJisdIztSViALszdlFF69sT57VQs55+HccoU3BdehDK0ZpowrkcfwTJ+vCc/kwl5xMj6MFVHR6cZo/sDdWfx4sWUlJQQExNDcptOPskzI7I1nw158bgCqw6jP3+kXEufrEWUmYNRkMjza+GTcn2F0+UgtyiTkMBw/P3DKSrNY/6KH1i52bOypmV8ZyLDYgkJjOD8YTeTFNO2kS3WOVVwpLZi1w8ziH//LWLeeInILz/BkraX/e99hhx8coMrvkIJDCL/ngeQW7Yi9O3XMe/ehX3UaMovvrRB7dDRORl0f8A3fPTRR/z5559ccMEFLNztqP6AqlBk2hxcDcC6uDN9YF3VZBYfZtP+tZzV7VJ95UgTx/jF55hvvRUlIAD3hAm477obpX17ANz3349xoWfCjtKnb2OaqaOj04Q57QdGACZMmNDYJjRbFEVh2rRpAJxzzjm+y9dgrJdBEYAzYoayoWgtB/J288emb7m2/z31Uo6O75DHjsV1442YPv8c01tv4qzhwIg87gIcs2Yjd+qEVFYGJznbUkdH5/RC9wfqxs8//wx4/AGDoe6Lko1uB26jBSRPLO7knC0EOEtwF5YjI5EZkMjmyH5sjuyHUXbiNnhiVjd2F4aiKBUdKRl5B3h7+kMAmIxmFEXBLXtm7bdP6YWseDvTUuM7NryxOqcMxiOHkUPDUAJV2hRGI9n3Tqa8QyeS7rmN4H8W0PrisaR9Mw1XTFyD2pf/8BOYjAYcXbrht+QfnHdPqjS7V0enqaD7A3Wnbdu23HvvvZ6N3bvrlFdc9m6CbAXYzQEcCG1fd+OqwO6y8cmK/6PYXoDNUcq4PtfrgyNNGPflV2D88isMy5dh+uADTB98gHvMGFyvvIo8diyO2XOQzzgD7PbqM9PR0Tkt8cnASE5ODlOmTGHFihWkpKQwadIk1q1bx7Bhw0hOTq4+g0ZElpu+GG1TZv78+WzevJnAwEDGjx/Pd3O0y4ilthGabXl9pmbb0Dq84m/3xixQZEDyhEISxMOUcicxZQcJceRjlh1Ywy0YFDfp4a3ITEzRhE+Ss7Ti63JBmWb7gvCLeDfvNTYdXsWe/1bRqlufin3GBKHTXBCWRBA/RCVYaM/WiskGJGpnGvmFacUNS3O16cOCvNcjTBCBFwXO/ARBNDGMmdqBswppJaHbSIyApvb9RCFEUZRSdsv4P/YIUnYWznPOJfqcczT6HWohSpdwT+2C6K0o6mn+6QfMDz2E+5prcb36Gkrr1rjuuReOdjqZLx6PEhaG69nnICGBqpDPOstzrlWmal6IQna+oi4iXLVJ3xRpLLH1ul775khV51gXMbmaovsDdSMnJ4evv/4a8HQorduZq00giP9WEkUXRD0H/PUxAw7PZV3smSxqfzlug5lBO38lqXBXRZoycxDvDXgN2WBCwb8iPqxcZKtII/kLbbjwvBnCArTbQVUImQui1GrBWEVR2J6+gUXrf6VdYndG9r4UQizYC934W4Ow2UtwuT0DPKktu3LeZRNp06G3Ny+hOncJbb5FZZd/hDbcliR0LlcSeRWEyx0qke+cgwWaff6C4LMoJq1GFH8WBdKLhe2UFlqh2yxB9FtNvHCOwYJQa1m51i51WSkttBpiecXacsRrHR/lPef8Ym3HicWsvbZ+Zu1zmpGn9eOMBgM4nWA2EyQ8e2K5NuHaOpzaZzMq1HvOlXwx0Z+a9iupd06gaMAQdn35M9Fh3uuXV1xO3lljsf04g9Y3X43s548zOBTlaB5W4d0MDdDavTejSGWTEOpNOKdAf+19KhXEtSVJwd25K+Wdu+IvGTROmegTigLb6nseG6F9b0VvqKhMnJ2uvV4RQV6h5IJS7T0X7TCbtNfHXEW7JPrIJkF8XvTb1OcoiiDnCs+i+AyYhfpIvV0kvHtOQdg9MqRqsXW1WH1YYNXPcaAgfF+T/uOYsJMPHai2w+Cuu15FVej+gO8pUX2b16R/ADx9BK13LAdgb1RXZIwVPoRS7sTPVUpC6T5MshNrhAWT24HTZOVAdCfKYlK1ZaV77XAdKdAame95eI3AyOgx/HboR5bumIW7uJxxra/EmKjtI5BU72Slx75U+w7KwrFWQazdoqqT7EJbkBytbZeP5Gn7NQ6q+h8CBV/KTxBulxXtu2MR6rdiVbskqnHmubR2uYV2KFqoV2pSF0iShLR1K0piYs0nMAYG4vjnHwwLF2Kc8g6GmTMxzpmDYft27Bs3IY8a5UkXFFR1PvXM6fBNd6rTVPtEqhNjr8qO+hSFr8mx1dHkxdf37dvHoEGDyMjIAKB///4UFBRw/fXX8+CDD/LKK6/U2Uidpssbb7wBwE033UR4eDhQt/iqrbM2MGrL12xMGsayaG88UpPbwXl7P6NDwXpv4n2e/wr9I/lo9Fs1KifWL56eYX1ZV7CKOZkzuV3prc8EqQLD2jWYfvwR5wMPQrDWmTXNnYPfO28BYP3+OxSLBXnECJyTH0YePKTWZZreehPL5KOzbF99BSwWnE8/7U3gdGL46y8kpxPjjBk4v52KPGZMrcszfP8d0v4DuB9+2Oe6Njo6OjqnA3fddRfr1q1j6NChrNu5qtb5JB3exKDDntjkfTIWklSym5+630dmcDKyZERSZJILdxLgLCHClklOYNUD4/VNWsY2flv+KUdy0wAoKs1lRK9LkIA2Kd157r6fcTrtFAU6cLtcRLdIwhxadcekTvMk+suPSXr+cXIuvZrMV99pEH/ClLaX5NuuASB06SKMBflwnA5nW9ce7Ph1LpgtKH5H95+kNmDrm64kaPUKjCXFABRNnETBE8+AtX47qHV0dJofCxcu5Mknn+Thhx/mvPPO80megfZCFCR2xfbW/N6uYAMX7/3U+0Oa989pAx7iQFQk/vYSSgO0gy3V0TdyIMYAP6bv/Jp/jyzEz+jP2MTr6nIKOlVgfPddzPfegxIejmPJUpQOHWqWgSQhjxiBPGIE0p49WM4ahbR/P6b/+z9czz5bP0br6OicMtR5KubkyZNJT08nISGhYoba4MGDCQkJYd68eXU2UKfpcujQIWbPno0kSdxzj2/CUbXOWk+oLZdAe6Hm99SCbdpBERWhttzj/l4dI1ucjUkysa9sD7uyN9cqj9MFw65dOCfehXHmH5X2GXfvovy++3EOGoy7TRskhwPj7NlYx56NYfas2hWoKFhefklbzpR3QJjB5Zz+K3Lr1kj5+Zief752ZR0tz7B6NUgS0rZttc9HR0dH5zQlKiqKV199lfnz59d5okGn3f+Q7R9HVoBnwCOm5CAds1azoO1V/NjjAQ6Eez+YRX+hMfhz5dccyU3DYvLjzO4Xctv5z1a6BmazlcjIeFrEJOsTMU5hEv/vGSRFIfqnb7Gk7WmQMv1n/Krd3rPzhGmd8Qm4or06PAnPPU7YM/+rNsRI6MJ5FYMiACHvvYNlw/raGayjo3NK8+mnn7J06VL++usvn+U5q/stvDdqCrtjemp+H3Z4xgmPuWjFG9z77dVM+P0Bgkuya1xm39jBjEm9CIAlh+ZWWo2p4zuM770LgJSfj/Hjj+qUl9K6Nc4p7yJ37oz7xht9YZ6Ojs4pTp0HRubPn09UVBTbhM7ElJQU9u3bV9fsdZows2Z5Or0HDBhAq1Y+0ANRFFplbQBgb3Q3za694Z3ZEt6bcuPxl1zHFuytcXFh5nD6hg8AYPWBf2p8/OmE66LxSKUluK6tPFPGftckbC+8TMm8vynasAXb+o24zzkHyW7HctfE2sXzlCQcTz1dsSl37Ijrvvu1sajNZpSOHZHS0wFwT6jDLB5JwvXa68iXXVYh1qajo6OjU3N80em/rPcV/NhxEiH2PACyAhPZ2qI/AAoSMcUHANgUM5ADYY1fZxfbCgC48dwnOH/QDYQFRzeuQTqNxuHJT1I4ZDj5Y8fhSK0frTyR0iuuxhXiDd1a1rHLSR3nt3M70V98ROiUN4kbfSbmbVtOmDb97gc124WTH8PRs1ftDNbR0TllcblcFX0EV111lU/zLrOG4DJqQ1DNS7oEm9Gf9ZEDKqU3Km4MioxRdtJ2/8palZlvzwGgfURXfVJDPeJ67XWcr7+B+9prcT3wYPUHVIN87rk4Vq5CSU2tu3E6OjqnPHUOpWWz2Wjbti2BgdrYhyUlJdh1gaNTmhtuuIEOHTrgcp04/nRNiCnaR0h5Hg6jhQNRnaDY7dGSQEY2mJiROoFgZwEpxTsxy06soUYMsptDUR3JCGtZqzKHRo0k1i+Bvr1qH4LptMBqRe7U2fO3y3nidG43SseO2H/+BfM9k3DddTdYrSdOXwWuO+7EIMsoLVsin3tupXAPxk8/wTRpEpLDgTxkKO4bb6pVORUYDCgta/cc6ejo6JzOHFshfOaZZ2Kx1D20TklQFC6Lm9VxI0gt3M4v3e/Bbj7qZ0oSs9pPYGtBP7a36FfnsnyBze6JWR5Sw1AdOqceWTfcRtYNtwFgbSBhcTkmlm2/zsNYXIQ9pSVyQCABf/xG+P8exZXaEkvfART3H0RZj94oKp+svF0H0j76muTH7sOyZTMx559N+pJV0DqlUhkZd9xD+t0PEhUpRp3X0dHR8bJs2TLy8/OJjIxkwIDKgxW1weK04TBrJ0caZDeywUhaSEfe7vYSUbYMDge2xC/MiNllx2H2JzconryElpT6h9cqrKGsyBwq9oQJH5Qw0ifnonN85HPPBcBdTboa4ecNWWr480/kbt0gKcmXJejo6Jwi1HlgpHXr1mzZsoVvv/0WALvdzpQpU0hLS6Nbt27VHK3TnDGZTKxaJwFm1m1c6vlxZ542kVUr6GWI0Q6gKSoBtGMzOfaGd8VZptBJ3sLIdV9S4h/BtyOfw+0IoIxwtuHpvHbtObokNgekogJtuaKId5c47f6jfeyRxDKA9siZJSh4BnjcLqEDvmOk9thw7TmoBWMNgjCi7NAOGolDSJFxWnExtXioQxB/FAUKRQFHP0E8M1glgCn6gqKomyjOrh6DEEXf/YVzPCa+aly2FL977sb90EPIV1+D+8MPkYBjMmeGhQuRhwwB08lXO+677/ZulJd7BGaPftQr4eFIDgdKcjLODz/UribRqRPViVs1lEC4L8upaV6NJZBXF9Gy5irqpz4P8RzU2831/E4HnnzySVasWMEllz3EGQPHeX7MKq36IIsgZC6IFEvBfizvcDErFRcmk0znzFVsiz8DxWCkJF1mC+0hwxNGSxGEhSWVmKgiiDAbQoSVp4IAthKoFRJGJTYq52tFvA0hVmTZjc3hOVd/gz+Kqt2XitBiUIm+5mrFU41JodptoU1Xt+MuweawagTTI2NOLDhqEQScRdHmUEF42aTyPVqEa69lYYn2Wgf7aa+l2EyntPDabRLqM1mYDFFur7q7RG2LeP6iqHWQYJdTdY8Toqq+lupQKlJJMe1nzcDv91+xjx5D2W13EqDK2yE8l6WCYLzoe1UliL0vs1izHRGsnXQS37+7Zrs4MobIrEz8Dh0kbuli4gA5NIzsqT+R1a1PRbqSseexf8AA4q8aj9/mTYQ9MImMr37QPHDhQVY4KgxcUKKd9CbbHcS99TLmzAyybr0bV8dOmv2iEHBhqQPcbjAaKRREzyOFd7Mgt4iIbz6jvGMXSgcN1exLy9C+XFHCtSso1T6L4UHa66UWI08X3sXkFtr3RRSBF31q9X0VQ+0I2sTi5wmyKoFZqANNgp8v5p1TpK2PQgIsqr+FegxxW4v43quPF8/XIQgwi3WIq4q2WnzPRZxC3qLAvE7T548/PGGXU1v15a13//XuUPcR1KB/wL+8iNvmTeRwSGumdbkbq8vGmIM/0CpjPb8PuJfdCT0AyCOSPDp7+wecQD5IpeVAujdz1TNojNW2u1KA8I0qw93DniOr5AgtguJB6CMgUPVyiL5DkLbtVIRn22DSvljq90isN8U6qL3gL6gjTYvvn7peAO93+zHKBXH2EFWbL4qry0LeJqHOcgptnvr9rfNqm5ISpMOHaxXZwfDN15hvvBGlTRscfy+EuLjqD9I5Lo35bX4640vR95qKnleVd11E36vK93jU9/NSZ2/jlltuQVEUJkyYgCRJrF+/nnvvvRdJkrixmcX0GzFiBM8880yl3/Pz8xkxYkQjWHR60T5nHQC7Intw3rZPGPfvOwTai4gp2EeHQ/9Wc3TdccsuiuwF9V7OqYpx2TKMmzdjnjwZCgo0+6TVqzGPPgtL/35Im2un52J66EEs3bshbd0KgDx6DOV79mLfuUsPf6Wjo+NTdH/g5MnMzGTlSs/Eho6dfDM7tAJJwm0w02vffM5b/xEXrXnbt/n7AAWF8f1v4eyeV+JvDaz+AJ1mj1RWRvSjD9Cqe3tCJ92JdcE8gp96AmNaWvUHNwRuN+W9+nD446/JeOFVSi8Yjzs6GkNhAZETb8VQoh1kcUe3IHPKxyhmM0FzZxH0y48nV47TSatbribm/beI+OUHOowZRMK9t4PzxCuLE56cTLdOSUR+92XVeSsKyXfeSPyzT9DqyguJfue1k7NJR8fH6P5AzTg2MNKp80Cf5Nf64BpMigs/VxkJRXu5ae1TtD2yFqPsZsjmnypFFPA1kiQRE5ygh9FqLDIyMF99FX5hoVg7d8J02601vufymcNQUlIw7NqF5axRkF1zvRkdHZ1TmzoPjEyaNInbb78d8MxkOTab5ZZbbmHSpEl1zb5BWbRoEe+++y4XXnghpaXemY4Oh4N//tE1KNQ888wz3HnnnaSn11zb43hIsptwWxYAVreNztmrAHCY/MgLjiMxe7tPyjkR23I38NrqJ1h6eF69lnMq47jnXtxt2yFlZmIZPx7KvTPZpMOHIDQUw4YNWMaeDQcP1ixzRcH4008Ydu/GfMnFnqkxwcGQklKjFSg6Ojo6J4PuD5w88+bNQ1EUevXqRWhY/WhrtMzeBEBadNd6yb8uGA0mBrQfzciu4zEa9PbodMBv7SrCvvwUQ1kp7oQEyq67gYJPv8TtC709H+D/yssk3HQ15T17U3D9LeR+9jVHVm3AlZCIaf8+Eh+8u9Ixjg6dyL3/YQCiH30QQ0F+9eVs3kDIPws0v4VP/5GAtauOm96Qm0P0N59hcNiJf+mpKvM27UsjZN6siu0W775Z5YCLjk59ofsDJ8++ffvYuXMnJpOJ9h18E+oyvPAIAMXWMPoemou/y7PCKzskkfDidKyusqoOrzOKoiAr+kz2xsL4888Yf/QO1ps++wypppMQkpNxzpuPkpSEYft2zLfcXO8Dajo6Os2LOg+MSJLE+++/z549e/jpp5/46aef2L17Nx9++KEv7Gtw5s+fT0ZGBmeccYYuHl8Fv/zyCx988AE5WTXs4D4BisHIpthB/Js0li0tBrAhdggAFlc5K9ufz6JuV/uknBOx+NBc8u25hPtF1Ws5pzRWK7ZvvkUJDsaw+B/ME66rWNsrX3gR9m3bkTt3RkpPx3LBOCgsPPm8JQnXK6+gSBKGnTux9O2D4a+/dKdGR0en3tD9gZNj2bJlAAwbNqzeysgLjAUguLz6ztrGpMRWyDcLXqOwNK/6xDrNFtsZgyg90zNTXCqzUXrXJOznX+BN4PZplPQaIeXk4P/mawTP+YuWIwcS8M/fACjBIeR8+R3ONm3JvP+R4x6bf9d9FJ87jsyPvkAOq14vx9a9F4eefJH0+x6heNBQbG3bc/iF1ynrd/yVY3JkFJm3TyJj4v0cfvz5KvN2pbakaKRX/y/rnofAXHU4KB2d+kL3B06OwsJChg0bxtChQ/Hz880Kyu0tByEj0SZvEwfCOmAzefP94PwPsJsCfFLO8Zi17Ueen3c36w/Xf+QKnePjnjAB96hR3u2xY2ulCaq0bIljxh8oFgvGmTMxfv6ZL83U0dFp5tR5YGTjxo3MmDEDi8XCJZdcwiWXXILFYmHGjBls3LjRFzY2KHFxcfzzzz907dqVvn37smjRosY2qclRUFDA5qPhkFJb+W725uy217K45XgcJj9mt72WJV0uIzMslR1JZ+Cw1J/TU2IvYl/hLgA6Rui6OHVB7tET56+/oZjNGH/5BePzqg/f6Gicv89AadECw8aNWMaMgfyT7+RyX38Dzm++QQkJ8aw8GXc+lhEjkP7VnVUdHR3fo/sDJ8exgZFBgwbVWxlHwtsAEJ+/u97K8AW/LPuIjWn/8s7vD3M4t4mEVdLxPWYz6Z99Q3nP3iDLmtUVhm1bCezWBb+Jd2D95iuMmzaCzYZUVIQhM7PeVz0oUVEULviH8g6dMOVkk3TNJQS/PwUUBUfPXqQvW4O9XQcALHt3E/Pys4R+/jGBf87AUFxExqffUDbirJMrzGAg54bbyJz0EHu+/ZUdc5eTf+2NVWq+pT/8FBkPPk7eFdcCEDJvFin33Ip1zy5tQkni0OvvsnXdDvb8PJPsO++p1fXQ0fEFuj9wcnTv3p2FCxcyf/58n+WZHdmSDXGeCZPtc9bybY9HyA+KZXmXSyi3BtVKVP1kcbmdlNgLOZi/p97K0KmGkBCcs2bj+PMvym3lOKd+V+t7rnTtius5T9+E6f774cABX1qqo6PTjKnzmv9bbrmFjRs3cujQoYrf/P39ufzyy+nRowf/NqNOy2OxI61WK9999x3PP/88Z599Ng8//HAjW9a0WLFiBYqi0Lp1a4KLLVDsFUhTBLFxKVIQOS0URBtV4mqG2GDvDkVhOaNYGTYMd64bKKmUtyFIJbQoCIkhCFo6NhzW7k71rgzZengVCgoJUa2I6tUeRRD4VDK1ArKSvzBjTfUBKNu151derBV/tMZqBR1FgTS1gLoorp5brM07LkJ7bUXBwnyVQKZBcCDCBEG4vGKtgKNaEFQUDw0Wz9+kvdZ5fQfi/+YUQu+6HfOzz2Dv1gPXOecCoMQlYv/1D4LGnYNhzWosZ43CsXCRJywWlYUlxXiupRddijR0BH6vv4r1w/cxLFmM6Zmnccz8E5swQTPAqoc0qS8aShzNl+XUp83ViYFVJS5eF3wpeOZLmovQfVXo/sDJoZ4oMWjQINI+8mpIKYL4uhQXrN1uH6nZdv+j/UCVVOKsh83JACTnbSd5/3+kBXhCFhllJxN2vEZ6dHv2RXUmKzSFIv9I3KrmUrFp22F3tlZfQRKEuKUSbXsoqYS7xbSyW9tmndv1KrLyDpFVdJj3/3iC685+mA7JvbwJHCdeSeBO19pFpHZCiKvIe1JGQVjZJQgnWwQh6nQh74Bo74xboyBubBTEVLMKhOuh2m0xa48NEYTaxbxEEfRClZ8SGaq12SaInocKfktVIs5+gv8UKNy3Epv2eoWrhMyP5GqfW1EQvULINtSf8t//oODAIZwdO8NRH8z4yisY9+zGuGc3ls8+1eYF5K9Yg7tLFwAMH35EyJQ3KbvwYgqfeBq78DxZ3U78/p6PfdgIkqK1/qPdqX2Wcops3o2UtoQvXo5y/yT8v/2a8CcfxbptCwVvvAN+fkRaPNfDL20nEe+/VXGYOyaWnKUrkWJiPPbt34d51Uqcl19ekSYuQvtcisK9aj8WIC3jxKLxobP/IOS265AUBe6/n+KjPqB58yaMeTmEnH10xUiHlkQCJeXe++YSrpXYUdYqNkSzrT7Wk9ybPriSULmWCEG4XfTPNeUIz5ZLuE9mo/b6WFThYEWfV/RjxXLF/ervgDLh/bEK30WVBZpPfA3EtKLYuvh9EhmsvV41oSqx9aIyb11eXOY4YTpfo/sDNUeSJDhSovlN/R1fk/4BgOV9rqTLXyuIL04jzL+Uz3o8idtghoxq+gc4Trtd6i1LKbRp05q0q1ySottC2hwOFu5FshqR/IVvS3U9VOQ48T6oNB25TPCR1Cih2usTKgioZ+dr2+UQlfC7VaiDiwUfSGwPRYF19be4+K77C3mL9b+Yl/oaWASxeYdQN1qEOkqDJCGPOdoe1HHloPveezH++iuGFf9i/Okn3A8+WKf8Gov6+rasjqb6bd5Y18OX1OU7vjpB9aryaqr3tLq8j52zo45i8seocy7btm2jbdu2REZ6P3AjIiJo27YtW7ZsqWv2DYrYKfvEE08wdepUXn/99Rrl89JLL9G3b1+Cg4Np0aIFF154ITt27PClqY3KsVkg9TU7NDF7G1csepZ2uf95nJ56ZmumR/S9c6pvYqHqgO3aCZTeeRf2UaNxD9Q+J+4ePSieNQ+5RQzykCEQFHSCXI6PEhmJ7cWXKd++A+f//R+O32eAsQpnSkdHR6eG6P7AyXHsXFq3bk3M0c7U+iA3IJbyo+Eyzjjo1R2IL91HjO0IPQ4s5MJ173Lrwod44K+buGPpA1y59mWS87bVm03HIzI4lomjn6NNTBccrnI+//M5lm6cqccnP0VRoqI8gyJHMe5Lo/jdDyj8/CvKJt5N+eChyCGhmmMku7dDy3ToIKb9+wh5+3XCH5gELm0HH1YrIVPeJLZfd/z+rqEGnp8fxe99RPHLr6EYDAR8/y1R543GkJVZkcSdkkLJrXdgG3ch7rg4jJkZhEy+HwBD2l4iBvYl5PabMa7/r2ZlqzBlpNPi+SfxX7lc87tl7WpCbroeSVFwDBiIOyXV8/uaVcSOHUHUDddi2L+v1uXq6PgKX/kDcGr7BJmZmWzYsKFe8i7zC2N9a084pQ4H/22Q/gGAlMi2ABwuSKPI1rRDeeqcJEYjztdfx75wEe4HHmhsa3R0dJoIdR4YcblcZGRk4FI5806nk4yMDNyNGGO3NqSlpREdrRUOvfjii1m5ciWff/75Sefzzz//MHHiRFasWMG8efNwOp2MHj1aI9jWXCkqKuKTTz4B4KKLLqqXMlql/0dSznbaZ6+tl/zVON0OduV6BvC66AMjPqX4uZfI/2k6SlhYpX1y584ULV+B6403a78EOjER1/0PgOXoLBpFQUpPr73BOjo6OkfR/YGTo3///mzatIlnnnmmfguSDCxJGcfBkDYcCOtQ8XNGQDI/t76NNS1HkxWchNNgQUIhxJ5PYsEu+u+fVUWm9YO/JZAbhz1K75ZnIisyvy39hNd/vIeC4uwGt0Wn4bAuX0pc/x4EPv8M9osupuSlV8j+fRaH9x7m0N7DHDycS06xDVfvPhXHFN96B3mvv4MiSQR9/QXxV47HmJ1doc8GYBs1BlP6ESKvvwZj2t6aGSVJ2O68i7xpv2MfNATL2jVEnTUM6Wj94+zZm6L/e52Cr7+n4ENPvHW/WX+CoiCntsQxbASS00nIFZciZWbU6roEzf2LrEeeJGj+HM3vAdOnIdntKGYzxe9+gBIejlRcjCTLGGw2jIUFmObMOUGuOjoNh6/8ATi1fYI333yTHj168Nxzz9VL/qvan89vA+9ndp9b6yX/43HsC1VWZA4X7GuwcnXqF6V/f5QhQ+o1DJuOjk7zos6xZjp06MCGDRu48soruf9+zyyjt956i5ycHHr27FlnAxuSlJSU4/7euXNnOnfufNx9x2P27Nma7S+//JIWLVqwdu1ahg4dWicbG5vPP/+coqIiOnTowLhx43jz37k+LyM3JBEAf1dJNSnrzr6CXThlByEBEcRFptZ7eacVpqqrFyUu3uuQ5OVh/PknXLfcWjsnRZYJeOgBLD//RNH8v5HbtquFwTo6OjoedH/g5KnpNakt6xJGsi5hpGfjaLgrp9HK7tAupMUfXZmoKAQ4igjJz6DUEoqfq3E6m0xGE5edcQdJCe2YtfJb3G4nIUGR1R+o02yxrPgXyeUi8M3XMa9fT+EXX0NwGEgSSmiYJ5Hg38gxsZRefxNyRCQRd91KwJJFtOzamoKbbyfn+VdAkiieOAm/RQvwW76UyDtuJmvm3Gr9KxH78JG4ExKJOmsYpgP7Cb/2CvK+nwZWb8gj026PxoezW/cKO4unfIBp21ZMu3cRcvmlFM6aC341m6ldeOmVmDKOkH/T7Zrfi++4i4B5szHt3UNk7+6Vbe7WA8flV9SoLB2d+sBX/gCcuj5BSUkJH330EeDRGakPyvzC2JXQt17yPhGzNv8IQGpkO9rF+E5XVacJkZ8PYWH6IImOzmlOnVeM3HzzzSiKwvTp0xk8eDCDBw9m2rRpSJLELbfc4gsbmz2FhYWAJ8TYibDb7RQVFWn+NUWio6Np1aoV9913H4YqxBXrgt3sCZdhddmqSVl3wvwiODN1LGd0Gl0ptq+OD1AULF9+gf+dtyPl5R0/jduN+aorMU+ciHnCBLDV4r7bbJj+XY4hJ5vgcechZWZWf4yOjo5OA3Mq+QPHzqVJIUmUWUNJD21NkX8UWcHH79BqGFMkBnc7jyeu+5RrR0/GIHl8JrfbxcJVv+By168It07DUnz/Q+R8+hVKQACWhQsIveISEHTnToRt3IVkzVmII7UlACFTv8J06KBnp58feR98ihwSinX1SkL+7wUM+XmgCu/jv3QxEW+9StxtNxD9zBP4/7u0UlguV7v25P70K3JgIH4LFxB+47UaIXglIBBnx06Un3s+AFJuDkpoKIU//YocEYF5zWpCLr8EyspqdF0U/wBcicm4YuM0v7sTk8ifuwDbVdfg6tzFm95goHzQELKm/Q6hoWJ2OjqnFNX5BM3FH/jyyy8pKCigTZs2nHfeeY1tjk8osOWy8dBKJCQu6HE9RoOuXdlsKS3FMP0XEFZmGZ9/HmvLVAx//dVIhuno6DQVJEUMnFkL7r77bt5///2KGJySJHHXXXfx9ttv19nA5o4sy4wbN46CggKWLl16wnRPP/30cUNRFBYWEhIScpwjGg+3240sy5jNZl5/doF2pyBUTohWLIw8rVgYKmFO994CAJLytnHl6v8j1z+GT/p4l+PKgmCqWnBdEgQ9RSE2BFEeg7/WLkOkV2zNEKfVvFALwAIgCICau7TwFiMIkZoFIVIRvyoECkWRc1HQ0ioIooWHCOKQqoEeiyCQLuYliqWpxdVEcUdRPFU81rxxPeY77kBJTsJ97bWY7rsPw759lP8xE8aOpRKKgvH99zHdfx+S243cqxeOab9AcjJi7VRVdWXIzcEydAiGXbuQzxiAY/588PM7YXqdpk9TERPXaRoUFRURExHeJNvFk+FU8gcOHDhAhw4dGD9+PJ9//jmWoyENNT6Bvep2WEkr0GxLEVqxUddG1QC3MHGhUrvs522X/O3FlDm87aFcoO3INQRr2wVFqFcMgsipom7jRGFRASlIEHIX2k8p1Mq3C15nw95ldG15BlePeACjwXMukig6HKUVuZYSvffeKLThBuFYSRBpNgv+hHpaVFCY9rqLAs9+giCqer8ozGoThFjjhXsaLFxbtf9gFp4Po2CH3aXNW3QH3PKJ2wd/wW/xF+6LSVVWgLAiwiwIyJeWa59r0QcybtpA9HlnYygqpPzSyyn69IuK5zdEOH9RQNxUVIDxs8+QR49G6dYNh0pM2/31t4TfeoPXjpw8OFofWM87B9Nc7QpuOSwcx5izKbvlNsyDvVpvxoUL8b/wfCS7HUefvjj69ifjqRdVJ+QmeucmQocPxXHe+ZT88DPuf5YQedmFGEpLcQ4YSOG031COll1YqhX2TYzSihdXuj6qa31MmN2UmYFiNJLhkJD9/CuuV2psiGfw5qjYbqDqPRf9wTKbk/CnH8eybSs573zAQYt2UCU1JlizbVI9b07h2RKfgTJBuN0s+NTqR1WsIoL8tM+aS0hgU9WTorCx+D6Jz6147cNV3yficyrO/TIKk9sC/U7c6SuKJIt2hQrfOrLqHMvE7zGBoBquQDpGc/cH4OR8gubgD7jdbtq3b8+ePXt47733uPPOOwGq7iOoQf8AePsIeu+bQ4vig6xtMZSM4FTgOP0Doq8hvN/qPgNRmF0kJ6CI3TlbGNRyNACGFtr6TQpQvTfCd7jYX0Cwdts/WtvfoG7XA8O1baf43R4aoLU7WtWOhwVp7bA7te+g2HaK7ZKsSiC2w2Jacb+Iuo0zGRtpAqosYz77bIx/L0AePATHrFng77lepocfxvT6a8j9+uNYtkxfNXKKUhdh8uaKL4XcTyR6fjL51sSOmtp8LH1RURGhoaF1bhd9MuV/ypQp7N27l59++omffvqJvXv36oMiR5k4cSKbN2/mhx9+qDLdo48+SmFhYcW/gwcPNpCFNcdoNGI215/omd3UcCtGdHyLYc1qLCOGY1izGuP06VguugjDvn0AGBctOv5BkoR74kScc+aiREVhWLcOa4/uGL/6smaFR0fj/H0GSlgYhhX/Yr7j9uqP0dHR0WkgTiV/YMqUKdhsNtLT0ysGRZoCRreTmxY8xLWrnyeovGkKpfZrPxKjwcSmtBX8vPg9XZj9FMPZpRu5X01FMZnw+/lHAp97unJP1IkID8f94IMo3bpV2mW79HKK73kA5Vj4K39vR5j77LGUX34Fpc88T/mVVyNHRGIoyMfvx+8Ju3S8ZpWHe/hw8r+aCoBlzWqCPngX64b/MO1P8yQwGnH37OXZP/MPrF98hmPgIHKnz0QOCUWxWFB8/M67YmJxR0Uj+wdoOqbMO7eTGh9O3OgzkapZqRL65quEfjAF/0ULiL1gLKaCpvn+6+gc42R8gubgD/zxxx/s2bOH8PBwJkyYUK9ltcrZSNcjS4ksaxhNyZjghIpBEZ3miXHKFIx/ewbpDEuXYL72mop9rvvvR/Hzw7BqJYYFC06UhY6OzmmAz2IhpaSkcMkll3DJJZecMBbn6cZdd93FzJkzWbhwIYmJiVWmtVqthISEaP41JTIyMpgxYwYFBQX1XlaJNQyAIGcRiYW76rUsm6uML3e8x9687fVazumC6acfkYo9M3fc48ejxMZ69739lieO5wmQhw3DvnIVct9+SEVFmG+6CdNDD4LbfcJjRJR27XD++BOK0Yjxm2+QNm6s9bno6Ojo+IpTyR9QFIWpUz0dq/fcc08jW6OlZdZGAhwlBNvzKLU2zTA87RJ7cM3IBzFIBtbuWsTvyz/Tw2qdYtjPHE7+a54JYlJ+gc/yLX76OdIz8jmSXVSxigLAddfdlHz6Jbb7H6Tk48/I23uA/DnzsV19LaUPTYYAz4Qj48w/8LvsEsLuvE2Tb9KYM0kafSaGoqPh8cxmyp58GoCAe+4m8LOPcfTrT/as+RT+MK3BVuP6LV3sMWfbFqzrVleZNvC3aRV/m9P2ELxuZb3apqNTF07WJ2jq/gDAt99+C8Att9xCYGBgNanrxrE+gg45a09+wLmWKIrCtsz1VUYr0Gn6GP78U7s9cyaUlEBZGabXXweHZ+WdtFJvM3R0TmfqPDAiyzKfffYZV111FSNHjmTEiBEV/0aOHOkLG5sdiqJw11138euvv/L333/TsmXLxjapzsycOZMLLriAcePG1XtZZdZQNiYMpdgShlGuegl2XVl4ZBY7Crfwzbp3yC7NqNeyTgec9z+IPHAQ7iuvxPnjT9j37cf+nWcmlORyeRyQqkhJwbF0Kc6nngbAOON3qGEce3nkSOSjz6nx669rfA46Ojo6vuJU9Ae2b99Oeno6fn5+jB7dtGZStj2yBoAd0X1QpPrRQfMFXVL7cdmZdwOwfOssXvnpLlZsnYNbPvmJADpNm7Lrrqdg6g+UvPp6xSoI6Z9/fDNhozrxdaMR54BBFH/wMba7vIOXxh07MM/4HUNeLnJAAM6u3XC1bYcrLh6AwJkzKtKWPziZ8htuRJJlwh68l8hLL0RyOiAoqFJx9UXJZVdycONOcl+fQvmgqoWp859+EXd0NHJwCCXjL6VgyOn5DarTtDnVfAJFUVi2bBkAF154Yb2Xtzp1LG7JSNu8jXTMrnqwtC4oisKPe7/gy9Vv8O+++fVWjk7943r9deR27XC+/z5yp044v/sOaetWLN27YXrjdSRZxn355bjvuquxTdXR0WlE6qwidf/99zNlyhSgcrzX01XMeuLEiXz33Xf8/vvvBAcHk5Hh6XAPDQ3F39+/mqObJn///TcAw4cPb5jy2l+Bkjy+IqxWfTEq4XzSivdwqHQfX6x5g4kD/kcwDffRd6qhxMbi+Ptvj+CoJIHJhPuSS7Cbf8F66cUYp7yDa9IkaNHixJkYjbj/9z+UDu2RO3eFo4KE0tatGBf+jfv8cShJSVXa4b7uOqRDh5F79vDh2eno6OjUjFPZHxg0aBB+TUjHySC7aJOxDoAdLXo3sjXV07vtmUgSzFzxFfkl2Szb9Bf9Op7V2Gbp+BDH+Rd4NxQF86S7MWzZgnvMGJxTv4Pghl3V5Dr3XFAUivsPxNmjZ8WqE1GPAgCjkbIp7yPHJxDwwnP4zZ+LeeN68tduRAkL8ybLyiTskw+Qym3kPPWCT+1VgoJxBwVTetmV1aa1jTyLg/9tR3I6UAKDUPJqJhKvo9MQnGo+gSRJ7N69m6VLl9KnT596Ly8nOJF/W41j8J5fOWvP9xwIa0cxxuoPrCGSJJEc1IqNeWv5c9sPtInuTIugeJ+Xo1P/KF274li/ASwW3LfcCpKE8b33kJxOlMREnO+9j3zuuY1tpo6OTiNTZ/H1mJgYsrOziY+Pp2XLlpiEWUwLFy6sk4HNkRMNCH3xxRdcf/31J5WHr0RkfMF7P6zn0dtHUVyYy71PfkrbTl7Hx7YoTZs4WruEVjlUpN0vCG/JOV4dEaVUG0pCKfYKsbXLW8+Blr1wmLxOo5xd4k0riPOIQmsikkrcp9hZxAe73qCgPJfYoERuOeMRgqzea26IEDp+BNFXKU4l6Bhb9aCKWRRiE16/sOSwir9lQaAxRBA3DBDsiA0XhFpVlzpQFBMVBFPtgpCiUXWfxGNFobXKNYj2hwCrGRQF/8EDMK5Zg+PuSThe86wcMQjviij6qsb0xBOYXn4JxWDA9cabVc/sUBRdQE2nyVATkbLa5uvrvBuSk70+zVFs9VTzB97/cQOfvPEA61ct4PzL7+Lsi27W7Lct3u/diBQ6edTCq1BpzbLoA7gzvOlN3bWD6e5N2dqD/U2kZm3isuX/R6k1hHf7vuJdMSKKwAvtnyIICxv8T6yfIIki5oIgKi7h+RXbNNW2ZPbY4XQ7WJn2N9EJKXRM8QzoOF0Odh7eQKfUft5nyKKyO0zwS0Q7BBFYoyDaHBDj9VVcZdrrHhan9WNEUXS1ayI+3mLamPCqO/rUl8cqnEO5XXtfAoVrHyCcU36xveJvk0lrmE3IK1K4Pmo/RvRxLIL4vFXcFp4ntbi2WqRaKioi9sG7Mf32K5Lbjbt/fwqm/1EhYg6QW6wVIFb7X1EhVQ9CuoS601SN2GhN8jJ88QXWN1/HPuleDLfd6vkxPR3Tq69i/PgjpPJyHFdcSdnnX1Xy4woEgfAWoSc+D3GARsxLFCdXU93kvKLsfMLPHkX5FVdhm3g3war3vKbuolN4z9VixeK+MqH+CRN8+XKnN73VrL1n4vtUlY8MUGJTvctCUlHkPCNfq+MoijkXq/IqF74RgoW04neAW/UORAv3W7xPoli9uP9Ez3Fz9Aeg7j5BU/MHqqKqPoKa9A+A1j8wyC4m/Ps0LcoOU2wOZUafuzkc0c57rKp/ACr3Ecgl3nrWECTUR6rnT1ZkvtrzIbuKtpEQkMwdnR/CHKW95lK493iD2AcQIwi1hwrtjlBXBKv6AIxCXeAntH8hwjuobh/ERyw0UFuu2J9QVq71AdTtTnXvo9geiiLxTRqn06O/Fdo0w67WhJqIZR9vf23TNlVqK+J9sukbg4a0sTlcDzW+8gfqHGfA7XaTmJjInj17WLJkCQsXLtT8Ox1RFOW4/062E6SpkXF4L8WFuZjNVlLbVhaErG9SCrdz0c6PuW7pk7Qo3Ofz/IPNIdzY436CLaFklBzi4xUvUeYoqf5AnZNHknA8/SzuXr1wnz22VlnIHdojDxiIJMuY770Hw9RvqyzPe6Ds+aejo6PTwJxq/oAsy+zc4glf0b5Lv0a2Rku7Ix67dsVVDqPVMXc1V257i0BHzUIzNgRmo4XBbc6uGBQBWLr5T76Y9SLvTn+Y4rKCxjNOx2coISHYv/se278rUCIiMK5cScjFF2iE0ZsqzgnXU7J+E84bbwLA8MP3+CUlYnrnbaTyctxt21L+0MPgcmH6/TdP52JZGX6T7iI5MpDkyEBCn/lfwxp9+LAndNny5WCzQUAAxn1pBD86Gb/vv2tYW3R0jnKq+QSNob8hG0z82vZWcvxj8XeV4jRaqz+oFhgkA5e0uhZ/YwCHyw6w6MiceilHp5EwmU6JQREdHR3fUOeBkSuuuAKbzYbTqQtHnqqsWTYLgNYdemI2n3gmZX3hMpgptoQRUZrJtcueYcCu3zG5HdUfWANaBMZxa6/JhFjDyCw5zB9bp/o0fx1wjzoL2/IVuEeNqtXx8jXX4li8GNckT7xs88SJcOhQNQfJmG6/DdNdE/XBER0dHZ06o3DRNffTsm03klt2bGxjNLQo9KxWORjVodK+KFsGe8I6k1K0s6HNqh1H+5r2Z+5g2/41jWuLjk+Ru/fA9tcslLAwzCv+Jeiu2+tdRNjXGH/6SbNd/vSzGLduIbh3dwIuvxTTnNkYdu3E8vFHFWlCPnzXE2a1gTCsWY3lnLFYhw7BGh5G+LDBGI5q1lmn/VTN0To6OtVRXJjHs/dfyF+/fITb1bD9QPn+LfiqyyP83GEiWaEpFb8H23J9Wk6IJYzzUi4BYP7hmSzc84cuxn4KIC1dinnUKCgoaGxTdHR0mgh11hgJCgqiqKiIHj16MG7cOMJUcWcBnnzyyboWodOIlJaWsmTezwAMOevSRrHhcHBrPu/6GOce+p62mesYsvMXuh1cxKL4cWyL6OOzkEnRgXFc2/Uuft35DYNaNi1B2VMCX9wnScL12msYVq3CsOJfzPfeg3PaLydOvmIFxi++QDrqxLrefQ8MTVeQV0dHR6cpYzAYGTj8QgYOv7CxTanElqRB7I7tRWZoKghzJzZGD8BmCsQlmY97bFMjPNgTOszPEkCXlv0b2RodXyP37IXt51/wHzsGv59/wnnmcOwTbmhss04a55dfwZ13YJg2DcnlIvBqrwaIHBkJhYXIZ4/F9tkXWO+9h9IrrsY2egxY62dm9/GQzzkX57RfMN96C1J6Oub/PPpDcmAgpU88SfNTc9DRaVr8M/cHstL3s+W/pYwdf2uDl+80Wtkf2qFilm9c/h6u/vc5NkYNYEnCeZRafLMaoGdkf7JtmSxKn8Pfe2bSM34gYf6RPslbpxFwuTDfdCOGPXuQzj8fx+zZEBhY/XE6OjqnNHUeGHnllVeQJIm9e/fy9ttvV9qvD4w0b5YuXYqtrISomCS69RnWaHaUm4P4tfc9dDryL0O3/0SoLZcL9nxBh7z/+LWt75yxpNBWTBr87AljwOrUHengQcyffQouF64XXqx5BgYDzg8+wNK3D8bffsP9xwzk88cdN6kycCDOL7/EfP31mD7+GNAHR3R0dHRORf5rpZrQkKsNT1RojWpga2qPW3YzZ833AAztfgEBfsHVHKHTHJGHDqX01Tew/DYdx/hLGtucmhESgvPbqfDKq/De+1g++wTJ4aB80r04J90DR2M8O6++huwLL2scG81m5LFjsR84CAcOYF+8FNOmjdjPOQ9Xz16NY5OOzilCWVkZi+d6Vl6NPO+6JvHdnJqzCYMi0yN7GZ1y17AmZhhbovqRY4mpU76SJDEm6QICzcEkxLbRB0WaOyYTzp+nYRkxHMO/yzFfegnO334HixAVxW5v0MF8HR2dxqXO4uupqalVNoZpaWkn3KdzYpqSuNoTT/9CQUEWLVt59EX8VaKdtlWHtYn9tKJbSpZWbFUK1jYw8uFib1qbVqBQChLE/Y7uN7ns9NkzmzN2zmBet+vZkjwYyWwktDSLXrtmkxWWQpY7mtyAWFwniDvqztfapZR6l/dLKtExWZExRWg7JUxttQ6R5K8aX2yv3efXQjsDwRwkCKIKImWSSlhRFPwM8teOY4oCaH6CUFukSvBQTCuKlopCm5JKtVEUUnMLSomiOHugnzZvdXqjQcKwcgX+QwajBAVhP5IOAVrR+JPF9OijSOvW4nr3PZS2bXG5RYE47zkYpn6L+frrkRQF5wsv4n744VqVqdOw+FL8q7kJiZ0M9XlOjSXydqqJr/uCpuIPPProo6RlSZxx5jgs1uPPt9b4BII/QIEQRseq3S8L4uyGKG/bIAtCre5swbewaNsdWd3GV9NhIwltmJiXFGhWpRXKydUKxIrC7oYg7Ye2ohI6N0QLbd/R9n/NnkX8uOw9AvyCeWzCJ/hZjqZT+wShVX+sS4IIrDlQe45q38Mi+CWVBNUFf8GpEmL2E65HqCDqGiD4D7nF2mcgQuUTuoU2PEIQSLcJItaJ0dpzLFEJyIp5VScWbXN48/YTfC+bQxRu14r1yoJP5K96ru3CsaJ4ttFg8AjAmj32ieLborCtmsLsAky7duKOj0eJblHp2jcosux5cCSp0vWqSjC9phSp3h9RfLiySdr7UubQPj/+qvdcFEgP9q/9yjLx2apLf3Ge8L6I19ItFKYWaxeLFb8pRByCELTFVPsJROprX51gvMjJXj/dH2jc8/7ggw+48847iYiM45EnfsBgMGr6B6DqPoKa9A9A1X0E6n3xuTsZsXkq8fl7Kn7LDklie+IZrGx3PorBiGt/fsU+Q7i2HXbt14bikoT3Ru0fuBU35lDvORtTtCtUJEF8nShtWVK41o8yqdqOwFht34MsvJ8torV5h6jqLJMgZG8U/PkooQ0zCe+6uv4Tv/kNlV7IqvebVXmLfRHlQlsh1jnmOtRBJ4P0779YxoxGKivDfcklOL/5tqItlpYuxTLhOpzvf4A8Zky92qHTtDkV+w/qysl+t4tpRWp6LU90L3zlD9R5xci+ffvqmoVOEyc8IpbwiNjGNqMCl8nKivYXsDH5TMqsXsehVfp/9Nk9W5P2YEhbpnW5G4epZovmy902/s6ey+7SHdwd9iRGg+8+7E45ZJnQSy/CtGMb+QsWQ0pi1cn79UdOScGwfz+Gv/5EvqR2Idpczz7rEU47ia9O+eprcBUWYZ50N6YP3sf94INg1O+pjo6Ozslw4MABXn31VdxuN6lNUF8EAEUmzJZNVOkRdhrb+izMZkPicjuZu8EzC3d474u9gyI6py5HO2JQFCyvvYrcsyeukSfQYjt0CPOECRj/WcSxri3FaqXwi2/gsosbxNzj0gxX4UoHDmD53xM4nnseYuIb2xwdnWaD2+3mjTfeAGDosCswNKFv5COR7fh2yFO0S19N1wNLSM3aRHTRQTiksKLDhT4r50BpGj/u/4qrOt1OUkhLn+Wr03AoAwbg/GU65gvGYZw2DeO0aZQXFUPA/7N33uFRVF0cfme2ZdN7QkIoofcqvaigCAqCggiKBcWGotjLZ8OCDUXEXkEFRWwooHQRpEjvPdSE9J7N1vn+WMzO3EACJCEB5n0eHnZ2bjkzO5lz5t655+ePYdb3SIcOYbr9Nuybt0BUVHWbq6OjU8Wcf5GszjmjsLCw/ELVSJFfCEi+SzgttC7rG2pn9RPy9hJTcPiM2zZKJjbnbiDVfpwN6asqbOsFjc2GVFSIq3lLzEsWg9OJaeKryEuXnLy8JOG6YTgAxjfeOHtRdJNJM/Bl+GM+uN2nLO4ePRolPBzp6FEMJwJ6HR0dHZ3y+eabb3C73TRq3rFmTooABsXN7Wue5/ot79E8e311m3PWDL5kNJe3HEL3VldXtyk65xC/Gd9gffYZ/AcPwvLm61BUVKqMvGwphr+Wab6T7Hb8vpl+jqy8cJCSj+F48imo4c86Ojo1jRUrVrBv3z6s1kAu6Tygus0pjSSxJ64TP3Z5hKlXvc+iNrcSVpBKcGF6pXWxMv0vsh1ZzD3wQ6W1qXPu8VxxBc5vv0U5MblvmD4NANfrb6D4+yOlpSGv1seBdHQuBiplYiQjI4Pnn3+efv36cdddd7Ft2zamT5/O4cNnPiCtUzMoKCggJiaGSy+9FJutoLrNOS2ORTZlSdtb+bH7YwDkWsJZXm8wR0ManXFbRtlIr8jLAVhyZC4uj7OcGhcxAQHkzvgB++DrKL7hRgy//or5+eew9rsS8/iHwGYrVcX54EMowcHIGzZg+LriD/TGRx/Feu1AzC+UoWnk54fr9dfx1K+Pp0uXCvepo6Ojc7EwZ84cADp2u6qaLTk1btnEmnreQZo+R3/C4io9sFzTMRpMNE/oSP/2IzGb9NzWFxPF1w/DMewGJJcLv+eeJahFUwwffAAOR0kZz4iRuJ5+BoDMpSvI/mUurkaNsd11b3WZfd7i6dwFpVkzlIYNq9sUHZ3ziv/igeYte2A5RVrNmoLd5E985m6MHie9t82stHYHxA3GIBk4mLeXg7l7K61dnXOPZ8h1OBYvwTF7Nu4xXt1aadMmpKIiFH9/PJdeVs0W6ujonAsqPDFy8OBB2rRpw8svv8yiRYvYtm0bOTk53HbbbUydOrUybNSpBhYsWEBhYSFHjx7Fzy+g/ArVSHh+Cq2SlpZsH4puwQedX+ejzq+zqs7VKNLZXeadwroSZAwmx57Fv6krK8vcCxIlLIzikTeDwYC8bm3J96b3pxLQvSvyls3aCtHROE483BufeQYKKjb55rmkIwDmN17H8PNPpyznvu12HJu3oPTsWaH+dHR0dC4WUlJSWLNmDQAt2/eqZmvKZk3d/mT6xxLoyqd38u/VbY6Ozunj54ftq+kUffY5nrr1kI8fxzTuASzNmiIvXOgtYzDgmjCBYpcbV/sOOC67nMw1G3Bcdnn12n4+8t+KY9PZ64no6FyMXH/99dx///2073hldZtSLp33/k6zo6txSwa21K+8+2SIOZT24Z0BWHpkfqW1q1M9KD174hk8pCTN9n8vbXquuw6CgkqLH+no6FxwVFhj5PHHHyclJYXatWtz9OhRAHr06EFwcDAL/wvkdc4rPvhhM9Pf/wqAuk27Itm16YmKFh8o+Sy1EHIu7svSbCqi2KqApBZfFX2OKMAniI+7j+YRUZjMjVvfJtCZR/FxGztCO+AE7CYr2H0rFZRyxH1MjWN8/ZwQ/DQBffyv55cNX7L06DwuqdUDk8GM+4hWBFYtoCrv0R6/UxDDNAgiptYg7X61aJkoLBkg1BUFDYOFvmyq380qvHhqEsSLHE7t+QlQnWuD0E94kNYuUWjTsGEDAM5Rt2BY8CeGHdvxf+B+HCtWaFJfKQ88gOfTT5D370d+802cz79Qqq/TxTP8Rlz/rsM4+R38Rt2E+9HHcD39NFh9bzJ5YxoJrP4+UcqcHAgNPas+daqeyhQ4uxDF0sRjKkvg7GTlK6uszoXLBz9sZsWi2QDUbdgSS74ZW35OyX5F8PmamEAQU/fkFGu2RWFyWRAUV7J9PlwSy4rX5wnf4sHMwnajuXHlq7TPWMH2Oj1J9q+nLSsILXtytCtLDBFaAVlPlmq/8Dcmh2vflhUF1ZVch2ZbUgmKK4KoqUdxsXDLbOpHN6NRbCvkQu1KVSlS5XsF4XoEcXUlU3tMxohIzbZfqE981WXT9iML4vOikGuwuq4gci4KpIs+PUwUo1cNNtQVBOOTM4TfRWgrM097PWn6EYR8xTENsa0AP9Mp94mCsaXFaLVtq/syGbW/U4AgVi+K0YMB+w03UTB4GNbpX+H/xqsYDh3CcNcYCjdvB4vvuMoTW1f/NoqiIO/aibx6Na7hNyL5a69T8TeuCJUptq4IP5y/6rovT6RbjJGt5lM/8opi69kF2t/FIggwi9vqa6YypY3Cg6pu1Zh4bt3iPbUCwsdnKriupqzz51QJUDtdeoxyrvngh/9ecgugWa87sSXlQLHvnq8eH4CyxwjOaHwAyhwjEMcH/hNuT8zcQq+d3lRXCxKGsd8WD4eyQXWte7K0cYohWhDuFf4u1OLrvROvZl3mKnZnbSXZkUx8nlbUXBKuUVkYT1GKtf7SqRJnL0rX2mUJ0badmqp9obBQFT+ZBb8TKsQHqcIxBflrfUlhsS8m8Aj+TryPKsIPEyy0pb4XSGj7NYki8cJ9w+H0nS+z6Rzq2NhsGL7/HgD3jSMw3jUGw8yZuG+6Cde7UzR+uKaiC4ZXjDMRF6+pnMk1cKbjB+rtyhx7qG4qvGJk0aJFREZGsnPnTs33devW1YXZz1PcbhfbNvwNQOtLLq1eY8ogyJ7FyK2TCHTmkeoXR1Jgk0rvo1P9ywi1hJPvyGVl8uJKb/9CxDV0GK7hN+J89DFsGzbhHjYM52eflX7asVhwvP4mzjF34bz3vor3+9pruIcORXI6MU58FXOb1kgnJmlKoSgYPvgAS/16SGvXnryMjo6Ojg5b1/0FQOuOl1avIafJ4ajmbIvpioRCn33fnTdv+uXbclm89Se+WDIR6TwUjtepRMxmbHfeRcbG7RTdcRe5n3119oMxioLl8Ufxb98W6z13Yb1pRJl6bDo6OjrnO8HFGQza9RkSChsie7Apqkel9xFpjaZ1bCcAftrxFW6Pfl+tTOSdO7DeeAPy1i3ntt+5vyPl5uJp2BDPlVciJR1EstkwfvYZ5iuuOKn+l46OzvlPhSdGbDYbsbGxBARo0y0VFBRgt5f9NoBOzWTzv0spzM8hICiUxCZtq9ucU1I7dx8BTu9bIUet9bEbKj/PqdFgok/dgQBsTF2NW9GDnvJw3XU39q+/QWnWDKKicM78zvv5JLgHDcLx/gcQHV3xjo1GnDO/w/HDDyjx8cgHDmAeeM3JAxhJQl71D1J+PsZn/1fxvnV0dHQuQBRFITA4DFk21OgXJUSWJV6PB5n4vAME27PKr1ADkGXvG5EexcPRzP3VbI1OjcDfn/y338XZpZvvO8+ZvX1n/PYbzFPeRTpRzzhvLqaJr1SmlTo6OhcBHo+b7z+fyKF926rblHKJzzuAxe1ddZrmH19l/fRvNAw/oz9H85LYnba5/Ao6p428dSu2Dz5Cysw8p/1KhYU4P/4Yx6LFIMu43nwT59SpKCEhyP+sxPDpp+fUHh0dnXNDhSdGGjRowPbt2/nmm28AsNvtvPfeeyQlJdG4ceMKG6hzblEUhYW/fglArytvwGCocLa1KmN3ZHvW1/IKYnXIXslNB98nyJlT6f10iOlG74SruKXFWAzSOVzKeb6jKEjHj2u+kmf/gPHFF09Z3vjQg8hLl558/+kgSXiGXId9y1bcl12O89PPQEgZ8R/Ol19BMRoxLF6srxrR0dHROQmSJDHqvgm8/NGfxCWcPyLFhZZQtsd0YWOt3tVtymkTbA2lXX3vW60/rf0cj/72qY4alwvLB1MJbtsS6eiR06tTUIDl8UcBsL/4ErYvvgLA/PJLyCv+riJDdXR0LkQ2rVnM8j+/5/1Xx+JwnDqVYU1gd2R7NsX2wm7w43BgoyrrJ9QvgsFNR3FH+0dpGtO2yvq5GHENHQbh4bg7dT6n/bpvvQ33HXdC7doAKG3b4r7nXlwTJwJgeG+KvupSR+cCpMITI2PGjEFRFG699VYkSWLTpk089NBDSJLE6NGjK8NGnXPIX3/9xeH9OzCZLPS+6sbqNqdMPLKRhQ1H8HPTuymW/UgoSqJpXuW/rSFLMv3rX0+E1beqYXPqWvLtuZXe1wVDURHmO0bj1/kSODE5Im3ciPnGGzG+NAFp+fJSVYyffYpx6lRM11yN/NucivUfEoJzwQI8AwacukzdunhGjvT2/fprFetPR0dH5wImJDSy/EI1jHnNRrOgySjy/CKq25TT5poOt+BnsnI0cz9r9iyqbnN0ahKyjPnbbzDs309Q/yvhyGlMjgQGUvztTJxDrsPx8CO4Rt6EY/QduO4Yg6fjJVVvs46OzgWB98XJrwDo1W84ZrNf2RWqGY9s5M/Go/iiwwtkWmO9XyoK7dL/xt+ZV3blM6RtrS40imiBLFV4WE1HjXzifJ7iBcdzjfvmUSgREcgHDyL/+kt1m6Ojo1PJSIqovnaGKIrC2LFj+fjjj0uE3CRJYsyYMXz00UeVYuTFSF5eHiEhIeTm5hIcHFx+hUrC6XRy6x0TyMvL4rK+3kHjR+7vrikz6SWf1oYsiGV6dmZoGxSEx5QCx6n3C0JriiA8iiAQLoWqRChTjtB6/2KWtxnp1bKwu+mzeRqhhcfZH9uBvZFtKPAL93V7NPvUdgjiX3KwNkXXnqJdfLVxMkGWEG5sdQ8NonxpokSBWFEQTmocrtk2xGjPn0lVXxJEyUKitWXFv1xRPFMtYmYVhNsjg7W5qkUxUbUQW6EgzOoviIfGR2jT6BXZXUgFBcT0uxTz7l3Yu/ck69d5YDQS9fBYjF98gScxEcfGTSj+qrrFxcgjRmD5fQ6KxULuH4vw69mNykDatw9p8mTsb70NRiOmE6KS0q5dmFu1RFIU7Ju3oLRoUSn96ejUBM5EEO1MhfqqQ5guLy+PmPCwc+4Xq5vqigd+++03/l6TR0xsvZLvyooHAKJ61C35nP7bbm2DYjwg+BZJFMxO96VBlPy14qGikLsnW7stqQSgFUEQvJQdDu3+UuVV17ckCIuK2lmS8HckhZ86xaccJAiRn4h5Vu7/k183T8dqCeSJG6cSaA3xFlAJs+Io528uVNCjEIS6DYG+82kSjskarh2ECBDOvTpEEgVRyxMmF8VV1QLhwUI/ooirKKjuEu47DtXvKu4Tt8X4SS2mbXdq3wQVYx5RfFYUgbaprqfakdq4TTx+UaTaz6S9fuyquNdikpEOH8bctw9yUpI3jlq4CKVOHUqRn48UFFRyfdocqmNyu7FaVefW5UIptTpce4LUmjcO4XhFAV3x3FZEiPtMEEWCxX4LBaHjANXvqr4OoXQ8XV7bOucePR44t8e9ZMkS+vTpg8lk4ZkXZxMYFFZuPFDmGMGZjA9A2WMEZYwPAHBC9DwubRcj/3wOl2xkd61ObKvdgyMRTfHIvnuB+2iO1mab1i5JEDaXVM/XktWMoigl90tZ8KVyjHZbEs4P6vtMtPbZ2hobpNn2C9PGFkaV7wgQfFaE4DsD/LS+NtCq3Vb7KaNR65OcLrdQVrtfHG8wqtqyCPGCn1m7Xexwl7m/JmB89lmME1/FPXgwztk/Vrc5VYIu3H7xUV2/eWUJt1dWPFDhqW1Jkvjggw/Yv38/s2bNYtasWezbt0+fFDlPMZlMdOh0VcmkyPlCTlAsy9ve5BukUBQaJ68lMXULV2z+kvsWP8SoFS8QlXe4wn2FW6OJDIglz57Dp+te559D+ludIkpgIBlfzcATGIRl5d8ETXgOANebb6EkJCAfOIDx+ee1lfz8yP96Bvb+VyPZ7QSNHA5paRU3xm7HfEVfzB99iOXRhzVP7UrTpniuuw7QV43o6Ojo/EdRURGjR4/mzVduZv/ejdVtzlljctlJyNqFpJw/D3Zd6vclLqQuNnsBK7bOrW5zdGoQSp06OBYvwZOY6NVR69sHsrQaOvLiRfjFRGN84gnfl0VFmOb+7o1/DKrBJocDc9s2GN95u8x+5RnfYkmsj7xkSWUejo6OznnC66+/DsAlXa4mMCismq05e45FNcbocdHi2D8MX/MG9y+8ny57K5ilACh225iXNJt3N02g2GWrBEt1aiKu++7D8c03OGd+V92m6OjoVDIVnhjZsmULc+bMwWw2M3ToUIYOHYrZbGbOnDls2bKlMmzU0TkrZnV/ir+aD+dYeCMUJGrlHuCSA/Mr3G5UQCz3d3qO9rW6o6Dw+86Z5NjOD3HXc4mrUWMy3/sQgID3JmP6d403xdV7UwEwTn4HwxefaysZjRR89iWuxk0wpCRjeuD+ihtiseCcNAkA80cfYn72Gc3kiOtx7+CBPHs25FXu8modHR2d85Hvv/+ejIwMwsJrUS+xVXWbc1ZE5B/joT/vYuSGNxi57jVCi1Kr26TTwiAbGNLudsKCounR6uqS77Nyjuu6IzooCQnYFy/BU6cOclISht9+0+w3/PwLktOJ8e1JGO+5G9MNwwhNqEXgsOswbNqkLfvOO8i7dmGY8m6Zfcpr1uB86SXkZcsq+Wh0dHRqOnv27GHBggVIkkzvy2t2mu2ySI5uysyrXmZ6jxfYVOcyCs3B+DmL6LV7NpF5RyvUtlEysSl9LalFyXy89U3yHXq67QuSWrXw3DgCTKbyy+ro6JxXVIrGyPDhw7FYfMv0rFYrw4cP5+67765o8zrniLy8PDp06MBbb72F2+0qv0JNR5LIDK7N2iaDmNH7BX7sOB6AOpk7K6V5i9GPYS3uoH5oE9yKi2UHfq+Udi80bAMHU3TjTUiKQujtoyAjA88115RMRpjuvQf5d+1DvRIcTP4X07zC6D/+iPzj7Arb4bnueorffgcAy1tvYnzoQfB43yBW2rfH+fY7ONb+C0FBZTWjo6Ojc1HwySefANC1+yAMpdLsnB9kBsUzr80Y7AY/aufu4/bVzxOfs7e6zTot6oY34pFh75Sk0VIUhQ+mP8pLU25mx97V1WydTrVTuzaey/sAlBJid770Eq5hwwAwfvYZhp9+QrLZcNeth5SmnRxUmjX1foiJLbM716OP4RkxEteECZV0ADo6OucLn376KQBNW3QhIjKumq2pOMdDE1nQ+nY+uGIK+6PbANA0uWJ+1SgbubX5WIJMwRwvOsbn2ydT6MivDHN1air5+Rg+/LB0/kgdHZ3zkgpPjOzcuZNGjRoREeETtwwPD6dRo0Zs3769os3rnCNmzpzJhg0b+Pzzz5HlmpfTsaIciWiGR5IJLs4iyJZRfoXTQJIk+ja4FoC1R/4ix5ZZKe1eaOS99hauBg0xHj2CadTNoCi4XnkF1623Ink8yHv3larjbtMW28OPogQFga1yliQ777uf4vemokgSxvffxzjmTnC5QJJwjxuH0rJlqXzxOjo6OhcbW7duZfXq1RiNRjp2GVDd5lSI7bV78EWXCRwObYzZ42Dgtk+wOIvKr1gD8DP78pFnF6Rjd9jIL8ji659e5Vjq/mq0TKcm4GnfHnffvigJgsZIWBjOGTNxzJuPe+hQXE8+Rd7KNeTt2I2r31XeMv9pQh7yppdV6p5Ep0RNQoJPCFdHR+eion79+iQmJtKl26DqNqVSUSSZdfX7saT5SDbV61Ph9uID63J3q8cJNoeSWpTM56vfxHaexBs6Z4jDgblHd0wP3I/h00+q2xodHZ1KoMLi6/7+/gQGBpKcnIzR6H2r0Ol0Eh8fT2FhIYWFhZVi6MXGuRRXe2/mOl57YgTJR/Zx/S2P0LVhf81+a+NIzfZ9w9uUfJ70oLBSIk4QEjusTU0kiqtJwSoBSHFQWrw0BXEwzxFV24Jwoie1QFvXYqTnvh8psISxM7YTNqcgkq4S/xH/JDx5wsC8IAj32aH3OViwn6H1RnHJJdpzJwlicZIgek6MVlzNEOdbsWAQhNtFsccAUYxd2zLq0qKAWXig1g5xv1pszSwIr0nC7xQqCM6LIpUOlwfL7p3Uuf1GMt55H1vP3t4dTidha//B0aev7xjUVe12PKmpuONrq+z29WUsR7DJJoi4/Xcchm+/xXLnaCS3m+L/PYv9mWdL9O7k7dvAakVu2FBTtzzBVJ3zn/KEx6pDbPxccj6I7eliq1V/3B/8sJlvPnyBVUt/oW3nvtx89ZOa/WXFAwCTHpnn24jWCo1yTPv2pJJr12xr4gHQ+HzPUW0sIQnxgOiX1WLsnsxCzO5ibt/0MmH2DHZEdmRO0zElMYdSrBWBR7j2JZVQqWQpO32CJIiellIfN/q2JXGg2VL2Sykuj4svl7/O3uNbCQuM4sEhb/qE2WO1sQSiHYIgqvp8yWF+2qqCYKwYmtWqHVLyWRQqF0VfZaFykSBsH6oShS8W2goWfmMxJAwK0O4PUgmKF9i0v6lDEIxVlwWtjxePQYwlRAFZUdg9VBVfuT3CdSnER/7C9SSKfqvjUVH0vLzY7KQ2ZmZifv01DP/+i2PZXxgffwzT5Hewj3sI++tv+NoWjlFtt9hPVoH271gU+j0fEX/T8uJNHS3q67as67Ii6PHAuTnuD37YDIDH48G2KwNZ5bfKjQfKGiM4k/EBKHuMoKzxAUAp1vodSXV/82QIExfCPdiTqx0DkIO1oueeHF/9/2KJNHsqnyVNpdBdQB3/+tyWeC8WgwVjba02iyQ+56v9eKQQP4Vq/bQlSuvzZZX4epCwT3BDpXyc6GsNhlP7Q5MgPi+KsYcHae30V9UX3F8pfxgSoP3Ni1SxmUG4B/sJPsq6dRNKmzZgLH+Fs1PwpSbj2d3fDW+9henJJ1AsFhwrVqK0a3dW7ejoVAZn8hxflc/8FWn7bOvWGPH1pk2bkpmZyYgRI1i1ahWrVq3i5ptvJiMjg6ZNm1a0eZ1zwNwfPiL5yD6sAUF06j2wus2pMv5ueD0bEy6n2BRYfuEz4JqEYTzY4hnaRXSq1HYvJOxNmrH3r3W+SREAk0kzKSIfPkTwE4/4gl2LRTMpUlm4b7qJom9n4urcBfv943w7PB4C7h5DcPs2mJ9/rtJWqujo6OicL2zbsJxVS38B4LIBI6vXmErEYfBjTuM7cEsyzTPW0TBrc3WbdMYYDUZu6v4gEYGxZBekM33RG7rmiA7SkSPIixaeXsxiMGD67FMM/6zEMHMG8gHvyiMlIeGM+jROeBFLm1ZIemYAHZ2LAlmWNZMiFxSKgqRU3sBgtCWG2+vdg9Xgz+GiJPYX7Km0ts83LIsXEjnkGoy7KieV+cmQkpMxX3Yp5i6dIS0NkpORf5vjK5Cbi2HSJEyDBiJt3Vpp/boffhj31Vcj2e2YRtwI+svgOjrnNRX2cHfeeSeKovDTTz/Ro0cPevTowezZs5EkiTFjxlSGjTpViM1mY+m8GQCMvOtZAoNCq9eg85Ba/vFE+5Wdn1kHjVCZnJWJpH6IVxRC7rubgI8/wPrNdE01qbCQgGlfED7u3krL4+m6djCFS5ZByIk3XwsKCLzqCuSkA0gOB5bXJxLQsT0GXWhUR0fnIiI7M42wyFpc2n8EDZu1r25zKpWUoPr8nTCIo8ENOBjaDIAgexaXHF9Cx+NLScjfW+NzRfubA7mt12NYTFYOpOxg3Z6l1W2STjVjmPU9lv79sURFYup3JbIgxq4hNBTnHXcCYL71FgxzvINH7tatz6hP6dAhHN/MQF7x91nbraOjU7OZNm0aKxf/RGHBhS0k3jBjE7f/+wKJmZU3aF7LL55bE+9haMLNNA9pVWntnm8oQcFkvf8JclbVpRs3bN+GVFSElJKCVFiIpWsXzEOGYHzySYyPP46lXl1MTzyOtH8/8tJKjJlkGeeXX6HExyPv24dh1veV17aOjs45p8ITI/fddx9jx44FvEtn/1s+O3bsWO65556KNq9TxcyfPx+H3UZYZC3adbmius2pUhKydlE3czsWZ9XN6B/J2s/sdZ/iqcQ3Ty40gqd9Tp1ObQh/9UXfl5KEo6/3+gt+5gnk5GOafeFPPUrgt9ORd+6oPEPUy8FfehHTiQf8wsnv4YmLQ96/D2v/KzG/NrH0OmQdHR2dC5CeVwzlpffnMfjm8dVtSpWwOv5KZrV4EJfBm+4nvCiVvkd+5Iojs7l512Ru2vUOdfN31+gJkpiQeK7sMByAlTvml0r/qXORIRtQ4uKQiosxLF6MechgDFOmnLK446WXcY29HwAlJgbXgw/h7tnrjLp0vv8BSuPGuG+9rSKW6+jo1FAUReHll19mxscT2LWlYsLkNZ1Lji4kqvAYtXMqd2VHgn9d2oVfUqltnm84OnXGExeHo1uPKuvD3aEjiiwjpaaCouAefiMAxrfexPj2JKT8fDzNmuF65hncDzxQuZ2Hh5f4U8NX0yq3bR0dnXNKpayJfO+99zhw4ACzZs1i1qxZHDhwgCllBOU6NYdZs2YB0L7rFVWWB7am0C1pDjdueIvGaRuqpP1it43Plk9kbdIS/tymvzVwKly14jDk5xH6yQdY5s8t+b7wgYdwdOiInJdL6H13gcObb1bx96e4e08ADH/8WSU22f73HK6WLZGzs5GzsyjctBXH7aORFAXLC89hHno95OeX35COjo7OeY4kSZhM5vILno9IMg6jLwd2oTmY7eEd2R3aBpdkpE7BfkbuncpNe6dQq/BQNRpaNt1bDODqzrdw38CXS2K3PQc2kJOXXs2W6ZxrXOPHU3zwEPYtW3HddRcApofHY3zyyZO/1OHnh3Pyu9gOHaF43wGcb75VOn9/efj5gcXi/V9HR+eCY9OmTezbtw+T2Y8W7XtWtzlVRoA9l4QTEyIb4y+tsn6yHVnsSjv/UnieDyjh4ShduwEg//knrjfewDF9Okp4OO7el+KY8xuOzVvwjLzpzH3daeC+6SYUWUZeuQJp375Kb19HR+fcUL5CUTnk5uaSm5tLdHQ0Q4cO5ccff+Ttt9+mTZs2jB49ujJs1KlCHnroIY4ddtA6oRu2Pd5ljtamgpjaMEFM7fVlvg1RHC1ZED0XkGIFfY9w30OVsi9LWzYhRLPt2a1dhimH+wTQPDnF2n2CaJkn105kgXcVQoZ/HAgin5r3LQWhH0OIIIAmCAMpNu8AvtUUyMC465l1aDpLd80htjiCtk16a8rKfoIYe7Y2J7RbJSbq8WgFLC1B2nNtFwQvIwUx9rwin2iZKB6aW6QVuTMYtH0Vq8qLYqABgkhbdr7WjkDJg9+m9dibNscTEoq/SvS1sNiFrfeVmO64l8jPPyT43jEcXrgC1wktEdfkD4m7oieWZUsIHnUjmV/NALMZW99+WJcswj13Hqmj7wVKCzpGBWsf0EVhUvX5EPe5rf4UPTCe4LvvwPzFZxSOfxT7lA+wdOxE4MMPoqSmUqDIcEIIrizx9UA/7fkRxWnNgnDdBT4fed5Qltj6yfZfaFzox6dTPqtXr6Yg2Y7B4Ltnn1E8AOCvCivFeMCtXdkgxgNyQ60wqXutb+Wg3CZG25Yg3CoKlxsa+NoyCD5MbVcuMcxr4k2rFViUSecdc2i9bzF1CvYxas87fN79VbItUT6b0gQReLM2jJZsWjsUUchdJRgq+QvxU4HWTjlSK/KqFPh8mJSn0CuyL6S5cJOP4nAyY/ZEiuz5tKrXhV5tr6VuTGNfZbEvVezmEfyhXThfFsG3pqb6zp9REGYV/Z0okOovlFfHF5FWbT8Bgi8tTxA7TxXXhAVqYxqPsKqmUBDjVWuxKsXasmI/4godsW214LooLlssxGKikG1hsXa/On4yCHGH2Ja1eXNc73+AUq8+pqefwvjWmyhRUbgfeeTk4uHxcSUfzbLWDrFtdcwkxizni9h6WYK7DuG6FW5VFDudlIUY913oFNm1fz/q6xQqV3DdpurLaqnwsIXOafLfi5PNGnVCOWzDhu3M44EzGCMoa3wAyh4jKGt8AMCTpX3WVnJ9z62N8zcjoZAcmkhBZC3IFcYTAoXJX+GeLqnurcopng2PFR3h433vYDJYeLzzq/if0DqVhLhFbVepvyGhbbvgWw2q8YVC4X5vFJ7b84R7ofhMG+LvKy8uSFULogOYBTsy8rTnLwKff7BaTAR+9Tnmf9eQ89wEiNGmIc/K19a1quIrMbYQT3XRlVcRuHIFnt9+J+/WO5GvuwGGDCtxWFYk72/ncqHs2Ilhy2ZQFJzXDUUO0F4vpfxBkQ3zgj9xduuOEhmpiU2cLjdEx2IYOgwlNPS0xN91dKqCM3mOr8pn/oq0faZjMf/td5wsxj0LKtzK3XffTf369dmxYwe//fYbN9xwA1OnTmXMmDG88cYblWGjThXSpUsXBl99P/FxjarblCrFz1lAoMM7oJFvCSun9NnTNqwjvaL7APDLke8pcOSVU+PCIuaLj2jUthH1rh9ArSceOmW51Cefx9aqLYbsbGLHjil5q9HZpClp077D4+dHwJ/zibz9ZnA6Ke57JQDWNf9gPJhUJbYXD7kOT1g4hiNHsL71Oths2G+5jZyFS8n92jtBA2BetJDg6wcjZWdXiR06Ojo655rk5GS6devGhP8Npth2cQpIFvhHsLjj7XzS6w12xXZiS+1e5ATElF+xBlBQnEt0aDwexcPmpH947+cn+Pi357E7T0OQW+fCQZJwP/44ji++wNPxEtynq/VYUIDFZMTPaEBaubJqbdTR0anRKIrCDz/8AEDrlr3LKX1+0yTlXwD21Kq6lFe1rPFEWqIpdhXx1+E/qqyfmo71158If2Qcgd99S+xVlyNnZ5Vf6TSxXzUAAPOyJcjHjnq/VE0umSa8iH9QAAH+fgR3bEfA6NsIuON2Anv3gPQyVtrm5RF6eS+CbxpOaI/OvrYFbNO+pvjd91Dq1ausQ9LR0TnHVHhiZP369YSGhtKhQwd+/PFHAK688koURWHaND3Xnk7NwOR24JG8l/tta1+kVfoqqCIdkCtqXUOkJRqbu4j9WbuqpI+aSuQP32LIz8MZU4vkdz44ZTnFYuHI+1/gDgzCuuYfgmb7Uo/ZLutTMjliPHIIOT8PV4OGOFq0RHI6SejTA8vG9ZVvvJ8ftju8gwgBL08grF1LKC7G3a49nrh4AORjRwm9bhDmP/9APnSw8m3Q0dHRqQamTp2KoihER9fBzxpQ3eZUKwV+4cxpfS+Lmt5c3aacNiH+4dw74CXGD55Eq3pdANh7bAvZ+XpqrYsRzy234li5EoKDvV/Y7Ui7d5+yvJSSgtKggVdEdsmSc2Sljo5OTWTevHns37+fgIAAmjXpXN3mVCn+du8LjC2OriQ8/1g5pc8OWZLpFd0XgH3ZO6ukj/MBv7+Xl3w2Hj6Ecc+pfdKZ4m7aDGfrNkgOB5affyxdwGxGsntX5CiBgbi6dsMTGYlxy2Ysd991ynYNe/dg3LrF+/nYMYzrTzH+4HKd/HsdHZ3zhgpPjCQnJ1OnTh0Atm7dSrt27Zg/fz5NmjTh8OHDFTZQp2pYsWIFw4cPZ8uWLdVtyjkh3y+cWW3Hk+kfS4Azj6uTvmbg/q+qpC+DZCDC4l1u7HDbyyl9YVHQ3vvGTf7Vg1Cs/mWWddSrT/aDjwAQ8doE5Hzf6hrbZX1I/f5n0n6djyc8AoD0b3+guMMlyAX5hL73TpXYX/j0/8h/6x3cdergvLxvqfzZgc8+A4Cza1fcbdpWiQ06Ojo655Ls7GymTp0KQO8+I6rZmhqCJKGcSC8UYkunVfLf1WzQ6REXXo9g/3AA6sY0ISYsoZot0qk2DL4UJ8YXX8Tcvh2Gd94p0W9TozRqhGPjJpyTJuF+6qlzaaWOjk4NQlEUXnrpJQDuu+8+LGZrOTXOb35rfx8FllCi8o/i7yg7HXhFsMje50lZqpyUL+cj+XfdW/K5aMBAHJ26VF7jkkTetBkUPPMctrHjSu12jn+Y4rnzKNqxi9zjGRQsXkbB3D9wN2iI86GHTtmsu207bTu9Sq+gMqxZQ2CbVhjWrq3wYejo6FQfFb47m81mcnJysNvt7N27l+bNm5d8L8sX782/JqMoCs888wyzZs3i/fffr25zzhmHwlvwRecJLG14A3bZwo6Iqls2a5K8aZecF9nESG5vbxqxgKWLvF94PIRNeJbAGdNPWj7nzntx1KtP3shb8AQGafYVd+2BJyy8ZNudUIe0KR+RMWEi6W++WzUHYDRiu+sesjdtp/CV10q+ljIzMM+fi9/sWSiSRMFb7+jiIDo6OhcEr7/+Ovn5+bRq1YrmLbtXtzk1Cn97LneteooBO78kxJZW3eaUi8vtZPsh78P5VZeMrNRc/zrnKR4P0vZtSHY7pscexZJYH+OLL0Jysrac1Ypn6DA9R7qOzkWMw+GgQYMGWK1WHn744eo2p8rJCE7g654vsLT5CI5GNCn5vlZeUmmBjQrgUby6FRfzxIircROO7jnE0V1JZE79qNKfo90NGlD0xNO+dm025P37vZ8tFtxXXInSsCGcGJ/0tGpN/sYteE4y2VGCwUDRI48BYB94rVdHRIW8ayfW4UORD+zH/MHUSj0eHR2dc4ukiCqCZ0i3bt1Ys2YNQUFB5OfnM2XKFMaOHUtERASxsbFs3769smy9qMjLyyMkJITc3FyC/1sKX0ncdNvzzJg2AZPJwmP/+5bwcK34FWlFmk1DHa0IulslYo1NECQU6lJHsP1AjnY7QvUmSqG2LSVdm+fc3LuuZtu54bhqpxBoCGJgyrF8bVtHUyk2+4TeFKcvrZYiiH957Fq7RLFVtTCb4vIGPhtSV5FadIzmUe2pF+rTbxFF4eV4QWxOvT9QK1pnjhDqCoKpsnDMlmCf4JnFrN0nioUGC8KsUSG+Y8ot1L5dGCiIp6rbMhTk071HCySXi61L/iVg8wYSx9+NYjRyZOZP2Lr30tR1uDzIubl4QrzXmEUQIg0PsiDl5eH3/hTkrCwyXnmzZJ9NEH8UBeCC/bVic3IZAZi4y6QWcSouxnhFX8xrVgNQdNsduD76yHf8ghCfyyMIQ5lEsXVtZ6KgqhpRAE6cbDaKosI6OjWAqhKuz8vLIyY8rEr8Yk2mKuOBXbt20bJlK9xuF7ff9RotWvXQFhB8urVFtGbbliq8Yan2LYJAutw0QrPt2SakeRJ8mqIS8ZQahmvLCn6I/YLmU4jP/3l2a/NYK2LcIgiRKnbtffeGTZOon72DfHMIK+pey9bYbiiS974uBVvKrCsiq/y6HKX16Z4cbeyhCDGRZFUds+DTUYmJO1zFbMvcSPv6PUv8jRQjpEdTnz9BmNUQqy1rFISl1bGFVRA5F9+Hsgj+zy34S/X+EMFnFwgC6aK/CxLsNqviB1GoVRRtdgt+Wl03NLBsMXGxblnC26JgvEG4N4r+3+UWxdp95yA0QBunicckiourUTweTJ9/huWVl5CPe2NnxWjEPWIkzg8+RLGIv6MeW6gRxejFa/Gk4vYnEJ+y9bnKykGPB6rmuCdN9WoMZWUdr9j4AJQ9RnAm4wNQ5hhBmeMDnMTnq5/5xXbz7QQWZzNm+RP83H4cB+REbV3h3qio7vGSeB9Q+bstmeuYuf8L6gc2ZEzjBwEw1NFqnsqRvmOWogSfLZwPQ5g2o4ElxLc/QBCfdwm+oXaktm0P2puU+p7VoJb2d3KWE8+L4wkZebZT7gsJMGNavBBMZpy9emv8MGjHH6zljGMYhODDDzeWodchHzyEbd16DH6n9uv/Pceb7xgNhYUoHTuidOiAp2tX8D919gtp507MffsgpabiadMGx9Jl3vSVbrc3GNJv9jo654TKigcqPG39v//9D5PJRF5eHomJiYwaNYrVq1eTnZ1Nly6VuEROp1LIz8/nt5+9q0T69ru1dNBzkaCeFAkozsFYySs72sd0pX/9oZpJkYsBd2AQBR06ARD+209kD7yOvMFDkVwu4saOQSosvUz5v0kRAKmokNDPPtLsN+zZTcCrL+P3yUeYtm72vv1YeO7EgaVjxzAcOVxia/6zz5+zvnV0dHSqknHjxuF2u2jWslvpSREdAJYkDiPHL5IgRy79907n1g0vY3bVXFFzs9GPDom99NUiOj4kCeedYyjYvY+iaV/j7t4DyeXC+PV0DJ9+Wt3W6ejo1DAu1vEBgLZHlmLyOOh48M9Ka9N9QtfUIBnKKXnxYFq0kJBrBxJ8TX8M27ZWbuMFBRjWr0fetRPTm2+UX15RMPw2B+NPP2J6+inM/a7E0rAB0saNJy+fnq6dFFmw0DspkpODpVFDzG3bQEHVpWbT0dGpfCo8MTJgwACOHj3KunXr2LZtG8HBwbRo0YK9e/cyadKkyrBRpxL55JNPyM/LJDKqNr0vv7G6zal2OhxcwF3LH+fSfbOrrI8KLso678i5YgAes5m4d18ncM1Kjr81BY/VH2NaKub9+05dUVGIv3kY0c89gf+yRSVfuzpegn3QYCSPh8iRwwh+7WVie3bCunrlOTgaUBo0IHPJ3xTefS8533yPEhl1TvrV0dHRqUoKCwsxGAwYjWYGX/9gdZtTY8kIqM1nHSewJ6ItADGFRwkt1kXNdc5DzGZcNwzHsewv7D/9jKdpU9y33VbdVuno6FQzubm5PPDAA6SnHaluU6qd4yH1AQgrPF5OydMn2hrLsLq3MKL+6Epr83zHtHIFAJLHg3HjhsptPDwcx2veCRHziy8gf/N12eUVBfv3s3C8OhH39dd77UpLQ/775Ppy0r59SKmp3qpNmkCAdxWOlJSEYjAgpacjHTpUSQejo6NzLqiURIeRkZG0b98ey4ml2EFBQTRo0IBQIQ+fTvXicDh45x2vaPXlV9yM0WQup8aFT2ZgHCaPgw5HF1M3q3LTvnkUD0sPzeXb7R9eVJMjaaPuJLfPVRQ3bEJxo6ZIDgeyzbt82lmv/qkrShL21m0BiHliPMbkYyW7Cqa8j6tRY4zJxwiZ9DrGQwexbN9WlYehwVMrjvw33sZRVh5SHR0dnfOIgIAA5s+fz1MvzCIiMr66zanReCSZsBMaI2vjryAtsE41W1SauVtn8PqfD7MmaUl1m6JzHuAZOAj7mn8h6IS+m6Igrzj5IJCOjs6FzSeffMLUqVOZ9tkzF9Uz68mon74FgEMRLSqtzfiAOrSLuASr8dSpmS42HFdcWfLZ1blrpbfvuvlmnA94hdhNd9yB/NucUxeWZTyXXY7r0cdw3f8AAEpAAO6RI0sVlVavxvjxR7geexzFYEBevBjSvPGh0rYtjl27se/ajdKi8q4fHR2dqqdSJkYyMjJ4/vnn6devH3fddRfbtm1j+vTpHD58uDKa16kkvvvuO44dO0ZwSCTtO15ZfoWLgIORLdlQ53IABuz4Aj9n5S17zLClsihpDtvS17P62NJKa7fGYzSS9PZH7J7xK66ISCy7vBNOztoJeIJDyqyaOf5xHHXqYjpymNpDr0Y+6n1zSYmIIO/nObhjYgAo7tGLnNvHEDT7O2IeuR+p6Nyl1joZ8tYtXtE1W81Nr6Kjo6NzMkJCIqvbhBqPIhmY2fpR/q47iKWJQ6vbnJOSmn+MzMLUi35QS+cMUOVPN743BcsVfZH/Wla6nMOB/McfUFxcep+Ojs55jcPhYPLkyQD0unz4RZ2G0d+eR9PjawHYG9O+mq25sHF16UpGWhYZGTm4G1VB6nFJwvHmWzhvuhnJ7cZ0441Iq1eXW82wyJu1wnPttRApxMcOB5Ye3TF88w3SwSSc8+bjmPUD1KlT0icGgzetlo6OznmFsfwiZXPw4EG6d+/O8RNifp07dyYnJ4fbbruNRx99lDfeOI28fjrnhOuuu47s7GxWLjuCsUgBTuhqhGgFqaytBHHVDSnahsIEQTQ1glgmycJEQ7Ag8t3TJ5iWvuSAZp8UH6TZdh7K1Wwr+SpdEFG0NVM7QC2Kq6ESMf2r9UjqZ+0grOA4d6x9jqXNRrAzvmuJaJZUoBUfVwQxdkUljunJ8QnLRRLMVfGDmHv0J+bu+556xrrUUrQibpJFEOZWbwhijw5BlNMaLzhdYTBELQhXkKM9BlFMNR/tManFxyMEcdn0XO2DcUSQdn/ef2Jp5kAodBC2fScARbXr4l+Uj2Xdv8h5uRRdex02u9bmQmsg+2bOocGNg7AcTCKofz+Sf56LO742RMfjmrsA60+zKRp9J0F//E6tcXcD4KqdgOOZ/2nacghic0aVYJ4ogCoKs7sEgdgAQeRULewqbdlC8FV9kPPzkVetIu+LaRrBNVFstizBdFF4VRSUF8e71G2XJeKuo1NRzkRQvbLE1nWqjh9//JGuXbsSFxcHuSpfWtF4QH2TEuIBz2GtDycxVLudoRV2ler4+o5qrc13nj57h7ZbQWxbUgtzG7X3Rkm8rzq116ukEgEPKzxOlsErGm+zhvBP3YHaukJ8IIptivGCR3XPdqcI4vSCICri35GqrhyqFV4F78sYANF1T7IyUxRrV58f4TcXBXQNZq3/UwvMiv5N2MTPrD0f/mLMo9ottiXGFuJ+UdhcLYAdKAiz+wnHn1fkOOX+7AJtjCMKwpqFeDM1Rxtv+qviBVEEXvT/IQHaYxSPKcDP11axcJ26Fe3vZBdixohg3zVSUKwtK4qFy7KEvG0rktuN5aaRFK/5FyXet4pM+vIrzGPvxXXpZWT/+CuYfbG8xVT2+XF7FO9LI1bvveJ8jFXE6+dMuIjHmHXOE2bMmEFycjK1atWifaNep4wJKjQ+ANqY4AzGB6DsMYIyxwcAyU/rw9wpqr6F564+W6ZhdRaS5l+bA5aGSP5aX1tayN1331UoO/Yt9lf4N3k5R/OTGN78Lgw2bYyk5Pr8kmizGE+5hfusS+WnC7O0VUOitKtUMvK1Pi5U8EOKSoz9aLr2d/ITnodFQXXRTwdZfftF/5ZT5AKM4AFcToL9tTdLtR/3CO36l7ona+uWPNcbDLg+/QxycjDN/R3j2PtwrluvuTHLgk9yPvsc7n5XoVitKIrWbtPHH/vqrV6N8+tvwOg7J9KuXSgNGoBJG4Po6FQ34nO8Gv253UuFV4w8/vjjpKSkEB8fX/KWWo8ePQgODmbhwoUVNlCn8ggMDOTBBx+kc8cB1W1KjcJp9OPXrg+RFViLwOIcBm78kOv+fQeUit8kukVdSuPg5rgUFz8c/BpPJbR5vlFc2/sWRcjqFSQ0TCD6xuuIvOt2Ql6dcNLyzvja7P9uDvY69TAdPEDc4AHIOdkAuBs2ouDxp5Cysoi5f0xJndCPpiLl5p60vapEys8ndNhg5Px8APx+/AHrRx+cczt0dHR0Tpdjx44xcuRI6tWrx/79+6vbnBpLo+PrGLPscR75625apqwkPmcvwcUZyB5X+ZXPMS63k6w878SIyWgpp7SOTmlcU97D07o1Uloa5hHDwe4bXHTeMBzFZMK4bCkB/3vqjNo1fvIxASFBWAZdU9km6+joVBC3213yEutDDz2E0XjxptlOTNtM/ZwdFJiCmdvoVpRKFkqXJYnlR/5ga/p6Fib9rK/uPFeYTBR/8hnOawZi++Sz8merDQY8XbuiNG2q/d5mw/zqKwC4r70W+959mkkReelSzF27YLzn7so+Ah0dnXNAhSdGFi1aRGRkJDt37tR8X7duXQ4ePFjR5nUqAYfDgd1uL7/gRUx6aF2+uvJ1/m55A0fCG5OQuQtDJQx+SJLEdXVH4mewkmw7wp6sc6eLUVPI69ITZ3hEybZi8Aaa1iULkU5xXf43OeKsnYBUVIhpl/b+Ytq1E1mV0sGQn4ecnlYF1peNdPw4huRkzXfGTRvPuR06Ojo6p8vjjz+Ow+GgS5cuNGjQoLrNqbHEZe8DwOhxcfWuL7h542vcu/YpHltxL3f++78aNUHi9rgxGrwDWh/+8gzzNszA5igqp5aOjgp/f5w/zEYJCcGwejWW4cOQdpxYmRUUhHPoMABM/649o2YNS5fivuwyDGvWVLbFOjo6FeTjjz9m586dhIaGcvfdF/eAblhRKr81voM5Te4ktQp0xPyM/gxsNAKAvw7/wZxd31yUL0xWB0pEBLbZP+Fp0/b0KmRmYmndEuOkt8Dj/Y2k7GykzEwAPFdfrZkUAbwrI4uKME6bhvz9d5VovY6OzrmgwhMjNpuN2NhYAgK0KQAKCgr0wfgawptvvknr1q1ZskQX5DwVBrcTt8HE6mZD+K7bM3x+6Wu4DZXz1kywKYSOEV5RsX+OXXy/QehfizBlZeIxW0hetYEjqbmkf/kNx/9YimI59Zutzrh4Un6ay+ENO7B36QaAnJKMnJFO8TWDyPjfBNJffQuPnx/5A4fgblgF+UnLwdOoEbkffUbW/IW4ExJw1U+k4KVXzrkdOjo6OqfDsmXLmDFjBpIkleQU1zk5y5sM46cOD7ImoR+HQ5uQ7ReFS/I+CKcH1MYj+x6K43P3VZeZAFhMfowdMpHEuJa43E6Wbv+FPcmbqtUmnfMPpUEDnN/PQjEYMMybh7Vta8jNRf53LabvZgJQ+OzzZ9Sm/d0pFM/5naK9+uo0HZ2aRHp6Os888wwAr7zyCiEhZetAXuisr3sF+8NbcTikCQDdjszl6m2fUjt7d+lcxmdJ25guXNPwRgD+ObyYGZs/wOl2lFNLp7KR585F2rr1lPuN06cjJyVhevIJrIOuQTp+HCUuDscJ/2e66y44kS3iPzwDBuB+2vv3ZBo7Fklfka2jc15RYY2RBg0asH37dr755hsA7HY77733HklJSbRu3brCBupUjEOHDvHKK69gs9lISUkpv8JFSKPkf7ls+0x+6PkkOUG1UCSZAmt4pfbRJaonK9OWsi9rB3n2HIItoZXafk0mbJlXxCxt2E24GjUGwDZwsHeno+zJU1c9ba70oBeew+/3X8meOZvs+x8CoPDK/igGA6Uzrp8bikfcBEDWgqVIdgdKdEw1WaKjo6NzapxOJ2PHjgXgnnvuoX17XVi0LBTZwL7YDuwNVsWyLjdWVwGSapAkvOg4N298jWWJ17OmbvWlKo2PSuTea19mx8G1bN71N63rdq02W3TOXzx9++KY+j6We+/Bk5iIlJKC5d3JSIqC48YROC/ve2YNRp/QJfjvRZiUFKhVy7dfUXQhDh2daiAoKIhHH32U+fPnX/SrRQDNfUhS3LRL+YsgZy4tj68i078Wm+J7szWsE8WmgDIaKZ8eCVcQZA5m1s7P2Zq6DqfbwS3txmFET4N5LpB//QXTsGEQF4d99RqIjS1VxvXQQyhBgZgeHo9x0UL8O3Wg+LtZOJ54EkPacZTGTZDS01GCgpB/+Rl58xZcTzyB6+mnkRcsQF6zGtP11+FYsRICA6vhKHV0dM4USalggsN3332X8ePHI50kqH3nnXcYN25cRZo/b1m+fDlvvvkm69evJyUlhZ9//pnBgwefdv28vDxCQkLIzc0lODi4/AoCH87eAsDHb45n89olNGzWgfEvfo4kSQQJAp+pc3drtse+dpVm+/1Jf2u2oy7xCTKm/31I27EgNGmoG6rZFkU9SS88ddmNx7VlPcJyU7XgoyC0qajaBVAKBMH0PO+AfP30LVy38V0Mipu1CVeytOHwUmKpCGJFkiBEqhFIFUQo1edjXcoKGoQ0JczPl1ZKEsRFDXVVb+vUFd7c8df2a/DXHrNJEEAzq9qOiNAKrxUWi4Kw2q4sJt8x1xaul2KHNn2IVRBiE4U1/exFWA4l4Q4JxdJIm7ZFdrsImzKJ4vYdsV3Wt9QLOZrbk9NJwqAr8du0AUfdeqStXIdi9Qn9WTwuAl56AWSZwhdewiPck9R2icLswcL14xREqEqLyfnKF9kFgWGhrCjaKe5XC6oGCmJ7oiCceLtW33fFdsW6OjrnO3l5ecSEh521X6wuqjse+I+3336bRx55hMCgMJ5/91cCgrw+Rh0TVCQeAEjfmqra0PrhcuMBQUA16prGvqbEWCNXmFQXhEgxq7Yd2vu5kq0Vy0YUXxfv2WqBdcF3KPkOmh/7h2u2eAU5/6l9FcvrDPYNsAj3YXX8oBRqj8Fj0741aojW/taySgRXFJuXo7V+WlKdD5u9kBl/TKJ/2xHEhnrTg0gBPh8mxQiDPKKwu3BurbE+0VtzsDaGkYTjDQ7UxiUmoS21SxOFyS2i6LlJWzdPuH4SVOcgJ197LgOsWt8q+suoUF8skS6IqQdatcdQWkBdu9+mEkEXhclLBTlCnCLGGm5VLGIQYlFrOYLg6jjFJgizu4WgL9CvtFCsdPAgSmwsOJ1YasUiFRdjX/svyhlOqKrjFnnhAsxDhuB6+23cd99DTqGDoCcewZCURO4HHxNSN76MlnR0fOjxQMXGB9R4PB5k2Xt/KWuM4IzjgTLGCM5kfOCk5dVjBGWNDwCIQuYqwXUlRytEXpJLRVGIydhP6y1/0OzwP5jdXn/tkk3sqtWJ1Q2vISsoXhM/eARRc0V41hbHD/Zlbmf6vo9xKk5G1r+DVrU7l+wzRGl/BzlS+xwvjgmg2m9K0I4fmAU/7Bei9fGWMnyJv/CMHyb4O/FZUxwTUCOKr4tlwwLM+M2fi6tRY1yNGmvGIlxu8flX27ZZiBcsQrxgVPlPT2YWfr16Iu/ehfvSS3H+uQAMvvpqPyzt2IHfqJuQt25FiY7Gvn4D7hjfRIppxjeYb7vNW2/UKJxffAkpKVg6XYJ0/DjuYcNwzpipT/7r1ChEIfbzXXy9suKBCqfSGjduHPfccw/gDX7/C4DHjBlz0U6KABQWFtKmTRvef//9arNh+8aVbF67BFk2cOOdT5108upiJqLgGIM3vYdBcbMz+hKWNRhWpf11rNVDMylyseAJDMLWojWO2qXztYZ+8gHhb7xK9AP3YEgrRyPEZOLIrDk4a8VhPnSQ4DcnanYH330nAVPeIWDyJPy+/LwyD0FHR0fnrKkJ8UBycjLPP+9NAXDtTeNKJkV0Ks6O+G4sa3IDAN2O/kHvQz9Xs0Va5q35mp3JG3jvz2c4nFG9Kb90zh+UevXAzw8pPR1Pr154WrRAadfu7BtMS8M8ciSS3Y60bp13kkhR8PvlJ/z+nE/YiGGVlq5GR6emUhPiAbfbhdPpmzz+b1JER4UkkRrVkAUdxvDhNe+zoN1oUkPrYvQ4aXlsJZftmFnhLhoENWFE4miuqT2UlmFtK27zeY753zVEjRpOrS7tsM6pWBwl7d2LtVsXjN9+U3pnWBj2H2ajBARgWLYM48svn7IdpXlzHCv/wdOmDVJaGubhwyEvDwDDr79iuuOOkrKGr7/G8NZbEBeH4/tZKCYThh9+wPDxRxU6Fh0dnXNDhVNpSZLEBx98wOOPP866desA6NChA/Xr1y+n5oVN//796d+/f7X1byvMZ8bHEwC4tP8I4uqce/2Fmk54YQomj/dtju0xXVAkPTCsSoKXLYJePVECfEtKc28fQ/BXn2M6fJDg6Z+T9chTZbahBAaR/uJE4u66leB3J+Fs2oyiG7xCdqYN/5aUM26/+ETudXR0aibVHQ8AREREMG7cOP766y+6Xja4Wm25EFmbeDUOo5Urt0+jy7EF7I5oz/GgetVtFgCt6ndh1fY/cLodJGcnUSeyYXWbpHMeoSQm4pw3HxwOsNkwPvkEhEeg1EnAfd31EBp6Wu1IKSlIOTkAGP74A+XDD7F6JFxNm2M4fhzT1i3YnU4wV46+n45OTaQmxAMLf/2Kf/+eyy33v0zdBi2q1ZbzAYfJn80N+rI5sQ8xx/fQMWkBS5uPqJS2m4a0rJR2LgQUs28FqnnDOoqvvRbjpo242rXnjN/llmWKp32NEhl58r6aNsXxwUdYbh2F4dVXcA8adOqJf39/nDO/w9y5ExTbQJYxzJ+HZcRwJLcb96hReDpegunBccjr/sWtKCjdu+OaMgXp8BHco245M9t1dHSqhbOaGJkwYUKZ+3fs2FHy+bnnnjubLnQqgKIofP3h82RnHicypjYDbxxb3SbVSPZGt2d7ra60SFnFoB2fMLPtYxwPrroJvUJHPt/t+JQIazTXNhx5Ua3gif50KrUnvkD+Nddy/JNpJUtKFX9/sp54hpixYwj6bgZZ45+Act5cKrhmMFn3PED4R+8RPu5e3LXisPfsTd7kqYTcNBx3k2bY7tWveR0dHZ3/sFgsvPLKK7hcLj79ZUf5FXTOmE11LicubRct09cwYN80vm31OHazf/kVq5Ccggy+WzoFgEaxrbikwWXVao/OeYzZjJScjPGDD0q+Mo4fj/vmm3GPvR+lefMyqytt2uD47HNM996DlJKCadwDqNetFT74MEZ9UkRHp0rZt3MDv3//AR6Pm5SjB/SJkTNBkjge1oDfw+6tkuYLHPksOzKPfvWGYKBiOibnI8627Th6KBXzlk3Yu3Qj5OtpBD94P8U33EjWx1+cUVtKgwbllnGPGIFrzq8Yf5yN6c47cKxeA6bSaSUBlMaNcSxajBIXB4GBeJo2Q4mLw9OtG85PPwOjEaVOHTxXX10yxuEec9cZ2ayjo1O9nNXEyAsvvHDag7r6xMjpYbfbsdt9+abzTizTOxuKi4tRFAWDwcjoB1/D4le9D+Y1Fklmfss78HfkUz9zGwN2fcEXl7xYZd1l2tLYm7ODtKIUBje6qcr6qYkUtu+Ex2Qi6Pdfsb8/mez7x/v2DRiIOygY05FDWP9Zga1Hr3Lby/jfBPxSjuH/609E3D2alPXbcF7el4xj6b6JFT0lg46OznlIZcYDu3fvpl69elhOCB8bjRVeKKxTBkvrXU+9nJ1EFyXTMXkxK+sNrDZb7E4bX8x/hbzCLGJCanNzj4cxyPrvr3P2KP7+uJ5+BjIzkFesQN6+HePHH2P8+GPcAwfi/OZbCDj1gJ771ltR2rVDXrMa+c8/cbrcoIAnthYFDz5M6Lk7FB2d84LKjAfS0tL4/J3H8XjcXNJjAJ17XVMZJupUAoqi8MW2yaQUHsGjeBgSe2d1m1QtKIGB2Lv1AMC03puJxm/Wd/j1G0DxdUMrvT/H5HcxLFuKvHkz8g+z8Iw89fiM0qGD94NHQalfn+K/VyLHRHu/KyrCM1AV77ndkJsL4eHebZsN47PP4nr2WQjRU9nq6NREzuoJqU6dOhfV2+7ngokTJ/Lii5UzKG+1Wrm523iSGw0mOj2UovQjEOdLX3Tv0Naa8pMPZGq23390nrbB+mGazfQVgpiailLiaIdyytyPatu9M0OzK2qo9u2zgjStEJsj3xcoinWl+CDNNkfztdsnBFQVTPza9SGuWv8xy5vegBRggQIHIbZ0PJJMvl8ECGKYomCqWlxVEYTXJJW4UUZuCgDh/tE+YTijIK6tEp+TRHFVi1YszSCIuHkEUVj1xIBDbEv4+w0K0LalFjnLyNMeU53oQM22XRD1NAqCTv4WI0q3bqS99AaxT44nYuIECpq1orD35YQHWcASTPH1Qwn46gvCZs9E7nt5SV2ncEzqtgs+/RwpMICiBx7EHByA/b9jdLtPakdZgumlBOGEc1ssnL9M1TkJDdSKz4rC7iKlhdx9fdkFEWBRuFW876p/J1EQVqQczVcdHZ0aQmXFA2lpaVx++eXIngBuH/o8IUEnUgqEa32JOiY443hALbYOoBIyLS8eIEh773xk0gDN9uTP1pZ8tjbRpkOwCW1Zhb5sG1J8G/mCz7Zr7+dKsdYfKIKwu9ovK8L9XQ7TnsvioAR+DH2SFgeXs6bNcKQMQdhVdf+Xw7QvrcgxWt+qFDiFbZWguODflExBUD7Ewqptf5CckUSgXwh33DCBgJBo3371ORCFaoXjlxO0QoYOdQwkLPCMqKUtGyCIepsEP6UWbnUL4qqiYLoYa9QWxGnV4quRgoC8UViJ6u8nxjy+3zUyxKrZl2/TCrkbDdq6Yjyl3ip2aK8tP+FcC7q1mAURXLvqEggQhGrNQltuIY7JVl0vor83Ch2LQvag/S1M/53b0Ais/2UNUBTkZcswvD8Vec4cDL/9hvunH/EIaUPEuEVp0wZ3mza477q75DsZvJMiHg+GKVPA48H94IMaQVxNmytX4s7KxlOrFp669SA0tNT50NG5EKiseMDtdjNy5Ehys9OJDk9gcJvbsa06qhkfgLLHCCoyPgDamOBMxgeg7DGCssYHANzJwhiA6plOMmr9sJJRpC0r3JOVnGIap62nRco/HA5ryvpY3zOrHKT1O+5i8b6qRbL6VshJQL/4QXy1531WpSyl4f6WtIhu7+tXeHY0CH5Z7bedlgKtzR6trzRatX5ZfI0wRCWwXiz43UyP9twGCr7UZNT6WvVzfLAg3O72aH1WbqHW18YkJZV8Dn30QfL7X4VyInVjdoFoh/aYnEI8oaxahfn7mdjH3o+7fqJvR3gkninvIxUV4bjuBrC7Sp0P0V+W+MO4OFJziogePgTLun85PncBwZ3ag8OBZfTtyDu241iyFMLDMd1zD8Zvv0FesgT73LkQG3vGY6n6c7xOZVFTxdarWxT+rEQVDh48SFJS0mn90zk9nnrqKXJzc0v+HTly5IzbcLtVjl6SiI9OLKO0zn84TVbmdHiAnICYku96Jv3C3WueplXKikrrJ8vuDeoCTIHllLwwybn5NrJH3ILk8VB77B0YU5JL9tlu8j5I+835GSk395RtWL+ZRmx8JJYli8DPj/wPP8HdXF8GrqOjc+FQGfGAoiiMGjWK5ORkHM5i/CwXX1qG6iItrD5L292KIlfvQG39mCZYjH7c3vdJwkNiyq+go3MmSBKeyy7DOftHHEuX4Zw6tdSkyJlifPppTI8+gunxxzDeNebkhZKTMfe7Ev8h1xLYpRPBtaIxzvq+Qv3q6NRUKiMeAHj55ZdZvHgxZpMft17zNBaztfxKOicltCiNxukbaZW8goSc3aBUzuBdk9AW9IjtA8CPO74goyi1nBoXNoZDBwFwJTbA9v5HJZMiZ4pxwZ8E9r0Uy4fvEzDwaijWvrDiHDwEx8ibfDMNLtdJWjk5lhXLsS5ZhJyXS8SD3jTeUloahpUrMGzfjnnIYHC7cT30EEpMDPKWzVgu7Y108OBZHYuOjk7VoatN1xAsFgvBwcGaf2fKXXfdxahRo0hPT68CCy8iFAV/Zz4Gxc2Ve74hsvBYpTRrMXjfJNmWvp7f936HcrGlepIkUl56A1urthhzc4h+4+WSXc6Ol+Bs0YriYcPB4z51E243RTffinySa9y0eSOmzRurxHQdHR2dc0VlxANffPEFCxYswGq1csuQZ/RBkGrC4HbSe/9saufsOaf95hVl8+H85wkJiCDQ78yvHx2dM0Hp3h33Paq8+0ePQkrKqSucAmnjhpLP8oYNJy1jmD4dSRjYMpyirI7O+U5lxAM7d+7k5Ze9z1xD+4wlJiKhss28qMj2975oEFNwhJFb3uLutU9TJ2dXpbTdr/a1xAfUochZyGfr3yTbllF+pQsUxeqNW/PfnoJz8BCkw4cwfz0dnGWvxBExbtqIdGKyw5B0oMwXMKXMTIIv7415xren1/bx477Ph5JAUVBq16b497koISEY/vkHw5dforRti/2v5Xjq10fevx9zvyshObmMlnV0dM41lTIx4nA4WLp0Kd9++y3Tp0/X/LtYKSgoYNOmTWzatAmApKQkNm3axOHDh6ukvwkTJvDFF1/wzTffsGfPuX0Av+CQJGa1Hs/+8FYYFRcDd32GwXNmTvhkdIu5lMtP5BtfcXgBf+7/scJtnm8oFgspr7wFQNjsmRh3nhABliQyFi0j9933UcLCT1m/6NbR5L0+CdvwEZrvLbNnEdO3F+H3333GAZOOjo5OVXKu44F58+Zx3333Ad7YIDaqXpX0o1M+3Q79TpcjfzBoxycE2E/9MF7ZJKXuxOPxkJZ7jLd+eZi/1v2Mu4yXDnR0Kg2bDfP112Fp2wZ5+rQz0ntzvfIqniZNUGrXxvnulJOWURo2wNOiBa4r++G4fTTFE1/H/qyuZ6lzfnCu4wGAunXr0rNnTwYPHkz7ZpdVWT8XC3uj2/NNx6fYHNcLu8FKqD2T67dNpVbOvgq3bZSN3Nr4PqL8Y8kpzuSz9W+SW5xdCVaff+RNfo+seQtxXOq9Zv3vH4v/3XdifWjcGbVjH+NL2+hu2BAl5tQraM3TvsS4fh0Bd9+J+cfZ5bZddFX/ks+54x4pWXXiadESxwm/ZHr+OcjLQ2nQAPuyv/AkJiIfOID5qn6QcfFOfOno1DQqPDGyd+9eGjVqRN++fbnlllu4/fbbS/6NHj26Mmw8L1m3bh3t2rWjXbt2ADz88MO0a9eu0sXoFUXhueee4/nnnwfg9ddfp3v37pXax0WJJDGv6W0UmoKILjxK76SfKtykLMlc2WAI1zW9DYBil+3iWzUC2Np1IH3seA5/Mh1X02a+HVbVG81u9xk9TDsuuxxPaBjmHdsJ+vC9SrRWR0dHp2Kcq3gA4LfffmPw4ME4HA6GDBnCQw89VOl96Jw+a+r0J8O/FkGOHAZv/xDZc/opGipCm/rdeHTIOyTGNsfpsvPbss9479uHSUk/eE7617mIycwElwspMxPz6NGYrrwSae/e06qqdOyIY/sO7EkHUXr1OmkZz9BhODZvoejX3yj+4CMcD40vU/BdR6cmcS7jgf/w9/fnt99+45NPPqmyPi42joU24o/mtzG1y5skhTXH7LEzaHPl+PggUzB3dniccGsUsnTxJndxduuBs1t372RDURGmRQsAsHz5Ocb9p+dTAJSwMPLWbSQnO5+CxX8BYFz+F5a33oQiraaM/aGHKb71diSPh4Bbb8by4ftltx0UzKH0fA6l55N/jzeVFh4PKArOe+7F07gxUloaxomvevfFxeH440+U+HjkHTswDR9+RuMdOjo6VYekVHBk9vrrr+fnn38+eeOSpNG90Dl98vLyCAkJITc395TLZhVF4ZlnnmHixIkAXDN4LJf2HQmAf8ypxdS+WbZfsy9DEFt1iyKMYupMlVBpKcHTPdqZ7+iedTXbaX8LwmwqMUlDuDbVhztFEEsL0YqalWWHiCjUKvblWunL2SrV9gm3J+5dzZDvvZNO37d7hIMRLUqE2/9DUQkDieLrokCqJ9frgA/akqjrVw85UBBUj/b91obaWgF5SRATJUZ4EBQEz8yqa0AUbfMXREtFAS+T6ncRhUUDBKG1CEFA1yjYoRZIcwliaLUjtXZEBPthOHqEqPvupOCGkeTfpM1XrRaBcwmibWE/fEftR+7DY/Ej6fs5yN26avarhcwNgpCaKIDmcGnvW6GCYJy6viimLoq+i8csis2pz68s2CXaqaNzMZOXl0dMeFiZfvFC5HTiAQCn00mrVq3YvXs37bteye3jXsVgNJUqJ4qrqmOCvHStaKctVbtdVjwAWl9ckXhAbEukPJ+ujh8MtbS+1J0lCJUfElZyCOL0qMRYPXlacVBFEAsVhdsBwoqOc8v6V/Bz29gY15sFjUd5ywqigpLgOxB8i6IS8laLtkJpEXjF6TnRhId1h5czd+dMip1FGGUTQ9reRueOKqF7wadjEbRRhLZNcdrzqcYvTPs7mAXfGS7ECy7VMVpM2uOX0Po/P2G/RRDFLVJdi0H+2uteFOa22bXXbUiAzy7RDotZe348nrJ9ujoGEH24GA+I+8t6ICsShHytwt+LKOyujmuChfMhxi1iqGF3ao/JqbpWi4RzJ0YpZpMBnE4Cpr5L4GuvIBUXo1gsFEyajP3W2wm0lr4nXcyon8LFWNwpPG+IwsYXM3o8UPZx79ixg99//53HH3+cSe//U/J9WeMDUPYYwZmMD0DZYwRnGg+UOUYgjg+ICHahvoflCD7bX9uvclQ7FiH5ae+z7qP5mFx2Bm78gH8SB3E81Kfvqoj9CjdaT542FvFk+uItyWom25GFSTYRaAzSjA8ASAHa+6gc6RORlwKFe6wQAxGs9cumYO35U/txSbDZT+jXJMQtoq8NUsUXfmbRD2uftZ2CL41U2RWzZjn1Rg0F4OBX38PVVwttac+15dhhoib8j4J+V5M/9EbfvVNRCHn3LcImvoSkKBRd2ofU6d+h+Pn6kj0eIp4YT9C0LwDIv2csORMmgsFrf1igL14Qw7aibbsIGTYELBZyp8/AeGAfIcOuQzGZyF67AWdiQ2+93bsIu2k4xZ9/gbtTZ2+/wv1fHE+oCA7Bl5h1X6JzAVFZ8UCF/yr+/vtvjEYjCxcuBKBdu3bMnDmTyMjIku90qobJkyeXTIoMun5cyaSITuVxoFEXNtT2LuFsfnx1pbVbz1q/5KHV6XGSVFDx5bfnK5KtCMnhG1wK+O0X/FatJPyZxzAePlRGTS05Q28kr+9VyPZi6o4egSH1ePmVdHR0dC4QTCYTf/75J5dffTO3PzjxpJMiOueebP9Yfms+BgWJdsl/0f7o4nPWtyzJdKp7KY/2fYMmMa1xeZwcyzl9v6qjc1aYTBSOf5SMVetxXN4HyW4n6P578XvvXf3tWB2dKiYrK4vLLruMJ554go8++qi6zbngcRot/HTJeM2kSGUQZg4n0Oib1NiVsZkiZ0EZNS5cAlYsAyD7hpso6FlOOjhFIe6uWwmaO4da4+4m4I+5Jd9HPngv4a9OQFIUFKMR/2WLib7rNu8qj/8wGMh8812ynp0AQNBH7xP2yGmk7yosJPSafhj37cW4fRthfXrhbtsWx5X98MTHI2f49FHdTZpSuHFzyaSIjo5O9VPhiZGcnByaNWtGnz59kCQJk8nE8OHDiY2N5dVXX60MG3VOwffffw/Aiy++SK/LhlezNRcuSxvdQGpgHTbVvrTkuxBbOhGFFRfNcnlczDz4BV/sf58duVsr3N75RuSML2nVqz3hv8wq+S7v7rEUd+mGXFRE8Ocfn35jksSRqZ9ha94SY1YmwV/oS8Z1dHQuLurWrcvQ2x7DYDCWX1jnnHEgojV/178WgCv2zaTD0UXntP9gaxi3d3uM69vdyTWtfC/R7Dj0Lyu3zKWo+OIcbNGpWtyJieT98ju2sQ8AYPn1Z3Cdm3RyOjoXK3/99RdpaWnUqVOHYcOGVbc5FxWSx014QQpBtszyC58BG4+vZtrW9/h001vkn0O9shrDiZRiYbO+9a4c8YjLlVR4PJiSDpRsmk+k3Qqa/iVB332LYjSS/ta7pPwwB4+fH3JeLlKBkKVEksgb9zDp738KQMB33yIVlBMn5eYip6aWbMo5OUjHj5P/4Sdk/7sRV9du2vJGVXaOLZsxzJ1bdvs6OjpVSoUnRoKCgvCcuDkFBgaya9cu1qxZw+HDh1m1alWFDdQ5NU8++SSTJk1i1KhR1W3KBY3LYOHrTs+QHOx7E6TTkT+5bd0E2iT/VaG332RJxs9gxYOH7w59yc70TZVg8fmDbLNhysog9uMpvodlWSb3/ocACPz+W6Ti4lM3IKD4B5A+7jEAgr7+Euyl05ro6OjoXGhs2LABm81WfkGdamNVnatZVac/HiQOhTY95/3Lkkzn+pdhNPhWEi3Z9BM/L/uICZ/fwswFb1NouwgHXHSqFkmicOIbFEx+j/zp34LpxPWnrxzR0akS9u/3psPq0KEDERER1WzNxUWfnd9y599PctW2Lyq13VqBtQkwBZFScIQPN0wkozC1/EoXEJmj78FzwncE/rMcy+p/Tl3YYCD1jcmkP/cyuSNGkXPnvQDY23fE0aAhWc9OIP+W0RR370nynD9Jmf0bSnDISZsqvGEEGdNmkrxtL0pg4EnLlBAXR+7XM7BfNQBnp87kfjENd7v2XrF3tY5qYaGmmrx+HQG9euA36iaknTvKPxk6OjpVQoUnRhISEjh06BBut5tWrVqRn59Pt27dyM/Pp1atWpVho84pGDx4MA8//DD169evblMueNyySZP819+Zj1FxcdWerxm0+zPMrrMbkJIlmevr3ESrkHa4FTffbH6f3RkXz8qRjOGjcIWG4XfwAFEzvir53tbnSlxx8RiysvCfO+eU9eWcHCz79mi+y7tyAPmX9iH7yWerymwdHR2dGoPD4aB3795ERESwb9/Fm5axxiNJLE+8no87TyQjsHbJ170O/kznI39gdJ/biXxFUWiT2I1aEfVwuZ2s37WUKbMeIz3r6Dm1Q+ciQJIovmMMnrj4kq+MD9yP8fHHSw0S6ejoVIz58+cD0Lt372q25OLj3/r9cUsG6mdsIy638uKx2MDa3NP+ScL9osgqTueDlRM4mnOg/IoXCK7YWuxZsZF9vy8laeav2Lv1KF3I7fb+AwoGXUf2PQ+QOmkqisWrCeJo1ZrkRSvIvXtsSRVH2/YlKzfkzAxCpk4utXrEds0gPJFRAFhW/o106NTpSB1XDyR31o9kL1yKfegN2p2KgvXzT4ls2wLDPp94vKdNW9yduyAVFmIdNgzy8k7/xOjo6FQaFRZff+edd1i+fDkTJ04kKSmJwYMH43Q6MRgMfPnll9x8882VZetFRXniapOe+VOz7bEayc5JxSAbCAmJIqBJpGZ/0W6VCKooDlqnbJEaqyDUZtuQ4tsQhcUEcbRSiAJpKlFTArViYKIgaCk7Vvgc0yPvDdLsm/zZWs22e3M5ehOqvpQs7QoFT2aRWBoUD5fsn0+vHT9gUNxk+8fwW6u7SbHW0RYTxDI9Odq2/hNfdStuZh3/lu0FWzFKRm6pdxeNEztqyhoShN9JFBCPFcTYI1RCbIJYmlE4tyZBIFVWCX5JBm0/IeH+mm1RDFIUE1VvWoxa4TWTUSbu+2k0eeUpnEHBHF6xHndUNADhk14jctJEirp25/Bs7/JStfi60SBT95ahBC1bzIEf51PQUZunUxSxNMo+O/2F4/cXRP7E22KRIBCnFnIXxeREIVJR5NQjtK0WchVvxqKoXaljUu0vdmj/Fk3CuRaFawXdX+xO3zGK50O0TBSrd7lFoVZfeZNw/VSmmFyBTfv3pYu6XtjoYqsnP+7FixfTt29fggLCeHbct0gBFtxuF8YTGiP+jbVvjBYdF1IGpKv8UpT2/i5SZjwA2phAiAdKiaCnCHaI8YG6rXRh8DRK6++iO8VrttN+3VXyWRHEVSXRlwooghi7oro3Uqz1BaJvdacKbwKGCqLo6nuW00NY4XHuWPk0suKhwBLCqsSBbEnojVs2oYhCt2q/LPidUkLuohC3EF9p2vYzcDhrLzPWvE92UTpWcwC3XvoYDWKae/cLYuySWkBdEGYXf0ODKIIuiK+rX88yB2r3+Qn3c1lwHaIvUcceQX7ausHC7+QnCKqr/Z/YrsOp/c0jhWPMLXRotiNUgrGiEK3oD0WRc9HHqwVSRb8rPr2JsYU69hDjMqOo8ipsGoSTrbZDbEsdl4n9AgQI8VaR3YW8ayehHdp67a5XD9f7H+Dp14+qRLRTfRzVKWqujp8qMz6qKEUqMePSMWH1o8cDJz/uvLw8wsLC8XjcPHnPF0SGx2E3usnJTSM8rBYhLbQvrWrGB+CMxgjOKB6AsscIyhofgDLHCErZsfqIZluMAVA9D4k+3CP68EhtTOTJ1L4IqajP14l7Sr/Nn9Pm8DIORLTkh/aP+PYLAuHis6ak8kvu49o4RA73xjz5jly+2jaF5MIjmA0WRrW+n0YRLZBU50MK1vpSWRBbJ1oYLxB+Fz/V+XQJv6E1Qns+DMKzpVHwrRbVfrnU+IB2WxQEt6nu2YFWbbtqAXQUhfi5s4l/5TnsCXXZ//VPZBt8+83HkzHWrVuy7RbScAX5e89P9BsvE/XeJNyhoWSPvpvs2+/CHR5B/n/xkstF676dMKccI6//IJJfeQv/2rHa4xeOMatAdX24XDQZPhDzv2vwhIWT8vGX2Hp59VIM6ekk9OuFMfkYhVcPJP3LGRgEfyD6B39VbCaeSxHRL6t/C4+wz2ISxx7EZ35teaOh7L6rCtFu8frSuXioMeLr48eP5+eff6Zp06b079+fXbt2MXv2bLZt26ZPilQhi//5jvnLvuLbX15jylcP8cyEa5g46SZefvNGXnj1OpL2bikp63G7y2hJ56yQZP5teDUzezxDnl84YUWpjFrzEr33z0ZSysh7eQoMkoEbYm+iWXArXIqLbw99QVL2nvIrXgAkD72Z/GatMOXnEfnKCyXf540YhSLL+K9aielgUumKLhdBy7witlFT3jp1B2XlIdXR0dE5z5k3bx4A+YXZfDLjaZ5/dQjzFnxWsl9RFH75ZjJr/55LWsqhUg/jOtVHjn8081uMJscaSaA9lyt2fsN9Sx/i0l3fEVRcuTnKT4UkSdSNaMz9l0+gTnhDbI5CPl30EsnZuki7TtXgadqM/B9/RqlTB/ngQcxXD8Dwyit6ei0dnQqyaNEiPB7vc39keBwA6zct4M13b+eZCVfz6qM38O1HL/L3wh84krQTt1vX/KlsVjcaiFsykJi5jSGb3qNF8j+Vdm8LMocwpvWjNAxvhsNtZ9rmKWTZ0suveAGT+OIT1H30fozZWQRs2UjCUw+V7Atds4LO/bsR//Yr5bZT3LQ59sSGGHJyiHz7dRq2a0LUhP+VpPo2ZmdSXK8BksdDyNxfiH3pf2dmqNFI1tczcbTvgJydRdyNQwj4/VcA3FFRpH35LYrZTMDc3wj85qsza1tHR6fCVMqrKX///TeXXXYZQUFBtG7dmvfee4+0tLTKaFrnFOw7uInF/3zHxh3LOJy8C6ezGIPBhCwbKCzKJTwyrqTs3B8+4uU3RzBt5gssXzmbo8f3lgRNOhUjObwRX3WdwLa47kgotE5ZQaA956zaMkgGbky4lXoBDfAoHgLM5eSyvFAwGNjzzEQAgn+YgXm7N5WYKy6evOuHk/LWFJx165WqJqkm/KSTiXkqCmEzp9P48i74bd1cJabr6OjoVDeBqrzH+w5toqgoj9Q036B2ZtoxFvz6JV9NeZoXxg3iuScH8Mn7D7Ng3hfs27MBh/P0dZx0KhdFktke34PPerzGgua3kG8JxeospNPBP7hn7dM0yDx3vivIL4S7e/+P1nW7cEnDy6kV6lsBq8eMOpWN86oB2LdsxTXWm9bE9PxzGJ98Up8c0dGpAAEB3tUA1/QZU/JdTHQ9TCYLHo+bo4d2s3LxT8z85GUmPn4jz7w0kO07fXoN+osTFSfXP5r19a8EoHH6Bq7Z/ikdjiystPb9jFZua/sQfeoPomvtyy9OMXYVfoe0KcXMRw/7PqceR3Y6iPtwMubkstOE5g26jn1LVnPswy+xtW6L5HIR8fFUGt9xI4acbFxRMez56gdSnpng7XfntjO21RMTS8bchRQNuxHJ4yHypWdLJl4c7TuS/cwLAIQ/8zjGXTvPuH0dHZ2zp8JrY1esWEGfPn1wu90lzvSvv/6ib9++LF26lG7dulXYSJ3S3Db0BbbsWk5mdgqxUfWIq9eEiPB4PB43qWkHCQnzpdI6tH87Oblp5OSmsXX73wBYzFYSa7fkkpZX0CL+SgyGmrdM+nyh2BzIvFZjOBDZmgI5kHy/cO+OswgujbKR2+rdTbLtKNEBvsmtLFs6UVy4S8XzWrcn9apBRP/5G/6rVuBo0QqAlHc+0OaWcDpLhDv/yxkKUND78lJtyvn5RH72IZYD+2gw9GqOvfcJBVddU7UHoqOjo3OOef755zm2y8jBozuICKtFXN0mxET70gZIssyl/UdwaN92jhzcha0onz271rJnlzflZK8u1zPoyrury3wdwCMb2VTncjbX7k1ixlY6HvyT2NwDHAlpdE7tMBnM3NTzIVB86ROOZx/m8z9f4Yp2w7ikcZ9S6SJ1dM6awEBc705BSWyA6ZGHMU56C5wOXG+/U92W6eicl/Tr14+Hbn+PqAifjlVivda8+vw8cnLTSFdSOLR/Owf3bePw/h3YivIJD/el11q9eT4rN/5Gy0Zd6dK6P6EX8LNnVbKs+Qh2R7QnMWMrjdI3siWuF1Ti+wVG2cQVDQZXXoPnMbvf/ZzGE54gcNXfOGrX4cjrU0r2pV09hLjvpxGyeT31nnqIPV/9UHZjBgP5g4aQP2gIgfPmEPfgvYT88xe1336VQxPeBEA5IaTujE84O4P9/MidPBXzkkWYDh0k8JfZFAy9EYC8e+7HunQR1mVLCPr0I7InvXt2fejo6JwxFR4NnzBhAi6Xi7p16zJgwADAm9bh0KFDTJgwgT/++KPCRuqUxmL245LWV/q+OKERYTAYqB3fWFP2zoffZO9fqzl0ZAdJh7aSdHAbxfZCdh74l/1HtvJs955Y/bW5v3XOnF21OqOo8od2OLaYxPQtLE8YyPHAeqfdjkk2UzcgsWT7QPZuPt3wBu1Te9Gv3Y2EBUZVptk1hv0P/Q/bY0/iaNbC96VqUsSQkU7T6waQeu+DZF8/AoBth7N9ZUXtjuBg9v/8J3Xuu52g5UupPWYUaU+/SNY9D1Tpcejo6OicS2RZplnDTjRr2Mn7haAZFREVxw2jnwTA5XRyYOMmDh3cwcEDWziwfzOJdVuVlE1JPsCqFT/TtcdgYmsllsotrFO1KLKB/dFt2R/dFmtOJg7jiXzeisK12z4kKbwlW2O7AYYy26kIsiRrNCdW71xATkEGP/z9ITsOr+OG/g8RYA2psv51Lj7cDz4IAf4YH3gAT69e1W2Ojs55Te1a2gn1//x4WGgM8Y2b07ZzHwA8Hg9HVm0mItz3It6Bo1s5nnGI4xmHWLJ6Fi1a96Rbz+tIbNhGf4nyTJAkkkMbkhzakJWJg1BkA7hdoHhofXwlW2K7U1qVUudscAeHcGjKp8iFBXgCAr1jB4UntD0MBna/MpkOQ68k5J+/SHj9BQ4+8j8wlB9DFQwYxKF6iYS99BxHH3u25PtaLzwFgCOh7qmqlovi70/u3WOJePVFwqa8TcF1N3h15GSZ9Pc/JfD7GRTe/+BZt6+jo3PmVFh8PTQ0FJPJxP79+0vETnJzc2nQoAEul4ucnJzKsPOiozxxtfL4cPaWU+7zuN0cO7yXDau8yzoHjbgf8C6ffeXRoYT5RxNfqyFWvwCK7UW0aBtBfn4+PXr04NZbb2XSS4ux223MX/Q5HqcbRfEgSzJWv0Cs0RFYrUHExNajbj3fAPfBpG34+wcRnlgL/4DgkuDKllJQUsZaSxBP2yUIwgnCbGJ5TV1RAK5AK44pCrvjUulQFGnTMrnTyhZTxagSsMrwirJJHjd3LxxPsC0LgJ21OjO39V14TFqRN9cB4RhVg1CeE059Sc4iluYsOtGVke61+9Kn3kAsIdrJLClIEFAPU4mpCeKpxAjCa6LIqUrkzCjskwRxK4MgAltqWyXaaDCWLejlL9gZoBJQbfjZZBp/NAmA1J592TnyLjLbXAJA2I5NROekk36lb0XIf+JqkstF4zeeJ2HWNAAO3fsIe+8er+lHFGK1CkKTouirWrZE3CeKVEpC4KsIQuZqkVNRxFzEIgi5qoXfCwWBPFFMtLS4miCoq/otRP0yUdBMtFMUarWq7BIdTJEgPhgkXnvqBUKCwJvTpe23vGNUC9V5ytGaEapqzm1FUXtZfZz57NHFVis/HlAUBUVRkE/8Dc/4+CVWLJoNgH9AMHHRDYiv1ZDQ0Gjs9iLmLfy85F4xbdo0Pvng55K6iuIpWTnsZ/HnsgG3lrx0cezoXnKyU5ENBsxmP/z9Q4hIrEVAUGiJSLw6HgAgV5XiS/D/j4zrrtme9NJizbZa6N19WEgzIQhLIvYroo4XSileC5tH87RfCPdOpdAnei6FaAVSlWwhpZmqasPUDVy30fsWZJE5iH3R7dgd25FDES3wyEatQDylxdc9BVrxWVklEI5wPxdF313BMv8cWMifO3/ArbgJtoYxvOtYEqObI/kbMMhq0VchPhJFXwW7DCoRWLNwPoyiLxXOZZBwTajv96IYqHh/Fx991ALhsuCzDUJbom8Qxcj9VXGL6LNERGFy0S+rxWiLhd84NkwrgivGAGrvK/po0XeKordlYRfsEP8kxPMjiterBenFutKRw1DHl8LNOP4hsPrjHjAApV07ik2+31z0peK507mw0eOByo8HAPJzs9i1dQ0rFs1m7/Z1Jd+bTBbq12nJXbe+XvJdrvMvMjIysNvtGI1Gtm06jix7/w5DQ6K5tN3gkrJrNv+BO9CI1RqIwWDCYDAiywaMRhOBQeEkdmitsUOMB8ocIyhnfMC2XNDLUgm5K8nafkQxdvH5WRHF6VX3TkUUZndq7/+SxUCHvfO5fPPXbK/Tg7kNb/VOmPxXXvV8JIqvS4LwdqHJTqY9nUi/aAKMgRiiVGMCosi5cD6kWGEMIEzw26pnL1Mt7ViDLPgK/yihLeGeblb5A9HviCLfori4WlDc5tD6N9F3BvtrYw1r+nES3nqJ7D5Xkd1/EDEzp1H3uccAyLnsCpLe+QRPkPfYxGfHcEG83i08iyb07oR1724Ov/QmjkZNCPznbyTFQ+oDj2KwCteiEMeo+7LYCokedi0Ft91B4Q0jKHRorxdxfMFqEcaQVLGbeO5EEXgxJiqy+/yy+IzvJ/hSk1DXIcQ16vEDMZYQ4yOxL7cQf6qPQ4x5RLtKj034zq0YH4h2lIc6RiwW/o6tlTg+oFM5VFY8UOGp/+LiYmJiYjRGhISEEB4ezpEjRyravE4VIBsMJNRvSkL9poDvjz8j9SgpR/aTwn527F5VUn7BUu//BoOBW2+9FQC328mKNb+cso8Ol/QrmRhxuZxMnXxPyT5JkoiIrk39Rq2Ij2lCg4btqBWXeKqmzksU2cDMHv+j246faHVsBc1S1rAnpiO7a3c+47YuD+1LY2sTFhQtJCl3D38d+YPtGRsZ1/slLEa/8hs4DwnZu5Naq5Zw5K6HSr7bN3ocst1Og6/eJ+bvRcT8vYiDA67n0NXD6PngKBSjgcLERtjq1qfRa8+S07oDKQOHohiN7H7qZRz16tPgjReo8/E75CY2Iu0KPa2Wjo7OxY0kSZqHmo49riI/L4tt65dTVJjHvqSN7EvaWLK/uPh9rCfSCCxatIh/1v56yrZ79x9V8nnVyp9Z/c+ck5YLDo3kgf99RJgpFvBOYsriE+FFzoGo1ixpMZIue+fg78in9dHltD66HJspgLmt72Z/WMsq69tkMNO70dU0jGrBzPUfkl6QzKdLXgZgxKUP0r6h/oa/TiWhmhQhJwfDJ58g2e0Y33gdRZaRr7se2ztTUCIiqs9GHZ0LmKCQcC7p0Z9LevQn+cg+lv/xPf+umIetqACXWztp/uGHH5KRkXHSdhLim2gmRhaunEFO3slFwqOiE3ihw28l27/OmIK70Emdei1ISGhKcEjkSeudjxRZgvFIMi0OryAoL41ljW4gJeTMx0AO5O/hu4NfUcsazwPNnqwCS89v6j8zntDlS4j8dTY7Zs4hfeRtuIOCqffkg4QuXUjoovlkDbnhrNo+8sJrhP86m9oTnkZ2ql52cThI/9+E025HCQ4m9c+lqm9Kv0gh2e3EPPGQN9tFmzZnZa+Ojs7pUeGJkQYNGrBr1y4eeeQRRozwpreZMWMG+/bto3nz5hU2UOfcERoRw/gJX3Jg9TqSU/bhcjmwWALodXlzgoKC6NixY0lZk8lCn14jkVwKkiTj8biw2QuxUUyRLZ+Y2PolZR12GxERcRQW5VFsK0BRFDJSj5CReoR/mUe7Dldw0y3PA16Bz2XzZhBfrwmRjkj8/c/ft4ByA6KZ33oMToOF9ocXUzdzx1lNjADUtiRwV+PH+PvIAuYd+IFMWxoujxMLF97EiH/KUS6/53rcflaOjHnQN+0vy+we+zhHrxlKo4/fJn7BHGLW/k1G287ILicusxlHdCyxv/5A/A9fE/vbD+Q1bUFho2YgSRy75W4C9u4m9ueZ+B1PKdsIHR0dnYuQRs070qh5R1wuJylH9rP/n385lrKXwqJc/Cz+uN2+N7iGDBnC8SNev/3fBIskySiKgt1ehJ+f703CsPBa1KnbHI/Hjd1uo6gwj6KiPBTFQ35uFhHR8XiyvW3/+tO77NzxD3HRDYiLTSS+VkPiG7cgJDT6ok3t5ZGNrGvYn/WJV5KQuYvGR/+lceo6Au25DNnwLt90fJrjIfXLb6gCxIfWY1zvCfy++zvW7POuYi0s9q6QURSFNbsXIvmZ6NK6f5XaoXORYLXinDYNw6xZyKtWIaWkYJ79A8aVK7G99DKuG4aXaM7p6OhUPnEJDRl+59MMG/0k6cePkL87WbN/3LhxuFwuLBYLbrebv5fsxe12IUkSIcHayYzmDbuQ58zBVlyIx+3C43HjdrtxOouJiIwvKefxeFixcDZFhb7Vl4GBYSQ0aErtuk1IbNqW1h0vrdLjrkp21umOw+jHwNVTqJOzh1v+fZljIQ3YGdOJnWHtKDSHnlY7/kZvfJViO8aa9BV0i9L9rhpjdlbJZ1NWJgBZA6+juF4iYYv+IGvwMADkwgLkIhuuiNOffCvo2hNz8jEiZ32r+d588MApapwepoNJuENC8YSFlXwX8fbrhMyaiWXHdtIWLdd9no5OFVLhiZHRo0fz2GOPMXnyZCZPnlzyvSRJjB49uqLN65xDTCYzDZu2Ix6tmNQjz/Y5SVkL/fuOBiHlArVKa5X4BwTz1HOzADBH+1GQl82xQ3s5uG8r+7dupH6ibwY8LeUwP06fVLIdGhJN7bjG1KndlDpNWlM7oSl+fv6l+qjJHIpoTvvDi4nL2VuhdiRJItfh1dRoEtGKAPOFqQtji4xG8niw5Gbjf+wQRbXrafYX1k0kecAQ4hfMoTg8imOX9afN5AmYigoI2raRlOtGELVoLhH/LKP1o3ezdsY83AHeZcR7nn+D7G69Odb36mo4Mh0dHZ3zA6PRREL9pkTaIwHfA3dgoC8lw3XXXUfS9jK0JlT5yPtcMYo+V4zS7LbE+GMryicrPQWLnxUb3pQWx47uISszhazMFLbtXFFS3j8ghNq1G3PbnRMreHTnL4ps4HBUCw6HNGNJs5H03/o5AMeDzz7X9ZlgNlq4vtMY+rUeDkBAqPf33310Iz+u+BiDbKRWVH3q1mp6TuzRuYCxWPAMHYZnqHcAS/r3X4y33oJhzx4C7hxNkeLBefMt1Wykjs6FjyzLxMTVJThPmzbp2Wef1WxPQpvSUj1GcN2V9510jEDE43Ez+KYH2bd5A4cO7SAt9RAFBdns3LyKnZtX0TSps2ZiZMHSr4lKqEdC3eZERMSdFy9P7I/rwJf93qTLptm0TFlJfO5+4nP3Y03I5e96g0+rjQZBTegZ3Ye/0xbz65HvMQRZ6ZxwaZXafT6xf/InuAMCCNy0gZw+/fhvDXJRq7bYWrcrKRey+E8Sx9+NPT6B7KsGcuSJF06r/azrhiO53cS9M5GiVm0J+msx+b1Lj5edLpZlS4gffTO2dpdwZNr3JRoo2XfcTeg3X+K3bQshb79B7hPPnHUfOjo6ZVPhiZHx48ezc+dOvvzyy5KUTP9NiowfP76c2joXGwaDkZCwKELComjethu27trcnh6Pm7ad+nDk4C4y046Rk5tGTm6ad3BkIfS58hb6X30XAE6HnaLCPELCarYYeXJYQwCi8o9hdtpwmKzl1Dg1baIuodCRT/vYrpVlXo1DMZnJadSciB2bCNm2qdTECIAlIw2A4sgYXAGBHLxmGI1mfUntGV+Q3e1Sdk58j443XEnAoQO0evwetr7+IYSGgtFIev9rweV9M1m2FRGzaB7Z1994Do9QR0dHR0eWZQICQwgI1E6ujB7zOsnJ+0jet5Njx/eRnLKP1PTDFBXmknr8IGazb6XkfffdR0FBAcV5USTWbU1kRPx5MTBSGXhkI3Nbj0FWPOD2HnOwLQObKRCXKaCc2hUj0M+7mlc6kR+9Se12tKrXha0HVzP9t4mMv3kKgf66QLtO5aFccgn5/6zFMnUKpp9+xDnUlwbFsGYNJNaDuLhTN6Cjo1PjMRpNdO97Pe1b9APA4SjmeMoB0gsOcyRpN/F1GpaULSzKZcHSaSXbAQGh1E9sRZN2nWjQrD216zWpsYLxuQHRzG8xmr8bDqFJ6jqapa5lV1TH8iueQJIkroq/Fg8eVqYt5acdXyFJEp1q965Cq88f7HXqAZDTp1+Z5SxHD3v/P3aE2M8/IP36EdDhNFJWSRKZN9xE7pBhKBYLcn4eyDJnmwTWExGBZHcQuGwRUW9PJP2x/wHgjo4h9ZW3iLvvDoLffoOiqwbgbNOunNZ0dHTOhgqLr//HgQMHWL9+PQAdOnQgMfHC0ow411RUXO1M+OCHzZrt+4bVjByGOTk5bN68mX///Zc1a9awdu1apk6dysCBAwG48963+Pyjx4iIjOPqAX3p3r073bt3p2nTpkx+dZm2MUE4qZT4apZKMC1cmLgQVsUYGoVrtl1/HS75LImi7idE20bOepRC/1CWdLuD/KBon1mCSLzH7uvLk6sVccMtCFi2r6PZ9qQLIvFqQTRhoEgO1IqUSeIxh6qEx0SRKYfWDvy1yzpNsVqRt7Iw+p98SWiPL16n9R8z2XLNzawa/UTJ92H/CbUqCs7UdGSnA1tEDEHHDjF0dD8kRWH2l3+SF1+PmN2buerhmzE4HeTUacCiFz4gL76e10azjOyw0//eoYQf2MXKp98i6YrBvkMqJYh66lDHJOTCdwoi37Jw7kURM7UoqigO5hFuz3nCtRiosrNAEF4VRcrEsUK30LZaTEwUjHe4tL95oPX0l/IGCGWz87TCheK5LlZdX6GBWgE8UdS1wKY9H6L4nFP1NyMek3huRfE9UTS3TrTvuhZF4UVxWbcodK+y2ymcy9AA7TGKonaioGyQ1Xe+7MJ9zSVce6LevFv4wl8lCihGAqLQoclwakE9UQBPRGxbFOdT1xdDEvUgty62enHFA2pbRg9swrZt28jIyOCqq64CvCk3oqKiyMrypUwICgknsUlbEqKa0DCxLbVrNyndcEq+ZtPaTbtK1rY1TVs+2rdK1RoTWHZZ4V6A4GuV/dkln6VQbSpMJaNIW1cUDFeLVBYLAtgn+h225g1ic5LYWPsy1if0xWmwkJC9i8ScHdTK2U9qSD3WJg4gx6jSaLBr/9YV4W/fkyfEIqp7gSHCdz6KXTambniZjKJUGoQ14+bWYwmI06ankGOECRu1/xTE1wnXnh9ZFGMXnJpFdT4tghivQbh/if4wJMD3O4n3OvG+aTEK4utliLOX9unafkVBVJfgW9S+VvTplnIEQMsSZjULxyD6JZOwXx1riOLrorisTbieRF8riuRq7dCea9GXlpxbRfGdS7cbv1YtkA4dwn3jCJzjH0Zp2bJcv2RTxRq6mOr5hx4PnJvjVvvhmjI+8B8pKSm89tprrFmzho0bN+JwODT7u3QfxNAbH4fsYjweN8X2IvytQVib+vyS7R9BD1eITxHFxf2F5/wklUi6+KjYIEyzqazXPvNLkUIGjKIT905FITTzGDmhvone4sUnzzqhKArz0uewKvtvJCQGRgymc0xPTRk5UOsPpSDBt0Zp7ZDVYwLiuIZ4jOJ+8ZhU/kIK1vZrFOuKqHyH+BxhEO7ZJuFZMyBMO66h9iWi/7cUFXDZU2OI3rqOtQ++wKFh2pWIAX7attXPR6JdpqwMGvzyLcUR0RwYdGMpkXiryo/nCc+wDRb+SqtnHwRg9TdzSWvUsqSTjk/fR9ySeeQ1aMJfX/2Gx2xB7eJCA7R+NVAYXym0af2y+tm7ULBDjEPEWEN8LlU/S4o+WzzXYnylCIGuOjYRYw0xjinLb4vxofhMazVrfxenIAKvjp9c7rKfrcVxDvEZV31O8gq19yhxnENEPf5UKqIRjlEUshfHanJUfQcK17QYA4rn2iQck3qsQvxNK/JumhgDir+jGDP/R7WLrx88eJDly5fTpEkTOnfuTGJiYslkyKpVq1ixYgW9evWiXr16Z22czsVNaGgovXv3pndv39sP6kGzjPQjSJJEZkYy06dPZ/r06YA31UfDeh3pe+nNRIbHYTSe+iHsXDHjhre8H8RBk9Og0F3AtsKtBEoBtPBvUcmW1UxSG7WEPyBu+zqvBxKFeCUJe7Av4MyPr8uRTr2ps2YZ7aa/x19PTSKjeTv+eOdbLnv+foKPJjFw3DB++nQetnDvCiOP2cKRHn0JP7CLzpP+R2aT1uTV0Sd0dXR0dGoafn5+Gp0z8MYD3333HcuXL+e7H+dzcN9W8nOz2Lx2CZtZQoMG7bj3rndKyuflZxIYEHrWb/TVdMxOG6GF6VidhXRL+p1LDv1JemBt4vKSSsrE5RygzeFlrKw/iH8SB1XsCUbAz2hlVOv7mbr2JfZn7+Stf56kf7uRdEy8FFm6UM+6TrUgSb4RqfR0lNhY5H37MH49HcOMb3G+8SaeceMq9frW0dGpWdSqVYt3330XALvdzoYNG/j777/5avqvJB3YQp16vmfmYyn7ePfjscRG16Ndzytp0b4nteud5MWJasbPlsc1f7xBbOpepg2fQn5Q+VkxLgnpgsflYm3+asKM4eWW19HiDAgi+ZKeRG9dR4P5s0nv2Yei2PjyKwoEHkni8juvxVzgffkmt15Dijt1Oe36KVdfT8Q/y4ib/zNNX3+WzKkzcPtZQZLY8vjLhG9cS/D+3TT+ciq77n7kjO3T0dEpm7OeGHnttdf49NNP+euvv0rtKyoq4vbbb2fMmDF89NFHFTJQR0eNeuaw56U30LHzAA4f3E5MeDYrV65k7dq1FBQUsGnbMvpeejOT3r+L/IIsggMjCAmOxGL2R5YNGIwGIsLjuKrP7SXtLVv/M3aHDWOgFYPRhNFowmgwYnDLBFiDad7QJ5x+cP9WAKz+QZhsuVhN/hhkI7JiqFAaD7u7mExHBslFRziam0Sy/RgpjmQ8eEgwJ1w0EyPJLTriMpmJTNpFmznT2Dz49pOW808/jiMwCJc1gO3X3UbMjo00WPo7xmIb6+57moxmbfnto5+J//dvwnduwVisffN16y33E719A7XW/0OXt55mweQZpSdhdHR0dHRqHAaDgSuuuIIrrriCWq2H4nTYOXxgBwd2b2LvxnXUjvcNeths+bwycTiK4iHIP5yQwAgCrMEYZCPmNUG06tibTj292lPF9kL+WvUjBoMRg8GIHOyHwWDCbLYQEBVKTFw9Eup7NTQ8HjeZ2Sn4WQII8A+u1kkXh8nKZ5e9TqPj6+mxazaRhSkYPC5y/SJIim5NclgDmiavITF9Kz0P/EKgPYcFzUaV3/AZEBMYz+3txvPLrumkFabw6/ppNKnVlhB/fbBGp4qIjcW+ZBny2jUYX3sN4++/YX7kYVy7d+F6d4ouVqujcxFgsVjo2rUrXbt2xeDfHY/HjUf1anfyca8w9vG0g8z/8RPm//gJAIH+oYQERhAcEIZBNmEwGjHIBi7tNJS4qPreuin7OZC0GX9rMNbQEPz9gzBbrBiNJgx5doL8QzFV0kuYdksAJkcxFkcR1yx4g+8Hv4rHYEJRFIo9xWQ7M0l3pJPhSCPdkcrBoiQK3PncW+sB2gS2I8FSp/xOdEpxuPdVtPr6fSL2bKPfqH7M+24p9ogzS9VuKsgvmRQBCEg5SvEZ2rFv7ONE/7WA0K0b6Dz+NtZM+gK3fwCOsAi2jX+Ojs+No+6c79hz61iw+pXfoI6Ozmlz1hMjS5cuJTg4mB49epTa16dPH0JDQ1m8ePFJauroVB5WayBNmnXmkfu7A+B2u1m/fj0vPvMJMVF1ycvPxO6wUWwvIi1Tu1w2Ib6JZmJkxabfyMlPP2k/0REJmomR7758mdSUgyctGxEUw1MjfBOCn/76AqlZhzEaTLRXFB4tzmNcaDwOgwn/Ygs3NRpTUvb9PW+R6ShtQ5w5nhb+LVEU5aLIn14YHsOK2x/n0k9eJvzQHu+bgcJxJy79nW7vPsfeftez5t5nSGnXleWPTqTPhHHUXbWY2uuWs33oHWy5+T7297uOPX0Gl+pHMRhY9eirDLx9ANFb19Ho9+/YO2jkOTpKHR0dHZ3KwmS20KBpOxo0bUeP1kM0+w4d3oGiePB4POQWZJBbkOHbuR8iouLgRPaJwqI8Fv79zSn76XXlDQy/82kAimz5vP7BaAAkyfsSRVBAKGaTH5Ik06Jldy7r6dWwshUX8MU8b95og2zEYLFglI3IsgFJkkkMbUz3pt40YYqiMG/Dt5iNfpiMZkwGMybZ+7/ZaCHUEEpcaL0Sm9ILUpAkGYNkYH1YI8yx3Riw/0dyrJH80vp+pBNL6rcl9KLtwcVcsW06LoOZkyzOPyk2dxFF7kIcHgcOnHgUD/H+dTiZYlpiWBMe7Pwi/xxZjCHIUjIpoigK+49uJTG+5UURx+icWzydOuP48Sc877yN6aknMX7yCdLefTh//hkCTz/Fq46OzvmPLBuQZV+qnc4d+tOyWTd27f2XHUfWcvzoAVKTD1JQlENBUQ7HhPqdWvm0KZKStvDLr1NO2dfowc/TPLETAOu2L2b2wqnIkoxsMCDJMpIkAwqKy8ONvR+geR3v6tdte1bx88IPMBktmE0WzAYLJqOFuQYjP0kG4lL30GvVNJb1uJMNef/y8/FZJ+3fKBnJcGbQOrBmpTo7n8ir04B5H/9Cp8nPU1S7zhlPigBkN2vNzpvuptm3HwOQ1qErZ5qksTgugQ1Tv6H9A6OI3LCa+j9+zb5R9wBw7MpBBBw7xKFBw/H4+V2wq591dKqLs54YOXr0KA0bNjzl/oSEBPbs2XO2zevonBUGg4FOnTpxeS/vjP2zj35HXn4mudnp3kkSpzfPqAc3gQHa3J8dm19OoS0Pt1HB5Xbhcjlwu124HQ5CgrR5siOia+N0OiguKsBWlK/NkSg88OcXZZNTkIEB+BBIBB5N28udQJBJK04aag6jyF1ILWs8cXIc8ZZ4alsSCDWGldIYudDZ0ed6CmITONam60nTIRQHhWIuKqT5L19zrH13jna+lCNd+/DLR7/S+cNXid+wktBDe/EYvbc5U2EBzX77lq1DR4PZl9OxMDaeTXc+wiVTX6Ldx69ztFsfqH3mS2h1dHR0dGomTZt0ZuLLCygoyCb3wGFyCzIoKi7A7XFjqBtUsgIEwGzyo2uHa3C7Xd54wSzhcjtxOuy4cRITX7+krMvtxM/ij91uQ1E8JYMs/xEb50vP6PG4SUrddUobjYky3U98drodLNsx55RlW9bqyC1dxpdsv7XsCc3+QcAAID99I19umszoro+V7Bt95C/aWqPYlrMP1k1EViTiPC5yDX5EBtWlX/wgABxuO9N3f0hqYTIFbq0uC0CUJZrxkS+fNE2WQTbSs24/Te7y/anb+WTpy8RG1KVB7Vb4ma1YLAEEWINp3ag7VlFjREfnTJEkXA8/gtK4MeZbRkF4GPifuAY9Hu9LNgZdT0RH52IkwD+EDm360mP4jSiKQmFBLscXbya3IIP8ohzcJ8YH3B43UeG+58CIiDhat+pNUVE+NnsBRUV5OJ12XC4nLodDs1rE4SzG5TqRy98pWgBut0/rwO6wkZufUarMXmAUMAfosOU3djS5nCBDkPcYDAFEmqOJNEcRaY4i3i+BBL+6GJ36ywYVJbd+YxZOnoFVOckPd5psvfsx9g67jeLIGAACAMnlRDEYTzu1Y07bS1j34Uxifp3FvpG+l2eRJPaMHnfWtuno6JTNWYuvh4SEIEkSWVlZyELqGbfbTUREBIqikJube4oWdMriXIur6Zw9Ho+HgoICXC4X7hOTF1FRvjcNdu/eTV5eHna7nb2z5nPr1InIisLEh55j19oCWsZfUlLWtu0oRtk7kK/YtAJNiiBoZYgK0m7HCteJWsDILAgjicLcVmGOVCXKJYli6qJYWoHWzlLCa+rygmKVQRAHk4R7iUfQZPGP9onghYT70/Gt/9FwzkxcflZ+e+kL0pu09u5UFOqtW0bb7z9m+7W3sP+ya+j51pPUWbec6dOXYzwhOtXjnf+R1LMfqZf0YMCDw4natYW9/a5nxWMTNf0GCses/iVEQVSbIE4vCo8GWE49Hy2WFQXOxJhKfTqNgtBokSA0JrYlisDbVdeLKBgrHmOW8JtHBmkHtIyieKG6H+H8iKJuapeULwjChQiireWJvqoF00QhVvGNZTFcLSzW9u2nEmoTBc2ChOs4PUebsk19jLLQr0MQUBfF6EMEQT31JeIQxNKCBLtyBZE3f0FsrUh1jOL5EI9RFJgvLPad6yhB6LhQFHMWogy7U7tfLQJnF4TX1Nd1fn4eLevHXXR+UY8Haj4ul4uMjAxSU1NJTU3FZrPxf/buO76pqv8D+OcmadKZ7gGFQlllD1miLGU7QRHkQQH1gR9uRRTFgeAAByqg4saFoqigj7iRoUzZexcK2EFb2nSmTXJ+f4Te5p5uaJu2+bx9VXLvPffmnJNxvsnJvV+Hw4HmzZujW7duAICCggL873//U2+7/gkhEBcXhyFDhgBwXpL26aefRnZ2NvLy8pCXl4fc3Fz17+qrr8bcuc5xSggB/4AgOBx22O022AoLcLkQ2Hihbh3bXI4Jre9R6zrzpztgF8WvZwOArQB8ADzZqA36DHpePe6s5XciryAHAGDSe8OoM8JLGFDgKEDvgMsxMHiwWlZAwOCvPYdEcXltb0vdiB/PfIsCu7VE/4X6RuKOK6YjIqA42awuSkp6K41DMBvL3m6SEqSHSsllvaSYyGXMkscKg/S+aZDe7/XSeGcqJ/m6PA7LiSblpJ2ub8v50tgZ7F/+pVtc3+/lPORGOW6R3rO9pcSkrqFZgI/2fuV6mbzK/x2rnJzVlTyGFUj94zruyGOlnIjV++hh2Js1UydGdH+uQeDkO2Dr1BmO8HDkB4XCFt0ElrH/QWCU9sdP8uOUmasdS+V4IdDPVGbZUCk+kj92u8aMcnvlRKNy/CiPtXqXJ4xNToIr1Vl+DsjPPdcEvGUlPC2LKPu3YtWGydc9q931RXZ2NlJTU2G3Oy/lVfSvoihQFAXR0dEICHB+fl/8wzakJJ5GoTUf1vw8ZJ23oMCaD0BACIHH165C3K6N2P6fe/FLclc4hB1GvfP9pPDQv5r7VbyL35cV6bOSkD7P6IO1Y6vip32P0kcHuGyTLkUofwcgf94Lki7vZCpnIlp6v1ek9xnFZeAySu+jdvm9T07GLiW1dj2Wt9Qmu5RsXH+hHt7p59D9nZew445pyIksjk2MLmOc/L7pOqbr8/PQfuk7iPvyfST36oeNc96Ezru4XhUlrXZNeG3IsiDi0w9w6NbJcJicx2i2eQ2ym7VAdkyLEu/RcjJ2edx1/SxqlMZsOel5Tr52OVDqP0c5Y7ocT8lJvEskr3eNxaQOkRO1e0k/cih0+QGxvE1+nOSxVv7+Rf7ew1WOVft6khPby99NuMY1chus0ncAMtc+8DHJbSo/jsuXHkfXGEm+Xzmeko8lPydc77uimE9O5O763YXJS3u/8ndTydL3KfJzIuzC9w9ZFgvaN2/kvuTr7dq1wz///IMnn3xS/XBW5Omnn4bFYkGvXr0uumJE9YVOpyv3RRgXV3yd82R9EyRv24RGm9bgpnNJ+CH6Kk3ZokkR0vLOysBVy+bj0M0TkNy2q7p++0Oz4Jv8LxpvWYcRc+7G8kUrncnVFQUJfQYhoc8gAED0jg2I+/N72PUGBJ6NR07LNlDsNjTaswWt/vwev778CTbf9ww6ffU+dt9+r5taSURE9ZHBYEBUVBSioqLKLGM0GnHzzTdX6ni+vr6YP39+pcoqioLXv9ykLgshkLktAdtXLcK54EYY0+NaYF+Oun3y5Y9DubIRCgvz4XA4EHboOGLXf44gaw6+SjqGX+L/xqHYvlAUBeOuuB/e6UCETyOYDM4PILYzabAJm+YL3mP5R/F96rdoY26P1v5tEevbEj56X82XsT3CrkCnJpdjd8pWZFrPw2rPh1UpwLHU/ci35cJLXz3XaCcCAHu7dppl7x+/hz45CfrkJABQLwNn/mwJct//EPZul9VyDYmoofH394d/JS/d528Ogr85SF3Ol350lmy3I27XRjTZ/hcMMT1wCV/b0UXo88pMNNm8Fn5JZ7H6hfdQ6BdQ8U4XKLZCDL7nFgQfOwgAiP77D3R980XsmT77ouoSt+BFNP1uKZqu/xU77n8Kgx5wXvY78cpB2Pzqhxd1TCLSuuh32DFjxmDr1q14+eWX8euvv6Jfv35QFAV///03du7cCUVRMHbs2OqsK1GDcHrI9Wi0aQ1C9+0A2lxV8Q6EPv97H23/+R2Kv49mYkQYvLBhzpsYdN+tCDm6Hz2XLsL6++do9m20ZyuGPHcfAODYgGuRGR0LAwDF4cD55m1gTjyNAS9Oww/vfI+1sxbVYquIiIiql6Io0BuMWHvjIwCcl3Kwo3hiJDYkDt6d2qvLhYFd8HnnIRjy0wLEHfwLwze9jWzfEJyJbI92TS6DrfB8ifswKAbNT9D/zlyHTHsm/jm/Cf+cd07SeClGmI2BMHsFokfYFegW2gs+Xr64PHpgcV39jci2WpCRl4Zg3zAQ1ZSsF16C9doboDtzGrpzKbCfPoOAr7+E6fBBGIdejfQDRyDCI9xdTSIiAMDZrn0AAF75eVCEA6KUy1ZSzdl+9+OI3LUVkXu3YfhD/8HqF99HbnjZP37RUHTwSU3WrPJOS7noupy7ciAiVv+E4KMH1EkRABAGTpYRVZeLfoe999570bVrVwghsHv3brz55ptYtGgRdu7cCSEEunbtinvv5S+viWRZzVoCAPzOnHJzTeqPQ72dSfBiN/0BQ36uZpvdxxfbpzl/gRH3x3cIiS++hnvkvm0Y+uzdMFjzcap7P6y/+xl1m8PLiLWPvYzM6GbwO5eEK1+dWfKcTiIiogbO6hOAH2+aiSNt+8LgsGHkulcQknmm0vuPj5iI2yPuQJ+QfggzOi8lWigKkGY9h2xbFloGtClzX3+TGU2CYsvcTlQtjEYUDLwK+bdNQO7D05H6witI2LgTWSNvRt79D3JShIjqlOzwRvj0iw349s2VnBRxA0tMS/z2xlLkhoQj5MQhDH7iLhhysyu1r9DrsfXxl7DrnidQ4O+8qkj8tbdcdF1SrhqOfx55DgBQ6OOLk0NuxMZXP8LW59+86GMSkdZFTzOaTCb8+eefuPfee7F8+XLYbM5rkRkMBowZMwaLFi2C0cjT4olkOU2aAwB80s7BqzAPhV4+5e9ASGzRCZlhjRGY+i+abV2L4/2v0WxP69ANB4fejOywRshs3AwAcNVLj6Dlup8AAGcuuxK/z3gdDi/te5LNxw9rnngd1z88FjGbVmPcTb3w46LlsFx4jIiIiBoCxWGH0JVzvW9Fh59vfAx+qSmITj2C235+AkuHz0Uy/Mre5wKjzog2vnFo6+fM81XgKEBWYSaydLnwM/jDbAwqd/8kyxl4mUwI9g2DnpcUpVpiDw9H8jtLEOSSZ0937BgMe3fBNoZXPSAiN1IUWAOC3F0Lj5Ye1xE/Lfoa1zwwFsHxR9D/+YexYd57EPpyYqkL/r3iaiT36Aubrx8abfwTSb36o+K9ynZm4Aj8b9la5AeHwu7jWyIXFhFdmotOvu7KYrHgyJEjavJIJgO7dEyu1sB17gwEB+O9/vcjK6j4V2qFX+9Xbzuy8zW7CCnxkXx2g1dL6dduckJ1F4qUPFSmc03qKSdekwdib2lZTlwaE+hyx1IiLSn5lU5KnuaaiK33N4vRa+UHONWtL1bNeBPBjbXX+pSTUrZ9Zhra/PotEi6/CmufXgCdb3HyVTn5V+xXS9DrTecvMf5+/GVYwhqh6eY1yGwSiyPXjIG3lPAq2iWRa3a+NkGVnIRMTjwmJ45yXTRKCar0UhIq+d3aNTm5nHhUDpjkxGJy0m/X5FjysCAn5ZITpssJZF2PJfeHXNYsJYiTE3y5khPTyf3hIyWMLXRJvi4nufOTkv65JmoHgGwp8btrveXnT5hZm2xQTrib7ZL4UE5CJrdB7vsSiYBdlisavOXXRKGUYNC1PysKBeR6mFwSr+VKSdrkJH9ym8sjP49dn7cWiwUxkWEeNy4yHqCqypfez7697x2M/eAh7O82DH/c+DAcB1LVbQNmay/pue39v3DLx48gwJKKxY8uhyPNed1zg80Km94I+2mLWtaRov31pCNPe410SO8Fu7N2INV6DoMbOX/cUJT0ddamB1DgsGL6lfMQ5hsJQIpDACiBUjJVOY5xTcYuJWotEcdI74WGkOIfqAiHlBBdSkzrkPpWL73P6l0SURqkcUaOJeR4QE6I7bpVfoeWx1Z5XHJNiBnoW34i1n/TtWfihktjmt2lTwKl/pDHhmCp7zOyrZpl1/HRX+qfDOka+/JYGuJSrxxpjA6Sku3Kw06+FPOYXe67aAxTsrMRNrg/vA4fQvZ9D8Eyaw5gMECRHqdA6blncamLnGtcTpDu763dNzOnuH/kvpWTmpaMH7SPo2tyejkfrrd0rNwCbaxlkp4/ro+rHFu5Jk8FgPPS4+aa6FZOAh8sxXxyElw5Oa1rf7kmhLdYLIgOD/G4cZHxgGeav+BvTdCev2BDmWWVAO37tyIlaRbS61cf6KtZVszF70P6FsHag8vhvPTeUCLZekhxXUokhZde+17SmG9wGVsN0nca1iztuOIljSXy2Gt0+RzrcAi0W/EpOi57D0KnhzAZ4fAyIT8kDOntuyCzYzck9hui9vf5LCvCDu/BNY/cBkOBFQfueAAH/vswgJIJseXPuPLYEXDkAKL/+B8SrhuDbOlHmPJnNjmhuhwD5Lm8h8tlTdJj7if1n17nkuRcekzluET+vkD+PsHs8rjapPhJ/uwtf9QslOKpQJfxwSqNUfJ3EeUlfZfHFTn5er50bDn2yi8oHkvlZOryGC9Xw3VfQJt8XY695C82CqXXpmsbfaV6yMfyMpTdBkD7/PGX+tImxcRy/5mlmMe1XnKT5PhAjltc7ztLiuP0urLLlla+6LubLIsF7dyZfN2V2WxGjx49quNQRJ5hzx4AQNb89W6uSP1x+IoR6LXyAzTdvQnm5DNA43bllt/+3+nYNvlRWINCAJR/3cBDo25H4KljCD5+CF0+WYSAxNPqtrzgUJwbOLQ6mkBERFTrLl/zGQy2QnT550ecbN0DR1D2+JnnF4jPp76DoLSzcBi8ABTALycdN/04B3s6DMMO8xUXVYcUazKWJ3wOAYEN59aiR+jliDBHQ1F0KHA4v+Qw6b0rOApRzRE+Psi/9np4HT4E/zffgHHDeuTdciusQ4fD3rKV5ksMw3vvwnHZZXD06OnGGhNRg3b6NDBhAibvOoAlM5fCZuJVJqpD3P++hJ+U8yMw/ggit29EXngUEvtrP/enxnXGX4/OQ5cvFuPkRV4SK3THZlx5z61QhEDTX1bi96/+hMPEmIeoruAFC4moXsho3BxnOvSEzmHHoLeehGKzlVs+PzhUnRSpkKJgy8NzsPXBWQhIPA27V/HM+JVvPANjZsnks0RERPWB3VA8pimVOFHcoTcgPaKZutwqfjMi0uLRf+PHCMhLLWfPskWYIjGs8Q1o6tscVkc+NpxbixXHl+K7Y58BAMJ8I+FnDKjgKEQ1SK9H1tOzkb7kczj8/GDcuQOBMx9DRI/OiOjUBkpGcSyonDoF0+BB0K3+w40VJqIGLSICOHIE5owUDF4+n7kwq8nxwTdoljNaxsHm7YMC/wCcGXxdqfvED7gG37/1HXIbNbmo+9Tn56nxl2/yvxd1DCKqOZwYIXKj6Pg9uGbpc1AcZV8+iIqt+b9nkRsYiiN9r6nU9T0Vuw2KvfJ9G3zsIAAguf1l+OTHPTjfrBUKffzgk3buoutMRETkTr+PfARvzP4FX931Go52HFDl/Xd3GI4zjdrDaMvH0L2fXPSXM/0jBmFc80kY2WQsrgwfiDZBHdDIrykGx9yA+3s/Cx0TzFIdkD/yJqRs3onMF16CdeDVEF5e0J85A+PWLc4CQgAOB5TcXJhuvAGmVf9zb4WJqGEymYClS+FQdOjwzy/ouHmVu2vUIOy/5S5senA2MmJaAACCjh+GIT8PeeGNsO++mWXuJ1x+ZOJ9LrlK95lyxVXYf88MbHptCTbN/4hnixDVMcxwSOQuFgtGfvQEvPOykR7eFJuHTnJ3jeq8rIhofL7wR9hMPgiWE05IfNJScNMdw3C691VY/+RrlTp+blgkTg4YgXOt2sNuNOGPOe8gNzgMXoH+1VF9IiKiWpfv67zm7pkWXS/uAIoOvw+4B7d//RBapuxG23+34FD05Rd1qCBjCHqFXek8rEtOBcVgLGsXolrnaNIEOffcj5x77ocuOxvGzRtha9XauVFRUPjsbCgnTsCw4jsE3T4Ome9+gPxbbnVvpYmo4Rk4EBuu+S/6rXoPV323AIcuG+TuGtV7Di8jDl8/DoevHYsWezejxfdfQHE4cOzmCdq8D3Y74n78EnE/LceBURNwbMhIQAh0ff1ZtFj5BTZ98A0yOl1W6fs9OuHu4gWe/ENUp1RL8nWqfkyu5hm2zHoDvec8DJvJGz9/+xcOfXxU3WY7pr1chcOSp13O0SZnN0RrLxuljylOmCZytMmKdAHSFxByLijX7VLCKjkBKuTl/LIvcaWTkrg5cqRErVLSJb2/NtmTPbu4HTofA4x5OXDodLCZfBDQJFBTts3aH9D/5RkAgK+XrkGqV/F9m6TkoA45+aOUSUoUJaUSAlAUTRK40GDt9V5LJKEqLD/Bl2uSbz8pyZSctExOUuaaTExOrC2/tctJTMurp5wQNUd6TP2lJG5ysjnXZFlywlN5PktO+OmaqNMg1VlOyiW3SU745VpeTkwr11lOoCcnC8t16QM5aZteSnoXKiWudU1imptffqIxg6H8pHdGlwSqfiYpobBETmJqlY4V7JKsVu47uX/kNrsmgZMTwJml5KpyAji5b11bnJmrfU9wTbyalWVBl5bRHjcuMh6gSyUnY39r+k/qbZGqjS2UCD/tzi5jw+Vbl+HKLV8g19uMj0YvRM5Z7fuCsGrf3xyZ2mMLKTm7vlGQelsnvW86LNoYR96uSAnVy41bgir4ZWawy3Y5qbs0NijyOGTUbvdyqZe8rQTtwwKdl3xsl+Sz0jY5magcH8jxg+a40tgpJxeVuY7T8qdGo1f5Z/nIY77dJVaRP4DK9bBJ45DrWCMnjPU1lZ/oXk7W7pqoVI69rFLcZpFiVf+i54jNhpgZDyL0u68gFAW5V/ZH4ZhbkTdhUnEbpMdF6npNcl65rF56DOWYSE7s65q4VSeVlcfwAOl5Lie6dX0s5MSscj295deAS72zpZjHT0o+nyq9zuVkq5bc4v0jgorjbYvFgqYRoR43LjIe8Ez5hTYY49pAFx+PghUr8PqCNM32wpPF3xnopCTnkD53Qnp/0/lrx0fX5OyGuHDNNkWO34O0n6eFVXtsxfV9uKn2czqkz06Q3u/hX/aPJbykz/F2q5RoWhpcTC4J5Q1yMm2pHvoL2/2TzmDwnPsQeuIQAMCh02P1yx/iVPve6Pf6k4j7/TuktO+GVQuWqQNdRWOJ63ujnOBaHpflz0ry+67r51q5rHy/AdLnetfvCORE7XKS8wp+h4qcvOK+lz8Py3GI/HlRvi/XesnJxOXvU4L8tc+BPJfPmhUlKpf7x24v++tw+XO53NdyEngfo/a+01zGOLl/TNJrU943xyWm9pKulOIQ5X/vIx/L9TuBPPl1Kj3GchsNUr11Ljt4S/cjxx5p8hjv8lyU+07+jkxORi8/n4qeI1kWC+JiIi95XOQ560RudHrojUhv3wUGaz7iPnvH3dWpV6JO7MNtz92Oft++Wep2r7wc9Xbs2p+rdOxOKz9G6PEDxZGVw4FO//sU/RfPvuj6EhER1Wdbu9+M1OCm8M23YOhfi91dHSL3MhiQ8MoipP93KhQh4Pf3Onj/b6W2DH9/WC5dZgai/nMzQmdMc3dViOounQ6Oa65x3lzFy2nVhrzgMBhzsmD1NyO5szPHaf9nH0BAYgK2T3gQhSYfRBzYidg1fDyIGgJOjBC5k6Jg/38fBgC0+vZTBGclurlC9YeXNQ+Bqf+i87oVCE84XGK7pUkszvToBwDICY+q9HEDz8Sjz5JXcfO0MRj+3D1QbIUISTiKK5a8gjZrf4Axx1JtbSAiIqovHHov/NLvXjgUHYItiTDact1dJSL30ulwbs48nNi4EylPzUHuXVOKN505jajLL4Pf0k8BW9lnU3s0IZD87hJkTbjT3TUhqtMc110PANDt3OnmmngGu8kbq59agO8//x1/vLIE59p3hSnbgsHPPwCrXwD23HIXAKD32y/AlHnezbUlokvFiREiN0vuPQCJfa6CzlaIq3Z/5u7q1Bun2/XEoZ5DoBMODPlsLhS79kPnv92vxO/zPsTXS9ci/urrYMjPQ4dfv4J/avmTT4pw4PiVw2A3eCFm+1/o9flCpDePQ3rTltDbCtF865qabBYREVGdlRTRGl9c/yI+HfUqCgy+7q4OUZ1Q2DwW5+95ANbh16jr/Ba/Ca9jRxDywN2IbtkEkX17InTsTQh85EH4vbcYutRzbquvYfs2mK8dDp+X5wEOR8U71BBHUDBEgBkFHTq6rQ5E9YFj4EBY/96Agk2b3V0Vj5HWqgNa/vQNQo4dwLpnFyEvOBT+5xIRnHAcu2+ZjIyYlvDJSEPP915yd1WJ6BIxx0gdxWuIeoai634rR47A2KUzlMJCfDliDs5GtYftsDbHiO1sumZZ5yddb1u6bq++cfG1PBX5+qJSjgiddB1P4XLtRUW6jieM0nyqfO1uOceI63UtpWtJ6s3aY8vX+VSk6xTaXI5tDDDBJzMN4x+9Gd45Fmy641HsHTVJ3R4g1avLp2+i/Qevo9DXH7/OehtJnXqq2wzS9ZF1OgUx63/FwGfvAwCsnvcBQg/vRdclC3C2V3/8+dKHxXWEto6RFVzLvEC+RqjLhbKt5eTIKI3r9SLlXB066YKR8nUts/K0j5PZ5XHKlh5D+brWdmnYkK9N6e3yfJPzlcjXxC6PXfqwLo9Wct4Q+RraZpfr7MrXZi3vWq0AYJSubWpyeY7kSNfMzi0nrw4ARAYXf3koX188S7ruuXzdePk6qa45WOTr0WZK10F3vR43UPJxynW5xqh8qV+5P+ScNK7PL/nao/L1ROV65EmPk/a42mXXa5tnWSxo2yzK48ZFxgNU3X7fdVa9fXC39scChWnavCAhXbRnXOalF58lkndaewal7X9HtHckX186RVteuLyXGqK1OcgUaeyQ36QUOX5wuZZ5hTlFGvtrl12HA3nYlephkHIzyNdcd80rYpBiLXu+dG13KT+HTo7VXO9Xvha3nHOsnBxl8rXM5XFGHpflsdc1FpHfo+VrQudK13r3Kyd/ifwB1LeUWMxVvktsapYeF3nMkvNzyeOfn8v+FcUWcn4SuV6uY7FrXyp5uWj05ccIf/sNGM5rY3gA2PPbZni1b6suV5jrpUQ+F209Ul1yEao5xISA8Z+t8PnkI+RcewNyh45wrt+1Gy2G9gUAWK4fhfTFHwCm4teU69cD8jXEc6VcQjLX65Ob5XwHEvla73KE6BovuMZDWRYLWjWJ8LhxkfEAAcD8J3/VLBf+cUK9bT+fo9mmM0ufBaQxSx5LdEEuP3iQXpD6JtrnnCLn0ZLHVtfPR/K4LOUJk3OMeLnk8LRJORHk8dBLym1okz6nebm83+uk9/cAKVeoa76J1j98id6vP418cxB+WvgVTJZMIDIcOdHNAAA+/2zFddPGQRECv89ejPODhmmOJX+Gc/2cKufrzMqVcrTJ+V/lz2kuj6OcJ1Me07ylcdr1+wad9CDLxwqUcnnIMrOt6m05N4U8lsqxhtwHrp/55M/pck4Ri5STUu7r8u5Xrqf8dbjr53q5DSVyuMr5XaTPuK5f5ciPi1wPOfZyzZ0mf+aX+0eOp0oeu+zvjOQYUc5ZJ+d38XX9zlFqlHy/ct6wlMzi7wjkmEcuK/eX/P1LUWySZbEgtnE4c4wQNQSiTRvYnnse/xvwMM5GtnN3deqNvMBQbPjPQwCAnksXISDpdJllj429A3ajEV652bhm5p2I+2V5ucdO6D8Mh268DQBw5dxHkdLZOZHSaNsGmDJLfsAlIiLyJIaCfHTe9D0UR9mTnUSeSvj4Iu3/7sfhrQdw5M8tOPn5t4h/4TX8e/fDSB92HazNYi8UFAh98zWYNm2o1vs3/fEbIvv2QsTwqxHw5ecwf/S+uq2gZWukT5wM4eUF8/9WIPLWUVAsmZU+tj4lGbrU1IoLElG1Uxx2jruXoM/7c3Hn6Msw6OVHELX1rzLPmosfcgNS23SEtyUDVz17P9JbtlUnRQAgo1kr7B81CQW+/tDZ+XgQ1WecGCGqI+zTp+NwiytL/iSAynVwwI043aEnDAX56PfW7DITXdr8zfjz41XIDw6Dzm5Dv4XPoOWaH8s99ra7H0d6q3bwzjyPQY/dgUIfP+gcdjTZ+GdNNIWIiKh+cDjwnwX/hyHfzEenzeWPpUSeTJhMKGjVBtn9r0bqmNtxdtpMHH9zifpT0sCvlyJi3hxE3noTgl5+oUoTFGXRpZ5D2G1j4XXwABw+Psga+x+cn/aYpk7JL7yChE+Xw+7nD5+/16PRDcOhP3umwmMbTiegeafWiO3QAvpz7rscGJFHevxx3L1gHJrF73B3TeolxVaI9r98DUNhAVpu+BVXTZ+E3i89XmpZm48f/njhPeSbgxB88gg6fv2Bui1i+0aMmTAIp64YhBXv/IBTVw6prSYQUQ3gxAhRXWG3w2CzVlyOtBQFa+98EjYvI+xGIwz5ZSeDjV2xFN7nnb9wc+h0sJnKv9yGw2jCuqcXID8wGCkde8ArLwcOnR45EY2qtQlERET1ik6Hfb2uBQAM/H4Rwv497uYKEdVPlhtuRna/gdDl5iDolblo2qkNGl19JcIn3oqQJx+DLj2tysfUJ/4LpcB5qZHE/UdxbtG7sPa6vES53H4DkfDNj7CHR8C4fy+i+3SD919ryz+4wwHLbZNgGT+xzB8jEVENyc+HT54Fff7+gq+/iyD0BmQ2bqZZZy/j+4AeC2fjxsnXwduSAQCwGYvLxa5aDlN2Jjot/xA5kdE1Vl8iqh3lX8yUiGqNbuUKTPl6KjZ3uRk7Olzn7urUK5lRMfhm0UpYGsWUe8bN2UHXwnziCI5ePhgn+wxGXkh4hcfOahqLlUtXQ+j06PLRGzg86jZkN46pzuoTERHVOzv6jUazI/+gxaEtuPbz2fikzWOw6cvPKUBEWsLHB6eXfofQ31ch6KXnYTxyGKa9u2HauxsAcP7xp9Sy/s/PhuHwIeQ88DAKe/Yu85iFbdtDeHtDyc+HPi0N8A8ss2x+p65I/Gk1wu6dAsPJE7B261FufW3NmuPc/IVVbCURVYsZM1D41jtofPYgWhzbghOtS054UjkUBd8sXIFmW9fAkJ+HnN6XIyeq9IkNfUEBfDLSIRQF+0ffgf1j7kJRBpb9dzyAmN9/QMyWNRj65H+x7c5HUNC5c+21g4iqFZOv11FMruZhhAB69gS2bweeeQaYPVtNzE5EVJ94S4nXLuW9zPVYnjouemq7qXbIr88qv35TUmDq1hVKcjJs99wD28JF6iaHlD00O1+bmPtQwnn19pk0bcLYmHBtElc5KaWc4DEloziho5wsM19Khikn6XT9PYX8qUhOeG2VknrrpHPvXRNc6pTyk2XK9fSVk1wXuCQAldorJ8c0GbQJ4saABAABAABJREFUU12PLSftzJMSpNulx8kkJWrVuyS+d01MK9extHrKST1dk7HLiTflegUFaJOtnk0tfo6YfbWJe+U2yolsvaUkwQEuScHlZOry41QotUF+Xvu6JAyVn5e50nPeIT3BXJ8iZl8jYLfDdOQQDGdOQ5eQAENKMpIffVK935a33YSADeucx778CqTf+xAKm8bAkJIMhIWhoEMn5zarDS1GXwu/rZvw7+x5cNx/P8qjKAogBPRnzsDetKkzKbrDgdDHH0HubRNR0LWbWlZ+vthLPK+L+1p+LvlJiX3/Tdee5R3oJ0+sFneQ62NosVjQPCrM48ZFxgMEAHjiCWDePOCKK4ANG/idQXURAkp8PESLFgAA5fBhIDcXomVLoJTXm9cto6FfscK5a1QUrCdPAQb+7pyqX1Vj8+r8LF5TqquOFosFkSHBTL5el7311lto3rw5vL290bt3b2zdutXdVaK6avVq56SIjw9QwYcXqkByMgwPPgAkJrq7JkREABgPUAMWEYHCj5YAAAxvvw3dj1K+EYcDYFJSosrR62Ft1wE5Q4YjbeJ/1UmRImdnzkHamPFweHnBd/NGNLl9DGIHXo6mY25E4HuLiwsWFiJ18j049d6nSJv438rdt6LA3rSpuuj/1VIEfvwBooYOQPDjj0DJzCh9PyFg2rkduvPpVWys52JMQJfknnuc/27eDFgs7q1LA6Js3AhTm9bwunUsIAREXBxEt26lTooAgG36o+pt+223A3o9lO3bgaSk2qoyEVUTTozUkK+++grTpk3DrFmzsGPHDnTp0gXDhg1DSkqKu6tGddHCC6ekT5wIhIW5ty61SDlyBF6jRsLYrx+Uv/6qlmMaR4+G4a23YHjttWo5HhHRpWA8QA2dY9gw2B58CABgeHIm4HBA2b4dXg/cD5+oCHh37QLl6FH3VpKoHtOnnkPA+jUQXgacfmkhDq7bjqyhIzRlzMs+R6Obr0dMz87o1DISUc89jayBg52nNeXnI+KqKxE2+kYEP3APzLOfhv/C1+H71RcwrV8Lw7GjUHJdzt4QAorNBoe3NxSHA+YP3kXUtUNKzWlg/mopYq65Gk2vuZqToJXAmIAuWdOmQMuWzh8efPONu2tTrynx8TA88giMvXrCOGwoAEAEBZV7ae4iondv2G++GSIyErb77oPhqadg6t0Lpm5dmf+FqJ7huV415LXXXsPkyZNxxx13AADeeecdrFq1Ch999BEef/xxN9eO6pzgYOe/v/4KZGQAQUHurE3Ny8uDYd486F95WU0OqRICSE6GcuQIdEcOQ4k/CREdDUfnzhCdOgGB0nWSk5OhnD0L5exZ6HbsgLJ5k/MwoaG11BgiorIxHiBPYHvxRSAvF/b77oexR3fo9uxRtykZGfDudyXyv/gahVf0dWMticqms1jgv/lv2BQdoNdD6PSAosDmEIBOB2vjJrDGNHeWzclBwI6t0BUWwBt2KHY77P4BQFAgHOZAFEZEwXEhllesVvgcOQhdgRWwWqEUFECfZYHBkgGDJRP5LVvj/NBrnWXz8hC6aD70aWnQpZ6DIS0VxlMn4ZXi/AVy8tQHkDhjFgobRSPl+ZcR8NvPmjb4/r1Ove0ICIAwOi9NZTgZD+PuXeW2P2/YCKQv+9a5oCgIffIx6PKLL1HnCA5xflkofeFnNwci9bGnEPC/FSWvLUclMCaganHbbcDs2cCCBcCFsxU8TkIC9Gv+hH3iJHWVbvnXQGAQHEOGlDu5oRw8CMOc2dB9+y0Ul0t1ivBw2B99rNJVKFz2lXo/wmyG0OnguOoq56SVJz4mRPUUJ0ZqQEFBAbZv344nnnhCXafT6TB48GBs2rSp1H2sViusVqu6nJmZCcB5zTTyAHPmAGvXAvHxwPjxwBdfIN9RT35pUFAA5Z9/oNu9G8rBA9AdOgTl6FGIoCCINm1QuPQLwMt5LWj9hx9AOREP3c8/QXfyJADAcXkfOPr3h61LF+fpwELA1KE9lAuvAZn9pptQ+MGH6rIprg2U7GxNGdtdd8F29908vZjIDQqq8bqmBVKOEQCoT6nRGA9QXSe/Pi/p9TvvJQCAUVGgGI2wX3sd7CNHwbDgdeh37IDu+hHI/WU17HFtAQA52Vnqrrk52hwjOT7Fr3NDRjqQnQ1ro2j1C4gSuRxyXHKMyG0olH7FXlj5HCM2KcdIgZRjRJG+B3ZUIceIQcoxIi4hx4itGnOM2Koxx0ihzQHYbFDsNihCQG9QoNgKoc/ORl5oMOzmIACALjsLhr27IQwGAAoUuw0Oox6KwwZD6jnkt+uI3BDnZZ68MtIR8s0nKIiIhC04FICAzm6DYrNDsduQ06EzcmLaAAB8/j2NJss/hXdWJvSWTOjzc6FYC+BVYIUuLxfnJk1BxrjbAQDehw8gZPJtKMu/d96N9Pumw+EQMJ08jiaTby2zbNqkKUh57Enk5tth/Pc02tw0pMyy1lv+g+w+/aGze0GfnoZGC14t7m8AeQByAVibt0CG0YTsLOdYYPf1w4H3P3X2nzUfhoICwG6DrXETZDWOgS08HMhxxsdeAWbkLfkcurNnoDt/Hrrz6dCdT4c+JRn6xCTokxNRmJ6OrAvjjNVmx7mul6GwaVMU9ugFa49esMW2ALIsJZ4vmf0GAFf2A+6aAmRnweDyXCyQnpd2KcdIdpY2x4jOXnaOkQKXHCNZWc73jvoUDwBVjwkYD1CZHnwQyM0F7rkH+dL46TZCAOfPOy89VVGujdRU5w8a/z0LZGVDycoCsixATg6UnBwUPjvbeWYMAN33K6H/4gsAgJKd43xfy86GcuIEFADWrt0gYmMBqxWmBx+EkpICR9u2EE2aQDl/Hjh/HkpGBuwjR8L26nzncRITYVq+HABgv+oq2G+/HaJTZ4jmzZ0TGhfzGrv7bmDyZGfb68pjQg1CVWPz6vwsXlOqq45Z1fX9gKBqd/bsWQFAbNy4UbP+0UcfFb169Sp1n1mzZgkA/OMf//jHP/7xr5y/06dP18ZQXi0YD/CPf/zjH//4VzN/9SkeEKLqMQHjAf7xj3/84x//Kv671HiAZ4zUEU888QSmTZumLjscDqSnp8PLywsxMTE4ffo0zGUkfmqoLBYLmjZtyraz7R6DbWfb2fayCSGQlZWFxo0b11Lt3IPxQEl8jbDtbLvnYNvZdsYDTowHSuJrhG1n2z2HJ7cd8Oz2V7bt1RUPcGKkBoSFhUGv1yM5OVmzPjk5GVFRUaXuYzKZYDKZNOuCgoLUU2XNZrPHvRiKsO1su6dh29l2T1PZtgfKOYbqOMYD1YttZ9s9DdvOtnuahhoPAFWPCRgPlI1tZ9s9DdvumW0HPLv9lWl7dcQDzJBWA4xGI7p3747Vq1er6xwOB1avXo0+ffq4sWZERERUWxgPEBEREcCYgIiIqC7iGSM1ZNq0aZg4cSJ69OiBXr164Y033kBOTg7uuOMOd1eNiIiIagnjASIiIgIYExAREdU1nBipIWPHjsW5c+fwzDPPICkpCV27dsUvv/yCyMjIKh3HZDJh1qxZJU6j9QRsO9vuadh2tt3TeELbGQ9cOradbfc0bDvb7mk8pe3VERN4Sl+Vhm1n2z0N2+6ZbQc8u/213XZFCCFq5Z6IiIiIiIiIiIiIiIjcjDlGiIiIiIiIiIiIiIjIY3BihIiIiIiIiIiIiIiIPAYnRoiIiIiIiIiIiIiIyGNwYoSIiIiIiIiIiIiIiDwGJ0bqsLfeegvNmzeHt7c3evfuja1bt7q7Spfs2WefhaIomr+2bduq2/Pz83HvvfciNDQU/v7+uPnmm5GcnKw5RkJCAq699lr4+voiIiICjz76KGw2W203pULr16/H9ddfj8aNG0NRFKxcuVKzXQiBZ555Bo0aNYKPjw8GDx6Mo0ePasqkp6dj/PjxMJvNCAoKwl133YXs7GxNmT179qBfv37w9vZG06ZN8fLLL9d00ypUUdsnTZpU4nkwfPhwTZn62Pa5c+eiZ8+eCAgIQEREBEaOHInDhw9rylTXc3zt2rW47LLLYDKZ0KpVK3z88cc13bwKVab9AwcOLPHYT506VVOmPrZ/8eLF6Ny5M8xmM8xmM/r06YOff/5Z3d6QH/eK2t5QH/PaxHiA8UB9HBMBz40HAM+OCRgPMB5gPFBzGlpMwHigGOMBxgMNbWxgPMB4oF7EA4LqpGXLlgmj0Sg++ugjsX//fjF58mQRFBQkkpOT3V21SzJr1izRoUMHkZiYqP6dO3dO3T516lTRtGlTsXr1arFt2zZx+eWXiyuuuELdbrPZRMeOHcXgwYPFzp07xU8//STCwsLEE0884Y7mlOunn34STz75pPjuu+8EALFixQrN9nnz5onAwECxcuVKsXv3bnHDDTeI2NhYkZeXp5YZPny46NKli9i8ebP466+/RKtWrcS4cePU7ZmZmSIyMlKMHz9e7Nu3T3z55ZfCx8dHvPvuu7XVzFJV1PaJEyeK4cOHa54H6enpmjL1se3Dhg0TS5YsEfv27RO7du0S11xzjYiJiRHZ2dlqmep4jp84cUL4+vqKadOmiQMHDohFixYJvV4vfvnll1ptr6wy7R8wYICYPHmy5rHPzMxUt9fX9v/www9i1apV4siRI+Lw4cNi5syZwsvLS+zbt08I0bAf94ra3lAf89rCeIDxgBD1c0wUwnPjASE8OyZgPMB4gPFAzWiIMQHjgWKMBxgPNLSxgfEA44H6EA9wYqSO6tWrl7j33nvVZbvdLho3bizmzp3rxlpdulmzZokuXbqUui0jI0N4eXmJ5cuXq+sOHjwoAIhNmzYJIZwDqk6nE0lJSWqZxYsXC7PZLKxWa43W/VLIg7/D4RBRUVHilVdeUddlZGQIk8kkvvzySyGEEAcOHBAAxD///KOW+fnnn4WiKOLs2bNCCCHefvttERwcrGn7jBkzRFxcXA23qPLKCnxuvPHGMvdpKG1PSUkRAMS6deuEENX3HH/sscdEhw4dNPc1duxYMWzYsJpuUpXI7RfCOQg++OCDZe7TkNofHBwsPvjgA4973IUobrsQnvWY1wTGA06MB+r/mOjJ8YAQnh0TMB5gPCCEZz3mNaUhxgSMB5wYDzAe8ISxgfEA4wEh6t5jzktp1UEFBQXYvn07Bg8erK7T6XQYPHgwNm3a5MaaVY+jR4+icePGaNGiBcaPH4+EhAQAwPbt21FYWKhpd9u2bRETE6O2e9OmTejUqRMiIyPVMsOGDYPFYsH+/ftrtyGXID4+HklJSZq2BgYGonfv3pq2BgUFoUePHmqZwYMHQ6fTYcuWLWqZ/v37w2g0qmWGDRuGw4cP4/z587XUmouzdu1aREREIC4uDnfffTfS0tLUbQ2l7ZmZmQCAkJAQANX3HN+0aZPmGEVl6tr7g9z+IkuXLkVYWBg6duyIJ554Arm5ueq2htB+u92OZcuWIScnB3369PGox11ue5GG/pjXFMYDjAeAhjMmlsUT4gHAs2MCxgOMB4o09Me8JjXkmIDxAOMBgPGAJ4wNjAcYDxSpS4+5ocp7UI1LTU2F3W7XPAkAIDIyEocOHXJTrapH79698fHHHyMuLg6JiYmYPXs2+vXrh3379iEpKQlGoxFBQUGafSIjI5GUlAQASEpKKrVfirbVF0V1La0trm2NiIjQbDcYDAgJCdGUiY2NLXGMom3BwcE1Uv9LNXz4cNx0002IjY3F8ePHMXPmTIwYMQKbNm2CXq9vEG13OBx46KGHcOWVV6Jjx45qvarjOV5WGYvFgry8PPj4+NREk6qktPYDwH/+8x80a9YMjRs3xp49ezBjxgwcPnwY3333HYD63f69e/eiT58+yM/Ph7+/P1asWIH27dtj165dDf5xL6vtQMN+zGsa44EgzT6MB4rVtzGxLJ4QDwCeHRMwHmA8wHigejTUmIDxgBPjAcYDDXlsABgPMB6ou/EAJ0aoVo0YMUK93blzZ/Tu3RvNmjXD119/7fY3aqo9t956q3q7U6dO6Ny5M1q2bIm1a9di0KBBbqxZ9bn33nuxb98+/P333+6uiluU1f4pU6aotzt16oRGjRph0KBBOH78OFq2bFnb1axWcXFx2LVrFzIzM/HNN99g4sSJWLdunburVSvKanv79u0b9GNOF4/xAAGeEQ8Anh0TMB5gPMB4gMrDeIAAxgOegPEA44G6Gg/wUlp1UFhYGPR6PZKTkzXrk5OTERUV5aZa1YygoCC0adMGx44dQ1RUFAoKCpCRkaEp49ruqKioUvulaFt9UVTX8h7jqKgopKSkaLbbbDakp6c3uP5o0aIFwsLCcOzYMQD1v+333XcffvzxR6xZswZNmjRR11fXc7ysMmazuU58gCir/aXp3bs3AGge+/rafqPRiFatWqF79+6YO3cuunTpggULFnjE415W20vTkB7zmsZ4IENThvFAsfo0JlZFQ4sHAM+OCRgPMB5gPFB9PCUmYDzAeABgPAA0rLGB8QDjgbocD3BipA4yGo3o3r07Vq9era5zOBxYvXq15ppsDUF2djaOHz+ORo0aoXv37vDy8tK0+/Dhw0hISFDb3adPH+zdu1czKP7+++8wm83qaVn1QWxsLKKiojRttVgs2LJli6atGRkZ2L59u1rmzz//hMPhUN84+vTpg/Xr16OwsFAt8/vvvyMuLq5OnCpaWWfOnEFaWhoaNWoEoP62XQiB++67DytWrMCff/5Z4lTe6nqO9+nTR3OMojLufn+oqP2l2bVrFwBoHvv62n6Zw+GA1Wpt8I97aYraXpqG/JhXN8YDjAeA+jsmXoyGEg8Anh0TMB7QYjzAeKA6eEpMwHiA8QDAeKChjA2MB7QYD9TReKDK6dqpVixbtkyYTCbx8ccfiwMHDogpU6aIoKAgkZSU5O6qXZJHHnlErF27VsTHx4sNGzaIwYMHi7CwMJGSkiKEEGLq1KkiJiZG/Pnnn2Lbtm2iT58+ok+fPur+NptNdOzYUQwdOlTs2rVL/PLLLyI8PFw88cQT7mpSmbKyssTOnTvFzp07BQDx2muviZ07d4pTp04JIYSYN2+eCAoKEt9//73Ys2ePuPHGG0VsbKzIy8tTjzF8+HDRrVs3sWXLFvH333+L1q1bi3HjxqnbMzIyRGRkpLj99tvFvn37xLJly4Svr6949913a729rspre1ZWlpg+fbrYtGmTiI+PF3/88Ye47LLLROvWrUV+fr56jPrY9rvvvlsEBgaKtWvXisTERPUvNzdXLVMdz/ETJ04IX19f8eijj4qDBw+Kt956S+j1evHLL7/UantlFbX/2LFjYs6cOWLbtm0iPj5efP/996JFixaif//+6jHqa/sff/xxsW7dOhEfHy/27NkjHn/8caEoivjtt9+EEA37cS+v7Q35Ma8tjAcYDwhRP8dEITw3HhDCs2MCxgOMBxgP1IyGGBMwHmA8wHig4Y4NjAcYD9SHeIATI3XYokWLRExMjDAajaJXr15i8+bN7q7SJRs7dqxo1KiRMBqNIjo6WowdO1YcO3ZM3Z6XlyfuueceERwcLHx9fcWoUaNEYmKi5hgnT54UI0aMED4+PiIsLEw88sgjorCwsLabUqE1a9YIACX+Jk6cKIQQwuFwiKefflpERkYKk8kkBg0aJA4fPqw5Rlpamhg3bpzw9/cXZrNZ3HHHHSIrK0tTZvfu3aJv377CZDKJ6OhoMW/evNpqYpnKa3tubq4YOnSoCA8PF15eXqJZs2Zi8uTJJQL6+tj20toMQCxZskQtU13P8TVr1oiuXbsKo9EoWrRoobkPd6mo/QkJCaJ///4iJCREmEwm0apVK/Hoo4+KzMxMzXHqY/vvvPNO0axZM2E0GkV4eLgYNGiQGvQI0bAf9/La3pAf89rEeIDxQH0cE4Xw3HhACM+OCRgPMB5gPFBzGlpMwHiA8QDjgYY7NjAeYDxQH+IBRQghqn6eCRERERERERERERERUf3DHCNEREREREREREREROQxODFCREREREREREREREQegxMjRERERERERERERETkMTgxQkREREREREREREREHoMTI0RERERERERERERE5DE4MUJERERERERERERERB6DEyNEREREREREREREROQxODFCREREREREREREREQegxMjRNSgrF27FoqiICMjo9bvW1EUKIqCoKCgSpUvqquiKBg5cmSN1o2IiMiTMB4gIiIixgNEVB5OjBBRvTVw4EA89NBDmnVXXHEFEhMTERgY6JY6LVmyBEeOHKlU2aK6jhkzpoZrRURE1HAxHiAiIiLGA0RUVZwYIaIGxWg0IioqCoqiuOX+g4KCEBERUamyRXX18fGp4VoRERF5FsYDRERExHiAiMrDiREiqpcmTZqEdevWYcGCBerppidPnixxquzHH3+MoKAg/Pjjj4iLi4Ovry9Gjx6N3NxcfPLJJ2jevDmCg4PxwAMPwG63q8e3Wq2YPn06oqOj4efnh969e2Pt2rVVrufu3btx1VVXISAgAGazGd27d8e2bduqqReIiIg8G+MBIiIiYjxARBfD4O4KEBFdjAULFuDIkSPo2LEj5syZAwAIDw/HyZMnS5TNzc3FwoULsWzZMmRlZeGmm27CqFGjEBQUhJ9++gknTpzAzTffjCuvvBJjx44FANx33304cOAAli1bhsaNG2PFihUYPnw49u7di9atW1e6nuPHj0e3bt2wePFi6PV67Nq1C15eXtXSB0RERJ6O8QARERExHiCii8GJESKqlwIDA2E0GuHr64uoqKhyyxYWFmLx4sVo2bIlAGD06NH47LPPkJycDH9/f7Rv3x5XXXUV1qxZg7FjxyIhIQFLlixBQkICGjduDACYPn06fvnlFyxZsgQvvvhipeuZkJCARx99FG3btgWAKgVNREREVD7GA0RERMR4gIguBidGiKjB8/X1VYMeAIiMjETz5s3h7++vWZeSkgIA2Lt3L+x2O9q0aaM5jtVqRWhoaJXue9q0afjvf/+Lzz77DIMHD8Ytt9yiqQsRERHVDsYDRERExHiAiIpwYoSIGjz51FRFUUpd53A4AADZ2dnQ6/XYvn079Hq9ppxrsFQZzz77LP7zn/9g1apV+PnnnzFr1iwsW7YMo0aNuoiWEBER0cViPEBERESMB4ioCCdGiKjeMhqNmoRo1aVbt26w2+1ISUlBv379Lvl4bdq0QZs2bfDwww9j3LhxWLJkCQMfIiKiasJ4gIiIiBgPEFFV6dxdASKii9W8eXNs2bIFJ0+eRGpqqvqLjkvVpk0bjB8/HhMmTMB3332H+Ph4bN26FXPnzsWqVasqfZy8vDzcd999WLt2LU6dOoUNGzbgn3/+Qbt27aqlnkRERMR4gIiIiBgPEFHVcWKEiOqt6dOnQ6/Xo3379ggPD0dCQkK1HXvJkiWYMGECHnnkEcTFxWHkyJH4559/EBMTU+lj6PV6pKWlYcKECWjTpg3GjBmDESNGYPbs2dVWTyIiIk/HeICIiIgYDxBRVSlCCOHuShARNQSKomDFihUYOXJklfabNGkSMjIysHLlyhqpFxEREdUexgNERETEeICo7uMZI0RE1WjcuHFo0qRJpcr+9ddf8Pf3x9KlS2u4VkRERFSbGA8QERER4wGiuo1njBARVZNjx44BcJ4iGxsbW2H5vLw8nD17FgDg7++PqKioGq0fERER1TzGA0RERMR4gKju48QIERERERERERERERF5DF5Ki4iIiIiIiIiIiIiIPAYnRoiIiIiIiIiIiIiIyGNwYoSIiIiIiIiIiIiIiDwGJ0aIiIiIiIiIiIiIiMhjcGKEiIiIiIiIiIiIiIg8BidGiIiIiIiIiIiIiIjIY3BihIiIiIiIiIiIiIiIPAYnRoiIiIiIiIiIiIiIyGNwYoSIiIiIiIiIiIiIiDwGJ0aIiIiIiIiIiIiIiMhjcGKEiIiIiIiIiIiIiIg8BidGiIiIiIiIiIiIiIjIY3BihIiIiIiIiIiIiIiIPAYnRoiIiIiIiIiIiIiIyGNwYoSIiIiIiIiIiIiIiDwGJ0aIiIiIiIiIiIiIiMhjcGKEiKgeGTVqFIKDgzF69Gh3VwVA3asPERFRfVXXxtS6Vh8iIiJPUNfG37pWH6LqxIkRIqJ65MEHH8Snn37q7mqo6lp9iIiI6qu6NqbWtfoQERF5gro2/ta1+hBVJ06MEHmAgQMH4qGHHvK4+3a3gQMHQlEUKIqCXbt2VdsxAwICKl22pvu+rPpMmjRJbfvKlStrtA5ERJ6MY7x7cIznGE9EVJcwHnAPxgOMB6h+48QIEZGL6g4sJk+ejMTERHTs2LHajlkfLFiwAImJie6uBhERkYpjfPXgGE9ERPUZ44HqwXiAGgKDuytARHVPQUEBjEaju6tRrdzVJl9fX0RFRVWqbNeuXWGz2Uqs/+2339C4cePqrlqlXGydAgMDERgYWJNVIyKii8AxvvpwjCciovqK8UD1YTxAVH/xjBEiD2Gz2XDfffchMDAQYWFhePrppyGEAOD8xcR9992Hhx56CGFhYRg2bBgAwOFwYO7cuYiNjYWPjw+6dOmCb775RnPcX375BX379kVQUBBCQ0Nx3XXX4fjx42XWY9WqVQgMDMTSpUsBAM2bN8cbb7yhKdO1a1c8++yz6nJR/cqqf2nKalN59Z00aRLWrVuHBQsWqKeEnjx5stJ9URnffPMNOnXqBB8fH4SGhmLw4MHIyckBAOzatQv79u0r8VddAZLc91lZWRg/fjz8/PzQqFEjvP766yV+PVPTdSIiokvHMZ5jPMd4IiJiPMB4gPEAUdVwYoTIQ3zyyScwGAzYunUrFixYgNdeew0ffPCBZrvRaMSGDRvwzjvvAADmzp2LTz/9FO+88w7279+Phx9+GLfddhvWrVun7peTk4Np06Zh27ZtWL16NXQ6HUaNGgWHw1GiDl988QXGjRuHpUuXYvz48dVa/7L2kdtUXn0XLFiAPn36qKfCJiYmomnTppXui4okJiZi3LhxuPPOO3Hw4EGsXbsWN910U7nBXnUpre+nTZuGDRs24IcffsDvv/+Ov/76Czt27KjxuhARUfXiGM8xnmM8ERExHmA8wHiAqIoEETV4AwYMEO3atRMOh0NdN2PGDNGuXTt1e7du3TT75OfnC19fX7Fx40bN+rvuukuMGzeuzPs6d+6cACD27t2rHvvBBx8Ub775pggMDBRr167VlG/WrJl4/fXXNeu6dOkiZs2aVen6l9VmuU1Vqa+ri+0L+Vjbt28XAMTJkycrrFdZBg0aJMLCwoSPj4+Ijo4uUafS7r+0vrdYLMLLy0ssX75cXZeRkSF8fX1LtP9S6gNArFixotLHIyKiquEYXzaO8RzjiYg8BeOBsjEeYDxAVBbmGCHyEJdffjkURVGX+/Tpg/nz58NutwMAunfvril/7Ngx5ObmYsiQIZr1BQUF6Natm7p89OhRPPPMM9iyZQtSU1PVX40kJCSoyce++eYbpKSkYMOGDejZs2e111+v15e6j9ymytZXVtm+qEiXLl0waNAgdOrUCcOGDcPQoUMxevRoBAcHV/oYf/zxR6XLAmX3/YkTJ1BYWIhevXqp6wIDAxEXF1el41e1PkREVP04xle+vjKO8dVXHyIici/GA5Wvr4zxQPXVh6g+4cQIEQEA/Pz8NMvZ2dkAnNeojI6O1mwzmUzq7euvvx7NmjXD+++/j8aNG8PhcKBjx44oKChQy3Tr1g07duzARx99hB49emiCHZ1OV+K00sLCwhppU2XrK6tsX1REr9fj999/x8aNG/Hbb79h0aJFePLJJ7FlyxbExsZW+jhVUV7fExGRZ+AYzzGeiIiI8QDjASLSYo4RIg+xZcsWzfLmzZvRunXrMn950b59e5hMJiQkJKBVq1aav6JrcKalpeHw4cN46qmnMGjQILRr1w7nz58vcayWLVtizZo1+P7773H//fdrtoWHhyMxMVFdtlgsiI+Pv+T6l6Yy9TUajeovaqrSF5WlKAquvPJKzJ49Gzt37oTRaMSKFSuqdIyqKKvvW7RoAS8vL/zzzz/quszMTBw5cqTG6kJERDWDYzzHeI7xRETEeIDxAOMBoqrhGSNEHiIhIQHTpk3D//3f/2HHjh1YtGgR5s+fX2b5gIAATJ8+HQ8//DAcDgf69u2LzMxMbNiwAWazGRMnTkRwcDBCQ0Px3nvvoVGjRkhISMDjjz9e6vHatGmDNWvWYODAgTAYDHjjjTcAAFdffTU+/vhjXH/99QgKCsIzzzxTauBT1fqXpjL1bd68ObZs2YKTJ0/C398fISEhleqLytiyZQtWr16NoUOHIiIiAlu2bMG5c+fQrl27KrWjqkrr+4CAAEycOBGPPvooQkJCEBERgVmzZkGn0/EXJkRE9QzHeI7xHOOJiIjxAOMBxgNEVcOJESIPMWHCBOTl5aFXr17Q6/V48MEHMWXKlHL3ee655xAeHo65c+fixIkTCAoKwmWXXYaZM2cCcJ4Su2zZMjzwwAPo2LEj4uLisHDhQgwcOLDU48XFxeHPP//EwIEDodfrMX/+fDzxxBOIj4/Hddddh8DAQDz33HOl/nrkYuovq0x9p0+fjokTJ6J9+/bIy8tDfHw8mjdvXmFfVIbZbMb69evxxhtvwGKxoFmzZpg/fz5GjBhRpXZcjNL6/rXXXsPUqVNx3XXXwWw247HHHsPp06fh7e1d4/UhIqLqwzGeYzzHeCIiYjzAeIDxAFHVKEK+0B8RUR0zcOBAdO3aVf3FSX1R3+qdk5OD6OhozJ8/H3fddVe1HFNRFKxYsQIjR46sluMREVHDUt/GyiL1rd4c44mIqC6rb+NqkfpWb8YDRFrMMUJEVIPefvtt+Pv7Y+/eve6uSgk7d+7El19+iePHj2PHjh0YP348AODGG2+85GNPnToV/v7+l3wcIiKiuopjPBERETEeIKq/eCktIqIasnTpUuTl5QEAYmJi3Fyb0r366qs4fPgwjEYjunfvjr/++gthYWGXfNw5c+Zg+vTpAIBGjRpd8vGIiIjqEo7xHOOJiIgYDzAeoPqNl9IiIiIiIiIiIiIiIiKPwUtpERERERERERERERGRx+DECBEREREREREREREReQxOjBARERERERERERERkcfgxAgREREREREREREREXkMTowQleLHH39EXFwcWrdujQ8++MDd1akTRo0aheDgYIwePdrdVakTTp8+jYEDB6J9+/bo3Lkzli9f7u4quV1GRgZ69OiBrl27omPHjnj//ffdXaU6Izc3F82aNcP06dPdXRUiKgfHfyeO+RznAY7rMo7lRJ6D8YAT4wHGA0UYExRjPNCwKEII4e5KENUlNpsN7du3x5o1axAYGIju3btj48aNCA0NdXfV3Grt2rXIysrCJ598gm+++cbd1XG7xMREJCcno2vXrkhKSkL37t1x5MgR+Pn5ubtqbmO322G1WuHr64ucnBx07NgR27Zt8/jXDgA8+eSTOHbsGJo2bYpXX33V3dUholJw/C/GMZ/jPMBxXcaxnMgzMB4oxniA8UARxgTFGA80LDxjhEiydetWdOjQAdHR0fD398eIESPw22+/ubtabjdw4EAEBAS4uxp1RqNGjdC1a1cAQFRUFMLCwpCenu7eSrmZXq+Hr68vAMBqtUIIAc69A0ePHsWhQ4cwYsQId1eFiMrB8b8Yx3yO8wDHdVccy4k8B+OBYowHGA8UYUzgxHig4eHECDU469evx/XXX4/GjRtDURSsXLmyRJm33noLzZs3h7e3N3r37o2tW7eq2/79919ER0ery9HR0Th79mxtVL3GXGqfNETV2Sfbt2+H3W5H06ZNa7jWNas6+iQjIwNdunRBkyZN8OijjyIsLKyWal8zqqNPpk+fjrlz59ZSjYk8F8d/J475ThznOa4X4VhO5FkYDzgxHnBiPODEmIDxAJWOEyPU4OTk5KBLly546623St3+1VdfYdq0aZg1axZ27NiBLl26YNiwYUhJSanlmtYe9klJ1dUn6enpmDBhAt57773aqHaNqo4+CQoKwu7duxEfH48vvvgCycnJtVX9GnGpffL999+jTZs2aNOmTW1Wm8gjcaxzYj84cZznuF6EYzmRZ+E46MR+cGI84MSYgPEAlUEQNWAAxIoVKzTrevXqJe6991512W63i8aNG4u5c+cKIYTYsGGDGDlypLr9wQcfFEuXLq2V+taGi+mTImvWrBE333xzbVSzVl1sn+Tn54t+/fqJTz/9tLaqWmsu5XlS5O677xbLly+vyWrWqovpk8cff1w0adJENGvWTISGhgqz2Sxmz55dm9Um8kgc/5045jtxnOe4XoRjOZFnYTzgxHjAifGAE2MCxgNUjGeMkEcpKCjA9u3bMXjwYHWdTqfD4MGDsWnTJgBAr169sG/fPpw9exbZ2dn4+eefMWzYMHdVucZVpk88TWX6RAiBSZMm4eqrr8btt9/urqrWmsr0SXJyMrKysgAAmZmZWL9+PeLi4txS39pQmT6ZO3cuTp8+jZMnT+LVV1/F5MmT8cwzz7irykQei+O/E8d8J47zHNeLcCwn8iyMB5wYDzgxHnBiTMB4wJMZ3F0BotqUmpoKu92OyMhIzfrIyEgcOnQIAGAwGDB//nxcddVVcDgceOyxxxAaGuqO6taKyvQJAAwePBi7d+9GTk4OmjRpguXLl6NPnz61Xd1aUZk+2bBhA7766it07txZvTblZ599hk6dOtV2dWtFZfrk1KlTmDJlipqI7f7772+w/QFU/rVDRO7H8d+JY74Tx3mO60U4lhN5FsYDTowHnBgPODEmYDzgyTgxQlSKG264ATfccIO7q1Gn/PHHH+6uQp3St29fOBwOd1ejTunVqxd27drl7mrUWZMmTXJ3FYioAhz/nTjmc5wHOK6XhmM5kWdgPODEeIDxQBHGBFqMBxoOXkqLPEpYWBj0en2JJFHJycmIiopyU63ci31SEvukJPZJSewTovqDr1cn9oMT+4F9UIT9QORZ+Jp3Yj84sR+c2A/sA0/GiRHyKEajEd27d8fq1avVdQ6HA6tXr25Qp4RWBfukJPZJSeyTktgnRPUHX69O7Acn9gP7oAj7gciz8DXvxH5wYj84sR/YB56Ml9KiBic7OxvHjh1Tl+Pj47Fr1y6EhIQgJiYG06ZNw8SJE9GjRw/06tULb7zxBnJycnDHHXe4sdY1i31SEvukJPZJSewTovqDr1cn9oMT+4F9UIT9QORZ+Jp3Yj84sR+c2A/sAyqDIGpg1qxZIwCU+Js4caJaZtGiRSImJkYYjUbRq1cvsXnzZvdVuBawT0pin5TEPimJfUJUf/D16sR+cGI/sA+KsB+IPAtf807sByf2gxP7gX1ApVOEEOIi51SIiIiIiIiIiIiIiIjqFeYYISIiIiIiIiIiIiIij8GJESIiIiIiIiIiIiIi8hicGCEiIiIiIiIiIiIiIo/BiREiIiIiIiIiIiIiIvIYnBghIiIiIiIiIiIiIiKPwYkRIiIiIiIiIiIiIiLyGJwYISIiIiIiIiIiIiIij8GJEfJYVqsVzz77LKxWq7urUmewT0pin5TEPimJfUJUf/D1yj4own5wYj84sR+IPAtf807sB/ZBEfaDE/vBsyhCCOHuShC5g8ViQWBgIDIzM2E2m91dnTqBfVIS+6Qk9klJ7BOi+oOvV/ZBEfaDE/vBif1A5Fn4mndiP7APirAfnNgPnoVnjBBVo7feeqva9ylve2nbKrOuouXqVtXjs0+qXr6qfVLa+obWJ+WVqS99QkR1n7vfz6vyPlWT71m11Q/V8f7dUPuhqs+PutIP1T2e16V+ICLPUp3vfTUZD1Tm/i8W46KLOzbjosqVr6/9QHWYIPJQmZmZAoDIzMystmO2a9eu2vcpb3tp2yqzrqzlmuiTsup0KeXZJ1XbXta2yvaBvFxf+qS8MvWlT4io+lX369Xd7+dVed+qyfes2uqH6nj/bqj9UNXnR13ph+oez+tSPxBR3VXX3/tqMh5wXWZc5P7nQmXKMy4qf3td7wequwxumIshqlMsFku1Hctut1f5eBXtU9720rZVZl1Zy0XrqrNPyqrTpZRnn1Rte1nbKtsH8nJ96ZPyytRUnxBR3bdt2zYAwPLly+Hj43PJx8vMzMQXX3xRbeXL217aNnldectFt/Py8gBUXx9UVO+LKV/W9squ98R+qOrzo670Q2XK1mY/EJFnOHHiBIC6+95Xk/GA63J1jwGMiyqu98WUZ1xU/vaa6AfyDMwxQh4rMzMT0U2aICc7291VIaIGwN/fH2fOnEFgYKC7q0JE5fD29kZISCiaNW8OnU4BAGiCYSkyLhEoC0C4rE1OSkJkVFS5x3Fdn5yUWFy+lCg8OSkJEZFR2n0vFExJSUJ4RJRLPYDUlCSERUShqFapKckIC49U909NSUZoRCQggNRzSQgNj4RwOJCSlIjwqEZQlJJX1nXeXXHlhHRDrraAwPnUFASHRpTaD6X14fm0ZARdKF+ir4RAZvo5BIaESxuAjPQUBAaXXJ95/hzMwWHFyxmpCAwqWhbIzEiFOTAMAGDJSIU5KAzC4UDG+RQEBUVAUZQSxyy1wa7bSllvyU6D2S+kRHuLb2sba8lJd5YXcidcOF5uOsw+wSXvJ+88AnyCNGWz8s4jwDu4uKAALPkZMHsXl7Pkn4fZFAxAwGLNgNkYBCEEMqzpCDIFQ4Hicj9C28wSdSzlwb2wPstmQYDeXKKM+tHTpR+zHNkIUPwvLLk+70Tx8UQO/BW/EttzHLnwVXw0h8wVruvEhXV58IH3hSWBPOTDG94AgDzkwRvecMCOTFjQBE2w6cwmREdHg4garquuugp79uxFm7i4aokHgKIxvlGpZeWbbosHLuxTmZigduKBFASFlhzXi25mpqWUGg8IXIgVimKC6ogHgi/EA2WN+67LtREPuB4vNx1m3+AS91VaPAABZOUXxQTVFw9om11BTHAR8QAAZNmzEaDzr1I8AADZIgd+8FXXyzFBVeIBAYFMZCIUIfhl+6+47LLLQA0Xzxghj6UoCnKys3Ek/hTM5gCIC++1RYO/UN97hct67To1GCpjX9dAorTjFb0Zq8vqtuJ9IIqOd+FfAThKrHOpr3os1/VFx3OtW/G+xfUT2n015QBHUVs1x5SOi9LvQ9OH0rFR4r4v7O9wGYAvbCheX7SvcG5zuB5PFA+0Dpd9XdqLMo7h2n+a9ZqKqR3iUhjFyw6Xcg5pH9f1RU8P9VgoeVxH0RPNZT2Ky4kSdSluG4TL9qL7KqVuQt1POoZL9CNcjqke31HUP8LleMXPNW25C/uVti+K+8N5P47Sy2nq67IPBIRwwOHyr0M4IOBwvlbgcO4Ox4XnnuPCU+DCNrW8dj/n8YS67Lwv12MW7S1QgAL8kf2n9os1IqqTCgsLsebvvxET0wwoZcwuc7zWLF94Pyplv8oeB0XrSoy3VRn3pXG71DLlH1to6qMd84uHrnKOKR+/zHaVfr9Cem8XRWNOUV+Jon+Lx73S1sGlDq7jVmX2L3VcLzEWQzN2Vv52JY/vcruisR1qv7lu0953hfFBZcf1UtZpx+ULFSqtXIVjuiiuh0Oo43D547lQx3OH63qXsdxZHUf55cs4XhaycRhHENMkBs3RDFvObUVYWFjV32iIqM6z2+2Yv+ANjL31P7iYcbxoXKsoHkCZ+0rLJcbNmokHgLLKlT5213Q8ALiUKSsmqOR4fsnxQHHnVDxm10I8UNQ3VRvPtfddnfGAWp/yYoJajAcAlD7Go6zP95WPB6wowHEcR8/uPRGJCPx5cA3atm17Ue81VLdxYoQ8ntlsvuiJkaJBvSaCIbiuk4KH8gKi4v1K27f0oAUubdHsqylXMigqWcey70PTh6Ucu7wvS4r2UYOcS50YKecYQCnHqUzgcuG+SgZA5dwuenpU9j4uZmLE9UsLdZu2PuUe48J+FxUwKRfWK6J4ubR1zs6+cFcCEBdmiS6sF+r2C49Z0WSKUryPQ52iuBAIufy/tCXnw1X6ttLWOdT6lVJSFB+TiIiI6q8A+KMHLkMGMnEIh9EovBFaIBbbLNsREBDg7uoRERFRLTDBiPZoh1jE4iiOokO7DohGY/x18m80a9bM3dWjalTy3HkiIiIiIiIiDxWEQFyOXuiFHjiHVISZw9BBaY/8/Hx3V42IiIhqiQ+80RmdMBD94YADLZq3QAslFikpKe6uGlUTTowQERERERERSUIRiivRB13RBWdwFsE+wXj//fdRWFjo7qoRERFRLfGDHy5DN/TDlchFHhpHNkYbpTUyMjLcXTW6RJwYISIiIiIiIiqFAgWRiEB/9EUHtMPDUx5GsDEYy5Ytg8PBS2kSERF5CjPM6IUe6IPeSMd5RARHoL3SDrm5ue6uGl0kTowQERERERERlUOBgsZojIHoj1ZogTvG3YFgfRAOHDjg7qoRERFRLQpGMPqgN7rjMiQiESF+Ifjhhx/cXS26CJwYISIiIiIiIqoEHXQIRjDMMCMbOUhNTXV3lYiIiKiWKVBgRgCCEYwCFGDmjU+4u0p0EQzurgARERERERFRXZeLXBzGEfyLRMSgKc4mnkVUVJS7q0VERES1qBCFOI4TOIF4hCEUu3bvQufOnd1dLboInBghIiIiIiIiKkM+8nEUx5CA02iMxjh24hhiY2PdXS0iIiKqRTbYcRIncQzHYUYA1m9YjyuuuMLd1aJLwIkRIiIiIiIiIkkBCnAcJxCPkwhHOPbu34v27du7u1pERERUixxwIAGncQRH4Q1vrPptFQYPHgxFUdxdNbpEnBghIiIiIiIiusAGG04gHsdxAsEIwqatm9CzZ093V4uIiIhqkYDAWZzFYRyFDjp88e0XGDVqFCdEGhBOjBAREREREZHHs8OOU0jAURyDH3zx+5rfMXDgQHdXi4iIiGqRgEAyknEIR2CDDYs/XozbbrsNer3e3VWjasaJEfJ4FosFgIAQgAAgBDTLEMJlvXYdhPMNE2XsW7R8YZcSx7uwpXhZ3Va8D0TR8S78KwBHiXUu9VWP5bq+6HiudSvet7h+QruvphzgKGqr5pjScVH6fWj6UDo2Stz3hf0dxY0SFzYUry/aVzi3OVyPJ9R2Fa2H0LYXZRzDtf806zUVUzvEpTCKlx0u5RzSPq7ri54e6rFQ8riOoieay3oUlxMl6lLcNgiX7UX3VUrdhLqfdAwU7ydcjqke31HUP8LleMXPNW25C/uVti+K+8N5P47Sy2nq63JfEBDCAYfLvw7hgIDD+VqBw7k7HBeee44LT4EL29Ty2v2cxxPqsvO+XI9ZtLeADTYQUf3x+quvIMAcCBQN4CgeQ4tXFY9zLpsu/FvefhdKyPuVchw1jnC5H3VcdjmmZl0pZUrfT2jqVBSTuA4JrvevrYPayhJ1ce2fso6lXS+09SytrEuBovFXW6eijpD6Xgp+tP2hqWzxuOhSCc19S/XQBi7aY1R4W7OPtK4yt+X6yLdL6ZcS9SixTXsfotT7FtrjqH2mXdYcW/NYydtFiX2E67Gl+xQXjqE+v1AUz13YhqJx2aWEKN6mec6q+xUdp3gJmuXi+3LAgX+RCAMM+OaHb3DdddfxF6FEDdy3X3+N/fv2Q/P+WrTRZbwDNG93Lm+t5e1Xzr6lLNdWPFB8H5UYx4vKlairazsvLR5wvYfyYoLaiQe096GprDxuSscr9bbLIUo9RkW3S6uPdLs244ELvSWtczm+63cB2iduifLVEQ+o9XFZpy0FXEw8ICCQijTkIQ+vLnoVkydPhslkAjVMilBfBUSeJT8/H7GxsUhKSnJ3VYioAYiKikJ8fDy8vb3dXRUiKseiRYtw8OBBd1eDiOqgvn374tZbb4VOp3N3VYiohq1atQqrVq1ydzWIqA5q0aIF7r77bvj5+bm7KlTDODFCHi0/Px8FBQXurgYRNQBGo5GTIkRERERERERE9QAnRoiIiIiIiIiIiIiIyGPwHGEiIiIiIiIiIiIiIvIYnBghIiIiIiIiIiIiIiKPwYkRIiIiIiIiIiIiIiLyGJwYISIiIiIiIiIiIiIij8GJESIiIiIiIiIiIiIi8hicGCEiIiIiIiIiIiIiIo/BiREiIiIiIiIiIiIiIvIYnBipAc8++ywURdH8tW3b1t3VIiIiolrGmICIiIgYDxAREdU9BndXoKHq0KED/vjjD3XZYGBXExEReSLGBERERMR4gIiIqG7hSFxDDAYDoqKi3F0NIiIicjPGBERERMR4gIiIqG7hxEgNOXr0KBo3bgxvb2/06dMHc+fORUxMTJnlrVYrrFaruuxwOJCeno7Q0FAoilIbVSYiIqqzhBDIyspC48aNodPVryuBViUmYDxARERUNsYDjAeIiIiqKx5QhBCiGutFAH7++WdkZ2cjLi4OiYmJmD17Ns6ePYt9+/YhICCg1H2effZZzJ49u5ZrSkREVL+cPn0aTZo0cXc1Kq2qMQHjASIioooxHiAiIqJLjQc4MVILMjIy0KxZM7z22mu46667Si0j/yIkMzMTMTExOH36NMxmc21VlYiIqE6yWCxo2rQpMjIyEBgY6O7qXLSKYgLGA0RERGVjPMB4gIiIqLriAV5KqxYEBQWhTZs2OHbsWJllTCYTTCZTifVms5mBDxER0QX1/fIRFcUEjAeIiIgqxniAiIiILjUeqF8X5aynsrOzcfz4cTRq1MjdVSEiIiI3YkxAREREjAeIiIjcjxMjNWD69OlYt24dTp48iY0bN2LUqFHQ6/UYN26cu6tGREREtYgxARERETEeICIiqnt4Ka0acObMGYwbNw5paWkIDw9H3759sXnzZoSHh7u7akRERFSLGBMQERER4wEiIqK6hxMjNWDZsmXurgIRERHVAYwJiIiIiPEAERFR3cNLaRERERERERERERERkcfgxAgREREREREREREREXkMTowQEREREREREREREZHH4MQIERERERERERERERF5DE6MEBERERERERERERGRx+DECBEREREREREREREReQxOjBARERERERERERERkcfgxAgREREREREREREREXkMTowQEREREREREREREZHH4MQIERERERERERERERF5DE6MEBERERERERERERGRx+DECBEREREREREREREReQxOjBARERERERERERERkcfgxAgREREREREREREREXkMTowQEREREREREREREZHH4MQIERERERERERERERF5DE6MEBERERERERERERGRx+DECBEREREREREREREReQxOjBARERERERERERERkcfgxAgREREREREREREREXkMTowQEREREREREREREZHH4MQIERERERERERERERF5DE6MEBERERERERERERGRx+DECBEREREREREREREReQxOjBARERERERERERERkcfgxAgREREREREREREREXkMTowQEREREREREREREZHH4MQIERERERERERERERF5DE6MEBERERERERERERGRx+DECBEREREREREREREReQxOjBARERERERERERERkcfgxAgREREREREREREREXkMTowQEREREREREREREZHH4MQIERERERERERERERF5DE6MEBERERERERERERGRx+DECBEREREREREREREReQxOjBARERERERERERERkcfgxAgREREREREREREREXmMi5oYSUhIqPKfJ5s3bx4URcFDDz3k7qoQERGRmzAeICIiIsYDREREdYPhYnZq3rw5FEWpdHlFUWCz2S7mruq9f/75B++++y46d+7s7qoQERGRmzAeICIiIsYDREREdcdFX0pLCFGlP0+UnZ2N8ePH4/3330dwcLC7q0NERERuwHiAiIiIGA8QERHVLRc9MdKtWzfEx8dX+Ne1a9dqrG79cu+99+Laa6/F4MGD3V0VIiIichPGA0RERMR4gIiIqG65qEtpAYDJZEKzZs0qLGc0Gj3yjJFly5Zhx44d+OeffypV3mq1wmq1qssWi6WmqkZERES1hPEAERERMR4gIiKqey7qjBGHw4GNGzdWquzmzZvhcDgu5m7qrdOnT+PBBx/E0qVL4e3tXal95s6di8DAQPWvadOmNVxLIiIiqkmMB4iIiIjxABERUd2kCE88naOGrVy5EqNGjYJer1fX2e12KIoCnU4Hq9Wq2QaU/ouQpk2bIjMzE2azudbqTkREVBdZLBYEBgbWq3GR8QAREVH1YjxQf9pNRERUU6orHrjoS2nJtmzZgt69e1fX4eq1QYMGYe/evZp1d9xxB9q2bYsZM2aUCHoA56XJTCZTbVWRiIiIahjjASIiImI8QEREVDdV28TILbfcgoSEhOo6XL0WEBCAjh07atb5+fkhNDS0xHoiIiJqmBgPEBEREeMBIiKiuqlKEyNjxowpdb0QAunp6dVSISIiIiIiIiIiIiIioppSpYmRP/74A5999hn8/f0164UQWL9+fbVWrKFZu3atu6tAREREbsZ4gKj+uNM0QbP8kfVTN9Xk4tVkG2YHPaVZnpXxfLUdm6ihYzxARETkflWaGBk4cCACAgLQv3//Ets6d+5cbZUiIiIiIiIiIiIiIiKqCVWaGPnuu+/K3Pb7779fcmWIiIiIiKqLzWZDUlISUlJSkJ+fr/7ZbDbo9XrExcWhVatWAIC8vDwcOXJETXhrNBrVv6JlnU7n5hYRERFRVRWN+4qiAACOHDmCI0eOoKCgAIqiqH8GgwFGoxG9evVCYGAgACA9PR3nz58vERsYjUbNMYmIqP65pOTrSUlJiIqKqq66EBERERFdNIvFAkVREBAQAABYvXo1hg8fXmb5559/Hk8++SQA55ckXbt2LbPsjBkzMG/ePADAsWPH0LNnT82XKa5fjEydOhXPPfccAODff//FZZddBp1OB51Op068FP2NGjUKM2bMAABkZ2djwoQJ0Ov1avkiiqKgb9++uOeeewA4v+SZOXMmDAYDDAYDdDqdpg7t2rXT5AecPXs2hBAAnJfBFULA4XBACIHmzZtj8uTJatm1a9fC4XCo7TKZTPD19YWPjw+CgoIQERGhlj1//jwURYFer1frXbSfTqeDwVD8cSM/Px8A1LYVlSnvS6Wy6mw0GtUyrnUlIiIqLCzEN998g/feew9HjhxBUlISTpw4gWbNmgEAPv30U7zwwgtl7r9lyxb06tULAPDBBx+o43Rp1q5diwEDBgAA3nvvPcyYMUMd2xwOh/qnKAq++eYbDBkyBADwzTffYMaMGWo8oNfrYTAY1PF0zpw5GDhwIABgw4YNeO2110r94YbJZMLo0aNx2WWXAQBOnDiBn376qcz6Dhw4EB07dgQAJCQkYOXKlZpx2/X43bt3R+vWrQE4J4g2btyo1sFkMsHLywtGoxFeXl6IiIhASEgIAMButyMnJ0eNC4omkIrGdNf4oGgdx3AicodLmhgZOnQo9uzZU111ISIiIiKqshMnTmDRokX48MMPMXPmTDz++OMAgOjoaBgMBkRERMDHxwfe3t7w9vaGXq+Hw+FA48aN1WMIIdCoUSPk5eWhoKAABQUFsNls6naTyaTettlsyMjIKLM+OTk5mrLJyclllu3WrZt6Oz8/HytWrCizrMFgUCdGCgsL8corr5RZ9qabbipzYkQ2bNgwzcTINddcg7y8vFLLDhgwQHNt/DZt2iA1NbXUsj179sTWrVs1ZU+fPl1q2Y4dO2Lv3r3qcvv27XHw4MFSy8bGxuLEiRPqcu/evbFt2zb1i5aiL5e8vLwQGRmJAwcOqGX/7//+D7t27YKXl5daxmAwwNvbGwEBAfj00+IcHAfsB3FeZAAAFCi45557oNPp1MmZxYsXq2UXL16MHTt2wMvLCyEhIQgLC0N4eDiCg4NhMBgwePBgdaIrMzMTXl5e8PX1LbV9RER0cTIyMvD+++9j4cKFOHPmjGbbv//+q06MxMTEoGfPnuoke9H7us1mQ0FBAcxms7qfTqeDv78/rFYrCgsLS9yn6w8A8vLyyo0PHA6Hejs9PV0zlsnOnz+v3j516lS5V3Bp3769OjGyd+9e3H///WWWfffdd9WJkcOHD+PBBx8ss+xrr72Ghx9+GABw8OBBXH/99WWWnTNnDp5++mkAwP79+9GlS5cyy86cOVOdmDp69Cji4uLUH1kUjeNFEy5TpkxRf2ySmJiIK664Qv2hhN1u1/TpbbfdpsZGWVlZ6N69u+bHJjqdDl5eXggKCsKQIUM0E16fffYZQkJC4Ovrq4kRisb1Jk2aqGXPnTunmcQq+gOgnnlERPXDJb1ay/pwRURERERUG1auXIkxY8aoX1asXr1anRhp3749rFZrpS6B1bVrV/z777+adQ6HQ50kcf2Q26JFCxw+fFj9IkUIgbd6L1C36z5wAK85b0dFRWH37t2aL1ysVqv6FxMTo+7n5+eHxYsXqx/2XWNth8OBtm3bqst6vR7Tp0+HzWaDzWaD3W4v0R5XU6dOBVD8i0zXMzvkLy86dOiAvLw8tW0FBQXIzc1FWmIqjq4/gjtNE9Qk3q5fSFSkMmeGAM6k3ueyUipV1rUORY+XK+t5qyZJ+P6O+zWTNa6KzjQqEjQ4FFt+3aYuH158VL2tKIpmYuT3338vd1LLarWqX8A99NBD+Pjjj+EFLwTpAhGuC8PomWPQrl07BAUFYejQoepz9tixY3ip6wsQAAyKHgGKP17KeK3Sl3WryYTxVU22/mLHN9TbM/c9VG7ZhpDYvSG0gag+OXz4MK666iokJiYCACIiInDvvffi2muvRXR0NMLDw9WyU6ZMwZQpUyp13OnTp2P69OkAnONPYWGh5gcUQUFBatmJEydixIgR6lkirmdSAkCjRo3UsiNHjkSnTp2Qn58Pq9UKu92u+Ss6YwUAevTogbfffluNIYruvyiWaN++vVq2cePGuOWWWzRtcB1/W7Rood6OjIxUf0RRNNlQWFio3kd0dLRaNiAgAD179lS3FU0UFRQUoLCwEP7+/mpZeSwuj+uZoUUxDVD8IxPXH5vY7XacPHmyzGNlZmZq6nD06NEyy7r+OCYvLw8TJkwos+zo0aOxfPlytZ6uZ87KrrvuOvzvf/9Tl6Ojo2G32+Hn56ee4Vv0nOjduzc+/PBDteyIESOQnZ0No9GIgIAAhIaGqn/NmjXDrbfeqpb9+eefYbPZ4O3tDS8vL81ZtQEBAejdu7dadtOmTcjNzYUQAoqiICQkBFFRUQgPD+ckDnm8S3oF8FQ3IiIiInKX77//HmPHjkVhYSEGDBiAJ554Qr1EBYBLzgmi0+nUs0xcGY1GtGnTRrMuQh+O0hiNRnTu3LlS9+fj46NOYFTEaDSWe8aI7O2336502X/++afU9XeaSn5pkJycDLvdjskBd0Bc+A8AFiUvVn89WeTAgQOay4q4/smP1Z1+E+CAgALgsRPOy50VfZkgH3f16tUoKChQv0wq+mKlsLAQb/Z6Q1P21Vdfxblz51BYWKgpV3SZL1cTJ05E37591QkiIQTsdrtah6IvGABg/PjxsHlHw24rRE62BVFmB86dO4eMjAz12vZFin4FXIhCnHOk4pwjFXPmzFG3u05yzZgxA9/laH8lvNBnMTp06IDu3bvjpZdeUi9dQkTkyQoLC+FwONCqVSvMnDkT48aNKzF+XypFUdTLTJUmKChIM1FSnoiIiHK/YHfVpk2bEnFHWXr27Imvv/66UmU7d+6Mr776qtJly/phgeyyyy5DXl6e5qyOosuJAdqzcFu2bImUlBQ4HA71hx5FY3NBQYFmjIuIiMCWLVsAQHMmSNFlulzLms1m/PXXX7DZbOqkQdEPKM6fP6/5YUp+fj6GDRuG1NRU5OXlobCwUP2z2WwIDg5Wy8o/RJG5/nhDCIGkpKQyf0QSGRmpWd68eXOZZxz16dNHMzHy3//+t8QPeop06dIFu3btUpdvv/12HD9+vEQ5RVEwYMAArFmzRl332WefIS0tTb1kmp+fH8xmM8xmMwIDA9G2bVt4eXmVer9E9RGnBomIiIio3vnwww8xZcoUOBwOjB49Gl9++SV/9eYGRTlODIq2712/RCji5+dX6eP66oovMxUWFlZu2fK+hJInrC6//PJK12HcuHGVLnvzzTcjBcVfWt19c6cyy65YsQJPBj2GbEcOzjvO45wjFU1va47Dhw8jPz9fM0kUERGBQCUQCoBC2JAjclBQUICdO3fiwIEDeOutt9SyS5YsQW5uLq699lo0b9680nUnImoIOnbsiL/++gtBQUGas0Oo9hX9sKQyDAZDpR8vo9GoOZOmPF5eXujbt2+lygYHB+OXX36pVFmDwaBO+BRN5BTdLqqjq6NHjyI7OxvZ2dklfhQixy9ffPEF8vLyYLVakZmZibS0NKSlpSE9PR2xsbGast27d0eTJk2Qn58Pm82myXknT6LFxcXBx8dHzXuTlpamTkZlZ2drys6ePbvUSRQA8Pf3x5kzZxAYGFipviKqD/jpkYiIiIjqlcTERDzwwANwOBy488478e6773JShOoNRVFgUkww6U0I1YegFVpi1vulX2Zp8eLFiPoyVF22Czsm7ZyMXbt2ITExUfMFzCuvvIKDBw/ivvvuQ/v27fHAAw/grrvu4muDiBqs7777DgaDATfccAMAqInCiWpSUR6RisZXRVE0ly6ryIgRIypd9ocffqh02VWrVpVYZ7fbkZycjKSkJM36oUOHIiMjQ71MW25uLiwWCywWC2688UZ1UkQIgWeffRatW7dG165dERcXxzNJqF66pChZPo2diIiIiKimNWrUCMuXL8eGDRvw/PPP8/Ku5DH0ih4tWrQo8UWL3W7HpEmTsGrVKmzYsAEHDhzA1KlTsWjRIsyfPx/Dhg1Ty27cuBEnTpxAXFwc2rVrp7kufGlKu9QZEZG7nTp1ChMmTIDD4cC2bds0eTaIqHx6vR6NGzfW5FoBKn/p1U2bNmkuA2o0GtG6dWuYzWb4+fnhzjvvrNKZt0TuoghmUK+TLBYLAgMDkZmZCbPZ7O7qEBERuZWnjoue2m6qPCZ4rhq5vyI+HKveTrlLe511rybaS3jJCcMXf7tXs+x6+ayqPi4vdnhds5wcf0y9vSD3Lbm4hnxf/gtGYPO6H/Dz8neRk+1MRPv0009jzpw5mP/gj/jhrw+xfudKtXzTpk0xYMAA3H///ZpLlCQlJWHChAlYt24dHnjgAbz44ouaX4MuXae91IYlNVezXN7lxF6+RpsU3nbmvGZ55p4Hy9x3brdFmuUndt5fZtnSzOv/vnr78fWTq7Rvecp7PgDAGx9pr83/0J2VuxyMO73Qdr5m+clDj7ipJsU8dVz01HaXRQiBESNG4Ndff0W/fv2wZs0a/nCXqBYdPHgQixcvxs6dO7F7925kZWVptr/00kt47LHHAABZWVnYu3cvrrjiCndUlRqo6hoX+dMfIiIiIqoX3n//fezbt8/d1SCq03z9zbj62tsw+81VmDZtGry9vXHLLbeo29s07YrYxh0Q4BsEADh9+jQ+//xz9O7dG7GxsUhPTwfgzO2yf/9+FBQU4NVXX0X//v1x+PBhdzSJiEjjiy++wK+//gqTyYT333+fkyJEtaxdu3ZYuHAh/vrrL2RkZOD48eP49ddf8d133+Hzzz/HtddeCwCw2Wzo3r07rrzySkyfPt3NtSYq6ZIvOHv11VeXuc3Hxwddu3bF/fffj6ioqEu9KyIiIiLyUEeOHMG9994LANi3b1+JxJJEpOXrb8b8+fMxc+ZMhIYW5ylp27w72jbvDgC4Y9YV2LNnD5YsWYJly5YhJycHwcHBAJwJZj/55BOcPn0aDz30EDZv3oyuXbvi8ccfR48ePQD/tm5pFxF5tqysLPUL1qeffhpxcXFurhGRZzp//jzMZjP0+tIv87l27Vo8+OCDOHr0KAAgLS3NHdUkKtclT4ysXbu2zOs6CyHwyy+/4OOPP8bmzZvRtGnTS707IiIiIvJADz/8MAoLC3HNNddwUoSoClwnRWQhISEYOHAgBg4ciIULF+LkyZOaz3aDBw8GAAwaNAiTJ0/Gb7/9hmeffRZNmjTBvM/XquVshQU1Vn8iIlfPPfcckpKS0KpVK/4CnaiWJSUl4csvv8Rnn32GnTt3wmQy4brrrsM333wDAMjPz8cNN9yApKQk7N3rvMRkcHAw5syZg6lTp7qz6kSluuRLafXv3x++vr7Q6/Xo1q0bunXrBr1eD19fX/To0QMmkwlJSUmapDxERERERJW1atUq/PTTT/Dy8sLrr79e8Q5EVGWBgYHo0qVLqdtiYmLwyy+/YMmSJRgxYgT69eunbjufloLH77gGm9d+X1tVJSIPdezYMbzxxhsAgDfeeAMmk8m9FSLyEEePHsUNN9yAJk2aYNq0adi5cycAwGq1Qqcr/mrZZDJhzZo12Lt3L3Q6He655x4cPXoU9913HwyGS/5tPlG1u+Rn5a233oodO3Zg79696imMhw4dQs+ePTFp0iQMHz4cXbp0wW+//XbJlSUiIiIiz1JYWIhp06YBAB566KEKzxa50zRBvf2R9dNySmrLVqZ8VZSXfPvFjm9oCwuhWZy5/+EyjyvvKycIr4hrm5v5xJRbVk4YPs5QnKj8S9tXcvFyyf0xI634R1Peeu1vtab6aBNiv5P3PsrjmvQ65/tDmm3TP71Fs+z/4rWaZU2C7HKShZcm68Od2hUu+7smdQeAl4Ys0SwX7E7QLD+dMkuz/HzTF9TbL3ZeoNkmJyb3uaqdZrm8pOfWdSfK3Faa5xo/p94uyHEmV+8O5+TJqd0/AABWp/yCpNST+PTNpxHXSIcnnngCiqJg/v0/aI7lOzBWvf3YT9rX3vwHf6x0nYxjOpa73TW5OlAywbrILyxzXyEEcnJyYDAY4O3tXWFdXB8b+XGRk7HLydY/W3tMvX37wFbl3s8X67WJ7v/Tv2WZZStKAi+b//YmzbJvpL96u6Jk6/Pf0e77yNQ+5Za/WPP6vKPezrfl1ch9UP0QGxuLhQsXYuPGjWoOAyKqWQ6HA6NGjcL+/fsBAL1798aECRMwevRoZGdnw263q2UVRcHnn3+OgIAAtG/fHs2bNwfgHF+tVit27dqFxMREZGZmYtiwYWjUqJE7mkSkuuSJkblz56JJkyaa6zq2bdsWTZs2xUsvvYR77rkHV155JdasWXOpd0VEREREHubjjz/GkSNHEB4ejqeeeqriHYioVl0VPhTnClKw17ILTz75JHx9ffHQQw+5u1pVVlBQgLZt2yI+Ph4A8O233+Kmm25yc62IyJVer8fUqVN5SR6iWqTT6fDmm2/ihRdewMKFC9GuXfEPMiIiIkqUHzt2bIl1Z86cQUyM9gc5kZGROHz4MAIDA6u/0kSVdMkTI6mpqThz5gwef/xx3HKL8xdZK1aswKFDh+Dr66uWc71NRERERFQRm82GuXPnAgBmzpwJs9ns5hoRkavzBelYkfgVjuccVdc5HA431ujiORwOZGdnq8tWq9WNtSEimRCizPy2RHTxhBA4d+4cjhw5ghMnTuDMmTM4ffo0Bg0ahNGjRwMABg4ciAEDBlz0a7C0MVVRFAjprGmi2nbJEyPXXXcdli9fjldeeQWvvPJKiW1WqxXbt29H27ZtL/WuiIiIiMiD2Gw2TJ06FZ9//jmmTJni7uoQeYS0tDS89tpryMrKwt8Zf6NAFKBQFKLAZoUNNnT26oTLjF0BAHZhw/Gco1CgYPQto/Hwww+jT5+auZxSTfP29saZM2dw8uRJhIeHIzg42N1VIqIL9uzZg7Fjx2LGjBmYNGmSu6tDVGcIIZCfnw9vb2910iI/Px/Hjx/H0aNHcfz4cWRlZcFms8FmswEA5s2bp+7/wAMP4NNPP0VmZmaJY3/22WeIjIxU84pdysRkbGwskpKSYLVaYbVaUVhYiObNm/NH9OR2lzwx8u6778Jms2HFihWa9TfddBPeeecdnDt3Dk899RQ6daraNXuJiIiIyLN5e3vjsccew6OPPspfiRJVMyEEDh06hN9++w2xsbG4/vrrAQC5ubl48cUXy9wvSBeEy9AVABBiDMOAsMHoGXQ5Xvn6uTL3qS+MRmOFeYyIqPa99NJLOHToEH755RdOjFCdcPjwYRw4cAA+Pj4YPny4un7Pnj3IysqCTqdDbm4uLBYLLBYLsrKy4OXlhf/7v/9Ty/7vf/9DQkJCmWdN3Hfffertjz76CDt27EBGRgbS09ORnJyM5ORkpKSkoLCwEAUFBfDy8gIAXHPNNeWmM3jhhReg1+sBACkpKcjMzISiKIiJiUHLli0RExODpk2bomnTptWWA0Sv1yMyMrJajkVUnRRRTectnThxQk3E07FjR8TGxiI1NRVhYVVLCElOFosFgYGByMzM5GUjiIjI43nquOip7a4rXBOGy4nIq+u4VT22vK+svITpQPlJ0+Vjy4ndC8+kVqaKAICz+Yma5UYm7YfhTJtFvd36g7u02+au1yzbErT3+0yG9gt41yTfh95fqdm2KOcDzfIbA7TLj/9dfCbSC21e1WwzdmuiWbaf0f6aUk7iXXjyXHEd02Zrts3t9bb22KO0CdOtX2kTZs/c9YB6e/7dKzXbHCm5muVHv/2PZvnl4Z+ot3WRfpptUeNbYe/2Tdi5ZT12bfkL55LOAgBuuOEGfP/993hl/NcosOXjp11fwGTwgXeAP0xePjAaTBg55Qr4+PggOjoaPXv2hGxut0Wa5Sd23q9Z1iT53pei2VYoLSsm7e/3Zvx+h3pbTq7uNbiFZvmRZwaVqJurV8YVvwYe/VL7+pATl9ukx/j+8ZeVedz5z63W1uPp8utRnpeGLNEsu7b/Ur29fLdm+Z5bulTbscszf772df3II/3LL+/yun5k0Q3qbU8dFz213QAQHx+P1q1bw263Y8eOHejWrZu7q1Qnye9fd9/MHydXt2PHjuGrr77C119/jT179gAAwsPDkZJSPIYNGDAA69evL3X/gIAAWCzF8c+wYcPw22+/lVpWp9NpkpqPGjUKK1euLLNuDodD/RHRlClT8NVXX6F169Zo3bo1QkJCoNfrYTAYYDAY8Nxzz8FkMgFwTuTodDq0bNkSPj4+lesIojqgusbFSz5j5O6778bixYvRokULtGhRHJQmJCRg6NChOHTo0KXeBRERERF5ECEE/u///g/Dhw/HyJEjodPp3F0lonrN7rDh/T+ex4nPDmh+mWoymdCvXz8MGzZMXWc0eGNkjzsBALpAk7p+3Lgba6/CREQXvPrqq7Db7Rg6dCgnRahanTt3DgkJCWjdunW5X6y+9tpreOedd3D0aHE+LYPBgG7duiE8PFxTtkmTJmjVqhXsdjt8fX1hNpthNpsREBBQ4rJR/fr1g9lshqIomjOjhRAlYt/Ro0ejU6dOCAoKQnBwMCIiIhAZGYnIyEgEBgZq9l+0aBHefffdSp1t3blz5wrLEDVk1XIpLYPBgEWLin8hdOjQIQwZMgT//vvvpR6eiIiIiDzMb7/9hvfffx+fffYZ4uPjERUV5e4qEdULubm52JO0FQdSdiK7wIIp1z4LANDrnB/7hBBo1jIOnXtciW6X98eMKbfw+t5EVGedPXsWH3zgPNPv8ccfd3NtqCFZunQpJk+ejLy8PABAVFSUeinFc+fO4bvvvlNzJaempuLo0aPQ6/UYNGgQxowZg1GjRiEkJKTU41bWU0+Vfxawq/Hjx1e6bNHZIERUsUueGPH19cXbb78NRVGwcOFCbN26Fddeey3S0tLQvHnzaqgiEREREXmSoqSQd999NydFiCqQmZmJP//8E8uXL8cPP/yAnJwcdVteQQ58jM7Lad3QYxLa//cKRDQqvkQYJ0WIqC576623UFBQgL59+2LgwIHurg41IJGRkcjLy4PZbIbFYkFSUhKSkpLU7YmJierEyIQJE9CzZ09cffXVCAwMdFeViagGXPLEyO+//44RI0bgrbfeQmJiIn777TdkZWWhS5cu+Pnnn6ujjkRERETkIfbu3Yu1a9dCr9dj2rRpNXpfL3Z8Q7N87OgOzXIzn5gy960oT8ithls0y8tsy9XbCrSXNpgVOFOzbGqivSxDcvwx9XaIMVizbUbanHLrFeilvTREvt2h3p4TrP31rW9QkGY573SyZjnHVvyFe/efHtRsS40/r1nWzdR+DghbNFKzbJj6rXr73nHSpVGk5fmvrtMsu7YBAAo2nVZvt+xxuWbb6z3e0tYrSDsR4HpNdu/hcZptjqQczbKhpfaXofYzWZrlx1JmFdf5MW37jTe21Sw/8sRVmmVIyy92Xajeds03Inv++ecREhICh6O4T2JjYzFmzBj07dsX+zYAisEIAIiO6YzUF3cjFcU5Jm7YcrfmeFGTtTk0Un44XOZ9y+ScIq9OWK5Znv6p9jVxsfymdNcsF2w5U275l67+SLNsGBxbZtmKrskvP66PvDxCvW3fUH49lqw+qlm+Y1DrMsuWV8dLJecUeXXiN5rl6Z+MLnPf+TN+0Sw/8tLwMkqWJOcUmf/kr5plv+6NNctRoztU+tjUMBUUFOCjj5yv34ceeqhSlwXyZOr7lxBAKX0lj53e+uq7TKm78ptUpk1paWk4ceIETp48iZMnT2LatGnQ6/UYfOIEUvv0QUhoKPKGD8ehtm1xKDkZer0eERERmsu2tW3bVp0kofojJStfsxwR4O2mmlBddskTI3369MHatWsxdOhQfPfddxBCYNCgQVixYgX8/f2ro45ERERE5CHefPNNAM4kk02aNKmgNJFnEUJorj3esmVLOBwOtG7dGtdeey3GjRuHnj17ql8gHt5SelJXIqK6zmAw4LPPPsMXX3yBG264wd3VqR+EADp1AgICgMGDgSFDgMsvB4zGyu1vtwMHDgBbtjj/MjKAkSOdf35+NVjxanTuHJCcDHt6Oj567TWs//57NAEQA2AmgHHjxjnjy1WrELppEwDA98cfcZmXFy4bMgS49VagRw9nHxJRg3dREyNz5swpse7qq6/G119/jYCAAPTu3RuvvfYaAOCZZ565tBoSERERkUfIzMzE559/DgC4//77KyhN5DlSU1Px9ddf44MPPsDIkSPVz1jXX389EhIS0LRpUzfXkIioeul0OgwZMgRDhgxxd1Xqh9mzgdhY5yTGCy8AmzcDzz8PdOkC7NpV8f5WK3D11cDGjdr133wDNG4MbNgA1ODl8vPz85GSkoKUlBQkJyejRYsWaNeuHQDg2LFjuPvuu3H+/HlkZGSgsLAQ/v7+8PMPgL+/P26+ZTTumjwF+PJLiPHjoQgBPYDJF/6KHLrxRtjtdufCf/8L9OsH5OcDy5cDe/YAP/3k/AsPB7ZtA2LKPnOYiBqGi5oYefbZZ0s9jVFRFGRnZ2Pu3LnqOk6MEBEREVFlrFixArm5uWjXrh369evn7uoQVbuCgnxYstKwbt06/Pvvv0hLS0NmZiYyMzMxb9489UyQNGsqMgvP40T2UXzfeyn++ecfCCEAAAcPHsSkSZMQExMDf39/nqVPROTpkpKckyGFhSW3Gcr42i8zEzhzBuhw4bJ1RiMQfOFynVddBfTuDXh5AUuWOMstWgTMn19mFXS2QkQc3Yuktt0ghEB6ejpsjz2G8E8+gUOnQ6FeDxESAt8mTYDQUFhsNly9ezfibTbk5+djaG4uRgKwAbACECNGoN2cOUDnznA4HPjjjz/KvO/uPXo4b9jtUC6MlccAZOl0aBMSAr/UVGDMGCxYuBCIjHSWvf565x8APPUUcPAg8PXXwCefANOnA9X5g4MyLm9GRO53URMjMTExvL4jEREREVWryMhIDBw4EEOGDGGsSfWSEAIHDxzA3zt+QHJqAm4eep+67ctv5mH7rt8BAPNeL7nvk08+qSZ1XZ/yB7alOy/xgQupXrp27YqJEyfitttuQ1hYWI22g4jInT788EMcPXoUd955J9q0aePeyggBJCYChw8DPj7OS1MVufVWICfHedZBQYHzy2+dzvlv167aiYSZMwGHAwgJAUJDnZe6ataseuro7e08Y2TxYqBdO+DECeDGG51/V1zhLGO1wvDodOjWroVy+jSQdSFP1qlTzjMjFAW4915g7lzn5biK3Hkn8OWXcEyfjvNpabB++in8lyyBV2IilLw8GBQFd9kF9IVW6G029A+JwMO3ZcJqteJlAI8C0NntMBQWAv/+6/wDYAaQCyD9wt10BTDRtU0//+z8M5nQsm1bfLtoEUyxsQgKCoKXTofc8+dxzmpFdlYW2rZr79znttsgYmLw4dat6NSvH7p06QLvefOcffP118DRo8ANNzjPgAkNdT4WHToAERHOfps1C3jmmZKTGOfOAdu3O58DdrvzcTQagQdKyQEmBLB/P7BunfOskx07gAEDgIULS5YlIrdTRNFPj6hOsVgsCAwMRGZmJsxmc8U7EBERNWCeOi56aruFEJWeGJGTjR/MLjtZdKHDplkevFx7edg/btGe6dx76Mgyj7Xpt+80yz3ba5Nn+03vq1m2frVfvW3ZcECzzTyos2bZkZKtWS48kqje9u6v/YLo0W//U2YdAeClqz7UHis+Rb391Mknyt13Xp93tPXKyFVvm67TJiE1dWuk3lbsNjRd8hU6HVkNRTiwpvcdSPOL1pSf/llxIu7P1x7XbBvdT5t4Wk6mOldOqB5cnFBdF+Kj2fboV7dqluff+4Nm+ZG3iq9bP3/Oau1xG2nPxLD9edKZ5FwBdIoOj345Fn/99Rf++OMPxMfH46+ftuJcViJyCizqPqdOnULMhUtx3HXXXfjoo4/g6+uL6OhoREdHIywsDIGBgThv1eO2KQ/Dz995TfNnx9+Fgwnb0SwyDg8+dReGDh2K6GhtH1bG/IUbtCv2n9O2/92RmuVFn+/QLN9/mzYZe1X8tvOsZnnve/+ot/2GtNRsm3pT+Yl6X51c/Hqb/v5N2m13fqtZnv7RzZrl+S+u0Sw/MrP4tfrK2GWabbq4UG3ZORd/CZ/5D/+oPdbr11VLWQCY/8D/tOUXXl922ZfWasvOGFjuseuid74rTuycl5uNabdf4XHjoqfFA126dMGePXvw3nvvYfLkyRXvUN1OnQJef915WalDh4onEa67Dvify+vP1xfIyyv1ECf9W+PLNg/gie0XJsiDg505O4rodMA11wBTpwLDhwN6fYXVerGDdlZ95v6H1dtCCBTm56MgNxc2nQ42ux12ux02mw12mw1Rjz0G49dfa/YvDAjAgenTkXz55bDb7SgoKEBSUhK6du2K3r17AwD27NmDESNGIDk5GXa7HVMAvFtG/ewhIRiZno6id7RmISEI8w1GcFAoIgKC0aVZGzw2bjCQmopCiwWHunWDISICJpMJEUePwm/3bih2u7O/d+wAtm4Fzp93HiwhwXkWhxDA3Xc7Lw+2apVzgqM8P/7onDD67TfAZiu5fdUq5+NQmgMHnBNYiYkltwUEAJbi8R7vv++8j/XrgZQUbdnevZ2XNqth89/epFl+5J4+ZZb94OdDmuX/jmByeapfqmtcvOTk60RERERE1am+nC1iFDaEIB8RyEOX85thUwzYH9RD3X7XwyNQ4O2H9OgWSMkIQEpAU5wKbe/GGpd07tw5nDp1Cn5+fmjZsiWMRiMsFgtOnz6N45mHkF2YhVDvCET7lX+dbZ2tEOaUs2i27U90+PkLhFicvwF1KDrkmcw4n30Owf7haJq0H0JRgNxc5xdKZXA4HDh9+jSOHj6M+GNHceTIEQDA7bffXn2Nr4DNVojkxHgkxB/AmYTDOLNvDxIzEzB9xHyE+EcAAH766SfMmzdPs5+X3ogBV/XH1VdfDW9vb3X9q6++ivnz5yMwMLDEc1yeRLi531T19h13jKzmlhER1V179+7Fnj17YDQaMXr06Nq9c5sNuO8+4KOPtJel0uuBFi1K5pxYsMA5weHt7TyDQAisnPEzFAjkGqTLHE6fDqSlIffsWeTs3o3ww4edX9r/+CNOBwbisauuQlZhIaZOnYrrrnNOjv71118YM2YMHA4HjEYjcpPzoFcMEHDAJmwIfdcX//d//wcA2Lx5M64oOjtE8iSA54va8eGHOBIcjG433ojcrCznWRKSJ554Qp0YMZvN+PfCWR4AsNnfH/f6+iInJATeEREYMmwYbh4zBvDygiMqCo9v24aFjRujUaNG8Pb2xptf7NQe/IZuAAAvAJop8RYtgGHDtGWFcJ7lcfgwUHSm5OnTzpwg6enOHCG//QY0aVJquwE4J7Ouuw5ISwO+/dY5QZGW5ty/Y0ftpEh+vvOxBJz3e911xZMicXHOM2lMJucZJT7aH2Lg5ZeBY8ect318gL59gT59gMsuc/4BzufUyy8Dd90FREUV72u3F0+M5eYCb7/tvDxafLzz7/RpwN/fuc9NNwGPPlp2e4moSjgxQkRERERuJYTAl19+iUGDBiGy6NrPtc3hgL8oQCCsaIRsNEUWuu59DwI6/Nzpv2qxkTsXItJyCg+KDJhgL97/301I9m6smRix+gYg9N94hCSdQqsL6+yKHof1sdhp6ISDXq2dK4WATtjhUPS1eg3qdevWYciQISi88OXP0aNHcfbsWQwePBg26VeVLc1xuCXiVgQY/p+98w6Pqmj78L0lvVcCqRAg9N57UZTeFBRRFAs2FEWx18+uKFbU14YKoiBK702KIL13COkkpPeyu98fA9mdhTSyaTD3deXKeXbKmT179szsPDPP78oVWUFRBxn67Ye4ZqQUv5aqteN46xEkewZzARPv/P0YYX4RLM1OplXORYzu/0dmRASRPXuS0X0M7g3Ftdi/YxNvPTKMyHPnyM/Pv+JcPXv2LD4+l3maZdELaOjbjBCPcJz0LtgXuaLX2aHT6PB1M+9iSU9PJzU1ley8DBzsnMjOyyAlI5Fff83g/Pnz3HfffcV5t/+3hLWbfyEzK/Wq1y0zL73YMdKtWzceeughwsLCOPxXHN7O/jTwCOGFxZOuKOd1OXa7QqFQKErkp59+AmDo0KFV/9w0meDkSWjaVPS/er3YmVBYKITIp0wRk+fh4WJC3Jqr7GY59n7ilfkAXnoJgLWLFzPqjz9oAkwBxgP3pKez6e+/ARjfurVoS0gI9llZJCQklNj8lBRzv+twtfYBdjodnU0mEf7piy9g0iTszp2jfng4Dg4O6PV6tBoNjhoNLlotrg0aEBERUVw+MDCQPXv2EBAQgJ+fH3Z2diW2xw65n640Go34bCzDqYWEwJYtwoly7JjYjfHaa8JxERZmDgtmjY8PPPSQ+LsaMTHQpQv06yd292g04u+ll4RTy9Oz5HYaDDBhgnBu9O8v6rna5/HII/D997BxI6xaBbGxIhxXt27wwqVdvDk5V3d8XLwIkZHQqdOVaQqF4ppRjhGFQqFQKBQKRY2yatUq7rrrLlxcXIiOjq72CeTbp9+GT9QpHsEqwmwcXHCTxTd9s2LxyEsutvPQkYgzBa5BJDkESHn/fvozvBPO4x17Bq8te6ifdga/rFhaFJ1GazIWO0bcc5N5eM00CvSOpLgEkGznR4pTAMlO9UhxCuCCyUiRpuSJiGslMTGx2Cni6emJm5sbXbp04Z133uH555/H18EfR50zcdlRnMk4wRfZHzO+wUQauQg3T1FRIbGJZ9i1ZzEjM1LIAo4AcxydORnWh1s73CkuY+x+dFodkUkn2At4AkEGAx5Hj9L26FEifppD1ODbODFqIjq9nhPHRXgHOzs7whs3pllEBE2bNkWn09G2bVvOsQGAc1mniM+NJT46lu3RchgsgCn9Xik+nj9/Pg8//PAVeb78S/y3nMjRarXFThFHRxdCGrYkKDSC+hneNPAKw8fV7LwbOXIkI0eOBODDXfMq/BkoFAqFwkxCQgJfffUVAA888EAZuStBYSHMmiV0H2JihCZEi0s7Ot9/H55/Hvr0qZJTt2zZkl69elG/fn1O+/jwrZcXw7y9ud3ZGUdHR4Zs3Ch2KgBdAYODAwVBQWQ3acKmnZn84xJBrt4ZvcaOyZMnF9fbpk0bUlNTsbe3x87ODp1Oh1Z7KRSl0ShCRg0fDrNn0/Dnnznt4CBCQWVlidBVhkuLPWbPFhP7AAYDdikpdOhw7WEVq4QWLWDbNhGC7Ngx4cACsdsjxxz2k/vuE7tNhg6Fe+4pXVD966/F7pDffpNff/tt+PlnIcrev//Vy+p0QsekLJ5+GubPh/XrYfBgEaotJ0eEDZsxQ9Tj5AQTJ4KfHzRsKP5CQoSWTXy8COG1fbtZO0ahUFQK5RhRKBQKhUKhUNQoH3/8MQBTpkypFqeI1mTEqLHQrdBo0FyS3ctBTwIuxOAGjbuQ4CHrXaxueR9FWju27dxOOg7kIXZ5dA698sdylk8AWT4BRLXsSn5qWwB8MmNpsmsJkborwz7YF+URkB5JAJHS63scO7LCVUyS2BXm0vn0ClJc63OuXtvKXAYGDx6Mk5MTubm5LFy4sHi3zrPPPsuzzz7Le92/xj87htS8JD6LXkpUXjwX8uNpa+9Ds/0reDH+OLuPCIdEPBAdHE7XQXfQtc8IGm2KLj5PRGA7Xhz1FbvPbuLLrAt8kJdBUz8DHWJjuSszk4a5uTRdMo+AvdtJ+Gw+K1avoWGjRgQFB6PX66/QGPn7kmOks29PfB3qcb7wPHGZ5yk0FlCkMVBkKMRgLEKvNf/UKSoqwtHRkby8PAA0Gi2err607diCsLAwfHx8ALHKt2WzngQHNsOrSSgurp7FYa+KNsifi0KhUChsyzfffENeXh5du3Zl8ODBVXOSHTvEroFDl7RrHByElsRlx0jr0jWProV9+/YRHByMr68vjRs3ZsuWLSVnjoyENm3EboLkZLT5+TieOYPjmTOMBaL8biH3Upguy122er0ez5J2NWi1wikCQvy8NL2Ly3Xk5cFdd4nrtG2bmKivTYSEwK5d8N57sHOnCDnl4iLvFjl6VOiU/PsvvPKK0At59FEYNerK+t58U+wOOnsWCgrE34ULsGiRcJ41amTO+/33QuOkUychcF/abhJLWrSAH3+EceNg3TrxWu/ewilzOZSWiwv88ou5zKlTInxWTIzswJo+HT76qJwXS6FQlIQSX6+l3GjiagqFQqFQlMaN2i/eCO/72LFjtGjRAq1Wy5kzZwgLCys1/2SHeyQ71EmO963B/IPYZLUDpMGXw2myZQUdFn3Hsle+ZsLUS5ME58+DoyOvN5mJQWMWP3UKNk84GLNkcdWohNOSHfGoLAid+7scU9u+tXmVoiEpU0ozFRXhaMjDpSgT7/xE6gUX4Z0ai1dKDN4p0Wz1GMgun74ABGiSmHzkXQCKNHoiQ9tzvHFvzoR2psjOEVOBUb4eAS7kF+Sh19uh0+owRZuFQjUudvz5zzf8e3QVXq5+nIs5hYeHR3H6somvMWyuEKg3arWkBgTg3bIlmg0bwGDgrXHjeGvxYkaPHYuvWzdCQ1oWOxGMh+RQIs/OG89VMZlg0yYhWvr669C0KTOfXSFlmf6hLIo6811ZTJuL5s9m+swSBFQvUVhYSFZWFq6urtjZ2XE8Lr047VhUmpT37F/HJNtrYCPJtv4ZlXbM/J6nT+stt/nF1XJDHKxEdrMKJNP6PUt1fbBZfuF8umRaCsp/u/SolJZ58qKcd7q8InrmR3Ld05/pW2I7KsrMV9ea67USNZ/5sTxJqHOXQ5BMe6CLOW8FxGUB1h+Mk+yBbRqU3VgbcIXwfW6hZFZEBH3mC6vksu/eKtmWGjWD2geWu96a5Ic1JyV78qCmJeSUuRH6xatxI7zvgoICQkNDSUhI4LfffuOOO+6w7QkyM8VOkNmzRd/j4yP0Hu64o1TNq7KY/echyX5krHCsmEwmTpw4wZo1a/jwww/Jyclh+fLldOvWrfx1DW0iHBnHj4uJ+MhI+PZbc4a//4ZBgyrW/iNHhBaGm5v4c3cX+hVubmLHhV4vHCkJCSLE0/nz0LkzbNgg8tVmTCbZMbJrl3Ds/PwzbDb3b/m/zcfhjhLGJdbk5QnH0MCB5teGDRM7cEBoywwdKpxIgwaJ63iZggIRNmv5ctizRzhfBg4UDo0ffxQhsyZNKj2M6oQJV+5icXCA338XThkLrPv8h4Zb6NoVFrL4zZ8IOHWApLBmDPu/KVBKWDSForajxNcVCoVCoVAoFHWeL774AoDhw4eX6RS5VvwMiXQq2Efbhz7DIUc4Jdov/hEuO0ZCQwEkp0i1otGSp3cmT+9MsmM9oro2NqeZTBSsOF5sFmrt2e/XkwZZ5/DPjaNx5C4aR+4i386Jw80Gsqf5UDIu6V+kZF5g5Y7f2X90M67OnrRp3ps23h1oVK9FsQNjaLd7OBmzj+SMCzz77LN8azHhkhTYmCx3H1wzktEajfjExYkJGsDQrz/TnniSp375FZ1Ox5fWk/Xlfu8aEZrCKjxFozM7ia/fDOecNLHK888/ITcXgoKo1+YuLgRFXL2+MrCzs7uhtD6cky/Q+J8VuCbGceKm0WTiX9NNUigUiquSm5vLhAkTWLVqFWPHjrVt5QYD9Oxp3iUyaZKYnL4s6G1DLl68yPvvv88ff/xBVFRU8eshISG0atWqYpU5OoqdCo0aySLhIHQ2xoyBxo3FJHt5tT1athR/ZREQAKtXi3p37YLbboMlS4QjwJZs3gxvvSVCRfn6ir969YRAeePGZZe3xNrB0Lmz+Js8mbyTp9G/+Qb6ub9i9/JLMHZM+RwDjo6yUwTggQegWTOhE3LkCPz1l/gDIbS+Z484TkkR4b4uM348HDwoNEueeabsc58+LRwgIM7VqpVwTrm6mneYWGIy4REbiV1eDrrCArjsGCkshOBgRl64YM77w5ti58o995hDpykUNyA2c4zs3LmTrl272qo6hUKhUCgUCsV1TlZWFnPmzAFg6tSpVXKOVgVHGJv7tzAKIMM/kMO33sGhwXfSvErOaGM0GkwWYb9SneqxquFdAPjmxNHK7hjNTm/FM/MCHQ8t40xgRzJc/UnPTubHv54mqUiEjsrKSWP7nqVsZyk3tR7LLe3ESklHeyfuHDCNFTt/4YXLwp+XSPEP5adn5lDg6IxLRjJTujnB1q3Qrh1FEc3QV0G4EYDQyH2M/PsttCbjlYmRkZjaTiw2HXKzyDdpq1W0vs5w5gx3PngLuiKxU6HFyt+Z+8RsEq/RqaRQKBRViYeHBzNnzuTDDz80a2PYCp0OHn8c3nlHhEGynui2ETnZGbRvP4SYmBgA7O3t6d27N4MGDeKee+7B1ZY7LoqKoEEDEWqpVy8R6qpNGxGuKTAQHn4YLHaBXhMREbBihVi8sHq1mPS/+WaYPNk2IcfWrhW7LK7GvfdWvn4LTI0aUfjFl+jWrsFUvwEkJYnrdy2MGiX+PvxQODrmzhXaIdHR8jUPCIARI4SjZ+dOkXfAAKFvc+utJVRuQUaGCNfl6yvE5sug1+w3abHqD/MLCz8V90XXruDuTk5uAQkR7Qk4sQ/npCT48kvx98cfcPvtFb0KCsV1gc0cI7fffrvkDVcoFAqFQqFQKEpj9erVZGdn06hRIwYMGGDz+jUmIwPyRNilKF0QB154mZg23USIiOuAi84N2NahI9u6TCA05gCNz/1HVH0xUaHT6vkQGAZs1upxCe9MXGocyRkp+Kecwz1yO6ea98Kk1REW0IxHRrxFw4ZCT8VgMDBr1izy81sSFnWUXBcPwo9sg7/2iJWRgAOQV1hU7JDQFRVg0NtmFWm2iyeZbr54ZCRSpNOjHzIY7rxT7OyJjib1mJhY0hgN3PbDs+TaubKx/xTy7Z3FKs3oaNGuQYOEiOmNiqMjOV6+uCXFA1Dg4kqRvWMNN0qhUChKx2ZOkWPHxE7Dy8LhDz4owhJVYTioC7GRGI1G3N3dmTNnDjfffDMuLi5Vc7L+/cUOmCefFBPzSUlC1Hu90P7CUrz+nXdEKKxOncTOk969y7+goEsXWLhQhI86ckT8DRhgdoxs3CgcBKNHC0eAySTE3u3txc6UkJCSz+V4lT6pXj2hARNRBU58V1fydu6CwECc7GywS1ijgbZtxd8HH4hwbdnZcp7Fi8X/EyegTx/xf/Bg4eyYMsUssN6ggdAXufzn4CDu3R07ICurXM3J8bLSgdm1S/xfIUKUZjVqwblO/Vg97QMe8U6CV1+F3bvl8F8KxQ1GhRwj48aNu+rrJpOJlJQUmzRIoVAoFAqFQnFjcP78eRwcHBg9enRxaCdbEmY4j5cpnWyNM7+4TMC7XQ+bn6NWoNFyPrg954PbwyWNEVcnD252q4dn6nlGGovglIUuQ+xe8hOPcbKFWV9i2LqPoe3rYGfHMScnZmzdyguOLozNs/qBr9OBuzsme3uxWtXODkwmbvvhWbLcffm3/91keNdHVsyoGBf9GvL9A9/hkp1KtosXT88cLqUXXtIY8Y87jW/CWfSGQhr++JBI/MYi43PPCVHWG5XAQOZ/uxrPmLMUOTiR6+lNalROTbdKoVAormDbtm0UFBTQu3dv9PpKrt/NzBRaDrNmicnm/fvBy0tMYlexRkbDpm2IiooiLi6O4ODgsgtUFi8voZ/x9ddCaPzQIaFHcuECeHub823caHaavP++cIy89ppwcJRn/DV4sAh5tXq16PubNDGn/f47rFwp/q7Gtm3Q49L4a8UK2LtXLFq46SbRjmefFWLjCQkiz8iR4vOrKoKCzMdGo3AOAPj7iz8HB+HcMZlEGK6QkKvXczUu67ZcjYgI8dm89RZ8/rlw2r399tXz3nGHWVdEoym342LvnY9yYOz9uFxMwDEjlVERrhAbK0KgrV2L/9mj+Eae4ETfEWLHSs+eYsfRZeehQnEDUiHxdW9vb3755Zcrtv+ZTCbGjx/PBct4dYpKcSOIqykUCoVCUV5u1H7xRnjfWVlZ5OXl4XuNcb6thUpzLphX1RV8vwf/nBg8CpI55dmWowe3S3nbvfWQZO966UvJDnI0h1hwd/CU0rILZAF130GdJDt30wnJ1vmZPz+HLvKP7IJd0ZJtZyUOrfU0r6g0xMurBgv2yzu27RoHFB9rTEbq2yUSkngE+8IcdEYDOicNDvk5mLRaluqGFuedfPJDAnJjiu3XdM5sNeSwHECj4XijVsT49uZsUEfy7V0Ifcwcj9rr+CFuenAUGsufFU5OYjVkeLhYtXqXCP9FTg6cOsVfj/6MQ2EOZ+p3oCDU3GaAkS/1k+zlK+VraSoyh9jyTIii75z3aXh6NyaNhmwPH7K8/HHOSOGv6Z9zMUFcu4bndhEYd5S4Xr2Ia9yGQkexgte/qU9xXfGHZcF4naO8mlSrl+0n7uko2bN++K/42C1QDl+SdjxJsik0SKa1yPnMl8xi7dPfLj18xsxZsnC5tfC7lPf/1st5X5HDyXzyv52S/dSD5lDJX87fL6U9dke7UttVXeQZ5JBrjjp5tfk3iw/L+VNyi4+fvK9zpc796Y+7yl3XzK9l0XhOJBcfug9sJCU9OKwF18ri/+RnwsgupU/qWd5rUPr9NvOJpZKtaSVr1jz9UMmhtT/+Zodkm9Lz5fPOkL8D0nmfXFZ8nJefw8vfjL+u+8Wrcb2PB2699VZWr17NRx99xPTp06+9oj/+gGnTIF7slGP4cPjqK3kynJIF023BzEvO+8tMf6F/CTkrz1cLDhQfP3p7Wylt3j9nio89zpxgaFGsCIc5f74QBQcxMT5zpgi1dK2cOCF2lKxZI4TKtZfCW2ZlwcmTkJwsdkCACO/1zaUVDHq9cJp07AhpaaJdYWEiFNilHawVwmg076y4/B25eFF8/nq92J3i6Ch2nw4ZItr45JPw2Wcl1/nrr+bxiy2JjxdOpp074dw58ZeYKHabFIrwl8yfLzRJbMWFC+L70b+/0CpRKOo4NSK+3q9fP9zc3OjTp88VaW3atLnmRlxvzJ49m9mzZxMZGQlAy5YtefXVVxk8eHDNNkyhUCgUCkW1osYEZePq6mrbmNtWJDoHkegcVHbG6xCTRkuCTzgJPuHFr2nrW1zrDeZJk5VB43DSFRKYdY7eMct4xZjPo/1GE7plKVmGInLOHCLgYjr9tFo6hPWSzpParDULP/ydrr/OIvDwf+iKisRKyOho8WcZF3vJErjzTkZfMjOcvFk+ZAZxDa5tIjgtIIRF97yHY04GBQ7OaMMuOTqMRjE5c2kFasSpLbQ8vhH2LMSo0XK8262sv/v5azqnLbDPzaL72jmk+zRgf49RNdaOiuCYkUrLdQvxSIzlWL8RQLuabpJCUWdQ44GSSU9PZ8OGDQAMHz68jNwlkJ8PTz0Fs2cLOzwcPv0Uhg4tvZwNiYqKosG1alZUMenhEdBniAgn9s47YtfIt98Kx8Rzz4kdJde6czciAl56SfxZU1Agi7X36iX65/37RZinO+6AffvAxwcee6xi5zUYhENm5kzhnMnMFLs8HnsMvvhC5CkqEjtjrFmyRDjNxo8XizgSE81/BQXiWmg0Qp/jMtu2iV2ythAqr19faKhcTUelsFCMoWwd3qpePSivnl90tFjUYmcnrnNurnB65edD8+YwcaJwLikU1wEVcowsWrSoxLS1a9dWujHXC0FBQbz33ns0adIEk8nEnDlzGDlyJPv27aNly5Y13TyFQqFQKBTVhBoTlExycjI+Pj5lZ1RUC/HOoWid7In0aE79rPM0TjvEJ3s3M/j2qXyWeoF/N/9NQnoUB85vv8IxApDcsBkrXvkaTCbscrO5v2eAiHd+4IAIlXGZsDDw9SXe4I5TfiaeOUmM++slfrrrS9I8r31CKc9ZrBQr3itgFaP+dHh3TFodQUnH8EyKpcW/Kwg4d5SDT75IXPf+1S7ePnTeWzQ6LlbQF9o7Av2q9fwVprCQ8S/cgWuK2FXTfPNi6FyvWicdFYq6jBoPlMzy5cspLCykefPmNG3a9NoqeeYZ4RTRaODFF+Hll6+uX1EFGAwGFi5cyAMPPICLiwu3j36ZsJBa/JkGBopdEs8/D6+/Dq+8Yu4DDxwQGiKNGgnnkq9v5fpHeyvtsYkTxV96OrRvL3ZKjBwJf/4pnCMV4fnn4aOPrnw902JHr5+f0CsxGMTE/uLFYlfJd98Jx0iPHuYwX6Xx77/CqaPVil0enTqVXeZasbMTfzXFpElip82aNVdP378fgoOVY0Rx3VCp4I0JCQkEBASUnfEGw3qVw9tvv83s2bPZsWPHDT/oUSgUCoXiRkKNCa7O5QmQ4OBgFi1aRGhoqE3r1xgN3PfmnSTnu7Ms7B5y9VUkfHo9otGwstFd3HV0Jt4ZSXjY2TPqjqcYNPx+sma+yeSUs9itfxPH48IRYdTpyPf2JdXRk5P9hpMS2pRCZ1ezmKj1ysquXSEpiV9v/w3f9GjuW/scOqMBk8ZGYrslcDq8O6fDu6Nr7U/Q8d0M+eYlvBMi6ffCQ5waMYFd06swnvlVKHB0Lj4utK8DAvEaDdle/sWOkSI7B/SW8esVCkWpqPFAyfx2SUthzJgx117Jf5dCGb79Nrzwgg1aVTZFRUX89ttvvPPOOxw/fhyABg0aEOAfVi3nrzQNGohdI5a8/TYsWGC2/f3F9Xz00SudHJXBw0NokwwYILRL+vcXO0d0OrFjwmQq+3yWIVhDQ+HLL4W4ueUuZJ3OHLorNxcuL/auX7987UxLEzthvvpK2G5u5jBd1yM7dwrNmpJo2hRuuw1Gjy45j0JRx6iUY2TQoEEcPHjQVm25LjEYDCxYsIDs7Gy6d+9eYr78/Hzy881xVjMyMqqjeQqFQqFQKKqJ8owJbpTxwNq1a0lKEpoLVRF2wisxGq+kGFy09uTp6sCkcy0j296D79q8SvtWiZzoJsJgObu408UrlPBzm0UmWY6DUCCuZSdSQi+t9v33X5gzR0x23HILeHqK1y1WnjaP2gbA+eC2pHtU32KrmGad+OntP+m8cg4dNswnptfAsgvZmI0jHmdP79uxK8gjOrxdtZ+/wuj1/PnmT4Tt/YfUBg0psndgUim/bRQKRcmo8YCZpKQkVq1aBcCECROuvaKdO4WGVWWF28tBTk4Oc+bMYebMmZw5I0JSenp6Mm3aNJ555hm+/uy/MmqopZhMItxS375w5owQ7U5MFCHKvvhChN8aM8Z2Oyw7dxZjhVGjRLgr3SUdr9WrYcQI4exo3hyaNRO7TbVa0cahQ8WOlhkzICZGiJSfPw/Dhgktk27dICBAiKg7OMATT4g6nJyExsnRo/Duu6W3bf58IQi/c6fQSAGYMEHsULnsVFm+HA4eFNenmnYnVTmhofDhhyIMqcEgnFSxsWIX0Zkz4vXp00EtjFBcR1RIfN2a1q1bc+jQobIz3oAcOnSI7t27k5eXh6urK/PmzWNIKVvNXn/9dd54440rXr9exdUUCoVCoagIdVl0tCJjghtlPDBu3DgWLFjAtGnT+OSTT65Iv9/h3uLj7/N/ktK+XiSPPVNe3yDZuecTaFtwmNvylonwCNu2Fae92/ELKW/CsWOS7eMkC8A79m5irnfTcSnN/3tZEDPtnc2SXXjmgmQ7Dzfr8WUvPSClOXYKp1QshLqN2bJgsV0LWfy44GC8ZDvc3FiyjXFm8fbkVgaWL5hNYkIU9019F6+1uVJefWu5brfzkdRLPYfWaETjKlZyag2FuOSk4ZwQz75GN5PmUg+AXqf+pMeRv8Q5NVpi6zfnXGhHEv3CyXTz5b6fHhIxrL/5hj/36DgX1KH4PK7D5VAqD4+RRXGvELHOKjAfn0uXkrxGNpPs1PVnJdu5II0cFy8x0eMkh66Y/mIJgrkpKZCby8y5p6WXdb5mJ9y0yfJOmc9/3SvZRbmFkm39i8wUa54E7XmXLKh75FyqZIcGyBo9kXHmMCJavbwTZ8IA+X748htZbH36o+V3duw6fVGyOzeWvz+VETe2/p5b3wO2IjFT/j75uzmUmv/H9ackuyivqPj4waHNSy375W/7JPuxO9sXH/+2Rb4v7+wti7FXJ/9bbn4ulvWeZn66VbKnP2kOszfrO3lyeNoDpcfltxSRhiuFpC+jxgN1732Xxqeffsq0adPo1KkTu3btqrF2lPW8srw/E2LP8X9PiRXzvr6+dGk9gh6dhuHoIHanTv+/QVLZmV9Z9VlWz53pz/UrdzuPxcp93OqVJ4qPXQPl+8LZRe7TstLl8+Ym50j2lLvN/bCjTitCT/36qwi1lZAgFjqsXw8aDV/Mk59nj09ozzWTlyc7Fr75RjgwSmDNK18Q1V0saHjg1gihVfLGG2K8l55+ZYGNG6FfP3FcVHSl88xkguXL+aEgEIO96APaLvyOLnMujU8jIsSOkQED5DIjRsCyZeK6/P13qTtJcovM4zgnva7EfNVJhfudvDzhgAoLEw6nstizB1JTYeDAag9XqrgxqBHxdWs06uYukYiICPbv3096ejoLFy5k0qRJbN68mRYtri4s+cILL/D0008X2xkZGQQHB1dXcxUKhUKhUFQRFRkT3AjjgZSUFBYvXgzAvVcTnbQBQYY4cdCxY5XUX5cxmUwkZsSy9tACDs7bUfz6V+89zpTmz+DrXK/EsvNPr+Pfk2vo03w47RsOIOrCSXQ6O1q3HwkxWVLeyPrtsCsqoGH8AXwzYgiOO0Jw3BFzho/GiFBb773Hufv+vOJc7gnR1D+6B4/48/B1lAixodVC48bcpPNn3YQZlb8YQI6redWjz4VzDFj2OcvGv0Kuq5d40WSClStFbHF3dyEae9ddsHcvQaNfJKZRO5u0Q6FQXP+o8cCVbNmyBai68YAtOHr0KNvW/UnPm8YCEBDYkEceeYRmzZpx//338/V728qooY7i6CgEuO+4Q+wiGDmyeILbMTMN5/RkUoLKWNhR3vNY8tBDYhfJyZNw7BgcPy4WUmg0nLmQRY6PxaINjUaE7Fy+HIxGls9Zhe+x/dhlZ6ItLKRdg0uhPS9j7RRZtUpolRw4QMTDL3F0qNi1FNWpD116NocmTcQiG+uwXhoNvPeecIxs3CicJitWiNBj1yuOjsJJVBYFBSLU1ooVwu7YUTiuhgxRDhJFraTq9xneoNjb29O4sViR1bFjR3bt2sWnn37KN5fjG1rh4OCAQ3m8rgqFQqFQKOoUFRkT3Ajjgd9//52CggLatWtH27ZXXxF8rXRM3kJ49h4aGyIvvXBjO0ZyirI5e3Y3BkMhrZqInQBGk5FPVszAaDKg0Wjo2P1WEmLPEnP+BH+d+JkH2z8LQHxWNGf2biM5PZ6LaXEkpcaSliV2CEQmnWDNL38Un6dX2+EMbyjvoIn1iyDWL4JN3I17ViKN0w8TGr0fz/QEXHJScSpl8sD/1CHGPH/X1RMTEwn38LWZY6QYk4nBC9+jXtwp7v10MvHBzWGDC5w+LVZIvv66CPWRnAxxcZCYyO3/e5pF973P+aadbdsWhUJxXaLGA1eyYMECdu7cSUR5JlxLYvVqmDVLhAH6+mubtQ3g8OHDdOjQgcLCQlq064mXrwj7+NVlzYkbAVdXMbFtQafF39N21TzOduzHkQFjYHwbcyisyqLRiJBe9epB795S0saV5t27gXu2wm/vwFtvQUgIaLWkh0eQHm6+l9r1KcFxk58v+vX33xcLIFxd0RWad5+mhjWFYaOuXtZkgk8/hcmTYfduoWuyZw/cd59w0Nzo2NsLJ4pOJ3aW7Nkjwpx99x3cf39Nt06huALlGKkmjEajFCNUoVAoFArFjcmNPiZYsmQJAHfeeWflKjKZ8Io+Q4rFSyHZZ4qdIskaT3xuvbVy56hhYjLOEZl2ivOpp0jIjsVJ74y7zgMPe08CnBrQ0dcc9uiHDe+RkpWEQ6EOe60jqQXJJBckwREIqR9R7BjRaXX4utXDz70BIx5/hsCQpmSkJ/Ple4/R0/3m4vrOpB5n2en5V7TJ3cmLzuH9OBlvDivi7xVU6vvIcPVnf+hQ9rcZWvzadG3JYut5bp6l1new18hS068JjYZl419h3PdP45ZxkfATO+CERbrRKP77+YmY6JMmoV24kKHz3mTBQ5+Q1KDxVatVKBSKkrjRxwMgopB069bt2ivYuRNuvx0yM2HcONs17BJ2dnYUForQhwmxZ4sdIzc0JhNO6SloTCbCd28kfPdG+P0jsbvk/vvLL2xeCfyO72fQG49CUaHQAmnSBDp0oOcFEYYyvVEE8Z17Qc+wKx02e/bApElCNwOEg+PDDzm0PaF8J581C55+GmbOFM6bnEshyRqrcUAxH3wAEycKTRoQn0EVaAoqFLagUo4Rna08wtcZL7zwAoMHDyYkJITMzEzmzZvHpk2bWL16dU03TaFQKBQKRTWixgQy2dnZbNy4EYDhw4dfcz1NNi2l3eKf8Ik6xddNXyTFQew+2O/VlTP5vkTqQrig9eP/6pUcFqq2EZcZRVJ2PG0Duha/9vuR70jKib9qfh8HP8kxkpQRz8XMK/P6eQUSHNBEeu2pIR+h0+pwDhGvu3v48Nzbc8n+zuzsCHILo12T3vh4BODrFYifZwN8Td44O7ih0Who3+EmqU5D1FXiel8jGQHBfP3nQfS5ObhfiGFcQy2cPStCafn5se+Cn83OZUmabxC/PPYN4cdFPPhbbmsvVj22aCGEWy/j7Ay//krcf0dpEHWUez59gHSvehztM4KdIx6okrYpFIq6jRoPXInRaERbipO8TI4fh8GDhVOkf3/48UfbNe4SERERDB48mJUrV3Jw1yaat+1h83PUOTQa1j72NrtH3k/LjX/SbMtyHM+fF1okb7wBDz4oNDmqkKRm7fjr8z+5bd6HQkz91Ck4dYrQyxk2raTND7PgRS949ll44QXx+p49IvSW0SjCXn39tQj7BNhnnaTVkl/QF+SREtIEAvPNou2WdOsGQUFC+D0mRoxN3n5biMErBOHh8MelncWhofDbb9C9/BpmCkV1UinHyL59+8rOVMs5ePBghcu0aNECvXVsQgsSExO55557iI+Px8PDgzZt2rB69WpuvvnmEssoFAqFQqGoOapiPABqTGCNXq/n119/Zfv27TSznGi2ItTJHEfdUogdYJAmgYH5YiKpEB2c+YfTOhE/+jQQ4HBZANR4RVmdRl7UE+wZKtnJmYmS7fOf+fPVWE3e5JxJkWytu/zD2YSspm2yEGl2fUyEhigsKuDAsX/YvvM9ohJPotfZ067XILT5omzzhE74pscS6tmEIM+G5BvySE+/SHpeKkXGQnQB7pgMIu/EXtPIzs+k0B3y8nNxcXYntH4znENl55A2r4jL7yT7Z/m+txtlDj/RmKY0cZR3ZpgshFtNh+RrpesfJtnW4rJOjX0ke+aTy4qPNcGyYGL2psji43TsmZnrAlz6XM+DPtBd+hFTZFm4pew0mTxIFnL/xV7+HBOXniw+tmvsTRFunIgIAeDw+Usi5ifigXhIzZPK+rw4iwGzXyPw8C48Ui9gn5SCISEbgB9/2caIV+4jsXFrdk2YytTJ/aSy/1t2VLIfHCZrDOQZjMXHX764Rkqb/r68E2rml9sl26uJWQQ99dAFKe13nfz+7d1LD9Xz80azwPw9/eXVsHuPyKtrrcXXrcWLZ36wufj4selyeJQ5S+TrYciXPlWiUswiwcs3nin1PBXBWmz9+1XHJTvtiHyfB3eTNR7GDZSdjqVhKbZujbXo7czPZM2C6U/0LPd5yqIswd3SBNetBZctxdYBDkenFR9bi61vPyFfyx4Rcjg93wa1Q1BcjQeqh6SkJFq2bMktt9zCjz/+WOb1u4KEBOEUSU2Frl1h6VLhtLZg7mb5WXFXX3NYpZlT/pbrayPfjx9NWlh8HGroCqzkv3+WsPDXL/Dzk/sZa7F16+/Y9EdLnxCe+YX5+z798dK/680DPSR7vbNZYN3RSRZbn1BSGKlLWPYzcElwvQR2nJS/v5PGtgZaw5MjKczNxXHZYuFk2LYNXFxKPW9leGCw5dixGTw0FCIjYckS0GopRAMFBWi3b0O7YQOa1FRZw0SjEU6RcePgyy/B91K/tWULk56/W4TOvMwnL4idDlOnwiefMGfD5f7Qjw6LN+D3w9fkN2pMYYNAGt8xotR2L9x6rvj47n61Y2dJmWLrlaVvX9i+XTiXvLxKzZqRV1h87O5oV0rOG4NoizFPsLdzKTkVtqDSobTS09NJT0/Hz88PJycn/vzzT/755x/atm3L5MmTbdHGKqVdu3ZoNBpMJlPZmQGtVsvJkydp1Kjkh8j3339vq+YpFAqFQqGoBqpiPABqTGCNg4MDt912G7fddts1lW9oTGJM0ToAttm1Y619d6IKs8ooVfsoMhSyacdC/vnvL3JyRdgHnVZP48DW5OVn44z4ETS88yQATFnmuNcm76IrKwQaeIUBoA10q8KWKyzJ8fZn2Uuz0eflUP/4fpKzzJPs3tFn8Dl/Cp/zpwg8vBN6ri+faOlljEa0a9ditHAg6gvzaL93KRwPk3ew2JIdO0RYkr59RXiamsBkosGxPYTvXIdzWjL6wjz8Z+ugsJDC1m3hlkdqpl2KGwI1HqgeVq5cSVJSEkeOHKm4UyQrS2gWREaK8EVLl1bpZHyjei3o1KkTu3fv5vPPP+fNN9+ssnPVSZycRNikiRNh/34RcvIyJ0/C3r1CwL0q0GqhUSOYNg0AwyVnj+Gpp6CoCMe9eyAszJy/SRPYtQs6dTK/lpMDY8dCUpKoa/BgEWbr0CGhK3aV/tbg7UPCMy9VzXu6Xuihdlcp6gaVdoxMmTKFBQsW8N9//xEXF8ftt9+ORqMB4OLFi8yoA9vJdu7ceYXX/2qYTCZatWpVDS1SKBQKhUJR3ajxQO3ngaKt2GHgqK4RS+37YdJogLrnGFm+4Xu27PobAC8Pf7o1G0SXZjfh5uwJgCn36s4PRe2kyNGZ6HY9yD1l3kWUEtKYVc9/Rs/v38P9QiwMHSpCfVz6nVQW+tdfR//O2wBM8gkhxSeYsHN7sS/MheY/XDmxYwOCD++Eux8VxldfidXXLlXkgCmFiPV/0e+r166aZnfiOC2NXjhkZ7B37IPlvp4KRUVQ44GqZ+nSpQAMHTq0jJxX4fnnRUgkX19YuVKeiK8CNBoNzz77LOPHj+fzzz/n1Vdfrbgz50ahXTvzcUYGjBgBJ04Ip/sHHwhh7upCr78yfJOb25V9p7MzfPMN/P03fPGFyANCZP3AAWjZEpYsIfBIErFd+1ZL0xUKRfVR6af5nj178PT0pGPHjnz++edoNBoGDRrE6tWrmTNnTq13jPTt25fGjRvj6elZrvx9+vTByTrGoEKhUCgUijqNGg9UPTt27GDZsmVMnDix1DBapZGqcSbAlIE9hWVnrsU42JvvnRce+RFtet1+P4orKXBxx6TV4pSeLF5o0qT0SfxTp0QIkltugfr1MTY3f0d8k6PwTY4y5/XyAh+fq1RSObI9fcHDA9LTwcFBxFBPtflpyiTLv2SBVl1qCn2+fwcAv7PHWDftvepqluIGQY0Hqp6MjAyWLRPhFEeNGlXxCt57T0x4N2xYbYLXw4YN45577iEzMxOj0Vh2AYXYxTN6tPi8Pv0UtmwRGiRDhoidHrWJ0aOFDsYTT8CECdCzp3CYNG8OzzwDn31GL3cvlvxvKbm+dUe/TqFQlE2lHSNxcXE0bSpi9x46dIj27duzcuVKmjdvTlRUVBmla57LAqDlZcWKFVXUEoVCoVAoFDWFGg9UPd999x3ff/89CQkJfPfdd9dUx8/67rxRuJR0jSs6DBRVfihbI/TpMgatVk+fLqPQanVQxx09iitpcGgngz54Cl1RIec79SX0zz/Nibm5BO3ZglGnJ+DoXsL+XQeRl7ROhg+HJUsw3jmBvPF3QHQ0y5+bi3dyNPqifM6HtWfiT1OrZFIpJShcrOzNyREx2evXBwuNkeoitk035ny2HL/IE7Rb8QtuiXG4piaiMZkwurgS07gNCc3aE9OmGwb70jVSFIqKosYDVc+iRYvIy8ujWbNmdOjQoeIVuLrCXXfZvmGl4OzszJw5c6r1nHUenQ7efVeEVLr3XhFSa/hwEVby6afh7ruvFDavKU6cgAULxPFPP4mFDJfD450RWjVnBo0m36N0rQyFQlH3qPSvSXt7e9LS0sjPz+fUqVPFHn97e3u0tc0LrFAoFAqFQqGodjIyMli4UAiZTpw4sUJlXXXmuOE5uDDb8WHStZ44AA7AONf/MKHhlHtLzrlGcOjYjuL8Dlo5ZEPT3nIIhP82LJHsDuFyPGRDUkbxsWM3eVVqwW+yQK/GWT6XfVN51XveNvMEs31EAwbo+sKeVIpIxeiiIzrtLGHeYrGRyUq4XN/CIkyIt6OUVrj5vGRrrcTHTSdlkXhLvRJd+wApTecmvwcnL1nwMeuMefuApqEnpaGr5yq/YP2zoIl5cqFZ9xApaWhHWeB695mLkr35ryOS3WWIWbvjv7kHpLRZP/wn2c6+chz66TOHFB9/s/iwlPbEJDncxncrZWFuWQQWZn79b/FxhiaILN8AksOasW76BzxkKQqckMDg1x+Wypp0OjQGA4Y1a/l3zzkOnEovTsu/+WYsP+VPf94rlXX0lieW8lJzze/vaVnk/Ie1JyV76kR5UvKzObstrFjpGvy0/pSUNyJc3rUy84VVkj39XVkkngvZ5jaXIvILMGnqEGAIzHxKvJCfDxcuoG3QgD8eFSF4iAQiT8PVxNdNJlGmqIjZc3ahMRnJd3YDjYYn7+tsbvMXViLn1sLHt1ZPKLHvV5+Q22FDsXVrLkalXXPZxyeULCAP0CrYs8Q0a7F1a8b1bHgtTVLUQS7rrUycOLE4DHu5MJmgoEDsaCsHlmLr1kz/ZlSpZfMelneFfPTgIsl+5n9jzHmtRMytRa1nPvK3fO7Z8rn1LuUPL/WzlbO6d8/Q4uOcPDkM567Tct95PlEOPXpbjzDJtuwfIoJlkfeezUrfJXEqIUOymwS4m43hw+HwYfjkE/j2W+GEmDJFOB8efLDUeitKWX1LiURECKHwRYvgxx+Ftsglhwg+PjBnDmf8WnP5qrQL8xYHMTGwcSPsdYExY65aNVROcH3b8QuSXdZnUROsOxAr2Te1DaxQ+coIrkdeNI8twnyrTmuoOlGC69VLpR0jzZs3Z+fOndSrV4/s7Gy6du0KQExMDEFBQZVuYHViMplYuHAhGzduJDEx8YotkosWLSqhpEKhUCgUiusFNR6wPV9++SXp6ek0a9aMPn36VLj84ML/aGyMZZ7dANK15skzjclI67Rd2BsL6JSylVR7H1YaA9moaUiWpu6sJF957A+2nl1Fx+De+Ls2wB038g15aNCg1WjJzTeRl59NsH8TWnj1QatRi49qivCNSyl0diWqa/9S82X5B7L4nZ/Jd3HHpNPDwYMiTrlOJ3Z7tG8vJvgaN4YxY/i3cWd8164grUtPjI5OQHqp9d9wODhASEjZ+aKiYPZs+OEHSEwE4LJUe56LO/Nf/hHoXGJxhcISNR6wPZs3b2br1q3Y29tz7733Vqzw4sXw5JPwzjsi3JGlU2XePJg/HwYMELoWjRqVXM81UGQoxGAswl7vWDFnjkJQv77QGHnlFfj+eyF0/sADNd0qme7dxd8HH4j+48gRiIuDm26CgAD471JEHJMJ/voL3n8fdu40l73sGDEa4dgx0ecrFIpaT6UdIy+//DJjxowhIyOD8PBw7r77bnbs2EFqauq1xYusQaZNm8Y333xD//79qVevnurwFAqFQqG4AVHjAdtSVFTExx9/DMBLL71U4R3FQcZEbi0Sq9gnFG5gnuP9xWkaTCwLmkBo1ilapu3BqyCZCSTTy3Se53S32O5NVCEmk4kCQz4mTOyO/qfM/DdlnefWfpOqoWUKa+wz0+n5xRukhjYmo34IcPXdBN7xkdhrfcnyq29+ccAAcHeHdevEhN1eeddH0ZEEEm6r3tAw1x25uUL4N/Xqwij6gnwKHZzg889FWJfLArsKRQmo8YDtadu2LW+88Qa5ubkEBlZsVTkffCCcn4cPi0n1u++Gfv1E2rJlsHSp+HvlFTh/Hry9bdbuY9F7+XndBwBMvuVFoOTdAYpScHODadPk11JSRBirhx4qXYurutBooF498XcVglYugjeeNr/QoIHo400moRc2Zoy4/2JihG6XQqGo1VTaMTJkyBBiYmKIioqiZcuWODg40LJlS06dOoVPFYgCViW//PILixYtYsiQIWVnVigUCoVCcV2ixgO25eDBg1y8eBF3d3fuuOOOCpfP0Ji3xcdr5LGlUaPjuEc7jnu0I9POg34XRKz3GI07dQWNRsOYNvfRvF57IlNO8G/kevKLzKGQ7LUOtG7cnT0nNwEQ4B9WMw1VUODqzr8Pv0TEmj/J9bj6hFvErrXc+vPbJLRoz/LX/mee5HFygnPnYP9+eSVzVBSsW0ezRctI7nszSUNGV/0buV7R62HgQLFKt2VLeOQRaN6c/Q71yfBtQKt/FjP52eFgMAiNgvvuq+kWK2o5ajxgezw9PXn11VevrfDliCTz5oln55494k+ng+eeE+LZICa0baxdEewbjoezN+k5Kfyw+h2SRx1h1qxZhIWF2fQ8NxxGI0ycCCtXwi+/iNBat90mhNtrKdnBYeKeMxjEC/HxIgzXrFlCUyUpSfRBrq6lVaNQKGoJNlGs9PX1xdfXt9h2c3PDrQ6uwPHw8KCRjbdcKhQKhUKhqFuo8YBt2bp1KwA9evRAr6/40DND48JTjg+jx0AROkqSvTzk2ZnOF/9hhTGUvzTNK9Hi6sdgLKJ5vXY0r9eOAU1GEh13glCPcLQaHQD2LetxW7/HyC/MxTWw9sWWvmHQaDh182hO3Vyy8+JCaHNMGg1BB3fSfM0Cjt0yTiTccQd89BG89JKYNNm+HbZtK45h7g9oioqUY6Qy2NmZxXOPHxcx4rdupZ11vo4dwUsJ6CrKRo0HahmvvAILFwqnCMCkSWKCGsQktVYrJtq/+cbmjhFPV1+eue0z1u1bwJbDy1i8eDGrV69mzpw5jBh7m03PdUOh0cDQoWI35bZt4u/xx2H8eHjtNQgOLruOaia1dUdIT4c//4T//Q+2bhU6Ixs3igzt2sHq1eZ7U6FQ1Go0JpPJVNFCn332GfXr1+f2228vM++CBQuIj4/niSeeuKYGVidz5sxh1apV/PDDDzjZuCOtKBkZGXh4eJCeno67e91Z9ahQKBQKRVVQnf2iGg/Ylk8++YQPPviAxx9/nJdeegmAb/6SRa6njG4l2W96vlJ8rA+TxcQxykPXwqik4mMHUx7Jl1fwAW56ebXeoUxZtLu1h3xeh7ahkl1wIq74WOcvh0M4c0wOhZRWKGtCtPWUBaE1evMPZK2HWVTRaDLyZfIX1PcKZVjnSXg4e2OIlkVMNU4WDiW9tuQ0QBtqFbbByUrQMrvQfNxQzuviL1+v7ARZqNWjoXkyOX2LLPqOj/xd0bqXrvHi2ci84+K+gU2ktLmbz0i2tYDut0vkzzEzMq34OKCtLCifHCmHVbJzldvlV9+8mOv8blk81Ku51b1nReouOf/0Fy/pjnz2GTz5JIUOTvz2/h9k+gfiH3uK258df2UlOh106cLuwDZEte/FhYi2ALQxJdH5oXEk3DyMkC8+BD9zW2I27cD77dcwOjmTOPt7GgXKu1e+/G1f8bH1L72yxLOthX0b1jPfE1FJ2VJaacLGZWEt5D6gXQPJXrH5rGQX5pjvW2vBeGtB+aK8IrSFBficPY73+ZP4Rp/GPTaS1LCmnLppFG5dzNegT5v64iIlJ4O3N4528vdp6a4oyR7eWdY5mfnm+uLj6a8OlNKW7Y6W7DaN5B1vIRUQV7X8TAEeu1P+HL9ZbH6mWod7MhQYJPs+q+dtaWLFX8yTz+sVKPdDGVb3xCO3tSmxLmvi0nIlu4Fnyf3t5iPxxcfZWZkM7RahxgN1kM2bNxMfH0/fvn2pX79+2QWuxoQJYmfI3XfDnDliYt1ohB49hN7D+PFCa6SCvNvpS8kOmXmrZCdsNz8LEi5EsnPfHLb8sxm9Xs+ke96iefNuxemG9ZFS2Rkryx/+csG2c5J9e8+GJeQU/L3T3BeP6iqPYbYcTZDs3i3k/vFcktzH21uML9bulfu3e6366bJYuTem+DglM19Ku2rfERMjPs8ffyxeMJDrWw+nTesrpNVhLTjfubFvCTltSGSkuCcXLBBaKnPngqcn/PsvNG0qxNttyNZjZjH2Xs1vvMUyv26Sx4gT+137WERRt7FVv3hNyo3Tpk1j1qxZ5cr78ccf89RTT13LaaqdcePGkZqair+/P61bt6ZDhw7Sn0KhUCgUiusfNR6wLU899RRxcXE8++yzNq/bNy+BsKLIYjtf42jzc1Q1Z3JOcSEthuMx+3C0q9mJN4WNePxxYpt1wC4/l5u/ehldQT7JDZvxx8yFxLXsREzrrmLl88qVYkJ++3Z23fFYsVMEILtRU84+8AQhf8wRAu3vvSd2mkydSuBNvXBetwbXpX/jNeujGnyjtRejnT1JEW04Meg2djzyEmve+h+7HniWtDB5ck+zdy/23briGFAPLlpMqK1YAW+9hX1qcjW3XFGbUOMB2/LVV19x55138uOPP5a/UH6+mCw/dcmZ+u23sHw5/PCDOVTh2bPiz9UVZs60fcOtCKgXxpJVa7ht3B0UFRVx7tzBKj/ndU9QkNhReeoUm76cT3rDpjhdvHBNTq5qJywMXnhBaIctXy6cIitWCGddhw6QnV1WDQqFoga55lBa0dHRvPnmm2Xmi4mJKTNPbWHSpEns2bOHiRMnKnE1hUKhUChuUNR4wPZoNBrs7e1tW6fJyK2xfxCSc5Y1jgP516Fb2YVqIQeyxIpsNydPLmbEU987rGYbpKg8Wi0bprzGHc+Pp/7JA9zx3Dg2P/YG8S07seSN70Gj4eExrUuvQ6MhK7wZmY2b4Xb6uJh0eeEFkQTkt26Lw6EDeM76EJ6fbvMVqTcC+vRU7If2RZOTA4Bu6RJo1QoCA0VoF6B747lsnre6JpupqEHUeMB2GI1GtmzZAkDPnj3LX/DDD4Uj2d8f4uKE88Na86VxYzhxQkxMV1TQ/RrRarV8/f0PDB42jJSE6jnnDYFGw8V2Xdn01e80+nserd94o6ZbdG189534HxUFn38Ozz9fs+1RKBQlcs2OkdjYWN4ox0PKZDLVmQHE8uXLWb16Nb169arppigUCoVCoagh1HjAdiQkJODn54euCuIsd724kZCcs+Rjz1G7Zjavv7po6BTOwaz9JGXEMWvpDJzsXQhxa8SdrabgqC9/qB1F7SKjXjBrH32bfj+8g+eFaByyM0VCOX8XOUWdo/nbz2GXdamcVgtt2oCHB/GPPoXzhrU4HDpAUVAIdnVQ27E2YHR0wtSuPZrt2wCwmzLlijypLdpe8ZrixkGNB2zH7t27iY+Px9XVla5du5a/YKdOsHSpWIlf2ljCywsGDiw53cYUFBTw2Scf88CUh1nwy5GyCygqRKG7JyfueZTW2ktBbvbsgZMnYeRIcK4DY6NbbhG7PI8cgS5daro1CoWiFK7JMdKnT5864+yoCMHBwXU2XqdCoVAoFArboMYDtuP222/n1KlTzJs3jwEDBtisXv/cWPpeWAHAKqebSdd62qzu6qaje2fCe/Rk1d55nIg7QG5BNjEZ53DQqbBadZ1znfsT27ITTf5dTWSX/sWve0eehMJmQiz8Kuhzc+j+8GD02Zfiv7dqJULJdOoEJhO5F7PJ694T8vPJuO9Bgm24G0tbWEDQvxsw2DuS2Loj4FpmmbqK0cGRgk2b0K5ejfaff9D++y/a6CgR675+ffj4Yw6GqgmtGxk1HrAdixYtAmDo0KE4OlYg7OWtl7Q+hg27Mi0tDdasgdtvL7fTubIYDEXs3ruaz1pPJup8JHt376Jf76euy/mxWsWsWfDrr+DuLj7vBx+EijjYqpspU+Chh8SxujcUilrNNYmvX68sX76czz//nK+//pqwsLAabcv1IK6mUCgUCoWtqM5+UY0HbENCQgINGjTAZDIRFRVFcHBwiXktxdYBXk37v+LjaS6PS2mBOgcmZf+Mv/Eix/VNWdTsEelHpzEzr/g48+IFqaxHUJBkR56TV3mGBss7T0yFRebjbFk8VOsjr9K3nhQx5hVKts7TvMJR39xfSjNECeF2g8lAQnYMWR5FtAjqKF4zFrFq56/0CRuMq4M7ukZeUlkcrFbQ6qx+gDtbTb5rLdLtrMpaFbUPlsXZfUM9S8pK7EFZ5JUUWVgZF3ny3quVWTB08qCmUtrMr/6Vyx5OlG2D/POl41Tz5MiFtDwpbXwvWbj2rx2yaHzMGbOGREF8ppTmGCS/fwcPeTLvgcEl71T63/Jjkn3X5feYlIRTy+akevqz/bFXuNCqEwBFuUVS/ilul67nP/+IuOsOZtF4S+FVKF181VrI3tVJvh8Ki4zFxy6xUQx8bzr2e3cDYNJq+evlb4lvJrQUPBvIzyCDUf4cOjeVxeqbB8rXz1Z8u0T+3j40onRh3g0H4yR7QJsGJeS8hMEgduhoNPy2RRaBv7N3I8m2FPpt3dBbSitN1NyajYfiJbt/62sUpi4Hf1iJO3tZfTdPnTK/p0dvr74dM18vOiTZJYWbU+OBujceMJlMNG3alNOnT/P7778zbtw421T89NPwySdw//3m0EU2YuZzqyTb0MSJfTvXsXbxDyQniWdKvXr1+Oqrrzi302oHg7fcV7g0kUMdWt/bK/aYw88P6SiPUz79abdkP3lvJ8n+54i57/3v/S1S2uM/jpVs62dSrsXzH+BYdGrxcVaOPIZJzymQbK229Ml+R4vxRU6+3L81seobmjUoR1/x3nvw9ddw3qIPf+AB+Ogj8KiavqbKMJlEaK1//xV9/GV274ZOnVhv1WcNLKvPKgUlVF46pY2nqrNfrgg/rj8l2fcNbFJCzusfW/WL1xxK63pk4sSJ5OTkEB4ejrOzM3ZWq7hSUlJqqGUKhUKhUCiqCzUesA2LFy/GZDLRpUuXUp0iFcHVlMM92QvwN14kU+PKMqeh19VKPJ1GR6BrKLogz+LX1h1exOZzK9kds5Vhze6gU8OhamVqHUZ77CjodHhHnmTYs3dzut8w9t49lVQvq4mPm26S/1cxQeuX0fH9F7HLzsTo4YnRxwdd5DkuhpidVt7HD5LrW49c35IdMdcFVRD6T1E3UeMB23DkyBFOnz6Ng4MDgwcPtk2lR48K7QYAWzlaSmDBqk/578M1mEzCkeDm4cObr7/MQw89hLOzMzN3riqjBkWlef55mDEDtmwRTrBffxX/V66Eb7+9UnemNvPuu/DBBzB4sHCSaDRgNEKfPjBiBPrHX6PIvY45exSKOoxyjFjwySefqB+aCoVCoVDc4KjxgG1YuHAhAGPGjLFZnWMLtlDPmEiWxoVfXO4iR+ty3Q9mw+u1YP3hP8kuzOT3Q/9D6+9Cx4j+ZRdU1EqMffqSe/goUZOnErFqAY03LSN883JiW3fl+E1jONftJoz6q4fYqircIk/T7dWpon2eXiT+8y+GoGC0F5Mo3J0CJhNtVs+n988fkhbWhOU/razW9ikUNYUaD9iGXbt2odFoGDRoEG620kR6/XUoKoJRo2DQINvUWQJuLl6YTEbqBzeme7+R9Bo4lmmTulfpORVXQauFvn3F34MPwuTJcOYM/PADDBgAFQnRVlMcOSJ2gYJw6rz9Ntjbw8WLkJsLv/9O08xCjr77ec22U6G4gbjef0tWiHvvvbfEtNzc3BLTFAqFQqFQXD+o8UDliYuLY8OGDQDcdtttNqt3jv0gVtqNxcmUS6a2boUSqShGk5Fft3zM0di9xa+52LkR4BNag61S2AQfH7Y98QbHh4yj45xPCd69haCDO2hweBcrXvUitk23am1Orl8A2QGBuCTEkrR8DYagYLF6Nb+A+sf20HLDIiK2CWdIUqsO1do2haImUeMB23Dfffdx8803k56ebpsKTSZYv14cP/ecbeq84hSmYqdYj/bD6DPhbrx9a0coHQVid8XBg3DoUO3WGrGmfn1o3x727RP2K69ckSWtU/WOARSKGx3lGLHgiSee4LPPPrvi9ezsbIYNG8bGjRtroFUKhUKhUCiqEzUeqDzz58/HaDTSo0cPwsNtGM9Yo6FIY0empnpX1NcEWo2WQkMhRpOBQPdQ2tXvTueg3rj6BpVdWFEnSG7ckjX/9y2uCTE0XvknqYENq90pAlDk4sr675fgHnmaJs1b4Lh0Md4P3oumoIDL+72MWh37pjzL8XH3V3v7FIqaQo0HbEdQUBBBQTbqv06ehJQUsUOgg+2dtXl5eXz04yO0btKD/l3H4e7qjaNvgM3Po6gkzs6yUyQlBfLyoMG1a3JUOd7eQktk7Vo4fVo4d/LzoaBAtPvJJ4lLVeEcFYrqRDlGLFi+fDleXl688cYbxa9lZ2dz66231mCrFAqFQqFQVCdqPFB55s6dC4j47JXF204WG9cHySKmOw6tlWwXnUvxcbYhW0preF4WUDchi0frg2Tx5P1b1hQftwxqJ5fNkevSN5N/iOutRNETN5oFVOs1kt+DPsIXgGPRewj1j6DxQ0J4/Z4Bb6K3s0O3yyx6ajiTJpXV+jhJtsZVdhqZLsqrmjX1XYuPjSfl+Pj6fvJulIL/YiU7LjnHbFi9P72VyHtRpNxORyvxWUv1dmuBcN9msoh3lrf8HgMbyvdEboGh+Dg5NkNKsxauNRYaJNslwBzWRaeX35NbPRfJ1lmJzW45KgvOn03IKj7OthJyT86U7xd7R/PPsIKwMM4/9TwAl9/5N+8uptDBiXxnN4JayRNysUdksdDO9tno3vo/TL16Ybj3PvafMYtnF1qJ647sEiLZeYbL6SFAOyHO2zBITNLo9RAaCk2bon3hBc7pgnGwKGsdYehQpHw/ZefJ4r2dwn2Ljz/9cZeU9uR9nSmNTYfNIqhhwZ5S2uYjskDqibOpkv3Q8Bal1m2J+XoIrMXWtx2Xr33PZma9laW7oqS04Z3la23NzxtPFx/f079xudtYFt8sPizZU0a2kuxxPRuWWt7fy6nU9NI4l2T+DjT0c5XS1uyTnyeD2gdKdkli6zWJGg9UntzcXJycrv2euirbt4v/nTuLMEQ25o8//uDCxfM4OJtY9dEv6HQ6Prp/kZRn5sbI4uP6d8n3rnX4tQZWfZjl8wxgQDvz+OHbJUektFsGycLKi3acl2yj0TyO6TSjl5Q2Z9lRyY4Il/vhDCuB9TyL/tHPXQ5L1czquRt7UR5f9WtV8m6aHScTJdvDRf7MrJ+7f/xztvi43M/G7GwYNoy86FiO//AH+WHi2W0p9O7tXLF7xbpd1uL114xWC7fcIv6uwkArWb5j55NxOHmMwpAwjK5uNLd4T3vOJkt5W4bK46PaIrZ+LFbeLWb5HmxJhtW4w92x9IVUlmLr1liLrVfZ/VBBbmSx9arCJo6Rixcv8vnnn7Njxw5CQ0N54okn2Lt3L/369SMkpPQBYW1izZo19O7dGy8vL6ZNm0ZmZia33HILer2elStVLF2FQqFQKG4E1Hig8nz77bfMnTuX22+/3ab1jsr5G2KdWF9vJLl6lzLz1xVy87NZtutn/ju5jrYNe/Lsgz3QaDSENRETuvG7jpRRg+J6wjExgXGfPEaBoysrJr8GrUpeqdx8x0rsn/0ETWYm/PQTJjs76FbJSdtOneDcOQgKEs6Ry2yPlLL57tsBaEhr2pIiZxc8Tx6h8V+/UuDmwbkht0FA+8q1Q6GoYdR4oHIUFhbSqFEj2rRpw08//UT9+jYKRXXwoPjfvWp0Pr766isAHn74YXQ6tXq/TpCSAklJOMZE0fLOYRz/bj45LdvUdKsqx7Fj8NlnNPlzEfqkRAzu7qSNuws+ehc8lDi7QmErKu0YiYyMpGfPniQkiBVTXbt2JS0tjXvvvZdnnnmGDz74oNKNrC7Cw8NZtWoV/fv3R6vV8ttvv+Hg4MDy5ctxcbl+fnwrFAqFQqEoGTUeqDwdO3akY8eONq2znuECbQoPQxpsqDe8+HUtRkZyjqN4cwKvkiuoxSzY9hWHIncA4Onqi8loRKMmY25Y7DPScMjNxisplnveuoc9ef/HuWHjr8jXYvtybv35LQBMgYFoYmOxe+ABXOYvJ7tV22tvgJMThIWVmsXr2EH6PnZnsW2ws0dXaN7Z1GThTxzasp8iH7+rFVco6gRqPFA5NmzYQEJCAgaDAT8/Gz4LPv4Ypk2DKugn9+/fz86dO7G3t+f++1XowDpDcDBs3Uphi1bYJV8kYspd7Nt6qKZbde1kZIhFCkYj+rw8AHQZGfh8NxsyU2D+/BpuoEJx/VDpvT8zZswgPj6ewMBATCaxja9Xr164u7uzdu3aMkrXPtq0acOyZct48cUXcXZ2ZuXKlWrQo1AoFArFDYYaD9QuPI2pTMj+DYBzLk3J0ZlDtIznNPdxnP9jZ001r9Jk5IjQPwPajGFY53vQKqfIDU1G42b8Pv0rzkd0Qmcoosv7L9D+0zfRFBUV53FNTaT/H58AUDTtKfJPn8EwejSGu+8mt5HtwjKVRE69+qQ3igDApNVKThGAC516YXB1u1pRhaJOocYD187lXTUjR45Er7dhFHeNRoT5s5VmiQVz5swBYNSoUfj7+9u8fkUVEhcHRhEOrMC/jmvCODnBQw/Biy8S/dN84mZ+YU4bNKjm2qVQXIdUundat24dvr6+HDt2DDc38+A3NDSUyMjIylZf5bRv3/6KGJAADg4OxMXF0bNnz+LX9u7dW51NUygUCoVCUU2o8YBtuHjxIq+99hqDBg1ixIgRV72mFcZk4rbsP3EzZXFB68+i4HvN4gYmE8OIBOAMdT+sQLCfihusEKQEhLHwyU/ptvInei79H00X/oTfgV0ceuApYj1aYtTqiGnSDqesdLzffx90Ogrn/QZ2dhgtNEaqinxvP9b9ugpMJnS5OTikp6JPTcE+M42sBqFkB4bQyMGx7IoUilqGGg/YjjVrhE7XLSVoKVSYvDw4exZalF83qCIUFhYyb948ACZNmlQl51BUEStXwpgx2OXlkRccytn3P6/pFlUOOzv4RCx+yIpNR5Obg0lvR+bgYTRrUovF5RWKOkilHSO5ubk0adLkilUTWVlZ5Ofnl1Cq9jBq1KiaboJCoVAoFIoaRo0HbMP69ev56quv+Oeffxg5cmSJ+e53uFeyv8//SbLf9Hyl+Ng3ZxsNjAnkYscHuj7EndpfnNbKdAE3CslDz2y7W/DT2JNZZBb/7RLa07Ja8lLSJPtcpixiar9DFoRuGdyh+FgfIDteDMlZkl14PE6yXV+9SbL9cs2r/Y3pVmPky4KOeUWYsgqI+3G/lGy8aBY91/WSVTmNR5IkWxPkLtv6kjeIa1vKoU3uGCeHX1roJAu3egWZr4Gbldh67DlZ8JqW8krbBmFymLMLcWaR9NDGsiDs/vly+Iuw4RGSHWklPq61EE0vTJXF5n1aycKaKWdkgXAnN7MY691WIt0n42Uh95NW4qEH9ssCupZzqXYu8vXZd1p2ViT+I997WOVvd7PY9ZHX83V29OhIpzefxuvUETxjI2k28BYgiBMDfkOfnUn8VrmugtxC7HKyabpuEaNnviLphByMkj+nNiFWn0tGnmRvP2q+1rf1CJPSsgpkIXtX+zJ2OkVHw9KlMHZsmWLr1nSzEEi1Fjyd/ad8vxgLiigv87eclex6nrJIsvV9bim2bk1ZYuvWwq25Vte6NLYcTZDs3i1KXg3t6+9aYtrV+N/yY5Kt0Zpv5Lah3lLaL5tOS7anlYiy5TX4ftVxKS086Nqd11/+tq/4ODcnq5SclUeNB2xDdHQ0x44dQ6vVMnDgQNtU+uWXMGMGvPACvPXWFclPuzwh2R9nf1ZiVTOfXSHZj713KytXriIxMRF/f38GWa3K1/g6yxU4mJ932Rlyn54RKT9nRz8ia6H8vll+7pw6f6L42N1Lfgb9e0wWLndzkp9Jlv2OpRA7wJSRrST7v9PyeCElS97pN65nQ0rip/WnJHtYN/l5dzxO7h8zcsx1xybnSGmtwuTnivUz3VJw/cB5uc+2fiYV0749eHlB+/Y4/vorbbwu9W25ubB37zXp0VRGXNuWYuN6nQZcXcgZdwfWvWzHRj5XLVMezidnS7aTvTw97O/mINnWQu8VOXdZ73/TYfN4ql+ra9ciKktsPTVXFmf3svo+Ld8TXXw8tKM83q4psfXaxLbj5jFhaeOhqubyeMp6XHWtVNoxEh4ezpEjR/j1118ByM/P5/PPP+fcuXO0aVP7xY5ee+21mm6CQqFQKBSKGkaNB2zD6tWrARuuDjWZGGHYD8BabQvSNC6AeeL7VuNJALZpG5Orsb9KBXUDrUaFzlKUTHy/W1nfpAX+O/8hpbXZWYdGQ5GrO6RfOcHe9YcPaL5qAUX7N5D73fcYmzStxhZfhXXr4I47IDkZXnwR3n4bHn1UntVTKGoBajxgGy7vFunatSteXjbQ/0pJEc4QoxHCwytf31VoFB7OlEcfxd/P37ahvxRVT0AAbN8OISGgvTSBHR0Nw4fDgQPCmfbOOzXbRoVCUSuptMvrwQcfxGQyMWnSJDQaDfv372fatGloNBomT55sizYqFAqFQqFQKGo5JpOpeCLEeqXltdLAEEcDUzpnNT6s0cmr+R1MRbRHrDAbaDxOe+N5fExVu5LYVhhNRhKzzavjBre5A3/3QNuEHlNcl+QEhhA5ZiIZTcoXQuZC8w4UOLui/28nrj26oV+2tIpbWApZWTBqlHCKAKSnw+OPK/FYheI65vJCCVuNB/j8c0hLg9at4Z57bFOnFRHNmjHrs8958ZVXys6sqD1cuABnzkBYmNkpAvDII8IpAvDFF1ctqlAoFJV2jDzxxBM8/PDDgPhBfFmA/cEHH+SJJ54orWitwNvbm4sXyx+HNyQkhPPnz5edUaFQKBQKRZ1BjQcqz8GDB4mNjcXZ2Zk+ffrYpM40rScv2o3iXf2QK3aEFKBlqyYUIxry0TG2aC9FlR/aVikmk4nDiXuYtfNVvtnzLvlFYvdLmG8EPRvfQphvRBk1KBTl49TAkSz8cjFFvfugycrC5fax2M/8CEymsgvbGhcX6NwZbr4Z3C+FeqtXDzp0KL2cQlEDqPGAbRgyZAiDBw9m6NChtqlw4ULx/9lnQVe1uyyzsrLYtGlTlZ5DYSMWL4bGjWHECHFssAjxaKEHVNz3KBQKhRWV3h+4ZcsWHnroIWbMmMHu3bsB6NixIw0aNCAnJwdnZ+cyaqhZ0tLSWLlyJR4e5Yv5l5ycjMFgKDujQqFQKBSKOoMaD1SexYsXAzBw4EAcHW0jupyjdSFJI37MOpkK0GDCZCq45AzRM1vblb+0XXE15RGv8cCk0QK1Z9dIfOxZvpn1BO4evrhmO5CRn0rsJV0TJ70L8VkxhHkKwfXujW+uyaYqrkOy/eqTvXwljs8+g8M3s3F6+UUCDx8j9q2PhLBrdaHRCGFcBweYO1f8zZkD/v5ll1Uoqhk1HrAN9957L/fee69tKjt7Fg4fFg4RWzlaSiAnJ4exI0eyfdtW/vjjD0aPHl2l51NUknbthI7W0aNiZ2LDhjB1KkyZAs8/L3Ys9ugBnp413FCFQlFb0ZhMlVs2pNVq6d69O9u2bZNe7969O7t27aKoqPzidzWBVlvxlYWnT5+mUaNGVdAaMxkZGXh4eJCeno678m4rFAqF4ganqvtFNR6oHAUFBTRs2JC4uDh+/vlnclzbS+lTRrcqoaTgSefHJPvTBUNg5kx4+mnuHPULAK8aNtAc8yreY3jxHN3xtpOFOPOMZr0FP3tfKc1SmB3A006e+PILDJPstLjY4mPfHrIwudZV3sGSnZPJzvMb8HetT8v6ndAFuXEieh//W/aGlM/B0YnePW+jb99xODm5iRcvyAKYhFvFY48zt1sT6CYluQTIQstZ52XBT9M+WbRZ09Es2lyvlSzgfGH5CcnGSsjdq7l5IjsjJk1KM0TK553+puzombv5jGSPsRB5/faXPVKav5UYe5GVuKLRSmvR1cm81ivdSkzWw+pzcrcS2ry5XWDx8YJt56S0ACsRXEcrYdJt/8gCutMmdyk+/mrBASnNO0D+3LKz5XYG+LlItrPFufq3loVIv116VLKdTp1i8KfPEtmuFzvGT8VYaJ6kLbwoRG/bb/2Tfou/wOjlxbmVmygKFKKiCSmyKK61SO7EfiXH8l+5N0Z+D97y9dp16IJke11ON5kI8pPv2+4RspPkm78OS3ZZzxBL4tJyJftEdJpkW1/P0kiwEkgPcC/Z6bt0V5RklyXG/vtW8/02vlfJosdX4zcr0fg7e5fcF1mLq+vs5dX2k2+uYf2ZEthx0iw6bbAQlc7OyuSWzk3UeOBG4pNP4OmnYcAAWL/+yvTCQsjLE0Lbublil5qPT4U0jGa+vwkAg8HA/D/eYd+BDWg1Ou4a8BRtGnbnmf+NkfL/b5n5OZyxL15Kc2xsNS45lybZTk3kdDtncz9VZCUO3SDEU7LzC2UnnJ2FIHRifKacZtX/9WwliyVfSJGflUH+5udyktVz1PpSdmnsJ9mZ+fK830kL8XFrke5D0bI4fX1vZ7Gb8dJJ0iz68cb15L7ziNXYI7/QgF18HH4/f4fv/J/Rp4v0pK692fHZLwzvEkpt4FySeRzX0Kr/qy0kW41LfFzk++dMonx/hfubP5s/rMZP43pWrE+rKk5fkNtsfT+l5Mjv2du5/HqF1sLfpYmzr9onj5dubR9U7vMoSsZW/aJNFKWu5lvJzs6+6uu1DaP1LyuFQqFQKBQ3HGo8UDliYmLw9fXFZDIxfvx4flx+8prr8jZmwJ13QmYmbNzIPZomzNW0wXp6ozmp+JFLTa/Tzc7PZPOpZWw/u44CQx4NvSNoWb8TAGEBzXhi7Idk5qRSEKqnqLCAjj1vQZustESuS7ZtgzffhMmTQdusWk6pz81mzP89gEvaRXyjTvHfmCkYuTLMzL5eY0nzbkCH4e2KnSLl5rXXxGSjqytcvAi33QaVCZentHQUtRg1Hqgcp0+f5rfffuPhhx/Gz8+v7ALlYekljaSRI+XXz5yBhx+GdeuuLLNoEVzDbg+dTsed419Ek13E3tP/MHfDJ9jdbA+MKbOs4trQ/7sd9wl3UNitO1nffgcahwqVL6zfgLjnXiX+iWfQ/jqXVh+/gd/OLQStWARdnqqiVisUiuuFa3aMDBgwoPj46NGjkp2dnc3hw4fxVNvVFAqFQqFQKK57GjVqxP79+4mJicHevvyrra7GTUV7wZALXl6Qmspg0ylicOdNbX80mGhojOYtdgIQSDZRZdRX1fy+52uOX9gPQIBbMJ1D+hYvDnKwcyLEX4TKcr3ZvPI+67IIteL6YswYSEyENWtw+2I5mf6BZZepJM1XL8AlzbyTyu/8CeJDry7Qfq5Fd5p3Nu98cluyiHy9M6ndynByvPmmbH/+OezZA6hQWAqFQmb27Nl8/PHH7N27l7/++ss2lf71lwjHZ+2Qve022L//6mU+/hi+/FJsMVyxAioQ4lOr1TG+z+OYTCb2ndnCb5s+5TvTW2iUU7dKcJ36GNqkRByWLsbwURNSn331muoxOTkTNXoCdhnpNP3+UwrdbrCdVQqF4pq4ZsfIpk2b0Gg0aDQaMjIyripOddNNN1WmbQqFQqFQKBSKOoJGoyE4uIIr0a/Cfl04Pbf+JFbdp6aSi55TGh9MGg2YTDzEEQBicOEMHlSjUsJVSc4W4YJGtrqH7mE3qYmTG5lu3WDJEgByPH3LyGwbElp2lOxMn4AScsrYRUVS/9knCMrOInrC/Zyd9iJGR6erZ77jDpg/32y3aQPh4XAm8+r5FQrFDYnJZOLvv/8G4J577rFdxR4e4jlkzejRwjESHAzR0XLa1q3m43feudLBWwZarY56XmJM4+MeoPr2KqRg1Gi034qxVOGAys8hnr3rARJ7DSAzPKLSdSkUiuufa3aMTJo0CYA5c+bg5+fHkCFDitOcnZ1p1qwZkydPrnwLFQqFQqFQKBS1lujoaHx9fXFyKmFStYKc1AVD27bQoAHEx/NWanuiNZ4AmDRaPqEdQ4jkO1qSix7v0qurcnIKhD5IQ59mauLkRufvv0WYqNRUDOuqZy9TUpPWLH/qY7xjz3AxNIIcLz88os/RccXPpPsHcb5+Sy4ERWDUyT/7inz9SL/tDrznfEfwvO/xOLCbvXP+vvpJ3noLHnwQWrWyEkxXjhGFQmHm2LFjnD17Fnt7e26++eayC1SWV18Vu0ZOnoTffoOcHMjOBjc3aNYMmjcX/zt2LLsuK4xGA/8eWw1Ar5ZDysitqAw5L79Kzosvg8EAdnZgpRVWUUx6O9kpEhsLfn5QyR3NCoXi+qTS4uthYWF07NiRP//801ZtUnCDi6spFAqFQmHFjdov1oX3PWLECNatW8cPP/zAHVdb0XkNTHN5HHtTIe6mbIz2IbiassjUivevdZR/2O668J9ku+jMItYtvJpLafn5spiovZ0cWuNUxinJDnYyiyM6OctimRpHO0wmE69HvYIRI893eBcPe8/idFOeLKBq18EcVknjbvXjvEiOae/cN0yycyxErF3bycLRWYdlgWvfnrLQ6MWjcnrTruZdPZEnLkppHoHyPZZnNTnh7GaO++1oJeDs5yHHBD9xVhZX9fZxluzsPLNQa8tQTyntfGJWiXkB0uMy5LqDPMztsBLHPnNGDlsWHCYL2w/rZL4ef+04T2lY+71G1TOJOPb9+kGHDqzYYxbXjLN6D9Z0bC7H3i8qkn+SWQrOtwuXd5/MWXJEsoOtrp/PvDl0+/iVYrvQyYXEzj3Z9/SbxOvlz/hBbSRMnAgpKfDyyywcfL+UfluPsOLjZbvlFdl5BQb89mzHMTmJmAFD0FpNOo3uJt+Li/8zO4tGdpGFyS8LH19mwPjWOJ48TmG9AAwenhw9n1acdlffkgXhr4a1QOqeU0nFxz2b1bPOXipbj8nfp17NzeWtxWet70Vr0ffdZ+TvnyWdrD7zDQfjJHtAmwZlN9YGLLL6Toyx+kw3H5FFp/u2LL+w/U/r5eftvQOblKtcXegXq4K68L7ff/99nn/+eQYPHsyKFSsqX2F+PgwaBLfcIsTX7e1h9myxM2/WLPKayjsCrMWPZ76yRrIfe/2mEvNa8+lPu0lNTuDAng306n8bxjXyd0HbzEJQPD1fLmwlvu5l9bxPj5T7x1adzWON81YC6s4u8r7YTk3kuhItRNItn0cA0Sk5kr33tPzMsX4OWz7jLftGuFJ4O+qC3MdZP99OJcj9tCX+nvJCmuikbMnOsBDE7tBYfhZuOSQ/cyKCPSU7xMdFsvnvPxgxAnr3Fs4zfclrwy0F0uFKkXTLvqSs+8daJN7NQtQ7xNuZ6uJEfLpkh1oIphcZ5HGHq/2V+mSW7I9Mkex2Yeb7PDEzT0rzd5P7P+t+ODZZ/swthdxrkjX7YouPB7Wv+nCotY2T8fL3tmn92tnXXMZW/WLp3+ZyEBkZqZwiCoVCoVAoFDcgOTk5rF27ltzcXFq0uLquwbVSoLHjotaTloXHeDLzS27K3WDT+m2BAQMRTs0Ic2iIs776fugqapb6m1fT44m7oVEjmD4devYUIsC1hFPD7+DI+AeI6dqXAjcP7HKzCfxnDZ3ffgas18QNHgzffiuO330XzxOHy32epnO/oe8Td9H1jWmM7duU4FWl6wnU37CCLs/cj+eR/WXW7f+/L2l+Sy+aD+yG67Z/yt0mhUJRcyy9JJI+fPhw21S4fj3884/QCklMhJtugscfhzVrYMYM25yjFLx8Aug3aAJ6O7XToEYwGND99CP2Awbg0Kgh2t/nl13GmrQ0SE2FhQvh7ruhqKjMIgqF4sai0o4RgIKCAjZu3MjcuXP5+eefpb+6xIABA3jjjTeueD01NVUSl1coFAqFQnH9osYD5WfTpk3k5eUREhJC69atq+Qc7QoPoMNIoeaaI8BWGXqNngn+E7k/4EHstGri5EbAZ+8Ouj43Bf//tggnQ8OG8NhjQnOjFuD/z1qa/j2XvVNmsPG971iyYi8bv/oDg70D9XZtpdMvn15ZaOxYuP12MBjo+toT6LNKXul7GfcTR2jz1XvSa53eeAqvkpweKSl0eeER6m9ZR9dnHii1brfUBALfeQ0Au+SLNHzkXjRFhaWWUSiqAjUeKD8pKSn8+++/AAwbNsw2lf5zySnauzdMnQobN5rTli2DTBXO73om4PefsXvgAbT/bEYTFYXd3XfjkBBXdkFLBg0SThG9XmhlVVBrRqFQXP9U+hfmqVOnuOmmm4iJibkiTaPR2FZ0q4rZtGkThw4dYt++fcydOxcXF7ENr6CggM2bN9dw6xQKhUKhUFQHajxQfrZs2QLATTdVneh4HiJEU1Hlh61VitFkZE/Sdjr69UCrscnaI0UtJCM8gpx6DXC+ECdEyDdvhloS1sYuLZU2/zcDh9Rkgv7dwPbn3oOA+iS37cz+p16j/UevkBbc6OqFv/wSdu4krtfNFDm5XD2PBTmBIcT3GIBzQiwOack4plwkru8tZAU3vHoBT09y/evjlBhPYvd+hFw9l6jbzZu8sEY4Rp4FIKtHb0x6u1JKKBRVgxoPlJ/Dhw+j1Wpp0qQJwcHBZRcoD127iv+LF4sdIkuWCHv4cLjvPrCRttnV2LtzDUcPbqNrr+E0ad6pys6jKJn0br0wOTmhyRXhwkyNGlHg41tGqaswfDj89JMIG/n22zBkCHTrZtvGKhSKOkulf7U9//zzREdHYzKZrvpX11i3bh0JCQl069aNyMjImm6OQqFQKBSKGkCNB8rHtm3bAOjZs2eVnSNGL2JvBxmuXIRTm1gd9TeLzs5lzomvyDfklV1AUScp9PBi+6c/k+/hBQcPwurVoBU/qbR5ubR65wUC1q/A+eKFK8NWVXXb3D04ff9UiuwdCPzvH4ZMGY3XsQMAnBtxJ2vmruV0/xEAOKSnUv/gTjhxQqy69vODAwc49NgLoCs9zjhAkasb2z78nnU/LmXDN4v4c/NJdr73DYXuHlcvoNWy5u9tLN55nn2vfChei4sTk1UJCVJWg96eyM++5cy3v5Dw2NNEfjL7mq+JQlFZ1HigfPTp04e0tDQWL15su0pHjYK+fSEvT4Qr/PVXIc7duDGMHl2qXkRlOX54B7u3r+Dk0V1Vdg5F6eQ2akJ+dAxF054i/8BBCv9YgOlaw5rddZf4MxpFSK3s7LLLKBSKG4JKi6/7+/uTlpbGypUrufnmm2nfvj0zZsxg6tSpzJ8/v05tMdVqtSQkJODh4cF9993H2rVrWbBgAc2bN6dBgwYYDIZqa0tdEFdTKBQKhaK6qM5+UY0HykdBQQEeHh7k5eVx/PhxZrb9oDjt27zvSy07zeVxyZ6V/UWJeefdNZMJ854R9T70E9t/XCcSTCbGG/eS6diSSH0oeRqxcnRGsjnsyTj9CKmuLsE9JDs+KUqyvezkSd30InNIIX/XACnNvmWQZO8/t5U/o+ZSaCqkvlMg93Z8Gg9Hs9C3xtE8gaNrIItMGuLkcCC6JrJwqyTO7mA1ae1ttWI2w0oE1krYnaBS7iM7uW6PhrJQefrRxOLjxr3D5NPmyELtPlbCm+lW6fHHzALYvQbIuxh275FDZQQ3ktvh4iBPhuUWmr+TwVZiqW1C5LJxFkK1AKstBNNHdpeFpS+kynmbB1rcH//9R/y2XWTcMbH4Jb+HJ+O9ZJE5j78/NG0KhYVkJKez58NvyQkOA0CzdAVhO9ZzrscgYtt1R+8o74ho1MANbW4ORidnmgR5SmmLlh+T7E6d5HuxcVosnpMmYHfiODg6wvffw4QJAPyw9iQAwf+u5+bXHjUXGjYMFi3i37OXRIGLinCMiqSgsVkQ+3i0LOI6aUBjybYWeT1iIZgO0LaR+b62O3OKwGE3o0tJIWbFepZkCSFjfV4ODtmZNOzdRirbp6X5+/fDmpNS2uRBTSV702FZnLdJoPy9DvQqWQ/IWlz9pNV7njBQfs8LtpwtPr67n5z257+Rkj22e1iJ5/19qyzcPr6XvPPGWqjdWqzYWujekkPRstCzg17+nu+2EKMHaNPQLCrdykrY2Jol/8nP0BFdStsLJPPrJlmXp224/NxrHSx/dy+jxgO1bzxQpezdCx07Cgf0kSNCkL1162KHdEX46CGzDpL3bS2ltNQ/j0q2S/sEHnnkEW666SbWrl17hXi0pfi2ddrn42QtDIeRski8tdO80EK8PaCtPNbwdJUdATl5skZGG4vnamqm3P9fSJMXaThZ9fF2evkaers7FB/nFcj3dnqW3IcH+sk7C+t5yWMRe4vrY6XxjZOVyLe1kHl8urndXlbv/1yCPF5qbvV8t/4spPNkZoh7JyYGZs8m4977pXR3R7Uz0ZLkbKtxnYv8WSzbHV18PKxT6bvESvv+WJOaK4fO9HK69s/lTKJ8v1RE5P1ITJpkt7QaiylK51isPH6y/q5WhMRM+Vnmf+k3Rq0RX09LS6N58+YMHDgQjUaDnZ0d48ePJyAggHfeeaey1Vcrl0NAODg4MG/ePJ588kluvfVWvvrqqwrV8+6779K5c2fc3Nzw9/dn1KhRnDhxoiqarFAoFAqFwsao8UD52LNnD3l5efj6+tK0adOyC1wjif7hGLRiIrz/hm+KXw8ijcHGY4zLWcgzGR/zeOYX3J31K/oHH0D3zjtiNXo10sarAw82eQIXvRvxubF8test4jKjyi6oqJt06SI5RTAaiXv2FZJvn0Bu02Zi0i4xEbZuhZ07cT99XNLuqHfiAC1WL2DwG1MI/2fFFdVr83LpMrw3LZ59GG1cbIWaVtSsOclrN5N3yxCx0vquu+C558RKWQvSghqC26VJgmXL4P33AbC7kECru4bTctJo9CnJFTq39B4K8glasxiHFHniXZd4gfp3jEWXkoLRyQmDnz8A7hdiGPvS3Qx9byranJxrPq9CYStsNR6A63tMUFBQQH5+ftkZr4UOHcTOEaNRhEFq2/aanCIVpeulMF47d+4kNze3jNyKOoGnJ/zf/8HLL8Mtt9R0axQKRS2h0j2Km5sbxkuDbFdXV44fP87OnTuJiooqFt+qK1hvnnn55ZeZO3cuM2fOrFA9mzdv5rHHHmPHjh2sXbuWwsJCBg0aRLbarqdQKBQKRa1HjQfKR4cOHfjss8+YMGFClemLgAirc6qJ2OmhwfzZFKBnrTaCJK0vWkx4G9NoaIhE/+OP2L36CnZTHy+pyiojyDmUR5o8jZ9DPdLzU/nyv7dYemIe2QVZ1d4WRfWhS4gnbGBPHM+dIeqDzzi+eitkZcHOnfD777B4MTu/+JUcC/2NuNZdONv9ZrRGIwM+fo4287+RVhEbHRyJGz8J/1VL8B05BE0Fnxsmd3dS5/0BL7wALi7wwQdCZP3SOaK7D2TRD6sgI0OEswL48EMwmTB4eKDLysI+KZHG0x+GoqKST1QKISsXUeTkQrPvP5Ne9/zyU+yiIjHZ2RG9dTdFIWK3g9ZQhE/0GXzPn6TesoXXdE6FwpbYajwA1/eY4Pvvv6dp06YsXFhF39tXX4VHHhGOkWqicWOxAywzM5P169dX23kVVcy99wrnSMMS9LAUCsUNR6WDMgYHB3P27FkMBgOtW7fm33//pUcP8eO1YR172Jw7dw4/Pz/ptbFjx9KsWTN2795d7npWrVol2T/99BP+/v7s2bOHPn362KStCoVCoVAoqgY1HigfDg4OTJ06tVrOtXzYDFbf8iRF9o7w6W8AJGrcmKvrzL/OYbgYs/A2puBpTGf49DaYQkNAo4HFf5VRs+3xdvDh4SZPsSDhN45fPMCe+G0MCh9T7e1QVB++sz7E4cQxwu8dR9yzL5M4ZaoQBe7SRfwBF/dES2XiW3UmvkVHen77Ni1X/k6nHz+m048fs+n5mZztPww0GlJ6DyBw/hwcTp/C46XnSJtVcsi5q6LTwTvviDBZvXvD33/T1j2EAxMfk/O5Xgo/dum5Z3R04tTMr2l151A8tm0m7K0XiXzt/Qpfl6SOPcj1DyDP1196PfuWIbj/+D+0+fmEdmxJTt/+jIlLxjVFhLHKc3EjrUvV6RYpFOXFVuMBuH7HBEajkU8++YSoqChiYyu2u63ctG8P17BLpzJ88sknAAQGBtJNCXUrFArFdUuld4xMmjSJgQMHcurUKV566SXs7OwwmUxotVpef/11GzSx+ggNDb3qiseWLVsyadKka643PV3EVvP29i4xT35+PhkZGdKfQqFQKBSK6keNB2ohGo1wipRAttaVaH0Ih+xbU/T66xjum4zh3vuqsYEyTnpnJrV9gsntn2ZY0ztw0JvbHpd+vsbapagaEl9/h7Q770ZjNBL4/psEvvVy+QpqtWx7+BX+efQ1DHoRQ7vnrFdwSRRh4LKateLYO59i0mhwmfMDjiuWXlGFriAf14N78V84F4+tm9AUXCWcTY8ecGmFe8efP6Plwh/l9P37xf9Ro4RDEchp1pJTH83GpNFQb95PNJj9SfnekwXZQaEY7R1Iay7rheT16EX8b4soDA7B6OSM8+aNBJw6iGvyBfKdXFn24lfkhoVX+HwKha2pqvEAlD0mqCvjgeXLl3Pq1Ck8PDyYPHlyTTfHJmTkpPDBB0I37eOPP8bX17eGW6SoFOnpV762YQPOtw5Ce+Rw9bdHoVDUKiotvm7NuXPn2LdvHy1btsRoNNK8eXNbVl/nMBqNjBgxgrS0NLZu3Vpivtdff5033njjitdvOHE1hUKhUCiuQl0XHb2exgNZWVkMGzaM++67j7vuugu9/soNyCM0wyR7iWmZZD/oKE+eXMhPlOxOHu2Lj12e7ielZX+8SbLj8hMkO6RRi+Lj+HOySLODVhaOrD9DFmfPnrVZsvelHSg+bu4qi6cWGq3EIYNl4UlDuhwexa6hP1vi1rEiciEjWk6kZyNzfGuNqywsacqVQxfpujQoPjYekq+VtmN9yeaCVVgWF7luuzBPc5tDPaW0TCtBZw9/Wcg8Yb9Z1NrOU3ZU1Qv3keyMdFkoMcBfFmr19zQLte47JH+GRiuRTpOVgLxXoPxdyM40C4T6WwnCRgTJYo/uzvI9sPukWf/CWhA2PUf+jAOsxGWdHS3ufZMJvvyKDh+/Juwvv4RHzeLm1uLZncKtJtr+/VeEixkzBh5+mFX7zSuvQz54gxbzv6PQyZnM4IZot/xTrA3ielN/9Nu3metxdcVwyy0Yhg/HOHoMG06ZJ4TCv/+MiNkfCuP556FNG7jzTmHHxIBGw4mDZwie8QSpo27n4gOP0Oz373F4bgYAR+96mENTni12ntSzuge0VhPIloLp1sz8YDPaokLCTu7CIS+LIXd0FjtX2rWDq0xCWl4/62u35L8o/LdtwC3yNGfH34eTi9yuixmys+iO3o1KbJc1X8zbJ9nW995dfc0OnL3nZD2WDg3l74Q1m4+Yv08nzsoC6SFB8nn6tWkg2cutRM9z881Cye2svov7rO69263ev7UIrqVYbUWEakEW2C1NXLcy1PXxAJRvTFAXxgMA/fv3Z9OmTcyYMYP336/4zrJys307nD8PPXtCSMhVs7zp+Ypkz0iWr5/lPfmKxwtSmseIDsXHBmMROxL+4eT5vdw36lXhHPOWn/9Y9EtOzeRnksFKuLzAqm91qi9/fkX55j5f7yCPqQIbekm2u5UQdUKaWf9kdI8wKe10nOxMOxYlP2eCfOX+sqDI3G7r52bHJvLOKWt/YaiPXJflsyDRajwQ4u1cYl6AQ+dSio9bhMrvv8B6PGB1Paz72nY/forunbcxzHgO/XvvmhNuuw3+/BMmTIC5c7E1pYmNHzifIqW1DS15wdSNyK7T8mdobyf3JTV1vaw/0wNn5T6/q9V3xFbkFMrPE2c7XQk5bzxqjfh6amoqBoP5g2rYsCGhoaG8+OKLtGnTppSSNwaPPfYYhw8fZv78+aXme+GFF0hPTy/+i46OLjW/QqFQKBSKusP1NB746aef2Lx5M2+99RbaahBALTcmE1MLVtIncSWOhtop3JxfJCYwlhz5lV1Rm8vIrahTaDScGXM3h6Y8I+ypU2HlyvKX794d1q4VcfStZpwO3v8Uyc3aYJebg/fJI2Bvdu4YWrcRIbAGDID69SErC92ff2J/7704tGyBNs88aXZm8lThEAF47z0RZusyQUEQGEhBcAjOhw/Q4J1Xcd63m8JpT5H/nlg5Hbb6LxzS5AmdymDU23G2RQ+OdRgkdqvcdJPZKZKaCoMGCU2BMtbx+W/fSNdn7qflZ2/T8eWpaAoLS82vUNQ05RkT1IXxwN69e9m0aRN6vb7qQ2u+/LKYxN62rey8lUSn1dOrw3Amj36tSjXUFFWL27bN6N9+C43JhP7994SO1mVevrSzc/58OHWqZhqoUChqBdf8azYyMpI2bdrg6+uLv78/S5Ys4eLFi4wePZouXbrw999/F4uy36g8/vjjLFu2jI0bNxIUFFRqXgcHB9zd3aU/hUKhUCgUdZ/rbTzwzTffAPDUU0/VKsdImCmJlsZYuiRvxlj5tT9VwsDgYfSsPxCAPw98z8G4/2q4RQpbc3ziI5wbMhaMRnj//TIn9cuD0d6BNV/+ztrP5rHx/e8lx0juex/AhQuwfr3Y9bFrF0UvvYwxLAzDrbdidBSrnJ1jIgn58xc4d85c8eHD4OMDnTvDpYVuRjd3cpu3QmM0EvbQPWj376PwqafI+/Z/bPrkF/K9St8FYTPmzROOoldegVJ22QG0+OJdNJd+dzbYuBKf7ZuqoYEKxbVR3jFBXRgPfPvttwCMGzeuzPFNpbkccmzPnqo9zyVycjPLzqSo1dSfPUt+4cUXIStLHCcmgouL6Kvnzav2tikUitrDNf9qnDFjBocPH8ZkMpGamsr999/P2LFjWbx4MSaTCTs7O+6//35btrXOYDKZePzxx/nrr7/YsGFDnROhVygUCoVCUXmux/FAQkIChw8fRqPRMH78+JpujkQHg5jwPe3WggJdyXokNYlGo2Fo2G10DumHCRO/7f2SP/Z/y8XMhLILK+oGGg17nn1b7Pz4/ffi3R/6pAuV2slg0tuR1LYL8d36yjtKHBzMtlYLnTpR9MYbFBw9RtH7HxRnC/57Pq3ee0m0yZKUFNi9W3r9zLy/yG3WErukCzjdNBC7zz6laPgIMsMaX3P7K8wtt8C334pQX2VEIYi9yRy6LysojPQ2Hau6dQpFhbkexwTr1q0D4M7LIfmqkrvuEv9nzTLrIlUBJpOJbSdW8da393ImWulP1GUujpuIyd4ew7BLfcSUKVBQAJMmiT4mOxuCg0VYLYVCccNyZVDocrJlyxY0Gg0TJ04E4JdffmHr1q04ODjw2GOPMX36dOrXr19GLdcnjz32GPPmzWPx4sW4ubmRkCB+7Hp4eODk5FRGaYVCoVAoFNcD1+N4YOPGjQC0a9cOH59qWjleHkwm2hsjATjuXrtDuWo0Gsa0uQ+jycCe6C3sid7CyaRDvDjyC3Taax6aK2oRJjt7+Oor6bWGzz2B04ljXLj/US7cN6XqG2Fvf2lniYhtf7FLLzyO7Md32CDo2xdatIDcXLF6NjsbLCZpDV7enP5jGQ0fuhvXHVtxePYZ9H//he6N/2FwsHA6mkx47tqONi+XlN4Drww6XxkaNxZ/Dz4o7IsXS8x66r6pXOg5ADQacus1wM5LxWtX1D6utzGByWTis88+Y/369fTp06fqTzh6NIwdK3QhJk+GnTvBzq7schVEo9EQm3KOgsI85q+cydOTvsDJwaXsgopaR8qIsQQO7IGpaVMK4+NxbBgGTz0FP/8s+qupU+Gtt4o1uxQKxY3JNYuv29nZER4ezvHjxwGIiIjg9OnTrFy5kkGDBtm0kXWNkuJQ/vjjj9x7773lquN6EJVTKBQKhcJW1MV+8XocDzz44IN89913TJ8+nY8++khKe9PnteLjV60ET592eUKyP87+rNTzvOn9qtkwykPVPKMsCHohP5EgYwpvFC2lAB2TuIU8jXAwhDrJguiZRVmSnVEkC5Na5/dpYRZcjzl0UErzsJM/DydnK6Hy9DjJbhBsXm1fcEHoNMQUxfJPwTYaOYXT2603ICabipp54WJv/qFuzDQLl+qsxMSNqbKoqS5Ubpcpo0CytYEWEwAG+drad5EFnvNXnZFs52FNzedxlMUfre/3wmz5vHpHeQIr20KM1s5KIL5zZzkkS3xKrmT7ujtI9sEDZhFrjVV4t0fHt5VsS2FpgDVbIouPPa0E4q2FbHedkIXvzybI91P7xmZnYZsQC8HYjAwMTZqgSxTlM6c8itvsL0p1JKw7YBZfv6ltoJRmLQAanSS3o0mAjZ4V+fnEDr+dwLVLiRs4lMiZX2JycBQOka0bCf7iI9wP7iWzRWv2/7aCfJP8fqzbvWjH+eLjMd1CSz31psPxkm15qdKy5Z03LUI8JdvVSow3JTEN/0/eJ+PWYeS270SrYHP+s1bXrpGf/D2uCMt2yxoQF5JlraO+7eTvV+N65u9iWcLtR2LSJLtlkKdk/7DmZPHx5EFNpbTvVx2X7PtvbUZ18N/pJMnWWt3vncJlwepV+2IkO/aC+bOxbHNt6xfLS2XHBHX1fduUhARo2VLsdBs6FH76yaxLVEFKE8fOzMwkrH5jUrIT6diwD+O7PYopR37uaP3MAuKmnCIpzW1sc8k25MvpflbPrBSLe91YKLerbdsAydbr5D4u2qIv7dBEvhYnotMkOzVLHj8N6yKL2O85ZXZAN7Eaa/i6yztxT8WlS3brYFkkPdliDHDS6vkVYfEMBjBajfMsn+GOVu83q0C+lmlWY408K+H7JAtx+tBLz1z94UNos7JwHNBXyqvTyt9RJ33JAXZiUuXne0qmfG2lMUAtIj7dfD3qe5TukM22Ev12qYDod1qu/H1xsBJQd9LLdVl+H60/86rE+n5yta/9C5ROxMvfvYj6HiXkrF1UxWdc4+LrBoMBb2/zapzLxze6UwTED9qr/ZV3EkShUCgUCkXd53ocD2zYsAGAAQMG1HBLZDoaxYTrYU2DYqfIZfyNqfQr3I/OZLha0RolSB/IBOdx9HLtVfza8bzjvPfPM6w5/RcGY+1rs+IacHcn/sBx0t56DwC3b76CGTNsoj9SpTg4sPetz1m79F/2vCOcIs4nj9Hh1u60fGgC7gf3AhD55Aug12OXllpc1PefddCzJ9xxByxbVr3tzs1Fk51dfH1N9g74/PANYRNG43hwf/W2RaG4xPU4Jqh2AgLghx9ECMHly4W2UhXg5ubGHd0fQ6PRsOfcPxyL3Vsl51HUDEWtWlPQrXtNN0OhUNQSKuWm2bdvH40aNaJRo0bsvxTn8bLdqFEjwsPDbdFGhUKhUCgUCkUNU1hYSOfOnXFwcKB379413RyJ5iaxuny/NviKtL5FB2hrOENbw5kr0moLliuJj+QdocCQz/ozizmYsLMGW6WwKQ4OZD06ldSPPxf2Rx/BF1/UbJvKg0ZDXr0GxVs2wt5/HaeoyOLkPX9tIKdpcxq/+Ry9BnXC5cxJ3I4fpt0T98L27UK7ZNw4yM+/ev1VgOPa1fg3D6e+lwvewwdT78O30ObnocvOot7Mt6utHQrF9Up+fj5Tp05lx44dXGMAkmtn5EgRRuv118FS68zG7Qjzi6B3xBAAfvv3C84ln7Bp/YqaQZt4AdePPxSi6wqFQkElHSMFBQVERkYSGRlJfn4+JpOp2L78p1AoFAqFQqGo+9jZ2TF//nxiYmJwq2XxmBM17pzQ1OOi5sp27dM14TuHIZzSBV6lZO2ju4tYxahBQwP30sMNKeoe2fdOJu31t4Tx1FNVtuK5qjg//WXyA8whodqPH0ynW7tT//ef0RXk47dhFdlh4SQMGi4yeHvDtGlihXc1UdCjJ9lTHgXAYctm/L78pDgtfdiYamuHQnG9MnfuXL744gtuv/12ioqKyi5ga9q2hdfM4TuJi4M2bWDBAps6SG5pPZ6Gfs3IK8zh+38/IC03uexCitpLURHe40bj/n+v4f7KC7V/16ZCoagWrjmAWp8+fUqMk6lQKBQKhUKhuD7xvcZ43lXJD3pzKCoMqVLaackhIusJ1EbWZ4qJ8nb1u1HPtW44cxQVI2vqNDzPnIA1a8DPr6abUyGyW7Rmz5qd+KxZRoOfvsHt8H4A0tt35tRjM0jrJBx7hz+YTcCqxULg3dm5lBptj9HXj6znXyJv9Fjsdu3EtH0HjkcOkTZmHGm330lQ2VUoFIoSMBqNxRpj06ZNw64KBNArzAcfwOHDYndajx7wzjvQuzdoKxfH3k5vzwP9XuTXbbMI8QjH08mn7EKK2oteT/aDD2P/+MO4fvU5+X4+FL74ck23SqFQ1DDXLL6uqFqUuJpCoVAoFGZu1H6xtrzvxYsXM/f2X/DUmgX+vs37/prre9PzFfkFK8HLGUmvFx9/4Pe6lPZqypuS/ajTQ5Idk2cWPe/k1UE+jYu8an13jByqqsfQ2yW7KNK8OrQoRl4pahdeT7I1VnUXHJGFhPX1zUKcRXEpctlLYo/nC87zfeoPaDVanr1lJj6u4hxabwuBTA/5PCYrAXBNN6tpXytBUKdG5nbkrDgtpTne3EiydQ7yGipLAVkHD1mItchKaDNnp/z+vW9tItlh/maR6xMWgq8A7r7yRHpWuvwe7hlSsnj0eStx9cORsqPM3kpM1dVCFP5srCxomW917Xp2kUO1RV6Qr32oxXvac0IWnh7ZK0yyd+w9j0NyErkNRJ2FVkLAY7vL+S2xFiZv00ierPN2ti8+thYYjkqU2xziL4uNlyaI+esmORzdxL6NYN8+KCyELl1KFZMHWaz2tNW17teqvmRbv0c7i88tMS1PShtdhpD7RSvB4b0W99ug9qU7H08lZEi2tbC99fUtjYqIjVoLl3dpXLoDLcniPfq5Vm53zvYTicXHaVmysPGQjvLzpSLi9fsi5WdoulXd9bzk7/3hSPNz8vaeDYuPa0u/WN3Ulve9YsUKhg4diru7O9HR0bXjM8jOFuEJP/gAci49Z4KDhaNk/Hjo1OmK51Np4uvW6QaDgdlf7ZAWBtt5yn2gJYX7EyRb30YeLxQlycLdWAiI+/ZtKCXZW4lWe7rYS3acxTPd06pfbhcu9w12Vu/RUuQcIN9CbPtUjPyMDguQd+QWFMnXr8jqenpZPIfsrPpdvdWYz74UUe/Y5GzJzrESsvewGnuFeJfsiM+4VNb+y89xnP60ePGzz2DqVHOmlBSxm/O118gLDZPKV0YwOtOi3W5WY6uUHPlZaNmHX41Ui/GWl1PVOSZX7pXHcYM7XPuyAkvRdyhb+L00aov4eFnjg4pQ1vOoNKyF7j2r8J6oKRIy5HFfgLt41tW4+LpCoVAoFAqF4vonKyuL++67jwWFf3LBmFh2gRrEzlQDIT1shMlkYn2WELfvFNa32CmiuD4xOjgWO0UAvA/twTHpQskFCgth1izo3592k0bTo08rOtw1DKfIGtTO0WigQwfo2rVMp0htQpedRYO/56PPzCg7s0KhkLi8W+Shhx6qHU4RABcXEVrr5El48EFwc4PoaJg5E4YPr7SehE6nK3aK5ORk8sdv75GRrsJq1VUKHptK3suvCuOJJ6B+fXNYrUcegZ9/hgkTRL+rUCiue5RjRKFQKBQKhUJRIr///jupqam4a9zx09S+MFoAelMRb+TP59P8H2lEetkFaiEFpgLq6evRQN+Am5orHYQbCb8d/9Bn6l30mzIWz2MHr57p11/FKtZNm/DcuxP71BTcD+6l0ax3qrex1wGe+3eRX68+jvExZWdWKBTFHD9+nI0bN6LX63niiSdqujlXEhgI334LiYmwaJHYLaLXQ15e2WXLyW+//h//7VzO0j8+t1mdiuqn4KWX4cknhZGQAAsXiuMPPgAnJ9i5E+3q1TXXQIVCUW0ox4hCoVAoFAqFokT+/vtvAJpoG6PV1M6hY5FGT6TGH4BHOYSWuhcp1kHrwFD3ITzsMwVPZxXH/EYiOySMXP/6uCTEMvD+kXR96VE4dkzONGwYNBHhyGImPkBql54ApF36ryg/yd36kO9Xj7z6SsNHoagIixcvBuCmm24iODi4jNw1iKMjjB4N3btDbCy8/77Nqr5p0CQAdv+7iuSkuDJyK2otGg18/LHYafTwwyIcJIidI7m5oNFgbNOmZtuoUCiqhdr561ahUCgUCoVCUeNkZ2ezbt06AMK0ITXcmtJZZNeVXOxoSjq3cL6mm6NQlJucBiFs/PZPogaNxKTRELRxJbRqBffeCxcuhdfy8xNhYpKSOD3jDQ58v4Cdy7YSN+6eGm17nUSnI6txM4rcaiYuuUJRV/Hw8KBp06aMHDmypptSNuvWwfTp4riSIuyWhIa1pEnTThiNBjau+tVm9SpqAK0WXn8dZs+G0EtaVT//LP4PGAAhtXvcq1AobIMSX6+l1BZxNYVCoVAoagM3ar9Y0+/777//ZvTo0TRs2JAzZ85IwqOlMVY7utT0tp6tJdtSbB1KFx180/tVyd6durf4eCiRTOEIeTjwpcejbM2Q9Rf+Mi6W7BfdZ0h2dpEs8nku1+xgaeXWQkpz9pAnVTUusuhpXrwsKO4UGlB8bNdM1g8xmUxEXjxBkHcj7HT2YCVqqrEQXDdZCY9qrEQ8NX5WwqMh8n3jbCGgmrP+rJRmZyXcbrQSg7SzEAQttBILtb43WneUV+NHhHhJ9r9HzXoa51eelJtsJdTu7SaLq+7fIH+uzXubxWpj4mTdiKYN5fOm58gxwy3FaPMshGcBIoLkz/hsvFy3l5XIdUSwZ/Hx+n2xUpq1uGyIn4tkXxa21R05gvP/vYHDsiUA5DYI5ti6HZgczOfqaCW2bi3amWtxjzg56EWc9AsXICiI/Wfk+7JduBweryKCn7tOy3V1bizXVRkx0Yqw9ZiszdKrufz9shZI9XE3f1dPRKdJaa7Osmhp62D5/rHmvIUwcOxF+fnRI8K/1LJVRaqVEKv1fWt9/5TG6QuZkt24nlsJOcvm963nJHt8r4Yl5LySg1GpxcdZmRn0bBWmxgM1iMFgQKcrWTC7ppjm8jgAPsZ0ns5bgAv5MGkS/PhjhXWQrJ9flmzasIHBg27Gzt6Bd/63Gjuj/Dw3WfXhhjMpcgXBct/iZNFvO1qJUrtYPZNiDsRLtl8L83PG+i02t+iTAPRWz2A3q7pjk8zPsAa+8ntKyZTDkbVpKD9HrJ/v+yPN77mZVTus82ZYjWvcLcY1Fe1HSsufnC2PW9KtxjGNfF2gcWM4exZ++oksrR328+eRP2EihaPH4GjRj2u1pd9PWVbPYV+r8UJliE83fxb1PRxLyWlbDkWnSnZZ/aMl55KyJLuhn6tkW35uFR0rVKasLamuMU9FiUnNKT4O8nIuJWfZ1JZrfZlaJ76emZnJnj172LNnD5mZmWUXUCgUCoVCoVDUai6HzRgxYkS5nSI1yUpCidXVx5F8bspdX9PNKTdZ+enM3vQGry9+EIPRUHYBxXWLoWVLMuf/wX+/LCUrPILzkx6WnCIVRbt8OfatW+EYForugw9s2FKFQnGjUhudIpexNxXwQP4K4RTp2hW+/rrCTpGy6Nu/Pw2btqGwIJ+/fp5l07oVQFoazJwJcdUcqmzbNuEUcXWFUaNwev0V7Fcsx23inTi9/qpZoF2hUFxXVNoxUlhYyDPPPIO/vz9dunShS5cu+Pv7M336dAoKCsquQKFQKBQKhUJR6zCZTOzevRsQjpG6gBENK52HANCm4CCuproxFi00FF76X0BOgVpgpICM1u35b95yYioRKku3Zzd2o0ehPX0aALsXX8Bz4xpbNVGhUNxALFmyhDwbiphXFa0N56hvurRbYcYMoTdiYzQaDWMmPYVGo2H7+r+JOnvE5ue4ofnrL6H5cfJk2XltyY4dcPvtMH8+eHiQ+9qbFAwX41+nD99Ht2RJ9bZHoVBUC5V2jEybNo1PPvmE/Px8TCYTJpOJ/Px8Zs2axVNPPWWLNioUCoVCoVAoqhmNRsOePXuYN28effv2renmlJs4fQNStZ6kaT3xJL+mm1MuPJ19CPJqBMDyA3NruDWK2oLRwbF4pbPjyeMEv/osmvIuPCssxPnRh9EYjRhGjqRokhAMbvzcVOxjo6uqyQqF4jpk9+7djBw5kiZNmpCbm1vTzSmV47oQ4jTewjBU3Q7Mpq0603/YXdw86l7cPMofnk5RDkaOhIgIs+5HdfHww/DHHzB0KAAFt91O1vwF5D4xDQD9p59Ub3sUCkW1UGnHyNy54sfbnXfeyeLFi1m8eDETJkzAZDIVpykUCoVCoVAo6h729vbceeedtTpsxtX4wv0xPveYSozm2uPhVydajZbRHSajQcPeqK2cuXisppukqEVoCgpoes8Y/Of+SMNpDwnNkLIwGim8dTCmgAAKv/6GotlfY+zchQL/emjVrn6FQlEB3n//fQD69++Pk5NTGblrlmyNE7McxzLHfpBY/X+ZKth9MP6B57ntvmfw8gkoO7Oi/Hh7g78/NCy/DpFNcHW96st5TzyJyc4O3dataPfsrt42KRSKKqfS4us+Pj54eXlx+tIW7cs0btyYtLQ0Ll68WEJJRWnUJnE1hUKhUChqmhu1X6yp9x0VFUWDBg3Q6/VlZ77EQ473Fx9/m/d9qXmtBdSt0YeYRZyLokofSybkJkj2V7nflpj3nXafSfbTex6X2+X1vGRfLEguPg52C5bS9ibvk+w2bi0le1/GQcnu2qhP8bGpUBYa1XoKkdO/Y/9gV8p26vmH8fRj36DTietfuFIeZ1uitxIX1zTxljNckAWhsbdYF+Uvi6taY9dAdiwVJliIZ3pY6V4k5si2vyzw6OAuhzPxDjLfz8lR6VKaZ5B8r+dly46AAKt2N7cQdk9IkdtxIipNsrMT5FBlAY3NK32thWkTrYTc/RvI7WrTUL7Wh86ZxWYHtmsgpZ2KK10A21LEGyDUx/weIy9m47R+Lf73jBc7RkaPFqE+7O0BWLk3Rio7uEOQ2cjKMk/2xMdzMseEydlc979HE6WyvlZCrg18zJ+jvV52kLq72Et2ppWQbcsgT64Va5FXbzdzu7Jy5fNE1JeFjM8kyp9xuL98H++LNH+vA6yESDNySq+7Iqw7ECvZN7UNLHfZnaeSJDvYSqg2t0B+hli/x4qw5aj8DA20OFcjv6tPFF7GWmzW8jvQubGvlJZidW29neX7p7yo8UD1vu9Tp04RERGByWTi0KFDtGrVqtrObTMiIyE8HDp2hKlTYexYcK6cCPHMZ1eYDa3VeuNA+fto7y07kwqS5X7KsZ75e5Zn1R9aL2V2DZf7Do3OrJ9SL0A+r85KILyep9yOIKvvt6WQ967T8tjLhDxtGGr1zElMl3cSWQpzX8ySd+/GWvV3EVZ9RZHBfC5X+8otzDkRb76eRvlxdYX0jPV7SrJ4Tz6PPIDLgvmkjryNqE+/uaLNVSlEbX39KiLknpEnj5/cHe1s0iZrsqz6JFf78v9+gCv7EkuKrNKsx2q1QQS8LMr6DHeclMdi3Zr6Fx/vj0yR0tqFWY3zK0BukbyLzkl/7d+v2iA2X2vE1++8804yMjLIyTE/3LOzs8nIyGDSpS3bCoVCoVAoFIq6gclkYujQoURERLBnz56abk7lqOUhP6wZVG8ozjoXLiRGsnXHXzXdHEUtInfgzST+/LsQYv/rLxg3Dor+v737Do+i6ts4/p1t6Q0SUoCE3jtItwEK2BEFwYK9YseCPgr6WvERH7vYsGPHhqKCgIh0CL1DCCWEENLL1nn/WNjdM0BCSEII+X2uK1d2MmXPmd2dOZmzc271QkTwvr30uOtqmD/f/8fwcCg41FGQmOjvFNF1GowfR9y6FWU+b9C2LTR89gkZfkuIOurll1/2tQtqZacIwJIlYLXC0qVw3XUQGwuXX64eK0+QR/ewOW0FP895j0p+51icwvLvuJuDw69i/21313RRhBBVrNIdIxERERQUFNCtWzfGjRvHuHHj6NGjB6WlpYSGhvL000/7foQQQgghxKlt1qxZrF27lqysLJo3b17TxTkxGzZA//7eoRiefBJqydBBoZYwhiRcgtlspWlKR9/f5WKLAG/nSOYnX0FQEPz4I/zyizK/xbuTiVv0N5x1FnzzDUyZAuefD/Xrw271rpKI6d8S8/H7nPX8uDKfM/HVSYStWEqD99+q8voIIU5tBw8e5KOPPgLg4YcfrtnCVMaIEbBrFzz7LDRp4v3SxPTpcN55sG9fuauXpaS0kA++m8C8pd/z7e+v4fZUX66JqDnOTp3Z9fKblLarpZ2DQohjqtj9TUfx4osvomkamzdv5pVXvGFEuq6jaRrPPfecsuyTT5Y9bIIQQgghhKhZ777rHYpqzJgxREdH12xhTlTr1tCsGSxYAP/3f94LyDNm1HSpjkvXmDNIurAPyY3a+P72wbr/EWGL5PzkS4kJji1jbXG6Kx0wCK64Aj7/HLZsUealj7iehL9mYi3I814IDDR7Nih383s721zBZQ8nk3XNjThSmqBbrJX/Rp0Qolb59NNPsdvtdOnShTPPPLOmi1M5cXHw2GMwfjykpnrvHFm71tuJfPeJ3wUQFhLJsIF38N2fb7J49Uxcbicjb56AyTi8ljitaBs2oLdtW9PFEEJUgUp3jCQnJ6MZB+cTQgghhBC1TmZmJj/88AMAt956a80WpjJMJvjkE7j4YrjjDuY4t+oAAIn3SURBVFi5Eq65BvSLQTu1L1aYNBNNkv15JTm5mWzL2wjAroI07ur8KCGWsrNBxGmuYUPvezxfzS3Jb9OBOb8t4fwf3oP33oOWLb1j6Q8f7n0cwHRomLnCBollPlVRzz6+xyeWCCGEqK3WrVsHeNsDp801H02Drl3h9tu9X5ho1arSm+zd5QLCQqP49MfnWL5uNrZvI7j8ygdPn30m/JxOGo+/H9sP3+CYMxe9T5/y1xFCnNIqHb4uqkddDZUTQgghjqaunhdPdr1feOEFxo8fT69evVi0aFGF1n26/gTf4yezn1LnGcLWnzxY9hCrtwTf6Hv8XumHFdrWU9H/8T3eXbqXeE8eTzh/IggXH9GG7/EPDxZlUfdpUnCCMr2hcLPvca+W5yjztqStUqbNmrnM6cDnimmsBrnrhtBKT1Gp/7HuIbOJi2mr3yG3NJtW8Z24of/DmE3e7WtR6uVqPVcNeNQi1PlaYLD5AUNgepAhhLGxGjwd0cIf+GgJUQM8c7ZlK9Nd+6Yo00cEm+f567gzNUOZF2oIV48zhJ5n7lSDuYMCAmXzDOUISyr7cxMcEDbbwBBMawz8TDAE6BaVqK9bm+Ro3+NNu3KVeSnxaqiryRCKW2p4DwSGwOYUqkPBJVo93uB1y9G/4xYYLr5t76F8EV0nfsnfdNq3mfxHHify2aeImjyJfaOuZ8eEF33Lewz/GvZrE+97XOhQh4jZtDtXmW5qCP5N31+oTGfn+1/zgZ3UcPp569T3wNntj91hs9awbzs0jj7mskezN9efPWQxq69Dg4hg4+KKjID3LahhxTUpMAS1vADU9IPq5z653rHvGko3hCQn11c/m3+sVAPmz+967ID5qgpqlfbAya335s2bSUxMJCIiovyF66jD7+2vvpzGDddei67rnNXzci4eeAuapmFrG6csn9A0RplO/32r73F0X7V9EBqmnsNLDOcdU8AxLMqw7BHHN8M5zmZVP4Mul//4b7Go6zqchs+vIRTdZghxDnzu8BC1XGHB6rnLYjgfhlr92yo31Lu0FIL9x+GqDIQ2bis7vxR0nZibxhD6w3fojRtjX74C6tU74nkqU47yjrsVKbPRqRpUHhhObgwmL29fVuT8d6rILlLbdfUNn93dOf7zdHiw2t6ONrS/67JTJnxdCCGEEELUfps3b+aZZ54B4Pbbb6/h0lSdTFMUX1p6AXANm2hBbs0WqIJMmokmMS0Z0/UerGYbmzNX8+uaL2q6WKImhYZ6O0VKSrwXhY5D2N5d9H/wBqImPYdl4wYsu9IBsCc1qtBTm2f9ie3RhyEvr8LFFkLUPq1atZJOkeM08qpRvH1oONK/l3zPqg1/13CJao5l5w6i33oVU25O+QufqOJi6NQJHnwQiorA7YY9amctq1fDa69BThWVQ9PI/d8beFq0QNu1C+sN14N811yIWq3SHSMDBgw45s/AgQOrooxCCCGEEKKavffeexQVFXHuuedy7bXX1nRxqtQ/ppYsN6VQiJUivN+0CsJFkp5Hkp6HTXeVs4WalxSZwogONwMwf/Ov7DiwsYZLJGrctGkQE+MNWH/ppSMvCAUoaphMRj/v/2aJ/XoQ9s2XAJQ2blKhp7S+5L27xPrJxydWZiHEKW/FihXs3LmzpotR/dauhfvvh6ysKtvkmBtuZNj5d9K94yA6tulfZdutbUIWL8LZtDkhSyp293GF/POPN2vro4+goAAuuYSgrl0wzZqF6Y8/sA4ZDJ07w733whtvVNnT6pGROKd9iR4UhHnGDEy//15l2xZCnHyVzhiZO3cumqYROCLX4WkZU1EIIYQQonZ46aWXuOmmmwgNDcVsNpe/Qm2iaXxs6QeOXWTgHZKgNbk8414MQCE2Zppas1qPwa4FlbWlGtUpoSdb8jeyZMdf/JL6GWMH/h/S2q7Dlizx3jHy55/en0mTvGPmN2h+1MVT75tA7MEMbOu9uQH2M3qRc+55FXpK+5vvoMfHo8kdI0Kctu655x4WLFjA559/zujRo2u6ONXnuee8HcwHDsCnn1bZZvv1uIS+dfx6WMGIUVi3b8OVkEi1paI1P3Suy8/3dowcOIB28CC2IYP9y1gs8PTTcOedVfrUeteuuG++Gcubb2L+5GO48IIq3b4Q4uSpdMfIddddpxzw8/LymDt3LgUFBVx11VWV3bwQQgghhDhJ2rRpU9NFqDYlWhCZ+MefdaNRgA0LHsJxcIVnDRcUbeZvW3cWWLvi0E7NqOnBHa4kpziL89tf4WuDF5UWEBoUXqcvwtRJb78Nd9/t7RT58ENYswbOPZfINz8k/5xBRyxenNiIzFnzCZk5A2f7jrgbNEC3V6wTVG/Rwvs7IgIMGSNCiNpv9+7dLFiwAICzzz67hktTjYqL4ccfvY/vuafKN3/4fOzRPeQczCSmXnw5a5x+nM2O3klfZZo3hzZtYONGWLkS5s3DfeutmD/9FD0sDPdNN2G5/35o0qRant59/Q1Y3nwT048/eofqiokpfyUhxCmn0h0jH3300RF/O3DgAJ06daJRo4qNWSuEEEIIIU4+p9PJ3ZHqt+neKXmvQtswBq4r88oJW6/Q85SzLc3kHynWGNxu9EDYPWi6hy7urZzvXEK8nsMQx790cazkP/Tma9cs37IToscp66aEqAGpO0t2KdPF7hJluiRg2rRb7cAIM6vfp7Qkqv9cO9b7h0gKsloYE3YNpIEjLR2Pw8lb+15D0zT6hPele5chWM3+YEbNqQZma4HBrS410NLUQQ2ItcaqocwF6bkBC6sj8rbtpe6PHRkFynTRPnU6rpk/yL15dzWIu6DEqUyXGMJXE5vWU6Yv7+0PejeGQdeLVO8A2ro3X5lu2dAfML/ngBp42jRRHVc/3xCWmZWv5nsEB9SxRyt1X/68OF2Z7tq8vjLtcqtjlK/YesD3uF2y+n6YvXpvwFQMTUbfhHbpSBJuvIbQuX/R/Oar4fPPYeTII8psCg7CftnlAGhAn5hjB28bGYN82xpCz42B8o1i1fd1lybq6xboiPrvyFam0zL9Qe6Br/fxWLxFHSbHFNCBuCx1rzLvjis6lbktY2jw0oDX6YwWsRUq1/Ysf52axYVXaF2jnIDg2mBDOHGMIajVGLauvp9gYCf/57G80N+ebRocdxnLC8UtK8g9MFy3vHBhUTnfffcdAP3796dhw4blLF2LzZzp7RxJSYEePXi63pPK7PLaGmW9D4M7eD8XmXvTmPr6eByFxTx409uYTd6O6J2/b1OW1wLOvSUH1bZD7nr1+BXeXD0fhET6g8eN506bRf3M2R1qe+BggV2ZbhhwzG4VcG4EyC9Wt11qOC/vNpw/EwOOM1GhVrQ1azCtXYt7xAhMhnIVGsodGL6eU6iewwrM6rLhA88nYuNGiqf/SM55F1H/w6m4xt6N3qwZxMSQVeiAPO+5OjEq2DtsmtsNCQmUuAzto6N9uaSgAA5l7ASG2xeVuqBNB8wdOqIVF3Fw9XpcXbr55hfb1f3TvMHx5/REGI7ZgcHkcGQ4eVmqM4x8f8D7p0FE5e62LqtO5dUh46A/qLxpOefSA0WGfRlWM3eJG8PWjRoFtM227FPbrdUZvm48rrkM0+G2SnchnJKq5VMSGxtLixYtjtppIoQQQgghTh1FRUUkJSXxp2M2Dt1R/gqnGV0zsdLSiknBo/kvXcgkhByCOEBw+SufAvLceRx0HSTTmckPOdN54Z9xzEv7TRnmVpz+9LBwMj79moIrRnov4rRvf3wrut0wciQMGAD791dvIYUQp7yvv/4agBEjRtRwSarZt996f19xBVTT3ZaR0fXJyc5kf/Yulq7+o1qeozbQVq8m+Kz+BI25FttVI8FVdblupecPASDoj9/BbgdNQ+/e3Xf3RvD33xBz1RXEJydAw4bQoAEkJnqzZcoqh8eD5b57CY6Jxnr5MO+wlUdUTCP/x1/IXaV2igghapdKd/c8/bTak+52u9m8eTP//PMPMXIrmRBCCCHEKe2LL77gwIEDODQHVqrvW0inOl0z8TcNWUYDgnHjqZ7vD1W5aEs0Dzd8lBVFy1lYsJA8Zy6/bf2GlvXbkxSRXNPFEyeTzcb+16cQUZgFh4a8AtCcTnTrMT7bGzbA119DdDT897/enBIhRJ20bt06/v33XzRNY/jw4TVdnOq16FAoeEaG94J6NQgJjeC8S67nhy/+x7I1s+jdZWi1PM+pzvr2W2hF3jtKLD/+gOeff/Ccc06VbNvRpx/uuDjMWVmEv/EqPKXe+WNdsZzgmTO8E/kB2Vj/+x+WsDBcE49+t7O2ZAmWQ4Ht5p9+wv3rDLh02BHL6fEJVVIPIUTNqXTHyMSJE485nvFFF11U2c0LIYQQQohq4nK5eOGFFwBob24nGRVAMVaKD3cQ6Tra1q3oLVvWbKHKEWIKoV9Ef0yY+DV3BlFBMcSFJtZ0sURNMJmUTpG4X38g5d1X2fj8axS27Xjk8m3bwurV8Pzz3rwSIUSd9dxzzwEwfPhwkpKSylm6lnvqKbj+evjiCxgypNqeJj6pCQBuT9XdJVHbuC6+GMsH7wPgadkKT8+eVbdxi4Xcya8T/tbrFN16B8aBkYpu8w4T627SlKg+Z0DHjvD993Djjd5g9mPQO3RQp7seeUeIlplJ6P9NpPiZ5yH8+IfKEkKcWirdMZKcnKz8E61pGg0aNGDgwIGMHz++spsXQgghhBDV5NNPP2X79u3ExcXRNr91TRfnlBKNHVuH9mjp6dh37yl/hRrm0l38nT8PgAFNL1ZyRkQd5fGQ8s4rhG3fQtdRF5J1/kWY7r4bR89e/qFjzGbvhaIvvqjZsgohapTdbmfhwoUAPP744zVcmpPg2mu9d8q9+SaMHg33eu8csOoOnFrZ4/9XhMft7RAxmczlLHn68gy9APvX36KHhqAnNUQLPf5sq+NReuHFlA69UM0+czjAZsPTOJmCZ7xfAIqKOjRE6pgx0Ls3ruYtjrK1Q8LD8fTqjWmx984ivWlTCMxbKCoi4ppRWBcuwLQ/E/sX31RpnYQQJ4+mV+MAxAcOHCA2tmIhdMIrPz+fqKgo8vLyiIyMrOniCCGEEDWqrp4Xq7Peubm5tG7dmv379zNp0iQeeuihMpf/v7iJyvQTWer00/Un+B4bg9gD5x1tfkUYt2W0Kme17/F3nullrrurSA1MtwVeDNF1xtu/pBH5rNCSWNLmJnKC/AGpeVt3KutGt2uuTLsyc5XpJTsX+B737XeJMs+5PVOZNkWqFw08B/0hzdY26rd49YAgyZ2F21latIThnW7CYvJ+/8m1O0dZXgsITrR2VIeA0JIN7zFDUCtx/nLZ4tRQZt0Qnh0UpX5v056rjs9tDQiedBjCVS1B6gUkpyGY1RqqXrQKDHJNbKwGxnoM/+nsXLNPmY5v7f9fpV97dX+kGIKnF21WMzgiDOUoDdhf3Zup4erLt6th4mZDULnDEAKbERDAm1gvRJnndKlhmCbDnV6hAQHhTbRSQu4di+0H/2chp1V7Nl11M7vOu4Qr+zdT1s02hLWXFRCaU6wum2NYt6xA8WXbDijTPZqr/zMu3KTu6z6t/SHf2/YXKPPKC7Xdmqku3yLev3xGnvq+TIwqO1tozS7189Sxce0bOtr4Pu7d6vgD1DfsyVOmjWH0gWHtf6aqHcpdW6qvcUVCb/fl+1+ngvx8WjWOl/ZANSgqKmL69Olcc8011bL9U9nzXV/H4nFw46ZJfNv0Fm7b8MwJbyswwPjbb77m2lGjaN6qK2MfegcAk1UdqtO5KqANEG04BkUajsGG8OPWPRv5HucYQrobx6rnsNUr9irT55yjHv9zCvyfs3056rHx0j4pyvTGXbnKdL1ItdyBlxnnrc5Q5o04qxkcPOjtyIiOJt9wLokMOLdm56vlqG94HmMwd6nbg/mFFzAtW4rz2+/KXRbAPOUdMJux9uwJHTrAoaEnS4uKISjIm0VitVJYeqgtUlRE2GWXErLwH9wRkeyeMRu9bVtl2x7DZdbA/VGRIPbAch5NdYarnyoyDe+BKEO7xO70t5+igmvnl4KMr3FdeF2rQlWdFyu9t++4446j/j09PZ3+/ftXdvNCCCGEEKIaTJgwgf3799O6dWvuvffemi7OqUfT+N7UHg/QTd/LLRufY8Ce6aAf+x/UmpYS3oyRXW7zdYoIocfFUfzFVxT8swj7tWNw24KI2byO3k/fT/IfP9Z08YQQp5CwsLA62Sly2BlZc6lv30/PrDlVtk2XS+4YMdK2bCGodSuCOnaAzMzyV6iIffuwTJyA+YcfMP3883GtYnnxRay33w7dukFEBFxxhbfjJjjYe3dlYEaX3U7U8Mt8nSJ7v/weZ6vW4HJR79EHiZn4OHhO3XaiEOJIle4YmTJlCncbxqPduHEj/fr1Y8uWLZXdvBBCCCGEqGJFRUV8/vnnALzxxhvYbFU3bMTpZLEpmcfMg9lCfcy6m15Zc0gq3ln+ikKcYtzdulEy5T1+mf4vW64YgysklINtO9V0sYQQNcztdvPzzz/jdrvLX/g0dyDYe9dgs/wNVbbNiPAIevQeysChY6psm7Wd+cMP0XJy0DIyMP/2a9VuPCEB9733AWC98Qa0NWvKXt7txj3yKtwDBkJUFNjt8N138MEHR13cuvBfrP/MByDvhluwd/fmpdhWpxL5wRSi3nwV27q1VVYdIUT1q3THSGhoKG+99Rb33HMPAEuWLOHMM89kz549pKSklLO2EEIIIYQ42cLCwti+fTvTpk1j0KBBNV2cU9oeIonAOzzFrrBm7AtpXMMlOtKK7MX8mP412wo21XRRxCnOERVD6j1PMPf1LyhMDhhGJT+/5golhKgx33//PZdccglnnnkm1TjKeq0QX7wbgMyQRuUsefwuvPhirr5pIq3bVWHgeC3n6XmG/3HLVlW+fdeECXh690HLycE2dAja9u3HXthsxvX88zj/+AMWL/b/fejQIxbVsrMx7UrHcd75AMS88QrWbd4vgzvad2TvX/+yb/oMHG3aHrGuEOLUVen77P/880+GDh3Km2++SUZGBn/88QcFBQV07tyZ3377rSrKKIQQQgghqlhkZCRXXXVVTRfjlOfRTEwx9+TG4DS+bXoLnlNwmKqNeetYm7uS+kGxVP0lBnHaMZnIaRNwt8jcuTBqFCxdCjFHyZsoKYGQkCP/LoSo1XRdZ9KkSQCcd955aIa8orrEpLtpl7sCgE3RneVcWo08g4fg+OlnMJvRe/UCRxUPPRUaiuOnn7ANOBfT2rVYhwzG8fd8aJhU9nq//OL9fd553qyRwNwHXSfiuquxzZtL0X+epLBdJzzRMTibt/TODwrC0bGTsrwQonaokvD11NRUzj//fLKzs9F1nYEDBzJ9+nTCw48duCfKVldDZoUQQoijqavnxeqo965du2jUqNFJvQBSXmB6ZcLYy1JemOG4cDVbZXPRNt9jEzodIjr4plcXrAX8+6yeVQ1dLvWo4ZDF7hJl+qxr/MNolMxcp8xzONTA1OBENaTYneX/Nn/IQPWbiKYu8Ux+/Rb27tvGjdc+R/v+A5T5zi/V57L0SPRvd4MagG1uYQiSTjC05cMCxtk2XMewRKjDsQUZQqxt4WrQclGWP1A+1BAQGx2pLltY4lKmB3ZVL24s25zle5ydo+53R5Ea3B5mCDIv2OcP5o5OUj9jPVvHKdP7c9VtBwakA8QGlDuvWH1eY4D63uxiZdr4H1nXFv73wLa9auB1sV3dH00S1CDXqIDg2mRDgPz2gP0OMHflXs5/7CYaLf+H/W27sOPrn9EDhtZr99ePRNw7lqIHH8byf+rn9Lelu5TpYb3LHi1g1c6DvsedU+op86oyeNQYdN+9WX1lOisgoDgu/PgDwMvz/SJ1mL3LDfvDWMf8gPeIzaLWNzpEDZDdY3jvNYw+dkdVZffl0q3+48IZLdRj0ep0NXy+U7LhOBjw3MbnTU07qEx3aaK+B4wy8vzH1MSA44m0B6qu3nPnzuXcc88lODiY9PR04uLiyl/pdPXss/Cf/0C9erBtG0RHl7n4811f9z0ev/LuMpaEFy/6hIz8dHblbqdXyrmYW6nHJBz+Y3roOU2VWcWb1PM0weqXM6Lb+zuzTYbjSHKcevw3m9R2X8tG0cp04OwShzq02jrD5zchJlSZTjKcx0Ns/kyVtMwCZV6M4bibWE/dli/kHDAb2qohQWr9Dxao7aekwGNjRgbufv0w79iB47JheL79lrJo69dj+vZb9HZt8VxxpTLP9Pvv2C68AADdZEKz28ESUBaHAwLOnWUdh/NK1faBMTC8IsfwNbvUY3LHxjHHWLJ6rUxTz7tdm6jvcQkXP3HGfVdRgfu62Kl+rkOttTv7qEbD159++mnl56effmLAgAHouk5ERAS9evVi8uTJPP300ydcMCGEEEIIUbVKSkro0aMHPXr0YOdOyco4lsYU8AO/MtA+n3BP4aGr1qfmN2k9Hg9Z2d7hP+JiG9ZwaURttPDuidjDI2mwIZWU559U5tnPG4zmcBD+/DOYP/6oYhteuhTOOQfef7/KyiqEqDqH7xa54YYb6nanyPr18H//572w/dpr5XaKVFRuaTav/zOR79dMZW3GsirdtihDYiJF077BU68erl69y72LQ2/XDveTTx7RKYLHg+Xxx3yTxctXqp0i+/ZBr15yrhOiljqhsQAmTpx41G8ZappGYWEhzz//vO9vTz755BHLCSGEEEKIk2/y5Mns37+fkJAQkpLKGVKgDrsAb6fRuY6FnOtYiAMLWQSRTRB7Cedd2tdwCf3sjmKcTu83Jj+d9jSXjn6AFq2713CpRG1SkNiYvx+axHkTbifhi6mUtGxD1rAReEJC0RvEU3rlSIK/+Qrza6/hHnP98W/4iScgLQ1uuQVuvrm6ii+EOAFz5szht99+w2Qy8cADD9R0cWrWd9/BI49ARASMHl3lm48JieWsZkOZu+0Xpq18G3PDSDq06FPlzyOO5O7YkbxN2yA0lJDjuVPa7cZy6y24b78D/QxvFoq2cyem1FQAimfMxNO2nbrOZ59BairceSeccQZ07ly1lRBCVKsTumMkOTn5uH+EEEIIIUTNS0tL49lnnwXgueeew2q1lrNG3fUdzZlBCge1KDyADRcNKaITB0mhAFdAE9qmu469oZMgJDicYRffQ1BQKHv3bePtyXexfPHMGi2TqH129T6X5WPuA6DpU4/Q8dIB4PFg2peB7Q/v+8l97XUV2+iTT8L338Pvv1dxaYUQleF0Ohk7diwAt99+Oy1atKjhEtWwO++ECRPgwQdB0+Cnn+DTT735SlVkUKvLaBvfFZfHycc/P8e/q36tsm2LcoQGDNW1axfk5R1zUfNrr2H5+GNsZ/bH/N//gseD3qQJ7osvBiD49luhQB0ajAcfhEsvBacTrrkGiouPsmUhxKnqhO4YSUtLq+JiCCGEEEKI6nT//fdTUlLC2WefzahRo2q6OKe0A4QwhQ4sDG+PRXcSqReSVbSG+pSShX/86jDdznOun3nDfBZrqLmx7vv1voxOHc7mz78+YcOWxXTocnaNlUXUXqtG3U5yfgZx078iaM8uwtauInTODEx5eTi7dsd9d9nj6B+hb191Wte9Fx2FEDUqOzub2NhY4uLieOaZZ2q6ODWvfkAegq57O0lSU+Gee+Daa+G226B95e4UtZptXNv9Hqav+Yilu+bx/ew3KbUXMaDnleWvLKqElpqK7eKL8LRrh/OXGXCULwi5r78e06KFmL/7Duujj2CaPQvnx5/gnPoRWqeO6A2T0A4cgNgY2L0b0tO957p334WFC2HtWu9dkh9/Iuc7IWqJKglfF1WvrobKCSGEEEdTV8+Lla33nSG3ArDTvYtfnTMxm82sWrWK9pX8B/9obg2+yff43dIPqnz7NSEwNH530W5lXqQlnF7OtVzp+AsHFj4KupDNFn/Yst3jUJYv9fgDQlv07a/MWz3/D2W6dUQrZTr0oo6+x+4MNTw789+VynR4ZDRWzfvPvkf3sDJhB2c0OQeb5ciQaXemui2zIcTb1EidDj7DP/xa6RY1iDWohRqkbDEExOoe9V+O4gNF/glDrmRCQJgsHBlMnT57uzIdGrB8cLQa+p5iCJ9dt2afMn35hf4w+zmpe9XtGuqQGKMGXjtcaohlYan/7qESuzqvS3M1iDTdEEbbNFH9fG/Z7f9Gq82q1t9lCOLs2kLNBvh+7jbf4x6GfWn8z69xXLgyvT8zj+jvv6KkYxdK27Sjfe/2aJmZOH74EdullyjLlhcIumhDpu9x8J5dtH/oNrY9M5ni1u2xmDViv52GuaiQzGtuRDOr+7rYrobThgb5L2AZA8HLs9cQXB4Yzrs7R/1mbyNDoPCGPeo3i9s2jFKm9xf4A8IbRKjvvfKkBXwGmhiCi08HmzPylemk+modja9xWfsv8L2Wn59PfL0YaQ9Ukq7rpKWl0bRp0/IXrktcLpg0Cd57zzsU4GH9+nk7SEaMgKAjz6dlCXz/6rrO9bc/wNcfvAbA+EnvEfWn//inmdWL6VG3q0NjFu403O1Q6G9rhBpC3Yv3Gs4zPRsp04EB6QCRof7jrMOpHt9DgtRljUPrJzdQ2wsZB/3HtwO5pcq8lo3U42jTuHDIzfUOZWY2VyhsetPuXGXaZlHL2TSgXeNauoywQQPQioqw3/8A+ksvKcv6Qqp13ZsXcu+93ruGevaE+fNZtyfP25mi6yTs3U7MkPMw5eaQ/8prRN53N/z9Nwwc6H0PTZ4M999/XHUor76VCSovMbRTQizHDtuurQHpgeU+lcpcVeWqra/LyVCj4etGDoeDOXPm8Pnnn/PJJ58oP3XV33//zcUXX0xSUhKapvHDDz/UdJGEEEIIcZKdCu0Bl+5igetfAO69995q6RSpq1ZYWrPRnIINFzfaf6a9a1v5K1Wzw50iAAuKFvBj6se8MedJ8ktyarBUorbQbTZyrrqW0vYdCdq6CQoL0evXxzN48Alv02QvpcO9NxCxJpWm//e4r3cm4eMppDzzOCnP/qeqii/EKetUaA8E0jRNOkWOxmKBxx6Dbdtg5ky4/HIwm2HBArjuOhg2rFKb1zSNUbc8wOXX3UHPs86jc88zq6jgtdiWLRAT493369ZValOm/DziXvw/glNXHDHP07UbJR9+BEDQK5Mx/fzT0Teiad67PpYsgeho7+9x43yB69b0nURfdhGmXG+7KuKhB2DOHDjrLG+HCMBDD3n/JoQ45VW6Y2TLli20bNmSQYMGcd1113HDDTf4fm688caqKGOtVFRUROfOnXnzzTdruihCCCGEqCGnQnvAjp0ggggllAkTJpS/gjhuTs3K1KCLWGVugQUPV9n/JMJTVP6KJ0l9s/fbo/vydpG6a2ENl0bUNvbW7bDvzcAx49BY+D/95L04uGtXhbYTvmEN4ZvWA1DUvhNBu3di27UTZ33vnS4NPvsQzW4vaxNC1HqnQntgxowZ3HnnnRQWFpa/cF1nMsHgwd5g9vR0+L//g4YN4T9V05F7zR0P8/Dz7xAUXLE7zU5L2wK+VPKa906aI25vPE627dvIv+RyzPlHzxFxXXoZ9rvvAcB6662QlXXsjXXoAB9/7H382WdY9mdi3ZlGkxEXYd63D1e79pQOuxzN5fJ2nOg6jB0LY8ZA9+5Qh+5oE6I2O6GMkUCPPvoouyrYOK4Lhg4dytChQ2u6GEIIIYSoQadCeyBMC2OY7RLy9Pw6NezIyeLWzHwWNIR6pV/T2LOfyxzz+DSo5tuALt3F4uLFAESF1KNL4z41XCJRK4WFoffoAXv2eMNlDzv3XEx33YXn4ku836YuQ37HbmReMIz4X6eT9PEUkj6eosw/eMGl6BUcmkaI2qam2wN79+7lxhtvZP/+/SQmJvLEE0/UWFlqnaQkb4fIQw9VeBitY9E0DfOhY6eu62zOXkOr+h3RqIO5FIMHw4YN3pyO++/HNGsW1pEjcD33HO7bbq/Qpko7dEKzl+Jocuy7oezPPo9lzl+Y167Fev99OD/7/NgbvOQSeOMN6NgRV3wC4XP+xJK1H1er1uT+8DOe6Bg8cQ0IfeZpf6bIu+967y4xyZBHQtQGlf6kzp8/H4vFwp9//glA165dmTZtGrGxsb6/ifLZ7Xby8/OVHyGEEELULVXZHnA6/eO3mzQTMaboKiihOBpdM/G97Vw8aHR2b+Uc55FDOJzU8ug6P+f9zA7HDmyWYG7s9zCRITE1WiZRu2lOp3ec9WbNvBd75szBdsUVBLVqifmtt8r+dq/ZzIYX3mD7Y8+wf9hVuENCcAeH4AkKprRxCrsefvLkVUSIWqIq2wMul4urrrqK/fv306lTJ8aNG1eFJa1DqqEDV9d1Pl31OlNXvsLyvf9U+fZrBU2DNm28w1A1bozp55/Q8vKw3H8/2urVFduWxYIeFo4eEnrsZWw2Sqa8h24yYf7yS0w//1z2Nu+6yztMFlB47nmkT/2S3F9+w5OQCMHBFP73FYgLyPqyWtVOkd9/P+E7YIQQ1a/Sd4zk5ubStm1bBg4ciKZpWK1WRo4cybPPPstzzz3HgAEDqqKcp73nn3+ep556qqaLIYQQQogaVFXtAZfLxXnnnUeu8yC9LD0xa1X/rbXAsHU4PQLXn+/+xnEvm2lXh1+o36k/Mw+Y6J41jx3Nh/JS6nhlfmBY4iMRDyjzuo4arky7tqt5ILk/LPM9LnYbgqSHq+OT2xfsYGn+YlaWrMSEieuufIKGLbr5FzjgD5vWS1zKuhhCvqmvho2XbvUHrluS1fBUW7hNmS5Iz1WmW/RsrEwfDAgyL9itDnlRXKAOq+QxbDumj7qtsBB/rko9w7JxhsD0jp0Tlenlm489jEZMmLqtDYY6YbjO4Xb492erpmpH1IE89XUzXiKxO9WA1JQEfyi62fCt0/U71ffHjn3qBdMurf0XaKLD1At5fxvC502GAN0d+9Sw3r2+gPAgLO9N9z7K2EPDrz8h+YdpmHbuxHrP3RRbgtg/bKSy7jkd1H1Nx8d9DwMDYVtzKBB21SrvxaMuXVi0eb+yatChkGBTXh4zFuahW/2vTVJ99QJYt6ZqAPFmQzhvYPh6mqG+xvB1Y9i6MQQ1MlR9j5S1bFqm+lyFJf7O6wTD+3TNjoPKtMuwrQ5N6inT+wPeX80NIchGhQ71cx9uO/YlgQOF6mcxNvz4Lwy3Siz7DsVwW9l3GqVn+4clDAv2f8aLS11HW/y0U5XXBx5//HHmz59PREQE3377LSEhIeWvJI60ciUsXAitW3tDto+TMSz5sl4pyvRXwway/t2V/Lx9Gr0fG0VScjPfvL0/bFQ3Fqp+XvWAMPbiSPV4FNpQ/Qzu3nxAmW7TMUGZzs73f96Drerns7nhWLgpXT0PuT3qMSqxXpjvcbtk9XxoPM+kpqnHu447dgCgORwEXT/Gm/FxqFMqy3BMahKvHu+CDOUOLiyA+fPhvPPQzQH7rucZuB8ch5axF0/fvhyN8RjevlG098HVl3t/P/+8d3jJTz7hQKH3XBo09QOsixbieO99MJmwTX6Z4MfHw223wZtvgtnMwWKHst16ZZxHAPbmqu0HT0Ani9Xw3oqPVIdmKyts3ai2hnpXpNyVCTIvNrTTQq1l79uq2p/G7dSFMPb9BaXKdIOI6h1ysNJ7MCIiAs+hg2B4eDgbN25k8eLFpKens3ChjGV8vMaPH09eXp7vR4YnE0IIIeqeqmoPPPHEE8ybN4/17o0U6TKW+MmyKrYvH7V+iEJbVPkLV6OkoIYAXBh7CW1anFGjZRGnH3tiQ7bfO56s9VsofPxJSi++lNLLr6jcRr/5Brp1g65dvcOQHEPjh+7mwr4tuOiMZPrdcCkRm9dX7nmFOEVVVXvg559/ZtKkSQBMnTqVli1bVmUx65Y//vDePTB5MpSUlL/8cbp41K2069obe2kJrz91Lw57afkrnca0Qx0juskEffuC213OGsfYztat3nPKxRfDFVcccdeG69lncX70MdSvf4wtlGHTJnjsMZgxA+67DwDTju2EP3AvwV98RtAjD3vrEBWFrmkwZQqMHAmSpyXEKafSHSONGzdm586duN1uOnbsSEFBAX379qWgoIDExMTyNyAACAoKIjIyUvkRQgghRN1SFe2BRYsW8eKLLwJwrvUsIk3SpjiZPCb/NxJNs2ZVOKi6spweJz9kfUfDoEb0iOh5Up9b1DEhIRQ9PJ68T6fB4W+gOxwndhHrf/+Dw984PnT8Moqd8jpRv//im45Zu5Im335S8ecSohaoivbAwYMHufnmmwG47777GD58eDlriDLFHLrz4ddfISEBbr4ZMjIqvVmT2cxdT0wmIqoeO7es55X/3InTUXcvoGuHho1zvfUWvP22d2iqE2hLmT/6CA51svDLL2jGbQTejenxwPjxsHbt8W18wQL/42+/BV3H07QZhe+8B0DQG69hnv83zptupuSzL8Bmg+++gxEjIGCoWyFEzat0x8iYMWMYOHAgW7Zs4fHHH8dqtaLrOiaTiYkTJ1ZBEYUQQgghxPHYuXMno0ePRtd1rrvuOpqbm5W/kqgW5smTsQ0ZjG3MmJP6T/DqolQyHHvZY9/NlD1vsidj60l7blFHHR6OS9dpMP4BGo4ahjVte8W2cdtt/sf33nvURTyGC8PZ3XqzffTNFXseIeqQvLw8TCYTbdu25YUXXqjp4tR+114LEyZASgrk58MHH8CAAZB17CEZj1dMbDz3P/MWtqBgVi2ex+tP3YvLVTcvoLseHIfzqadx33Cj9w/33OPd5599VqHtuK++2j9hsaA3bnzMZc0vvQQvvACDBsHmzeVv/Nxz/Y9Hj/adB+0jR1Fy860ABD88DtxuXJcPh19+8Q4H9tNPhN12i/+LAEKIGlfpjpH777+f6dOn06ZNG4YOHcqGDRv49ttvWbt2Lddcc01VlLFWKiwsJDU1ldTUVAB27NhBamoq6enpNVswIYQQQpw0J7M9sGPHDs4++2x27NhBs2bNePnll6v8OcTx81x4IXpEBKa/52F5+KGT9rxdwrtxaezlBJtC2OvYw6sfjOWXWe/jcNbtoTlE9bOmbSfi+28JnT+P5HP7eO/8ON5OwWuvhexs77ev7777qIvkXjiM9UvW88uiHfyyNJ2FU76mqEmLKqyBENWnJq4PNG3alL/++ouPP/6YoGoIDq9zQkJg4kTYvh3mzIFGjWDjRhg61Hu3XCW16XwGDz7/LlabjdVL5rN7+3FcoD8Nue+5B/f993vv6HC74Z13vMNgXXstpl3H/3nR27aFjz6Cn3+G2bO9nRc5OWgrVhz5nLfeCp07Q2YmnH02LF9e9sabNvXexbJnzxF3ORY/9gR6VBTm1FSsnx/qzDnvPO+dJRYLQV9NI/T+eySQXYhThKbrlf80HjhwgNdff51FixaRkpLCPffcw4oVKzjnnHNITk6uinLWOnPnzuXcwF7kQ8aMGcNHH31U7vr5+flERUWRl5cnw2oJIYSo82rrefFktQecTicdOnRg8+bNRGmRXGK7kHAtnLdKjj1Wv9H/NVBDXp/YP+G41y1PZYLa/y9uojL9RNbEoy53IozlMnqt6D3f4/9E3a/My3ep2S1N23dVpletmkd3fS8Pef4F4AvbAJZY2gIQZDIElRu2ldJTHQIrY1mq73FCl47KvD0rU5Xphl27eLfpyOPnHV+xJtt7AaBBUAKjkq+n0Tn+bXv2GvJnDOHrpgi1nFqnBv6JfMNFoDCrOu1Qh1OK6KyGvNoDAtbNhnDQkvVq8Hb9s5oo0x6P+u9LZEBI+s4l6lAZJkOAelSKGgIb+K9QcLAaatvQEOrdpXmsMr1ko1pOW8D+M5ZxR4YaNpscH65MpxkC6C8+y3+318ylap2iDQHzQ3qo34JdGxBk28NQ5q8X7FCmR/RrqkwbQz33Hiz2PZ5vCG4/xxBkv21PHiE7t9P6mUept8Q7zEhu8zYsfuJl8lq0pU3jaN+y+7KLlXXP79pQmU47UKRMN4kN43htNYSc7zuoPlf/tvG+x9MX7VTmtWqk5gP5wnYPWbpVDS8+o4V//+aXqp1Aew3P2yZJ3faqnf7XKTRIfe+1TFCP9/9uUt9rsYaA3cCg84w8tRM0MarqQkurMvR1jyFQuGH08QWCS3ug7HoXFRWxevVq+vTpU5niiuOxcaP3Ivp//nPMDt3jMemiT32PzT2T2LB5MTZbMM2bdMbSWH2tXRuz1ZXj/J+bsGb1lFlmw3El/9+yOxVaD2vne7wrTQ1XP7evGhifnqm2H1oajp0Ol78NsH5nrjJv6BnqOSt9v7qtwGN2r8J0gnr3AsA1diyWSZP8QzdyZBh7hObG/MnHeM4+B711a+UYZZ//D7Yrr0DLzPTekfL448q67N+PbchgTKtXo4eGon31FVx0kW924PG/Y1N1X+cdyCPiifHoQUEUPvEU9T56D+sjD6PHx2PfsBEOfWZNX3+F9ZprcL30X9yH7o50G9oLYeWEemfk+Y+dMeFqh2d5x+TAY/jpGNpdnny7S5mONHxGynKqhp5Xplynap2OV1W1Bypd67S0NDp37swzzzzDrFmzWLt2Lbm5uVx//fW88cYbld18rXXOOeeg6/oRP8fT6BFCCCHE6eFktQesViuvvPIK9bV6XGq7iHAtvPyVRLVbriXxrebtDLnSMY8U975y1qg6EbYoRre+lWtSbibcEsl++z5+zfjhpD2/qJtKUpqR+u5XrH/mf9ijYojetpFz7h5NzMbVNV00IWrUyWgPOJ1OLrjgAgYMGMDs2bOrbLviGNq08YZwV6JT5GjatupF8yadfdN5OVl46ujQS6ZZswBwDxmC63+vKp0iR2MZexfWO+/E1q8vWmBeyCefYBs4AC0zEwDrhCcxT56srtygAY6583Cfdx5acTFceilMnVp+IT0eokePIPS9KYS98RoxFw3GffPNeFq1gqwsTLNn+RcdMRLHuvW+ThEhRM2rdMfIww8/TEZGBg0bNvR946p///5ERkby559/VrqAQgghhBCifBdccAFX2IYRph3/N6tF9ftOa8cyErHi5jb7L7Rzp53U528b2YG7WzxEh6guDGt0le/v+3N3c6Do5HXUiDpE09h38ZXM/OwPDrTvSlBBHn2eGCuBs0JUs7/++ou///4bq9VKeLh8QeKkiI5Wp6u4AyNj9zZeeupavvnkBTwed/krnGa0Q0NnmebMwfzMM2Uv7HJh/tR7942Wm4v566+9f1+4EG68Ec3pxD18OK4nngTA8tIkyM1VtxEZifOnn3Ffd533tbz33nKHSdN27CDoL3/nh23pEkwrVuB8/wMcS5biGXa5srzesqV/orAQbYd6J6cQ4uSqdMfIrFmziI2NZcOGDcrfU1JSSEtLq+zmhRBCCCFEGdxu/z/KJq123QJdF+iaxhumnmw3JRKKHbN+8r/1GW6NYFTy9URZo31/+33Zl7w092HeWfgsK3YvwFMD5RKnN3tMfea/PJXdZ53P0sdeAqu1/JWEECds507v0HD9+vWjV69eNVyaOua55yA5GcaOrdLN7t29haKCHBb+/QMfv/04Tlfls0xqE/d1YwDQ7HasEyfAokXHXthiwX3Pvej16qHHxeG65Rbv3zdvBrMZ98iROL/8CteECTj/+zL2JUuP7NgCsFpxvv8B3HorTJlSbhaI3rw5RXf6X/eSa8bgOess9L590bt0OeZ62vbt2Pr1JfiiCyE/v8znEEJUn0r/91xSUkJCQgJhYeq3EwsLC7Hb7cdYSwghhBBCVJau67Ru3ZrBgwdXa4CrqJxSzcrbQZcwzXYua8z+TId2rm0kuTNPenl0XcftcaGhsePgJr5aNYVpK9/G6a5bF1xE9XOGR/Lvc++Q1dV/kTb6+6+pv3BeDZZKiNPT4eGzevToUcMlqYP69fOGcb//vvd3FeneewjX3fYMZouVVcv/4r1v/kOJvaj8FU8Teq9eOL74Auerr+F6+BEoo6MBwDVpEvb9Wdh3pkPjQ1kmY8bAokU4337HG8AOuO+7zz/f4UBLTVU3ZDJ5O0VGjYKgIMjKKrODpPC5SezfsZus9VvIf+NtMKs5Idrq1VivGA7F/vwUPTwcLS8P05bNBN10o4SxC1FDKh2+3qFDBzZs2MDHH3/MddddR9euXbn++uu599576dSpE6nGA4w4LrU1VE4IIYSoDnX1vFhevVetWkWXLl0ICQkhOzubkHLGXr4z5NZjzqtIUHtFlRe+fol2kTL9k/7LcW+7rHD2iga3G8sZafEPRfLfwlfLfN4d+duV6aaRzTgWS0ocQa5i7lg7kRB3MRsiO/N3/FCyg70B5Vqw+s36XWtSfY+TzzhDmWcyBG96sg0XTCzq96A2L1vgexyX0JhlBUuZl/MXbtwkRzbnunZ3EW6LANRgcgAtIJRRi1YDnc291fBs1+w0tRiG+QQGnbsMd6sYwiBtreqr8w3/vbTt6A/TXrNktzKvSUc19D0yVN23BwNC4I3/FDU2BH5n5Khh0f3bq9vOOOjf98Yw1fwitdOpviEQ23ToYs1hgaHfK3aoYbtN4yOU6QXr1c61Ls39+2v7XvVbqIEB8QD7DHVql6yG06du9z+3w6m+Lm0aq2G7HZqoYbSLN6rlyjhYQmjmXoZeNxhrSTHuq6/G+d+XIS6OrYZymk3q/mjb0P9cxrDQDEPIucfwvm3eQN1fe3L8yzeMCVXmGbe9Pl0NIO7W1PBerCLFTnWIHJOh/sZA1MDwXVADeDMNoeYp9dX38Qe/b1KmrzhbPVat3+mvc5/WDZR5gfsOyt5/5YW4lhVkXxZpDxy93k6nk7i4OPLy8li4cCG9e/eugVLWcQMGwJw5cMcd8NZbJ7SJl2/7QZke8/JQAObPm8N1o0ZQWFBAQkgS1ze/k0hbFLYRHfwLp6vHUdeWg8p06JhOynTbDvHKtNnk/8w2iFHbk4vWqcfz9k3Vc0XDWHXotqCAAPHAIHaAMEMbJ8SmdiKsCDg22B3qun3aqWVe9PMCWr01ieJGKWy+8xH13KrrdG5+7ONKfrF3eMfgT6YSOfYO3EOH4hr/GHrfvgBs3pPnW7b55UMw5+dx4OY7yBl5DTabGtq9eXeeMn3xGcn+CZcLT+vWmLZvx9OvP46vv4Z4bz20JUsIOuds73Bdzz8Pjz56RDnLCsjOL1WHqLQYjruh5QS5l2XVTvX90zml3jGWrLiqDP0uCjh/lhdcv79A/fK+sU1YVWUqT1XWv7YEqFekfXC8Tpnw9VtuuQVd1xkzZgyappGamsp9992HpmnceOONld28EEIIIYQ4hhkzZgDeO3hfe+01Ro8ezTvvvKMsM3v2bLKysmqieKIMFt3Ftqj26Gi0zV/FLVte5PKdH9KkYNNJ+9ZgpCWKATGDGJN4E8GmENLzt/FW6nNkl8j7RVQPR0QU2y8cga5pmD//nKAO7dHmyd0jQlTWv//+S16e9+LsGYc60D/99FMaN27MoEGDePjhh/nmm2/YsWPHEZ3eoopMmOD9/cEH8PbbUIV38p559rn8NHMWEZZI9pXs5b0tr1LiKi5/xdOY6fPPOPOq80n68xdaTH2T5h+85psXtHM7HYYNQlu8uNztmLdvQzeZMP/2G0FnnYmtTx9Mv/3mm2/Zt5fgjesJ3rKJRo/cR4PXX65YQS0WnFM/Qo+MxLTgH4J6noG2bh0Aes+e8Prr3uUef9ybhyKEOKkq3TFyzz33cPvttwPeb5UdPsneeuut3HPPPZXdvBBCCCGEOIbAPLdHH32UadOmMWuWPwDywIEDDBo0iAYNGtC0aVP+cMwm1bWafZ5M3HrdC/E8lRRZI/m56Rg+aPcomyI7YkKnTf5qRqe9zU3rnqNh4fbyN1JFmoU057aku6gXHEeoJYxwa0T5KwlxAlyhYay85wkcC/7F06kTWnY2tgsvIPyvP2q6aELUaofbA8OHD8d8aBif+vXrs3v3bmbPns1LL73EiBEjaNasGQ0aNODCCy9koVyErVpnn+29a8ThgDvvhJYt4csvq2zzHTt15rbW95Mc1hSrZmVn0clrJ5yKLC+/jNle6ptu+Nt03+Pov+cQtn4NQf36QknJ0Vb3KZr4DAeXr8F1443oViumpUuwXnIxcW+/CrqOKyGJDYvWkjP8KgAif/u5wmXV+/XDsXARnjZt0PbswXr33f6Zt9wCV1/tDXu/5hrIyzv2hoQQVa7SHSOapvHWW2+xbds2vv76a77++mu2bt3K22+/XRXlE0IIIYQQx/Dss89y77330qNHD0aOHMlzzz3H3QH/bGVkZNC6dWvAe9Fkm2c7C12Lme74iQ/tH7PStaqmii4OyQppyHcpN/F+i3EsrX8mDpONuJIMiiwnt3MizhbHnV3Gc32HewmyeIeiKHIW8t3mj8kqPvk5KOL0pvfsiePfhbgvuQSttJTkW64h8tefarpYQtRao0eP5oUXXuCVV17x/e3MM89k/vz5vPfee9x+++306NEDq9XKgQMH+PXXX/F4/EObzJo1iwcffJD58+fLHSWV8d138NRT0Ls3WK1QxXkv9YJiua3V/dzTbjxtojqUv8JpzPnOFIqTGvumt9xyn+/xgYsvxxHnHQrQ8uST5W7L3bw5rnffw74jDdctt6DpOokvPEXC8xMB8ERGUti3PwCu+sc37J+R3ro1jpm/eztf/p6HtuDQ0KaaBm+8AU2awPbt8PDDJ7R9IcSJsZS/yLE5nU6GDBlCaGgoP/30E02aNKmiYgkhhBBCiPLExcXxv//975jzO3bsyMaNG8nLy2P58uU8NvhRMj372efZRyl2QvCPIZ2VlcXChQu58MILfd82FSfP/pBG/BnSiL/jh9LEvoPc4DjfvH6uDWw2JZFliipjC5V3OFvksIV757AscwGpWUu4sOmV9G50LpohC0OIExYcjPOrr+H6MZi/+orQ5UvIv+CSmi6VELWS1WrlkUceUf4WERFB//796d+/PzfffDMAdrudVatWsWTJErp27epbdvr06bz11ltMnjyZjh07ctddd3H11VcTHq5mR4hyREfDk0/CE0/A5s3QooV/3tat6vQJkvOwl96zJ/98MZOw9B2UxCfhqB/H4RQod3QMO56ZTOvbrsH8v1fwnHMOngsvLH+jCQm43n4HvUsXtMceJ2f4SN+s2KnvAeBonHLihW7UCPeYMVjefx/L88/h/MU7JC7R0d67i/7zH+/7Rwhx0lQ6fD0mJoaUlBQJWa9idTVUTgghhDiaunperK5667rOhg0bSEhIoF49b5jic889x+OPP07Dhg3p168f3bp1o2vXriQnJ1NQUOAbsxxg+fLl7Nmzx9eB4vF4eHO4d4xkK1a+yf+O4GDvXQd2ux1d17FarZhMpgr/Q397yC3K9Dsl751wvSuqrKDAa62jlek8lxp6agyQD1z+U+cXyrxx4fcq05uLtvkeNyOPySzAjcYac1P2DLycHSndcVq9nVpF05Yp6y7LWaFMh5nV4OUgk833uHm9lso8zRAmute1jz9yZrKtdAsA7eK6MrzDDYTbInHtVAPBLSlqKLWnUA24tJ7fHPUPAfvTGMJ4QB03PbirGnJer5HaQbT3T//+srZQw0F1Qwi6q1gNKg2u5+8cNBlCOyPqq8HSJkMxSwzbMgesbwxATaynBtkWlbqUaWNgeGSIPxC0xBDM3SxBPRY0TVA7tH5dusv3OMEQoJvcQL3I2cgQnj190U5lujTguUOD1PeHzaLWsXcbNajb6VbrlBUQGF5QHBBG73bTe9ks7xAih44P6a+/jzOuAUW9+oLZTGZAwHp0QNA4QGvD+2HXgSJlOjDI3sgYLus2vF9MhuNVlyZVFz5bEet25yrTzRPV90Bhif+9GGvYP+Vtq6z9U9FQ17KOmeVt63ifS9oD1VPvmTNn8tVXX/H1119TXOz9vEVGRnLmmWfSq1cvnnjiCd+y8+bNIycnB7vdjsVi8f0AREVF0b9/f9+y69evx2azER0dTVBQEBaLBavVitlsrlsX+OfMgcGD4b33YMyY417t5efmKNMejxtN87el9E3+c7HWXA1ED2mr3tngMARP2yIMx4qAj2DL1uq6TQ3HnB/fX6pMR3ZWz9MpDf3H5TbJ0cq8RRv3K9PRoTZlunXA8haT+h7JNtShU7Ja55KSUsxffYWnXz/0pk0puOpaGnw3Dd1kQnv5Zbj3Xt95psQQCm+8MmoqyIcofz1sSUmY9mdS8sxzhDz0ICxd6h3+6swzKY9ybEzbAe3awZVXwtSpZJao5YgKU/dHWcdd43HTqDIh15sy1CG9Ig2vU2KU2r44FZS41P0RYjl5oebG5T0B7YnQckLhjQLrUZk6VFRFztOnQsh7VZ0XK3XHCMCwYcP4+uuv2bt3L0lJSZXdnBBCCCGEqGaaptGuXTvlbzabjXr16rFnzx7f8KiB7HY7Npv3n6JXX32VTz/99Jjbz83NJSHB+0/yvffey5QpU3zPUb9+fd9PSkoKTz31lNx1XIYSLGwyNaStZzfd3Nvo9sdLuMxWdiR3Z07/mykqfxMnLCmoIdfF38Ci/H/5I+c31metZPv8jSRFJHN2+Nm0CGtdjc8u6gyzGa691j/tdJL01Hgs2Qdwh4ZR0qET5iGXs/eyq3wXtIQQVWvIkCEMGTKEV155hY8++oi33nqLLVu2MGPGDPbu3at0jFx22WXk5uYedTs9e/ZkcUDg9cUXX8z27UdmYZhMJrp168bSpf4L7D/++CNRUVH06NHj9LtT5bffwOmE66+HnTth3DgIDS13NaMNmxbx+dfP0r5NX64e+Z+qL2ctZ330ESyvvYYeHY196TLSnpqEpuvEff8l3H8/RETATTcd38ai1E53+223Y/1rNtYff4D/POaf8ckn6jmsPM2bw+7dEHfozuCSo2f+maZ9gWfIUIitf9T5QoiqUemOkdjYWFwuF127dmX48OHEx8crPf9Pym1gQgghhBCnvHHjxnHXXXfxzz//sGLFClauXMny5cs5cOAAkZGRFBcX+zpGmjdvTq9evXC5XGiahtlsJm3JDnTAgYOYGP83+Fwu/zfjHQ4HGRkZZGRk+P42adIk3+N33nmH1NRUunTpQufOnenUqVP1V/wUl0EYb9kuJFnPoot7Oz3CMonJy6DljkUk7N/Cx+aRHDRX3z/NJs1E36j+NA1pxrd537K/aC/bczbR3tbe1zGSac/Ak5tH4+hm1VYOUYcUFJB33lCif/0Rc34+4UsW0n7JQhrM/YMN45+FFk1ruoRCnLaio6O57777uOeee1iyZAnLly8nLEy987B79+4UFRURHByM2+3G6XTidDrRNI22bdsqy4aFhREWFkZRkdqNH5hvcth9991HWloaJpOJtm3b0rVrV7p06UKXLl3o2rWr7w7XWumFF7wdI//7H0yYAG+/DbfdBiNHgmGflcXpcuJwlLJ63XzO3rOZhshF80CmX7x362q5uZj++gv93MvY/vyrFLdpT8qcX70h5yfIPv5xCA0lZLw6ZB2ff16xjhHwd4oAOBzeLwgEDGNrfuMNrPfdi3v0aO/2hRDVptIdI//973/RNI2srCzftwEDSceIEEIIIUTtEBISwnnnncd5551X5nITJkxgwoQJyt8Ch7wKCvIPz/Dmm28yefJkXC4XhYWFZGdnk52dzYEDB9izZw/x8fG+ZX/88UdmzpzpmzaZTETqEcRqscSa6tPerN7lUmdoGulaA9JNDVg9eggNDuzggj9fxmMyU+yu+DdOT0SiLYm7+0xgXeYKQCepyHsxZkfxNj7e9T4he0O5t8/ThAfVnaFtRDWpV489L77KnucmE7RtM5F//Eb8/yYR9/ef1P93DtsnTyFnqGSRCFGdTCYTvXv3pnfv3kfMmzVr1nFvZ/Xq1YD3SxIulwun04nL5aK4uBin0z8EnMPhoEePHrhcLnbv3s26detYt24dn332GXDknSjz58+nbdu2xMaeWBD2SWcyweTJ0K2bN0MiLc0b0v7UU948kqefPq7NtG/ThyYpHUjbuZYpUx/itgFP0LC+dBYf5nz5ZdDBPGsW7quugsxS0DT2XX8bKU89CoeGfOP33wl6dDye7t1xX3oJnqEXHNf27TfdguWvv7D++TuEhEBJyXENpXVMe/YQM+xyHAMGUfSY/64sT48e6CYT5i++gCuugGHDTvw5hBBlqnTHSHJyct0aG1IIIYQQQhy3oKAgX0dJvXr1SE5OPuayd911F127diU1NZWVK1eyb98+cskjV88j3ZNOJ3NH37IfffQRFouFM888k5SUSgRh1jaaxv64Znw17HlMHielP+3w/ln3oGvVO96vzRxE16Q+AL6MkaSghkRbo8my7+eL1W9zU/dxmE0VG0tZiKMym7G3aktWq7akdT+L1v+dQNTqFRSc4b9Qa87PAz1ShtgS4hR3OIfkcP5Y4J2l4B1q85tvvgFgz549rFy5ktTUVF97oFu3br5lS0pKGDBgAC6Xi2bNmtG7d2/69+/PWWedRdu2bTEZA6FOFZrmvbNg5Ej4+muYNg3++APOOuu4N2G1BnHzmBd476OH2Zm+nnf/fJrbzp9AUr0m1VfuWsRz0cXe3xdffOgvpf6ZloDLn4sWYUpdiSl1JeaPplK6Iw0SEst/gvBwin78meiNa6F1a5g9Gzp2LH+9Y/n7b2xLl2BbugRn1244hnoD4vXevXGPewjLpBe9dxb176/eZSKEqDKVDl8X1aOuhsoJIYQQR1NXz4t1td6H7du3j5UrV7Jy5UocDgcTJ070zWvevLlv3PLk5GTOPPNM+vXrR//+/Wnfvn2NXxipSGj8893fUKZd6QfUBQIu+loaq8Nm3L/kTu/f77wDbc8envq1kI3UB00jSHdxaacUkvK2sy+yCVviupC5cJVv3SyH+jxWk/qdqcbBjZTpHSX+YO6mIf7OqCz3AT4o+RiHx8FZcQMZnHQJpiCrsq4pXg0I1yL8IZ6m7oaLEWm5yqR7a44ybT7DsHyo/7lMhpBzjyEgXQtRy2UJ9tfZ41DH+Y5opH7mXHY1MD0kMlid7/QPDWOzqZ1DxnB1qyFMM8SwvDkgcNYY1F5U5FCmu7RSL5a0T/FfcJyzaq/6vGa1A6FDU/X9ZOxeiA+o4+6cYmWe2fAZ25iuvk592sUr04s3Zvoe78pSt3XFmeo3njfvUUNfSx3efWDbu5suZ3X1zxgwAE9eHq4HHsAz/AqwWikxvE4WQ0Doyq3+931CPfWOq8CAeIB+bdQ6GP2yzB903y5FvdC72BAwPKxvE2U6MLh0e1ahMq9ZXNn5Chv3qvunTVLUMZaE1YbXJcLwGTB+ybFJrDpsUlmWbM1Spnu28L8X80rVz15UsPq8RhK+Xra6Wu/DPB6P77y+bds2LrroIjZu3HjEcvXq1ePhhx/mkUceOWLeKSk725tlcfiivdutDKlk9OaXqQCUFBfy5gt3krZlDWER0Yx9/C3ighsryxY99YcyHffelcp0z65qRvDcmZt9j2+6oYdazIJSZXrXfvWY1bJRtDKdus1/nG1nCEg3ntNaJBnOtQHHgg+npSrzYpsaw9bVbQ3ppX75pmH0MQLCMzJg4UJ46CHYvh2++IJpjXopi1zWR/3SzcL1/nPYgE7qvitxutEWL4aoKPS2bSsUmO0aOxbLm2+iR0ZiX78BDmX0Ybdj69UT09q1OC8fTsnn00DTiAw68e+37w8Ir28QEVTGkkdKP6iet5Prnfgdy2Ud76syQF3A3lx/u6ZeOa/5qRCoXhFVdV6sdK1zcnJwu73/ROzdu5cnn3yShx9+mH/++aeymxZCCCGEEHVYQkICQ4cO5bHHHlM6RVwuF8OHD6dXr16YzWbS09P5/PPPufPOO+nUqRMDBgyouULXhPx8zJ9+innGDJ7W5/GMPpebPSuYqv/EFateo2/aL1y++g1uXvgEzd17qvzp48yxDGs0CoC/s2bzyfYpHCjdX85aQlScIymgs27vXli8GNOKFdiuuQZb+3Zoy5fXXOGEENUm8MsOzZs3Z8OGDeTk5PDHH38wceJEBg4cSGhoKAcPHsRq9XfCbdu2jZ49e/Lggw/yzz//+K5dnTLq1/d2ijid8OKL0LMnlJaWu1pIaDh3PfomKS06UFSQy6Y1i8tdRwRITITLL4dLL/VOT5+OdqLvjYICbOefR/CZ/QjqdQbatm0VWt3135fx9OiBlp+P5Un/cFoEBeH8cCq6xYL1+++wfPftiZVPCFGmE+5qTEtL45JLLmHdunU0aNCATz/9lOuvv94XpvnKK6/w9ddfM0zGwhNCCCGEEFXIYrH4QtsLCwtZtGgR//zzDwsWLGDhwoW0bNnSt6zT6aRPnz7Ur1+fRo0a0bBhQ+Li4rBarVitVjp16sQZZ5wBgN1uZ9myZdhsNqxWKxaLBZvNRmhoKKGhoYSHh/sC6E8pkZE4VqzE/MpkPO++TysOEo4DCzq5IbHsjWxGs+w11C/O4DZ+4DPbYFZbWlRpETrFdCPHkc2sfb+yqWA929Y8w7jOTxFliyl/ZSFORFISpKfjfPMtLG++gWn7dmznnI3zvQ9xDru8pksnhKhm0dHRSi6a0+lkxYoVNGrk70BdsGABS5cuZenSpUyePBmAs88+m8aNG9OoUSMSExN953yr1cqgQYNISvLeDXA4E61evXpER0djsVR6JPpjKyyEV16BzEy47z54550jFsnOzmb75lT27d7O1o0r2bJ+Gbc/8irrVv7DwIvHYN9XdOR2RdkuvNC737/5hvNWb+DvFz+gtF4Fc2sWLMA8dw4AWkkJpvl/Q+uWZa8TyGrFOeklggaci+XDDyExCdfEiaBp6N264XjwIYJefJ7gh8dReOFFEBRR7iaFEMfvhI/sjzzyCGvXrgUgMzOTiy++GLvdf1uW2+3m5Zdflo4RIYQQQghRbcLDwxk0aBCDBg0CvHeT5Ofn++bPnTuX5WV8i3zcuHG+jpGMjAz69+9/zGVvu+023jl0sSInJ4euXbsSFRVFfHy87ycsLAyTycROdzopZu+QDk7dxf/93/8B3nHUD/9YrVZMJhPbC7bQLML7T7Su62xzbMem2bBqVqyaBYtmxapZsWk2zLp+1Hw/vWVLXG+9zbfv/cs1+lr2EMELWl8a9h0JmobNVcIF6z+k9f7lnOlaxRpz84rs5uNydvx5tI/uzC97viPcFql0ijjdDqzmU7BTSdRu9evjfvxx3GPHYr16NOaZMwm/ZhQlT06k9OFHJXtEiDrEarXSq5c6HNJ5553HtGnT+PXXX/n555/RdZ158+YdcxuzZs3ydYx888033HHHHb55ERERhIWF+bLT3n33Xc4++2wAZs+ezWuvvYbZbPb9mEwmPB4Puq7z4IMP0rNnTwAWL17Mu+++S0hICGFhYYSFhRESEkKzSy7h8vffR5syxRvoffXV/Pbbb0yYMIHt27eTnZ19RHl37djA4GE3VXrf1VkDB8Lbb8Ojj6KbLZRG1zuhbbjPHYB5zl8AeLr3KGeFI+lnnYXzxUlYH3kYy7PPoMfG4r77bgDsjzyKecE/OO5/wBv4LoSoUifcMTJ//nw0TePGG29kz549zJw5k9DQUJYtW4bH4+GMM87wdZwIIYQQQghxMlgsFurV8/9j26tXL/744w92797Nnj172L17Nzk5OTidTpxOJ+3bt/ct6/F4aN68uW+ey+XC4XBQXFyM0+kkNNQ/nnJhYSE7d+7kWNqa2/g6Rty4ePLJJ4+5bJd6Z/g6Rty6i4/zPz3msu2cnbimuT+/pE2L5miahsViISgoiF76Dq4BPGQxS09nzKELww5LCHcEx3GlKZHpWjyFrqUUe0ow66BpZsIJp5mpCQAu3cV6z0aWl6zkgPsAxXopThyU6nZ0dBprjWiiJx+1gyY2qAFjmt6Ox+afl1WSyVt/vESP5LNoXr8twZYQgp2RhAVFEB1WwW9mCnE0UVE4f/gR/eGHsbz2KravplF6190QXnZWhxDi9JaYmMhVV13FVVddhdPpZN26dWzYsIHdu3eza9cuMjMzfed8p9NJYqI/w8pkMhEZGen7skVBQQEFBQW++Q6HP+9p27Zt/PTTT8csx8iRI30dI1u3buXDDz886nJPAU8C3HornHMOdrudpUuX+ubH1E+gQWIKKc3b07LdGbRo16XiO0Wobr8dhg1j4ey1cCL5dFYrji+/wrTwX2+nSHzZ2VTH4n7wQbDZML//Hu6rrvLPCA2l+M/Z0tEvRDU54fB1m81Gu3btSE1Npbi4mPDwcHr06MGSJUsAOOOMM1ixYsWpN4ZjLVHXw9WEEEKIQHX1vFhX630qcjqdeDwegoK8wYV2u53U1FRyc3PJzMz0/ZSUlODxeDjzzDMZPXo0AEVFRTzwwAOA90JK4I+u65x77rncf//9gPfCS9++fSksLKSkpISSkhKKi4txubwBo6NGjeKLL74AvHeXGEPmBwCzDz2+8IIL6L93iG/ek6sexKWrgcifAsXAG4ltuaJ4OAAe3cOz+ZNwoYaaHtYlqDNd9U7K35o1aK1Mp2dt9z1e7lrBCnfqUbfVKagjw1pci80UcDeJSf3n39xAfe+b49VwaK1ptH8iRw3Pxmb4Hlik4a6VwMD1UsP/LYbnIVTdliVM3ZYrOyCY1BAIG9a+gTJdnKUOeZLSKUGZTvvLv//i+6kBsA5DSLzbqU6bA4Lcm8SrHQMlhmWthvdPdqFdmQ4PCKcPNQS+7s9Tx8EvyFWnA4PtAXJWZfgeN+qtBuQay7l2+0FlOiXBP98Y+h4Vrr4OxW9OYV/nXhQkeZ8jZvd2On32FtktO1AaU4+UDs1xNmyEo3lL/l27T1n3rM6JyvSG9Fxl2mZVn3vvAf9rPvgMNfjYyBgCvHy7/9vfCTHqvAxDyK3bo/7L3qtlnDL99YIdvsfNE9XPy/aMfGXaZlWDnS/tqb4WgXZmq+/Tg4YA5ogQdd9nBCx/Rmv1PW8MdS2wq5+REsP7OvAaYH6x/wJ0QUE+XVs0qnPnRWkP1ByXy0Vubi45OTmUlJRQWlqK3W6nQ4cOxMR474zcsGED8+fPx+124/F4fL81TUPTNC644AJatPAOYblu3Tp+/PFH3/m9qKiI4uJidF1Hd7l4Z+VKwjdtgjfeYOewy1m8aCEpKU1o0bIlYWFhxyznriw1EL1eRLAyXWz4zP385xZlOq6R/31l/DyOOKuZMm08/q/ert7N0r2l/0sPxuNEbpF6ngm2qcek9IBgd7dbPfbFGwK/l23OUqYvKOM47DEcR02GtobvGOXxwOefs7zbOejB/mNzj+b+OmUXOZR1wwznu/RvZxD/zmvknzOIA2Nupm1j/x2069NzlGW7Na2vFrS0FIKDfWWxL16CfqhTDcC+czd6eDhERBAdYqUshYbXMdywr8tSVkB6RVXltkT1qW2vU1WdF0/4jhGXy+X71tzh34FjLlbr+ItCCCGEEEKcRIFhroD37gzDkB3HEhYWxpQpU45r2YiICNasWXPE351Op+/CSaAlS5bgdrtxOp3Y7XaKc3IpuOduDjZsyN333c/Khzf4lj2zwQC6XdOBkpIS3G43ebPXcs3WBQBcdHAXP1izOGCOw6SZ6B3Uk7AWDWkQ2ZDI4BhsliD0ZXsp8ZQQbgrjYJH3Ikiens9q91pKil00C25GiOnIYR66mbvSMfEMluYuIt+Vh91TSqmrhEJPIWvta+lVspsmYc2OWE+IE7Fl6JXKdNPZP9Ns1k80m6V+mzv3qmuxXHU/rmD1QpsQQgSyWCzExsYSG3vsOxzbtm1L27Ztj2t77du3V+5WPcKLL8Kjj8JvvxF/+x1ccullFSyxqJRrr4UvvqDRmFvY9Z9nK3anhq5jufceWr31FgBRc2fhCQ6GcXcf/zaCAzq03nqLoLvvxnX33bhenIRl7F0Ef/gh9tvvpGTy/45/m0KIY6pU78XKlStp1qzZUaf37t1buZIJIYQQQgghAG/HTFRUlPI3TdN8+SiHlbo9cNllxJtMxAMr8XeMnJd4IeP/6//n/OUHf+WrXWsY8vtkkvL3c7VjGh+E30ChKYLzggcQ0radum1zCZi933o8iLdjZIVrJWl6OlsPbsOEiQRrAlHmKDQnhGqhNDI1JM4US6vwNrQKb+PblvtAPjucaWS7s6VTRFSrXf3Ow+x0EJa5l+Dcg9TLP0DQti1Ef/kpl8/5i59e/ZrS6Prlb0gIIU6GwYO9HSNz54LbDebj/5a/qAIjR8IXXxD/8XuY7HZ2TnwRjveL3w4H5vfeU/4U8/P0inWMBEpPB8Dy+utYXn/d92fz0iUntj0hxBEq1THicDhIS0vzTdvtdmX6aOMOCyGEEEIIIapRBcbI3t24I59d/SqjvnyIejm7GVX0FR+HX4tDCzqu9dua2xDqCWW/KZsDriz2Ovey1+n9gpQZMw1Mccdct6m1CU2tTY67rEKciIOt2nOwlf/b2We0iiNs7mwSH7mXg41bURp1AmG7QghRXTp2hK++gt69TyzzQlTOJZfA66+j33MPcV9+gqm4mB0vv3V86wYF4X50PMVz/iZk/RqsB7PJveASGpS/5tFNmoTLasPy3LMA6PHxOIZfiX3sCXa0CCGOcMIdI2eddZZ0fAghhBBCCFHLlYZE8v2wiYyaeg+Jnn1cW/QZ34YOx1H+qiSY4kkwxdOsQWtyXTnsdWZQ4C5gd0E6sVp9GpqSqr38QlRU0TkD2T57IctSd/mGSbGUFmNN246zidzBJISoQWYzjBjhfWwY81+cJGPHss0SSbO7b6L+T99S2qIlvPzcca3q+s9/SBueTvKj9xG+aAE5lw4/8Y4RwPXEE+jJjdFTmuA591xKPXIdVoiqdMLh66J6SbiaEEII4VdXz4t1td6i6uRt20noXXfgGDUK54ir+ODh33zzHnz9EnXhJUvgnHPA6YT9+3n53VXKbPe8dN9j6zA1bL140t/KtF6shquuzFpGkV7s6yhJDIoH4K3Cd9E1uCHqOmIODdNla9dIWdeTrwaqmwNCTAG0MH/+i56nPi9B6hAk5gQ1uNZz0B8ga2pgyJowhFSTog5lxm411Jo4/7bN9dSsFWPoa0RD9fOcvzZTmQ5p4q+jq9SpFitcvZvHka+G4LpyAqYz1fBsrbm674Kj1HDeLl3U8PHNu/P8ZTKEr0eFqbk76/5NV6YjU6KV6Xr1/fu3foRah6278pRpiyEgtkcr/51HxjDxYMPr1DpZfd69B9R9kF3gf4+0PbysrhN/6/UEz/2L7a9MIf/sgQDYDWH1YcFqnT0B/0rvzlKf5xJDqPnb365Wpi8e2ML3ePtetU5ntU9Qpv9M3aNMG4OPuzT3DwVmDGpflKoOce0qUQOYoxPV4PvRZzX3PV627YAyb0+2GgqfZAhCTor1fwaM+65ZnPo8Rj8s3qlMh9r877fzuzb0Pa6r58W6Wm9RNmNYclmyDeeKA4bpqDD/cdliVi++x0aq54qVW9VjgzEUvbDEf96KMASEJxqW3W04RgceV/blquf/IsP5cNd+dd0BXdQvY+QGhKQnRAbD/Pnw4YdgNuOy2cAWhJ6QgH7GGexMaYMe5j9OJTcIx/zuFKx33uktywefUnTRpQA0rK+2JbIMx+TGh+tQWAjh4ZQWFWNatAhP374Eh6j7sjwFdvWYHRFwLi4vLPtUDdOuSLlO1TpURFXWIbtI/dpS/TDbCW+rtqvx8HUhhBBCCCHEqS34uWew/v4b1t9/o6Bl67IX7tkTVqzwXjiI8V5A1zxuzvnlTTZ1OpddRJW9/jEcdB3kV+fvlFJKc1MzmpuaEeoJRkMjV89D13XMyBjqouZohQVY9u7Bkp9Hy5tHse+WsWQPG4k9pfkRwbuhK5ZS2qI1Hrk4LYSoLgcPwpQpsG0bvPdexQLAxbE98AAsWwYceTG0WVQU29bvVPa1+9bb0DZuxPz+++imE2inhIfDzp3YBgzAtH077vPOg99/l9dTiFNI7etqE0IIIYQQQhwX80Z/+Lp50cLyV2jTBm65xTfZ/Z9v6fbvdIZ88wIW9/EMrnWkSHMkcVosJkxs82znD9cs3iiawutF76CjY8VCiCm0/A0JUU30iEj2fD+DrJHXouk6ie++Toeh/ek+6Axa/OcBNIf/LpN6339Jq+GDse7bW8YWhRCiEjQNJk6EDz6At44z30KUL1G9K9LTsSN6iPcOT3vHzkftsHBNegnHkqUUX3DRiT3n7NmYtm8HwPznn5CfX84KQoiTSTpGhBBCCCGEOE2VvPhfChYuofShR3DccGOF11/d8yIKImOJyd5L360/nFAZLJqFAZZzGGw5jyZaCtFaFKZD/4Y0NjfihqjrsWpyI7uoYUFB7Hx2MttefZe8swbgsQURvHc38d99Qfi6Q8Ng6Tqe4BCCt26mxYiLsO3aWfY2hRDiRMTEwPPPex/ffz8sXVqz5TldfPklDBvm6wAxrVmDVlKC+8IL2fPRV0dfx2JBb9PGP13RNILRo3GfOwBPn764Hh0PUSd2960QonrIfyBCCCGEEEKcptzdu3t/d+5yQus7gsOYfdl9XPbJf+i54zc2JvRif1RKhbdj1swkagkkmrzZCfG2OEr0UkK1EIKtcreIOHXkXDiMnAuHYSopJvifv4leOB/NfSgvQ9M4cP2tRP35G0HpabQacSFbP/2e0hatarbQQojTz/33wz//wPTpcNVVsHmzN5hdnLjQUPj+e9ixA9drr2P+8APweNDbtUcPVrM/tI0bMX/yCe7Ro9E7dABdJ/S3GdR7+QX0Gb9Aw4bHeBKD4GCcv/8OJu8XQuQirBCnFglfP0VJuJoQQgjhV1fPi3W13qL6/Pe6b3yPs6arQ2s9lftfZVoJhxwxAr75Brp3h0WLeOGcD8t8Hle6GsyqWdVLAbrTdcx57lw1TNXSuL4yjSHU2RTt71gxxaidLB5DcKsWqoZUKmHsFvVmes0QEK6XqKGvxm+Nak0Dgs0LDcOOxRo6fwxBrXqaGj5e7+pOvsc5G/Yr84IbqKGv9nw1cN4SEHSrGwI/dbchBL6x+s3Vgj1qOaJT/HXKNgTEWwzB7SbD/gtroIZth4X6y3Vgt/o8Rh5joHBAsR2GsN2Ilur7Q/eo61oNr/mg7o18j/9aqYaaN4gOUab3G94/h8ParZn7aHPDlYRu3URJRAwrL7mO4DGjsSc38S27dov6GTi/j9qhGB4Q5J5xUA01T99fqExfEFBmgJkrdyvTPVs38NfJELZ+US81BN7hUvfP78t2KdMHA4KQ27aIVeZFhKkhylv2qEPCBFn9F23bB7x3ANbtzFGmLzWE05dl1ir/61RUWMBl/dvWufOitAfqqNxcaNrU+3vBAujb97hXLS+YvcQQ6h0YVG4MSDfKLlDPO/UN58t/1mb4HvfvkHjMeQBtktVjRYjN3yYICy67G8EYeh4bqZZDCxgay2XYHwcLHeA6tA8sFhocPqfl52P5v//D/PpraC4X7gbxZP/1N87EhsRecB5BixfiGjMG1wf+dpDd0C6JClaPlRVR3utWluoMX6/OEPTAbdfGcPVTWVnvp9q+r6vqvFi794IQQgghhBCi+r32GkRHw/Ll8NxzNV0aIWqUMz6BDZ/9wP5m7QgpyKHv56/S6r5byl9R+Nnt3iDkKVNquiRCnLqio2HwYO/jGTNqtCinJYvF+xMoPx/zlHfQXC48UVGY92cSM2oEWkkJef/nHd7M/MknaCtW1ECBhRBVTTpGhBBCCCGEEGVLSIDJk72PJ00iyFVS9vJCnOZc9erzw8QPmHfz4+zq2IvsCy/zzTOVFNNnynNE7Nt97A3UddnZcMMNFR+vX4i65qJDod/Tp9dsOeqKRo1w/e9/HPzuRw78sxh3XAOsa1YRff9YnN17UHz5FWi6jvXOO/x3nAghai0Z3k4IIYQQQghRvhtugKwsuPJK7Nf+WdOlEaLGuYJDWHf+law7/0q6dvIPF5PwxVRSfvmctjO/Ylf3s8hPbEzEqna4GjXC2botruYtaqzM2o4dWL/7Fne/frj7HP+wPFUuKQlsNrjuuporgxC1wcUXw1NPwZVX1nRJ6gz3jTehz52PHhpK7kefUe+SoYR+8xVFY24k7/9eIGT2n5iWLcP8+uu477+/posrhKgE6RgRQgghhBBCHJ+HH67pEghxysvr2Y/dXfrSKPVfmiz+y/vHH/zzM/6YB317V3s5TA47pq++RG/fwRseDJj2ZRD8n8fQTSZKX3sDugyp9nIcU2xs+csIUddFRcGTT9Z0KeoU04wZ1Bs5Amf7DuT8PJOCF/+LKyoaR9/+ALgmTcJ6221YnnwCz4UXQtPmNVxiIcSJko4RIYQQQggh6ohxn/i/cfryA2q4qjGE8eUH1PHMH5x8oe/xo//cCtu2QXPvxYAX+ryjLGuKUEOsNWMQqcc/fI6nRA0qD+rWRJl2pakh1qYYNXycgDBpLUT998ZkVZd1bVaDzC1t/RdmPbvVIGnNEDStNYw45vMCkBsQAhsQ+ArAlmxlMvgsNYjb3lANjQwNqEeBIUzWXqDuL90wFJEzIPjdHGxW5rm3HVSLvEMNxI4+01AuQ7B7IFeRIWDerNbZWayG1bsS/GHsZpu5zGWjDPvDHvBccSnRyryMjVnKdOP28cp095bqxfff/03zl6lUHQalU7eGyvRX/52vTG8f0lKZDg0IKN4cGERerxkHbvsvidvXkpC2nsicTBq48wjbt5uIXTv4x9wAUr2B4vVXLSWlfzfccf4AdWPY+ozlakB6saHcyzb590HrxlFY9u0l9r23iPn2Syw5B+Hmm+G99wCYVhDBhY2aELk7jZCxd9LmxvtYN2as7z0bHBHs3z+G0FaHU52ONQQu79jr3wfrUVUkbB0gq9D/3mubUs/3uCBfLmEIcVhZodXG6YPF6jE742CxMp0b8JlLiFHbB0Wl6jE6xHAMN0pu4D9fLt+iHqO7t4xTprfszVOm2yXX43jFRQUr0/mGc0lEwLk03GaBadO8P5dcgmfYFRDuPy8p+6tVS/TQUGzLlxF77x04v5hGpMVf5y0Xj6ThZ18QOn8eBZ99SfjTasdVZYLKK7Ks8XkqEtxe3rLlvZ+qUuC2qzPkvS6qrv1X3uuUkacOuZsYpf5fcCqRd5gQQgghhBDi+Hk8cPXV0LIl/PNPTZdGiFNWRrMOrBwwgnnD72bh028w690f+OGXFXhs3g6F+CXzOfv+62g04hKCly6ukufUSktofvlQ4t57y9sp0qiR97N6iDM8gh8+/oPV19wJQMcP/0ePl59AO46x8k2FhbS//HzaXXURmr203OWFEFXoxx9hxAhYu7amS1I7eTxw333w889wyy1ExsZgffedoy/bpg2O6T+gWyyYv/kG07Qv/PP27SPp6is4MH4CGVOmknP3Ayel+EKI6iEdI0IIIYQQQojjZzJBaKg3NPnaayEnp/x1hBAA6Gb/t44LkxrjiIgkaNMGki89n4YjLiH22Qnw9tvw669QUlLGlo4ueNNGbLu9d5ikfTgN0tKOHAJP00i98X4W3zsRXdNo8dM0Bt15BVHbNpW97Z3bsWVlEpy2Hdu+vRUumxCiEj7+GL75BiZNqumS1E4eD2Srd29av//+6Mt+8AGWKe942zqAadky/7zbbiNsziwiv/2Swksur67SCiFOEukYEUIIIYQQQlTMSy9Bs2bei6633urtJBFCVEhRoybMev9Hcq8eg242E/bPPOq9+T+480648EIoKPAtm/jHTyR/9xmm0rLv1LA3a45+aFisks5dwXzsIW82XXo1C55+E2dIGNHbNuEKCT3msgDF7Tqy6o+FrJy3AntKs+OvqBCi8h57zPv7s89g3bqaLUttZLHA5s0wcSJcdx2lzzxH8RdfHn3ZOXMwf/EFWn4+nh49cP3nCf+8e+4BIPKLT4n4/htwOo++DSFErSADdAohhBBCCCEqJjoavvoK+vSBb7+lU7MQVjfoW9OlEqLWKY1LYP9Lr5Fz132Ez5yBZfcuYg5kQEYGxPnH4k/6/ScS5v1Bq3deZvMV17Nt2DU4I6NA1zHZS/EEecfa90REYm/ZmuDNGwn/ew50a13m8+8+ezAHOnQjdu0KipIaw6EckeR//kAbPBhPSMC44JqGp5zOEyFENenRA4YPh+++g6eegq+/rukS1T7NmsGECQA47IbhA3Xdnw82ciTO9h3QW7XEM2QoBAdkmQwYQGnHzgSvWUXCXTdTb9IzeDZt8na8CCFqHU03pvWJKvPmm2/y0ksvsW/fPjp37szrr79Oz549j2vd/Px8oqKiyMvLIzIysvwVhBBCiNNYbT4vSntAnNZefBEefRTCwmDlSl+WwYod6nAV3ZrWV6Z3BYS+pu8vUOaZTWqI9zpDQPhZnROV6aWb/cGuhXlqWHjBHjXUNb5NA2XaHnBhxGUIlw0KV4Olmyeq4eupK9WhhMwBwawJhoDw3ZvU8NlGrdXw2exsNQS3KNO/T4IMgZUmw/6JqK/Oz80s9D12GPZHSJx6UTslWS1nYYl6oSg6IIB+W5r6OoRHq88bGqReFDIGd+9Pz/U9Ls1T73pIaKu+Lnn7C5VpS7C/HPZ8dd0+vdVQb80QfL/7QJEyXepw+x7vWb9fmVe/hfo+tVrUbVkM4aJZu/zvr3qGwPioUJsynZGl1slR6A9CNobPn3uuejfGmh0HafHTNNp9/g7h+7yh7c7gEOyhEYTkHWT7hSNY+uDTADRPjCThgzcJ3rWTjBvvpKRRirKt7AL1PbHH8BmxBFtpsH4lFz8wiqKEhiy/50n29h8EQGGhGt7cqWV97/A0Ju9+Wbbc/5kIiwtTlh3QJUmZ/va7Ncq0J0v9DDTo29j32Bqw34uLCrhpaJdae1480TaBtAcEAMuXeztIwsIgJ4dSU8DQfCXqcSQ8xKpM789Vh+bbsS9fmQ68MhgarB7PDxqOGy0bRinTbrd6WbHE4T+X1ItQA9IPFqjH8CxDueLr+c9TDeurxxFjYLyxjmGG89CebP/x32xSj98tkvyfIy0tDesFQ3HfNRb3nXeCppFbpB7vwgPOQ9ZvvibomtEAuK4aRe57U5VlXR51fwQew9yGeQ0i1LaGUYlLPZeGWI498E95gdgVCWc3qush6BUNhQ9cviqDyXMMn/MYw2egMiry/qno+2FvwOc8ydB+rOi+Payqzot1+51djb766iseeOABJkyYwIoVK+jcuTODBw9m//795a8shBBCiNOCtAfEae+hh+Dcc6GoyBvI7vGA00nUn7/S9K4baTTxUQlpFqKSTE4HaYMu5ufPZ/Hvf16mJDIGa2kJ4Qf3Y3a7aPnTF7T9YgpnvPwErW8cQeimDaQ98Tz25CbgdpP88jMkfPIu9X/7kfpLFxCxeT227Czv5/UoggrycNmCCNu3h7Meu42eLzxy1OHywlcsoWfrBJrfd5sMp3ccpE0gKq1rV6hf33vO/fffmi5N7ebxYJo5E8tjj2EdcSWmzZsx/fyT/66RMrgvvxxPy1boJhOuu+/G9v23xEYEE3nJBSeh4EKIqiT3elWTyZMnc8stt3DDDTcA8M477zBjxgw+/PBDHn300RounRBCCCFOBmkPiNOeyQSffAIDBsC4cd67Rz75hOaZmb5FQtethpkzIDa2BgsqRBk8HiwuB5rLiW4y++6AKGt5k9OJtbgQk8eD4ziHl9LcbqzFBQQV5GPKysYZHEZuwyaH5rlI3LqGkIIc6u35G0t2FradaQSvX0O7zZtYe/3drLv2TtLOu5S0+FaMvvtiZdtdp7zke+wODmHHMy+jm80EZeyh4XuvH70aFitFMXFs73c+i65/0PtHXWfAs/dicfi/IZ70719HXT982WIybryd+E8/PGYni/CTNoGoNJMJhg715ozceSesTC0zR+i0petY03dCm5a+P1k2b0RLboweFVXGiqCVlhL9wzfYpr6NacMGZZ77keP8HFoslM6ajbZvH3rXrtjefAtPVBTmnWngcoGpDr4mQtRS0jFSDRwOB8uXL2f8+PG+v5lMJgYNGsTChQtrsGRCCCGEOFmkPSDqjEaNYP167+P774fMTJz148gdejExP35L+PIl0Ls3zJoFTZrUaFFFLeLxEJJ/EI/FhjvYO8SV2V5Co7VLKaoXR3FkPTRdx5IVhOZyo7lduCMi8UTHeJfNyyVsxRIa79qHNS8XS2kxJrsdvaQES0kRe848nz0RbQGI27OVa5+5Tnl6XdO8IeaaiXVX386am+4DIHLHFoZcO/iI4jpDQnGGR7J5+HVsGH0bAMH79tB/9GBMDof3x+NW1ll7/gjm3/I4AEHFhVzx3C3H3B2RO7f5HhfFxLHqomu99XTaCdHcmNwuihIaEtqyGXn9z0G3eYdn0c1m9l5/O0F70rHmHETLzsaWl4MtJxuTy0lE1l5it633P5Gm4QoOoTQyhuxO3TnQsQd7+g866reo9918F0G7dpJ57c118+JsBUibQFSZyZNhyxZ4+eVa+7nTSkuwZGVhLiwgat8BLIUFmIuLsZQUoV9+OZ7oaADMK5ZjWeT9fGiFhTTIOoi5sJDQRQuw7Uxj9/qt6FHRoOvE3nYT1rTt2K+7HnfjZEwHs2m4NxNzfj5FZ/Qid4z3+BoxayYNH/YGqOsREbhHjEDv3AVPz57oPXocfyUSE9ETvUN7Fv7vdWyDh+A8Z4A3a8Qjd9AJUVtIx0g1OHDgAG63m/j4eOXv8fHxbNy48ajr2O127Hb/t3Ly8rxjvebn5x91eSGEEKIuOXw+rE3RaNIeEHXSxIkQHk5q6x5gsRI8fBRN77qBoPBwsNkgPx+2b4cPPgaLBXdCAubIBpQmNURz69Sb+wcHrhiFJ9yb51Hv5+84f8ob5CS3oDguAUdoOOZmiXiiInE2SqG0Q0eKi/zjFpcUq2OCl5ao+RIlRWqeid3uv1DtLi4hJD8Xa1EBhXGJeDTvt04tJYWYnE6KQhKVcNWSYjUzIjBjpDgfbIUFmEtL8FgtuA8U4bZa8VisYDJRXOQdc11zOrEWF2HKyMZa4q2HbjbhyimlKKo+ruAQPFY3tuICQvIO4rYG4QkJwWW1oZvMmFwuXA4zruBQPDZvpoUzJ5vQ3AMEFeVjyTxAcGEettIiPGYLppgwMlt3oSChkXfZXblEblyLpaiAoOwDxO3f771g7nYBGgeGXUlut97e+qVtouXfv+KyBeOyBWGJCscdFHyoHE6K2neiKMWbjRG5dSOtv3iPoLwcNJcLzePBZXdgcrmwlhSzdOAoNvb0di40SN/IhXfei8diAZMJze1Cc3sw6d47EBaOvoeNl1ztfT/s2MjAF+44xpsP9owdx/6b7wK8dyrF3zya+GMsezA4jNI+3nyS0pIijjjK6vqh4aE8FJWWUFxUgMVswuR0HLksQEkxlBTj2reH4qICrB4b7pJiSvPzjljUGRSCPTSc/RHRlBQX4ipxQnEhO+MaYY+IIqRJEu569XHFJ1LSph1rIhpRHBcPh96/BR4Ps0f490NkrH+87mYJh8bZLvQu64mIJGfsOH+9D2UFaG4ntuxsijZsw+Ry+t7PFreVT1/9FntkNKGhAZcLigooMWShFBbZKKx36E6wggLlM2EqUu8gKTCcx4yfTU+pmh0Q+Fl1Bow3XlLkfY7a1B6AircJpD0gjikoCH7/HTSN0vx8KCwEu50isw1sQb5OTI/T6h/iTtMoKCgBh8PbmWI2U1Song8DP1Iep3qpsKjQ+140lZYSdDALx9YSHC1bo0d4z9Vh33xF1KdTcderj7NxMnpiQ5zxSehWC65gK/ZevfEcOlaEPf8Mce+/jXboLjM1NQy2dWhLadv2AJT8+iuhzz/jr/qh3w6gNCgYx8IFlPY7E9OBLAqKi7AVFMCb3jvkPMDhpCeXx03h5SMBKOx3NtbuZ2C79BLc114LgXeYBHy+CgwZIx6HP8vBEPVFidMFg873baMiGSPBesUyRpwVyBhxVGHGiHFbdU15+7as5Y3LFuSrGSNhmnpuLUu+IWPE7Ky+jJGy3j8VfT8E1jnfpNahovvWt52quj6giyq3Z88eHdD//fdf5e8PPfSQ3rNnz6OuM2HCBB2QH/mRH/mRH/mRnzJ+du3adTJO5VVC2gPyIz/yIz/yIz/V81Ob2gO6XvE2gbQH5Ed+5Ed+5Ed+yv+pbHtA7hipBrGxsZjNZjIDxlYGyMzMJCEh4ajrjB8/ngceeMA37fF4OHjwIFarleTkZHbt2kVkZGS1lvtUk5+fT+PGjaXuUvc6Q+oudZe6H5uu6xQUFJCUlHSSSld50h6oGvIZkbpL3esOqbvU/XRsD0DF2wTSHjiSfEak7lL3uqMu1x3qdv2Pt+5V1R6QjpFqYLPZ6N69O7Nnz+ayyy4DvA2Z2bNnM3bs2KOuExQURFCQegtddHS079agyMjIOvdhOEzqLnWva6TuUve65njrHlVOmOKpRtoDVUvqLnWva6TuUve65nRtD0DF2wTSHjg2qbvUva6RutfNukPdrv/x1L0q2gPSMVJNHnjgAcaMGUOPHj3o2bMn//vf/ygqKuKGG26o6aIJIYQQ4iSR9oAQQgghQNoEQgghxKlGOkaqyciRI8nKyuLJJ59k3759dOnShZkzZx4RtiaEEEKI05e0B4QQQggB0iYQQgghTjXSMVKNxo4de8yhMo5XUFAQEyZMOOI22rpA6i51r2uk7lL3uqau1F3aA5UjdZe61zVSd6l7XVOX6l7ZNkFd2ldGUnepe10jda+bdYe6Xf+TXXdN13X9pDyTEEIIIYQQQgghhBBCCCFEDTPVdAGEEEIIIYQQQgghhBBCCCFOFukYEUIIIYQQQgghhBBCCCFEnSEdI0IIIYQQQgghhBBCCCGEqDOkY0QIIYQQQgghhBBCCCGEEHWGdIycwt58802aNGlCcHAwvXr1YsmSJTVdpEqbOHEimqYpP23atPHNLy0t5a677qJ+/fqEh4czfPhwMjMzlW2kp6dz4YUXEhoaSoMGDXjooYdwuVwnuyrl+vvvv7n44otJSkpC0zR++OEHZb6u6zz55JMkJiYSEhLCoEGD2LJli7LMwYMHufrqq4mMjCQ6OpqbbrqJwsJCZZnVq1dz5plnEhwcTOPGjZk0aVJ1V61c5dX9+uuvP+J9MGTIEGWZ2lj3559/njPOOIOIiAgaNGjAZZddxqZNm5Rlquo9PnfuXLp160ZQUBAtWrTgo48+qu7qlet46n/OOecc8drffvvtyjK1sf5vv/02nTp1IjIyksjISPr06cNvv/3mm386v+7l1f10fc1PJmkPSHugNp4Toe62B6ButwmkPSDtAWkPVJ/TrU0g7QE/aQ9Ie+B0OzdIe0DaA7WiPaCLU9KXX36p22w2/cMPP9TXrVun33LLLXp0dLSemZlZ00WrlAkTJujt27fXMzIyfD9ZWVm++bfffrveuHFjffbs2fqyZcv03r1763379vXNd7lceocOHfRBgwbpK1eu1H/99Vc9NjZWHz9+fE1Up0y//vqr/vjjj+vff/+9DujTp09X5r/wwgt6VFSU/sMPP+irVq3SL7nkEr1p06Z6SUmJb5khQ4bonTt31hctWqTPnz9fb9GihT5q1Cjf/Ly8PD0+Pl6/+uqr9bVr1+rTpk3TQ0JC9ClTppysah5VeXUfM2aMPmTIEOV9cPDgQWWZ2lj3wYMH61OnTtXXrl2rp6am6hdccIGenJysFxYW+papivf49u3b9dDQUP2BBx7Q169fr7/++uu62WzWZ86ceVLra3Q89T/77LP1W265RXnt8/LyfPNra/1/+uknfcaMGfrmzZv1TZs26Y899phutVr1tWvX6rp+er/u5dX9dH3NTxZpD0h7QNdr5zlR1+tue0DX63abQNoD0h6Q9kD1OB3bBNIe8JP2gLQHTrdzg7QHpD1QG9oD0jFyiurZs6d+1113+abdbreelJSkP//88zVYqsqbMGGC3rlz56POy83N1a1Wq/7NN9/4/rZhwwYd0BcuXKjruveEajKZ9H379vmWefvtt/XIyEjdbrdXa9krw3jy93g8ekJCgv7SSy/5/pabm6sHBQXp06ZN03Vd19evX68D+tKlS33L/Pbbb7qmafqePXt0Xdf1t956S4+JiVHq/sgjj+itW7eu5hodv2M1fC699NJjrnO61H3//v06oM+bN0/X9ap7jz/88MN6+/btlecaOXKkPnjw4OquUoUY66/r3pPgvffee8x1Tqf6x8TE6O+//36de9113V93Xa9br3l1kPaAl7QHav85sS63B3S9brcJpD0g7QFdr1uveXU5HdsE0h7wkvaAtAfqwrlB2gPSHtD1U+81l6G0TkEOh4Ply5czaNAg399MJhODBg1i4cKFNViyqrFlyxaSkpJo1qwZV199Nenp6QAsX74cp9Op1LtNmzYkJyf76r1w4UI6duxIfHy8b5nBgweTn5/PunXrTm5FKmHHjh3s27dPqWtUVBS9evVS6hodHU2PHj18ywwaNAiTycTixYt9y5x11lnYbDbfMoMHD2bTpk3k5OScpNqcmLlz59KgQQNat27NHXfcQXZ2tm/e6VL3vLw8AOrVqwdU3Xt84cKFyjYOL3OqHR+M9T/s888/JzY2lg4dOjB+/HiKi4t9806H+rvdbr788kuKioro06dPnXrdjXU/7HR/zauLtAekPQCnzznxWOpCewDqdptA2gPSHjjsdH/Nq9Pp3CaQ9oC0B0DaA3Xh3CDtAWkPHHYqveaWCq8hqt2BAwdwu93KmwAgPj6ejRs31lCpqkavXr346KOPaN26NRkZGTz11FOceeaZrF27ln379mGz2YiOjlbWiY+PZ9++fQDs27fvqPvl8Lza4nBZj1aXwLo2aNBAmW+xWKhXr56yTNOmTY/YxuF5MTEx1VL+yhoyZAiXX345TZs2Zdu2bTz22GMMHTqUhQsXYjabT4u6ezwe7rvvPvr160eHDh185aqK9/ixlsnPz6ekpISQkJDqqFKFHK3+AKNHjyYlJYWkpCRWr17NI488wqZNm/j++++B2l3/NWvW0KdPH0pLSwkPD2f69Om0a9eO1NTU0/51P1bd4fR+zaubtAeilXWkPeBX286Jx1IX2gNQt9sE0h6Q9oC0B6rG6domkPaAl7QHpD1wOp8bQNoD0h44ddsD0jEiTqqhQ4f6Hnfq1IlevXqRkpLC119/XeMHanHyXHXVVb7HHTt2pFOnTjRv3py5c+cycODAGixZ1bnrrrtYu3Yt//zzT00XpUYcq/633nqr73HHjh1JTExk4MCBbNu2jebNm5/sYlap1q1bk5qaSl5eHt9++y1jxoxh3rx5NV2sk+JYdW/Xrt1p/ZqLEyftAQF1oz0AdbtNIO0BaQ9Ie0CURdoDAqQ9UBdIe0DaA6dqe0CG0joFxcbGYjabyczMVP6emZlJQkJCDZWqekRHR9OqVSu2bt1KQkICDoeD3NxcZZnAeickJBx1vxyeV1scLmtZr3FCQgL79+9X5rtcLg4ePHja7Y9mzZoRGxvL1q1bgdpf97Fjx/LLL78wZ84cGjVq5Pt7Vb3Hj7VMZGTkKfEPxLHqfzS9evUCUF772lp/m81GixYt6N69O88//zydO3fm1VdfrROv+7HqfjSn02te3aQ9kKssI+0Bv9p0TqyI0609AHW7TSDtAWkPSHug6tSVNoG0B6Q9ANIegNPr3CDtAWkPnMrtAekYOQXZbDa6d+/O7NmzfX/zeDzMnj1bGZPtdFBYWMi2bdtITEyke/fuWK1Wpd6bNm0iPT3dV+8+ffqwZs0a5aT4559/EhkZ6bstqzZo2rQpCQkJSl3z8/NZvHixUtfc3FyWL1/uW+avv/7C4/H4Dhx9+vTh77//xul0+pb5888/ad269Slxq+jx2r17N9nZ2SQmJgK1t+66rjN27FimT5/OX3/9dcStvFX1Hu/Tp4+yjcPL1PTxobz6H01qaiqA8trX1vobeTwe7Hb7af+6H83huh/N6fyaVzVpD0h7AGrvOfFEnC7tAajbbQJpD6ikPSDtgapQV9oE0h6Q9gBIe+B0OTdIe0Al7YFTtD1Q4bh2cVJ8+eWXelBQkP7RRx/p69ev12+99VY9Ojpa37dvX00XrVIefPBBfe7cufqOHTv0BQsW6IMGDdJjY2P1/fv367qu67fffruenJys//XXX/qyZcv0Pn366H369PGt73K59A4dOujnn3++npqaqs+cOVOPi4vTx48fX1NVOqaCggJ95cqV+sqVK3VAnzx5sr5y5Up9586duq7r+gsvvKBHR0frP/74o7569Wr90ksv1Zs2baqXlJT4tjFkyBC9a9eu+uLFi/V//vlHb9mypT5q1Cjf/NzcXD0+Pl6/9tpr9bVr1+pffvmlHhoaqk+ZMuWk1zdQWXUvKCjQx40bpy9cuFDfsWOHPmvWLL1bt256y5Yt9dLSUt82amPd77jjDj0qKkqfO3eunpGR4fspLi72LVMV7/Ht27froaGh+kMPPaRv2LBBf/PNN3Wz2azPnDnzpNbXqLz6b926VX/66af1ZcuW6Tt27NB//PFHvVmzZvpZZ53l20Ztrf+jjz6qz5s3T9+xY4e+evVq/dFHH9U1TdP/+OMPXddP79e9rLqfzq/5ySLtAWkP6HrtPCfqet1tD+h63W4TSHtA2gPSHqgep2ObQNoD0h6Q9sDpe26Q9oC0B2pDe0A6Rk5hr7/+up6cnKzbbDa9Z8+e+qJFi2q6SJU2cuRIPTExUbfZbHrDhg31kSNH6lu3bvXNLykp0e+88049JiZGDw0N1YcNG6ZnZGQo20hLS9OHDh2qh4SE6LGxsfqDDz6oO53Ok12Vcs2ZM0cHjvgZM2aMruu67vF49CeeeEKPj4/Xg4KC9IEDB+qbNm1StpGdna2PGjVKDw8P1yMjI/UbbrhBLygoUJZZtWqV3r9/fz0oKEhv2LCh/sILL5ysKh5TWXUvLi7Wzz//fD0uLk63Wq16SkqKfssttxzRoK+NdT9anQF96tSpvmWq6j0+Z84cvUuXLrrNZtObNWumPEdNKa/+6enp+llnnaXXq1dPDwoK0lu0aKE/9NBDel5enrKd2lj/G2+8UU9JSdFtNpseFxenDxw40Nfo0fXT+3Uvq+6n82t+Mkl7QNoDtfGcqOt1tz2g63W7TSDtAWkPSHug+pxubQJpD0h7QNoDp++5QdoD0h6oDe0BTdd1veL3mQghhBBCCCGEEEIIIYQQQtQ+kjEihBBCCCGEEEIIIYQQQog6QzpGhBBCCCGEEEIIIYQQQghRZ0jHiBBCCCGEEEIIIYQQQggh6gzpGBFCCCGEEEIIIYQQQgghRJ0hHSNCCCGEEEIIIYQQQgghhKgzpGNECCGEEEIIIYQQQgghhBB1hnSMCCGEEEIIIYQQQgghhBCizpCOESHEaWXu3LlomkZubu5Jf25N09A0jejo6ONa/nBZNU3jsssuq9ayCSGEEHWJtAeEEEIIIe0BIURZpGNECFFrnXPOOdx3333K3/r27UtGRgZRUVE1UqapU6eyefPm41r2cFlHjBhRzaUSQgghTl/SHhBCCCGEtAeEEBUlHSNCiNOKzWYjISEBTdNq5Pmjo6Np0KDBcS17uKwhISHVXCohhBCibpH2gBBCCCGkPSCEKIt0jAghaqXrr7+eefPm8eqrr/puN01LSzviVtmPPvqI6OhofvnlF1q3bk1oaChXXHEFxcXFfPzxxzRp0oSYmBjuuece3G63b/t2u51x48bRsGFDwsLC6NWrF3Pnzq1wOVetWsW5555LREQEkZGRdO/enWXLllXRXhBCCCHqNmkPCCGEEELaA0KIE2Gp6QIIIcSJePXVV9m8eTMdOnTg6aefBiAuLo60tLQjli0uLua1117jyy+/pKCggMsvv5xhw4YRHR3Nr7/+yvbt2xk+fDj9+vVj5MiRAIwdO5b169fz5ZdfkpSUxPTp0xkyZAhr1qyhZcuWx13Oq6++mq5du/L2229jNptJTU3FarVWyT4QQggh6jppDwghhBBC2gNCiBMhHSNCiFopKioKm81GaGgoCQkJZS7rdDp5++23ad68OQBXXHEFn376KZmZmYSHh9OuXTvOPfdc5syZw8iRI0lPT2fq1Kmkp6eTlJQEwLhx45g5cyZTp07lueeeO+5ypqen89BDD9GmTRuACjWahBBCCFE2aQ8IIYQQQtoDQogTIR0jQojTXmhoqK/RAxAfH0+TJk0IDw9X/rZ//34A1qxZg9vtplWrVsp27HY79evXr9BzP/DAA9x88818+umnDBo0iCuvvFIpixBCCCFODmkPCCGEEELaA0KIw6RjRAhx2jPemqpp2lH/5vF4ACgsLMRsNrN8+XLMZrOyXGBj6XhMnDiR0aNHM2PGDH777TcmTJjAl19+ybBhw06gJkIIIYQ4UdIeEEIIIYS0B4QQh0nHiBCi1rLZbEogWlXp2rUrbreb/fv3c+aZZ1Z6e61ataJVq1bcf//9jBo1iqlTp0rDRwghhKgi0h4QQgghhLQHhBAVZarpAgghxIlq0qQJixcvJi0tjQMHDvi+0VFZrVq14uqrr+a6667j+++/Z8eOHSxZsoTnn3+eGTNmHPd2SkpKGDt2LHPnzmXnzp0sWLCApUuX0rZt2yoppxBCCCGkPSCEEEIIaQ8IISpOOkaEELXWuHHjMJvNtGvXjri4ONLT06ts21OnTuW6667jwQcfpHXr1lx22WUsXbqU5OTk496G2WwmOzub6667jlatWjFixAiGDh3KU089VWXlFEIIIeo6aQ8IIYQQQtoDQoiK0nRd12u6EEIIcTrQNI3p06dz2WWXVWi966+/ntzcXH744YdqKZcQQgghTh5pDwghhBBC2gNCnPrkjhEhhKhCo0aNolGjRse17Pz58wkPD+fzzz+v5lIJIYQQ4mSS9oAQQgghpD0gxKlN7hgRQogqsnXrVsB7i2zTpk3LXb6kpIQ9e/YAEB4eTkJCQrWWTwghhBDVT9oDQgghhJD2gBCnPukYEUIIIYQQQgghhBBCCCFEnSFDaQkhhBBCCCGEEEIIIYQQos6QjhEhhBBCCCGEEEIIIYQQQtQZ0jEihBBCCCGEEEIIIYQQQog6QzpGhBBCCCGEEEIIIYQQQghRZ0jHiBBCCCGEEEIIIYQQQggh6gzpGBFCCCGEEEIIIYQQQgghRJ0hHSNCCCGEEEIIIYQQQgghhKgzpGNECCGEEEIIIYQQQgghhBB1hnSMCCGEEEIIIYQQQgghhBCizvh/x125nt7N40oAAAAASUVORK5CYII=" + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADa20lEQVR4nOzdeVxU1d8H8M+wDDMDiKJsKor7lgqCC+aaKJqZlpr2qzDX7BGX0ErNfUPFNTVxSdHMJU2tJ7eUJ8qUNBfKLU1TUQPBDYQZGGDu88f8uDLMsM7AzMDn/XrNS+fcc+899wJz5nvPJhEEQQAREREREZERbMxdACIiIiIisn4MLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLMjqnT59GnPmzMGzZ8/MVoYTJ07glVdegYuLC5ydneHv7489e/bo5fv+++/Rpk0byGQy1KlTB7Nnz0Z2drZevmfPnmHMmDFwc3ODo6MjunfvjgsXLhS7PNeuXUPv3r3h5OQEV1dXvPfee0hOTjbqGomIKgJz1xnHjx9Hp06doFAoUK1aNQwaNAh37twxmJd1BlkbBhZk9U6fPo25c+earZLYunUrevXqBXt7eyxatAgRERHo0qUL7t27p5PvyJEjGDBgAKpWrYo1a9ZgwIABWLBgAcaPH6+TT6PRoG/fvti5cydCQ0OxdOlSJCUloVu3bvj777+LLM/9+/fRpUsX3Lx5E4sWLcKUKVNw6NAh9OzZE2q12qTXTkRkbcxZZ/zwww/o3bs3MjMzsXjxYkyePBk///wzOnXqpPdFnnUGWSWByMpFREQIAITbt2+X+7lv374tyOVyYcKECUXmbd68udC6dWshKytLTPvss88EiUQiXLt2TUzbs2ePAEDYu3evmJaUlCRUrVpVePvtt4s8z4cffijI5XLh7t27Ytrx48cFAMKGDRuKe2lERBWSOeuM5s2bCw0bNhQyMzPFtLi4OMHGxkYICwvTy8s6g6wNAwuyarNnzxYA6L3Kq8L49NNPBalUKjx79kwQBEF4/vy5oNFo9PJduXJFACCsW7dOJ/3BgwcCAGH+/Pli2uDBgwUPDw8hJydHJ++YMWMEhUIhZGRkFFomd3d3YfDgwXrpjRs3Fnr06CG+V6vVwpw5c4SGDRsKDg4Ogqurq/Dyyy8LP/74Y9EXTkRkhcxZZzx+/FgAIHz88cd621q0aCHUrFlTfM86g6yVXbk2jxCZ2JtvvokbN25g165dWLlyJWrUqAEAcHNzK3AfpVIJpVJZ5LFtbW1RrVq1QvOcOHECTZs2xeHDh/Hxxx/jwYMHqFatGsaNG4e5c+fCxkbb2/DixYsAgICAAJ39a9asidq1a4vbc/O2adNG3DdXu3btsHHjRty4cQMtW7Y0WJ4HDx4gKSlJ7zy5+x8+fFh8P2fOHISHh2PUqFFo164dUlNTce7cOVy4cAE9e/Ys9LqJiKyROeuMzMxMAIBcLtfbplAocOXKFSQmJsLT05N1BlktBhZk1Vq1aoU2bdpg165dGDBgAHx8fIrcZ+nSpZg7d26R+erWrVvggLpcf//9N2xtbTF8+HB88sknaN26Nfbv348FCxYgOzsb4eHhAICEhAQAgJeXl94xvLy88O+//4rvExIS0KVLF4P5AODff/8tsJIo6jxPnjxBZmYmHBwccOjQIbz66qvYuHFjoddIRFRRmLPO8PDwQNWqVXHq1Cmd9MePH+Pq1asAtF/0PT09WWeQ1WJgQZVOSEgIOnXqVGQ+Q0+V8ktLS4NGo8HixYvx6aefAgAGDhyIJ0+eYPXq1Zg+fTqcnZ2hUqkAAA4ODnrHkMlkSE1NFd+rVKoC8+VuL0hR58l7/KpVq+LKlSv4+++/0ahRoyKvlYioMjJVnWFjY4MPPvgAS5YswbRp0zBixAikpqbik08+EQdJ536Gs84ga8XAgiqd+vXro379+iY5llwuR3p6Ot5++22d9LfffhtHjx7FxYsX0aVLF7HCyW0KzysjI0OnQpLL5QXmy91eWHkKO0/ePPPmzUP//v3RuHFjvPTSS+jduzfee+89tGrVqtBrJiKqTExZZ8ybNw+PHj3C0qVLsXjxYgBAr169MHLkSERGRsLJyQlA0Z/lrDPIUnG6Wap00tLSkJiYWOSrOHN416xZE4C2iTsvd3d3AMDTp08BvGhmzm12zishIUE8Tm7egvLlPachRZ3H1dVVfDLVpUsX3Lp1C1u2bMFLL72EzZs3o02bNti8eXOBxyciqmxMWWdIpVJs3rwZ//77L3755Rdcv34dx44dQ0pKCmxsbNCwYUMArDPIejGwIKsnkUhKlH/ZsmXw8vIq8tW2bdsij+Xv7w9A2y82r9z+r7kDAn19fQEA586d08t3//59cXtu3gsXLkCj0ejkPXPmDBQKBRo3blxgeWrVqgU3Nze98wDA2bNndc4DAK6urhg+fDh27dqFe/fuoVWrVpgzZ06BxycisnbmrDNyeXh4oHPnzmjcuDFycnIQExOD9u3biy0WrDPIWrErFFk9R0dHACj2YkemHGMxZMgQ7N69G19++SUWLlwIQLtY0datW+Hq6ioGHi1atEDTpk2xceNGfPDBB7C1tQUArF+/HhKJBIMGDRKPOWjQIOzbtw/79+8X0x89eoS9e/eiX79+On1hb926BQBo0KCBmDZw4EBs27YN9+7dg7e3NwAgOjoaN27cwEcffSTme/z4MapXry6+d3JyQsOGDfUW9iMiqkjMWWcYsmzZMiQkJGDNmjViGusMslYSQRAEcxeCyBi///472rVrh1dffRVDhw6Fvb09+vXrJ1YeZUkQBPTs2RP/93//h9GjR6N169Y4ePAgjh8/jg0bNmDMmDFi3h9++AGvv/46unfvjqFDh+Ly5ctYu3YtRo4cqTPLRk5ODjp16oTLly/j448/Ro0aNfDFF18gPj4ev//+O5o0aSLmzZ3RJO9MJPfu3YOfnx+qVq2KiRMnIi0tDREREahduzZ+//13sZLx8PBAt27d4O/vD1dXV5w7dw4bN25EaGgoPv/887K9cUREZmLOOmPHjh349ttv0aVLFzg5OeHEiRP45ptvMGrUKGzatEknL+sMskpmXkeDyCTmz58v1KpVS7CxsSn3FVWfP38uTJw4UfD09BSkUqnQsmVLYceOHQbzHjhwQPD19RUcHByE2rVrCzNmzBDUarVevidPnggjR44UqlevLigUCqFr167C77//rpevbt26Qt26dfXSL1++LPTq1UtQKBRC1apVhXfeeUdITEzUybNgwQKhXbt2QtWqVQW5XC40bdpUWLhwocHyEBFVJOaqM86cOSN06dJFqFatmiCTyYTWrVsLkZGRBhdWFQTWGWR92GJBRERERERG4+BtIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGlfezkej0eDff/+Fs7MzJBKJuYtDRFQoQRDw/Plz1KxZEzY2fFZU3lhnEJE1Kes6g4FFPv/++6+4pD0RkbW4d+8eateube5iVDqsM4jIGpVVncHAIh9nZ2cA2htepUoVM5eGiKhwqamp8Pb2Fj+7qHyxziAia1LWdQYDi3xym7KrVKnCSoKIrAa74ZgH6wwiskZlVWewQy4RERERERmNgQURERERERmNgQURERERERmNYyzIouTk5CArK8vcxSCyKPb29rC1tTV3MYiIiArFwIIsgiAISExMxLNnz8xdFCKLVLVqVXh6enKQNhERWSwGFmRSgiBAlZWjly63ty30C1FuUOHu7g6FQsEvT0T/JQgClEolkpKSAABeXl5mLhGRBREEIEupn26vAFiPEJU7BhZkMoIgYOD6U7h2757etube3tj34csGA4acnBwxqKhevXp5FJXIqsjlcgBAUlIS3N3d2S2KCNAGFVuCgXtn9Ld5dwBGHGVwQVTOGFiQySgzsyDY/A/smgp62zQqCZSZ5+Aok+ptyx1ToVAoyryMRNYq9+8jKyuLgQURoG2pMBRUAMC937TbpY7lWyaiSo6BBZlMRsYT3JTrBxUAcFMuICPjCRxlngXuz+5PRAXj3wdRIabcBKQKQK0EljU0d2mIKi2LnW52/fr1aNWqlbiaaWBgII4cOVLoPnv37kXTpk0hk8nQsmVLHD58uJxKS/kdCd6DM4N/wpHgPeYuChERVXRShbZ1QsqWbyJzstjAonbt2li8eDHOnz+Pc+fO4ZVXXkH//v1x5coVg/lPnz6Nt99+GyNHjsTFixcxYMAADBgwAJcvXy7nkhMAyGWuUChqQC5zNXdRqBRiYmIgkUg4SxcREREVm8UGFv369cOrr76KRo0aoXHjxli4cCGcnJzw22+/Gcy/evVq9O7dGx9//DGaNWuG+fPno02bNli7dm05l5wqi/fffx8SiQSLFy/WST948KDR3VaioqIgkUjEl5OTE/z9/bF//36jjktERERUViw2sMgrJycHu3fvRnp6OgIDAw3miY2NRVBQkE5acHAwYmNjy6OIVEnJZDIsWbIET58+Nfmxq1SpgoSEBCQkJODixYsIDg7GW2+9hevXrxe4j1qtNnk5iIiIiIrDogOLS5cuwcnJCQ4ODhg7diwOHDiA5s2bG8ybmJgIDw8PnTQPDw8kJiYWeo7MzEykpqbqvIiKKygoCJ6enggPDy8037fffosWLVrAwcEBPj4+WL58eZHHlkgk8PT0hKenJxo1aoQFCxbAxsYGf/75p5jHx8cH8+fPR0hICKpUqYIxY8YAAH799Vd07twZcrkc3t7emDBhAtLT08X9vvrqKwQEBMDZ2Rmenp74z3/+I66TYIhSqUSfPn3w8ssv49mzZ3j//fcxYMAAnTyTJk1Ct27dxPfdunVDaGgoQkND4eLigho1amDmzJkQBMMD/ImIiMi6WXRg0aRJE8TFxeHMmTP48MMPMWzYMFy9etWk5wgPD4eLi4v48vb2NunxqXQEQYBSnV3ur5J+6bW1tcWiRYuwZs0a3L9/32Ce8+fP46233sLQoUNx6dIlzJkzBzNnzkRUVFSxz5OTk4Nt27YBANq0aaOzbdmyZWjdujUuXryImTNn4tatW+jduzcGDhyIP//8E3v27MGvv/6K0NBQcZ+srCzMnz8ff/zxBw4ePIg7d+7g/fffN3juZ8+eoWfPntBoNDh+/DiqVq1a7HJv27YNdnZ2OHv2LFavXo0VK1Zg8+bNxd6fiIiIrIdFTzcrlUrRsKF22jh/f3/8/vvvWL16NTZs2KCX19PTEw8fPtRJe/jwITw9C57eFACmTZuGsLAw8X1qaiqDCwugyspB81nHyv28V+cFQyEt2Z/FG2+8AV9fX8yePRtffvml3vYVK1agR48emDlzJgCgcePGuHr1KiIiIgr8Mg8AKSkpcHJyAgCoVCrY29tj48aNaNCggU6+V155BZMnTxbfjxo1Cu+88w4mTZoEAGjUqBE+//xzdO3aFevXr4dMJsOIESPE/PXr18fnn3+Otm3bIi0tTTwnoG0JHDJkCBo1aoSdO3dCKtVfh6Qw3t7eWLlyJSQSCZo0aYJLly5h5cqVGD16dImOQ0RERJbPolss8tNoNMjMzDS4LTAwENHR0Tppx48fL3BMRi4HBwdxStvcF1FJLVmyBNu2bcO1a9f0tl27dg0vv/yyTtrLL7+Mv//+Gzk5OQUe09nZGXFxcYiLi8PFixexaNEijB07Fv/7v/+rky8gIEDn/R9//IGoqCg4OTmJr+DgYGg0Gty+fRuAthWlX79+qFOnDpydndG1a1cAQHx8vM6xevbsiYYNG2LPnj0lDioAoEOHDjoD2QMDA4u8biIiIrJOFttiMW3aNPTp0wd16tTB8+fPsXPnTsTExODYMe1T7JCQENSqVUvs2z5x4kR07doVy5cvR9++fbF7926cO3cOGzduNOdlUCnJ7W1xdV6wWc5bGl26dEFwcDCmTZtWaCtESdjY2IgtdgDQqlUr/Pjjj1iyZAn69esnpjs66q4sm5aWhg8++AATJkzQO2adOnWQnp6O4OBgBAcH4+uvv4abmxvi4+MRHBysN/i7b9+++Pbbb3H16lW0bNlSp2z5u43lrqBORERElZPFBhZJSUkICQlBQkICXFxc0KpVKxw7dgw9e/YEoH2yamPzosGlY8eO2LlzJ2bMmIHp06ejUaNGOHjwIF566SVzXQIZQSKRlLhLkrktXrwYvr6+aNKkiU56s2bNcOrUKZ20U6dOoXHjxrC1LVkgY2trC5VKVWieNm3a4OrVqzpBSV6XLl3C48ePsXjxYrHb37lz5wzmXbx4MZycnNCjRw/ExMSIkye4ubnprRETFxcHe3t7nbQzZ87ovP/tt9/QqFGjEl83ERERWT6L/eZmqK96XjExMXppgwcPxuDBg8uoRESFa9myJd555x18/vnnOumTJ09G27ZtMX/+fAwZMgSxsbFYu3Ytvvjii0KPJwiCOKuZSqXC8ePHcezYMcyaNavQ/T799FN06NABoaGhGDVqFBwdHXH16lUcP34ca9euRZ06dSCVSrFmzRqMHTsWly9fxvz58ws83rJly5CTk4NXXnkFMTExaNq0KV555RVERERg+/btCAwMxI4dO3D58mX4+fnp7BsfH4+wsDB88MEHuHDhAtasWVOsGbGIiIjI+ljVGAsiSzdv3jxoNBqdtDZt2uCbb77B7t278dJLL2HWrFmYN29ekV2mUlNT4eXlBS8vLzRr1gzLly/HvHnz8NlnnxW6X6tWrfDzzz/jxo0b6Ny5M/z8/DBr1izUrFkTgLa1ISoqCnv37kXz5s2xePFiLFu2rNBjrly5Em+99RZeeeUV3LhxA8HBwZg5cyY++eQTtG3bFs+fP0dISIjefiEhIVCpVGjXrh3GjRuHiRMnilPiEhERUcUiETipvI7U1FS4uLggJSWFA7lL6PGzRHT7TttVLab/cVSv6mkwLb+MjAzcvn0b9erVg0wmK9cyU9np1q0bfH19sWrVKnMXpUIo6O+En1nmxftvRup0YJH2gQmm/wtIHQ2nEZGorD+z2GJBRERERERGY2BBRERERERGs9jB20Rk3QxNsEBEREQVF1ssiIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaAwsiMhsoqKiULVqVXMXo9h8fHy4kriFW7duHXx8fCCTydC+fXucPXu20PzPnj3DuHHj4OXlBQcHBzRu3BiHDx8up9ISEVUsDCyIjPD+++9DIpFAIpFAKpWiYcOGmDdvHrKzs81dNIPmzJkDX19fkxxLIpHg4MGDJjlWZdatWzdMmjTJ3MWoEPbs2YOwsDDMnj0bFy5cQOvWrREcHIykpCSD+dVqNXr27Ik7d+5g3759uH79OjZt2oRatWqVc8mJiCoGLpBHZKTevXtj69atyMzMxOHDhzFu3DjY29tj2rRpOvnUajWkUqlZyigIAnJycsxybqLysmLFCowePRrDhw8HAERGRuLQoUPYsmULpk6dqpd/y5YtePLkCU6fPg17e3sA2lYpIiIqHbZYEBnJwcEBnp6eqFu3Lj788EMEBQXh+++/x/vvv48BAwZg4cKFqFmzJpo0aQIAuHTpEl555RXI5XJUr14dY8aMQVpamni83P3mzp0LNzc3VKlSBWPHjoVarRbzaDQahIeHo169epDL5WjdujX27dsnbo+JiYFEIsGRI0fg7+8PBwcH7NixA3PnzsUff/whtrJERUVhxIgReO2113SuKSsrC+7u7vjyyy+LdQ/u3LkDiUSC/fv3o3v37lAoFGjdujViY2N18kVFRaFOnTpQKBR444038PjxY71jfffdd2jTpg1kMhnq16+PuXPn6rQASSQSrF+/Hn369IFcLkf9+vV1rh0A7t27h7feegtVq1aFq6sr+vfvjzt37ujd42XLlsHLywvVq1fHuHHjkJWVJeZJSkpCv379IJfLUa9ePXz99dd6ZX327BlGjRol/pxeeeUV/PHHH+L23Bair776Cj4+PnBxccHQoUPx/PlzsRw///wzVq9eLf5M8paTik+tVuP8+fMICgoS02xsbBAUFKT3e5jr+++/R2BgIMaNGwcPDw+89NJLWLRoEYNwIqJSYmBBlkkQAHV6+b8Eweiiy+VyMQiIjo7G9evXcfz4cfzwww9IT09HcHAwqlWrht9//x179+7FiRMnEBoaqnOM6OhoXLt2DTExMdi1axf279+PuXPnitvDw8Oxfft2REZG4sqVK/joo4/w7rvv4ueff9Y5ztSpU7F48WJcu3YNPXv2xOTJk9GiRQskJCQgISEBQ4YMwahRo3D06FEkJCSI+/3www9QKpUYMmRIia79s88+w5QpUxAXF4fGjRvj7bffFoOCM2fOYOTIkQgNDUVcXBy6d++OBQsW6Ox/8uRJhISEYOLEibh69So2bNiAqKgoLFy4UCffzJkzMXDgQPzxxx945513MHToUFy7dg2ANigKDg6Gs7MzTp48iVOnTsHJyQm9e/fWCc5++ukn3Lp1Cz/99BO2bduGqKgoREVFidvff/993Lt3Dz/99BP27duHL774Qq9LzeDBg5GUlIQjR47g/PnzaNOmDXr06IEnT56IeW7duoWDBw/ihx9+wA8//ICff/4ZixcvBgCsXr0agYGBGD16tPgz8fb2LtE9J61Hjx4hJycHHh4eOukeHh5ITEw0uM8///yDffv2IScnB4cPH8bMmTOxfPlyvd/LvDIzM5GamqrzIiIiLXaFIsuUpQQW1Sz/807/F5A6lmpXQRAQHR2NY8eOYfz48UhOToajoyM2b94sdoHatGkTMjIysH37djg6as+zdu1a9OvXD0uWLBG/FEmlUmzZsgUKhQItWrTAvHnz8PHHH2P+/PnIysrCokWLcOLECQQGBgIA6tevj19//RUbNmxA165dxTLNmzcPPXv2FN87OTnBzs4Onp6eYlrHjh3RpEkTfPXVV/jkk08AAFu3bsXgwYPh5ORUonswZcoU9O3bFwAwd+5ctGjRAjdv3kTTpk2xevVq9O7dWzxH48aNcfr0aRw9elTcf+7cuZg6dSqGDRsmXtf8+fPxySefYPbs2WK+wYMHY9SoUQCA+fPn4/jx41izZg2++OIL7NmzBxqNBps3b4ZEIhGvp2rVqoiJiUGvXr0AANWqVcPatWtha2uLpk2bom/fvoiOjsbo0aNx48YNHDlyBGfPnkXbtm0BAF9++SWaNWsmluHXX3/F2bNnkZSUBAcHBwDAsmXLcPDgQezbtw9jxowBoG1dioqKgrOzMwDgvffeQ3R0NBYuXAgXFxdIpVIoFAqdnwmVD41GA3d3d2zcuBG2trbw9/fHgwcPEBERofP7lld4eLhOkE9ERC+wxYLISD/88AOcnJwgk8nQp08fDBkyBHPmzAEAtGzZUmdcxbVr19C6dWsxqACAl19+GRqNBtevXxfTWrduDYVCIb4PDAxEWloa7t27h5s3b0KpVKJnz55wcnISX9u3b8etW7d0yhYQEFCsaxg1ahS2bt0KAHj48CGOHDmCESNGAADGjh2rc57CtGrVSvy/l5cXAIhP+a9du4b27dvr5M8NjHL98ccfmDdvns75cp/mK5XKAvcLDAwUWyz++OMP3Lx5E87OzuIxXF1dkZGRoXN/WrRoAVtbW53y5i2rnZ0d/P39xe1NmzbVmcHqjz/+QFpaGqpXr65T3tu3b+ucx8fHRwwq8p+HTKdGjRqwtbXFw4cPddIfPnxYYNDm5eWFxo0b6/weNGvWDImJiTqtW3lNmzYNKSkp4uvevXumuwgiIivHFguyTPYKbeuBOc5bQt27d8f69eshlUpRs2ZN2Nm9+LPKG0CYSu54jEOHDunNXpP75Lyk5w8JCcHUqVMRGxuL06dPo169eujcuTMAbavHlClTinWc3AGwAMTWAo1GU6x9Ae21zZ07F2+++abeNplMVuxj+Pv7GxwT4ebmZrCsueUtaVm9vLwQExOjty1vAGLseah4pFIp/P39ER0djQEDBgDQ/u5FR0frdTXM9fLLL2Pnzp3QaDSwsdE+Z7tx4wa8vLwKnGjBwcFB7++MiIi0GFiQZZJISt0lqbw5OjqiYcOGxcrbrFkzREVFIT09XfzSf+rUKdjY2IiDuwHt03CVSgW5XA4A+O233+Dk5ARvb2+4urrCwcEB8fHxOt2eikMqlRocmFq9enUMGDAAW7duRWxsrDirDgC4u7vD3d29ROcxpFmzZjhz5oxO2m+//abzvk2bNrh+/XqR9/O3335DSEiIzns/Pz/xGHv27IG7uzuqVKlSqrI2bdoU2dnZOH/+vNgV6vr163j27JlOWRMTE2FnZ2fUTEIF/Uyo5MLCwjBs2DAEBASgXbt2WLVqFdLT08Xf55CQENSqVQvh4eEAgA8//BBr167FxIkTMX78ePz9999YtGgRJkyYYM7LICKyWgwsiMrRO++8g9mzZ2PYsGGYM2cOkpOTMX78eLz33ns6g07VajVGjhyJGTNm4M6dO5g9ezZCQ0NhY2MDZ2dnTJkyBR999BE0Gg06deqElJQUnDp1ClWqVBHHJxji4+OD27dvIy4uDrVr14azs7P49HXUqFF47bXXkJOTU+gxSmvChAl4+eWXsWzZMvTv3x/Hjh3TGV8BALNmzcJrr72GOnXqYNCgQbCxscEff/yBy5cv6wyo3bt3LwICAtCpUyd8/fXXOHv2rDiD1TvvvIOIiAj0798f8+bNQ+3atXH37l3s378fn3zyCWrXrl1kWZs0aYLevXvjgw8+wPr162FnZ4dJkyaJgR4ABAUFITAwEAMGDMDSpUvRuHFj/Pvvvzh06BDeeOONYndD8/HxwZkzZ3Dnzh2x21bu03MqmSFDhiA5ORmzZs1CYmIifH19cfToUfFvKz4+Xufeent749ixY/joo4/QqlUr1KpVCxMnTsSnn35qrksgIrJqFlt7hYeHo23btnB2doa7uzsGDBig0wfdkKioKHHKxtxXcbtPEJUHhUKBY8eO4cmTJ2jbti0GDRqEHj16YO3atTr5evTogUaNGqFLly4YMmQIXn/9dXHcBqAdsDxz5kyEh4ejWbNm6N27Nw4dOoR69eoVev6BAweid+/e6N69O9zc3LBr1y5xW1BQELy8vBAcHIyaNU0/cL5Dhw7YtGkTVq9ejdatW+PHH3/EjBkzdPIEBwfjhx9+wI8//oi2bduiQ4cOWLlyJerWrauTb+7cudi9ezdatWqF7du3Y9euXWjevDkA7T3+5ZdfUKdOHbz55pto1qwZRo4ciYyMjBK1YGzduhU1a9ZE165d8eabb2LMmDE6LTcSiQSHDx9Gly5dMHz4cDRu3BhDhw7F3bt39WYmKsyUKVNga2uL5s2bw83NDfHx8cXel/SFhobi7t27yMzMxJkzZ3TG9cTExOjM/AVox+f89ttv4hic6dOn64y5ICKi4pMIggnm1ywDvXv3xtChQ9G2bVtkZ2dj+vTpuHz5Mq5evVpgv/GoqChMnDhRJwCRSCQlquRTU1Ph4uKClJSUUnejqKweP0tEt++0MxDF9D+O6lU9Dabll5GRgdu3b6NevXoMBKGd5vTZs2flvqp1WloaatWqha1btxoc42ApJBIJDhw4IPajrywK+jvhZ5Z58f6bkTr9xeyBuTP6GUojIlFZf2ZZbFeo/F0koqKi4O7ujvPnz6NLly4F7ieRSDhtI1EJaDQaPHr0CMuXL0fVqlXx+uuvm7tIREREZIVMElhkZWUhMTERSqUSbm5ucHV1NcVhdaSkpABAkcdOS0tD3bp1odFo0KZNGyxatAgtWrQoMH9mZiYyMzPF91zsiCqb+Ph41KtXD7Vr10ZUVJTOrFZEplYe9QUREZlHqb9BPH/+HDt27MDu3btx9uxZqNVqCIIAiUSC2rVro1evXhgzZow4o4oxNBoNJk2ahJdffhkvvfRSgfmaNGmCLVu2oFWrVkhJScGyZcvQsWNHXLlypcABm1zsiCxN/j7gZc3HxwcW2iPSIGsqK2mVZ31BRETmU6rB2ytWrICPjw+2bt2KoKAgHDx4EHFxcbhx4wZiY2Mxe/ZsZGdno1evXujduzf+/vtvowo5btw4XL58Gbt37y40X2BgIEJCQuDr64uuXbti//79cHNzw4YNGwrch4sdERGVnfKuL4iIyHxK1WLx+++/45dffimwi1G7du0wYsQIREZGYuvWrTh58iQaNWpUqgKGhobihx9+wC+//FKsaSLzsre3h5+fH27evFlgHi52RERUdsqzviAiIvMqVWCRd4rKwjg4OGDs2LGlOQUEQcD48eNx4MABxMTEFDmNpiE5OTm4dOkSXn311VKVgYiIjFMe9QUREVmGEneFevr0KZ48eQIASE5Oxv79+3HlyhWTF2zcuHHYsWMHdu7cCWdnZyQmJiIxMREqlUrMExISgmnTponv582bhx9//BH//PMPLly4gHfffRd3797FqFGjTF4+IiIqXHnVF0REZBlKFFhs3rwZ/v7+CAgIwPr16/HGG28gOjoaQ4cOxebNm01asPXr1yMlJQXdunWDl5eX+NqzZ4+YJz4+HgkJCeL7p0+fYvTo0WjWrBleffVVpKam4vTp0+LCWUREVD7Ks74gIiLLUKKuUJ9//jmuXLkClUqFOnXq4Pbt23Bzc0NKSgq6du1q0paB4sz8EhMTo/N+5cqVWLlypcnKQEREpVOe9QUREVmGErVY2NnZQS6Xw9XVFQ0bNoSbmxsAwMXFBRKJpEwKSERUlrp164ZJkyaZuxgVDusLIqLKp0SBha2tLTIyMgAAP//8s5ielpZm2lIRWYn3338fEokEEokEUqkUDRs2xLx585CdnW3uohk0Z84c+Pr6muRYudctkUjg6OiIRo0a4f3338f58+dNcnxr9v7772PAgAHmLoZZsb4gIqp8ShRYnDhxQpya1cXFRUxXKpXYuHGjaUtGZCV69+6NhIQE/P3335g8eTLmzJmDiIgIvXxqtdoMpdMSBKFMgp2tW7ciISEBV65cwbp165CWlob27dtj+/btJj8XWRfWF0RElU+JAouCmrDd3d25YipVWg4ODvD09ETdunXx4YcfIigoCN9//7341HrhwoWoWbMmmjRpAgC4dOkSXnnlFcjlclSvXh1jxozReYqbu9/cuXPh5uaGKlWqYOzYsTqBiUajQXh4OOrVqwe5XI7WrVtj37594vaYmBhIJBIcOXIE/v7+cHBwwI4dOzB37lz88ccfYktDVFQURowYgddee03nmrKysuDu7o4vv/yy0GuvWrUqPD094ePjg169emHfvn145513EBoaiqdPn4r5fv31V3Tu3BlyuRze3t6YMGEC0tPTxe0+Pj6YP38+3n77bTg6OqJWrVpYt26dzrmePXuGUaNGiffklVdewR9//CFuz22N+eqrr+Dj4wMXFxcMHToUz58/F/Okp6cjJCQETk5O8PLywvLly/WuKTMzE1OmTEGtWrXg6OiI9u3b64znioqKQtWqVXHs2DE0a9YMTk5OYnCZW45t27bhu+++E+9z/vFglQHrCzI7tRJQp794FWPsJhEZp1TrWOSXkZGBP//8E0lJSdBoNDrbXn/9dVOcgioZQRCgylYVndHE5HZyo/t/y+VyPH78GAAQHR2NKlWq4Pjx4wC0X2yDg4MRGBiI33//HUlJSRg1ahRCQ0MRFRUlHiM6OhoymQwxMTG4c+cOhg8fjurVq2PhwoUAgPDwcOzYsQORkZFo1KgRfvnlF7z77rtwc3ND165dxeNMnToVy5YtQ/369SGTyTB58mQcPXoUJ06cAKD98te4cWN06dIFCQkJ8PLyAgD88MMPUCqVGDJkSImv/6OPPsL27dtx/PhxvPXWW7h16xZ69+6NBQsWYMuWLUhOTkZoaChCQ0OxdetWcb+IiAhMnz4dc+fOxbFjxzBx4kQ0btwYPXv2BAAMHjwYcrkcR44cgYuLCzZs2IAePXrgxo0bcHV1BQDcunULBw8exA8//ICnT5/irbfewuLFi8X79vHHH+Pnn3/Gd999B3d3d0yfPh0XLlzQ6R4WGhqKq1evYvfu3ahZsyYOHDiA3r1749KlS+LCbUqlEsuWLcNXX30FGxsbvPvuu5gyZQq+/vprTJkyBdeuXUNqaqp4fbnlI9YXlVVhn+mm+Nw1aFlD3ffeHYARRwGO8SmRgn52ZfZzI6tmdGBx9OhRhISE4NGjR3rbJBIJcnJyjD0FVUKqbBXa72xf7uc9858zUNgrSrWvIAiIjo7GsWPHMH78eCQnJ8PR0RGbN2+GVCoFAGzatAkZGRnYvn07HB0dAQBr165Fv379sGTJEnh4eAAApFIptmzZAoVCgRYtWmDevHn4+OOPMX/+fGRlZWHRokU4ceIEAgMDAQD169fHr7/+ig0bNugEFvPmzRO/mAOAk5MT7Ozs4OnpKaZ17NgRTZo0wVdffYVPPvkEgLaL0+DBg+Hk5FTi+9C0aVMAwJ07dwBog6B33nlHHCDdqFEjfP755+jatSvWr18PmUwGAHj55ZcxdepUAEDjxo1x6tQprFy5Ej179sSvv/6Ks2fPIikpSexes2zZMhw8eBD79u3DmDFjAGhbcqKiouDs7AwAeO+99xAdHY2FCxciLS0NX375JXbs2IEePXoAALZt24batWuLZY+Pj8fWrVsRHx+PmjVrAgCmTJmCo0ePYuvWrVi0aBEAbYtOZGQkGjRoAEAbjMybN0+8x3K5HJmZmTr3mVhfVFaCICDkSAjikuMMbvdz98O23ttM8yXVXqENIO79pr/t3m9AlhKQOhp/nkqisJ+dSX9uVGGUeIG8/MaPH4/BgwcjISEBGo1G58VKgiqDH374AU5OTpDJZOjTpw+GDBmCOXPmAABatmwpBhUAcO3aNbRu3VoMKgDtF2qNRoPr16+Laa1bt4ZC8SLACQwMRFpaGu7du4ebN29CqVSiZ8+ecHJyEl/bt2/HrVu3dMoWEBBQrGsYNWqU+HT94cOHOHLkCEaMGAEAGDt2rM55ipI7VXRuZfPHH38gKipK5xjBwcHQaDS4ffu2zjXmFRgYiGvXronHSEtLQ/Xq1XWOc/v2bZ1r9vHxEYMKAPDy8kJSUhIAbWuGWq1G+/YvAlZXV1exixqg7aaWk5ODxo0b65zn559/1jmPQqEQg4r856GCsb6onFTZqgKDCgC4mHTRdC3UEom2VWL6vy9eU26a5tiVUGE/O5P+3KjCMLrF4uHDhwgLCxOftBKZgtxOjjP/OWOW85ZU9+7dsX79ekilUtSsWRN2di/+rPIGEKaSOx7j0KFDqFWrls623Kf5JT1/SEgIpk6ditjYWJw+fRr16tVD586dAWhbPaZMmVLs8uUGA/Xq1RPL+8EHH2DChAl6eevUqVOsY6alpcHLy8vgWIWqVauK/7e3t9fZJpFI9LrbFHUeW1tbnD9/Hra2tjrb8gZVhs5TnLV3KjvWF5VUnr+NmLv3If/ve5VEgm51a+vlMZpEwlaJMhDzVgzkdnKoslXo9k03cxeHLJTRgcWgQYMQExOj8/SOyFgSiaTUXZLKm6OjIxo2bFh0RgDNmjVDVFQU0tPTxS/9p06dgo2Njc6T8z/++AMqlQpyuTbQ+e233+Dk5ARvb2+4urrCwcEB8fHxOt2eikMqlRp8Mly9enUMGDAAW7duRWxsLIYPHy5uc3d3h7u7e7HPsWrVKlSpUgVBQUEAgDZt2uDq1atF3qPffvtN732zZs3EYyQmJsLOzg4+Pj7FLkteDRo0gL29Pc6cOSMGNE+fPsWNGzfE++jn54ecnBwkJSWJgVVpFHSfKzvWF5VUnqfackGAwlAQka1iMGDh5HZyq6mXyXyMDizWrl2LwYMH4+TJk2jZsqXekzxDTymJKqt33nkHs2fPxrBhwzBnzhwkJydj/PjxeO+993Se4qrVaowcORIzZszAnTt3MHv2bISGhsLGxgbOzs6YMmUKPvroI2g0GnTq1AkpKSk4deoUqlSpgmHDhhV4fh8fH9y+fRtxcXGoXbs2nJ2dxVaOUaNG4bXXXkNOTk6hx8jr2bNnSExMRGZmJm7cuIENGzbg4MGD2L59u9iS8Omnn6JDhw4IDQ3FqFGj4OjoiKtXr+L48eNYu3ateKxTp05h6dKlGDBgAI4fP469e/fi0KFDAICgoCAEBgZiwIABWLp0KRo3box///0Xhw4dwhtvvFGsLl9OTk4YOXIkPv74Y1SvXh3u7u747LPPYGPzokdo48aN8c477yAkJATLly+Hn58fkpOTER0djVatWqFv377Fui8+Pj44duwYrl+/jurVq8PFxUXvs7EyYn1BmPgnoKiu/b/yMfBd8f6miMg6GB1Y7Nq1Cz/++KM4g03eQTwSiYQVBVEeCoVCnPGobdu2UCgUGDhwIFasWKGTr0ePHmjUqBG6dOmCzMxMvP322+K4DQCYP38+3NzcEB4ejn/++QdVq1ZFmzZtMH369ELPP3DgQOzfvx/du3fHs2fPsHXrVrz//vsAtF/evby80KJFC3HgclFyWzZkMhlq1aqFTp064ezZs2jTpo2Yp1WrVvj555/x2WefoXPnzhAEAQ0aNNCbcWry5Mk4d+4c5s6diypVqmDFihUIDg4GoP0sOXz4MD777DMMHz4cycnJ8PT0RJcuXUrUrSYiIgJpaWno168fnJ2dMXnyZKSkpOjk2bp1KxYsWIDJkyfjwYMHqFGjBjp06KA3JW9hRo8ejZiYGAQEBCAtLQ0//fQTunXrVuz9KyrWFwSp4kXLBPvnVzicQYokgpEdgz09PTFhwgRMnTpV58mftUpNTYWLiwtSUlJQpUoVcxfHqjx+lohu32lnIIrpfxzVq3oaTMsvIyMDt2/fRr169cQZgiqz999/H8+ePcPBgwfL9bxpaWmoVasWtm7dijfffLNcz+3j44NJkyaJM0eRvoL+TqzpM6ui1ReAdd1/c1EqH6H93u4AgDODf4JCUaPQ9GJTpwOL/vsQZPq/BXelKm4+0qPMUoozNObOmmgoDeAMUtairD+zjG6xUKvVGDJkSIWpJIgqG41Gg0ePHmH58uWoWrUq1xKgMsP6gqjiKs4MUhyjUfEZ/ek+bNgw7NmzxxRlISIziI+Ph4eHB3bu3IktW7bozGpFZEqsL4gqh5i3YnDmP2cQ81aMuYtC5czobxA5OTlYunQpjh07hlatWukNxsvfd5yICpd3Be7y4OPjY/apUnMX06OKjfUFUeXAGaQqL6MDi0uXLsHPzw8AcPnyZZ1t7EtHRES5WF8QEVVsRgcWP/30kynKQWT2p+ZElqwi/H2wviCrIAhAllI/3V6hXXyPiArEztRkdrndIZRKpbggHBHpUiq1X3S4HgZRGRIEYEswcO+M/jbvDsCIowwuiArBwILMztbWFlWrVkVSUhIA7VoP7BZBpCUIApRKJZKSklC1alXY2tqau0hEFVeW0nBQAQD3ftNu53S1RAViYEEWwdNTu75FbnBBRLqqVq0q/p0QUTmYclO7oJ9aCSxraO7SEFkFiw0swsPDsX//fvz111+Qy+Xo2LEjlixZgiZNmhS63969ezFz5kzcuXMHjRo1wpIlS/Dqq6+WU6mptCQSCby8vODu7o6srCxzF4fIotjb27Olgqi85V0lnIiKpdSBxaxZs9C/f3/4+/ubsjyin3/+GePGjUPbtm2RnZ2N6dOno1evXrh69SocHQ3/oZ8+fRpvv/02wsPD8dprr2Hnzp0YMGAALly4gJdeeqlMykmmZWtryy9QRBVMWdcXZD1U6mzALvvF/4moQil1YHH//n306dMHUqkU/fr1w+uvv44ePXpAKpWapGBHjx7VeR8VFQV3d3ecP38eXbp0MbjP6tWr0bt3b3z88ccAgPnz5+P48eNYu3YtIiMjTVIuIiIqmbKuL8iy5Z3RrNOSn6ASqgAA5JJU2DXVz0NE1qvUK29v2bIFiYmJ2LVrF5ydnTFp0iTUqFEDAwcOxPbt2/HkyRNTlhMpKSkAAFdX1wLzxMbGIigoSCctODgYsbGxJi0LEREVX3nXF2RZMrJyTJKHiCxfqQMLALCxsUHnzp2xdOlSXL9+HWfOnEH79u2xYcMG1KxZE126dMGyZcvw4MEDowqp0WgwadIkvPzyy4V2aUpMTISHh4dOmoeHBxITEwvcJzMzE6mpqTovIiIyrfKqL8iy/fhRF1ydF4yr84Lx40eGex8QkfUyKrDIr1mzZvjkk09w6tQp3Lt3D8OGDcPJkyexa9cuo447btw4XL58Gbt37zZRSV8IDw+Hi4uL+PL29jb5OYiISFdZ1Rdk2RRSWyikdv99cTxdZaLKVkGZpRRf7P5WMZXZrFBubm4YOXIkRo4cadRxQkND8cMPP+CXX35B7dq1C83r6emJhw8f6qQ9fPiw0Ckap02bhrCwMPF9amoqgwsionJkqvqCiCxXt2+66bz3c/fDtt7buG5VBWPSFgtTEgQBoaGhOHDgAP7v//4P9erVK3KfwMBAREdH66QdP34cgYGBBe7j4OCAKlWq6LyIiIiIyDhyOzn83P0MbruYdBGqbFU5l4jKmsWuYzFu3Djs3LkT3333HZydncVxEi4uLpDL5QCAkJAQ1KpVC+Hh4QCAiRMnomvXrli+fDn69u2L3bt349y5c9i4caPZroOIiIioMpJIJNjWe5tOAKHKVum1XlDFYbEtFuvXr0dKSgq6desGLy8v8bVnzx4xT3x8PBISEsT3HTt2xM6dO7Fx40a0bt0a+/btw8GDB7mGBREREWlX0Vanv3ixn3+Zk0gkUNgrxJfcTm7uIlEZstgWi+IM6omJidFLGzx4MAYPHlwGJSIiIiKrtqyh7nvPlsDwo0BuP3+1svzLRFSBGB1Y5B34nJdEIoFMJkPDhg3Rv3//QtefICKiio/1BZmFvQLw7gDc+01/W+IlILxW+ZeJqIIyOrC4ePEiLly4gJycHDRp0gQAcOPGDdja2qJp06b44osvMHnyZPz6669o3ry50QUmIiLrxPqCzEIiAUYcBbLytEYIArC1tzawMMS7gzYgIaISMTqwyH26tHXrVnFGpZSUFIwaNQqdOnXC6NGj8Z///AcfffQRjh07ZnSBiYjIOrG+ILORSACpo27aByd1g4287BUvukcRUbEZPXg7IiIC8+fP15mm1cXFBXPmzMHSpUuhUCgwa9YsnD9/3thTERGRFWN9QRYlN9gw9GJQQVQqRgcWKSkpSEpK0ktPTk5GamoqAKBq1apQq9XGnoqIiKxYedQX69atg4+PD2QyGdq3b4+zZ88Wa7/du3dDIpFgwIABpT43EVFlZ3Rg0b9/f4wYMQIHDhzA/fv3cf/+fRw4cAAjR44UP6DPnj2Lxo0bG3sqIiKyYmVdX+zZswdhYWGYPXs2Lly4gNatWyM4ONhgMJPXnTt3MGXKFHTu3LlU5yUiIi2jA4sNGzagR48eGDp0KOrWrYu6deti6NCh6NGjByIjIwEATZs2xebNm40uLBERWa+yri9WrFiB0aNHY/jw4WjevDkiIyOhUCiwZcuWAvfJycnBO++8g7lz56J+/fqlOi8REWkZPXjbyckJmzZtwsqVK/HPP/8AAOrXrw8nJycxj6+vr7GnISIiK1eW9YVarcb58+cxbdo0Mc3GxgZBQUGIjY0tcL958+bB3d0dI0eOxMmTJ4s8T2ZmJjIzM8X3uV24iIjIhAvkOTk5oVWrVqY6HBERVVBlUV88evQIOTk58PDw0En38PDAX3/9ZXCfX3/9FV9++SXi4uKKfZ7w8HDMnTvXmKISVSqCIECVlSO+V2XnFJKbrF2pAov4+HjUqVOn2PkfPHiAWrW4AA0RUWVjqfXF8+fP8d5772HTpk2oUaNGsfebNm2azkJ/qamp8Pb2LosiElk9QRAwKDIW5+8+fZEoUcO56YvtVLGUaoxF27Zt8cEHH+D3338vME9KSgo2bdqEl156Cd9++22pC0hERNarvOqLGjVqwNbWFg8fPtRJf/jwITw9PfXy37p1C3fu3EG/fv1gZ2cHOzs7bN++Hd9//z3s7Oxw69Ytg+dxcHBAlSpVdF5USQkCoE7Xf5XTl2VBEKBUZ+u9LOnLuiorRzeoyCcjW1OOpaHyUKoWi6tXr2LhwoXo2bMnZDIZ/P39UbNmTchkMjx9+hRXr17FlStX0KZNGyxduhSvvvqqqctNRERWoLzqC6lUCn9/f0RHR4szTGk0GkRHRyM0NFQvf9OmTXHpku6qyzNmzMDz58+xevVqtkKUtyyl9kt5LktfoE4QgC3BwL0z+tu8O2hX+i7D8htsCfivgLrVsHdsICQWdv/OzQiCQmqLx8o0vPqduUtDZaVUgUX16tWxYsUKLFy4EIcOHcKvv/6Ku3fvQqVSoUaNGnjnnXcQHByMl156ydTlJSIiK1Ke9UVYWBiGDRuGgIAAtGvXDqtWrUJ6ejqGDx8OAAgJCUGtWrUQHh4OmUymd86qVasCAOsuM5B/0Ub3SX85fDk3SpbScFABAPd+027Pv9K3CRXWEnDu7lOosnKgkJpsGK1JKKS2UEjtoMq2NXdRqAwZ9Vsnl8sxaNAgDBo0yFTlISKiCqg86oshQ4YgOTkZs2bNQmJiInx9fXH06FFxQHd8fDxsbIyeZZ1MxV5R8LZy+HJuMlNuAlIFoFYCyxqW++lzWwKU6hwELDhR7ucnysuywlkiIiIjhIaGGuz6BAAxMTGF7hsVFWX6AlHB8rRGqCb+BYXC2Wxfzo0iVZg1AMptCbBGSnUO5HbZOmlye1uL68ZFxWedv4lERERUcUgdraN1gkyq85KfAEGqk2apY0SoeNgmTERERETlQmZX+FfP3DEiZJ3YYkFERERE5SJvS8T5mUGQ28kBgGNEKggGFkRERETFoVbq/ltUvrwsfQpdM5Db20Jhz6+iFQl/mkRERETFUdyB5YbyWfoUukQmwDEWRERERAWxV2iDAkO8O7yYNrewfMCLKXSJKjCLbrH45ZdfEBERgfPnzyMhIQEHDhwQV1Q1JCYmBt27d9dLT0hIgKenZxmWlIiIiCokiUTb0mAoKMjbvamgfNY4hS5RKRnVYpGVlYUePXrg77//NlV5dKSnp6N169ZYt25difa7fv06EhISxJe7u3uZlI+IiIqnrOsLojIlkbyYEjfvK3+3JoP58iwEqFYC6vQXr7yrjRNVAEa1WNjb2+PPP/80VVn09OnTB3369Cnxfu7u7qhatarpC0RERKVS1vUFkVXI33JhYeMuBEGAKlslvs/7f6LiMHqMxbvvvosvv/zSFGUxGV9fX3h5eaFnz544depUoXkzMzORmpqq8yIiItOzxPqCqMwVNvbi3m9A+iMTtmIIgEQNVbYKyiyl+BKKcUxBEBByJATtd7YXX92+6WZEWagyMnqMRXZ2NrZs2YITJ07A398fjo66K2euWLHC2FMUm5eXFyIjIxEQEIDMzExs3rwZ3bp1w5kzZ9CmTRuD+4SHh2Pu3LnlVkYiosrKkuoLonJjaOxF3nEXJmrFEAQBirqRsFXcRbe9s3S2+bn7YVvvbYWuZq3KViEuOc7gNj93P3G9CaLCGB1YXL58WfzSfuPGDZ1t5b0ce5MmTdCkSRPxfceOHXHr1i2sXLkSX331lcF9pk2bhrCwMPF9amoqvL29y7ysRESVjSXVF0TlKnfsRa7cVox7v+nnzZ09Suqov60QGTkZsFXcNbjtYtJFqLJVUNgrDG7PL+atGJ1AQm4n598oFYvRgcVPP/1kinKUmXbt2uHXX38tcLuDgwMcHBzKsURERJWTpdcXROWmqFYMI6XdmAFBI4XERg2nxgsAoFjdoXLJ7eTFDkKI8rLo6WZNIS4uDl5eXuYuBhEREdEL+VsxCqE/qDoHkKgBwV5Mk9m9GDYraKSAIIWgeXGMjGwNHKXGF5uoMCYJLKKjoxEdHY2kpCRoNBqdbVu2bCn1cdPS0nDz5k3x/e3btxEXFwdXV1fUqVMH06ZNw4MHD7B9+3YAwKpVq1CvXj20aNECGRkZ2Lx5M/7v//4PP/74Y6nLQEREplNW9QVRRZU7qDr/+AfnpkC2si4EIRiAbnfC8zODILeT47EyDa9+V56lNZYASLK0QZTEVkxlVyzrYXRgMXfuXMybNw8BAQHw8vIy6Q/+3LlzOgve5Y6FGDZsGKKiopCQkID4+Hhxu1qtxuTJk/HgwQMoFAq0atUKJ06cMLhoHhERla+yrC+IKqrCBlXbKe4iIycDjrDXSZfb20JhbwdVtq3B/SyRsYPPyTIYHVhERkYiKioK7733ninKo6Nbt26F9gmMiorSef/JJ5/gk08+MXk5iIjIeGVZXxBZG0EQoMrKeZGgzkZRoxpyB1U/UaWhz4EeZVq+8mbKwedkPkYHFmq1Gh07djRFWYiIqAJjfUGkJQgCBkXG4vzdp2KaHBm4Jnux3dCz+dxB1ToBSTFp17bQbcGw1C5GR96IhqvcCapsFdfSsDJGL5A3atQo7Ny50xRlISKiCoz1BRVEXNAtWwWlRAJjloizBqqsHJ2gwtB2U+tzoIfO4nftd7bHsKPDDPYMUWXlQKnOFl8lmVHKFHIDKK6dYX2MbrHIyMjAxo0bceLECbRq1Qr29rr9/LjgERERAawvqGA63Xp8vOGXkYFtBTy1r2jOzQiCQmoLZVoq8Llpjy2zlSFbWRd2xehilDd48J9/AhBeTCEVULca9o4NtMjWDbIsRgcWf/75J3x9fQFoFz/Ki7+ARESUi/UF5VXYl96LMhlUORlQwMkMJStfCqktFFI7QGr6gdYSiQSqu2MBSZZuuoH1LTKyNXr75zp39ykep6uhkNpqp7olKkCFXyCPiIgsA+sLyivvl97zM4Mgt7eFSvUY3Q68au6iVRhye1sE1HXFuXzdropa3+Lkp91RXeEEpToHAQtOAID4LyRqODf973EK6CKlysoBhGwo1QxCKpsKv0AeERERWSoJIEj/26feTnclajKaRCLB3rGBemM2ilrfIrcVRRuYVNMLTHLlDUoK60pFlUepAovc9SSKg31miYgqL9YXROYlkUi0Xa3yyLu+Re5sUXlX9s67b/7ApKCgpLCuVAF1q0Fub1xXr9xWkFxye1t2obRApQosLl68WKx8/IETEVVurC+oOHK7zKjU2UXktE7516ywpC5CRa2HkT8wKc6ie7ldqXKVNgjggHLrU6rAgv1kiYioOFhfUHHk9t+XS1JhV0T/fWtjaM0KUyqsxaEghQ2cz1bWhcxWVqJz5/4/lzgg3UhFDShXZeWY5DxkOvxpEBERUbkrsv9+Vg4cy7lMZaGwNSvydxESAKgkEqhUjwEb7UxORQUMpVmBO+/A+ZOfdtdOd6vOQeclPwGCfbFbAcpz9W9DA8rJ8nCMBRERlRnWF1QQg/33nz3Eq0cWmbFUZSt3zYpcebsICYKAEC8PxMkcgMP9DR/gv604hbU4+Ln7FXNhOe3A+c6LT+VJK3rAdVFrY5SkxaMkTNUKQmXLJGMsLly4gOzsbDRp0gQAcOPGDdja2sLf39/4EhIRkdVifUGF0eu/XwZrOViSwr4cZ9jYaIOKAvhlZED+38DC0FS9ueR28iJbHAprLSpqoHVB51Zl5fx3HETxWzyo4jF6jMWKFSvg7OyMbdu2oVq1agCAp0+fYvjw4ejcubNpSklERFaJ9QVRMeX5Mn6k7//CNXfws1oJrG4FuSDk+8Keb6reEp3K8DS0QHEHWhs4t5DNKWbJ+DEWy5cvx48//ihWEgBQrVo1LFiwAL169cLkyZONPQUREVUArC+IikeuqA6Fwln7xi5d7AJlSoamoSUylo2xB0hNTUVycrJeenJyMp4/f27s4YmIqIJgfUFEVLEZHVi88cYbGD58OPbv34/79+/j/v37+PbbbzFy5Ei8+eabpigjERFVAKwvqPISAIn6v9OzKsVXRZlSlyiX0W1gkZGRmDJlCv7zn/8gK0s7NZqdnR1GjhyJiIgIowtIREQVA+sLqowEQYCibiRsFXfRbe8snW1+7n7Y1ntbKQc7C5AjE1CnQ+frnL1CZ7wGUXkyOrBQKBT44osvEBERgVu3bgEAGjRoAEfHijD7NBERmQrrC6qMMnIyYFvA1KwXky5Cla2Cwl5RsoMKAvZJ5yLA5gawLN827w7AiKMMLsgsTDZqx9HREa1atTLV4YiIqIJifUGV1ZE3ouEqd4IqW4Vu33Qr/YGylNqgwpB7vwFZSkBasQL2FyuM5wASNSDYm7tIZACnA6BSEwRBZ0VQVXaGGUtDRERkXoIg6E3hqlS/eK+dnlW3dSK3Hi1qhe2CKCf+BYVjFe20tMsaluoY1iDvKt/OTbUL8QlCsBlLRIZYdGDxyy+/ICIiAufPn0dCQgIOHDiAAQMGFLpPTEwMwsLCcOXKFXh7e2PGjBl4//33y6W8lYkgCAg5EoK45DhzF4WIiMjsBEHAoMhYnM+/6JxEDeemBe9nVMsFoB1TUcFaJ3IVtsq3neIuMnIy4Ai2XFgSo2eFKkvp6elo3bo11q1bV6z8t2/fRt++fdG9e3fExcVh0qRJGDVqFI4dO1bGJa18lOr0AoMKv4wMyGxl5VsgIiIiM1Jl5egHFfnI7LRfu+R2cvi5+xnMk62sC02OPZTqbPGV60Wa/sJ2FVHuKt/P/5qHmMGnceY/Z3DkjWhzF4sKUeoWi1mzZqF///7w9/c3ZXl09OnTB3369Cl2/sjISNSrVw/Lly8HADRr1gy//vorVq5cieBgNpeZUoYqTfx/zN37kOeZMu+OXVNtsywREcqnviALIgjaPv658v6/kjg3IwgKqS0AbRen3Nmgcmd/kkgk2NZ7m2534qwc+M8/AQj2aLvwxZdnOTJw7b/P6vwXnIAKMp00c8ob4JRdsKO7yreh1cLJcpQ6sLh//z769OkDqVSKfv364fXXX0ePHj0glZpvOffY2FgEBQXppAUHB2PSpEnmKVAloRr5O+QubuL7ZgpnSGwsujGMiMqRJdYXVEYEAdgSDNw7IybJJRLAx9uMhSp/Cqnti1WtJbYG80gkEp3xFnI7AQF1PHCuiFaP/OT2ho9fHgIWnDBqf91xmqUbY0KWpdSBxZYtW6DRaHDq1Cn87//+LyZNmoSEhAT07NkT/fv3x2uvvQZXV1dTlrVIiYmJ8PDw0Enz8PBAamoqVCoV5HK53j6ZmZnIzMwU36emppZ5OSsauaMTFE4u5i4GEVkoS6wvqIxkKXWCCj0lnVa1EpFIJNg7NlD/ibw6XZxS9vyMIO14ijxppVsDo/Tk9rYIqFutwAAooG61Ygc7Ro8vIYtj1OBtGxsbdO7cGZ07d8bSpUtx7do1/O///i82bNiAMWPGoF27dnj99dfx9ttvo1atWqYqs0mFh4dj7ty55i4GEVGFVhHqCyqhKTcBqQIq5XPgu57aNK6tUCiJRPKipUP04r1CagdI7VDk1zd1vu5nJlw0r8AA6L/k9raFBju540suJl00uD1bWZfjNK2YSWeFatasGZo1a4ZPPvkEycnJ+P777/H9998DAKZMmWLKUxnk6emJhw8f6qQ9fPgQVapUMdhaAQDTpk1DWFiY+D41NRXe3pWryZaIqLyZu76gsiMAUEkkgI0EkEigYtfY8pd/2lkTL5pnOAAq/r75x5cAumNMyrsVhkynzKabdXNzw8iRIzFy5MiyOoWewMBAHD58WCft+PHjCAwMLHAfBwcHODg4lHXRiIioAKasL9atW4eIiAgkJiaidevWWLNmDdq1a2cw76ZNm7B9+3ZcvnwZAODv749FixYVmJ+KJggCQrw8ECdzAPZ2N3dxKhd7hTaAuPeb/jYLWzQv//gSAICQDQgcd2XtLPoxQlpaGuLi4hAXFwdAO51sXFwc4uPjAWhbG0JCQsT8Y8eOxT///INPPvkEf/31F7744gt88803+Oijj8xRfCIiKkd79uxBWFgYZs+ejQsXLqB169YIDg5GUlKSwfwxMTF4++238dNPPyE2Nhbe3t7o1asXHjx4UM4lrziU2SptUGEAu7iYgFqpHV+Rv6sToG2NGHEUmP7vi9eUm+VfRqrULHqBvHPnzqF79xdPPHK7LA0bNgxRUVFISEgQgwwAqFevHg4dOoSPPvoIq1evRu3atbF582ZONUtEVAmsWLECo0ePxvDhwwFopyA/dOgQtmzZgqlTp+rl//rrr3Xeb968Gd9++y2io6N1HlpR8WXk6XeffWMKVJoXU4/713EvdfcZ+q+iVtaWSCymVaI8KNU5kNu9WOejqPEdVPYs+i+8W7duEPKsj5BfVFSUwX0uXjQ8IIiIiComtVqN8+fPY9q0aWKajY0NgoKCEBsbW6xjKJVKZGVlcYYqE/lxYhCqV30xUyO/9JVSYV2cvDtU6pm2Oi/5Saf7VEDdatg7NpC/Z2Zk0YEFERFRcTx69Ag5OTkGpxz/66+/inWMTz/9FDVr1tRbDykvTlFefDprOVDp5XZxMrTQoAlne7IWuauXG3Lu7lOosnL4e2dGJrnzGRkZ+PPPP5GUlASNRqOz7fXXXzfFKYiIqAKw1Ppi8eLF2L17N2JiYiCTFTwOgFOUk1lUsi5OhcnbGnF+ZhDkdnIo1TlGL9ZHpmF0YHH06FGEhITg0aNHetskEglycrj0OhERlW19UaNGDdja2hqcctzT07PQfZctW4bFixfjxIkTaNWqVaF5OUU5WS1DA76tvMVDbm8LhT1bJyyJ0bNCjR8/HoMHD0ZCQgI0Go3Oi0EFERHlKsv6QiqVwt/fH9HR0WKaRqNBdHR0oVOOL126FPPnz8fRo0cREBBQ5HkcHBxQpUoVnReRVVjWEFhUU/e1pTdQyFhWopIyOrB4+PAhwsLC9Pq1EhER5VXW9UVYWBg2bdqEbdu24dq1a/jwww+Rnp4uzhIVEhKiM7h7yZIlmDlzJrZs2QIfHx8kJiYiMTERaWlpZVI+onKXO/C7ILnrW1gYpToHSnU2lGo+oLY2RrcfDRo0CDExMWjQoIEpykNERBVUWdcXQ4YMQXJyMmbNmoXExET4+vri6NGjYiATHx8PmzyrQK9fvx5qtRqDBg3SOc7s2bMxZ86cMikjVRyCIECVZ3pdi/wSXNDAb7Wy6KlrzYjjJayX0YHF2rVrMXjwYJw8eRItW7aEvb29zvYJEyYYewoiIqoAyqO+CA0NRWhoqMFtMTExOu/v3Llj9PmochIEAYMiY3H+7lNzF6VoVjLwW25vi4C61XDOwD0NqFsNcntbM5SKSsrowGLXrl348ccfIZPJEBMTozNaXyKRMLAgIiIArC+o4lBl5eD83SeAJEtvm38dd34JLgWJRIK9YwN1WoFycQ0U62F0YPHZZ59h7ty5mDp1qk4TMxERUV6sL6iiEAQBirqRsFXc1dvm6OYHoGP5F6oCkEgkXIPCyhn9ya5WqzFkyBBWEkREVCjWF1RRZORkGAwqAOBi8kWoslXlXCIiy2D0p/uwYcOwZ88eU5SFiIgqMNYXVBEdeSMaZ/5zBjFvxZi7KERmZ3R7U05ODpYuXYpjx46hVatWeoPxVqxYYewpiIioAmB9QRWR3E4Ohb3C3MUgsghGBxaXLl2Cn58fAODy5ctGF4iIiCom1hdUWeTtCsVuUVSZGB1Y/PTTT6YoBxERVXCsL8haCYJQomCh2zfdyrhERJapVIFFWFhYsfJJJBIsX768NKcgIqIKgPUFWZv8QQQADDs6DH89+avQ/eR2cvi5++Fi0kWD2/3c/SC3k5usnGVCEAyvxG2v0K6HQVSEUgUWFy/q/tFcuHAB2dnZaNKkCQDgxo0bsLW1hb+/v/ElJCIiq8X6gqyJIAgIORKCuOS4YuXPVtaFzFYGQBscb+u9rcDWDLmd3LLXYhAEYEswcO+M/jbvDtoVvC25/GQRShVY5G3OXrFiBZydnbFt2zZUq1YNAPD06VMMHz4cnTt3Nk0piYjIKrG+IGuiylYVGFQ0dW2Kbb23afNl5cB//glAsNdb6NFqB3JnKQ0HFQBw7zftditYwZvMy+gxFsuXL8ePP/4oVhIAUK1aNSxYsAC9evXC5MmTjT0FERFVAKwvyJrEvBWj03VJp8VByAYEqZlKZmJqpe6/ADDlJiBVaNOWNTRPucgqGR1YpKamIjk5WS89OTkZz58/N/bwRERUQbC+IGtSaaaRNRQ4SBVsnaBSMXqBvDfeeAPDhw/H/v37cf/+fdy/fx/ffvstRo4ciTfffNMUZSQiogqA9QWRhbBXaMdNGOLdQbudqBSMbrGIjIzElClT8J///AdZWVnag9rZYeTIkYiIiDC6gEREVDGwviBrJQgCVFk54nulOqeQ3FZAItEOxuYMUGRiRgcWCoUCX3zxBSIiInDr1i0AQIMGDeDoaJomtHXr1iEiIgKJiYlo3bo11qxZg3bt2hnMGxUVheHDh+ukOTg4ICMjwyRlISKi0ivr+oKoLAiCgEGRsTh/96m5i2JaEgm7O5HJGR1Y5HJ0dESrVq1MdTgAwJ49exAWFobIyEi0b98eq1atQnBwMK5fvw53d3eD+1SpUgXXr18X31v01G5ERJVQWdQXRGVFlZVTYFARULca5Pa25VwiKon8rU255Pa2/I5YBkwWWJSFFStWYPTo0WIrRGRkJA4dOoQtW7Zg6tSpBveRSCTw9PQsz2ISERFRJXBuRhAU0heBBL+cWrbCWpsC6lbD3rGB/PmZmNGDt8uKWq3G+fPnERQUJKbZ2NggKCgIsbGxBe6XlpaGunXrwtvbG/3798eVK1cKPU9mZiZSU1N1XkRERFSxCYIApTpb52XoyXZeCqktFFI78cUvpZZHqc4Rf56P09UFtjadu/u0yJ83lZzFtlg8evQIOTk58PDw0En38PDAX3/9ZXCfJk2aYMuWLWjVqhVSUlKwbNkydOzYEVeuXEHt2rUN7hMeHo65c+eavPxERERkmQp8ki1Rw7npizxkfQIWnDCYntvapFTnFJiHjGexLRalERgYiJCQEPj6+qJr167Yv38/3NzcsGHDhgL3mTZtGlJSUsTXvXv3yrHERERE1kv/qb91PAEubNxEroxsTTmVhowlt7dFQN1qBW4PqFsN1R2l/21p4piYsmSxLRY1atSAra0tHj58qJP+8OHDYo+hsLe3h5+fH27evFlgHgcHBzg4OBhVViqmLCWgTn/xnlPaERFZLUEQMGj9aVyNTxTT5JLnQFMzFqoU8o6beKxMw6vfmblAVGISiQR7xwYW2LWJY2HKj8UGFlKpFP7+/oiOjsaAAQMAABqNBtHR0QgNDS3WMXJycnDp0iW8+uqrZVhSKi75F22AvE3L3h2082jzj52IyOqo1NmYmjgRLeQvHt6pJBJ0g7brscxKZkvKHTcBAKps6ygz6ZNIJOLPkczHon8CYWFhGDZsGAICAtCuXTusWrUK6enp4ixRISEhqFWrFsLDwwEA8+bNQ4cOHdCwYUM8e/YMERERuHv3LkaNGmXOy6jcClu9895v2laMoubRFgQu4kNEZGEEdTo+r5WKOJm3we0SC1q9ucItcEdkoSw6sBgyZAiSk5Mxa9YsJCYmwtfXF0ePHhUHdMfHx8PG5sUwkadPn2L06NFITExEtWrV4O/vj9OnT6N58+bmugTK88X/wZjzcJU7AllKyL9oA7kgoMiwQBCALcHAvTP629jiQURkNhk5GYiTGe5K7OfmB7mFBBYVdoE7Igtk0YEFAISGhhbY9SkmJkbn/cqVK7Fy5cpyKBWVxps/DnjxxscbfhkZiNJodGcQyN86oVYaDiqA4rd4EBFRmTrS93/h6vJi4Vq5ndxi+rRzgTsTUefrOWABvQZU2Sqd95b0e1dZWXxgQdatmswR8pwGUNne0tt2USbD04x0VJc5axMKa50AgCk3AalC++G2rGEZllqXIAh6H14AP8CIiHLJ7WRQWEgLRWG4wJ0R8te7FtBroNs33XTe+7n7YVvvbaX6mRa0QjfA35OSYGBBZcrGxga/vb8fTzNezAb1JCVJt/UiV1YhrRPeHQDHGvofYGX8BEUQBIQcCUFccpzeNj83P2zrU7oPMCIiKn95B2pTMdgrtPXvvd/0t937DUh/pH3gl3+fMqwX5XZy+Ln74WLSRb1tF5MuQpWtKnGQW1R3Oa7SXXz866IyZ2Njg+oK5xcJeaecLUhu60Sugj6oyvgJijJLaTCoAICLyRfxWPVY5wOMrRhERBWDUp0DuZ31rM1RJiQSbZ2av4tybt1rqPdAGbdkSCQSbOu9TacngSpbpdd6URJFrWuSu0o3g9Ki8Q6RZZIqCh47UdQTFBOOu8i7QFLajRkQNFJIbNRwarwAANB9b3ed/MY0wxIRUckI0E5xi2yVzhfZ4jzkMdTNNe/7zkt+AgSpSctrlSQS3Tq1sDoYKJfxjxKJpMy63uXtLsdVukuOgQVZn6KeoJSRXz4ORnWFE9Izs9Flx1ewU9zVy1PaZlgiIioZQRAQ4uWhnZmqyIc8AiDJ0gYOEu2XxmFHh+GvJ38V+3wc6P1fhupgoNzHP5YVdpczDu8cWaf8T1Dyyj/uAihWn8+inl7pLKJ0dywgyXpRnDytGELeRQCJiKh0spS6XWfzfY6rCpnuNu9DHkEQoKgbCVvFXXTbO6tYp25Vwxcb57ym0+rBAbx5FFYHU6XGwIKKJGg0UCmf66Sp0tPMVJpiKEWfz8IGaecnt7dFQF1XnMvTH1N40WMKGdkaOLL1nIjIOOv9oczzoEbm0QI2w4+9+BzP8xAp5o3DkMurG+xrn5GTAVsDLcwA0NS1Kbb13qaXzvFyZayghW8Bi5jGlkqPgQUVStBo8Fd4R9TN1m0ulkskQN3aZiqVAUb2+SxskDYAZCvrQmYrA6Dt27l3bKDOtHSPlWl49btSl56IiADtZ/l/dctXx/hlJGFbeK0XC6tKJICPdtVvuZ1crwuqKisHEHQHXx95IxqucifxPQMIMyhqavlynMY293ejUg/QNzEGFlQoZXoqFtV4gjiZd4F5ZHk+pM3GyD6fhgZp5+Vfx12nz6VEItF5r8pmv1siImNVkzsVuvaRSiKBwlB3Uzs5AN2uqAELD+eZcEObZigAoXJW2NTyQLkufsuB2abHwIIKlVFIH1YA8HPzhcJS+lkW1eezmGte5A7Szot9a4mIyp7BtY+UaXjzUC8AwIMx5+Eq137Oq7IzgEP9tJn++/mc9yFR7ri3vGR2NmVVdCqNvFPLl9Pgb2135mo63ZlzcYC+8RhYULEd6fu/cHVx10mzqmbkfB9YObXbI/O9Q4BEotMMyhkhiIjMR2/tozwMLq6K/3ZlEbKhybFHtrKuwVn7/Nz82FphaQqbWr6MGOrOnIsPEY3Hb09UbHI7mUV/KBua1QkA4N0OuP+7fvqDs+g052uo4ADYqGHXuOzLSEREJVNN5lhg9yhAOwYuYP7PgDj6Qjtr3/mZQTpPn63qQRiVqfzdmcl0eFfJrFTZGVDmjov47wJHckFAUR/9giDoPG0QBAFjTgzHn4/+0M9sB3GAn77len8EMltWPERE+WlycvD0ebL4/mnqo3I5r6HuUYB2DPC7m8/gr4QMQKfWkCCgjgdc5U4MJCxB/hmgDE0JTxUGAwsyqz65/WNz+XjDLyMD2/IEF/pBBDA4MhZXE1Jf7CdRw7mpgaCihPwyMmBsm4wqWwVlFp+SEVHFocnJwVtftsF1B03RmctAQd2jjkzowS4tlqyoGaCowmFgQTrK44mUzFYGv4wMXJTJDG6/KJPhccYTKGxsIAgC3v3yLC7GPzOQ0x4w0LZhaFYnfQICveXYPCxAW/molcDqVtrWkiyV/qDuEsyr3edAD533+ivAEhFZl6fPkwsMKppk2qCas1s5l0iLXVosXGEzQHl30JlemCoG/jWSqLyeSCkcq2Dqo+rwybc2hkoiEect736wb54dAOem+sexz66NY0P2wMZGAlW2Cn0OaNPPffYq5P+derAwOk+07NK1T1aAUi2wJ7OVFThgMO8KsLnyt8IYLBMRkQU60H0XqlWpIb6v5uwGG1vOpENFyDsDFMCF8CooBhYkKq8nUhIbGzSbdlpvNW9NZjaEb96DRHGvWMfJsruPV759WS9dbm8LhX0Jf7VLusBevj6jkqxs4O77eC6xwfmZPSG3tzW4Aqx2VwGDImNxvoCp7vaODWRwQUQWq1qVGqhe1dPcxSBrY4YZoKj8MbAgg8r6iZTExgYKJxfdRGk20u7+DyDJMrhP3hk+hh0dhr+e/KWXx8/dr1itFfoFKsYCe7kDzgQB2NobSLwkZlMAuCYDftc0hty2HxT29jqHyTtblSorB+fjH8JQV65zd59ClZXDpn0iIiKyOvz2QgaZ44mUdtEa1wIXrck7w8c3r31jcGpZowZKF7XAXjEW7mlrcwOP0p8DkipQZb/o6pS/5cK5qXaKxF/e3QdHBzso1TlcAZSILIKg0UCV8UQnLf97IiJDGFiQxSjJojUSiaR81tQorIuUZ0tguHbchTI9FYrV2oEgnZf+BBVkAATI6xoedwEAdoq7sLHNgkJqeBA7EVF5EzQahGwPQFwBLcdExZLbws+pZSsdi1/bft26dfDx8YFMJkP79u1x9uzZQvPv3bsXTZs2hUwmQ8uWLXH48OFyKqn10eTk4PGzRPFVXnOSFyZ3ho/8L7ONOcjtIjX9X/3XBycBBydA6gi5wVViJVDdHYvnf83TeaXdmCHm0E5Nq9S2vkjUAAQo1TlQqrPFl5A7qJyIisQ6o2Ty1wP3H/5VaFDRUCWBTOZajiUkq7SsIbCoZrFa+q0F6+bisegWiz179iAsLAyRkZFo3749Vq1aheDgYFy/fh3u7u56+U+fPo23334b4eHheO2117Bz504MGDAAFy5cwEsvvWSGK7AM+aeQBQCNoMHIfcG4XdSsrFR0FylAJ/A5/2lHwF6hXbzpy7O4mAjkHUsh5Bkfn3dq2tzuUQELdPNzQDdR8bDOKFz+uqCoesD+xgSoNE46aTbe3lA42BvegSq3wlr4K8DUsvm7K7NuNkwiWHDI1b59e7Rt2xZr164FAGg0Gnh7e2P8+PGYOnWqXv4hQ4YgPT0dP/zwg5jWoUMH+Pr6IjIysljnTE1NhYuLC1JSUlClShXTXIgJGAoOirVfKQKIJpk2+GbkBU4fWBLqdO3TGQM0Hi2R8d4PyA0WBEHAmJ//B38+vmQw//O/5gGC7g/s3IwgKKS6Pw9OTUuA5X5mmUNFqjMK+szPP5FGceuGktYFTTJsEBXyO2xsdTs28HOHCpV/le1cxZlaNm89Ov3fEs0gpcxSov3O9gCAM/85Y7Ku0oIgYHBkrMGxnwBwdV6w1U22UtZ1hsXeDbVajfPnz2PatGlimo2NDYKCghAbG2twn9jYWISFhemkBQcH4+DBgyU+/5NnD5GlsYy+gUa3LhSyXz018OWgY7CRvKg8OCd5KRTypMbm4SUoltXVSdsBQOX5EvDeQUCiXYej24FXAQC/TvaD3E4GpToHvVb+AgDovHC/3nEbezjjy2EBnAa8EuLfqL6KVGcU9pmf9zO7xHVDAflYD5DJFKOFv1hKOjYj78yLqseGg5tS2hbSCBl5xn7mrZsfP3sIldTy/07K8+/ZYgOLR48eIScnBx4eHjrpHh4e+Osv/WlGASAxMdFg/sTExALPk5mZiczMTPF9amoqAODVw/1hK7egXxYjuywZqjgAVh4mY2i6WgPT0orZASgSLwMRDV/s7+MNAOhzqJ+Yz87AwoC5/gHQ/XsTlJ2sTkz/41xHIJ8KV2cU8Jl/Wwq88n1wkfkKwiCCrEJJx2bkqUNzH9KVpdy6+dUji8r8XKZQnnWGxQYW5SU8PBxz5841dzGKpaDgoDhYcZQDQ09qPjip/+TEQMAhFwT4ZWTgoowzRBFZsvKsM4rbOlGSuoF1AVmsohaqLQTrUMthsYFFjRo1YGtri4cPH+qkP3z4EJ6ehqMuT0/PEuUHgGnTpuk0haempsLb2xuHX/0OzlUMzfRjPqwQrFBBzcL5Ag4JgG2CAFVORrEOKwiCTtMsVS7VnN3MXQSLUxHrjPyf+QdHxBVr3AWRVSpoodri7IqS1aHGsrY6uDzrDIsNLKRSKfz9/REdHY0BAwYA0A7Ei46ORmhoqMF9AgMDER0djUmTJolpx48fR2BgYIHncXBwgIODg166a1WPSj8QksqQgYBDAkABJ8P5DTBBL1aiCqMy1Bk2trbsAkcVmxFjNEpahxqLdbBhFhtYAEBYWBiGDRuGgIAAtGvXDqtWrUJ6ejqGDx8OAAgJCUGtWrUQHh4OAJg4cSK6du2K5cuXo2/fvti9ezfOnTuHjRs3mvMyiIioHLDOICIyL4sOLIYMGYLk5GTMmjULiYmJ8PX1xdGjR8XBdvHx8bCxedGntGPHjti5cydmzJiB6dOno1GjRjh48GCFnI+ciIh0sc4gIjIvi17Hwhw4JzwRWRN+ZpkX7z8RWZOy/swq+fRCRERERERE+TCwICIiIiIio1n0GAtzyO0ZlrvoERGRJcv9rGKvVvNgnUFE1qSs6wwGFvk8fvwYAODt7W3mkhARFd/jx4/h4uJi7mJUOqwziMgalVWdwcAiH1dXVwDa2UPK4oa3bdsWv//+u8n3KSpPQdsNpedPK+h97sJQ9+7dK5MBQGV1r4rKVxb3CkCZ3q/S3Kvi7ldW98pQmrX/bpnj7zAlJQV16tQRP7uofJVlncG/65JhnVF8FeF3q7zuVWHlNnafilhnMLDIJ3cqQhcXlzL55bS1tS3xcYuzT1F5CtpuKD1/WlHvq1SpYlX3qqh8ZXmvgLK5X6W5V8Xdr6zulaE0a//dMuffYd5pVKn8lGWdwb/rkmGdUXwV4XervO5VQecyxT4Vsc5gTVTOxo0bVyb7FJWnoO2G0vOnFfW+rJTVvSoqX2W5V8Xdr6zulaE0S75flfXvkMyHf9clwzqj+CrC71Z5fgayzig+rmORD+ckLz7eq5Lh/So+3qvi470yL97/4uO9Khner+LjvSo+rmNRzhwcHDB79mw4ODiYuygWj/eqZHi/io/3qvh4r8yL97/4eK9Khver+Hiviq+s7xVbLIiIiIiIyGhssSAiIiIiIqMxsCAiIiIiIqMxsCAiIiIiIqMxsCAiIiIiIqMxsCAiIiIiIqMxsCAiIiIiIqMxsKAKp1u3bpg0aZLJ85aH/OUpr/I9fvwY7u7uuHPnTpmeZ+jQoVi+fHmZnoOIqCRYZ5Qc6wwqiJ25C0BkjG7dusHX1xerVq0S0/bv3w97e3vzFcqEyutaFi5ciP79+8PHx6dMzzNjxgx06dIFo0aNgouLS5mei4goP9YZpsE6gwrCFguySmq1usBtrq6ucHZ2LsfS6CqsbCVVHteiVCrx5ZdfYuTIkWV6HgB46aWX0KBBA+zYsaPMz0VElIt1humwzqDCMLCgMtetWzeEhoYiNDQULi4uqFGjBmbOnIncRd+PHj2KTp06oWrVqqhevTpee+013Lp1y+AxJk2ahBo1aiA4OBjvv/8+fv75Z6xevRoSiQQSiQR37tzRawrWaDRYunQpGjZsCAcHB9SpUwcLFy40WFaNRoPw8HDUq1cPcrkcrVu3xr59+4p1fXnLVpzrSk9PR0hICJycnODl5WWwuTf/tfj4+Og8aQMAX19fzJkzR3y/b98+tGzZEnK5HNWrV0dQUBDS09MLLP/hw4fh4OCADh06iGm//vor7O3tkZGRIabduXMHEokEd+/eFcs2fvx4TJo0CdWqVYOHhwc2bdqE9PR0DB8+HM7OzmjYsCGOHDmic75+/fph9+7dBd9QIqrUWGewzsiLdYZ1YWBB5WLbtm2ws7PD2bNnsXr1aqxYsQKbN28GoP2wDAsLw7lz5xAdHQ0bGxu88cYb0Gg0eseQSqU4deoUIiMjsXr1agQGBmL06NFISEhAQkICvL299c49bdo0LF68GDNnzsTVq1exc+dOeHh4GCxneHg4tm/fjsjISFy5cgUfffQR3n33Xfz8889FXl/eshXnuj7++GP8/PPP+O677/Djjz8iJiYGFy5cKPG9zSshIQFvv/02RowYgWvXriEmJgZvvvmmWCEbcvLkSfj7++ukxcXFoVmzZpDJZGLaxYsXUa1aNdStW1fnumvUqIGzZ89i/Pjx+PDDDzF48GB07NgRFy5cQK9evfDee+9BqVSK+7Rr1w5nz55FZmamUddKRBUX6wzWGblYZ1gZgaiMde3aVWjWrJmg0WjEtE8//VRo1qyZwfzJyckCAOHSpUs6x/Dz8zN47IkTJxaYlpqaKjg4OAibNm0qsGy5eTMyMgSFQiGcPn1aJ8/IkSOFt99+u9DrM1S2wq7r+fPnglQqFb755htx++PHjwW5XK5zPfmvr27dusLKlSt1jtu6dWth9uzZgiAIwvnz5wUAwp07d4osT67+/fsLI0aM0EkbNWqUEBISopM2a9YsoVu3bjpl69Spk/g+OztbcHR0FN577z0xLSEhQQAgxMbGiml//PFHictIRJUH6wz962KdwTrDWrDFgspFhw4dIJFIxPeBgYH4+++/kZOTg7///htvv/026tevjypVqoiDweLj43WOkf8JSXFcu3YNmZmZ6NGjR5F5b968CaVSiZ49e8LJyUl8bd++Xa+ZPT9DZSvsum7dugW1Wo327duL+V1dXdGkSZOSXWA+rVu3Ro8ePdCyZUsMHjwYmzZtwtOnTwvdR6VS6TxlArRPn3x9fXXSLl68qJfWqlUr8f+2traoXr06WrZsKablPuVLSkoS0+RyOQDoPJEiIsqLdQbrjFysM6wLZ4Uis+vXrx/q1q2LTZs2oWbNmtBoNHjppZf0BrQ5OjqW+Ni5H0jFkZaWBgA4dOgQatWqpbPNwcGh0H0Nla2411USNjY2ek3UWVlZ4v9tbW1x/PhxnD59Gj/++CPWrFmDzz77DGfOnEG9evUMHrNGjRo6FUlOTg4uX74MPz8/nXwXLlzAwIEDddLyzz4ikUh00nK/GOTtovDkyRMAgJubW5HXS0SUH+uM4mOdQeWNLRZULs6cOaPz/rfffkOjRo3w7NkzXL9+HTNmzECPHj3QrFmzIp+W5CWVSpGTk1Pg9kaNGkEulyM6OrrIYzVv3hwODg6Ij49Hw4YNdV6G+uEW5vHjx4VeV4MGDWBvb69zX54+fYobN24Uelw3NzckJCSI71NTU3H79m2dPBKJBC+//DLmzp2LixcvQiqV4sCBAwUe08/PD1evXhXfX79+HRkZGahZs6aYFhsbiwcPHug9fSqNy5cvo3bt2qhRo4bRxyKiiol1BuuMXKwzrAtbLKhcxMfHIywsDB988AEuXLiANWvWYPny5ahWrRqqV6+OjRs3wsvLC/Hx8Zg6dWqxj+vj44MzZ87gzp07cHJygqurq852mUyGTz/9FJ988gmkUilefvllJCcn48qVK3pT5Tk7O2PKlCn46KOPoNFo0KlTJ6SkpODUqVOoUqUKhg0bVuxyFXVdTk5OGDlyJD7++GNUr14d7u7u+Oyzz2BjU3is/8orryAqKgr9+vVD1apVMWvWLNja2orbz5w5g+joaPTq1Qvu7u44c+YMkpOT0axZswKPGRwcjGnTpuHp06eoVq0a4uLiAABr1qzBhAkTcPPmTUyYMAGAaaZFPHnyJHr16mX0cYio4mKdwTojF+sM68LAgspFSEgIVCoV2rVrB1tbW0ycOBFjxoyBRCLB7t27MWHCBLz00kto0qQJPv/8c3Tr1q1Yx50yZQqGDRuG5s2bQ6VS6T2JAYCZM2fCzs4Os2bNwr///gsvLy+MHTvW4PHmz58PNzc3hIeH459//kHVqlXRpk0bTJ8+vUTXa2NjU+R1RUREIC0tDf369YOzszMmT56MlJSUQo87bdo03L59G6+99hpcXFwwf/58nWuuUqUKfvnlF6xatQqpqamoW7culi9fjj59+hR4zJYtW6JNmzb45ptv8MEHHyAuLg7BwcH4559/0LJlSzRv3hxz587Fhx9+iM8//xxfffVVie5FXhkZGTh48CCOHj1a6mMQUcXHOoN1BsA6wxpJhPyd74hMzNBKp2RZDh06hI8//hiXL19Gnz590LZtWyxYsMDk51m/fj0OHDiAH3/80eTHJqKKgXWG5WOdQQVhiwURoW/fvvj777/x4MED/PHHHxgxYkSZnMfe3h5r1qwpk2MTEVH5YJ1BBWFgQUQAgEmTJiExMREPHz7Umf7PlEaNGlUmxyUiovLFOoMMYVcoIiIiIiIyGqebJSIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwICIiIiIiozGwIKty+vRpzJkzB8+ePSv3cyckJGDq1Kno3r07nJ2dIZFIEBMTo5dPqVRi3bp16NWrF7y8vODs7Aw/Pz+sX78eOTk5evk1Gg2WLl2KevXqQSaToVWrVti1a5fBMly7dg29e/eGk5MTXF1d8d577yE5ObnY1/D999+jTZs2kMlkqFOnDmbPno3s7Oxi709EZE2soc4AtPVAZGQkfH194eTkBA8PD/Tp0wenT5/Wy5uZmYlPP/0UNWvWhFwuR/v27XH8+HGDxz19+jQ6deoEhUIBT09PTJgwAWlpacW+hi+//BLNmjWDTCZDo0aNsGbNmmLvS5WUQGRFIiIiBADC7du3y/3cP/30kwBAaNSokRAYGCgAEH766Se9fJcuXRIkEokQFBQkLF26VIiMjBTeeOMNAYAQEhKil3/q1KkCAGH06NHCxo0bhb59+woAhF27dunku3fvnlCjRg2hQYMGwurVq4WFCxcK1apVE1q3bi1kZmYWWf7Dhw8LEolE6N69u7Bx40Zh/Pjxgo2NjTB27NhS3xMiIktmDXWGIAhCWFiYAEB49913hQ0bNghLliwR6tevL9jZ2QlnzpzRyTt06FDBzs5OmDJlirBhwwYhMDBQsLOzE06ePKmT7+LFi4JMJhP8/PyE9evXC5999png4OAg9O7du1jlj4yMFAAIAwcOFDZu3Ci89957AgBh8eLFpbofVDkwsCCrYs5KIjU1VXj8+LEgCIKwd+/eAiuJ5ORk4fLly3rpw4cPFwAIf//9t5h2//59wd7eXhg3bpyYptFohM6dOwu1a9cWsrOzxfQPP/xQkMvlwt27d8W048ePCwCEDRs2FFn+5s2bC61btxaysrLEtM8++0yQSCTCtWvXityfiMjaWEOdkZWVJcjlcmHQoEE66f/8848AQJgwYYKYdubMGQGAEBERIaapVCqhQYMGQmBgoM7+ffr0Eby8vISUlBQxbdOmTQIA4dixY4WWXalUCtWrVxf69u2rk/7OO+8Ijo6OwpMnTwq/eKq02BWKrMacOXPw8ccfAwDq1asHiUQCiUSCO3fulMv5nZ2d4erqWmS+GjVqoEWLFnrpb7zxBgBtd6Zc3333HbKysvA///M/YppEIsGHH36I+/fvIzY2Vkz/9ttv8dprr6FOnTpiWlBQEBo3boxvvvmm0DJdvXoVV69exZgxY2BnZyem/8///A8EQcC+ffvEtMTERAwfPhy1a9eGg4MDvLy80L9//3K7z0REpmAtdUZWVhZUKhU8PDx00t3d3WFjYwO5XC6m7du3D7a2thgzZoyYJpPJMHLkSMTGxuLevXsAgNTUVBw/fhzvvvsuqlSpIuYNCQmBk5NTkXXGTz/9hMePH+vUTQAwbtw4pKen49ChQ2La33//jYEDB8LT0xMymQy1a9fG0KFDkZKSUuS1U8VjV3QWIsvw5ptv4saNG9i1axdWrlyJGjVqAADc3NwK3EepVEKpVBZ5bFtbW1SrVs1kZTUkMTERAMRyA8DFixfh6OiIZs2a6eRt166duL1Tp0548OABkpKSEBAQoHfcdu3a4fDhw4We++LFiwCgt3/NmjVRu3ZtcTsADBw4EFeuXMH48ePh4+ODpKQkHD9+HPHx8fDx8Sn+BRMRmZG11Bm54ySioqIQGBiIzp0749mzZ5g/fz6qVaumE0RcvHgRjRs31gkWgBd1RlxcHLy9vXHp0iVkZ2frfeZLpVL4+vrqfOYbUlCd4e/vDxsbG1y8eBHvvvsu1Go1goODkZmZifHjx8PT0xMPHjzADz/8gGfPnsHFxaXU94WsEwMLshqtWrVCmzZtsGvXLgwYMKBYX3KXLl2KuXPnFpmvbt26ZfoUS61WY9WqVahXrx7atm0rpickJMDDwwMSiUQnv5eXFwDg33//FfPlTc+f98mTJ8jMzISDg4PB8xe1f+55nj17htOnTyMiIgJTpkwR80ybNq3Y10pEZAmsqc7YsWMHhgwZgnfffVdMq1+/Pk6dOoX69euLaQkJCQV+jgPFrzNOnjxZaHkSEhJga2sLd3d3nXSpVIrq1auL57l69Spu376NvXv3YtCgQWK+WbNmFXp8qrgYWFCFFhISgk6dOhWZL29Tc1kIDQ3F1atXcejQIZ2uSCqVymAwIJPJxO15/y0qb0GBRVH7p6amAtDeB6lUipiYGIwcObLMW3GIiCyJueoMZ2dntGjRAoGBgejRowcSExOxePFiDBgwACdPnhRbW0xVZ+RuL4hKpYJUKjW4Le/+uS0Sx44dw6uvvgqFQlGcy6UKjIEFVWj169fXedpjDhEREdi0aRPmz5+PV199VWebXC5HZmam3j4ZGRni9rz/FievIUXtn7vdwcEBS5YsweTJk+Hh4YEOHTrgtddeQ0hICDw9PYu8ViIia2aOOiM7OxtBQUHo1q2bznSuQUFBaNGiBSIiIrBkyRIApqszigqM5HI51Gq1wW15969Xrx7CwsKwYsUKfP311+jcuTNef/11vPvuu+wGVUlx8DZVaGlpaUhMTCzyVZK1IEoiKioKn376KcaOHYsZM2bobffy8kJiYiIEQdBJz23Grlmzppgvb3r+vK6urgW2VhRn/9zzAMCkSZNw48YNhIeHQyaTYebMmWjWrFmRfXKJiKydOeqMX375BZcvX8brr7+uk96oUSM0a9YMp06dEtO8vLwK/BwHil9n5P3MN8TLyws5OTlISkrSSVer1Xj8+LHO/suXL8eff/6J6dOnQ6VSYcKECWjRogXu379f6DmoYmJgQVYl/1iEoixbtgxeXl5FvvKOezCV7777DqNGjcKbb76JdevWGczj6+sLpVKpM1MUAJw5c0bcDgC1atWCm5sbzp07p3eMs2fPivkKkrs9//7//vsv7t+/r7d/gwYNMHnyZPz444+4fPky1Go1li9fXug5iIgsjTXUGQ8fPgQAgwuoZmVl6Sxi6uvrixs3bojdV3PlrzNeeukl2NnZ6X3mq9VqxMXFlbrOOHfuHDQajd7+LVu2xIwZM/DLL7/g5MmTePDgASIjIws9B1VM7ApFVsXR0REAir2Kqrn6y/7yyy8YOnQounTpgq+//ho2NoZj+P79++Ojjz7CF198gbVr1wIABEFAZGQkatWqhY4dO4p5Bw4ciG3btuHevXvw9vYGAERHR+PGjRv46KOPxHxZWVm4desWXFxcxKdWLVq0QNOmTbFx40Z88MEHsLW1BQCsX78eEolEHHSnVCphY2Mj9tcFtEGGs7OzwSZ1IiJLZg11RuPGjQEAu3fvRu/evcX0Cxcu4Pr16zqzQg0aNAjLli3Dxo0bxQk2MjMzsXXrVrRv316sG1xcXBAUFIQdO3Zg5syZcHZ2BgB89dVXSEtLw+DBg8VjKpVKxMfHo0aNGuJYjldeeQWurq5Yv369Thfe9evXQ6FQoG/fvgC009oqFAqdsYMtW7aEjY0N64xKioEFWRV/f38AwGeffYahQ4fC3t4e/fr1EyuP/EzdX3bBggUAgCtXrgDQfkj/+uuvACB2dbp79y5ef/118Qv73r17dY7RqlUrtGrVCgBQu3ZtTJo0CREREcjKykLbtm1x8OBBnDx5El9//bUYAADA9OnTsXfvXnTv3h0TJ05EWloaIiIi0LJlSwwfPlzM9+DBAzRr1gzDhg1DVFSUmB4REYHXX38dvXr1wtChQ3H58mWsXbsWo0aNEqe7vXHjBnr06IG33noLzZs3h52dHQ4cOICHDx9i6NChJruPRETlwRrqDH9/f/Ts2RPbtm1DamoqevXqhYSEBKxZswZyuRyTJk0Sj9e+fXsMHjwY06ZNQ1JSEho2bIht27bhzp07+PLLL3XOvXDhQnTs2BFdu3bFmDFjcP/+fSxfvhy9evXSCWDOnj2L7t27Y/bs2ZgzZw4AbeA0f/58jBs3DoMHD0ZwcDBOnjyJHTt2YOHCheL6HP/3f/+H0NBQDB48GI0bN0Z2dja++uor2NraYuDAgSa7j2RFzLxAH1GJzZ8/X6hVq5ZgY2NT7iuqAijwleunn34qNN/s2bN1jpmTkyMsWrRIqFu3riCVSoUWLVoIO3bsMHj+y5cvC7169RIUCoVQtWpV4Z133hESExN18ty+fVsAIAwbNkxv/wMHDgi+vr6Cg4ODULt2bWHGjBmCWq0Wtz969EgYN26c0LRpU8HR0VFwcXER2rdvL3zzzTelv2lERGZk6XWGIGhXup43b57QvHlzQS6XCy4uLsJrr70mXLx4Ue+YKpVKmDJliuDp6Sk4ODgIbdu2FY4ePWrw/CdPnhQ6duwoyGQywc3NTRg3bpyQmpqqkye3zspfNwmCIGzcuFFo0qSJIJVKhQYNGggrV64UNBqNuP2ff/4RRowYITRo0ECQyWSCq6ur0L17d+HEiRMlv1lUIUgEId+oUSIiIiIiohLi4G0iIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaAwsiIiIiIjIaF8jLR6PR4N9//4WzszMkEom5i0NEVChBEPD8+XPUrFmzwBXeqeywziAia1LWdQYDi3z+/fdfeHt7m7sYREQlcu/ePdSuXdvcxah0WGcQkTUqqzqDgUU+zs7OALQ3vEqVKmYuDRFR4VJTU+Ht7S1+dlH5Yp1BRNakrOsMBhb55DZlV6lShZUEEVmNytANZ926dYiIiEBiYiJat26NNWvWoF27dgbz7t+/H4sWLcLNmzeRlZWFRo0aYfLkyXjvvffEPIIgYPbs2di0aROePXuGl19+GevXr0ejRo2KXSbWGURkjcqqzmCHXCIisnh79uxBWFgYZs+ejQsXLqB169YIDg5GUlKSwfyurq747LPPEBsbiz///BPDhw/H8OHDcezYMTHP0qVL8fnnnyMyMhJnzpyBo6MjgoODkZGRUV6XRURUoUgEQRDMXQhLkpqaChcXF6SkpPDpExFZvMrymdW+fXu0bdsWa9euBaAdNO3t7Y3x48dj6tSpxTpGmzZt0LdvX8yfPx+CIKBmzZqYPHkypkyZAgBISUmBh4cHoqKiMHTo0GIds7LcfyKqGMr6M4stFkREZNHUajXOnz+PoKAgMc3GxgZBQUGIjY0tcn9BEBAdHY3r16+jS5cuAIDbt28jMTFR55guLi5o3759ocfMzMxEamqqzouIiLQYWBARkUV79OgRcnJy4OHhoZPu4eGBxMTEAvdLSUmBk5MTpFIp+vbtizVr1qBnz54AIO5X0mOGh4fDxcVFfHFGKCKiFxhYEBFRheTs7Iy4uDj8/vvvWLhwIcLCwhATE2PUMadNm4aUlBTxde/ePdMUloioAuCsUERUZgRBgCpbpZcut5NXilmMyDRq1KgBW1tbPHz4UCf94cOH8PT0LHA/GxsbNGzYEADg6+uLa9euITw8HN26dRP3e/jwIby8vHSO6evrW+AxHRwc4ODgYMTVEJmIIABZSv10ewXAz1cyEwYWRFQmBEFAyJEQxCXH6W3zc/fDtt7bGFxQsUilUvj7+yM6OhoDBgwAoB28HR0djdDQ0GIfR6PRIDMzEwBQr149eHp6Ijo6WgwkUlNTcebMGXz44YemvgQi0xIEYEswcO+M/jbvDsCIowwuyCwYWBBRmVBlqwwGFQBwMekiVNkqKOwV5VsoslphYWEYNmwYAgIC0K5dO6xatQrp6ekYPnw4ACAkJAS1atVCeHg4AO1YiICAADRo0ACZmZk4fPgwvvrqK6xfvx6Adg73SZMmYcGCBWjUqBHq1auHmTNnombNmmLwQmSxspSGgwoAuPebdrvUsXzLRAQGFkRUDmLeioHcTg5Vtgrdvulm7uKQFRoyZAiSk5Mxa9YsJCYmwtfXF0ePHhUHX8fHx8PG5sWwwfT0dPzP//wP7t+/D7lcjqZNm2LHjh0YMmSImOeTTz5Beno6xowZg2fPnqFTp044evQoZDJZuV8fUalNuQlIFYBaCSxraO7SUCXHdSzy4ZzkRKahzFKi/c72AIAz/zkDhb3CYBoZh59Z5sX7T2ahTgcW1dT+f/q/2tYJQ2lE+XAdCyIiIiIisngMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgMLIiIiIiIyGgWH1isW7cOPj4+kMlkaN++Pc6ePVtg3qioKEgkEp0Xpw0kIiIiqyAI2tmdDL04iSdZAYtex2LPnj0ICwtDZGQk2rdvj1WrViE4OBjXr1+Hu7u7wX2qVKmC69evi++5si8RERFZvMJW0wa4ojZZBYtusVixYgVGjx6N4cOHo3nz5oiMjIRCocCWLVsK3EcikcDT01N85S6eRERERGSxCltNG3ixojaRBbPYwEKtVuP8+fMICgoS02xsbBAUFITY2NgC90tLS0PdunXh7e2N/v3748qVK+VRXCIiIiLTmHJTu8jd9H+1/yeyEhYbWDx69Ag5OTl6LQ4eHh5ITEw0uE+TJk2wZcsWfPfdd9ixYwc0Gg06duyI+/fvF3iezMxMpKam6ryIiIiIzEaq0K6cLXXU/p/ISlhsYFEagYGBCAkJga+vL7p27Yr9+/fDzc0NGzZsKHCf8PBwuLi4iC9vb+9yLDERERERUcVgsYFFjRo1YGtri4cPH+qkP3z4EJ6ensU6hr29Pfz8/HDzZsHNiNOmTUNKSor4unfvnlHlJiIiIiKqjCw2sJBKpfD390d0dLSYptFoEB0djcDAwGIdIycnB5cuXYKXl1eBeRwcHFClShWdFxEREZHVUis5VS2ZhUVPNxsWFoZhw4YhICAA7dq1w6pVq5Ceno7hw4cDAEJCQlCrVi2Eh4cDAObNm4cOHTqgYcOGePbsGSIiInD37l2MGjXKnJdBREREVH6WNdR9z6lqqZxYdGAxZMgQJCcnY9asWUhMTISvry+OHj0qDuiOj4+Hjc2LRpenT59i9OjRSExMRLVq1eDv74/Tp0+jefPm5roEIiIiorJnr9AGEPd+09+WO1Wt1LH8y0WVikUHFgAQGhqK0NBQg9tiYmJ03q9cuRIrV64sh1IRERERWRCJRNsqkXetC7VSv/WCqAxZfGBBRERERNAGCnn/zU8iYasEmRUDCyIiIiJrwNYHsnAWOysUEVUcqqwcKNXZUGXlmLsoRETWJXfshCHeHbTbiyP/TFGcLYrKAFssiKhMCHkqLP/5JwBBCkjUcG6qv52IiApgaOxELntF8Wd6MtTawdmiyMQYWBCZiiAY/8FfgWRka4rc7igtp8IQEVmz0o6dKGymKICzRZHJMbAgMgVBALYEA/fO6G/jEyGc/LQ7qiuc8FiZhle/M3dpiIgqiYJaO/LOFpV/IHglfRhGpsExFkSmkKU0HFQA2idC6Y9K17dVEPT3s8K+sQqpLRRSOyiktga3C4IAZZbS4ItdpijXunXr4OPjA5lMhvbt2+Ps2bMF5t20aRM6d+6MatWqoVq1aggKCtLL//7770Mikei8evfuXdaXQVS+cls7dF55xmUsawgsqvnitaW3VdUvZFnYYkFkalNuaj+08z4RKk3f1sJaQYqzv5UQBAEhR0IQlxxncLufux+29d4GiZVfJxlnz549CAsLQ2RkJNq3b49Vq1YhODgY169fh7u7u17+mJgYvP322+jYsSNkMhmWLFmCXr164cqVK6hVq5aYr3fv3ti6dav43sHBoVyuh8isuJgelREGFkSmJlVoP5CN7dtaWCtIcfa3cKpsFZRZtlBlqwoMKgDgYtJFqLJVUBR35hOqkFasWIHRo0dj+PDhAIDIyEgcOnQIW7ZswdSpU/Xyf/311zrvN2/ejG+//RbR0dEICQkR0x0cHODp6Vm2hSeyNFxMj8oIAwuismLKvq25rSD597difQ700EuLeSsGcjs5AG3g0e2bbuVcKrJEarUa58+fx7Rp08Q0GxsbBAUFITY2tljHUCqVyMrKgqurq056TEwM3N3dUa1aNbzyyitYsGABqlevXuBxMjMzkZmZKb5PTU0t4dUQWQgupkdlgIEFUVkq6oM7f4BQUPem3FYQKyezlSFbWRd2irt62/zc/eAqc2WXJ9Lz6NEj5OTkwMPDQyfdw8MDf/31V7GO8emnn6JmzZoICgoS03r37o0333wT9erVw61btzB9+nT06dMHsbGxsLU1PB4oPDwcc+fOLf3FEBFVYAwsiMpbJe7bKpFIoLo7FpBk4fzMIMjtX3x5k9vJGVRQmVi8eDF2796NmJgYyGQyMX3o0KHi/1u2bIlWrVqhQYMGiImJQY8e+i1qADBt2jSEhYWJ71NTU+Ht7V12hScisiIMLIjKW6Xv2yoBBCnkdnIo7PkRREWrUaMGbG1t8fDhQ530hw8fFjk+YtmyZVi8eDFOnDiBVq1aFZq3fv36qFGjBm7evFlgYOHg4MAB3kREBeB0s0TmoDf9nwkGJhc0NS2nDSQrJ5VK4e/vj+joaDFNo9EgOjoagYGBBe63dOlSzJ8/H0ePHkVAQECR57l//z4eP34MLy8vk5SbiKiy4eNCooqAC/RRBRcWFoZhw4YhICAA7dq1w6pVq5Ceni7OEhUSEoJatWohPDwcALBkyRLMmjULO3fuhI+PDxITEwEATk5OcHJyQlpaGubOnYuBAwfC09MTt27dwieffIKGDRsiODjYbNdJRGTNGFgQVQRFLdBXgcdtUOUwZMgQJCcnY9asWUhMTISvry+OHj0qDuiOj4+Hjc2LRvj169dDrVZj0KBBOseZPXs25syZA1tbW/z555/Ytm0bnj17hpo1a6JXr16YP38+uzpR+RAE/S6xRFaOgQVRRWNogb4yJggCVNkqnbT874mMFRoaitDQUIPbYmJidN7fuXOn0GPJ5XIcO3bMRCUjKqGiFkAlslIMLIgqmqKmps3/lCyvgtbRKERRK2cTEVE+hbUye3fQfhYTWSGTBBZZWVlITEyEUqmEm5ub3gJERGQhinpKVorxGEWtnJ2trAuZrazA7VSxsD4gKqG8C6ACpXrAQ2QpSh1YPH/+HDt27MDu3btx9uxZqNVqCIIAiUSC2rVro1evXhgzZgzatm1ryvISkTEKe0oGGD0eQ2fl7Kwc+M8/AQj2XJ+igmN9QGSECrIAKhFQyulmV6xYAR8fH2zduhVBQUE4ePAg4uLicOPGDcTGxmL27NnIzs5Gr1690Lt3b/z999+mLjcRGWvKTWD6v9rXlJsmOaR2bQoFFPYKbYAhSAEwqKjIWB8QEVGuUrVY/P777/jll1/QokULg9vbtWuHESNGIDIyElu3bsXJkyfRqFEjowpKRCbGp2RkAqwPiIgoV6kCi127dhUrn4ODA8aOHVuaUxARkRVgfUBERLlK3BXq6dOnePLkCQAgOTkZ+/fvx5UrV0xeMCIismysD4iIKK8SBRabN2+Gv78/AgICsH79erzxxhuIjo7G0KFDsXnz5rIqIxERWRjWB0RElF+JukJ9/vnnuHLlClQqFerUqYPbt2/Dzc0NKSkp6Nq1K0aNGlVW5SQiIgvC+oCIiPIrUYuFnZ0d5HI5XF1d0bBhQ7i5uQEAXFxcymw6yXXr1sHHxwcymQzt27fH2bNni7Xf7t27IZFIMGDAgDIpFxFRZWaO+oCIiCxbiQILW1tbZGRk/H979x4XVZ3/D/x1GBiYAVEuAmoEpeZlvUAgZJubrSRaeal0zXaDyOzyXUsjKynFLFvyGmUWm60btetmtmm1Fpn8pLVCTZQu3nW9J4hXlBkYmDm/P8YZ584Mc595PR8PHjnnnDnzmRPMe97n8/m8PwCAb775Rr/98uXLrm3VFatXr0ZhYSHmzp2LHTt2YPDgwcjNzcXp06dtPu/IkSOYOXMmhg0b5pZ2EREFO0/HAyIi8n0OJRYbN25EeHg4AO1dKR2FQoF33nnHtS2Dtj761KlTUVBQgP79+6OsrAxyuRwrV660+hy1Wo0//vGPmDdvHq6//nqXt4nIp6gUgKpJ+18iD/J0PCAiIt/n0BwLw+BhKCEhAQkJCS5pkI5KpUJNTQ2Kior020JCQpCTk4Pq6mqrz3vppZeQkJCAKVOmYPPmze2+TktLC1paWvSPGxsbnWs4kSct7uXtFlCQ8mQ8ICIi/9ChdSxMNTc346effsLp06eh0WiM9o0dO7ZD5zxz5gzUajUSExONticmJmLv3r0Wn/Ptt9/ib3/7G2pra+1+nZKSEsybN69DbSTyijA5kHwTcHyL+b7km7T7ibzEHfGAiIj8g9OJRUVFBfLy8nDmzBmzfYIgQK1WO/sSdrl06RIeeOABrFixAvHx8XY/r6ioCIWFhfrHjY2NSE5OdkcTiVxDEICHKoBWC8OfwuTa/URe4CvxgIiIvMPhBfJMPfHEE5g4cSJOnToFjUZj9ONMEImPj4dEIkF9fb3R9vr6eiQlJZkdf+jQIRw5cgRjxoxBaGgoQkND8f777+Ozzz5DaGgoDh06ZPF1wsPDER0dbfRD5PMEAZBGmv8wqSAvclc8ICIi/+B0YlFfX4/CwkKzIUvOkkqlyMjIQGVlpX6bRqNBZWUlhg4danZ837598fPPP6O2tlb/M3bsWNx2222ora1lLwQRkZu5Kx4QEZF/cHoo1IQJE1BVVYWePXu6oj1GCgsLkZ+fj8zMTGRlZaG0tBRNTU0oKCgAAOTl5aFHjx4oKSlBREQEBgwYYPT8Ll26AIDZdqKgo6saxepR5EbujAdEROT7nE4s3nzzTUycOBGbN2/GwIEDERYWZrT/ySef7PC5J02ahIaGBhQXF6Ourg5paWmoqKjQ3w07duwYQkKc7nQhCnysHkUe4M54QEREvs/pxOJf//oXNmzYgIiICFRVVRmtuCoIgtOBZNq0aZg2bZrFfVVVVTaf+9577zn12kR+jdWjyMPcHQ+IiMi3OZ1YvPDCC5g3bx5mzZrF3gMiX8LqUeRhjAdEAcJ02CxjBtnJ6cRCpVJh0qRJDCJEvkhXPYrIAxgPiAKE6fDZ5Ju0N6qYXFA7nP70z8/Px+rVq13RFiIi8mPujgfLly9HamoqIiIikJ2djW3btlk9dsWKFRg2bBhiYmIQExODnJwcs+NFUURxcTG6desGmUyGnJwcHDhwwG3tJ/JpuuGzlhzfYrn3m8iE0z0WarUaCxcuxFdffYVBgwaZTdZbunSpsy9BRH5C2aoGxDYAgELFdQuCjTvjwerVq1FYWIiysjJkZ2ejtLQUubm52LdvHxISEsyOr6qqwuTJk3HzzTcjIiICCxYswMiRI7Fr1y706NEDALBw4UK88cYbKC8vx3XXXYc5c+YgNzcXu3fvRkRERIfbSuSXLA2fVSlY/IMc4nRi8fPPPyM9PR0A8MsvvxjtE9hlRhTwRFHU/zvj5Y2AKPVia8ib3BkPli5diqlTp+rLjZeVlWH9+vVYuXIlZs2aZXb8P//5T6PH7777Lv7973+jsrISeXl5EEURpaWlmD17NsaNGwcAeP/995GYmIh169bhvvvuc6q9REZE0fwLuy/i8FlyktOJxaZNm1zRDiLyU81tGpv7M1NiIAuTeKg15E3uigcqlQo1NTUoKirSbwsJCUFOTg6qq6vtOodCoUBraytiY2MBAIcPH0ZdXR1ycnL0x3Tu3BnZ2dmorq5mYkGuI4rAylzg+FZvt4TI7ZxOLIiIdDY/dxvi5FFG22RhEvZeklPOnDkDtVpttqJ3YmIi9u7da9c5nnvuOXTv3l2fSNTV1enPYXpO3T5LWlpa0NLSon/c2Nho1+tTEGtVWE8qWPqbAgwTCyJyGblUArmUHyvkW1599VV8+OGHqKqqcnruRElJCebNm+eillHQmXkQkBokEizjSgGGNQGJiMinxcfHQyKRoL6+3mh7fX09kpKSbD538eLFePXVV7FhwwYMGjRIv133PEfPWVRUhIsXL+p/jh8/7ujboWAmlWvnMOh+mFRQgGFiQUREPk0qlSIjIwOVlZX6bRqNBpWVlRg6dKjV5y1cuBAvv/wyKioqkJmZabTvuuuuQ1JSktE5GxsbsXXrVpvnDA8PR3R0tNEPERFpdTixKC4uRk1NjSvbQkREfsgT8aCwsBArVqxAeXk59uzZg8cffxxNTU36KlF5eXlGk7sXLFiAOXPmYOXKlUhNTUVdXR3q6upw+fJlANoqVTNmzMD8+fPx2Wef4eeff0ZeXh66d++O8ePHu/W9EBEFqg4Phj5x4gRGjx4NqVSKMWPGYOzYsRgxYgSkUpaaJCIKJp6IB5MmTUJDQwOKi4tRV1eHtLQ0VFRU6CdfHzt2zGjF77fffhsqlQoTJkwwOs/cuXPx4osvAgCeffZZNDU14ZFHHsGFCxdwyy23oKKigmtYEBF1UIcTi5UrV0Kj0eC7777D559/jhkzZuDUqVO4/fbbMW7cONx11136sn5ERBS4PBUPpk2bhmnTplncV1VVZfT4yJEj7Z5PEAS89NJLeOmll5xuGxEROTnHIiQkBMOGDcPChQuxb98+bN26FdnZ2fjrX/+K7t2743e/+x0WL16MkydPuqq9RIFPpQBUTb67gBKRBYwHRETk0rqQ/fr1Q79+/fDss8+ioaEBn332GT777DMAwMyZM135UkSBa3Evb7eAyGmMB0REwcdtBee7du2KKVOmYMqUKe56CaLAESbXLpR0fIv5Pi6gRH6O8YCIKDhwJSsiXyAIwEMV2hVaTXEBJSIiIvIDTCyIfIUgaBdMIiIiIvJDXCCPiIiIiIicxh4LIiIiIlcQRfMhrazwR0HE6cSisLDQ4nZBEBAREYFevXph3LhxXNOCKECIoghlq1r/WKFS2ziaggnjAQU1UQRW5gLHt3q7JURe43RisXPnTuzYsQNqtRp9+vQBAOzfvx8SiQR9+/bFW2+9haeffhrffvst+vfv73SDich7RFHEhLJq1Bw9f3WjoEKnvt5rE/kOxgMKaq0K20kFK/xREHA6sdDdffr73/+O6OhoAMDFixfx8MMP45ZbbsHUqVNx//3346mnnsJXX33ldIOJyHuUrWrjpMJERCinbQUzxgOiK2YeBKQmSQQr/FEQcDqxWLRoEb7++mt9EAGAzp0748UXX8TIkSMxffp0FBcXY+TIkc6+FBH5BBEQWrH5udsgl0qgbFNi9FrtHoFBM6gxHhBdIZWzyh8FJacTi4sXL+L06dNm3doNDQ1obGwEAHTp0gUqlcrZlyLyHaYT9IJkcp4oipCnlEEiP4o7PvV2a8jXMB5QUAnSOEBki9PjFsaNG4eHHnoIa9euxYkTJ3DixAmsXbsWU6ZMwfjx4wEA27Ztww033NCh8y9fvhypqamIiIhAdnY2tm3bZvXYTz75BJmZmejSpQsiIyORlpaGDz74oEOvS6QnioCq6epPy2Xgr8OAv3S/+rO4l7db6RHN6mZI5Ect7ktPSIcsVObhFpEvcXc8IPIZuonaQRgHAJjHRcMfUfR268iLnO6x+Otf/4qnnnoK9913H9ra2rQnDQ1Ffn4+XnvtNQBA37598e677zp87tWrV6OwsBBlZWXIzs5GaWkpcnNzsW/fPiQkJJgdHxsbixdeeAF9+/aFVCrFf/7zHxQUFCAhIQG5ubnOvVEKTo5W+QiiyXlf3l2JWFmU/rEsVMahUEHOnfGAyKfYmqgd6HGgvbiYfBPwUAXnkwQppxOLqKgorFixAq+99hr+97//AQCuv/56REVd/cKRlpbWoXMvXboUU6dORUFBAQCgrKwM69evx8qVKzFr1iyz44cPH270ePr06SgvL8e3337LxII6xlbwSBoIFJh8eAbR5DxZqAzyQA6e5DB3xgMin2U6UTtQ44BuqJeqnepXx7doYyfnmAQlly2QFxUVhUGDBrnqdFCpVKipqUFRUZF+W0hICHJyclBdXd3u80VRxP/7f/8P+/btw4IFC1zWLgpiwRI8iJzk6nhA5NOCZaK2paFehnFRpQiu4WBkUYfmWBw7dsyh40+ePOnwa5w5cwZqtRqJiYlG2xMTE1FXV2f1eRcvXkRUVBSkUinuvPNOLFu2DLfffrvV41taWtDY2Gj0Q2SRLnjofphUEHkkHhCRl4TJtUObLEm+CYiMN4iL7MGmDiYWQ4YMwaOPPooffvjB6jEXL17EihUrMGDAAPz73//ucAMd1alTJ9TW1uKHH37AK6+8gsLCQlRVVVk9vqSkBJ07d9b/JCcne6ytRET+zpfjARE5SRC08yWe/9X8h/MoyIIODYXavXs3XnnlFdx+++2IiIhARkYGunfvjoiICJw/fx67d+/Grl27cOONN2LhwoW44447HH6N+Ph4SCQS1NfXG22vr69HUlKS1eeFhISgVy9tV1xaWhr27NmDkpISs/kXOkVFRSgsLNQ/bmxsZHJBRGQnT8QDIvIiQQiOoV7kEh3qsYiLi8PSpUtx6tQpvPnmm+jduzfOnDmDAwcOAAD++Mc/oqamBtXV1R0OIlKpFBkZGaisrNRv02g0qKysxNChQ+0+j0ajQUtLi9X94eHhiI6ONvohL7JWwo7l64h8kifiARER+QenJm/LZDJMmDABEyZMcFV7jBQWFiI/Px+ZmZnIyspCaWkpmpqa9FWi8vLy0KNHD5SUlADQDmvKzMxEz5490dLSgi+++AIffPAB3n77bbe0j1zMVgk7lq8j8mnujgdEROT7XFYVyh0mTZqEhoYGFBcXo66uDmlpaaioqNBP6D527BhCQq52ujQ1NeH//u//cOLECchkMvTt2xf/+Mc/MGnSJG+9BXKErdKuLF9HRERE5NOcXnnb3aZNm4ajR4+ipaUFW7duRXZ2tn5fVVUV3nvvPf3j+fPn48CBA1AqlTh37hy+//57JhX+auZB7eSwmQe93ZKgJooiFK0K/Y+yTentJlEQW758OVJTUxEREYHs7Gxs27bN6rG7du3Cvffei9TUVAiCgNLSUrNjXnzxRQiCYPTTt29fN74DIqLA5tM9FhTEgqUuuA8TRRF5X+ahtqHW200hwurVq1FYWIiysjJkZ2ejtLQUubm52LdvHxISEsyOVygUuP766zFx4kQ89dRTVs/7m9/8Bhs3btQ/Dg1lWCQi6iif77Eg8hiLE8cV3m6V1yjblFaTijZFCiIkEZ5tEAW1pUuXYurUqSgoKED//v1RVlYGuVyOlStXWjx+yJAhWLRoEe677z6Eh4dbPW9oaCiSkpL0P/Hx8e56C0REAY+3ZogA2xPHCVV/qIIsVAZlqxoZL28ExDAInEhPHqJSqVBTU4OioiL9tpCQEOTk5KC6utqpcx84cEBfHnfo0KEoKSnBtdde62yTiYiCEnssiADbE8cBbVWqsOBdVVQWKoM8TA5ZqAwQpQCYVJDnnDlzBmq1Wl+4QycxMRF1dXUdPm92djbee+89VFRU4O2338bhw4cxbNgwXLp0yepzWlpa0NjYaPRDRERa7LEgMjXzoHaOh6EwOUvduphCpTZ6LAuTsBeEPGr06NH6fw8aNAjZ2dlISUnBRx99hClTplh8TklJCebNm+epJhIR+RUmFkSmOHHcIzLnbzR+nBKDNY8NZXJBZuLj4yGRSFBfX2+0vb6+HklJSS57nS5duuCGG27AwYPWq9EVFRWhsLBQ/7ixsRHJyckuawMRkT9zaihUa2srRowYoV9hlYjIFlmYBJkpMRb3bT96HspWtcV95PvcGQ+kUikyMjJQWVmp36bRaFBZWYmhQ4e67HUuX76MQ4cOoVu3blaPCQ8PR3R0tNEPERFpOdVjERYWhp9++slVbSGiACcIAtY8NtQogVCo1Ga9F+R/3B0PCgsLkZ+fj8zMTGRlZaG0tBRNTU0oKCgAAOTl5aFHjx4oKSkBoJ3wvXv3bv2/T548idraWkRFRaFXr14AgJkzZ2LMmDFISUnBr7/+irlz50IikWDy5Mluex9ERIHM6cnbf/rTn/C3v/3NFW0hoiAgCALk0lCDH4m3m0Qu4s54MGnSJCxevBjFxcVIS0tDbW0tKioq9BO6jx07hlOnTumP//XXX5Geno709HScOnUKixcvRnp6Oh5++GH9MSdOnMDkyZPRp08f/OEPf0BcXBy2bNmCrl27uuU9EBEFOqfnWLS1tWHlypXYuHEjMjIyEBlpPDZ96dKlzr4EERH5AXfHg2nTpmHatGkW91VVVRk9Tk1NhSiKNs/34YcfOtUeIiIy5nRi8csvv+DGG28EAOzfv99oHydhks8SRW2JWZ0gXgiPyFUYD4iIgpvTicWmTZtc0Q4iz+FieERuwXhAAcH0xpMOy47riaJoXmxD1YbgXe2JdFhuloKPrcXwgnwhPGuUrWpAbDNbe4KIKKDYuvGUfBPwUEXQJxeiKGJCWTVqjp432i5DM/ZEXDlG1WS8jCqTsqDhksSisrISlZWVOH36NDQajdG+lStXuuIliNzDdDE8fvjpGY5Pz3h545UVt93LMHFRtjGJ8UeMB+TXbN14Or5Fuz/I1zlStqrNkgpTwuLexhuYlAUNpxOLefPm4aWXXkJmZia6devGcbTkX7gYnlXNbRqr+zJTYiALc301J6Oys4IKnfpq/9neJFzyDYwHFFB0N55UCmBxL2+3xidtn52jr+ynaGnDD4tuwJCQ/eYHMikLGk4nFmVlZXjvvffwwAMPuKI9ROSDNj93G+LkUfrHsjCJy7406hbN227jDlhzmwaR7u8wIScxHlBA4Y2ndsmlEsilV79KTlTNhQwtqJmdo93OpCzoOJ1YqFQq3Hzzza5oCxH5KNPg4UqWFs0DgLOKy7jjU7e8JLkJ4wFRsBOgRIQ2IXNTzCDf5vQCeQ8//DBWrVrlirYQUZAyXzSPC+f5I8YDosAjiiIUrQr9j7JNCQgqAByiSuacTiebm5vxzjvvYOPGjRg0aBDCwsKM9nOBPCKi4MB4QBRYRFFE3pd5qG2oNdreqS/QpkiBKOZ6p2Hks5xOLH766SekpaUB0C6OZIgT98htWGecyOcwHhAFFmWb0iyp0AmVH0WzuhmRCLO4n4ITF8gj/2OrznjSQKDAQkk7JhztEgEoBQFoUwKCoO3uJnIA4wFR4Kr6QxVkoTKcU17G6LUjvN0c8lGcWUP+x1ad8bqfgZIe5ttZQ9smURSR1y0RtRHhwJrbvN0cIiLyMbJQGeRhcvMVt4kMdCixKCwstPtYjqklt9LVGRdF4O+jtImFJayhbZNS3axNKixoU6QgQhLh4RaRv2A8oKCiUhj/N8gp25RQtEqu/FutndQtcmhUMOtQYrFz5067juOYWnIpSx/ohnXGH91sPu+CNbQdVnX3F5DJ4qBsVV9ZcTuMf8tkFeMBBRXGEyOmQ6I4qZs6lFhwHC15RXsf6ILAHglX0IQBohSiRg2IXJWObGM8oIAXJtcOpz2+xXxf8k3a/QFCFEWjoU7KNvNhTxGSCLQpUhAqP2rxHJzUHdw4x4J8WxB9oHuKKIpmE7MVBj09tyzYBKUY7elmERH5JkHQztEL8EqEoihiQlk1ao6ev7pRUKFT36v7AW3vo/LoY4DQipo5OZCFaYdCcVI3AX4wx2L58uVYtGgR6urqMHjwYCxbtgxZWVkWj12xYgXef/99fZnDjIwM/OUvf7F6PPmBIPlA9xRrNcltyUyJ0QcOIlOcY0FBIQh6xJWtatQcPQcIrfptQohK/+/mNg0i9Z3YAiBKr0zoDtU/n8glcyx27NiBtrY29OnTBwCwf/9+SCQSZGRkONW41atXo7CwEGVlZcjOzkZpaSlyc3Oxb98+JCQkmB1fVVWFyZMn4+abb0ZERAQWLFiAkSNHYteuXejRw0KlIPIPrvpA56Q7mzXJASC9uRlLZo5EZKfO+m2yMAnHx5NVnooHROReoihCnlIGiZUhTk4zjb28ORiQnJ5jsXTpUnTq1Anl5eWIiYkBAJw/fx4FBQUYNmyYU41bunQppk6dioKCAgBAWVkZ1q9fj5UrV2LWrFlmx//zn/80evzuu+/i3//+NyorK5GXl+dUWygAcNKdEV1NcgBQNjVC9npfyEQRyvBQyKUcJUn28VQ8ICLXMp1PcU7ZZDWpcEl1QNMYzDLwAcnpbw9LlizBhg0b9EEEAGJiYjB//nyMHDkSTz/9dIfOq1KpUFNTg6KiIv22kJAQ5OTkoLq62q5zKBQKtLa2IjY21uoxLS0taGlp0T9ubGzsUHvJR3GOhlW6muQAgNBWyK+MnyXqKHfFAyJyrfbmU3x5dyViZVHOVwe0FYNZBj4gOZ1YNDY2oqGhwWx7Q0MDLl261OHznjlzBmq1GomJiUbbExMTsXfvXrvO8dxzz6F79+7IycmxekxJSQnmzZvX4XaSj+McDce1KgCVwUcDrxPZyV3xgIhcSzuf4rzV/TERkdobT2Kbc9UBLcVgloEPaE4nFnfffTcKCgqwZMkS/STprVu34plnnsE999zjdAM76tVXX8WHH36IqqoqRERY774rKioymnzY2NiI5ORkTzSRPCUIJt25kvz1vsYb2F1NdvLVeEBE1m2fnQO5VAJlmxLD1xQDcH7dGcOF8wBAFibnXL0gEeLsCcrKyjB69Gjcf//9SElJQUpKCu6//36MGjUKb731VofPGx8fD4lEgvr6eqPt9fX1SEpKsvncxYsX49VXX8WGDRswaNAgm8eGh4cjOjra6Ico6ITJ8YPmBsv7jm8Bms4AqqarP14cNiWKIhStCrMfkUO5vM5d8UBn+fLlSE1NRUREBLKzs7Ft2zarx+7atQv33nsvUlNTIQgCSktLnT4nUSCSSyWQS0NdWv1v9NoRyF6Vrf/Jr8jnZ3SQcLrHQi6X46233sKiRYtw6NAhAEDPnj0RGencHWKpVIqMjAxUVlZi/PjxAACNRoPKykpMmzbN6vMWLlyIV155BV999RUyMzOdagNR0BAETFTNhQwtqJmdo528bdhd7SOT7myVy01PSEf5qHLeFfMid8UDwPEqgQqFAtdffz0mTpyIp556yiXnJCLrbC2ct/P0TijblFfn9VHAcrrHQicyMhKDBg3CoEGDXBJEAG199BUrVqC8vBx79uzB448/jqamJn2VqLy8PKPJ3QsWLMCcOXOwcuVKpKamoq6uDnV1dbh8+bJL2kMU2AQoEaEdNiaNBCLjtQmEJbpJdx5mq1yuLnCR97kjHhhWCezfvz/Kysogl8uxcuVKi8cPGTIEixYtwn333Yfw8HCXnJOIrNMtnHdp70uomvg9tt6/FVV/qPJ2s8jDfLqm5KRJk9DQ0IDi4mLU1dUhLS0NFRUV+gndx44dQ0jI1dzo7bffhkqlwoQJE4zOM3fuXLz44ouebDqR//PxSXe6crnKNiWGfzTc280hN3JFlUBPnJOIzBfOo+Di8//Xp02bZnXoU1VVldHjI0eOuL9BRMHEhye+G5XLpYDmiiqBrjonS5RTsFKo1Eb/JbLE5xMLIiIiX8ES5RSsMudv9HYTyA90eI5FcXExampqXNkWIrKTKIpQqNrMflh1g7zB3fHAmSqBrj5nUVERLl68qP85fvx4h16fXEQUjSvW+UDlOl9jOV7Y1+sgC5MgMyXG4r7MlBiXVpKiwNDhHosTJ05g9OjRkEqlGDNmDMaOHYsRI0ZAKnViIRUiapfFFVOvyEyJwZrHhuorI4miaDSh2ejfrWrt4kdg1zY5x93xoKNVAt1xzvDwcKuTwcnDRBFYmQsc32q+j+vvALAdL+whCALWPDZUGy9MyMIkrMJHZjqcWKxcuRIajQbfffcdPv/8c8yYMQOnTp3C7bffjnHjxuGuu+5CbGysK9tKRLC9Yur2o+ehbFVDLg21WZoVADJe3ujciqpEV3giHhQWFiI/Px+ZmZnIyspCaWmpWZXAHj16oKSkBIB2cvbu3bv1/z558iRqa2sRFRWFXr162XVO8nGtCstJBXC1cp2PzhHzlPZW2Lan10EQBG0JciI7OPWbEhISgmHDhmHYsGFYuHAh9uzZg88//xx//etf8cgjjyArKwtjx47F5MmT0aNHD1e1mYiu0K2YqlCpzca/2irN2qZIAcQws+3s2qaOcnc8cLRK4K+//or09HT948WLF2Px4sW49dZb9YU/2jsn+ZGZBwGp3Kcq1/kaXbwwxF4HcjWXpqD9+vVDv3798Oyzz6KhoQGfffYZPvvsMwDAzJkzXflSRISrK6a2R1+atVV9paciDNtn384gQ27jjnjgSJXA1NRUu+Yc2Ton+RGpPOh7JwBLw1/VgKACxDCzeGFrqCxRR7mtb6tr166YMmUKpkyZ4q6XICI76Uuzim364U/2JiVEzmI8IHI/a8NfO/XV9lKLYm67xxI5y2UrbxMRERGRd9ga/hoqP4pmdbNdx6YnpEMWKnNDCykY8HYlERERUQDRDX89p7yM0WtH2HWsjixUxiGx1GFMLIgChggIrdpxsoKE42WJiIKUbvirpTKx1o4lcgUmFkQBQBRFyFPKIJEfxfA1xd5uDhEReZFunSKuUUSe5pLEorm5GT/99BNOnz4NjUZjtG/s2LGueAkisqFZ3QyJ/KjFfYPi0yBqwhxabZWooxgPyG+IonatC0MqheVjnX4p0eWLzJmeU2Hwb/06RYIKnfp26PREHeJ0YlFRUYG8vDycOXPGbJ8gCFCr+UWGyJM+uXMDYuVREEXgT+9uxXd7mvGbzRu83SynKNuUULRyeJevYzwgv2Fr1W6Xv5T11a/7d4vGmseGGi0Qbk+yYfGc7SQREaGs10Pu53Ri8cQTT2DixIkoLi7mokJEPuD2JVtMVtQ2D1D+thBee5MPyTcwHpDfsLVqNwAk3wS4aN6B9dWvReyuO4PfvPi50daMaxPw8WM320wu2ltRe/vsHMjDZFC2KfXDYzkhmzzB6cSivr4ehYWFDCJETnKmq9zWnaiO3hHztghJBNoUKQi1MMSL5RB9E+MB+SXdqt2GwuSAGz4jdatfazQibv3nBKhC/2d2zG5FChSqtYgMD3PonIZJhFwqgTwsFBD85wYSBQanE4sJEyagqqoKPXv2dEV7iIKSra7yzJSYK4mB9SBnuK9mTo5x6UA/SCIsEQQByqOPAUKr9j0Z9LCwHKJvYjwgv+TBVbt1C5MqWhUWkwrg6poTkbAvsdAvdsokgnyA04nFm2++iYkTJ2Lz5s0YOHAgwsKM/xCefPJJZ1+CKODZ6tbefvQ8lK1qu1fJloVduVMVEARAlF4phxgo7ylwMR4QOc6RNSecYThHjfPVyF2cjtT/+te/sGHDBkRERKCqqsroLqIgCAwkRA7SdWsrVGpkzv/aaG0KAFC2qQFBBYj23c0i8hTGAyLHObLmhDOGfzTcrecnAlyQWLzwwguYN28eZs2ahZAQVhwgcpauW9vW2hSd+gJtihSIYq6XWuk9pnNRlG2sNOQrGA+IfIssVIb0hHTsPL3T4n7OVyNXczqxUKlUmDRpEoMIkYvZWpsCcHwcrsuZ1nt302RHQ+2VWBRF0a2vT7YxHhD5FkEQUD6q3OrQJ85XI1dzOrHIz8/H6tWr8fzzz7uiPeSLLC0ipOOBL5MEXN4/G6JGW0JWCFEh6ob5Xm4RgMW9jB8n3wQ8VNH+74O13yc7fpfaK7HY3KZBpNTqbnIzxgMi3yMIAuQuKp1L1B6nEwu1Wo2FCxfiq6++wqBBg8wm6y1dutTZlyBvam8RIXu/TJLDDEvIihqpfm0KUWP5GI8Ik2v/nx/fYr7v+BZtwmCruoqt3ycHf5d0c1HOKi7jjk/tbD+5FeMBEVFwczqx+Pnnn5Geng4A+OWXX5xuEPmY9hYRsufLJHWItRKyXl3wSBC0X/4NexxUCvPeC2ts/T45+Lukm4uibGOJRV/BeEBEFNycTiw2bdrkinaQPzBcRMiRL5NkRhRFk9J/Vyo9AfoKUIb7jUrIertWuSC4JpHU/T7xdylgMB6QzzIdgmk6R4xcSqHSFtVgcY3g06HEorCw0K7jBEHAkiVLOvIS5Is8uIhQoDBNIHTyK/Kx99xeo226CcimFaACFn+fAgLjAfm89ob0kstlzt+o/Ud7xTUsJXicu+nXOpRY7NxpXLZsx44daGtrQ58+fQAA+/fvh0QiQUZGhtMNXL58ORYtWoS6ujoMHjwYy5YtQ1ZWlsVjd+3aheLiYtTU1ODo0aN47bXXMGPGDKfbQJaJAJSCACjOAoZ31yNiIbAqDERRRN6XeahtqHXqPCwHSL7Mk/GAyCG6L60qG0Mwk2/SfpElp8nCJMhMicF2KwU2LBbXsNRbzbmbfq1DiYVhd/fSpUvRqVMnlJeXIyYmBgBw/vx5FBQUYNiwYU41bvXq1SgsLERZWRmys7NRWlqK3Nxc7Nu3DwkJCWbHKxQKXH/99Zg4cSKeeuopp16bzClUbQDaAABiSyse65aI2ohw4NM7jY5LF6Uoz/sh6JMLRavCZlIRrknGN39cA0EQoGxVI+Nl7R2emjk5kIVdHe7EcoBXu9V1/yXf4al4QOQwS19aDYf0Arw77kKCIGDNY0ON1hmyWFzDVhEQgHM3/ZzTcyyWLFmCDRs26IMIAMTExGD+/PkYOXIknn766Q6fe+nSpZg6dSoKCgoAAGVlZVi/fj1WrlyJWbNmmR0/ZMgQDBkyBAAs7ifHiaII3UduxvyNUCJC+0BoQae+4Rafs1NQQdl8DnJ5vGca6aOa266WbzIsF6tzSQyDgHDt3AmxTV/1SbsKq9N/mgFF361OPs2d8YB8k+mClTqyMIl3bojY+tKafBMQGc9Ewo0EQYBcejV+WSyuYakICMD5dgHC6W8vjY2NaGhoMNve0NCAS5cudfi8KpUKNTU1KCoq0m8LCQlBTk4OqqurO3xecoyyVQ3LncRXP5jb9s8ENFLIQi6j9YY3AHChMlP/fSYXcfIoANq77q76oqybv2Ft8SN/ZqtbPTMlxqhXh3yDu+IB+SaLC1ZekZkSgzWPDfWNynU6ftw74WjBD5/nqiIg5HOcTizuvvtuFBQUYMmSJfq5D1u3bsUzzzyDe+65p8PnPXPmDNRqNRITE422JyYmYu/evVae5biWlha0tLToHzc2Nrrs3IFm87O3QR4VDQBQtCpx28faScZKTbT2brvm6i9Uc6sawfaRYXrnznDYjq40qqsN/2i4y8/pKyx1q+t47W4o2eSueKDjyJw7AFizZg3mzJmDI0eOoHfv3liwYAHuuOMO/f4HH3wQ5eXlRs/Jzc1FRUWF020NBrYWrNx+9Lz2xpQbPvfaFWBfWq3N1wu6gh/kF5z+iy8rK8PMmTNx//33o7W1VXvS0FBMmTIFixYtcrqB7lZSUoJ58+Z5uxk+TTdJWwhR6e+QCCEq/X7dGgtnL9Tjji//4qVWepfFO3cG1TBcSRYqQ3pCOnae3mm2L9Amept2q5Nvc2c8cHTO3ffff4/JkyejpKQEd911F1atWoXx48djx44dGDBggP64UaNG4e9//7v+cXi45SGeZJtuwUrDHlnTOVG8IdAxyjalQ0VAAi0OkH9xOmLL5XK89dZbWLRoEQ4dOgQA6NmzJyIjnbtbEB8fD4lEgvr6eqPt9fX1SEpKcurchoqKiozKJTY2NiI5Odll5/d3oigiTz9J+3aLx+jWWFBKg3doiq07d4BrV8gWBAHlo8otdntzojd5k7viAeD4nLvXX38do0aNwjPPPAMAePnll/H111/jzTffRFlZmf648PBwl8aUYGWpV9Z0yKfXhkf5BBEQWu0etqRQqSEL1RZLURj02lqarxeQBT9My9D68TC2YOOyW4GRkZEYNGiQq04HqVSKjIwMVFZWYvz48QAAjUaDyspKTJs2zWWvEx4ezjtUNjSrm7VJhRW8M2JOd+fOnhWyO1rtSBAEyFkikXyUq+NBR+bcVVdXm62xkZubi3Xr1hltq6qqQkJCAmJiYvD73/8e8+fPR1xcnNW2cPisbbbmRnl1eJQXiaIIeUoZJPKjdg9bGrZgk76gh9FaEBrp1e3QJmuxsij/TyRMmU7iZglav+HTf92FhYXIz89HZmYmsrKyUFpaiqamJv0dq7y8PPTo0QMlJSUAtMFn9+7d+n+fPHkStbW1iIqKQq9erDTgrC/v/ByxnY2HHATEnREX09+5s2OFbFY7ImpfR+bc1dXVWTy+rq5O/3jUqFG45557cN111+HQoUN4/vnnMXr0aFRXV0Misfz3y+GzpozvxANA+ZTBgCjVxwZXFqzwJdYWQDWNi83qZkjkRy2ew/DmnGHPthCigqi5+m+d7bNzIA+7ejMvoIaX2aroxRK0fsOnE4tJkyahoaEBxcXFqKurQ1paGioqKvTB4tixYwgxWCvh119/RXp6uv7x4sWLsXjxYtx6662oqqrydPMDjiw0gnfJXYDVjoh8w3333af/98CBAzFo0CD07NkTVVVVGDFihMXncPjsVbbuxKcnpKN8VHngfOk1YWsBVFvv/cu7KxEri9I/NkxCDI+PumG+xdeVSyWBW47cUkUvlqD1Oz7/2zlt2jSrQ59Mk4XU1FSWOSWfx2pHRI7pyJy7pKQkh+foXX/99YiPj8fBgwetJhYcPnuVrTvxO0/vhLJNGbA3o2xNqLb13rXrFFm+JrYKcwBBMvQ4wCp6BSOfTyyI/If9k/NY7YjIfh2Zczd06FBUVlZixowZ+m1ff/01hg4davV1Tpw4gbNnz6Jbt26ubH5Q0N2JV7Yp9WWwr66zc2XNBTHMiy10n6o/VEEWKjN67x1hqzAH4P9Dj5VtSihaA2ySOZnhNxsiF+jI5Dwisp+jc+6mT5+OW2+9FUuWLMGdd96JDz/8ENu3b8c777wDALh8+TLmzZuHe++9F0lJSTh06BCeffZZ9OrVC7m5uV57n/7K0p14wy/ZnfoCbYoUiGLgXVtL713ZqgbEK1WdHCjOEciFOUavNe4FDPThcsGKiQVRB5guhndO2WTX5Dwi6hhH59zdfPPNWLVqFWbPno3nn38evXv3xrp16/RrWEgkEvz0008oLy/HhQsX0L17d4wcORIvv/wyhzo5wdZwnlD5UTSrmxGJwOy5MByKnfHyRotVnYJNhCQCbYoUhFqIj4E+XC5YMbEgIxq1GucvNegfn28848XWuIZpEqDT0fkM7S2GZ2tyHhF1nCNz7gBg4sSJmDhxosXjZTIZvvrqK1c2j2B5OM855WWzu9WBqLlN0+4xrlzTyB8IggDl0ccAoVW/3oazQ8bItzGxID2NWo0//O1G7Atv/8PRX1hMAq7o6GJN7S2GFxMRyTswRBS0TIfzWLqxE+g2P3cb4uTaG0z2rGkU2ARAlF4ZMsavnYGO/4dJ7/ylBqtJRZ+WEMR06urhFjnPVhKw/eh5nG1SQW6wYrj9vRjaidqbn7tNvxje6LXaPcEZOK4wXS0V4IqpRBR0jFYit2NNI6JAwcSCLFp7278QEx2vfxzTqStCrCwY5S90K2IbLtZkumiTPb0YhhO17/jUrU32P5bqjScNBAqurJhqKfEgIiKigMDEgiyKiY5HXBfr9d79ke4Okq0F6rYfPQ9lq9qoFCwnarfD1mqpAFD3M1DSw7NtIiLvEUWTRc6avNeWDrB3RW0iMsfEgoKOpQXqDHsxDEsDiiIwsawau081GpyAE7WNWFotFdBevL+P0iYWppJv0iYkRBQYVE1AaIjFv3uZIACpV1Yn9/FFbG2tqN03ti/KR5UDgM11ioiCGRMLChiW7jJZW5jJ1gJ1psOjbOFE7SusrZb66GbzhANw27wLhUoNWWib/jFXMidyI4MkQfZ6X/uShlYFgGj3tclJtlbU3ntuL7JXZdt9Ht1icExCtHQ37ZRtwTeZP5gwsaCAYOsukz0LM9kaHgUA/btFX5l7wQofDrGWcFjj5OTvYQs2Xa0dj45X/iIiO1i6aaBjMLdKebEe+GIcAO1QUkgvGR0aExFptAaJr9CtqA0A+RX52Htur9kx1oa/BkN5XUfpb9oZ9PqLPt6DRY5jYkEBwdZdJqD9hZksDY8yZHTnmxU+3MfS5O/km7RDrawkB7bqwluaM0NErqf8vx2Qd068usHwhoBBr+49G8abPVem7oktD37ic8mF4YraH931UbvzLmwtBgcE5xy89m7aNbdpECm1uIv8FKMtuYVCpYZM5Z0hKYZ3mRxemElQWdysbDP8N7u1Xaq9yd/Ht2jvjFrp+TD8vaqZkwNZqMxozgwReUCY3OrfaExEJNKbm7EzIsLifqXkEM43NyFO3smdLXSK6doc1o4xXQzOUDDOwbN00+6s4jIrKgYwJhbkFiNf3wil5uo42oxrE/DxYzd75EPV8C6T4YeZ4ZhX3XG69tgaSkVuZm3yt0phuQfDBlmYhAswEbmJRqPB+earFZ7OKe2r9hQSEoLyU6ehFAQop+/VJyDnFJdxz/qRbmmr93AxOFOmcxqVbez1D2T8rSeXiTC4OxN6w2IY3nvarUiBQrUWkeGWhyJ5gmnPRXpCOspHlWvvMrUzlMqSYOzWdhtH52IQkUdpNBpkv3cPmiWHOvR8AYBcFCGXdwqYv3XTUuSGFQWJghUTC3IZeajMand3e3McXEnZqgZE7dgljTrM6pjXnad3QtmmNOveNhxKZUswdmsTUXA639xkNalIb25GTERgJAv2EkURE8qqUWNl7gBRsGJiQS4jCIK+uxvPHATC5I7PcbCTaWlZhcEwmoyXNxpVBgKMx7wq25QY/tFwq+c2HEpFRETGPhm5DrGySKBVAdlbN0ImihB8aOK1Jxa4U7aqrSYVmSkxZvMryDLTIcoAb9r5OyYW5FK67m6EyoAwudUqS2YrswKWS41afKqj8yEEZF6biFhZlNmHlS74cEI2EZENBmVBe7yTof2c9wEioL2Z1abUV6GyVhr2hi598NeclUZxICI0xOixtVhga9jT9tk5kEsN5u9x/Ry7WbrxaDhMmfwPE4sgplGrcf5Sg/7x+cYznnlhUQRW5gLHt3bo6bbmQ7QpUvDD86MRGW78q23tg95WzwX5ENOk000L7BGRFbbWrEi+yaikrE2Gf8uqq5O/O7K4pSiKyOuWiNqIcGDNbe2+9P4L+3Dbx7+1r50mr2Nr2JNcKmFJawe0V5bX2jBl8g/8SwhSGrUaf/jbjdgXrnHPC+iCh8pC1ZBWhe2kwoEgpZsPoWxVXxkCFYbI8FCbH/KyUBnSE9Kx8/ROs32ckO2jTKtDtbO2BRG5j801K9pj8LcsEwQgNRkAMGzB/wPEcP0+exa3VKqbtUmFBX1j+6J8VDkAQKFqw+/+MQGSiFP2tRFAetersYDDnlzLsCyv0fYQFaJumA+AC+f5MyYWQer8pQarSUWflhDEdOrq3AtcCR6GgQOWPihmHgSkV5MIURSvdmtbYdhVrZ8PIbaZzKuwThAElI8qd/sYXHKSrfUt2lnbgojcyMaaFVaPt7VWDQAZWqDE1STB0cUtq+7+AjJZ3NXzGX6Wi21QHH4SEFqx+bnbIJdKoFCpMWzBJqvna1IkWNzOYU/O0y6aF2u2aJ5o8JWEC+f5LyYWhLW3/Qsx0fH6xzGduiJE0oE7MO0Fj1YFAO3aFvpxsSGC0Z2u/IoHsfe8+dhYa3QVoBwt82fPYkfkZZbWt+jA2hZ2sTTnB+CQKwpOlv4ebA2Fao+1tWoUZ4FP7wQAfP30UMjkcVe/8IvGFQRFjQZKxSWjbUplo/7f7Rfd0K4vESePglwailiZiMxrE62uCF1z9ILFxIbDnpxnadE8wI6F8zgk1i/wr4MQEx2PuC5Jzp/IQvBQXqwHvhin/XfzOSgUoYBKgfzuSdgbLrVrXKw1bYoUZLz0DbRTxikgObW+hQgIrdqeKcFG1RFbc3445IqCjShCs3Ikmk/8YLxdEICUazp+Xkt/ywa9xqPXj9H/u1Nf7ed7U0uOtkkaEUcXDUN/9R7zc17pEVe0tAEOzNGw9uVWoVIjc/5G/b8N/0uuY7poHmDHwnmmN5WSBgIFJp/PTDa8jokFuZZp8DC4gzT6q0lXt4db7+NUN3eD4shjME0Y9OViDeZTmB7D8a5BRHf3ysKQNlEUIU8pg0R+FMPXFJvtN6o6YmvOD4dcUZDRtFxGfttR1OqGsFriot5emSTC5tpHQ/7ypXYVazRjT8QeC2e4KnPh90ZzNPp3i74yR8N6YmDpy63ROa8kGOR55xSXtf8QRYRfMwSRJ34wv4VY9zNQ0sN4G28GeR0TiyAgajRQNp8z2mb62F0iImLRSyngoMx8fsW1LQJ2HZ4LwKT+uRiG7bNv14+D1X24ixopIEogatT6+RQc7xrEdHevLMzjaVY3Q2Kl4ghgo+qIbs6Pu4ZcEfm4881NVidEA4BM3RMxsiiXvJaltY8UrQrcdqUnWxbSCGikkKEFiiuf64rHd0C4Mi9P0doMfKHr6TD+3N99qhG/mfuVw23Sjv+PsThEijeuPOee9SOvPggD5Nfeiur7/4mQkBDt5/zfR2kTC1O8GeR1TCwCnKjRIO/9TNSaVF/wFHl4GEI0b6Ft73GzfbvEKJglFdB+eMdFSs0SBEt3jzjeNci0N4+nTWkWUL68uxKxV74Itbc4IqQOTkol8iOmJcZ1YiIitV/YAKOhrJ+MXIfYzgnWj3UB/dpHGlH7hdGgyEfoDYu1TQKQjSs3D74cZ/E8NXNyIAuVQRSBiWXV2H2q0ewYexIDa0OkAN64creYiEjI1D2htLDCu0JyGOc1QJxuhfdHN3tm/h05zOe/kS1fvhyLFi1CXV0dBg8ejGXLliErK8vq8WvWrMGcOXNw5MgR9O7dGwsWLMAdd9zhwRZ7jj1BQqE4YzOp6KUUEBER67Y2CoKAjx//rfWF8iww/PDm3SMyYmkSqMEEUEu4knrgcHU8EEURc+fOxYoVK3DhwgX89re/xdtvv43evXt74u14lK0S431bVCg/Va99YDCXIlYWiTh5J880UFdJEEB6twSLw6OsSU9IN1oAdf2TtziVGLQ3RIrcIyQkBFse/ATnm6+WqT+nuGzce6Hj1Pw7cief/stZvXo1CgsLUVZWhuzsbJSWliI3Nxf79u1DQoJ5Kbjvv/8ekydPRklJCe666y6sWrUK48ePx44dOzBgwAAvvAP3sTdINBsEibD9T0KpMe7CDklOhjw8zOwcruTMhzTvHpEZ04DCVdODgjviwcKFC/HGG2+gvLwc1113HebMmYPc3Fzs3r0bEQ58sfUHtkqM7w2XItvSnAp3J+QWeiAFQDs8KmkA8MA647HyoTKLY+dNy4QzMfBfISEhnktmyS0E0YdXIcnOzsaQIUPw5ptvAgA0Gg2Sk5PxxBNPYNasWWbHT5o0CU1NTfjPf/6j33bTTTchLS0NZWVldr1mY2MjOnfujMNH96NTtO/+cp9vPIO7N0126DlfjP0v4iKN3xO/nJO/UyjOIPvKmOyqO/8NmTwW5xSX9VVmvhhdgTi5wVCoT28HAHx55+eQhUYArQrI3rpRu3/6Xm3SomqC7PW+2m3/t8P9X7AcZFgSWveZdfHiRURHR3u5Ze7j6nggiiK6d++Op59+GjNnzgQAXLx4EYmJiXjvvfdw33332dUuf4wZuhLjGlHEqE8KoAo9aXa8TN0TWx78xKXDnixiqWey4aziEoavuRkA8MmdGxArtzK/x8c/s73NkzHDZ1N6lUqFmpoaFBUV6beFhIQgJycH1dXVFp9TXV2NwsJCo225ublYt26d1ddpaWlBS0uL/nFjo3Zc5h1fjINE5h/DbOwNEj06d3Z/kCDyouHr7zXbFvf2b7RjuAGjid6G5S31k7+vJB1G276wPKbbm6rGfe2aEtF+wh3x4PDhw6irq0NOTo5+f+fOnZGdnY3q6mqriUUgxAzDEuM/FHxhNPREf4yL51JYxSEtZCeLQ6IM+fBntrd5Mmb4bGJx5swZqNVqJCYmGm1PTEzE3r2WF1Crq6uzeHxdXZ3V1ykpKcG8efOcb7CX9GkJwfU9+ukzUa8HCSIPk0XEIl2UYqegMtuX3twMmUGnrEwUrZa3JN/ljnig+28wxoyYTl31jzn0hHyZrQnd5Jt8NrHwlKKiIqO7Wo2NjUhOTsYXd3zq093aOqarZDNIULARQkJQnveDWQllURQBTZi2lKWBt0URzepm8xOZDr2wNkTDBxh+MSTPCrSYQeTLLE3otsqHP7O9zZMxw2cTi/j4eEgkEtTX1xttr6+vR1KS5e6cpKQkh44HgPDwcISHm9fsju2SGNDjlYkCiRASArk83u7j7R94wc8AX+COeKD7b319Pbp162Z0TFpamtW2MGYQeZZjN0z5N+htPjs2RiqVIiMjA5WVlfptGo0GlZWVGDp0qMXnDB061Oh4APj666+tHk9ERL7PHfHguuuuQ1JSktExjY2N2Lp1K2MGEVEH+WyPBQAUFhYiPz8fmZmZyMrKQmlpKZqamlBQUAAAyMvLQ48ePVBSUgIAmD59Om699VYsWbIEd955Jz788ENs374d77zzjjffBhEROcnV8UAQBMyYMQPz589H79699eVmu3fvjvHjx3vrbRIR+TWfTiwmTZqEhoYGFBcXo66uDmlpaaioqNBPtjt27JjRhOSbb74Zq1atwuzZs/H888+jd+/eWLduXcCtYUFEFGzcEQ+effZZNDU14ZFHHsGFCxdwyy23oKKiIuDWsCAi8hSfXsfCG4KlJjwRBQZ+ZnkXrz8R+RN3f2b57BwLIiIiIiLyH0wsiIiIiIjIaT49x8IbdCPDdKupEhH5Mt1nFUe1egdjBhH5E3fHDCYWJs6ePQsASE5O9nJLiIjsd/bsWXTu3NnbzQg6jBlE5I/cFTOYWJiIjY0FoK0w4o4LPmTIEPzwww8uf057x1jbb2m76TZrj3Urzh4/ftwtE4Dcda3aO84d1wqAW69XR66Vvc9z17WytM3ff7e88Xd48eJFXHvttfrPLvIsd8YM/l07hjHDfoHwu+Wpa2Wr3c4+JxBjBhMLE7pyhZ07d3bLL6dEInH4vPY8p71jrO23tN10W3uPo6Oj/epatXecO68V4J7r1ZFrZe/z3HWtLG3z998tb/4dGpZaJc9xZ8zg37VjGDPsFwi/W566VtZeyxXPCcSYwUjkYX/+85/d8pz2jrG239J2023tPXYXd12r9o4Llmtl7/Pcda0sbfPl6xWsf4fkPfy7dgxjhv0C4XfLk5+BjBn24zoWJliT3H68Vo7h9bIfr5X9eK28i9fffrxWjuH1sh+vlf24joWHhYeHY+7cuQgPD/d2U3wer5VjeL3sx2tlP14r7+L1tx+vlWN4vezHa2U/d18r9lgQEREREZHT2GNBREREREROY2JBREREREROY2JBREREREROY2JBREREREROY2LhgP/85z/o06cPevfujXfffdfbzfF5d999N2JiYjBhwgRvN8WnHT9+HMOHD0f//v0xaNAgrFmzxttN8lkXLlxAZmYm0tLSMGDAAKxYscLbTfILCoUCKSkpmDlzprebElQYMxzDmGEfxgz7MWZ0jDMxg1Wh7NTW1ob+/ftj06ZN6Ny5MzIyMvD9998jLi7O203zWVVVVbh06RLKy8vx8ccfe7s5PuvUqVOor69HWloa6urqkJGRgf379yMyMtLbTfM5arUaLS0tkMvlaGpqwoABA7B9+3b+HbbjhRdewMGDB5GcnIzFixd7uzlBgTHDcYwZ9mHMsB9jRsc4EzPYY2Gnbdu24Te/+Q169OiBqKgojB49Ghs2bPB2s3za8OHD0alTJ283w+d169YNaWlpAICkpCTEx8fj3Llz3m2Uj5JIJJDL5QCAlpYWiKII3hux7cCBA9i7dy9Gjx7t7aYEFcYMxzFm2Icxw36MGY5zNmYETWLx3//+F2PGjEH37t0hCALWrVtndszy5cuRmpqKiIgIZGdnY9u2bfp9v/76K3r06KF/3KNHD5w8edITTfcKZ69XMHHltaqpqYFarUZycrKbW+0drrhWFy5cwODBg3HNNdfgmWeeQXx8vIda73muuF4zZ85ESUmJh1ocOBgzHMOYYT/GDPsxZjjGF2JG0CQWTU1NGDx4MJYvX25x/+rVq1FYWIi5c+dix44dGDx4MHJzc3H69GkPt9Q38HrZz1XX6ty5c8jLy8M777zjiWZ7hSuuVZcuXfDjjz/i8OHDWLVqFerr6z3VfI9z9np9+umnuOGGG3DDDTd4stkBgZ+BjuH1sh9jhv0YMxzjEzFDDEIAxLVr1xpty8rKEv/85z/rH6vVarF79+5iSUmJKIqi+N1334njx4/X758+fbr4z3/+0yPt9baOXC+dTZs2iffee68nmukTOnqtmpubxWHDhonvv/++p5rqdc78Xuk8/vjj4po1a9zZTJ/Rkes1a9Ys8ZprrhFTUlLEuLg4MTo6Wpw3b54nmx0QGDMcw5hhP8YM+zFmOMZbMSNoeixsUalUqKmpQU5Ojn5bSEgIcnJyUF1dDQDIysrCL7/8gpMnT+Ly5cv48ssvkZub660me5U914u07LlWoijiwQcfxO9//3s88MAD3mqq19lzrerr63Hp0iUAwMWLF/Hf//4Xffr08Up7vc2e61VSUoLjx4/jyJEjWLx4MaZOnYri4mJvNTlgMGY4hjHDfowZ9mPMcIynYkaoS1vtp86cOQO1Wo3ExESj7YmJidi7dy8AIDQ0FEuWLMFtt90GjUaDZ599NmirCthzvQAgJycHP/74I5qamnDNNddgzZo1GDp0qKeb61X2XKvvvvsOq1evxqBBg/TjIT/44AMMHDjQ0831Knuu1dGjR/HII4/oJ+A98cQTQXeddOz9OyTXY8xwDGOG/Rgz7MeY4RhPxQwmFg4YO3Ysxo4d6+1m+I2NGzd6uwl+4ZZbboFGo/F2M/xCVlYWamtrvd0Mv/Tggw96uwlBhzHDMYwZ9mHMsB9jRsd1NGZwKBSA+Ph4SCQSswk99fX1SEpK8lKrfBevl/14rezHa+UYXi/v4bV3DK+X/Xit7Mdr5RhPXS8mFgCkUikyMjJQWVmp36bRaFBZWRl03bD24PWyH6+V/XitHMPr5T289o7h9bIfr5X9eK0c46nrFTRDoS5fvoyDBw/qHx8+fBi1tbWIjY3Ftddei8LCQuTn5yMzMxNZWVkoLS1FU1MTCgoKvNhq7+H1sh+vlf14rRzD6+U9vPaO4fWyH6+V/XitHOMT18uJSlZ+ZdOmTSIAs5/8/Hz9McuWLROvvfZaUSqVillZWeKWLVu812Av4/WyH6+V/XitHMPr5T289o7h9bIfr5X9eK0c4wvXSxBFrm1ORERERETO4RwLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLIiIiIiJyGhMLCjjDhw/HjBkzXH6sJ5i2x1PtO3v2LBISEnDkyBG3vs59992HJUuWuPU1iIgcwZjhOMYMsibU2w0gcsbw4cORlpaG0tJS/bZPPvkEYWFh3muUC3nqvbzyyisYN24cUlNT3fo6s2fPxu9+9zs8/PDD6Ny5s1tfi4jIFGOGazBmkDXssSC/pFKprO6LjY1Fp06dPNgaY7ba5ihPvBeFQoG//e1vmDJliltfBwAGDBiAnj174h//+IfbX4uISIcxw3UYM8gWJhbkdsOHD8e0adMwbdo0dO7cGfHx8ZgzZw5EUQQAVFRU4JZbbkGXLl0QFxeHu+66C4cOHbJ4jhkzZiA+Ph65ubl48MEH8c033+D111+HIAgQBAFHjhwx6wrWaDRYuHAhevXqhfDwcFx77bV45ZVXLLZVo9GgpKQE1113HWQyGQYPHoyPP/7Yrvdn2DZ73ldTUxPy8vIQFRWFbt26WezuNX0vqampRnfaACAtLQ0vvvii/vHHH3+MgQMHQiaTIS4uDjk5OWhqarLa/i+++ALh4eG46aab9Nu+/fZbhIWFobm5Wb/tyJEjEAQBR48e1bftiSeewIwZMxATE4PExESsWLECTU1NKCgoQKdOndCrVy98+eWXRq83ZswYfPjhh9YvKBEFNcYMxgxDjBn+hYkFeUR5eTlCQ0Oxbds2vP7661i6dCneffddANoPy8LCQmzfvh2VlZUICQnB3XffDY1GY3YOqVSK7777DmVlZXj99dcxdOhQTJ06FadOncKpU6eQnJxs9tpFRUV49dVXMWfOHOzevRurVq1CYmKixXaWlJTg/fffR1lZGXbt2oWnnnoKf/rTn/DNN9+0+/4M22bP+3rmmWfwzTff4NNPP8WGDRtQVVWFHTt2OHxtDZ06dQqTJ0/GQw89hD179qCqqgr33HOPPiBbsnnzZmRkZBhtq62tRb9+/RAREaHftnPnTsTExCAlJcXofcfHx2Pbtm144okn8Pjjj2PixIm4+eabsWPHDowcORIPPPAAFAqF/jlZWVnYtm0bWlpanHqvRBS4GDMYM3QYM/yMSORmt956q9ivXz9Ro9Hotz333HNiv379LB7f0NAgAhB//vlno3Okp6dbPPf06dOtbmtsbBTDw8PFFStWWG2b7tjm5mZRLpeL33//vdExU6ZMESdPnmzz/Vlqm633denSJVEqlYofffSRfv/Zs2dFmUxm9H5M319KSor42muvGZ138ODB4ty5c0VRFMWamhoRgHjkyJF226Mzbtw48aGHHjLa9vDDD4t5eXlG24qLi8Xhw4cbte2WW27RP25raxMjIyPFBx54QL/t1KlTIgCxurpav+3HH390uI1EFDwYM8zfF2MGY4a/YI8FecRNN90EQRD0j4cOHYoDBw5ArVbjwIEDmDx5Mq6//npER0frJ4MdO3bM6Bymd0jssWfPHrS0tGDEiBHtHnvw4EEoFArcfvvtiIqK0v+8//77Zt3spiy1zdb7OnToEFQqFbKzs/XHx8bGok+fPo69QRODBw/GiBEjMHDgQEycOBErVqzA+fPnbT5HqVQa3WUCtHef0tLSjLbt3LnTbNugQYP0/5ZIJIiLi8PAgQP123R3+U6fPq3fJpPJAMDojhQRkSHGDMYMHcYM/8KqUOR1Y8aMQUpKClasWIHu3btDo9FgwIABZhPaIiMjHT637gPJHpcvXwYArF+/Hj169DDaFx4ebvO5ltpm7/tyREhIiFkXdWtrq/7fEokEX3/9Nb7//nts2LABy5YtwwsvvICtW7fiuuuus3jO+Ph4o0CiVqvxyy+/ID093ei4HTt24N577zXaZlp9RBAEo226LwaGQxTOnTsHAOjatWu775eIyBRjhv0YM8jT2GNBHrF161ajx1u2bEHv3r1x4cIF7Nu3D7Nnz8aIESPQr1+/du+WGJJKpVCr1Vb39+7dGzKZDJWVle2eq3///ggPD8exY8fQq1cvox9L43BtOXv2rM331bNnT4SFhRldl/Pnz2P//v02z9u1a1ecOnVK/7ixsRGHDx82OkYQBPz2t7/FvHnzsHPnTkilUqxdu9bqOdPT07F7927943379qG5uRndu3fXb6uursbJkyfN7j51xC+//IJrrrkG8fHxTp+LiAITYwZjhg5jhn9hjwV5xLFjx1BYWIhHH30UO3bswLJly7BkyRLExMQgLi4O77zzDrp164Zjx45h1qxZdp83NTUVW7duxZEjRxAVFYXY2Fij/REREXjuuefw7LPPQiqV4re//S0aGhqwa9cus1J5nTp1wsyZM/HUU09Bo9HglltuwcWLF/Hdd98hOjoa+fn5drervfcVFRWFKVOm4JlnnkFcXBwSEhLwwgsvICTEdq7/+9//Hu+99x7GjBmDLl26oLi4GBKJRL9/69atqKysxMiRI5GQkICtW7eioaEB/fr1s3rO3NxcFBUV4fz584iJiUFtbS0AYNmyZXjyySdx8OBBPPnkkwBcUxZx8+bNGDlypNPnIaLAxZjBmKHDmOFfmFiQR+Tl5UGpVCIrKwsSiQTTp0/HI488AkEQ8OGHH+LJJ5/EgAED0KdPH7zxxhsYPny4XeedOXMm8vPz0b9/fyiVSrM7MQAwZ84chIaGori4GL/++iu6deuGxx57zOL5Xn75ZXTt2hUlJSX43//+hy5duuDGG2/E888/79D7DQkJafd9LVq0CJcvX8aYMWPQqVMnPP3007h48aLN8xYVFeHw4cO466670LlzZ7z88stG7zk6Ohr//e9/UVpaisbGRqSkpGDJkiUYPXq01XMOHDgQN954Iz766CM8+uijqK2tRW5uLv73v/9h4MCB6N+/P+bNm4fHH38cb7zxBj744AOHroWh5uZmrFu3DhUVFR0+BxEFPsYMxgyAMcMfCaLp4DsiF7O00in5lvXr1+OZZ57BL7/8gtGjR2PIkCGYP3++y1/n7bffxtq1a7FhwwaXn5uIAgNjhu9jzCBr2GNBRLjzzjtx4MABnDx5Ej/++CMeeught7xOWFgYli1b5pZzExGRZzBmkDVMLIgIADBjxgzU1dWhvr7eqPyfKz388MNuOS8REXkWYwZZwqFQRERERETkNJabJSIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIipzGxICIiIiIip/1/1G9/ggkHLWYAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig12_collision_rates.pdf
\")", + "text/plain": [ + "HBox(children=(HTML(value=\"./fig11_spectra_from_1d.pdf", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAASnCAYAAACwzMTzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUxf8H8Pfl0ntPSIPQAiGE3nuRjggWRFCaXQRFwYZI8Ss/CyIiiCggKqKCAkrvRSGAdARCS+ikQXq9u/n9MdzmLr1fwr1fz3NP7nbndmf3Njefm5mdUQkhBIiIiIiIiIiIiIiIiMyAhakzQEREREREREREREREVFXYMEJERERERERERERERGaDDSNERERERERERERERGQ22DBCRERERERERERERERmgw0jRERERERERERERERkNtgwQkREREREREREREREZoMNI0REREREREREREREZDbYMEJERERERERERERERGaDDSNERERERERERERERGQ22DBCRFSN7NmzByqVCiqVCtHR0abODhERkdn6/vvva3yZ3L17d6hUKnTv3t3UWamWxowZw/NDREQ1RnR0tBKbfP/996bOTrXE80OlwYYRIqqW9D/kVSoV/ve//ynLz58/X6EFnf4Hsf5haWkJb29vDBw4EMePHy/39omIiMrLsExUqVRQq9Xw9/fH4MGDceDAAVNnr0wqo0LasCFjz549FbZdKpzhOS8Jw+tYpVLB1tYW9evXx2uvvYbMzMxKzi0RUc3GeKBkDMsmCwsL2NnZwd/fHw899BC+//576HS6CtvXg0h/nY0ZM6bYtIbnWn++XVxc0KFDB/z222+Vn1micmLDCBFVe59++inu3r1b6ftp164dwsPDkZCQgE2bNqFv377IyMgo8j3Z2dmVni8iIiIAsLa2Vsqq2NhYbNiwAd26dcPhw4cLfU91K6eqW37INDw9PdGuXTv4+vri8uXLmD9/Pt58880i36PVaqHVaqsoh0RE1RfjgZJr1KgR6tati4SEBOzYsQNjx45F//79q935eBA0btwYrVu3hk6nQ0REBEaMGFHkNQlUv+uSzA8bRoio2ktKSsLHH39cZJpr167hmWeega+vL6ysrBAQEICXX365VA0qEREROHbsGGbOnAkAiIuLw9mzZwEY37L63XffoVevXrC1tcVHH30EALh16xbGjRsHPz8/WFtbo27dupg9ezY0Go2y/ZUrV6Jt27bw9PSElZUV3Nzc0Ldv32KDhTfeeAMqlQr29vbYsWOHUV4Me8TWqVMHKpUKM2bMAGA8LNeff/6JLl26KD0z16xZU+LzQkRE1UOtWrUQERGB48ePY926dQAAjUaDn3/+GYBxr8tPPvkEAQEBsLW1Vd6/fPlytGrVCnZ2dnBwcECnTp2wfv16Zb1h+fLDDz9g4MCBsLOzQ0BAABYuXGiUl5KUe/oeh08//TSmTJkCb29vhISEoE6dOlixYgUAYO/evUZllaOjo1LW6p0+fVpJExERUapzZtiTcffu3WjZsiXs7OzQsmXLfNtasGAB/P394eDggJEjRyIpKanAbW7evBndunWDk5MT7Ozs0KVLF+zevbvSz+MzzzyDDz74ALVq1YKbmxtGjRqFlJQUJd29e/fwxBNPwN7eHkFBQVi8eHGB+c/KysIHH3yABg0awNraGt7e3hg3bhzi4+OVNDNmzIBKpUKdOnWwevVqNGrUCA4ODujatSsiIyMByOtt7Nixynv0x6yPQ4oycOBARERE4MqVK2jYsCEAeS0UtP8ffvgB9erVg7W1Na5fv16izwAARo8ejQYNGsDJyQnW1taoXbs2Jk6ciOTk5ELzFRsbi8aNG0OlUqFt27ZITEw0yoteQUOfGv7/LVy4ELVr14atrS369++v5JuIqCIwHih5PLBo0SL8999/iImJwVNPPQUA2LZtG2bNmqWkKW25uGbNGoSEhMDW1hYdO3bE6dOnjfZZmjjh+++/x6BBg2Bvb4/g4GAsXbrUaFu7d+9GWFgYbG1t0blzZ6V+Iq/z58/j8ccfh5eXF6ytrdG4cWN8/fXXRmn09QVvvfUWJkyYAA8PD3h7e2PSpEnK56VSqZTyeMWKFaUaUnTRokU4fPgwNm/eDADQ6XTYv39/vv1PmTIF48aNg6urK/r27Vviz+DEiRPo1asXatWqBRsbGzg4OKBNmzb46aefiszX2rVrYWVlZTQaSd66E6Dgu5f0x//5559j5MiRcHJygpeXF6ZPnw4hRLHnhGoAQURUDXXr1k0AEPXr1xdOTk7Czs5O3Lx5U5w7d04AEADE8uXLhRBCxMTECD8/PwFA2NjYiNDQUGFpaSkAiLCwMJGRkVHofkaPHq1sTwghsrKyxPjx4wUAYW1tLWJiYoQQQkRFRSnprK2thYeHhwgNDRWzZs0S8fHxIjAwUAAQTk5OIjw8XNn/2LFjlX1NmjRJ2NraioYNG4pmzZoJGxsb5T23b98WQgixe/duZT9RUVHi/fffFwCEvb292LlzZ7687N69W9l+7dq1BQDxwQcf5NuWjY2NaNiwoXB2dhYAhIWFhTh27FhFfVxERFSJ9GVi7dq1lWUbNmxQvuMnTZokhMgt06ytrYWFhYVo3Lix8PDwEEIIMXv2bCV9UFCQ8PX1VV7/+OOPQgjj8sXGxkYEBwcLT09PZdn69euFEKLE5Z4+39bW1sLKykqEhYWJ8PBw8cgjjyjbdXJyEu3atRPt2rUTR48eFc8995wAIDp06KBs54MPPhAARMOGDYs8T8uXL89XPhous7GxESEhIUpea9euLXJycoQQQvz5559KOi8vLxEYGCgcHByMymQhhPjll1+ESqVS3h8cHCwACLVaLXbt2lWp59HKyko4OTkp+wQg3n33XSXdsGHDlOUhISHCwcFBOYZu3bop6QYMGKDkOTw8XIkNQkNDRXp6utE5t7S0FFZWVqJRo0bKcXfs2FEIIcSsWbNE3bp1lX3qP8dvv/220M9In3b06NFCCCFu3LihXItDhgzJ95lbWVkJlUolGjZsKGrVqiWioqJK9BkIIYSLi4vw8PAQzZo1M8rnY489pqTR/89069ZN3L17VzRr1kw5lsTERKO8GP7/5Y3XDLdlY2Mj7OzsROPGjYWFhYUAIFq2bCl0Ol2h54WIqCQYD5Q9HhBCiPT0dFGrVi0BQHh7eyvfy6UpF62srJQ6BysrKwFA+Pv7i7S0NCFE6eMEKysrUadOHaPf6efOnRNCCHH79m2lHLe3txeNGjUyik309SEXLlwQLi4uAoBwd3cXYWFhSh5mzpypHL++vsDKykq4u7sLf39/ZVtLliwRQgjRrl074eTkJAAIT09P5TO5detWic61TqczWrZ27dp8+7e2thZ2dnaiadOmon///iX+DNauXSssLCxE7dq1RYsWLYSbm5uynw0bNij7MTw/mzdvFtbW1gKAmDNnTr686OtOhDCOCfJuy8bGRvj5+Rmds/nz5xd5HVLNwIYRIqqW9MFTu3btlCDkhRdeKLBhZPr06UoQcfToUSGELDT16ZYtW1bofgwbRgwfKpVKLF26VElnGLx069ZNaWzRaDRixowZAoDw8fERsbGxQggh1q1bp2zn4sWLQggZsOgDJiGEuHjxorLN7777Tghh/EP7lVdeUYIgwx/6ZWkYefvtt4UQMrhydXUVAMTw4cPL8tEQEVEVM6xQaNeunWjevLlS8WBpaSkiIiKEEMZl2qZNm4QQspxKTU0VdnZ2AoAYOnSo0Gq1IjMzU7Rt29aogsWwfBkxYoTQ6XQiJSVFNGjQQCmThRAlLvcM833ixAklP4Z5NfzxKYQQx44dU/KgrxgICwsTAMSHH35Y5HkqrmHkyy+/FEIIMX/+/Hz76Ny5swAg6tWrJ1JSUoRGoxHdu3fPV/ldp04dAUCMGzdO6HQ6odPpxNChQwUA0blz50o9j05OTuLGjRtCq9WKVq1aGW3r0qVLyj7feustIYQQ58+fV64T/Xnes2ePkm7v3r1CCCFu3bqlXB/6eEQfewEQf/75pxBCiNdff11Zpq+kMDy/JVFQzAVABAQEiOvXryvpDPf/9ddfCyGE0Ol0QqvVlugzEEIo15zee++9p/zP6OM4/XXYqlUr0a5dOwFAtG/fXiQlJeXLS0kbRiwtLcWZM2eEEEIsXrxYSbd58+YSnSMiosIwHih7PKA3ePBgZV1sbGyZysUtW7YIIYTYsmVLvrKqtHHCY489JnQ6nTh58mS+bU2bNk0AsrFAX67olxnWh4wZM0YAslOovr7hiy++EACEnZ2dSE5OFkLk1hcEBweLxMREkZGRoXQwNawb0H9e+k4MJT3XeR9536/fv6enp7h27ZoQQl4HJf0Mbt++Le7cuaNsLyMjQ9SvX18AEKNGjVKW67c1duxYZRsff/xxgXkpacNIly5dRHZ2tsjOzhZdunRRrnuq+TiUFhFVe2+88QY8PT2xdOlSXLp0Kd/6I0eOAABCQkLQsmVLAMAjjzwCe3t7AMC///5bov20a9cOrVu3hrOzM4QQeP3113Hy5Ml86V588UXlVmS1Wq0MhRUTEwNvb2+oVCo88sgjAAAhBA4dOgRADnExZMgQuLu7w8LCAg0aNFC2eevWrXz70d+mvGrVKvTo0aNEx1CYESNGAAB8fX2VbeW95ZeIiKq37OxsHDp0CKdOnYKXlxcGDhyIvXv3ol27dkbpQkJC0L9/fwCynPrvv/+UObOefPJJWFhYwMbGBo8++igA4OrVq4iLizPaxpNPPgmVSgVHR0cMGjQIAHDmzBkAKHG5p9ejRw80a9ZMyU9RWrRooRzPsmXLcOHCBZw5c0YZggMAZs+ejfbt2yuP2bNnl+j86d8fGhqqLIuJiQEA/PfffwCAvn37wtHREWq1GsOGDTN6f1xcnDKUxLJly2BhYQELCwusXbsWAPIdN1Cx57Fnz57w9/eHhYUFGjVqVGD+ASifa0hICMLDw422YTh8Z7du3aBSqeDn56dcH3mHJnFxccHgwYPznbfY2Nh8x1oa+jlGwsLCoFKpcOPGDTz99NP5JsS1s7PD888/D0AOZ5GQkFDiz2DHjh0ICwuDnZ2d0fAZGo0m3/V+9OhRHDp0CLVr18bWrVvh7Oxc5mNr2rQpmjRpAiA3/gIYdxFRxWE8UPZ4IG85U9pyUT8cNiBjBjc3NwDyO74sccLIkSOhUqmKjE1CQkKUcuWJJ57Itw39MZw5cwYODg5QqVR47bXXAAAZGRk4deqUUfqHH34YLi4usLW1RXBwsNE+y6Nx48Zo164datWqBUAOxbVs2bJ86R599FEEBgYCMK5PAYr+DFQqFd544w34+fnB0tISdnZ2Sv1QQfUpy5cvR0ZGBl5//XVMnTq1XMf22GOPwcrKClZWVnjssccAyHOW9/+Fah5LU2eAiKg4Tk5OeOedd/DGG2/ggw8+qLT96AvcuLg41KlTB8nJyfj000/zjVnp4+NTaD4NAxo9e3t7pKamom/fvkhMTIStrS1atGgBKysrJTgqaDJRR0dHpKam4rPPPsNDDz0EOzs7ADIg0DN8X2FjoRMR0YOhdu3aJRrjubByqqIVVe6VJz8vv/wyDh06hB9//BFOTk4AZGVKUFAQAODy5ctGlQv6RoLiuLq6AgAsLXN/Aokyjg9dt25deHl55VtelklES3oe9fkHco+hrPkHkK8CDZAdKIrbZ3n3C8g5Rr7//nsAckzyV155BXv27MGuXbvQu3dvJZ2XlxcsLAruy1fUZ7B69WplMvdatWohMDAQ8fHxuHLlCoD8cZeDgwPS0tJw9epV/Pjjj3jllVeUdfq4izEXEVUXjAfKFg9kZGTg6NGjAGT54unpabS+JOViSZU0TqjI2MTT0xP16tXLtzxvI1RFxxN6ixYtQvfu3aHVatG5c2dERERg+vTpGDdunFG6oq6Doj6DUaNGYceOHUpDkqOjI86ePYuUlJQi61NWrVqFV155xejcsGwnPd4xQkQ1wiuvvILAwEAcO3Ys37o2bdoAACIjI5X169atQ3p6OgCgdevWpdqXSqVSAoPMzMwC1xe0f0tLS/zyyy+IiIhAREQEtm/fjpdffhlDhw5FZGQkEhMTAcjeI0ePHsUXX3xRZD5++OEHODk5Yf/+/XjiiSeUCdG8vb2VNBcuXAAge0Xqt1+QX3/9FYDs4amfsL1p06ZF7p+IiGqmvOVUkyZNlMb1X3/9FTqdDllZWfjjjz8AyAqWvD/ef/vtNwBAWloaNm7cCAAICwsDULJyr6j8ALmVJWlpafnWPfHEE3B3d8edO3fw8ccfAwCeeeYZZf33338PIYcEhhBCqWAvD31PzG3btiEtLQ1arVbp4ann5eWF2rVrAwBatmyJv//+Wzn2H374AbNnz4a1tbXReyryPBbFsEJKn+8LFy7k6yWq3ycAvPPOO8o+//77b8yYMQPjx48v8T4B40qvgj7L0sobd+W9dkr6Geg7uzg5OSEqKgqHDh1Cnz59Ct1v69atMW3aNADAq6++ilWrVinr9HFXbGysUmmyZs2aQrd1+vRpnDt3DkBu/AUw7iKiqsd4IFdSUhKeffZZ3LlzBwDw7LPPQqVSlbpcvHfvHrZv3w4A2L59O+7duwdAfseXJU4oij42iYyMVMqVgsof/TG4uLhg06ZNyj43bNiA119/He3bty/xPoGiP5OSMPycS1OfAhT9GejL9ueeew5nzpzBpk2b4OjoWGg+Zs+ejbCwMNy5cwcPPfQQbt++razTl+36+pT4+HilnqQgf/zxBzQaDTQajfL/4uPjU2DjF9UwVT54FxFRCRjOMaL33XffGY1ZaTj5un4SNRsbG9GkSZMyTb7erl070aZNG2XiMqDgCejyjlMaGxurTMJlbW2tTPKpn4xNCCHu3r2rTJSmn2jMx8dH2WZB84JERUWJ7du3K9t5+umnlQniOnTooGyrR48ewt7eXpngs6BtOTg4iJCQEOXYDOdjISKi6q2gyVYLUtg43UKUfrJVBwcHERwcLLy8vJRl+gk0S1LuGea7oDGqDef5CAsLE+3atVPmrRBCiDfeeMMoLykpKcWep+LmGNEzLB/16fRjogNyQtagoCBhY2NjVCYLIcTKlSuVZV5eXqJ58+ZKea4/zqo4j/rP2vCaeOSRR5R96Cdo1R+D4TXRt29fJV1ISIgIDQ1VYhT9+ShoXg3Dc6k/H4ZjogcFBYl27dqJv//+u9DPSJ9WP6Fr06ZNlQlivby8REJCQqH71yvJZ7BkyRIljZ+fnwgODhbu7u758p/3f2bs2LECkBPT6sflP3funBJjBQcHi1atWimvC9qWg4ODsLOzE6GhoUq65s2bc/J1Iio3xgOljwcaN24sQkNDjcr0Pn36iMzMTCV9acpFGxsbYWdnJ5o0aaJM6l2rVi1lbo/SxgmGdQt56wZu3bol7O3tBZA7+bqtrW2++pDz588rk5Xb29uL5s2bi6CgIKFWq42ulYLm1dB/NobXin5OMQsLC9GiRQvRt2/fEp/rdu3aKfOWABDjx48vcv+l+Qw6duyo5Cs0NFS4uroqE7AXNC/I8uXLxfXr10VAQIAAIJo2bSru3r0rhBDinXfeUdJ17txZ+Pr6KmV2QdtycHAQ/v7+RpOvz5s3r9DzQjUH7xghohpjzJgxCAkJybfc29sbERERePrpp+Hq6orIyEj4+PjgxRdfxN69e5X5QIpz6NAhHDlyBDk5OWjRogUWLVqEUaNGFfs+Ly8vREREYOzYsfDw8FDGbu3SpQvmzZsHQI5Funr1aoSGhkKn08Ha2hp//fVXsdvu3bs3li1bBpVKhR9//FEZK/T7779Hly5dAAA3btzAokWLlHE6C7JmzRr4+PggMzMTdevWxapVq5T5WIiI6ME3bdo0LF26FC1btlR6vnfo0AHr1q0rsKxbsmQJwsLCkJqaCj8/P8yfP18ZN7wk5V5xxo0bh0cffRQuLi44c+YMDh06ZDScwYsvvqj0KBw2bFiRPQIrwpAhQzBv3jz4+voiJSUFrVu3xocffpgv3VNPPYUNGzagW7duyMjIQGRkJJycnPDMM8/g2WefzZe+ss+joaVLl+LRRx+Fra0tkpKSMGvWrAJ7ia5btw7Tp09HgwYNcOXKFdy5cweNGzfGtGnTlF7AJRUeHo73338fPj4+uHbtGg4dOqT0ni1KfHw8Dh06hP/++w8eHh4YNGgQtm/fDnd392LfW5LPYPz48Zg8eTI8PT2RkpKC7t27Y9asWcVue8mSJejfvz9ycnLw2GOP4Z9//kGjRo2wZMkS1KlTB7dv34anpycWLVpU6DZat26NL7/8EmlpabCyskKfPn2wbt26AntKExFVNXOLB86dO4dLly7B3d0dPXv2xLJly7B582bY2NgoaUpTLvr6+uKXX35R8ti+fXts3rxZucuitHFCUWrVqoU///wToaGh0Gg0cHJywsqVK/OlCwkJwcGDB/H444/D3t4e//33H3Q6Hfr161fiedgMvfnmm+jduzfs7e1x/PjxEs/Zeu7cORw6dAhxcXGoV68e3njjDSxYsKBE7y3JZ/D999+jR48esLW1RXp6Or744ot8c6nlFRAQgC1btsDV1RWnT5/GwIEDkZ6ejnfeeQejRo2Cq6srLly4gGeeeQZPPvlkodv56KOP0KtXLyQlJcHDwwPvvfceJk6cWKJjo+pNJUQFDCRHRETVzp49e5SJ1qOiolCnTh3TZoiIiKq16OhoZRLO3bt3o3v37ibLS1ZWFnx8fJCUlISdO3eiZ8+eJstLaVWn80hVZ8yYMVixYgW6detW5HAcRETVXXUqx6pLPDBjxgzMnDmzxPO70INB3yi3fPlyjBkzxrSZoUrBydeJiIiIiKjaGDVqFP777z8kJSWhVatWNapRhIiIiCoG4wEiqmxsGCEiIiIiompj5cqVsLKyQseOHbFixQpTZ4eIiIhMgPEAEVU2DqVFRERERERERERERERmg5OvExERERERERERERGR2WDDCBERERERERERERERmQ02jBARERERERERERERkdlgwwgREREREREREREREZkNNowQEREREREREREREZHZYMMIERERERERERERERGZDTaMEBERERERERERERGR2WDDCBERERERERERERERmQ02jBARERERERERERERkdlgwwgREREREREREREREZkNNowQEREREREREREREZHZYMMIERERERERERERERGZDTaMEBERERERERERERGR2WDDCBERERERERERERERmQ02jBARERERERERERERkdlgwwgREREREREREREREZkNNowQEREREREREREREZHZYMMIERERERERERERERGZDTaMEBERERERERERERGR2WDDCBERERERERERERERmQ02jBARmdjQoUPh5uaGxx57zNRZAVD98kNERGQOqlv5W93yQ0REZA6qW/lb3fJDVJHYMEJEZGKTJk3CDz/8YOpsKKpbfoiIiMxBdSt/q1t+iIiIzEF1K3+rW36IKhIbRogeIN27d8drr71mNvs1he7du0OlUkGlUuHEiRMVtk0nJ6cSp63sc11YfsaMGaMc+7p16yo1D0REVHaMByof4wHGA0RE1R3jgcrHeIDxANVsbBgheoD88ccfmD17ttnst6QqOlh47rnncPv2bYSFhVXYNmuC+fPn4/bt26bOBhERFYPxQMEYD1QMxgNERDUD44GCMR6oGIwH6EFgaeoMEFHFyM7Ohru7u0n2bar9Zmdnw9rausr3a29vD19f3xKlbd68OTQaTb7l27Ztg5+fX0VnrUTKmicXFxe4uLhUZtaIiKicGA9UHcYDRERUXTEeqDqMB4hqLt4xQlRDde/eHRMmTMBrr70GT09P9O3bN1/PB32aCRMmwMXFBZ6ennj//fchhFDS6HQ6zJkzB8HBwbCzs0OzZs2wZs0ao21MnDgRU6dOhbu7O3x9fTFjxox8ecm73+Lek5KSgpEjR8LBwQG1atXCvHnziu25UdAxA8CWLVvQuXNnuLq6wsPDA4MGDcLly5cByNs79+7di/nz5yu3eUZHR5fo2EtqzZo1aNq0Kezs7ODh4YHevXsjLS0NAHDixAmcOXMm36Oigp6NGzfCxcUFK1euBFCy81rZeSIioqrDeIDxAMB4gIjI3DEeYDwAMB4gKi02jBDVYCtWrIC1tTX++ecfLF68uNA0lpaWOHz4MObPn4/PP/8c3333nbJ+zpw5+OGHH7B48WL8999/eP311zFq1Cjs3bvXaBsODg44dOgQPvnkE8yaNQvbt28vNm9FvWfy5Mn4559/8Oeff2L79u3Yv38/jh07VqZjTktLw+TJk/Hvv/9i586dsLCwwNChQ6HT6TB//nx06NBBub319u3bCAwMLPGxF+f27dsYMWIExo0bh3PnzmHPnj0YNmyYUXBZWX7++WeMGDECK1euxMiRIwGU/bwSEVHNxXiA8QDjASIiYjzAeIDxAFEpCSKqkbp16yZatGiRb9mkSZOMXjdu3FjodDpl2VtvvSUaN24shBAiMzNT2NvbiwMHDhhtZ/z48WLEiBHKNjp37my0vk2bNuKtt94qcr9FvSc5OVlYWVmJ1atXK+sTExOFvb290XZKcswFiYuLEwDE6dOnC8yfECU79sLyYLito0ePCgAiOjq62HwVplevXsLT01PY2dkJf3//fHkqaP9fffWVcHFxEXv27FHWlfW8ljY/AMTatWtLvD0iIqo8jAcKx3iA8QARkblgPFA4xgOMB4gKwzlGiGqwVq1aFZumffv2UKlUyusOHTpg7ty50Gq1uHTpEtLT0/HQQw8ZvSc7OxstWrRQXoeHhxutr1WrFmJjY4vcb1HvuXLlCnJyctC2bVtlvYuLC0JCQoo9noKO+eLFi5g+fToOHTqE+Ph46HQ6AMC1a9cKnQCtpMdenGbNmqFXr15o2rQp+vbtiz59+uCxxx6Dm5tbibexY8eOEqcF5K25sbGx+Oeff9CmTRtleXnOa3nyQ0REpsV4QGI8IDEeICIyT4wHJMYDEuMBouKxYYSoBnNwcCjX+1NTUwHIcSj9/f2N1tnY2CjPraysjNapVColuChMWd5TEgUd8+DBg1G7dm18++238PPzg06nQ1hYGLKzswvdTkmPvThqtRrbt2/HgQMHsG3bNixYsADvvfceDh06hODg4BJvpzRatGiBY8eOYdmyZWjdurVRYEtEROaH8YDEeIDxABGROWM8IDEeYDxAVFKcY4ToAXfo0CGj1xEREWjQoAHUajVCQ0NhY2ODa9euoX79+kYP/TiblaFu3bqwsrLCkSNHlGVJSUm4cOFCqbeVkJCAyMhITJs2Db169ULjxo1x7949ozTW1tbQarVGyyry2FUqFTp16oSZM2fi+PHjsLa2xtq1a0t9LCVVr1497N69G+vXr8err76qLK/I80pERA8WxgOMBxgPEBER4wHGA4wHiHLxjhGiB9y1a9cwefJkvPDCCzh27BgWLFiAuXPnAgCcnJzw5ptv4vXXX4dOp0Pnzp2RlJSEf/75B87Ozhg9enSl5MnJyQmjR4/GlClT4O7uDm9vb3zwwQewsLAode8GNzc3eHh4YMmSJahVqxauXbuGt99+2yhNnTp1cOjQIURHR8PR0RHu7u4VduyHDh3Czp070adPH3h7e+PQoUOIi4tD48aNS3UcpdWwYUPs3r0b3bt3h6WlJb744osKPa9ERPRgYTzAeIDxABERMR5gPMB4gCgXG0aIHnDPPPMMMjIy0LZtW6jVakyaNAnPP/+8sn727Nnw8vLCnDlzcOXKFbi6uqJly5Z49913KzVfn3/+OV588UUMGjQIzs7OmDp1Kq5fvw5bW9tSbcfCwgK//PILJk6ciLCwMISEhODLL79E9+7dlTRvvvkmRo8ejdDQUGRkZCAqKgp16tSpkGN3dnbGvn378MUXXyA5ORm1a9fG3Llz0b9//1IdR1mEhIRg165d6N69O9RqNebOnVth55WIiB4sjAcYDzAeICIixgOMBxgPEOVSCSGEqTNBRJWje/fuaN68Ob744gtTZ6VYaWlp8Pf3x9y5czF+/HhTZ6dQNemcApVzXlUqFdauXYtHHnmkQrZHRESVqyaVXYwHKgfjASIiqkllF+OBysF4gMgY5xghIpM4fvw4Vq1ahcuXL+PYsWMYOXIkAGDIkCEmzlnxFi1aBEdHR5w+fdrUWcmnMs/riy++CEdHx3Jvh4iISI/xQOVgPEBERDUJ44HKwXiAqGgcSouITOazzz5DZGQkrK2t0apVK+zfvx+enp6mzlaRVq5ciYyMDABAUFCQiXNTsMo6r7NmzcKbb74JAKhVq1a5t0dERAQwHqgsjAeIiKgmYTxQORgPEBWOQ2kREREREREREREREZHZ4FBaRERERERERERERERkNtgwQkREREREREREREREZoMNI0REREREREREREREZDbYMEJERERERERERERERGaDDSNEADZs2ICQkBA0aNAA3333namzQyaSmJiI1q1bo3nz5ggLC8O3335r6iyRiUVFRaFHjx4IDQ1F06ZNkZaWZuosEVElYjxAeowJyBDjASLzwniA9BgPkCHGAw8elRBCmDoTRKak0WgQGhqK3bt3w8XFBa1atcKBAwfg4eFh6qxRFdNqtcjKyoK9vT3S0tIQFhaGf//9l9eCGevWrRs+/PBDdOnSBXfv3oWzszMsLS1NnS0iqgSMB8gQYwIyxHiAyHwwHiBDjAfIEOOBBw/vGCGzd/jwYTRp0gT+/v5wdHRE//79sW3bNlNni0xArVbD3t4eAJCVlQUhBNh2bL7+++8/WFlZoUuXLgAAd3d3Bj1EDzDGA2SIMQHpMR4gMi+MB8gQ4wHSYzzwYGLDCNV4+/btw+DBg+Hn5weVSoV169blS7Nw4ULUqVMHtra2aNeuHQ4fPqysu3XrFvz9/ZXX/v7+uHnzZlVknSpYea8FQN4q26xZMwQEBGDKlCnw9PSsotxTRSvv9XDx4kU4Ojpi8ODBaNmyJT766KMqzD0RlRbjATLEmID0GA8QmRfGA2SI8QDpMR6ggrBhhGq8tLQ0NGvWDAsXLixw/a+//orJkyfjgw8+wLFjx9CsWTP07dsXsbGxVZxTqmwVcS24urri5MmTiIqKws8//4yYmJiqyj5VsPJeDxqNBvv378eiRYtw8OBBbN++Hdu3b6/KQyCiUmA8QIYYE5Ae4wEi88J4gAwxHiA9xgNUIEH0AAEg1q5da7Ssbdu24pVXXlFea7Va4efnJ+bMmSOEEOKff/4RjzzyiLJ+0qRJYuXKlVWSX6o8ZbkW8nrppZfE6tWrKzObVEXKcj0cOHBA9OnTR1n/ySefiE8++aRK8ktE5cN4gAwxJiA9xgNE5oXxABliPEB6jAdIj3eM0AMtOzsbR48eRe/evZVlFhYW6N27Nw4ePAgAaNu2Lc6cOYObN28iNTUVmzdvRt++fU2VZaokJbkWYmJikJKSAgBISkrCvn37EBISYpL8UuUqyfXQpk0bxMbG4t69e9DpdNi3bx8aN25sqiwTUTkwHiBDjAlIj/EAkXlhPECGGA+QHuMB88VZYuiBFh8fD61WCx8fH6PlPj4+OH/+PADA0tISc+fORY8ePaDT6TB16lR4eHiYIrtUiUpyLVy9ehXPP/+8MqHaq6++iqZNm5oiu1TJSvrd8NFHH6Fr164QQqBPnz4YNGiQKbJLROXEeIAMMSYgPcYDROaF8QAZYjxAeowHzBcbRogAPPzww3j44YdNnQ0ysbZt2+LEiROmzgZVI/3790f//v1NnQ0iqiKMB0iPMQEZYjxAZF4YD5Ae4wEyxHjgwcOhtOiB5unpCbVanW9yrJiYGPj6+pooV2QKvBbIEK8HIvPC/3kyxOuB9HgtEJkX/s+TIV4PpMdrwXyxYYQeaNbW1mjVqhV27typLNPpdNi5cyc6dOhgwpxRVeO1QIZ4PRCZF/7PkyFeD6THa4HIvPB/ngzxeiA9Xgvmi0NpUY2XmpqKS5cuKa+joqJw4sQJuLu7IygoCJMnT8bo0aPRunVrtG3bFl988QXS0tIwduxYE+aaKgOvBTLE64HIvPB/ngzxeiA9XgtE5oX/82SI1wPp8VqgAgmiGm737t0CQL7H6NGjlTQLFiwQQUFBwtraWrRt21ZERESYLsNUaXgtkCFeD0Tmhf/zZIjXA+nxWiAyL/yfJ0O8HkiP1wIVRCWEEJXS4kJERERERERERERERFTNcI4RIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGESIiIiIiIiIiIiIiMhtsGCEiIiIiIiIiIiIiIrPBhhEiIiIiIiIiIiIiIjIbbBghIiIiIiIiIiIiIiKzwYYRIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGETILWVlZmDFjBrKyskydFZPieZB4HiSeB4nngci88H+e50CP50HieZB4HojMC//nJZ4HngM9ngeJ58G8qIQQwtSZIKpsycnJcHFxQVJSEpydnU2dHZPheZB4HiSeB4nngci88H+e50CP50HieZB4HojMC//nJZ4HngM9ngeJ58G88I4RomIsXLiw1OvyLjd8XdzzovZXnOLe++2335bofdUlvzXt/Ba0vrhl1e16qM75Lcn5Lcm1UdgxEBEVpaq/o8r7/VTU+8sSD+R9XZX5LUs8UFjeGL/k9yDEh6aMX4jIvNS03ywV8ZuwOuW3JsVb5Y1fDJ/XhPiwOsQDReWvJM8ZD5ghQWQGkpKSBACRlJRU6vc2bty41OvyLjd8XdzzovZXnOLeGxISUuB5qK75razzW9broSz5LW5ZdbseqnN+S3J+S3Jt5F1Wnu8HIqp5TFkGlOY7qjzfp8W9vyzxgCnzW5Z4oLC8mSoeKC6/1S0eqM75rax4i/EAkXmpKfFASfZZ2vwYKslvwuqU38qIt6pTfVFJ8lselRkfVod4oKj8leQ54wHzw6G0yCxERkaiUaNG8PX1hUqlKtV74+Li4OXlVap1eZcbvi7ueVH7K09eASA2NhZarTbfeaiu+a2s8+vp6Yk7d+6U+nooS36LW1bdrofqnN+SnN+SXBt5l6k1amQhC1euXEFwcHCZ8k5ENUf37t2xd+9ek5QBpfmOKs/3aXH5LUs8YMr8liUeKCiPeZdVZTxQXH6rWzxQnfNbWfGWPh44cuQIWrduXaa8E1HNMXnyZMybN6/axwMl2Wd58luS34TVKb+VEW+VNR4oLr/ljV8Ky291jQ+rQzxQXH5LU1+0fv16PPzww2XKO9UcbBghs7Bv3z70798f6zdugpWVFQBAAMi9+kXuc5G7TgD4c+0aDB766P3lwmj9X+v+wOBHhhpsS25nw/q1GPjwULk5AWz4cy0GPvwIBIBN69ei/+D7z/9ci36DHwEEsPmvdeg7aAi2bliPPgOH3N+/MPoLIZR8CX1eRW6aXZv/RI9+g3PTCON87dy8Dulpqejz8OOwVFvd347Avu0b0aXXQOjuv+fvHRvQqfdACAH8s2MjOvYaACGAA7s2okOPARAADuzahPY9+uPgrs1o372/8TmAQb6MluWeV+gE/t23Ba269M09LsODEwJHD2xFy/Z9lG3dfyeOHdiOFu0e0p8AHIvYgeZtewECOH5oB5q36QUhgJNHdqBZ656ADjjx7y6Et+qBk0d3oUnTzvg3YhNat+0PtdoSyoEDBs9F7vP7L0+d3oPw0K5QPlidwdenAE79tw/hjboYvfdU5N8Ib9DJ6KI6dfFvhNfrKJ9fOoDwuh0AAZy8fADNgtsDOuBk1AE0q9MBJ6MOollQe7kLnciTz7wnVX8O7+/n1mGE+7Y1SmO4/uSdw8jSZKCVTwdYQA0I4EzcUYS5tzB6z+m7x9DUpTmEEDiTeAJhTs0AIXAm+QSaOIbL9yWfRJhDU5xJPYUm9mG55+b+dpTPVn8MBq8FBHRCh7Oa82hk2RA6yPQCuvt/BXRC4ILmIupb1oPOYPkl7RUEW9S+vykdonTRqK0Kgu7+CYrWXUOgKgACOlzX3YC/KgDXxXX4ww86CNzETbjDHf/hLLKRhbqoi3+Tj8LJyanoLxUiqrHUajWGPfoYXnj55QJigrLFA4DAX+vWYtAjQ0scDwAFxwSb/1qHfgMfwZYN68ocDwhAxgR9B5c4HgCAvds3oEvvgUoxtn/HBnTqNUh53987NqBjz4EAgH/uxwQVEQ8AwJF9W9C6c5/ceED5YICj/2xFy44PAbrc7QGiyHhACODE4e1o1rp3xcQD+g9RAKdO70V4k67GZZ0uN88FxQOAwKnz/9yPCcoXDwDFxwTljQcgBM7EH0WYWwslXeHxwEmEOYXL5cknEeYYjjPJJ9HEoWnuuanCeEBeVsYxwVXdNQRaBEAIgWu6a/DXxwbiJvxQCzdxE17wwjmcQwpS4Q8/7I/+G7Vr1y7we4SIar7OnTtDbWmJ92fMrNR4AAA2rFuLAUOGKr/ZNqxfiwEPD4W+XCwqHhAQ2LJhPfoMGFIh8QDyHGNBMUF54gEIfV3BgBLFA/r86GOCstQRlDQegBA4+e9ONGvZs5B4YADUlpb3yy6DDJaljqCM8QAEcOryPwgP7gggNyY4efmg/Bt1EM2COih5K008kBsTtClbPHD/GE8nHENTtxay7DaICc4knajieOASGljWlW8rYR1BSeIBH3jjAi4iEUlwhQs2RGxEu3btCvkmoZqODSNkFiIiIvDoY4/hUvQ16Atzw4LYcBmEwY/2fK/zBz6ikNdFbkfkDQ5ygxcgt1zQGQY1eYMcgUKWGeapmPcZpcH9AgdGaYFCtpl3+4UeWyH71RkXxELkFuq5QZ4wrgTRF/4Gy/MGTCXZhn6ZwYEX/Vxn8CHnfS4/9gLWlWL7eY7HKNhSAoXcY8tdnme/KMs2hBLQGL4uaJkwWFfY++T2dfkqi/K+Vxi+537gI68/+VcndBDQyf+B+3/1wY7OcLmS1vg9BaUFUOj2ACABCTiHSKQhDfVRD/+mH4WdnV2pvmuIqPpTq9U4e/ESgoJqo8zleAXEA9Avy1du5i+zqyIegFG6gmOCKo0H9OdK6P/mlpUFLYNBHiolHtB/YEXFBAU+L+H2DZ4XV5ZDOW+G64z3XaXxAFB8TFDIeysjHpDZKTomKCoeSEMaInEBt3EHtRGEg3ci4OPjU8pvGiKq7rp27Ypxzz+P4U8+hbKU4/pyrbh4AIW+N8/rfOVm5cQDQGHpCi67KzseAAzSlLGOoMLigdyTU746ggKfl2LbBvkpbx1BRcYDSn7KU0dQyPvKEg8AKLiMR8nrCIqKB7KRg8u4jChEwxOe2HF6B8LCwkr/ZUPVGidfJyIiAuABD3RCBzRHM9zATbjbu+Pbb79FTk6OqbNGREREVcQBDmiJFuiCTkhHBvx9/dFQ1QCJiYmmzhoRERFVEWtYoTEaoSe6wx52aNa0GQJUAbh8+bKps0YViA0jRERE96mggg+80RWdEYrGeP351+Fm7YpVq1ZBp9MVvwEiIiJ6IDjDGW3RGh3QDndxD95uXmisaoT09HRTZ42IiIiqiC1sEYYm6IFusIAKDes3RB1Vbdy6dcvUWaMKwIYRIiKiPFRQwR9+6I6uqI96GPfUOLipXbFhwwblFnQiIiJ68LnBDR3QDq3QCndwB+4O7li4cCGys7NNnTUiIiKqIvawR3M0Q1d0RjayEeQfhPqqekhISDB11qgc2DBCRERUCAtYIAhB6InuCEQgHh38KDwsPLB3715TZ42IiIiqiAoqeMETndEJTRGGtye8DVcbV/zwww/QarWmzh4RERFVESc4oTVaoSM6IBkp8PX0RSNVCFJSUkydNSoDNowQEREVQw016iIYPdEdgED37t1x48YNU2eLiIiIqpAKKtSCL7qjK7zhhdGjR2PNmjWmzhYRERFVMVe4oD3aIgyhiMQFNHMON3WWqAwsTZ0BIiKi6k5AIAaxOI9I5CAHS5cuRa1atUydLSIiIqpiSUjGeUQiAQloiAbo37+/qbNEREREVSwTmbiIS7iG6whAAHZF7TZ1lqgM2DBCRERUhHgk4DzOIw3paID6OJp5DDY2NqbOFhEREVWhVKQhEhdwB3dQB7VxJvYMvLy8TJ0tIiIiqkLZyMZlXEEUouEFL5z+7zRCQ0NNnS0qIzaMEBERFSARiTiHSCQiEfVQF/+mHIWjo6Ops0VERERVKAMZuICLuIGbCIA/oq9FIzAw0NTZIiIioiqkgQZXEIXLuAI3uOLg4YNo06aNqbNF5cSGESIiIgMpSMF5XEAc4hCMOohMiIS7u7ups0VERERVKAtZuITLiMZV+MIX5yLPoWHDhqbOFhEREVUhLbS4imu4iEtwgD22796O7t27mzpbVEHYMEJERAQgHemIxEXcwi0EIRDXb13nPCJERERmJgc5So9QD3jg6PGjaN68uamzRURERFVIBx1u4CYu4CIsYYk1f67BoEGDoFKpTJ01qkBsGCGzodPpcPfuXQACQgACgBD6tbnL9AsNXwvltVyY+16DbRWwnftJ8m9HeS5yX+vTKWkM0iFvOmGcRhinyc2jKGQ7BeUhz3qD82OYP6Pn99MXfWyF7Fenz2fuDuUy/TbvH4sud1vKZ4Pc5RB5jttoGyJ3ucFBCQFAZ3CiDZ+LApbrDJbr8qS5/xnnpkf+ber0F0IByw2ei3x5gMH+co9NWY48eYLBNnR5t2F4HvIs1+9bSSefGy0zfK27n6G879OJ+3nU5eYPBbzX8Fh0Ql4f0EEHASHkX53QyaVCrhPifor7f/XLdUoa+V5xf13+tCL3WjZMA6GMEXoN1+GHWrh4+SLq1q1b5PcJEdVsSYmJuOvoBOSLCaouHlC2XURMUJXxAIzS5UmDvPvI87wy4gH9udKXgQXEBFUaD+g/sKJiAmU58jw33E4B+yplPADlvBmsy5O/Ko0HgBLEBAW81+Bzqsh4QJ6KomOCguIBLbS4gZu4iEtwghP2/r0XnTp1Ku7rhIhqsLTU1ELqCCouHijovXljgqqMB5B3fwWVzVUYDwAGacpYR1Bh8QAMTnZ56giU5cjz3GAbJYgH9OemqJigKuMBJT/lqiMo4H2Gx1GKeABAuesICooHdNAhHgmIRCR0EFj681IMHz4cFhYWJfhWoZpGJfRXE9ED7MqVK2jatCnS09NNnRUiqoZ84YMdZ3aiSZMmps4KEVWyBg0a4NKlS6bOBhFVQy5wxq9bfkOfPn3YI5ToATdmzBisWLHC1NkgomrIFjaY/82XGDt2LKysrEydHapEbBghs5GVlQWtVmvqbBBRNaNSqWBnZ2fqbBBRFcnJyUFOTo6ps0FE1ZCdnR0bRIjMhFarRVZWlqmzQUTVkLW1NSwtOciSOWDDCBERERERERERERERmQ0OkEZERERERERERERERGaDDSNERERERERERERERGQ22DBCRERERERERERERERmgw0jRERERERERERERERkNtgwQkREREREREREREREZoMNI0REREREREREREREZDbYMEJERERERERERERERGaDDSOVYMaMGVCpVEaPRo0amTpbREREVMUYExARERHjASIiourH0tQZeFA1adIEO3bsUF5bWvJUExERmSPGBERERMR4gIiIqHphSVxJLC0t4evra+psEBERkYkxJiAiIiLGA0RERNULG0YqycWLF+Hn5wdbW1t06NABc+bMQVBQUKHps7KykJWVpbzW6XS4e/cuPDw8oFKpqiLLRERE1ZYQAikpKfDz84OFRc0aCbQ0MQHjASIiosIxHmA8QEREVFHxgEoIISowXwRg8+bNSE1NRUhICG7fvo2ZM2fi5s2bOHPmDJycnAp8z4wZMzBz5swqzikREVHNcv36dQQEBJg6GyVW2piA8QAREVHxGA8QERFReeMBNoxUgcTERNSuXRuff/45xo8fX2CavD1CkpKSEBQUhOvXr8PZ2bmqskpERFQtJScnIzAwEImJiXBxcTF1dsqsuJiA8QAREVHhGA8wHiAiIqqoeIBDaVUBV1dXNGzYEJcuXSo0jY2NDWxsbPItd3Z2ZuBDRER0X00fPqK4mIDxABERUfEYDxAREVF544GaNShnDZWamorLly+jVq1aps4KERERmRBjAiIiImI8QEREZHpsGKkEb775Jvbu3Yvo6GgcOHAAQ4cOhVqtxogRI0ydNSIiIqpCjAmIiIiI8QAREVH1w6G0KsGNGzcwYsQIJCQkwMvLC507d0ZERAS8vLxMnTUiIiKqQowJiIiIiPEAERFR9cOGkUrwyy+/mDoLREREVA0wJiAiIiLGA0RERNUPh9IiIiIiIiIiIiIiIiKzwYYRIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGESIiIiIiIiIiIiIiMhtsGCEiIiIiIiIiIiIiIrPBhhEiIiIiIiIiIiIiIjIbbBghIiIiIiIiIiIiIiKzwYYRIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGESIiIiIiIiIiIiIiMhtsGCEiIiIiIiIiIiIiIrPBhhEiIiIiIiIiIiIiIjIbbBghIiIiIiIiIiIiIiKzwYYRIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGESIiIiIiIiIiIiIiMhtsGCEiIiIiIiIiIiIiIrPBhhEiIiIiIiIiIiIiIjIbbBghIiIiIiIiIiIiIiKzwYYRIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGESIiIiIiIiIiIiIiMhtsGCEiIiIiIiIiIiIiIrPBhhEiIiIiIiIiIiIiIjIbbBghIiIiIiIiIiIiIiKzwYYRIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGESIiIiIiIiIiIiIiMhtsGCEiIiIiIiIiIiIiIrPBhhEiIiIiIiIiIiIiIjIbbBghIiIiIiIiIiIiIiKzwYYRIiIiIiIiIiIiIiIyG2wYISIiIiIiIiIiIiIis8GGESIiIiIiIiIiIiIiMhtsGCEiIiIiIiIiIiIiIrNhWZY3Xbt2rdTvCQoKKsuuiIiIiIiIiIiIiIiIKkyZGkbq1KkDlUpV4vQqlQoajaYsuyIiIiIiIiIiIiIiIqowZWoYAQAhREXmg4iIiIiIiIiIiIiIqNKVuWGkRYsW+OOPP4pNN3ToUJw8ebKsuyEiIiIiIiIiIiIiIqowZZ583cbGBrVr1y72YW1tbfZ3l/zf//0fVCoVXnvtNVNnhYiIiEyE8QARERExHiAiIqoeynTHiE6nK3HaiIiIsuzigXHkyBF88803CA8PN3VWiIiIyEQYDxARERHjASIiouqjzHeMUPFSU1MxcuRIfPvtt3BzczN1doiIiMgEGA8QERER4wEiIqLqpcIaRg4dOlRRm3pgvPLKKxg4cCB69+5dbNqsrCwkJycbPYiIiKjmYzxAREREjAeIiIiqlzJPvp7X448/jmvXrlXU5mq8X375BceOHcORI0dKlH7OnDmYOXNmJefqwfWwapDR6z/FBhPlhIoy3mZMkeuXZn1fJfl40e45o9dxWfFGr3/XrTV6/ajFUKPXXjaeyvPFGd9WWL5etnveOF/Zxvlarf2jzO/Ny8va0+h1celLs6347LvK89+0a4zWFfe/mne9IXu1ndHrdG1Gket/0awudLtOlo5Gr1fm/FJkPurb11Wef572ZZFpXSydjV4naZILXedj42X0OjbP55CR5xjz5tvQsqwfjF7n/X/zsfEu9L3Fff7fZi4zej3CcrjyvJ59HaN1HyZ/XOS28v7/WUClPM97Lc1M+qjIbdUEjAeqnuH/JOOB6muczTPKc1WevlpVFQ8AwPO245XnCQblF1C6eACo2JigqP3mzVdehjHBjcxbRutsLKyNXldmPFBUHFPaeMDWwrbQ/WbqMo1eFxUP5N12eeKBvIqLD9QqtdFrrdAWut34nASj12madON8OAQbvY5Kz/0dHmwfZLQu7/9XcRJycv8P8sd4xvlakrnU6PVIqyeV53nP5TTnt4xe540XPnB51+h1VMZV5Xk9+9zjzRRZhea9OmM8UPVYR1AzmOpzMiz/gfzfZ3nLXg9r90K3ZaEy/p6tqjqCouoHCnpv3pjAUHHlcFHxQ2nrHvIyzFdx+Qi0DTB6fT3zhvI8b/lfVD0FAKRp04xeG+7bsDwD8pfDdfP8Bi4qBiiqfgAoOgYoTX0AkP+YDWOA/0v5zGjdc7bjinxvVPpVo9erNL8qz/P+/3gX8xkblvl544H4nLt5kxuprPhar1QNI0888USBy4UQuHu36AMxJ9evX8ekSZOwfft22NoWHsQbeueddzB58mTldXJyMgIDAysri0RERFTJGA8QERER4wEiIqLqqVQNIzt27MCPP/4IR0fjFiohBPbt21ehGavJjh49itjYWLRs2VJZptVqsW/fPnz11VfIysqCWm3cY8jGxgY2NjZVnVUiIiKqJIwHiIiIiPEAERFR9VSqhpHu3bvDyckJXbt2zbcuPDy8wjJV0/Xq1QunT582WjZ27Fg0atQIb731Vr6gh4iIiB48jAeIiIiI8QAREVH1VKqGkT/+KHz8uu3bt5c7Mw8KJycnhIWFGS1zcHCAh4dHvuVERET0YGI8QERERIwHiIiIqieVEEKU9c137tyBr69vRebngdW9e3c0b94cX3zxRYnSJycnw8XFBUlJSXB2di7+DURERA+wB6VcZDxARERUdg9Kuch4gIiIqOwqqlws1R0jefXp0wenTp0qzybMxp49e0ydBSIiIjIxxgNERETEeICIiMj0LMrz5nLcbEJERERERERERERERFTlynXHiEqlqqh8EJVbVFQUtm7ditjYWMTHxyMuLg5JSUnIyMhAeno6pk6dikcffRQAcOzYMYwfPx62trZwcHCAvb09HBwcYGVlBSsrKzz66KMYMGAAAOD27dtYvHixss7S0hKWlpZQq9WwsLBA69at0bZtWwBAYmIi1q5dCwsLC6OHpaUl7OzsUL9+fTRq1AgAkJWVhf/++w8AoFarlW1aWlrC2toaLi4ucHFxASAbIYUQsLAoV1smERGRWTl9+jT+97//ITY2FpmZmcpDo9FArVbjtddewwsvvABAxhHPP/88bGxsYGNjA2tra+VhY2ODvn37YvDgwQCAhIQELF68GCqVyugByPi4devW6NmzJwAgJSUF33zzjRIT6Levf9SrVw8tWrQAAGg0Ghw+fFiJMQzLfZVKBU9PTwQFBQGQsUFcXJwSl1hYWBjF5mq1Gra2tsrrtLQ0pVOTPq7Q6XQQQsDKygqOjo6V9TEQERFVOY1Gg23btiEyMhI3b97E+++/r/y+nj9/Pr7++mtkZ2cbleP63+I//fQTmjZtCgBYu3Ytfvjhh3yxgbW1NSwtLfHyyy+jbt26AIAjR45g27ZtSpms0+mUh0qlwogRI1C/fn0AwPnz57F7927Y2trCxsYGarXa6NGmTRvUqlULABAfH4+LFy8WGJ/Y2NjA0dER1tbWJjjLREQ1W7kaRoiqk+3bt+Oll14qdP2NGzeU5ykpKThx4kShaUNCQpSGkRs3bmDWrFmFpp0+fbrSMHLr1i2MGzeu0LSTJ0/G3LlzlbStWrUqNO0LL7yAxYsXA5AVMF5eXkqwZmlpqTTU6AOsL7/8EgCQkZGBhg0bKun0lR96AwYMwIIFC5TX7dq1g5WVFWxtbWFpaQmVSqUEcm3btsX06dOVtOPHj0d2djYAWUFjbW0NKysrWFtbo2HDhnjllVeUtAsWLEBWVpYS2Om3aWFhAR8fHwwbNkxJu3HjRmRmZipp9du0traGq6ur0aSER48ehYWFBZycnODo6AhHR0fY29uz0YiIyMxdvXoVCxcuxIABA9C9e3cAsjHg119/LfQ9d+/eNXq+Y8eOQtO6uroqDSPx8fGYNm1aoWlff/11pWEkMTERU6ZMKTTtc889hyVLlgCQY+V26tSp0LQjR47ETz/9BADIzs6Gj49PoWmHDRuG33//XXnt5ORU6N3e3bp1MxrWpVOnTsjIyFAqimxsbGBvbw87Ozu0bNkSM2bMUNK+9tprSEtLM2rM0Zf5tWvXxuTJk5W006ZNQ2JiolEa/XNfX1+88cYbStpPP/0UMTExBTbmuLu744MPPlDSfvHFF7hx40a+jiZWVlZwcnLChAkTlLQ7d+7E3bt3lc4u+r+2trbK8endvHkT6enpAGCUV51OB61WiwYNGhilTU1NhZWVFdzd3eHi4sJOZEREJpCUlITvvvsOX375Ja5du6YsHz16tNLYce/ePURGRha6jZycHOX5+fPnsW7dukLTDhkyRGkYOXjwYJHxQZs2bZSGkX/++Qcvv/xyoWnXrFmjdOzcuXMnnnzyyULTfv/99xg9ejQA4K+//sITTzyhrMtb9i9cuBDjx49XtjtgwAClvLKwsDBqeJk5c6aS9vjx4xgxYoTSOGNjY6P8breyssLTTz+N4cOHA5Bl4syZM5XYQK1WQ6VSKXnp06cPBg0aBACIi4vD//3f/yl1AfpyXL/d1q1bo0ePHgCA1NRUrFixQokHtFotdDqdcmzh4eF46KGHAMg4acWKFfnqIvR1DLVr11Y6rRKR+WLDCNVY586dw6VLl5RKiqeffhobN26Er68vPD094enpCVdXV+WHvD4IAmSBuWXLFmRmZiItLQ1paWlIT09HTk4OcnJy0LVrVyWtp6cnXn75ZeTk5ECj0UCj0SAnJ0fp+dGkSRMlrYODAwYMGACtVmvUEzMnJwcZGRmoU6eOklatVsPf3x9CCGi1Wmi1WqPt29jYKGk1Gg0AKNvSb08vJSVFeZ6Tk2PUCJRXTEyM0XYPHz5caNq8P+h//vlnZGZmFpi2R48eRg0jM2bMMKpwMtS2bVujhpGXXnoJ169fLzBteHg4Tp48qbweMWIELl68mC+dnZ0dGjZsaNTgNWTIEMTGxiIwMBBBQUHw9/eHlZUVhBBwdnZWgkcA2LRpExISEowahvQVIHZ2dkrgBgDbtm3DnTt3jCpU1Go1cnJyoFKpjI7t7NmzSE9Ph1qtVj5nfY8hCwsLpVENkI1wqamp+XoLAfKzDwgIUD6T2NhY5XO3t7eHo6MjHBwc2EBERGYnMTERL730En777TfodDqcPXtWaRhp2LAhPv/8c/j4+MDe3l7plWlpaQmdTmdULtepUwcrV65ERkYGsrOzlUdWVhaysrLQrVs3Ja2zszOee+45JRbQ0//gb9OmjbLM3t4eTz/9NHQ6HTQajbJN/d+GDRsaHU+9evWU8sJwmzqdDp6enko6fWxQEdzd3Y1eHz9+3CjOMGQYcwDATz/9hISEhALTtmnTxqhh5McffzSqpDLUpEkTo4aRZcuW4fz58wWmrVOnjlHDyE8//YSjR48WmNbLy8uoYWTWrFnYt29fgWnt7OyUhhBAdgjZunVrgWnVarXRZzBx4kT88ccfymtLS0t4enrC3d0dlpaWOHLkiNKb97vvvsOxY8fg7e2N2rVrIzQ0FI0bN+aEykRE5aDT6TBjxgzMmzcPqampAGQZ0KtXL/j7+8PJyUlJO3r0aPTs2RNWVlYAchvfNRoNsrKylMYLAOjXrx/c3d2VstvwodFoEBgYqKRt0qQJnn32WSU+MKyUB2CUNigoCMOGDUNmZiaysrKUsl//MCzzbW1tUbduXaMYQv9cp9MZ1R3odLpCf7MDUOILfVp9x0c9w/I/OTlZeZ6enl5kY1LHjh2V57Gxsfj2228LTevk5KT8vr537x4+//zzQtNOmjRJaRhJTEw0KtPzeu6555SGkbS0NDz//POFpn3iiSeUzjM6nQ61atWCu7s77O3tjUYLsba2Rrdu3fDuu+8q7x09erRSB2DYoAPIa+C5555T0n788cdQq9VwcHBQ7vDVXxN+fn7o06ePkvavv/5SPk8nJye4u7vDw8NDiSWIqOKV6z9LX2FHVNUuXryInj17wtnZGQMHDlQqr9evX1+i97u5uaFv374lShscHIyFCxeWKG3t2rWxcePGEqUNCgoqsgHDkLe3N+Lj45VGE/3fnJwcCCHg6uqqpHVwcMDRo0eVdIZDewCAh4eHklalUmHjxo3IyMhARkaG0qCjfwQEBBjl4//+7/+UQEqn0yEnJ0cJyoKDg43SjhgxAikpKdBoNPkaigx7WAKyoSQoKEjp9WG43by9YevWrYu0tDSkpKQgNTVVqTDKyMjIFwBGR0fj1KlTiIiIyHdO69SpY9Qw8sEHH+Dff/8t8Px7enoiLi5Oef3hhx9i//79BaZ1dHQ0ahiZMmUKNm3aVGBa/e3VepMmTTKqVMkrMzNTCXrfeOMNpdewIXt7e7i7u+PIkSPw9fUFIHsFbd++XRnC5dixY4iKisKXX36JF154gT1aiajGSklJwcCBA3HgwAEAQK9evfDiiy8q693d3fH666+XaFseHh546qmnSpS2Vq1ayl0eJdnuDz/8UKK07u7uuHTpUonSOjg4KBUv+rJWTwiRL05PSUkx+r43/GGe1/r1641iguzsbKSnpyM9Pd0ojgDkXSBpaWlGPTf1ZX7eOOK1117DvXv3jIYW0af19vY2Sjtu3DjExsYaDVOmz7Obm5tRWn0FV0EdTezt7Y3SNm/eHADyxVNZWVlGFUv6c6xvrNCfC61Wq/R+FUIoebO3t4erq6tyrjQaDe7cuYM7d+4oedfbunUr1qxZk++8+/v7w9XVFSdOnFAqQKZPn449e/YoFSV+fn4IDAxEWFgYWrVqhQYNGrBTBBERZNk1e/ZsAEBoaCgmT56MkSNHGg0rqRccHJzv92thWrRooQx5WZxevXqhV69eJUr70EMPKZX4xRkyZAiGDBlS4DrD3/z67V69erXQbRl2hujSpYvSYUFfHuvLxOzsbPj5+SlpmzZtir179xp17tD/bs/JyTEaDcPHxwezZs0yKu/1nQMBGHU2cXNzw9SpU43iGX35nJ2dbdTZxM7ODo8//jgAGN2pqr8bpX379kpatVqNIUOGQKPRKMembwi6d++eUePXvXv3EBsbi9jY2ALPmWF9i06nKzKuGzhwoFHDyIwZMwptqOrZs6dRw8jYsWML7WzSqVMn/P3330av4+PjYWtrq3T+1MdVDRs2xG+//aakfeSRR3Dt2jXlM3B3d4evry98fX3RsmVLjBw5UklrGNsQmQOV4Azq1VJycjJcXFyQlJTE3mN5HD58GIMGDUJcXBzCw8Px999/G/X+IPMhhEB6erpy149Op0O9evWU9ceOHUN0dDSuX7+Oa9eu4ebNm9BqtVCpVPD29sZXX32lpJ0wYQIuXLhg1DCkrwBxcXHBn3/+qaSdMmUKTp8+bVTxotVqYWVlBQcHB2zZskVJ+8wzz2D37t1KjyF9AKd3+fJl5fno0aPx119/5estBMgKlXv37sHOzg6A7A3zyy+/QKfTISMjI98t0tu2bcP+/ftx8uRJo7zndfnyZeXWb6LqzFzLRXM97pKIi4vDgAED8O+//8LV1RWbN282+kFMZCqZmZnKfHeJiYnQaDTo3bu3UtGwdu1aHD9+HDExMbh8+TLOnj2L27dvA5DlvWEl12OPPWY0JFpeMTExSqPS7du34eHhwXHm6YFmruWiuR53aQghMHPmTAQEBGD8+PGs3KUS02g0OH/+POLj45GRkaF0mtA/goKClMYcrVaLefPmKXUBhp0yAKBRo0Z45plnAMhr8pVXXkFqaipSU1PzNRQ1a9YMc+bMUfIxYMAA3Lt3D1lZWUhOTkZCQgISExMByEYswztefXx8Cm3IadasmdFIGvXr1zeqdzDUuHFjnD17VnkdHh6Os2fPKkOm6TuJODs7w8XFBT/99BO8vLxKf5KJKlhFlYtsGKmmGPgU7K+//sLw4cORkZGBli1bYvPmzfl6GBKZGyEEMjIysGvXLsycObPAO1+++uorqNVqZGZm4s0334RWq8W0adMwa9Ys/migGsFcy0VzPe7ixMTEoGvXrrhw4QI8PT2xefNmtG7d2tTZIiqzxMREREZGIj09XRkyBJDj1d+8eRMqlQoZGRm4desWoqOjcfz4cSQlJRlVZgwaNAj79u1Dnz59MHDgQDz++ONwdHQ0xeEQVRpzLRfN9biLk5SUlG8EBaIHiUajQWJiIoQQRg0SR48eRVpamnLnjv4OW5VKBWdnZ3To0EFJu2/fPqSnpysjViQkJCAmJgY3b96EWq3Gp59+qqQtqsGlQ4cOyl3aAHDnzh1llAqiqlZtGkb0E0sWxM7ODs2bN8err77Kf5ZSYuCT3759+9CjRw/odDr069cPq1ev5o89ovvmz5+PN954Q7nDxM3NDX369EHXrl0RGBiIfv36KWPoEtVE5loumutxF0er1eKJJ57A0aNHsXXrVoSEhJg6S0RVznC4C61Wi/r16yM6OlpZ7+vri//9738YPXo0h0CmB4a5lovmetxF0Wq16N69O9RqNbZu3ZpvOEQiKr34+HijOfbS09ORnJyM5ORkBAcHK3P33r17FwEBAXB2dkbz5s3RrFkzhIaGwtnZGfb29ggJCTGay4+oolWbhpHCxiYGcoN1X19fREREGE00RUVj4GMsIyMD4eHhuHTpEoYPH44ff/yRlbxEBrZu3Yp+/fphxIgRmDBhAtq2bcsJ2uiBYq7lorked0lkZmbi3r17qFWrlqmzQlQt6HQ6HD16FBs3bsSPP/6IK1euAJDDYsyfPx/du3cHIOcpW7lyJUJCQpSJ37t164ZmzZoZbU+r1WLnzp3Ys2cPxo4dm2+OOCJTMNdy0VyPuygLFizAxIkT4eTkhKNHj/I7iqgKrV27Fo8//rjRHHeGPvzwQ7z33ntVnCsyJxVVLpZ7pr6uXbvC3t4earVamZRKrVbD3t4erVu3ho2NDe7cuYNZs2aVd1dkxmJjY+Hk5AQ/Pz988803bBQhui85ORnR0dHo27cvjh49ip9//hkdO3ZkowgRPZDi4+OVOZVsbW3ZKEJkwMLCAm3atMGMGTNw9uxZzJ07Fy4uLjh16hTOnDmjpAsICEBMTAz27duHxYsXY9KkSWjevDm6du2KhQsXIi0tDYCMvwcMGIA5c+agVatW+PXXX011aERERq5evYp33nkHAPDxxx+zUYSoig0dOhRJSUmIiIjA4sWL8dJLL+Ghhx5Cx44d0axZM/j7+ytpN23ahHr16uHIkSMmzDFRwcp9x8jixYsxdepUHDlyRBnG4Pz582jTpg0+/vhj9OvXD82aNYO7uzuuXr1aIZk2B+wRkl9OTg6ioqLQsGFDU2eFqNp4++238fHHH6NLly54+umnMWzYMNjb20Oj0UCn08HFxcXUWSSqEOZaLprrcRckJycH4eHhaNCgAb799lv4+PiYOktE1V58fDwWLVqEd955R+lYdO/ePVy8eBEXLlzA2bNncerUKWzduhUajQaWlpZISUmBra0tAGDMmDE4duwYTp8+DQB44okn8NVXX3HiVTIZcy0XzfW4CzN06FCsW7cOXbp0wZ49e2BhUe4+v0RUwXQ6HVasWIFx48YBALp164Y9e/aYNlP0wKg2Q2nVrl0bDg4ORhP/AUBoaCjS0tJw9epV9OvXD7t370ZWVlZ5dmVWGPgQUXF0Oh0efvhhbNq0CQV9ldepUwdRUVHK62XLliE5ORne3t7w8vKCl5cXHBwcYG1tDTs7O3h7e1dl9olKxVzLRXM97oLMmzcPkydPhpeXFy5cuMCJVokq0M2bN7F8+XLExMRgwYIFRus0Gg1mzpyJOXPmQKvVwt7eHk2bNkVERISJckvmzFzLRXM97oJs27YNffv2hVqtxsmTJ9GkSRNTZ4nIrKSnp2PdunXYtWsXfHx80KpVKwwbNgyAjBl27dqFO3fu4KuvvlLuErG0tMS+ffuMJoUnKo+KKhfLPdZKfHw8bty4gbfffhuPP/44ADnW3Pnz52Fvb6+kM3xOVFLr16/HyZMnMWXKFNjZ2Zk6O0TVioWFBTZs2IDr16/j559/xo8//oj//vtPWZ93vM/PPvsM586dK3BbwcHByljkAHD48GEEBATAz8+vcjJPRFQKMTExmDFjBgBgzpw5bBQhqmD+/v6YNm1agessLS0xe/ZsPPLIIxg7dixOnz6NhIQEZb0QAl999RWeeuopeHh4VFWWicgMZWdnY+LEiQCAV199lY0iRFVo3759WL58OdasWYPU1FRlee/evZWGESEE+vbtq6xzcnLC9OnTMXHiRFhbW1d5nomKU+6GkUGDBmH16tX49NNP8emnn+Zbl5WVhaNHj6JRo0bl3RWZmczMTEyaNAlXr16FjY0N3nrrLVNniahaCgwMxFtvvYWpU6ciJSUFFhYWUKvV+eYZGTJkCMLDwxEXF4fY2FjExcUhIyMD2dnZypAZek899RQuX76Mhg0bonv37ujevTtatWoFHx8fODs7Q6VSVeUhEpGZe++995CcnIxWrVph7Nixps4OkVlq1aoVjh8/jsjISOTk5CjLv/zyS7z22mtYuHAhtmzZgjp16pguk0T0QLt58yYAwNvbW+kwQUSVS6fT4ZlnnsHKlSuVZcHBwXjssceQmpqKxo0bK8utrKzQoUMH2NraIjw8HG+//TZ8fX1NkW2iEil3w8g333wDjUaDtWvXGi0fNmwYFi9ejLi4OEybNg1NmzYt767IzHz11Ve4evUq/P39MWHCBFNnh6jaU6lURd5COGfOnBJtJzU1FS4uLlCpVLhw4QIuXLiAJUuWKOtDQ0ON7kwhIqpMZ86cwfLlywHICliOI05kOmq1GqGhoUbLevfujcDAQERGRqJDhw7YsWNHje3FvWTJErzwwgto2bIl/vrrL945S1TNBAcH49SpU4iMjORcikRVxMLCAt7e3lCr1RgzZgzGjBmDTp06FdpZ8sCBA/mWJSUl4aWXXsKqVauUZZMnT8Znn33GTpdkUuWeY0TvypUrSkVZWFgYgoODER8fD09Pz4rYvNkx9zFE09LSUKdOHcTHx2PZsmXsHUpUxYQQOHLkCGbOnIlNmzYVuJ6oKplruWiux23oiSeewOrVqzFs2DD8/vvvps4OERkQQmDbtm2YOXMmDh48CAB44YUXsHjxYhPnrPRSUlKMvmc//PBDvPfeeybMERXEXMtFcz1uIqp6WVlZuHHjBqysrBAUFAQAyMjIwNmzZ9GqVasybTMqKgp169bNt/zq1avKPohKo9rMMfLSSy/h66+/Rt26dY0u8mvXrqFPnz44f/58eXdBZmjZsmWIj49H3bp18fTTT5s6O0QmkZWVhYsXLyImJgapqalITU2Fh4cH+vXrp6RJTEyERqOBRqNBTk4OtFotLC0tYWlpCVtbW6Nx+FNSUhAfH4/r16/j+vXruHnzJrKysqDT6VCrVi08//zzAOTcJJ6enkhMTMyXJ3t7ewwcOLCyD52ICIDsKKGf4JlDZhBVDZ1Oh6SkJKSkpCAlJQWpqanIyMhQHo0bN1aGzYiIiFDiEgsLCzzyyCN4++23TZn9MnNycsKKFSswevRojB49Gs8995yps0RE96WlpeGXX37BqFGjYGNjY+rsENUYGo0GmZmZSp2BVquFj4+Psn7Xrl04cOAALly4gIsXL+Ly5cuIi4sDAPTr1w9r166Fra0t7OzsytwoAsgy9s0338TKlSvh5uYGZ2dnjB8/HoGBgeU+RqLyKPcdIxYWFnjllVewYMECZdn58+fx0EMP4datW/km/6WSMeceITk5OWjQoAGuXr2Kr7/+Gi+++KKps0RUZbKysvD444/j3LlzuHLlCnQ6ndH67t27Y/fu3crrwMBA3Lhxo8BttW3bFocOHVJeBwQEKOPy5tW6dWscOXJEed2wYUNcvXoVHTt2RK9evdCzZ0+0bt2aE6aRyZhruWiux20oKysLu3btQv/+/U2dFaIHUnZ2NlJTU+Hu7g4AuHz5MurXr19o+kmTJuGLL74AIIfGCAwMxPjx4zFx4kQEBwdXRZbJjJlruWiux6335ZdfYtKkSejcuTP2799v6uwQVbnk5GTcvXsXiYmJuHv3LmJiYpRHcnIy5s+fr8wx+tlnn2Hnzp24ePEioqOjjepl1Wo1cnJylOGrhg0blm9qBACws7NDYGAgZsyYgREjRlTNQRKVQrW5Y8Te3h6LFi2CSqXCl19+icOHD2PgwIFISEjgxHtUJr/++iuuXr0Kb29vjB492tTZIaowSUlJuHLlCi5fvozIyEjlUbt2bfz2228AABsbGxw7dkxpwHB2dkZgYCCcnJzg6OiIZs2aKdsTQiAmJgaAnF/EysoKarVauXsk7+Tr+u0HBAQgMDAQAQEBcHBwgIWFBWrXrm2Ubvfu3fDy8mJDCBGZnI2NDRtFiCqQEAIXLlzA1q1bsW3bNuzevRtjx47FV199BUD26gTkBKpOTk5wcnKCvb097OzsYGdnB0dHR2VbLi4uiI2Nha2trUmOhYgefDk5Ofjss88AAKNGjTJxbsjcJScnY/369fjtt99w9uxZeHp6GnVGfOmll3DixAmo1Wqkp6cjKSkJycnJSElJgaOjI+Lj45W0Dz/8MLZv317gMNUWFhZIT09XXg8fPhxbtmwpNF+GndUPHTpUaFqdToeMjAzY29sDkJ0pnZ2d0bBhQzRs2BD16tVDUFAQ3N3dOfcHmYVyN4xs374d/fv3x8KFC3H79m1s27YNKSkpaNasGTZv3lwReSQz07JlS4waNQrh4eGws7MzdXaISk0Igfj4eHh5eSnLwsPDcfr06QLTR0dHQwihBB5ff/017O3t0bhxY9SqVavQgESlUiE9PR0qlQpqtTrf+rx3m1y+fBnW1tYlCnD8/f2LTUNEVJmOHz+O8PDwAr/fiKh0tFotNm/ejD/++AM7d+7EtWvXjNafOnVKee7l5YXMzMwSD1fDRhEiqkyrVq3C9evX4ePjw46TZBLXrl3Dli1bsGnTJmzZsgVZWVnKurS0NKO0Z86cUYaBzStvp8OsrCxkZmYWmDbvb3Y3NzfY2trCzc0Nrq6u8Pb2ho+PD3x8fODm5gYLCwsl7fjx49GnTx80aNAADRo0gLu7O9RqNSwtLY3SAaixw18SVZQKmXz9xIkT6NOnDxISEiCEQK9evbB27Vqj3kRUOuZ+qyxRTXTz5k0sX74cS5cuhVqtxqVLl5R1Xbt2xf79++Ht7Y26deuiYcOGCAkJQUhICBo1aoTQ0FD2yCAqgrmWi+Z63DExMQgODoafnx/279+PWrVqmTpLRDWGEAKnTp3CtWvXMHjwYACyYSQoKAi3bt0CICtnOnfujL59+6Jv375o2rRpvsoSourIXMtFcz1urVaLsLAwnD9/HnPmzGElLlWYe/fu4b333sP58+dRv359hISEoGHDhgCAuLg4PPLII8oQk0899RRWrVqlvLdRo0YYPnw4evbsCRsbG7Rr105Z988//yA+Ph5arRb29vZwdnaGs7MznJycYGFhYTSnRkxMDDIzM6FSqYzqAoQQsLCwQEBAgLJMq9WysxCRAZMOpTVr1qx8y3r27InffvsNTk5OaNeuHT7//HMAwPTp08ucOSKi6kSn0xkFLdu3b8f69ethY2ODixcvYuPGjcpdGjY2NkhMTFQmP//555/h4uKiDE9BRESF++yzz5CRkQFPT0/4+vqaOjtE1Z4QAsePH8cvv/yC3377DVevXoWNjQ3S0tKgVquhVqvxyiuv4M6dOxg4cCA6d+4MBwcHU2ebiKhIa9euxfnz5+Hm5oaXX37Z1NmhB8hnn32Gr7/+GgCM5vDUCw0NRfv27QEAAwcOxNWrV9GnTx8MGzYMYWFhhXZq7NSpU4nzYDgJenHYKEJUOcrUMDJjxowCvwRUKhVSU1MxZ84cZRkbRqikjh49iiVLluDFF19EixYtTJ0dqipCAFlZQHUchkGjASwtER8fj0mTJsFv3TpM/PprBA4bBjg64t9//8XChQuN3tKlSxc899xzePTRR5VxOwEY9fYgIqLCpaWl4bvvvgMAvP/++7ybjqgI+/btw6pVq7B9+3ZcvnxZWe7g4IDWrVvj3r178PT0BAC8++67psomEVGZLFq0CADwyiuvmNWdMlQ5cnJyYGVlBQCYNmUKsHcv2rVvj2O2tjh38SIuXrwItVoNb29vo2EiR44ciZEjR5oq20RUicrUMBIUFMQfqVThvv76ayxduhTp6en48ccfTZ0dqgqRkcCjjwIDBwIffyyXpaQA0dFA06ZVm5fsbODoUeDgQSAiQj4eeQSazz/H8OHDcXLXLsQDwOjRwNixQKNGmKDVYrSvL6DTIdHTExZr1qBR48ZVm28iogfMTz/9hMTERNSvX5+TrhMV4+DBg1i8eDEAOdfH4MGDMXz4cAwYMIBz9RFRjZaVlQUrKyuo1Wo899xzps5OzSAEMHs2EBoK9OwJ3B8KqkzbuXgRSEwEWrUCaujdCmfPnsXnn3+O6MhIZF2+jAN37uBeYiKcnZ1h168f/nfoEPDPP3jYy0vWS8ydC3TtWmOPl4hKr0wNI9HR0RWcDTJ3iYmJypiNL774oolzQ1Xi0CGgXz8ZbD3/fO7yw4eB3r2B11+XgUllN8JqNMD06cCnn8rnBrKOHsVLzz+PXbt2IdTODjFt2sA7Ohqqa9eAs2fhBEA/MJbfW28BbBQhIioXIQQWLFgAQPYO5ZwHRLkyMzPx+++/o2nTpggPDwcgh/e4ffs2evbsiR49enDITiJ6YNjY2GDr1q24c+cOh9UsiQsXgOBg+feDD+Tv6Nat5W/tZ58t2TZWrQK+/17+Jk9MlMv8/YGXXwbefhswUVyWnJyMgwcP4t69e0hMTIRGo4GjoyMcHR3h5OSEevXqoX79+kB0NDTvv4/MAweQlJMD9c2b+FCng/7qcQNw9epVNG3aFOjSBbh6FcjJAeLigMWL5cPXV56vDz4ALMtUZUpENUiFTL5OFc/cJldbsmQJXnjhBTRp0gSnT5/mHUnmYPx4YNkyGbAdPiyDNgB46y3gk0/k86tXgaCgSs2G7tw5WISG5i4YMgQ3AgPx+44dWHnxIk5otcgB8Pvvv2PYsGEyza1bwOnTgFYrg0MhgO7dAX3PzJgYwMkJSEgANm8Gdu0CPD2BESOADh1MFlAS1WTmVi7qmdtxR0REoEOHDrC3t8etW7fg4uJi6iwRVbqsrCwkJSXB29s737p79+5hx44d2LJlC9auXYt79+6hbt26OHLkiDIpLJE5MbdyUc9cj5tKSKsF6teXQ1Tfvm28ztJSVv4XJysLCAsDLl2Sr21tARsbIClJvv74Y2Dq1NLla8sWYO9eCLUaWSoVhLs77AICAA8P3MvKwo8nTyJNCGRmZiL7+nVk37yJuLt3cfvuXQyZOBETJk0CAJw6dQrNmjUrdDevv/66nOd49mzZ6bEAWhsb3N22DR6dO8uON+np8ve7RgPs2QP8+ivwxx/AvXuyw+P27bJRiIiqJZNOvk5U0X766ScAwJgxY9goYi6mTAG2bgVu3gTatAFcXAAXF4jkZKgAZPTujRuZmUg/eRIpKSlITk5GcnIyWrZsiYYNGwIATp8+jTlz5iAlJQWpqalISUmBRqOBpaUlLC0t8corr+Dpp58GAFy/fh2zZs1CSkoKEhMTce/ePcTHx+P6tWtYAOAFADhxAmjWDDcPHULYV1/hMAAtgCwvL9h/+SXw1VcygLK3l40deuvWyWCqXz/gv//k0GAZGbLniaGFC2Vw2LevfH3ypAw0HR1lIJqRIR+OjrIBxdq6Ej8AIqLqZ+vWrQCAoUOHslGEarScnBxcuHABTZo0UZb9+uuv2Lt3L27duoWbN2/i1q1bSEhIQFZWFgAgIyNDGdP8888/x88//4zjx49Dp9Mp2wgMDMTTTz8Na8YIRPQAu3LlChwcHEo1ObVJHD4sf79lZsqhmS0s5EOlAjw85O9cvatXAQcHwNW14u9EuHJF5iMmJneZrS3w0EPAK6/kLrt4Efj7b+D6dfm4cUP+lrWxkY9hw+Q2Jk6UQ1vrdMAXXwCLFgHduuUex7Fj8v1paRBaLVQ6HZCaipydO/HDU08hOjERN2/eRN9duzD86lWoAOSdUdQNwGIA5+6/ng5gjsH6rClTgLVrgXbtEBgUhHZhYbD18ICbmxusrKyU3/8pKSmoU6eOfNP48dBu2oRlZ8/ibmgoGrRujYdtbGA5dy7UvXvD636e4eQkf9MDgJWVPE8PPSSPc8MG+bveYL7QAglR9OgWGo0cOvz4ccDLK7cOgIiqFd4xUk2ZU4+Q6OhoBAcHQ6VS4fr16/CvTq3yiYmy8n7zZhkgvPGGHOYJkAHBxo0y4HFykoHBxYvycfeuTPvII4VvOydH3nVw/LgsJPNOzq3RyN4eSUnybgNPzzIFUDk5OcjOzoalpSUsLCyMGp5UKpXRsuzsbCQkJCgNB/fu3cPdu3dx9+5dJCUl4fHHH0fj+8NFnTp1Cj///LPSCCGEgFarhUajgVarxYgRI9CyZUsAwJEjRzBr1iyo1Wqo1WoIIZCWlgb7hAQMvH4dY5KSYHm/UgAAbgBoDsALwGYAWwFMBpAO4Msvv8Srr74KANi/fz+6du1a6LF//PHHmHq/V8uhQ4fQvn37AtNZWljg00mT8NrnnwMAkpKSkPDQQ6hz5gwsMjLyv8HZObfnDCDHId2/Xw791bYt0KtXbmDcvj3Qp48MVvfvl8HR/QnfMHw48NtvBWfe2Rk4cwYIDCz0+IjMiTmVi4bM7biFEDh27BhsbGwQFhZm6uxQeWi1wO7dslKle/cHurE/JSUFUVFRiIqKwvnz57Fnzx7s378fGo0GiYmJSmPH6NGj8cMPPxS6nZiYGOWukSeeeAKrV68GAISGhqJfv34YMGAAunfvDjXHPiczZm7lop65HfeTTz6JNWvW4KuvvjLdUNtXr8rhn8+fl4/ISPlb7+uvc9NYWxd+N0a3brLznJ6fX+7dHK6usg7gxRdluoroHJqdDfz+O+DtDaSmyop+w8r97duBAQPyDR+NTZsA/ZxuGRmAnR10Op0ynGnMnTtYvXw5ricmIjY2Fl0OH8a4s2cLzcbjANbcfz4IQA/IHtn2ANrVr4+mtWoB8fHQpKbirRYtkOjpCRsbGzwcGYmuhw9DDcAyKwvqvOc1OhqoXVs+P3hQ1rs880zx52XSJODLL42XOTnJehx3d+Ddd+X8IgW5eVPeRXL0KPDvv/Ia0Gplo4iTE5CcnJs2JkZeM3v2yE6Uf/8tG2EAYPBg4M8/i88rEZUY7xihB8bPP/8MAOjRo0f1aBTJyAB+/BFYuRL45x9Z8OmNHp37/Ngx494XeU2Zkvv899+Bn3+WgZOVlawkP3pU9iwB5F0G92UuWgTL2bOhjo2VPS8MeXgAR4/il4MHsWDBAiQnJ0NjENgIIZCamoo1a9YojQDLly/HCy+8UGg2161bhyFDhgAAVqxYgecN5/vIIzQ0VGkYOXfuHD7WT5hegCZNmigNI3fu3MGGDRsK3j8A9UcfYeywYUBSEk79/Tf6vPEGkiwtkWNnhz0aDV7IyEBvW1v8LzzcaHzZBg0aYN68eXByclLGF7W0tFQaaBo1aqSk9fPzw+zZs+Ho6Ag3Nze4ubnBw8MDgYGB8PPzg6VBo5OLiwtcDh+WAU9srPy89HMrOTjIOzoM6fP07rvyc/3nHyAqSk545+GRm06nMx5Gy8cHaNhQBq42NvJWXjs72XPHzs64seynn2QjSdeulT/vChGRiahUKrRq1crU2Si7zEzZQ1Pvf/+T3/VNmsiHGVRmISkJWLYMYsECqKKi5LKDB2VHAaD4HpYF0Ol0uH79OlQqFXx9fav8bgmdTocrV67g+PHjOH78OKZOnQpXV1cAwNSpU/Hpp58W+D4PDw9cunRJaeQbMGAAAgMD4e/vDz8/P/j7+8PT0xOurq5wcnIyavB488038dhjj6F9+/YIquRhRYmIqpPk5GSsX78eWq0WbQzvuKgqkZFySKZVq+TvN0N553EKCZENDba28re+EPI9Op1cZ8iwQSIxUQ7d9OuvyKlXD7GPPoobgwYhU6dDvXr1EHD/d+DVq1exZs0a6HQ6WFtbw8bGBtbW1tBqtcjMzESnTp2U39xRN29i3sGDyM7OhkajgWbtWuV3se+9e/hk3z5YaTRAy5ZIqlcPqw8exE0LCxx44w3cfustaLVaZGdn486dO3j77bfx3nvvAQDiExLw6rvvKlmPAxAK4DqAZACNQ0PRsUsXwMoKaY0awX7jRrwcHAw/Pz8EBAQgMDAQAQEB8Pf3h4ODg7IdSwBzC/sMtFrg3DnZMHXokPxM9MNWX78uR2i4d0/+Vn/zzaI/z/nzgRdekOd71SrZoJKSIh9CyE6MBdHpZL3QO+8UvD5vH/MRI2SHEEOOjkDz5rnDhgOyAcXbu+hYSAiZLipKPq5fl9vy9ZXDfBkOBU5E5cKGETI5R0dH+Pv7Y9SoUabOimzs6NsXiI/PXda4sSx4mzTJ/VEPyNshhw2T80gkJckeIA0ayIpuGxt514De2bOyp0Ferq5Ay5bA/Qr+6dOn46vUVOibX3IAJEHeZqoG5L7c3BAXF4cDBw7geQAeAP4AEGmw2YSEBOW51rBhpwCGd5C4urrCwsICrq6ucHFxgbu7u/JwcXFBcHCwkrZhw4aYPHkyNBoNcnJyoFKpYGlpqdwV0thgIvJmzZrhu+++UwIzlUqlTJbm6Ogo094P/pq0aoXrr74KKysrGTzu2weMGoV6t29j2enTRg0Lvr6+eO2114o8Pr3AwEBMmzatRGkNTo6s0PLxkUNbFebXX2VvkE2bgFGj5J0hhsGPXt65RfL2XNHT6WTjiP6zycgAXn1VBtD16wNjxwJjxshrjojoAWHYO7FayMyUE5gmJAA9euQu37BB/kiNi5Pxwq1bsvE8OhoID5fllt4338gfs3p16sjhGUaOBDp1MnlDd1xcHN59911cvHgRDg4OWLJkCRwcHDBt2jRcvnwZMTExiI2NRf369TFlyhQMHDiw4A1lZQHz5kGzdy+0u3bBJjsbKgBwcwMaNICmVSuMHD4cI0aMwKBff4XlpUtAx46yl2ye4SquXr2KHTt24MqVK7hw4QIiIyNx8eJFZN7vTPLdd99h/PjxAIDbt29j586d6Nq1a7kaDzIzM5U7YAHg2LFj2LVrF27cuIEzZ87gyJEjSDboFTpixAilYUT/193dHcHBwahbty46duyIHj16oGnTpkbX9PDhwzF8+PAS5alt27Zo27ZtmY+JiKimWrt2LTIzMxESEqJU+lcZjUb+jr95U75u00bOu9GokXw0aGCc/vTpkm87NhbIycHO33/HFxMn4uGEBIzQ6eB4+TL2fPIJnvnkE+gALPjyS0y4P0JCVFQU3iyi4v/jjz9WzlF8fDwWLFiQL40KwAkAVgDQuTOwYwduXbmC54qoXL9165by3N/fH08++SR8fX3h4+MDDw8P3PLwgLeHB8K8vWXn1vsdPxwArCiq82hJqdXyvIeFyblJDQUEyGWffSY7o96+Dfzf/+WOylCQ0FBg5kxgxgzZoJKQIB+OjrmNXULI7fTtK+OXqCjg229lXVDr1vLRtKms61GpjH/ba7VytAcXFxnb9OwpY8ewMON0q1cDzz0n52vRd17dt082rOnL/NhYWf9QmLFj5VytRFQhOJRWNWVut8rqdDpotVpZGV6ZkpNlbwP94/RpIDgYmDdPrs/MlLdn2tsDEybIhg+DxoAyO3oUOHIE2owMXL1wAXvPncPCf//Ft3v3osX9nrFff/01Xn75ZbQDoFKrkerqihx3d7h5eKCWtzdmTJyI8Pu9Ti9fuYJTJ0+iz2uvweF+hUt6UBDiu3RBZseO8B08GM73h2DSaDTIysqCVqvN10ii0+ng5OSk9LzUarX5htsyqblzZQ8QNzcZwAAyIDlypOD0770n161dK+/sqEp37sjAJyFBBkw//ggUMUFcqcTFybtRfvlF3l0CyGBx8GAZWPXokduDhugBZW7lop65HPft27fRunVr9OnTB/PmzVMqm6vMggVy+IOEBPmde+ECcPmybKhu1kzOQaXXsKHsbViQwEDg2rXc13PmyCEVzpyRDSiGevUCduyQz+/elT/Y3dxkD9NGjeR+KrksW7p0KZ599lnl9bVr13Dz5k2MGDEC0fo7JQ28+eab+Oijj/LFa7dmz4afwWSn/wHYWL8+pp48CdjbGw19eRWAYRNGooUF4gcNQv25c4H69bF69Wo88cQT+fat3+cff/yBQYMGAZB3xY4bNw6AvDPU3d0dtra2So/azz//HM2bNwcAbN++Hd98841yl2lCQoIy/FVMTAwiIiLQrl07AMDcuXPzVURZW1sjPDwcLVq0wHvvvYfa94fzSExMhIWFxQP9/0lUnZhLuZiXuRy3TqdDy5YtcfLkScyePbv0HdtKIz5ejuqwY4f87aaf22z+fGDnTlmJXgkNMwcPHkTHjh0BAE4AhllaYoeHB6zt7WFra4sVLVqgzbFjQFAQkp2csCsyEnHOzrjs5IQrtrZIvz+npo2NDUaMGIFH7g/ffevWLSxcuBDW1tawsrJSGvzVajV8b99G/23b4LxtGxAXh4xjx3AuIgK2OTmwzsqCZWYmLDMyYJmTg4zJk+Hdvr3R3R3V0qef5k4G7+YG1Ksn625++SW3MWLLFjlHaM+eslNqURYvBl56Kf/y8HDZGDFqlBzevDD6u4uK6uSjb8yxsZF1Fr/9Bnz/vbxr5f48e7h7V446oVLJRqDgYCAoSB7H7dty2K833ij6WIjMQIWVi6KCREREVNSmSAiRlJQkAIikpCRTZ6Xm02qFGDlSiKAgIWQ/AONH48bG6c+eFSInp8J2f+7cOfH555+LAQMGCAcHBwFAeUybNk1JFx8fLy5cuCCSk5OFTqcrfsMajRBLlgjRr58QVlbGx6RSCTF4sHH606eFSEmpsOOqdFlZQvj75x6Tk5MQzzwjj6MgiYm5aQ0/v2XLhNi6VYiSnNPyiogQwtdX5sHa2njdpElCdO0qxLhxQnz0kRB//CGvtays/Nv54w8hVqwQ4ttvhVi0SIh//5XLU1KEWL5ciM6djT/vhQtz33vtmhB//ilEZGSFXsdEpmau5aK5HPfUqVMFANGuXbuSlYEVLSSk4BjB1VWIp54yTvv000I89pgQL70kxPTp8nt640Yh/vtPiNTUwvdx964QmzYJMWaMEI6O8r160dEF7z8gQIjevYVYujQ3rVZbYeX52bNnlZjkk08+Eenp6UIIIVJTU8UXX3whNm7cKP755x8xYcIEJd2kSZPkm9PSxPLly0Xnzp2FBSB+BcQkQIwICBDfLlkirl+/ruzn2rVr4u233xbu7u6iNiCeBMQCQFzJe7wDB4r/jh0T/fr1Ey+//LKYO3eu2Lhxo7h06ZLQaDRCp9MJjUajbPeXX34Rbdq0EWq12ii+0j92796tpJ0/f36BafSPv/76S0m7a9cuMXLkSDF16lSxePFiceLECZGdnV0h55yIysdcysW8zOW4169fLwAIFxcXER8fXzk70enkb0R399zyZ+1a4/UVvsvcbaalpYmIiAhx9epVkZqamj/uGTiw4JgAkL/7L10qaybk36lTC98+IMSpU7nv2bFDiFmzyra/qvDrr0K4ueXmvVYt4/WdOsnltrZCjBgh6wUM4ggjBw8K0bKljP0cHPLXsWzalJv2yhUZu5X2WtFqhRgyJP85f+EFuU6f5s6d3HoCjUaI778X4sMPhXjrLXl9tG4txJEjpds30QOmosrFCrtjJCgoCNcMe8hRuZhDj5Bz587h3LlzePjhh43md6gUzZsDJ0/K5z4+sjdmSIjs4d+smbzdsRIcPnxY6X2o5+npiYEDB2LMmDHo2rVrxQwbkpQkh3H66y8gIkLe9jlmDLB8uVyfkyPvglGp5ITfr76ae6tmdXb7trxD4vRpOVGc4bjteV2+LIeZAnLH+4yLkz1HUlLkXRVz5gB5Po8Kd+OGHCLl9GnZ20OvfXs5PmpearXM2/btucuaNpW9i/UsLGQvpqeeyl129qy8tXfVKtnbRD/U13ffybtIAMDSUh6/4aN3bzksHFENYw7lYkHM4bgzMjIQEBCAu3fvGs17VYk7BJYsAV5+OXfYhf/9T96Z6OEhH/XqyWEXfH0rZ7irtDRZNut7LyYmAp98IseT1t/Vajis57RpcrxzQJbxdevK4RSHDJFjWnfqVHQPxSK0bNkSx48fx7hx47B06VLjlTExwNNPAxoNLjk44NsjRzB13jx4bNgAbNuGVwcNwlfffw8LCws8/PDDePnll9GrV69CYxshBJKTkxEbG4u4uDjcjYtDcGQk6m/fDpudO2U5/dZbpT6G1NRUnDlzBunp6cjMzERmZiays7PRs2dPZTLzU6dOYd++fUhJSUFqaipcXV0RHByM4OBg1KlTB+7u7tXnjlkiKpQ5lIsFMZfjfuihh7Bjxw5MmTIFn3zyScXvIDJSDmG0d698HRYmJ/B+/HE53GUlyM7Oxosvvgh3d3fMmDEDjnnnq8wrJgY4dUoO56V/nD8v717NzJS/bfVzUmk08jdfaXz7LfDDD3IIKScnOQyWfkgpW1t514SbmxwiNCRETur+5ZeyDqE6ysiQd/pGR8vnTz6Zu27SJGDbNnn+9Bo0kHcE3R9ho0j37snf25s2AevX5573sWPlnR5eXsATT8jf/+3bFx4zXr0qh23v10/Gf+3byzlUwsPlnSpFDdu9YAEwcWL+5c8+Kz/L0srKkvPhMOahGq6iysVSNYwUdFs7IH/kbN68Gan6IV6o3Mwh8Bk3bhyWL1+Ol156CYsWLaq4DUdHy8J8+fLcSbE3b5a3K7ZsWfwtlOVw48YNXL58Gd3uN7RotVoEBwejcePG6NOnD3r37p1vvOlKERsrgyb9eNs3b8pjj43NTdOunSxMH3pIDh9W0x06JAOM2rVzJ0q/dw/48EPgq69kQAfIMULff7/yG0jyTrR+4oRszLh4UT4iI2WAlpoqg9CkpNzg5N13ZeBkZSUbVw4ckNv6+WfZsGVI/xWuf+9PP8lbdC9ckIFhXsuWyUCOqIYxh3KxIOZw3PrhnOrUqYNLly4ZTUBdoaKj5Q/IpUtlpcMnn8jhDKqrhAT5XX7+vOzEoR/OY88e4zlPAPnj/qmngBdfzFexc/ToUSxduhRBQUEYPny40XxhALB371706NEDQgj8/vvvGDZsWO7Kr7+WDUiFOP7WW9jv54dhw4YpE8WW2fXrcsgIfXmWnS1/uAOykejPP2W5FhAgx0j38Cjf/sxJerrsLBIUxIoQqvHMoVwsiDkcd3x8POrWrYu0tDRcvnwZdSqyoUKnk7+R3n9fli/29nIIy9deK33DQglcv34d69evx9atW7F7926kpaUBkMNotTect7Q09BNy6+s4UlLkb9rnn5cV55VRx/C//8nOGSqVHKKqkDrBctHpZCfB9HQ5VJWnp5ycvKLKeSHk0Obffw+sXCk7ozz9tGwcKqsnnwR+/102TOnVrSvrVpo0yW1EunlTNoboOz0OHiwbWBITZYfWhx4q+vrLzpaddW7ckPUYDRrIRiwvL/mbXj8/SnFycuRn+eefwPHjsvPPyJEydqykBkGiymaSobTc3NzEhg0bxJ49e4weu3fvFt7e3uW6dYWMPei3ysbFxQkbGxsBQBw4cKDiNnz+vBB+fvJ2xIcfrrjtlsDOnTuFi4uL8PDwELdv31aWV6uhFw4flkOA5L0t1HCIjppq40Z5LPXq5V939aocwsrCIveYH3pIiJiYqs+nIZ1OiBs35BBchd2Gq9UKMXaszLNaLYdqKQmtVh73jh1CfPONEFOmCPHii3J5UlLBQ3gRVWMPerlYmAf9uHU6nWjWrJkAID799NPK2cnNm0IMGCCHmTQcospw2Iya5t49IbZsEWL0aDnUpP64LCzkcIxCiJycHDFmzJh8Q0a5ubmJQ4cOGW3u7bffFiqVSnz00Uf59/XVV0K8954QEycK0a2bPHejRuUO81gZkpOFaNFCDhfRr58QlpbGcYvBEFlUhMzM3BgCEKJPn5o1rCpRAR70crEw5nLciYmJYv369RW/YZ1OlieAjAmioip+H0LGNe+9956wsrIyKnu9vb3FF198UbE7mzcv9/u9fXshPv5YiM2b5dDKFTWksk4nxIQJucN4rVwp46qMjIrZflycEG3bFjyk144dFbMPQ0eO5MZL0dHl21ZWlozFRo2SQ2/p8922bW4ajUYIT0+5P7Varp81q/DhvPJauzZ3iLDMzOLT79xpfA5/+03GTHfvCtGwYcHnuUuX8p8LIhOoqHKxVA0jQ4cOFXv37i1wXe/evcuVETL2oAc+CxcuFABEy5YtK24s8du3hahdW365N2kiK5yrUKdOnQQA0aZNG3H58uUq3Xep3bkjx6hs3z5/Zfv33wvRo4dcv26dHGO0JvyI3ro1N9gYNqzgMTcvXDCuIFixourzWRYajZxf5dFHZaDbpYs8jv/9T4hVq4RYvVqIX36Rger587nvu3JFBsxnz+Y2vJw+LUSDBkK8+qpJDoWorB70crEwD/pxnzhxQgAQtra2IiEhoXJ28uijxo3ia9YIUZ06LZRXRoY8pt69hbC3F+L+eTxz5ox4BhAfAKIDIIZ37Ch8VCrhAogxTz5ptImsrCxx8OBBo2XKNaf/8R4fL+e5euopIQYNkhVMlWXJkvw/3Fu2FGLoUDmutmGF1oIFlVN58iA4dCj/eTSYS4WoJnrQy8XCmOtxl5thBfStW/K3biXOZfb3338rjSGdOnUS//d//yeOHz8utPr5IyqSTifE11/Lsj/vd71KJYTBXF/i0CHZaBIXV/r9aDRCPP648fbXrctdf/u2rJAvS2PM8uUFV9a7uZWsIaAsPvxQdkysSKmpcr6T6dNlhxJDBw7I2MywISs8XP6Ov3ev+G3v21fyzjz9+xc+N42+UfDMGdkxtlev3PXz5pXueImqgWo3xwhVrAf9Vtk+ffpg+/bt+PTTT/Hmm2+Wb2M6nZx/YepUOVRU/fpy6CEvr4rJbAmFhITgwoUL2LdvH7p06VKl+y6X5GR5C6Z+aIXhw4HffsufLiBADjny0ku5Y7JXJxoN8M03wIQJuct695a3nLq5ySHU2rYFatWSt7Tu2wcMHVr0vCXViVYrhxA5dEgeV2HmzgUmT5bPDx4EOnaUz+vWlXPp/PqrvE3Z31+OuTp0aO7cLETV2INeLhbmQT/umTNnYsaMGRgyZAjWrVtX8Tu4cAFo1Ej+7Nu5E+jZs+L3UZ3ExsrhJ+6LCwmB14ULBaetU0eeH32ZvnGjHILSygqXbG3R6pln8L/nnsPL27bBwt0d+PtvWRYZ0mhyx9tesUIOzdCmTcUcy6+/ynKsdm2gf3/5OeYVGSnn5crJkcNTuLrKIblu3JDrp0+Xw2WYKyHkefzwQxkPBQbKodEqe0hXokr0oJeLhXnQj1ur1VbsUJrR0cDrr8vhmL77ruK2W4y0tDSsW7cOV65cwfvvv181O718Wc6Dcfq0fFy4IMtr/VwSADBqlBxGCpDl9LRpstws6fCKmZly6KVNm2TZv26dLFcA4PPPgTfeANzd5TBYQsg6GmtrOazU//4HNGyYux1ADnOuUsm6iLZtZXmuN2WKHObMzq7cp6ZErl+X9SEuLpU73KQQcojv6dPlUFp6rq5AcLCcO87BQT4efhh45JHS7yM6Ws43eviwjI1at5Z1H1eu5KYZMkR+fgCwf7+sQ/n665IPy0VUTZhkjpG87ty5A1/9+IZUoR7kwCcxMRFeXl7QaDS4cOECGjRoUPaNJSTIQuPAAfm6USM5AbkJKnpr1aqFO3fu4MSJE2jWrFmV77/CXLwoJyjbv18GWVeu5E4ibm0tJwmrW9e0eSzK2bPAxx/LwC9vBc7vvwOGY6fXRDExwK5dwKVL8hEdLYMstVo+xo3LnaT9+nVg/Hg5uaB+jhVAjmXar58MYJ2c5Gfu42OSwyEqqQe5XCzKg37cly5dwu+//46mTZtiwIABFb+DqCg5nnh6OvDHHxW//eruhx+AjRshdu+GKinJuCyoX19+/+u1bi3H4AagUavRQqvFeACvGW4vPFw2qAcFyZhgxAhZ9ty8Kce9zsiQjRjBwbIyytNTjo3dsaPspFDREhNlBcPChbISJq/ffpMT6gKy/FSrZZ6IqMZ60MvFwjzoxz1hwgQcPHgQM2fOxKBBg8q+oYwM4NNPgTlzZCW8Wi3negwLq7C8VntarawnMegogbffBtaulY0mei1ayDJ0yJDyNQh88ol8JCQUvD46OndO0wkTZJkNAAMGAGvWyInJT5+WHV3r1JHldhHzm5WKEPKasLKSc3nkPc5//5XztqWmyjTe3rLRRn8vxRdfyPNTkRIS5Hw3Bw/K3+kF8fKSHSLzzAtXZmfOyPlKf/4ZmD3bvDuN0AOjWjSMhIeH49SpU2XeORXuQQ58Vq5ciVGjRqFJkyY4o5+Eqqx0OqBTJ1mQTp8uJ0/T94qoYg4ODkhPT8eVK1fyTWxa4yUlycnWEhOBt97KXX7xoqwIqY6io2Xvh+home9792RgU9bJ7mqy1FRgxw5g61YZXL3xhgxEt22T63v2lM8ra8JjogrwIJeLRTHX465wOh17yQPyR75GI8v1uDigcePcdRMmyAqTqCjg0iXcCwpCq4wMPBMXhwwApxs0wJPTpuHJJ5+Edd5Y6/ZtWeny449yH3lNmAAsWCCf79sn72CIipI9RV98UcZw5SmDjh8HVq+WvS4DAuTjzh3Z21Kf1/feAz76SPZe7dZNdiRo1ars+6wI167JHqouLqbNR2ncvSvPbePGnMidTMJcy8UH+biFEAgMDMTNmzexYcMGDNTfiVBap08Djz2WW/nfo4cse5o0qbjM1nSxscC8efLOhdRUuUw/IXh5vtM1GuDYMXmXikolY67UVOC//2QdjX7bzz4LLF2a+74XX5R3K5RVTo68+yEyUsY2SUlAly65Ff+XLuXWV1hYyEaP2rXlZO8BAXL/q1bJeKQgP/4o77YBZEOb/k6XipKaKusroqLkZ5OWJjvzpKfLO3Latau4fQEyHtbpip7wHZD5OHhQptOPXJGZKT/fxo2B5s0ZV5PJmWTy9bzCwsLKNY7Xg2rRokWiadOmwsnJSTg5OYn27duLTZs2lWobD/IYohMnThQAxHvvvVcxGzx/3nj8TBNIT09XxhKNj483aV6qTERE7jiVO3ZU6litVAn+/VeIRo1yxxX94ANT54ioSDW1XCxvTFBTj5tqsNu3hfDwEAIQmWPGiGkTJwonJyclzunQoUPh7z15Uo5TPW2aEC+9JMckb9BAjrutt2VL/rGve/SouIlcC/P008b7tLYWYuHCipugtrSWLs0dR91wfrDqSqeTn6vhRL83b5o6V2SGamq5yHigcEeOHBEAhIODg8goa1mwdWvuXBt+frLcqcLfp9nZ2WLcuHHi//7v/0RMTEyV7bfM4uKEeOcdec6WL89dXtnnLDtbiMREIf78U86DAgjxww9l29aePUIEB+ePKZ59NjdNamrBc25MmWK8rYwMOZfnv//KOUEOHpT1Hfo5WXQ6IcLChOjZU+b/QXbnjjy3BZ03/WPcOFPnkqh6zDHCO0YK9tdff0GtVqNBgwYQQmDFihX49NNPcfz4cTQpYW+FB7lHCABERkbCwcEBAQEBpX/zjRvA7t2ypb9r14rPXBloNBq0atUKly5dQmJiIqyq4xwcFW3ePODNN3OHrmjYEBgzRvbOKMvnSlXvt9/knDKAHB7l5EnT5oeoCDW1XCxvTFBTj7skpk6diubNm2Po0KGwq4xxpBcvBkJC5J2lJrqbtMZasyZ3CKrnnkPiJ5/gm2++weq5c/H+gAEY8sQTuWnVajkco5+fHKaqoB6EQuT2sIyLk/OZBAfLXr3PPy+X//NP7rxYlSUuTg4VunSpHCcdkD2J584F+vat3H3nZTB0GebMkXfcVGcZGYCzs+wVrPftt7L3L1EVqqnlIuOBwr311lv45JNP8Nhjj2H16tVl20jXrvL7vXVrYMsWOZxjFcjOzsaKFSswZ84cREVFAQCOHz+O5s2bV8n+y+3WLTkHp76M/uAD+d1et658NG0q56xwda34fb/7riz/ADm803vvle5ujGeekXd0AHI0hMaN5R2YrVvLYT31UlLkXQ/37sk7HZKT5YgJO3eWbD+R/8/eWYc3lTVh/E2qtLSlUFwKFHf3RVp8cbfFP3xxh8VtcXd3d3dZXIo7tDhUoO7JfH8MaVqo50Z7fs+Tp8nNzTmTNs2Ze2bmnRdAmzaAau/z+PHY45sSgYG81ieErS1XYnXrphubBIJ4MIiKkeLFi2sUlUlNODo60tq1a5N8vilnhGjM/v3qTDU98PbtW1q2bBlVrFgx1t/n1KlTdO3aNb3YpDdeviQaMIAobVp19oBMRlSnDpExZMqkdl69ImrblmjqVKJnz/RtjUCQIKa0LibHJzCl9x0TDw8PAkAymYw+aSPr3MdHvS79+CH9+KmB3buJihSJtT5ErFyZcAbh9u3q1/v68jqTUPbprl38uixZOItUVygURIsWEaVPz/OPHKm7uVXs3UtUuDBR1apEnz/rfv6UcPo0kbMzUZ8+/DsLD9e3RYJUiCmti8IfIFIoFJQzZ04CQPv27Uv5QNu3E02eTPTihXTGJUBwcDAtWbKEcuTIEV1RmSlTJtoecx00NpRKrvL8dW3PkIFo8WLp1+moKKK//+Y5mjbltZmI6PFjokGDiJYuJTp3jqsT4/IlXr8mcnBQ21mzJlc2njhB5O5O9PQp0Zs36opUpZKoShUiMzNezxLi2zei8+eJRo0isrBQzzF1qtrOqCgiE/t/pHPniAoWjN/Pq1yZKCyMKCRE35YKBJKti4kIywk0RaFQYM+ePQgODkblypXjPS88PBzh4eHRjwPi0zg0ckJCQmBjY6PZID4+/FNHzTO/f/+O06dP48yZMzh//jw8PT2jn1u/fj0GDx4MAKhbt65O7DEo8ufnbIEZMzi7dONG1g5/9Sr23ycwkJt8CwyLfPm4d4xAINAJSfEJUos/sGnTJgCAq6srsmXLJv0E9+7xTxcX7WQ5mhCXLl3Cy5cv0bVr19gVr61bs1Z7jOxNC0dH7tUVs2ogIoJ7Tnh7A9mzq4/v2cPa3Tlzcibnn39yhqatrfocHx/OTPzf/7jpqa6Qy4GBA7nKde5cYMQI3c2tomVLvhkTdeqwFrpAINAI4Q+oOX/+PD58+IB06dKhYcOGKR+ofXvpjEqER48ewdXVFT4/9yWyZs2KkSNHolevXprvdegTmQy4cQN4+xZ484ZvW7cCz57xmrl9O3DtmnQ9NszMgMWLubK3YUN1xen9+8CiRbHPtbTkeYl436FxY/bx7tzhfimLFgEXL/LtV86eBdzc+PULF7K/8WtFT8zKVoDVMWbNUj9u2JD3PfLmVZ9fvTr7m1u2sL9kCri6As+f8/tTKrmHy6dPwNOn3C/mzRvuNZY1q74tFQgkQ6PAiJlo1Bsvjx49QuXKlREWFoa0adPiwIEDKFKkSLznz5w5E5MnT9ahhbrnw4cPKFSoEJo1a4ZNmzbBPLGGT/Gh5cCIUqmE/OeifOLECTRq1AhKlVwUAHNzc1SsWBEtWrRA9+7dtWKD0WFnx6WU3bqxI/Xxo9qxiYjgAErGjOw8VK/OTU+zZNGvzQKBQKAjkuMTpAZ/QKlURgdGummrDF8VGNF3c20D5ubNmxg3bhzO/ZSS+O+//7Bhw4ZoHwjAb5sfJ+3tcbthQ1SvXh01atSIPWBkZOzzv33jjYwPH4BVq/hmZcXyZjlzAhs2AP36sRSGQhG/ob6+LDnl7s6bKPnysV8hRTNdR0dg+nT1Y6WSJVh+3ZxTKmNLhG3ezPbMnq3bgI5AIDBqhD/wOxs3bgQAtG/fHtbW1vo1JgECAwNh9zPRr1ChQrCyskLu3LkxcuRIdOvWzaBtTxbp0/OtXDl+PHIky09OmMASzFI2HlehknZWUagQS3a/eMGb9G/e8J6Cipg+Q758wPz5LMt59Srw33/AzZvchD0igpuFx/zblC8fe66oKG6+PmMGB4FUfmOhQuxrFCgA9OgBNGsW+73LZDxn164ss7VypVoa1BSQydjnMjPjAJSLCwejkgIRS99Pm8byZaNG8e9INGsXGCoSVbAIfiE8PJxevXpFd+7codGjR5OTkxM9efIk3vPDwsLI398/+vbhwweTK5WdPn06AaAaNWpoNtDgwVzGN3y4JHYREb17946aN29OOXLkoDFjxkQf9/LyIrlcTsWKFaPhw4fTiRMnKDAwULJ5UwXnz/9egimXc8OusDB9WycQCIwEY5aQSI5PkBr8gYsXLxIAsre3p+DgYGkHDwzkBqy2trze/PuvtOMbKZExGoxHRERQgwYNoqU/LCwsyMzMjADQgAEDfnvd69ev6cSJE7Ro0SIqV64cAaDevXuTi4tL9Bhnz56Ne+KQEKJjx4j69WMJppi+QEJ/++/fiSpWjF/KIWNGCX4rv6BUEnXpwuMPHUp04QLLcSxZwpJi587xeV+/EqVJw+f98YfpN2EVCAwM4Q8Y3/tOiJMnT1LLli3p1q1bKR/Ez4+/oxPYb0kpgYGB1LRpU3J2do61lr58+TLWY5MnICC2fOLBg0QNGxL995/2G7aHhRF5ehK9e0f04YNaxikqiuj+/ZSP6+FBVKaM2rfo0CHpr/Xz4/l79FC/funSlNtiSkREEOXMGdtvK1qUpc0EAgmRyh/QODDi5+dH7969o5CfX0579+6lgQMH0rp16zQd2qRwc3OjXr16Jfl8Y3b44qNkyZIEgNavX5/yQf77T73ZsWKFZLYtX748+uK+UaNGsZ778uWLZPOkWr59I9q3j7VCS5VSL5CtWrFDIRAIBIlgSuticnwCU3rfKvr160cAqEePHtIPXrVq7AuxK1ekn0PHhIeH082bN2nNmjW0d+9eunHjBn38+JHCfkku2L17N23cuJH27dtHp0+fplWrVlG3bt2oSJEi1LBhw1jnOjk5kVwup65du5KHhwdt2rSJANDo0aOjz1m4cCGZm5tH+0cxb82bN4/1uHXr1om/EaWStd+PHydKzBc8dSrhXiba6nM4bVr8c9arpz7vwAEie3s+3rixWm9cIBBoHVNaF1O7PyAJ4eFEDRrw93GePJIPf+HChcSTAFIbSiVRiRKxN70XLeKkBl3x6JF6X6FjR+4ZcucO0a1bfEvo/0SpJFq1St0n1cGBaMaMpPcLef6ce5TNn89z2djwONWqSfLWTIL16zkppnhx9edk1ix9WyUwMQymx0jv3r2xZ88e3Lp1C58/f0br1q0h+1li5uPjg5EjR2o6hUmgVCpjaYSmNj58+IAHDx5AJpOhcVJL8H7l6VOgQQMgOJg1jrt2lcy+Ro0aYdCgQYiMjET//v1jPZdFSD5pTqZMQIsWfAOA48e5HPXYMdaqLFFCr+YJBAKBLknNPgER4ejRowCAZs2apXygkBBg3z7uk7R3L5AmDR//4w+Wc6xRg9eZqlU1tlmXEFG0Hw0ATZs2xenTpxEWFvbbuWXKlMHdu3ejH0+ePBlPnjyJc9xfP2/z5s1DhQoVUKhQIQBA7ty5kTFjRpSPITHh5OSEqKgoWFlZIV++fChQoAAKFCiAEiVKoEWLFli/fj0OHTqE6tWro2/fvom/OZmMJSkKFEj8XDc3YO1a7l3m6MhyWm/fsgxDxoza6481dizLg65YwY/TpGEJjmLFgJkz1ec1awacOwdUqwYcOcL+aZMmQO3aLBUmEAgESSA1+wOSoFAAHTsCJ07wd/XatZJPUblyZWTLlg2fP3/Ghw8fJB/fKJHJuI/Yv/+yDNWTJ8CgQSyZ1LYtMGCAWopLWzg7AxUrcj+Sbdv4FhMzM6ByZaBuXV6fS5bk41++AF26AGfO8OOqVYFNm1gqCmDpp6go9jXiY8sW7rMxdKj6WN68wLJlkr09o6dbN5ZYXb6cH7dpA/yyzyYQGAoyIiJNBsifPz++f/8OX19fdO3aFVu2bEHdunVx6tQpFC5cON4LNEPh4cOHyX5NkSJFEuyPMWbMGDRo0AC5cuVCYGAgtm/fjn///RenTp1CnTp1kjRHQEAAHBwc4O/vD3t7+2TbaGisWrUKffr0QeXKlXHt2rWUDRIezl+wnz/zxrrEjc169uyJdevWoVGjRjhy5IikYwviYN8+IFs2dlgA4PFjXjxz5OD+MdrQLxUIBEaLttdFbfgDgOY+gan5A9+/f0fDhg3x6NEjeHt7p6xJ6efPfCGragK9ZQvQqRPfj4w0up4PkZGROHToEFatWoX379/jxYsX0c81aNAAJ0+eRPr06VG2bFkEBQXh06dP+Pz5M9KlSwdvb+/oc/v374+3b98iMDAQAQEByJgxIypVqoRKlSqhYsWKyJQpU7LsCggIQEBAALJlyxa774hAzZYt3CNFRYsW7N8AvLGyfTtQoQJrlQsEAkkQ/oBp+ANRUVGYN28e6tevjxIlSsRKCkgygwdz021LSw5S160ruZ0AMHv2bIwaNQpFihTBo0ePxJoYEz8/DkqsXg2o/nfc3LjhuS64fh04f54TGuRyvkVEcABExaBB3HQd4P4jlSpxIG3GDG4qb2bGQbaZM4FJk/h+pkycFFG8OPuYMQM9RLzh/88/nExRpgz3TUuXTjfv2ViYOZN7xFSrBvTsKfZ3BJIj2bqoaemKjY0NlSpVioiIypQpQ2XLliUiokKFClHatGk1HV7ryGQyksvlJJPJknQzMzOjN2/eJDhm9+7dydnZmSwtLSljxozk5uZGp0+fTpZdplYq27hxYwJA06dP12wghSJhTWoNePnyJcnlcgJA9zXRqhSkjObN1WWWtrZEJUuy1NbYsUTXrmlfuzQhbt9mrfPRo4lSk5asQGBAaHtd1IY/QKS5T2Bq/oCKFL+f0FCiChV4rciWjaWPPn2S1jgd8fXrV5o4cSJlzZo1liyVl5dX9Dnu7u707NkzUv6yBkZFRYmeZ4aCuzvR9OlEbm5Ea9aojz97pvZrJkyQxo9RKnXTn+3tW8PoA+fpSXTjBvd7OX6c6NAhonv39G2VQM8If8A0/IErV64QAHJ0dExZr47589XfsTt2SG9gDPz8/MjOzo4A0NGjR7U6l9GiVPI1e8eORIcPq48rFNyfRNe8eUO0ciVRixZEZ87EPt6mDcthqQgOZhms+KQ04+s9EhDAve30uU8hEKRiDEZKy9LSEn5+fggPD8erV6+iZREsLS2NJpJ+8+ZNZEyoVO4nRIRixYolet66deukMMtkCAsLw7lz5wAAf/75Z/JerFAAq1YBffqoMwAkrhRRkT9/frRu3Rq7du3CzJkzsVNbMg2CuLGzA7JkAb59Y7m0Bw/4BgCzZ7M0SubMurfr9m3O9gQ4w+TuXS7XNjPTvS0CgUCrSO0PAMIniI8UZ/UMHAjcusXySpcvq6UPjIxTp06hTZs2CAgIAABkzpwZ//vf/9ChQwdkyJAh+rxSpUrF+XozMzOkTZtWF6YKEqNUKb6NHRv7eFgYS7tduQJMmcJZtYsWJX3c//7j17u4AOPGAYULc+Zlt24s3bV1K5A+vYRvBFyN1bYtz50vH3DpElf36pqnT4H27dXZxzEpWxa4cYOl1fLnFxmoAq0g/AHtc+zYMQBcGZlYtc1vHDyoljGaPRto105a437BwcEBffr0wZw5czBjxozk72mkBmQyVoJQqUGoGDcOOHQI2L9ft9WTefMCvXvz7dfju3bFPmZjw9JcDx6wHFaLFsCzZ6xoceYMr+FhYXyLWRViZ6f1tyEQCLSPxoGRwoUL4+bNm8icOTOCg4NRsWJFAMDHjx+RI0cOjQ3UNjVq1EC+fPmQLollb9WrV0calY61IEkoFApMnToV586dQ4nk9pI4dYq1CG/f5vJELTNt2jQ0btwYQUFBWp9L8AubNvHPiAiWR3n5Enj1igMRcrl+giIAO3IxOXOGgzTOzvqxRyAQaAXhD2gff39/REREJGmzKV5UUpc9exptUAQANm/eHB0U2blzJ5o3bw5LS0s9WyWQlFKlWPq1fHkOaOzcyVIeSd3IV+mlv3kDdO8e+7kTJ1hX3dVVQoMBXLvGQREAeP0auHCB9ft1zfHjcQdFAPYL06Xj4Oi2bUD16jo1TWD6CH9A+xAR9v2UHWzUqFHyBwgK4u/YSpWA4cOlNS4eVIGRa9euITQ0VPzNk4KfHwfxP35kKaply4C//uJre0Nj2TLuWVK6NGBry/aWK8d9bZ894+dy5+agnAjICwQmhcY9Ro4fP44WLVogIiICLi4uuHv3Lp4+fYoqVaqgW7duIjMihZiahmiK6dCBG3r9/TeweLG+rRFoG4UC2LyZszW8vPg2bx43Z9eXAxIaCqxcyQ7c/fvcrK1mTf3YIhCkYlLrumhK73v+/PkYNWoUhg0bhlmzZqVskBUrgH79uCmmhwdfvBohly9fRrNmzTB16lT0F80oTZPgYKBePeDqVc5G3buXKz1+5ccPDvjt28fn/vMP66EHBXFjW3d3zlJ99gwICeEKjnHjuKJCat9IqQRmzeJm9zY2wPjxgJWVtHMkhdBQ3uz88gU4cCDucxwcgDp1uM+LtbVu7RPoFVNaF5ODKb3vW7duoWLFirCxscG3b99SXgGpVOpsk52I8OPHD/j5+SFPnjwp64mSGvn6lQPs58/z40KFgCFDOEBiSMGlgABOuPHx4aqShg2BokW5z+3Ysbz+ZsrEVcsiQVIgMAikWhc1DowAgI+PD96/f4+iRYvCysoKgYGB8PLyQoYMGZKcaSGIjSk5PinG1xfImZMvjm7d4ow7geny+TM3NrtwIfZxZ2eWchAOiECQqkmt66KpvG8iQtmyZeHu7o5ly5ahX79+KR2IL1D/9z++cAU4yz1bNl4njGij4teMUyISGy2mxK5dLO+SLh1w8iRnm6r4/JmbBJubA0+ecKN2Fblzs0yU+CxwcOnJEw6Cvn3LgZLChYGqVXnDSsiapkpMZV1MLqb0vv/++28sXboUHTp0wDZVdZzAdFEoOOg+ezYHIABOcFm6FGjTRr+2qfjyhZNxb9wAPn36/Xk3N65+yZLl9+eIgMBAwMj/LwUCY0OqdVFjKS0AcHJygpOTU/RjOzs72Bmh3h4RYe/evbhw4QK8vLygVCpjPb9//349WWa8rFmzBnK5HH/99VfyJSL+/ZeDIqVLcxnjtWvA3LmcHerqyjeJN8sfPXqEd+/eoXDhwnAxYokOo+PkSaBzZ8Dbm/++vXsDOXKww5Q1a9z61uHhvJGgyhYOD2ft0jJlgIIFdWu/QCAwKYQ/ID2XLl2Cu7s7rKys0CYlF8Fv37LWc+PGwMyZsZ/76y9+vnhx7knWqZNRXJzGDIrcuHEDI0aMwKpVq1CgQIHf9NajoqIQGBiIdOnSieCJvlEo+Gdim/Jt27KMSMmSsYMigHrDX0WxYkDz5sDu3UCtWlwhYkiZtPrC1pb7vKl6vSWVr1+5kuTdO/YVFQrOLFdpzse4bhUIEkL4A9Lj6+uLjRs3AgA6d+6cvBd//MiyhP37//4d+fo1b25XrAgIaUrDwsyMKx3//htYt45lJQHDkkLMmpUrOz99As6eZZ/zyRNOZGjXDhgxIva6r1Cw5PaePZzYWbMmfzYFAoHRkaLAyOLFi5E1a1a0bt060XP37NmDL1++YODAgSmZSqcMHjwYq1atQq1atZA5c2Zx4akhQUFBGD16NL5//w57e/skfV6i+fqVMwgAYPJkoG9fbsKuYutW/pk7N7BmDVC7tiQ2b968GXPnzkWzZs2wfft2oR2aFHx8gCJFWOv52jUgRtPYJHPjBgdFSpbkDMvEAht373JTtKJFWYcaYCemQwe+36ULO10ik1AgEKQA4Q9Iz9SpUwEAPXr0iJVMkyS+f+cs8YgIYOJEYNIk9XOhobzJ+f498OgRb5aMHAmMGcMX4UYAEaF37954+PAhihYtGuc5MpkMqiLvS5cuobohbSakJiIiOFmjaFHg2DEgPvkXVUF+zKavbdtyUk/37kD27MC5czyeiws3EQe4wasg5SiV/B2wcmX85/Tuzd8b1taiKkeQKMIfkJ5nz57BxsYG+fLlQ926dZP34mnTeE/g5k2WHCxalK9BAWDtWk6sBPhacM0awMJCMrvd3d2xevVqyOVyLFq0KPkN4wWctDJkCAdIvL1jV18EBhpGM/Ps2fnzkxAvXnAg5OtX9bEbN9Rr/7FjHJzfuVOsMwKBMUApQCaTUZUqVZJ0bqVKlUgul6dkGp3j6OhIx44d07cZRETk7+9PAMjf31/fpqSYffv2EQDKkycPRUVFJe/FZ84QAURWVkTPnhHlycOPu3cnGjeOqHJlfgwQ9esnmc1jx44lAASAMmTIQAsWLKCwsDDJxjdJDh8mcnEhypKF6OLFlI0RFUW0YAHR8+dE7u6Jnz91qvrvX7Ys0YQJRHXqqI+ZmRF9/54yWwQCgUGiy3VR+APS8vXrVwJAMpmM3r17l/wBrl5Vf7+XLx/3OT9+EPXsqT7P2VkTk3XO27dvqWbNmmRhYRHth8R3Gzx4sL7NTb0EBhLVqkWULx/RvXtxn/P1K1GLFkQLF8Y+bm3Nn80LF35/jULB4715I7nJqYrAQL52yJmTrxUyZCCqVo1owACiKVOISpfm7wl7e6KbN/VtrSCFCH/AeP0BFcHBwfTy5cvkv7B0af4e7dmTyNGR6O+/iZRKfm78+NjXgt++SWrzuXPnotfh4sWL0+XLlyUdP1WzZQtR1qxEBw4QRUbq25rEWbJE/VkDiLJnJ9q/nygsTO2LmpuL/QiBQMtItS6mOMz94cMHTElCVtPHjx9TOoXOcXBwQF6VXrVAY65evQoAqFevHsySm7lfsyZQoABXI3z/Dty+zbf69dXnBASw5rAqS0QCxo8fDwcHB6xYsQKenp4YMmQIFi9ejJkzZ6J169aQ66i5m1HRoAGQLx9nPZYokbIxzMyAwYOBrl2BTZuAatW4tLZaNaByZdbnjsmQIZwZvHs3V4/cvRv7+bVrJf1cCASC1IXwB6RF5Q8UK1YMuXLlSv4AlSuzVEGaNHFrOwO8TlSpwt//uXLx+UZEnjx5cOHCBSiVSly5ciVabszFxQUTJkxAmTJl4OHhgS1btiTJ/xZoibRpudLjxg2gVKm4zzlyhKU9T5zg5q2qahA3N84iPX8e+OMP4OlTbrZ+/jzffH254ficOTp7OyZH2rTcrD5DBvYtnZyA//7jm40NN891d+dzDx5MvkSXINUh/AHtYGNjg/yq78bk0KcPV32tXcuP793jSjEzM64UVUnoDR7MjbIlpFatWlizZg1Gjx6NR48eoXr16vjrr7+waNEiOIrrzpSjVAKLF7MMWvPm7Od17gx068aN2g2RPn1YpnHxYt6P+vSJ1SzSpOGKRIArF8XnQiAwClLUfF0ulye5jJR+NpJUqPR4DZhNmzbh5MmTWL9+vd4llEyhuVrFihVx69YtbN26FR07dkz+AI8ecQ8RPbz/qKgobNy4ERMmTMCXL18gk8nw6NGjeCUuBBKgVHJgZOtWdRkqAMjlwOjRXDod83uHiDcULl8GPnzgfiROTtyQs2xZnZsvEAi0iy7XReEPSMvQoUOxYMEC9O3bF8uXL9fuZEuXsqxi+vTanUdiVqxYgQoVKqCsWL+MHyJurH72LPskly7xpt327YDKH7azY9mQmKRNC/TsCSxYwI8/fOBNvtat1cGVmHNcuMByUFWqaP89GSPv3gFDh7JO/OvX7Gfa2vLvs0sXTsARCU9GifAHjNcfCA8Ph6WlZcolySIiWHLZ05N7Qty5o+5F+c8/fL2YIwfw7Fn8Uoca4uvri7Fjx2LNmjUgIpQvXx7nzp0zyh67BkNQEEtJbtzIElsqhg7lZAFD/a4mAm7d4v2LXbvYdgsLYNs2XmsEAoFWkWpdTFFgpGbNmslezC5cuJDcaXROaGgomjdvjqtXryJ37tyw+EWT8t69ezqzxdgdn5CQEDg4OCAqKgqenp5wTmqTdNXHMaHP15IlfDFTsqTmhiZCcHAwFixYgM+fP2t/M8dUCQriio5ixZLWf8TDgzMnVRl+r1/z8RkzOBNIIBCkSnS5Lgp/QFo+fvyIy5cvI1++fKggdYZ2ZCRvOhvqRXMS+PTpE5ydnaFQKPDy5cuUZdEKDIt374DixTn4MX8+V7oGBQH9+nGwA+BNu4oVuXqkdm2uXoj5XePvz1mzx4/z6/75hxNAXr8GBg7kihS5nPu7/drcXRCb0FDg7VvuTWhrG/s5Iq4wO34cWLQIcHDg415e3MD516plgd4R/oDx+gNDhgzBnj17MHnyZPTo0SPpLyRS7w+cOQPMnAnMng2UK8fH3rzhnpcREdxAu2VL6Y3/hZs3b6JRo0bw8fFBx44dsVXVA1WQciIi+Lt4/XquvgS46fns2fq1KylERnLCppMT71N9/cqfwyZNgFGj9G2dQGCSSLUupkhK6+LFiyme0JDp0qUL7t69i06dOonmahpy69YtREVFIXv27MmTzahWDXj1ihdElaMTE3d3Lo2VybjplYuLZDbHha2tLcaPHx/9+ObNm6goLj6TztKl3FxNRfPmvCHw60VpTPLkAXr04BvAmZOjRmn+t165Eujbl28iyCUQCBJA+APSkiNHDnTo0EE7g8+eDRw4wOtNpUramUPLrFmzBgqFAhUqVBBBEVPB2RmYO5clX4YN4wDGgAHA5s1A+/ac6VysGJBQ8157e5bfOnyY5To2bQLq1OFNPxVKJcuNPHrEAUJB3KRJw02afyUyEmjVin/HgLpaB+Am7nv3AlOnAjGuBQSpC+EPSMvVq1fx6dOn5FXfXLgAuLoCvXpx4/U6dfgWE2dnriy4epUljXRAxYoVcfLkSfTu3RvTp0/XyZwmj6Ul0KwZ37ZuZdWIXr30bVXSsLDgNVvFnDmcuHDtGlC+PH+GBQKBQZKiihFTxdbWFqdOnUK1atX0bYrRZ4SsXbsWffr0QZs2bbB9+/akvUih4AuXmjWBGjWAceN+P6dJE84eaNcO2LFDUpsTY9asWRgzZgxmzZqFUSLqnzSqVAGuX1c/VgW0krvx8/o19zHRhFq1uOza35/71ggEAqNCl+ui8AeMhEePOIkiIoIvoFMi22kAdOvWDRs3bgQAuLq6ombNmqhatSr++OOP37KTBUYEEdC4MfcVAYDp04GxY5M3xosXHFA5ezb2cTc33uhfvJh9q2/fWFJUkDy8vVmGJyqKH2fOzIk42bKpA1D58nHSlsBgEP6AcfoD3t7eyJIlC5RKJd6/f4+cOXMm7YX//AOcOsU9KDw9DSoI7O3tDScnJxEw0xYhIdwfCgDCwjhwYiwVwm3bcj9UgGXC/vlHv/YIBCaIVOuikXyr6IacOXMapZNhiPTs2RNeXl6YMWNG0l9kZgb4+XEztUGDfn/+/n0OishkwOTJUpmaKCEhIRg0aBDG/JRxCggI0NncRs+mTUDOnBzsAoB9+5IfFAFiB0XOnuWMi0OHOJiWHFtOngRMtOJNIBBIh/AHpGPWrFmYPXs2Pn/+LO3A4eFAp04cFGncmPuKGCnz5s1D7969IZfLcf78eUyYMAF169ZFZGSkvk0TaIJMpq5mKliQK1aTSkgI0KYNN55VBUU6dACeP+fs0zNngAYNWOZpyhQRFEkpGTPy77daNQ6IfPvGv19VUKRAAW7SLki1CH9AOg4fPgylUokyZcokPSgC8IbytWscHIkrKBIRIZ2RSSQ0NBQLFy6Ei4sLdu3apfP5Uw2qoAgALFzIcohjx3LSgKGzYgVw+zarZYikWoHAoBEVIzE4duwYlixZgpUrVyJ37tx6tcXYM0Ikh4g31y9f1lm1CBHh8OHDGDx4MDw9PQEAc+fOxbBhw7Q+t0kREcFSEaGhcUtoRUby80nNtFFVDQFA3rwsrdavn0FlDwkEAunR5boo/AFpiIqKQubMmfH9+3dcuHABNVVBcikYNYpltJycuLly5szSja0nXr58idOnT+Pq1asIDQ3FwRgbsh8/fkSOHDn0Z5xAMxQKtZ9CxHJadeqwDFZc2a9KJcvB3L/PftTKlez//MrHj1zdIGUG7fbtXLWdJg1XcA8bpnnVrjHw7Rv3hnn/nm/ZsnHzXOFfGhzCHzA+fwAA/vzzTxw/fhzTpk3DuLiUIVLCsWOcULlwIdCokTRjJkBoaChWrVqFf//9F1+/fgUANGzYEEePHhVVI9rmVyWKP/4Ali3jfl7GyNOnvLfVp4++LREIjBa9Nl83VRwdHRESEoKoqCjY2Nj8Jl/wXYfyO8bs+ISHh8PKykraQXft4oBImjTAs2esI6pFfH190blzZxw/fhwAZwstXrwYzZo10+q8qQIfHy4rvXePe8Y8fswbW+vWAfXrJ/769++5R8jq1cCPH3ysUSO+kLez067tAoFAb+hyXRT+gDScP38ebm5ucHJywpcvX2CeUD+F5LBwITezBjgj38TX5lu3bqFatWoYPHgwpkyZAmtra32bJNCEQ4fUn9nKlbmipEyZuM+NiACCgwFHR+3bFRzMfeE2bIh9/PlzrngBYjdAFgj0hPAHjM8f8Pf3R6ZMmRAREYGnT5+icOHCmg8aHs6b4q9eab1B96lTp7B3714cPnwYXl5eAABnZ2eMGzcO3bp1k86/EcRPWBgnR27eDJw4wQkHFhbcA2rMGL5vLLx4wZWKJUvGlsps2JCVUcqX159tAoERodfm66bKggULRKRfAipXrgxra2usXr0axYoV03zA0FBg+HC+P3q01oMiAGBlZYXTp0/DwsICw4cPx7hx42CbUMNwQdLp2lWtt63i82eWhFi1KvEGa7lyAbNmARMmAOvXsyN89ChQtSo358uQQWumCwSC1IHwB6Rh//79AICmTZtKt2mwerU6KDJmjMkHRQDg5MmTiIyMxJw5c7Br1y6cOHECRYoU0bdZgpTSsCE3Zp80ibNfy5bl6pBevYDatWNXKFha8k3bhIQAFSpwBqtMxtI1pUsDt26xnBTAiS2tWvFmzrRp2rdJIDAAhD8gDcePH0dERAQKFSokTVAE4B5Lr14BWbJovX/D5s2bo/umOjs7Y/z48ejcuTMsdfH9LGCsrbmKr3VrrpYcMIATDSZO5L2Ay5f5HEMnIACoV4/XVE9P3uuysgICAzngc+IEsHEj0KWLvi0VCFINklyl+vj4YMmSJbhx4wacnZ0xcOBA3Lt3DzVr1kSuXLmkmEIndO3aNd7nQkNDdWeIEfP8+XO4u7vDzMwMWbJkkWbQ4GCgZ0+uLBgxQpoxf+HBgwdYt24dFi1aBJlMhrRp02L8+PFo164dCqqy5ATSEBKivl+qFLBmDTByJFePHDmSeGBEhY0NO0QVKgBNm3IT3m3bgIEDtWK2QCBIPQh/QHOioqKwZ88eAECLFi2kGzhtWs6ms7LitcOEISJcuXIFHz9+jD72/v173LhxQwRGjBkLC5anateOJeG2bQP27+dbzpysR16jhm5tevuWgyIAy9KoevmpAo+3bnF1i1LJDZBFYESQShD+gDSUKVMGQ4cORfbs2aUbdPNm/jltmtZVAzp06IAMGTLgzz//hKur62+VQwIdkyMHVwzv3Ml9oKZONY6gCAB4eLBsIwC8eRO7j4qK48dFYEQg0CWkIR4eHpQtWzaSy+Ukl8upcuXKdOXKFZLJZDRixAhNh9cpf//9d5zHg4KCqGbNmjq1xd/fnwCQv7+/TufVlPHjxxMA+vPPP/VtSrKoWbMmAaDt27fr2xTTJzycyMWFCCCysSHy8eHjvr5Er179fr5CkfiYjx4RrV4trZ0CgcCg0OW6KPwBzTlx4gQBICcnJ4qIiJB2cKVS2vEMFKVSSblz5yYA0b/LhQsXkiIp66LAeHj0iGjAACJHR6JatYiCg/Vjx/LlRB068P/X48dEY8YQtW1LVL48kYUF+23OzvycQKBHhD9gXP6AVvjxg0gm4++lr1+1MsWGDRvo27dvWhlbICHG6BOdPk1UuzZRmTL8GVbdbGyIhg0j+v5d3xYKBEaBVOuixhUjI0eOxJcvX5AjR47ojLZq1arB3t4eZ86c0XR4nXLs2DE4OjpisipLCkBwcDDqJ6XvgQBEhG3btgEAOnXqpGdrks7Dhw9x8eJFmJmZoXLlyvo2x/SxtOQ+MXv3Al+/qqWv0qcHHByAf/8FLl3iEtmPH1kyJbHy6GLF+Kbi0SN2L0qU0N77EAgEJovwBzRn69atAIB27dpJn1lpwrImkZGR0b8vmUyGPn364OXLl+jUqROqV68OM9EI2vQoVgxYsgSYMweIioo7ezQpPH3KWbQp1Vju25ebwMpknNE6c2bs51u2ZAlTI+ttIBBogvAHDJSbN/laL29eIHNmyYd/+PAhunXrBltbW3z+/NnoerqkKuRy9f3Vq7kf6dSphu0r1qnDt4gI7p0SEcE9c9KlA4R8u0CgczQOjJw9exZOTk549uwZ7GKUMDo7O8PT01PT4XXK6dOn8ccff8DR0RGDBw9GYGAg6tWrB3Nzc5w4cULf5hk8169fh4eHB9KmTYsmTZpIM2hUFMsrVamiFacHABYtWgSApT5y586tlTkEv2BhAbRv//vxmTN/D4LEkBBJElFR3MfkwQOWqpgwQTgYAoEgWQh/QHOsra1hbW0tfaLEnTssl1CwoHE12kwCjx49QseOHTF+/Hi0adMGADBq1Cg9WyXQGTFlQIjYH8qRg4MVCREYCAwezEGLPHm4b0lKfWbVRlKxYkD//rzpmDcv9xkpXDjxjaagIODTJyB7dpa9EwiMHOEPaM7UqVNRqVIluLq6Shfcv3aNf1apIs14v7B8+XIAQMOGDUVQxFh48YID/Eol9+9Ytix2zy5DJCl9xD5+BLZv5ybtZcpw0qiW9sUEgtSKxoGR0NBQ5M+f/7fG1EFBQQgPD9d0eJ3i4uKCkydPolatWpDL5dixYwesrKxw7Ngx0Xg7CaiyQ1u0aAGblGa7/cqjR9yQ0t4e+PEjdkaABHh5eUVXuQwaNEjSsQXJ5N49bkQKAOPGAX/8wVrbOXOqz1m5kjfDatWKf5zgYL6Iv3cPmD2bG7Jfv274jpFAIDAYhD+gOWvXrsX8+fNjJc1oTFQU9zmIigI+fOBNYxUBAbwRK7GfoCvWrl2Lfv36ITIyEhMnTkTLli1FdUhq5tQpYPp0vn/6NPdjU1XYxuTdO8DVlXuEAFzp0agRN6FNkybl8+fODSxdmvA5Xl5ApUqAtzc3Zc+eHbhyhecGuMJk61bj0X0XCOJA+AOa4eHhgQkTJkAmk+Hjx4/Ili2bNAPXrAl8/84/Jcbf3z96X6N///6Sjy/QEgULAitWcDLBqlUcqP/5dzRKIiOBTp2A3bvVx86cYXWNdeuA7t31Z5tAYGJofPXo4uKCJ0+eRC8e4eHhWLJkCTw8PFCgQAGNDdQ1JUqUwNGjRzF27FjY2NjgxIkTwulJAkSEQ4cOAQDax1UJkFJWr+af1atrZbNj1KhRCA8PR/ny5VFFSxkngiRy+zagUAC5cnH5a716QJEi6mZ69+4Bf/8N9OjBmRNEcY/j4MAOxM9sW9y+zRtmAoFAkAyEP6A59vb2kEklZUAE9O7NQRF7e8DJSf3cgwdAtmxAt27SzKUHNmzYgMjISBQqVAiXLl0SQZHUTr16wOjRfP/AAaBCBeDJk9jnKJX8mX/7ln2nzZv5/+LlS+DxY+3b+O4dB2KCgoCNGzmQowqKAMDRo8L/EpgEwh9IOar9gZo1a0oXFAE4SW7JEg7ASsyePXsQHByMwoULo3r16pKPL9AiPXtyhSPADcyNmdBQ4Nw5ruCsUSN2ZcmpU/qzSyAwQTSuGPnf//6HIUOGoEuXLpDJZLh//z4GDx4MmUyG7kYQxSxdunScF+1WVlb4/PkzqlatGn3s3r17ujTNqFAoFJg+fTrOnj2LmlJlbrx5w9FwABg5UpoxY3Dx4kVs3LgRMpkMixYtkm7zRpAyWrQABg1iGYjAwN81rAsUADJl4ovwnDn5+UKFgOLFWaOzZUvA3Jw3CPr3B06e5Nc1bw44Our+/QgEAqNC+APSoFAo8P79e+TJk0fagadMYakguRzYsiV2Fnr79lwtuHkzsGmTtPPqCPoZ7J81axYyZcqkZ2sEekcmY3nRVq349vYtV2csW8Y+T9asgLs78N9/3JPk/HnAxYUrZrNlY19K25QvzxW5589zwNLbm+VLvn/napVJk9hvEwiMDOEPSMfp06cBsCSVsbB582YAQLdu3cT+gDHh5wd07sySWgAwfLhezdEYe3tOcrCy4r2MFy+Atm35JiqZBAJJ0TgwMnDgQLx48QKrVq2KvqiTyWT43//+h4EDB2psoLZp1qyZvk0wCczNzdG1a1d07dpVukHHjuUSwvr1WVZJYrJmzYrq1aujcOHCoum6IZAxIwc9smblxydPAocP8wV/9+5cPbJ9OzsCz59zFuKtW3w7cgRo3Zpfd/cuv9bSkj9DqoxLgUAgSADhD0jDnTt3UKlSJZQrVw63bt2SZlPh3Tu1rNCqVUDMPmZfvgCvXvH927c1n0sgMCTKluXPdatWwKVLQJcuwKJFwMCB/NydO+wTubjw+TE2bAGwr6RNffxKlfiWHJRKo5W8E6QOhD8gDWFhYbh48SIAoF69etIMevs2J0r8+y9fG0rM27dvceXKFcjlcnTs2FHy8QVa5MIF3hOwsgKWLzcNqaksWdT3CxYE7t/XmykCgSmjcWDkypUr6NWrF0aOHIk7d+4AAMqWLYts2bIhJCREul4TWmLixIn6NkEQFzdvshySTMZ9IrRAwYIFcfHiRaPrhWPSqIIiAAc4Vqzg++vXAxcvchnp48dAeDjw+jXw7Blw4wZnJqouslu14oalHTuyA6Fi/35g8WLOHmnUSGdvSSAQGAfCH5CGUz/L+52dnaXLtJw+nRMl3NxYJiEmK1dytnqVKkC5ctLMJxAYEk5OrCs+dizLasWU8ClRgm9xcewYZ88uX84ZpvomPBwYOpRlt3r0YNlUBwd9WyUQ/IbwB6Th6tWrCA0NRdasWVGsWDHNByQCRozgIHGGDPxdIjF37tyBpaWl9NJfAu3TvDn7i/XqceKAirVrWYVkwYLkB/IFAkGqQOPASM2aNVG5cmVcvXoVuXPnjj5euXJl3L59G1FRUZpOITBwQkNDsWLFCtSrVw9FihSRZiNEJZ3VtStLJUnIzZs3UbFiRQQFBSFt2rSwFk0hDZM//gAmTuQL+zt3WDri5k1uCGplBRQtyrdWrWK/TibjTKKYTJnCYwGcafT4sW5kJgQCgSCVoZLNqFu3rjQDfvwIbNjA9ydPjv1cZCQHRgDOmI+KYklFI6RKlSp49uyZvs0QGCoWFsCcOXxLKitWsKxVu3acRbt6NVfh6gMioEEDzugFuDfA7t0sw6WFrG+BQKB/VIkSdevWlWZ/4PhxDopYW3NgVQu0adMGderUgY+Pj1bGF2iZsWNjP549Gxg1iu/36SMqLgQCQZxIUsdMcTRBDg4OjvO4oZE+ffpkLXy5cuXCu3fvtGiR8XHx4kUMGzYM9evXl2bAsDDWJHZ0/H2DWwKGDRuG4cOHY6QW+pYIJKR6ddanPnMGKFUK8PLiklilMvljnT+vvh8SwrITAoFAEAPhD2jOjx8/cOPGDQASBka8vfli9tKl32WCIiO5OSXAfUeKFOEqQgMnKioK69atQ7cYzeJnzpyJKlWqIGfOnHq0TGBSHDgATJgAmJkB27YB1apxoFEfhISw9GlMvn3TTZN4gSCZCH9AGh7//P+WTEZL1Xu0f3/uN6klHB0dkT9/fihTcs0p0D3fvgH9+rFixK9/s8uX1fcfPNCtXQKBwGhIcVqdq6tr9P2nT5/GehwcHIzHjx8jXbp0GhmnC/z8/HDixAk4JLGU29fXFwqFQstWGRfHjh0DwE3VJMkGsbYG9uzRWubn1KlToz+vHTt2jNVAT2CApEvHn4cSJTjTcOVKdn6Sw9q1QIUKwI8fQMWKXGIrEAgEMRD+gOacOnUKCoUCRYoUiVVFrBGlS3N2eVzY2LDs4vr1nExRsCB/xxsQPj4+2Lp1K7JmzYqsWbPi06dPmDRpEl6+fAkA6NKlC2rWrAkLCwts3749yZ8/gSBRLCy4yqp2baBlS27WXqECcPQoUKaMbm2xtWVJ04IFgcGDuRr433/V/eEEAgNC+APScOzYMTx79gw5cuTQfLDQUOBnBQp00Ptj+/btWLFiBY4ePSrWZUPn0iW1/Pbu3cDff3M/Ljs79h9/7lXBCPofCwQC/SCjFJZ1yOXy6E3w+IZo1aoVdu/enXLrdIA8Bc3/Xr9+jbx582rBGjUBAQFwcHCAv78/7LXZNFFDQkND4ezsDG9vbxw+fBiNGzfWt0lJomfPnli3bh1KliyJe/fupehzINABRMDTp0D+/BwQGTSIy2FnzeLnfX2B9OlZPisxvn5lnW6ZjLMnBQKBUaHtdVH4A5rToEEDnDx5EqNGjcIs1fd0SgkJ4YvdWrU4YQLg7/5Xr7inlJkZ4OoKtGmjueES4ufnh7CwMGT52TDz6tWrqFat2m/nZciQAWPHjkXfvn2RJk0aXZspMDWUSq4KKVky7p4j795xf7XHjzmg+PChumG7rvH1ZXt0HZwRmAzCHzB8f0ByjhwBmjQBcuUCPD2Tdu2XQgIDA+Hi4gJvb29UqFABp06dMoqE31QLEauMLFgA+PvzMXt77q/VsSPg48N7AAKBwOSQal1McWBEVf6/adMmZMyYEQ0bNox+zsbGBoUKFUL37t1hG7NBoCDJGIvjs3btWvzvf/9Drly58ObNG5hrWuHh7w98+QIUKhT3cytWAB8+8IZJSAhXlVSsyI3YkuEg+fr6wsXFBf7+/tiyZQs6deqkmd2pmeBgbmTm5QU0bgw0a8bZiZr2bomMZPmU9es5w/H0aeDlS6B8efU5efMCERHA0qU8r0AgMFmMZV2UGmN53y9evEChQoUgk8k03yBSKnkduXCBN3p37eJM8z/+AP77T32euTn3ULCz0/wNaMjHjx8xb948rF69Gl27dsWyZcsAAA8ePMCMGTPw5csXfPnyBREREejRowcGDx5s0H9PQQqJjAQuXgSqVIndJF3bjBzJ/UcKFABevIj7HH9/DiS6uADLliVvY/HdOyBNGm54LJJLBHrGWNZFqTGW9x0eHo6goCBkyJBBukF79OBrwr//BhYvjv3c6dPcfyQ0VH2zteXqtFKlUjTd/fv3Ubt2bfj6+qJcuXI4d+6cQf/OjZ6wME6CLF/+d9nUpBIUBGzaxJ+Ply95zXr6lPuTCgQCk0SydZE0xNnZmVq0aKHpMIJf8Pf3JwDk7++vb1PiRalUUpEiRQgAzZs3T5pB160jAohatox93NOTKHt2fu7Xm61tiqaaOXMmASBnZ2cKCwuTwHgTZtcuosqVie7d+/251avj/ptMm0akVKZ8zpYtY4/ZoEHs54ODiSwt1c9PmZLyuYiIBgwgqlePKCBAs3EEAoFWMIZ1URsYy/tWKpV06tQpmjZtmuaDLV/++5py5w7R1q1EM2cSTZ6sfu7GDc3n05ClS5eShYUFASAAVK1aNVJqsv4JjJeOHflzmS8f+ym64Ny52P8vb97Ef25kJN9UeHsTRUQkPoeTU+w58uUj8vHR3HaBIAUYy7ooNcbyvjds2EBp0qShSZMmSTfo4sVEZcvy911Mhg2Le38AINq4kejkSaLDh1M05YMHD8jJyYkAUN26dcW6rk26dlX/3Q4e1GwshYKoZk0ea9QoaewTCAQGiVTrosb6QZ6enti3b5+mwwiMkAcPHuDp06dIkyYNevToIc2gx4/zz+LFYx9/9w749Cnu1wQHc5ZBMhk4cCCyZs2Kd+/eYcOGDcl+faoiSxZuhO7p+ftzWbMCV64A27dzM7zs2flvMn48MG4cuzjJhej3Jp3u7rEbqtnYAH5+asmImM3VUjJf1arAqlVcbisQCASCZCGTyVC3bl2MGzdO88FevuSs0Dp1+HFwMHD/PksijBjBlSQqDCB7fe3atYiMjESVKlVw6tQpXL58WZqeawLj4+hR/vn6NeDtrZs5nz6N/fjHj/jPNTdX9+9TKIAWLdj/ia/KRMWvfvbr1/H75QKBIFWzfft2hIaGwsLCQrpB//4buHOHJTRjErOK9Fe6dgXq12dVgTNnkj1liRIlomVBb968mezXC5LBw4fq++7umo0ll6t7kk6dqtlYAoEgVSBJZ+uIiAhcvXoVnz9//q3xWOfOnaWYQmCAvH79GnZ2dnB1dZWmKVl4OJfCAuzExKR6dWDDBnZqtm+P/ZyjI/D8ebJLZW1sbDB69GgMHToUHz9+TLndqYHq1Tl4ENdGT6NG6vvt23OTswULgGHD2FmNiACsrJI3n0zGzdPq1uUeIn/9xbIUMTV/fXw4kKZypCZPTv77ijlfmzZsq6YSYAKBQCDQjPnzWZ4xXz5+3LMnb3AAHAipXp2brq9YAZQrpzczVfj6+gIAFi5ciPIx5R4FqY+jR9lXefoUcHbWzZy9ewP79rGEV/Hi7A8TcT+eHDk4kSQuXr4EHj3iJJPSpVmWtHv3uM/dsAFYvZqTYTJlAjp0iLuXiUAgSNUEBATg4sWLAICWLVtqf8K9e/kaMHNmYPr02M9ZWHCfysKFWX47BagSgLt27SoSHrTJ/v1AYCDw4IE0veMKFmTJSIFAIEgCKe4xouLVq1eoXbt2nBvLMpkMUSlchFI7xqIhGhERAV9fX2TNmlXzwY4fB/78E8iWjfuIyOWcIWpjw5rJAGs3+/pyf5HgYH5crBhgaZmiKUNDQ/HlyxetN8tLNbx+zRfNtrbsqNavD6RNm/Lxbt5kRzcubdClSzl7CAD69uUGawKBwGQxlnVRaozhfc+dOxffvn1D9+7dUbhwYekGPnuWN3unTo0dmI+K4mx1XW08J0LatGkRHByM169fw0VfDa0F+iMykqsw9LlpFhrKyR2qRKXZs4FRo3hjsEIFoGZNoEGD37XbP37kYMiZM2z/1atA5crJm1t1KSk2DQU6whjWRW1gDO977969aN26NQoUKIAXiVWiJZWjR4EaNdT9xH784OoRNzd10lxwMPccCw7mm50d96LUoP+pQqHA8OHDsWfPHly6dEms78ZKVBT34apfn5MuBQKBySDVuqixlNbo0aPx4cMHEFGcN4FpY2lpKU1QBAAOHOCfzZpx86yePTmDrXx5tbyRhQXLOuXNy1lxZcqkOCgCAGnSpBFBEalYsgQoWlSdrdOqlTooQsSyWm/fJm/MihXVQRFPz9hSD/nycRZQ167AzzJngUAgEOgWIsKKFSswd+5cPHv2TNrBa9cGpk0D3rwBunTh6lCANzoMJCgSHh6O4OBgAED69On1bI1AZyiVXOXcpg0ngzRuzL6rvkiTRh0UAdg3srbmoM3Vq+ybVav2exJJjhzAyZNAp07sq3XrxkGWpPLhA/vp2bNzw9vw8ITPDwlh6dOkJM55enIwZ8wYDvoIBAKD58iRIwCAxo0bSzPgy5f8/ZotG39/HD0KFCnCG9wzZ6rPs7UFcuYEChUCypblpEoNgiIAYGZmhgULFuDDhw8iKKJPIiOBU6d4ryEl6+zixaxm0bQpcP689PYJBAKjR+PAyJUrV2Bubo4zP3UbS5cujR07dsDJySn6mLHg6uqKyXHI8fz48QOuv+pZpnKCgoKkDXwplcChQ3y/Th0OiKxbx48DAoC1a6WbKx4eP36My5r0qUjt5MrFF65z53KlT0y2bQNmzGBHdsuWlI3frRs7u1u38uP69dlZ3rABMNCsKYFAYJwIfyDpPHv2DG/fvoWlpSXqaisTb84cYPNmYPhw7YyvARYWFnjz5g1u374tjayowPD59In9kXr1gD17eNPm2TPOUjYEfH05kejHD67kXbuWk44A7tHz+HHs8+Vy3jjKmpUTUMaOTfo8lSqxrN2XL8CgQbwZ+fVr3OdHRLB/X6MGJz8lREgIUKsWB21mzeKNUZFwJ9ADwh9IOgqFAseOHQMgYWDk4EH+WaUKB3YbN1Z/xyxaxN+/WkZIaOmRW7c4gF+/PjBwICdNhoQkb4wBA1j6OyyMPz937mjHVoFAYLRoHBjx8/ND4cKF4ebmBplMBgsLC7Rt2xZZsmTBjBkzpLBRZ1y8eBFLly5Fs2bNorP/AJaLunTpkh4tMzx69uyJ/Pnz4+TJk9IMKJOps8x+/AA8PPi+nR2X+CeWgaYhM2fORPHixXFU1TRTkHyaNGGnIzKSM/xUf0OAM3fc3Pjv2L07cO5c8sYmUo83eDDw7p1kZgsEAsGvCH8g6Zz7+X1eo0YNpNVEOjEhXr3in02aaGd8DZDL5cibNy/KlSsHuVyO0ORk2wuMk0+f1J/JEiWAXbt4Az9zZv3aBbC/1LMnV1VfuQK4uAA9enAPklq1eENp0qTfX+foCKxaxff37Em4gbuKb9/4FpNPn34/piI0lBNaAP59JcSPH8D79+rH7u7cLF4g0DHCH0g6Dx8+hK+vL+zt7VH1V9m+lKKqFvPyAm7cUB9v0IAD1FrcI1AoFHj06BG8vLy0NocgEV684L+9iufPAX//5I1hackS3/Xq8RrYoYPhJDIIBAKDQOPAiJ2dHZRKJQDWWH7+/Dlu3ryJ9+/f4/r16xobqGvOnj2Lr1+/olKlSvD09NS3OQbL1atX8ebNG1hqIGMVC5mMsz7OnePKgB07eBELDGSt44kTpZknHjZv3gwAKFOmjFbnMWlkMs7oLV6cM3kaNFA7LoULs351+/Ysn9CyJTdXS87Yhw4BGTNyhmKBAsCQIYC3t3bei0AgSPUIfyBpXL16FQDwxx9/aG8S1drs7q69OSTg9u3byJMnj3RJIwLDpEIFbvYLcPNyKyuW9lTx8qX+qht8fbnx+6dPLDUzejQHFORy3hjq1w/YtCnu1zZuDKxcyf3dHB0Tn6tIEeDePfbvJk8GFi4EnjwBSpaM+3wHB+4n6OkJ/Mwqj5fs2VmCVSWFs2uXxrI4AkFKEf5A0siYMSNmzJiBwYMHw1yq/9fevfm74/59oFw5dQ8kDw+WRdJWQga4eXyJEiWwZ88erc0hSIROnVhCy8oKcHUF/vmHqxuTi5UV7y9lz86JDSNHSm+rQCAwXkhDSpYsSXZ2dhQVFUVVq1YluVwefXNxcdF0eJ0ik8no27dvFBYWRu3btycnJye6cOECff36leRyuU5t8ff3JwDk7++v03mTwrt37wgAmZmZUVBQkPYmunyZaPBgIqVSe3MQ0bNnzwgAWVhYGOTv2+j49IkoRw4igKhBA6KoKPVzoaFEVavyc46ORLduJW/sFy+IXF359QBR2rREU6fGnkMgEJgkulwXhT+QdHLkyEEA6Ny5c9qbZO9e/s4vWfL35z590t68yaRNmzYEgORyOa1YsULf5gi0iVJJ1L8/UfnyRN7e6uMbNvBnNXduovbtiWbPJjp4kGjPHqJNm4h+/FCf6+VF9OoVkUIhrW3BwUT9+ql9pYYNifz8fj/vv/+IypQhatyYqHdvIm3+D8eFQkE0cCBRhgxE16///nxUFP+eAwJ0a5fA4BH+gGH6A1pjwQL+Lsuenb9De/Qgev5c69NOnDiRANBff/2l9bkEiRBz7dSE06fVa+ONG9KMKRAI9IZU66LGFSNdunSBm5sbXr16hXHjxsHCwgJEBLlcjklxlWobMCr9SCsrK2zfvh2DBg1C/fr1sfzXRoWJMHPmTJQvXx52dnbIlCkTmjVrhhcxm0YbOdeuXQMAlCpVCra2ttqZxMeH5ZcWLOBqAS1y6GdvE1dXV9iLXhWaky0bV3ekSQOcOMGSDCqsrTlLsHJllklo2JCrgpJKgQLA2bPc8LRMGW7AJpNxJqRAIBBIhPAHksaHDx/w8eNHmJmZoWLFitqbSJUh+uAB97FS8eMHa0/nzQv06gWsWMHrzrNnydegloAtW7aga9euUCqV6Nu3L0aOHBldVS0wMWQy7stx4QLg5KQ+7u/PPomnJ2enjhzJ/T1atwa6dIktBbphA1eaVKzIlR6/EhrKmuq3byfPNhsbYNkyYPt29ruOH+deICoZKxUeHlzxceQIy2jVrRtbe33XLqBPH+1Vvwwfzr9DX1+2E+C5li/npspmZvx7trPTzvwCQRKQyh8ATN8n0Bp9+3Km/6dP/L22di1QsKDWp61QoQIA4ObNm1qfS5AI6dJJM06dOlyFki6dWhJTIBAIpInTqHn79i3t27ePnj9/Tk+fPpV6eK2iygiJyd69e8nW1jZZGSH16tWjDRs20OPHj+n+/fvUsGFDypUrV7KqKww5I6Rt27YEgAYOHKidCRYuJLK1JZo3Tzvj/0KlSpUIgMjulJpdu4jmzo274icggMjNjbOAU4pCQXT/fspfLxAIjAp9ZIjGRPgDv/P06VPKmzcvlS1bVvuT5cnDGX4VK6qPXbhAZG6uzv6LeZPLiebM0b5dv6BUKmnKlCkEgABQ48aNydPTU+d2CHSMUkm0bh1RWBjRt29EJ04QzZhB1Lo1V5X88QdR3bqxs5ynTSOytOTPa6lSRB8+/D5ujx78/IQJKbPr9m3Oslb9Xxw6pH7u82eiI0eIVq1inwzgChIiojdv1P9bGzembG4irgTp0IHniMnmzWqbZs3iimIirhYHiGQyoitXUj6vwKQxRn+ASHOfwJD9AXd3d5o7dy6FhIRoZ4Jly4jSpCH691/tjB8Hvr6+0Wv5gwcPdDavQMt8+0akrc+pQCDQKVKtixoHRr5//05Rv8jY3Llzh1q0aEHm5uaaDq9TPD09SRnHJu7jx49powYXBV5eXgSALl26lOTXGKrj8/btW5LL5QSA3N3dtTPJ3Ll8UdS8uXbGj4G3tzfJZDICQB8/ftT6fIIYSC2RFhBAdPSotGMKBAKDQZfrovAHkk5ERAQ9efJE+xNdu0Y0ZQrR+fOxjwcEEB07RjR8OFHTpkQlSrAPUbSoTvyI+NiyZQtZWFhES4++e/dOb7YIdIBK6qVSJaLk+JNPnxJlzMivzZSJaOdOIl9ffk6pJFq5Uh1AOHEiZbZ9+UI0YACPkS5d3BI0//3Hz9vaqv2zqVP5mKUlP58Sdu3in7Nnxz4+cSKPbW5ONGYM0alTRPv2cTBJ9X63bUvZnAKTxxT8AaLk+wSG7A+0a9eOAFC/fv20M4Eq6KxDLl26FB0Y+S+l34ECgUAg0Bp6D4x4eHhQ8eLFSS6XU/r06enQoUPk7e1NzZo1i9VnRED06tUrAkCPHj1K8msM1fEZPHgwAaC6detqb5Jt2/iCyNVVe3P8ZOfOnQSAihcvrvW5BAlw7x5vYH3/nrLXBwZyRqZcrlkVikAgMFgMdV1MDqbkDxg0SiX3J1BloeuJ+/fvk5ubG7m5uenVDoEOOHGCe6cBRJkzE925k/TXvnnD/XNUAYFKlYgiItTP//23elwvr5TZ9+MHV6WodPrfvo39/KRJ/FzTpupjCgX7ZgCRkxP3Q0kJoaFEkZGxj4WFcTVNXNVeAPc80XKPQYHxYirrYnJ9AkN93+/evSMzMzPtJk7qGIVCQeXKlSMA1KtXL32bI9AGSiUn1ojqEYHAaNF7j5GRI0fi8ePHICL8+PEDPXr0QMuWLXHo0CEQESwsLNCjR4+UDm8yKJVKDB48GFWrVkWxYsXiPS88PBwBAQGxboZIr1690KtXL4wYMUJ7kzg48E9/f+3N8ZOmTZvi9OnTmD59utbnSlX4+AAREXx526kT4OzMettxoVAAHToABw4AFSoAT58mfz5bW6BUKUCp5LF+9sERCAQCQ8HU/IFjx44hIiJC32bEjUzG/QlUfQv0RMmSJXH27FkcOXIk+tj79+9Rp04dvH//Xo+WCSSnfn3uz1GiBPDtG/Dnn7H7iSRE3rzst7Rvz4/9/dmPUvHvv0DRojxup07Azp3sY6mYNQuoXh1wdOT5x40Dbt5kn0hFunTcn61wYdbpr12bf0ZG8vN//gkMGcJ9UEJCuD/Kp0/Ali3c083HB6hRg/v3JBdra8DcPPYxKyueY9s2oF07oGRJoGpVoF49YMYM7jOS3B6DUVHce04gMAKS4hMYiz+wZMkSKBQKuLq6olSpUvo2RxI+f/4MPz8/2NnZYerUqfo2R6AJjx8DvXsDT57EPt6yJa99a9fqxy6BQGA4pDSikiVLFpLL5dS5c2fq3LkzyWQyksvlZG1tTcOGDaPPnz9rFLExFfr06UPOzs70IS7d4BhMnDgxulQz5s3QMkJ0wpUrnC3m4qJvSwQpYflyIjMzogwZiPr3V2f/7dwZ/2vu3SPKlYvPS5uWaM+e5M8bFUXUrJlajkJougsEJoWhZkomFVPyB65du0YAKG/evBQeHq5vc2Jz5AiRt7e+rYiXunXrEgDKly8fffnyRd/mCKQmIEBd/VGsGJGfX9Jfq1Ry77S4slfv31f3IwGIYvYkiK/yIksWlp8LC1Of++kTUd68/LyVFfc+iWsumYzPCwpiKa6iRdWVI7qUs7l5k+dPDD8//r2nTUt0+rTWzRLoF2P3B4iS5hMYgz8QEBBA9vb2BICOalvSuGNHomzZiA4f1u48PwkPD6fbt2/rZC6Blvjxg8jZWV11+fq1+rkVK/h4jhyx10mBQGA06F1Ky9zcnAoWLBj9uECBAiSXy+nUqVMaGWRK9O/fn3LkyEFvfy1Xj4OwsDDy9/ePvn348MHgHB+d8egRL1KOjlzGr2V8fHzi1I4VpICtW+OXRWjTJuHXenkR1aypPr99e6Lg4OTNHxioloooWfJ36QaBQGC0GPNGiKn5A23atCEA1K1bN32bEhtvbyILC74ZaHD8/fv35OzsTACoWLFi5KvqJyEwHd6/J8qalX2RBg2kk4Q6fpyocWOiWrVi+8dnzhBt2sRJJlu3sr9lZ8fzFykS2xeKjGTJ0Zj+2YwZ/LqY56ie69qVE098fIjKliX65x9p3ktSOHWKbbCx4d9pQrRtq7bZ2jruPioCk8GY/QGipPsExuAPLFq0iABQwYIFSaHt6/aGDfl/fNUq7c4jMB369Im93hUooF4/g4I4mA4QbdigVzMFAkHK0LuUlkKhQPr06aMfq+7XrVs3pUOaDESEAQMG4MCBAzh//jzy5MmT6GusrKxgb28f62ZIPHr0CAMGDMDx48e1P5mzM2BjA/z4AaxZo9Wpbt++jaJFi2LBggVanSfVoJLLsrAAVq0COnZUP7d7d8ISDBkzsszD2LEsubBjB1CzJvD9e9LnT5sWOHyYJSMePADOnk3BmxAIBAJpMEV/ICIiAseOHQMA9OvXT8/W/MLBgywNVLQo+xIGSM6cOXHu3DlkzZoVjx8/Rv369fHo0SN9myWQkpw5gSNH2Cfp2DH5klDx0aAB+zjnzwPyGJdwtWsDnTsDpUvzfLt2sfTV9u3AokVqGau5c4H06YFWrWKPO3Ysv/71a35sbg6cOMF2b9wItG0LpEkDXLkCTJ4szXtJCt+/Ay4u/F4T8wU/flTfDwtj2TGBwMBIrk9g6P4AABw8eBAA0LdvX8jlKd5aShpFivDP+fP5/1yLfP/+HQMHDkRgYKBW5xFoGV/f2I/9/YHQUODePZagVMkvhofr3jaBQGAwaLR6ubu7I2/evMibNy/u378PANGP8+bNCxcXFylsNDr69++PrVu3Yvv27bCzs8PXr1/x9etXhIaG6tu0FHPixAksW7YMq1at0v5kdnbAzJlA8+ZA06ZaneratWv49u0bhg8fHu3YCTRg1ChgwgRg9mygVy9g61bA25t1owFg4sSEX29hAUyfDpw7xxfvmTOre84klZw5WYMbADZtSv57EAgEAokwRX/g9u3bCA4OhpOTE8qUKaNvc2Kzbx//bN1av3YkgouLC06fPg1HR0fcvn0bJUqUQOvWrRGp6vcgMH7KlgVevYqdILJ4MQcnkpPwkVIsLblnSe3a6mMODkBgIP9s1AgYORL4+2+gWzcOlsRMXqlfn3uZWFry/1WWLNwPRKogT1Jo2xZ4+ZJ14UuWTPjc7duBv/4C/vc/YP163vASCAwMU/MJiAjW1tawsrJC/fr1tT/hmDH8XfTiBTBlitamISI0adIES5YsweDBg7U2j0AHrF/P/UXu3weGDgVu3OD9iQoVODiSLh2f06uXvi0VCAR6REZElJIXyuVyyGQyJPRymUwGhUKRYuOMFVk8Fw0bNmxA165dkzRGQEAAHBwc4O/vbxDZIfXr18epU6ewcOFCDBo0SPsTqj5XWr4AIyL0798fK1asQJo0aXDu3DlUrlxZq3OmSh4+5OboRIC7O99PjLdvuYrEzo4fnz4NLF0KtGjBGw0WFvG/9sEDYO9ezoDMn1+KdyAQCPSMoa2LScEU/YGpU6diwoQJaN26NXbv3q1vc9T4+QGZMnHFyLNnQKFC+rYoUV6+fInx48dj7969aNKkiUjQMGXCwjhxw8cHyJABOHOGKzx0iY8P8OEDN2g3M0vaay5e5CSlgABu7v72LW8kAdzcff9+TmYCuOH7r03WDQUizhxOnz52tY3AKDG0dTGpaOoTGOr7Dg0NhbW1dbzvT1IOHuTkSTMz4NgxoF49rUxz+fJl1KxZE0SEAwcOoFmzZlqZR6AHrl0DVq/mRIFlyzjYJhAIjBKp1sUUB0Zq1qyZpMXvwoULKRk+1WNIjk9ERAQcHR0REhKChw8fonjx4ro1gEid0Va2rOTDR0VFoUmTJjhx4gTs7Oxw4sQJVFVVOAiko317zj5s04ZlHpLL//4HrF3L91u25LEM9QJcIBBIjiGti7rE0N53rVq1cPHiRaxYsQJ9+vTRtzlqtm7ljPEiRTjD3Ih48uQJzM3NUbBgQQDAp0+fMHPmTIwbNw5Zs2bVs3UCSQgP58/o3LnA8+e8QX/hAgcpDJ0nT3gTqWdPoHhxDojs28cZ248f8znTpgHjxv3+Wh8f4MsXoGBBrj7RFyEhgK0t8OefwIEDCSfXCAweQ1sXdUVqfd+/obqmlMm4WqxdO61MM2rUKMyePRtOTk54+vQpMmbMqJV5BHpAqRRBcoHABNB7YESgXQzJ8bl8+TJq1KiBjBkz4uvXr9rXD/2VFSuAfv34Imb2bGDQIMkrSYKDg9G4cWNcuHABtra2uHbtGkoYw8WqMfHyJWtVDx/OGwLJ5ckTrgKZMQOIiOBg2eLFib/Ox4cdn5TMKRAIDAZDWhd1iSG978jISKRLlw4hISF48eIFChQooFd7YtGyJWev//PP7xIbkyZxb4S7dwFDk/+Kg//9739Yu3YtbG1tcenSJZTVQlKIQE/4+wN16wK3bnFV7PXr3EfDmBg+HJg3T/14yBBg9Giu2lq4kPX//fyAypXVvecqVACuXtVdQsu9exy8+faNK40rVgScnNT2z5mjGzsEWsGQ1kVdYmjv29PTE7lz59b9xKGhwODB3Avp/n2tXeOFh4ejXLlyePz4MRo1aoR9+/bBUp8BXoF0fPvGkt0CgcCokWpdFGFSQaKs+dkAvX79+roPigCsMdysGctjDBkC1KrFckwSYmtri6NHj6JWrVoIDg7GpEmTJB1fAKBAAQ5qpNR5LVqUe5Ts2MGPlywB/vsv4df4+LC+du3autH0FggEAhPGwsICjx8/xsSJE5Hf0GQKvbz4Z1wSWjY2vEH7axNOA6Vly5YAOGnj3bt3erZGICkODsCpUyyj5e3NMlXG1tzXyip2xUVQEDdwL1KEk5lWreIKDVVQBAB0/TkOCuJkmnXruErEyUktH/b5s25tEQhMkIcPHyJPnjyoWbOm7vtjpUnD3zMxgyJKJfeWjIiQbBorKyts2LABFhYWOHr0KBo3bowgVbNugfEybx77ihLvJwkEAuNFBEYECfLhwwfs3LkTAHTTWyQu0qfnLNBlywBra+DSJZbU6tZN0osbGxsbbN++HSNHjsSWLVskG1cQD2FhKXtdixZAjx58v0+fhB1gb2/+jLi7i+CIQCAQSECePHkwadIk3WiJJ4d//+Us/KZNf39u4EAgRw6gTh3d25UC7t27BwDIly8fGjdurGdrBJKTLh1w5AiQNStXw6ZEXlSfTJ7MAQdVj5Q1a/ixQgE0bswJTHnzAu/fAytXAufO8fvUpfxp9eqcTd6lCyfmAGxf4cKcWCMQCDRi3s+qsSxZssBCX9J0MZPttm0DunblRLoDB9T9SjWkXLlyOHr0KGxsbPDp0ydESBh4EeiBqCj+fPj5cX+aFy/0bZFAIDAAhJSWgWIopbK3b99G9+7dkTFjRpw/f15vdkTz7h1npW3fzo/d3ICzZ/VrkyB53L4NDBgA2Ntz89GU8P07Z3p4e3N2YkI690+eAK6unE1cujR/XoSslkBgdBjKuqhrDOV9R0RECAkJHeDn54c8efLAz88PW7duRceOHfVtkkBb3LjBQYOxYyWXiNUJRFy5u2IFV3UPHcryWYaIry/w8CH7garm8QKjxVDWRV1jKO/748ePyJMnD6KionD79m2UK1dOb7ZEs3s3J0F8+8aPy5UDOnUCWrcGsmXTePhbt24he/bsyJ49u8ZjCfRMQAAH8O/dA3Lm5HUsV67Y59y/zz3ARB8SgcCgET1GTBxDcXwAgIjw/ft3ZMiQQa92xOLGDWDYMC6FrFSJj928yVUkpUpxc8hixfi5FDZKIyK8evXKsDTUDZXISM7Es7ZO/FwPD84klMuBT5+ALFlSNufOncCHD6wxm1imUszgSI8e6ibuAoHAaDCkdVGXGMr7/uOPP5AhQwbMmzcPLsbWE8GIGD9+PKZPn46iRYviwYMHMFPJ/whMn6ioxKsqFAr2o54+BZ494/4kLVsaZ2BFIEghhrIu6hpDed+qpuQ1atTAxYsX9WbHbwQGcj/SuXPVygQyGW+CnzoladXa48ePUbRoUcOrnhUkDW9vrix8/pyrCjdsAKpU4edmzwbGjGEJ8FGj9GunQCBIENFjRKAzZDKZYQVFAA54/PefOigCACdP8kXijh2cfdekCZAnD19AJhMvLy+ULFkSpUuXhq+RaJLrjdBQDoikSQPcuZP4+XnycBNOpVLdLyQltGsHjBiReFAE4LJqlVTFzp1CUksgEAiSwc2bN/Hff//hxIkTsLGx0bc5cRMRASxfzhWJISH6tiZFBAUFYdmyZQCAKVOmiKBIaiI4mHthjB8fvwTMrVu8sZc/P0vGjR7N2dCiL17yuXuXryGePdO3JQKBUREUFIRVq1YBAIYPH65na37Bzg6YOpWv/Rct4o1uIk7gkzAoMmfOHJQsWRKbN2+WbEyBjsmYETh9mitFXr4EqlblhEsAyJCB9ynGj+fkSoFAYPKIwIggXk6fPo1AQ24I+WuGxt9/s2ZzzKqFkBAul0wmGTNmhLm5OUJCQjB37lwNDTVxLCw4m6JSJcDfnzMwatTgTIvw8Lhf07Ur/5w1K0V/n98IDgaGDOFm6/FRowYHSIKDgQkTNJ9TIBAIUgmqXmNt2rRB1qxZ9WxNPJibc5+RZcuAmTP1bU2KSJs2LT58+IDz58+jefPm+jZHoEsOHuRNmunTWSb25s3fz/H3j/u1799r1TSTxN6eN72EPKBAkCxOnjwJf39/5M2bFw0bNtS3OXGTJQvLal29Cly4AFy5wj1KJSI8PBxKpRKTJk3SfeN5gXTkzMkS29my8Vpw7Rof79QJsLHhKk4vL/3aKBAIdILGUlqurq7xPpcmTRqUKlUKf//9N7KkVC4nlaLvUtnPnz8je/bssLa2xtevX+Hg4KBzG5IFkTpQcvMm0L07UL8+0KYNULFiioY8cuQImjRpAhsbG3h4eCBTpkwSGmxiEHFAJFMmYPVqoHdvPl6iBPeDKVo09vkRESx19uoVB1VmzdJs/hYtuJFa7drcbDO+rKBbt4ClSzmLyNFRszkFAoFO0fe6qC/0/b6JCC4uLvDw8MD+/fsNe8N+/36WFbKwAB484EbLAoGxsG4d0K8f+0gAVz5Pncq+lIqHD1lLf+RI3rSZOJETQ/Lm1Y/NAoEe0Pe6qC8M4X1369YNGzduxLBhwww/eTAwkPsePXkCNGrECZQSEBISgty5c8Pb2xubN2/GX3/9Jcm4Aj3h788ylaoepPv2Aa1accDk/XtAVO8KBAaLwfQYkcvl8WorEhFkMhmyZMmCGzduIGfOnJpMlarQt+OzatUq9OnTB5UqVcL169d1Pn+y2LmTN8W3bk2arFISISJUqlQJt27dwpAhQzB//nzJxjZpevfm4IgKa2vW6hwwIHaVz5EjfNFvaclSBppc1D9+zAGwkBDuOTJvnmiWJhCYGPpeF/WFvt/348ePUbx4cVhZWcHX1xe2trY6tyHJEPG6cvQoVwleuCB6LwiMC09PYMoUYNMmlvKQyVg2dPp0SaVgBAJjRt/ror4whPcdGhqKs2fPIn/+/ChUqJBebEgSSiUnShw8CGTNynLPEjRhVzFz5kyMHTsWRYoUwaNHjyAX152mQ5MmvE8xahQnJ9y4AZQpAxiy/ysQpFIMpsdI9erVYWNjAzMzM5QuXRqlS5eGmZkZbGxsUK5cOVhZWeHr16+YMmWKplMJdMihQ4cAAE2bNtWzJYmwbRvQsSNnz61bJ+nQMpkMU6dOBQCsWLECnz59knR8k+XuXf65ZAnQoAE3v7t16/fNqUaNuMIjIoI3ADShWDFumgYACxeypuz9+wm/hogb8WkWGxYIBAKTRuUP1K5d27CDIgCvM0uWcM+rS5eALVv0bVGSCQ4ORsWKFTF8+HBERUXp2xyBvsidG1i/npurt2nDPkpcPlRyiIhgibl27YDXryUzVSAQpD7SpEmDxo0bG3ZQBOAA88GDnIB34ICkQREA6NevH+zt7fH06VPs379f0rEFP9GHL+TlBRw/zvc7dOCKzerVgfLlxfopEJgwGgdG2rVrB5lMhkePHuHOnTu4c+cOHj58CADo2rUrHj9+DBsbG5w+fVpjYwW6wd/fH+fOnQMANGnSRM/WJMCNG8Bff3FGSPfuQK9ekk9Rp04dVKtWDWFhYRg6dCgUCoXkc5gcGzdykKJ1a+DYMWDtWpav+hWZjIMYe/dK0zi0TRuuVLGzYzm1cuWAlSvjPpeINwjq1+fgmkAgEAji5MCBAwCMIFFCRe7c6j5SY8fq58I6BXh7e+PWrVuYP3++aLouAAoWBHbtYnm47dtTLuUREsI94AYM4PHq1gW+f5fWVoFAkCrQUGhEd1y7BkyezPdXrEixrHZCODg4YODAgQCAvn37ws/PT/I5UjWnTwN//CFpb5gksX8/V2e2bctBkT/+4OPPnvHnSPT0EghMEo0DIzNnzkSOHDlQsGDB6GOFChVCzpw58e+//yJv3ryoWrUqvn79qulUAh2xevVqREREoEiRIihsyPrcISHqbP8nT4APHySfQiaTYebMmZDL5dHScIJEKFaMm6tnzszBjx49gJg9alTa2QD3HmnZUp0JGRam2dz/+x87Li1bslbonDn8OfkVmQwoWZLvT5nC5woEAoEgFkSEgQMHokyZMoadKPErgwdz48xPn7iXlRGQPn162NjYgIiwTQTsBSqaN2cZGBXJ/TxPnAi4u6sfe3gAXbpwUpFAIBAkkYCAABQsWBDTp09HeHi4vs1JmJjXk1pUfBg3bhwKFiyIsLAw3Lt3T2vzpErSpOGglq4TRYoU4R5169fz45kzed0tUYKTChYs0K09AoFAJ2gcGPHx8cGLFy8wevRo3L17F3fv3sX48ePx/Plz+Pr6Rp9nY2Oj6VQCHRAeHo6FCxcCAIYNG2bYgQBXVy6RTZeOKwRKlVKXPkpItWrVcOLECWzcuFHohyaHgABuhB7z8f/+x1UacV2Q+/lxg7wpUzSTt8qeHdizhxu6X7jAm2NxMXAgN1l79YqrVgQCgUAQC5lMhs6dO+Pu3bvInDmzvs1JOtbWLKm1b5/k8hnawt7eHuPHjwcADB8+XGSfCmITEQE0bsyVJCdPJu01QUFcbQKwXrq7O2BlxT14LlzQnq0CgcDkWLVqFV69eoVt27bBQsKenlrB1ZWvBcuXBwYN0to01tbW2L9/P758+QJXV1etzZMq+eMP3tupVk2381avzuusav8gQwYgXz7g33/58bp13KxdIBCYFBrv8jZq1AhEhDlz5qBChQqoUKECZs6cGf1ceHg47t69a/g6lAIAwM2bN+Hl5YVs2bKhY8eO+jYncZo25Qu9ChV4493aWv3cp09AaKgk09StWzc6uEdE6N27N86ePSvJ2CaJtzc7o02bAtevq49t384X4ytW/P6agwe5L8jEidxoVBNkMm6YliuX+tivcipp06qd5RkzRK8RgUAgMCW6dwdatIhdsWjgDBs2DAULFsS3b9/wzz//6NscgSFhacnJHERAs2bcIy0x0qYFHj1iWdFGjXiTadUqTgZxc9O2xQKBwEQIDw/Hgp+Z8iNGjDCORMFWrVh2W9WMNyKCK/B27wYiIyWbpkiRIkibNq1k4wkMlHr1uJokMFDyvrYCgUD/aLyqrVq1Cs2bNwcRxbq1aNECK1euhLe3N8aPH4/p06dLYa9Ay1SvXh1v377F1q1bYWVlpW9zkkbu3MCVK1ydEDNbo39/wMmJnaCNGwEfH0mmW7t2LVavXo26deti4sSJou9IXDg5sVRVZCT3GvHyAlxcuIoDAEaOZDmHmHTtCixezPfnzeN+IVKxcydQvDjbEZMBA3jj4OFDrVQbCQQCgbHyzz//YMmSJQgODta3KakGS0tLLFu2DACwfPlyIc0hiM2aNZxwEh7OP2NW5cbk8mW1jGj69EDv3urnunRhuVEVjx4lTVYrICDldgsEAqNm27Zt+PLlC7Jly4YOHTro25ykEzOAs28fJ+G1bQvkycNJeNeuSSYrSETw+PXaVmA6yGQs02ph8ft+gkAgMHpkJFEXrbdv3+LJkycAgGLFiiFPnjxSDJtqCQgIgIODA/z9/WGvynQQJB2lkqP6L16oj5mZ8QZ5q1YaDR0WFoYBAwZg3c9sgXbt2mHHjh0ajWmSBAZyJc/z50Dt2txEjQioVYsv2t3c+KL+13Ls6dOB8eP5+NWrXHmiCeHhHBR59YobkJ45w8EQFSNHci+SatU4wCYQCAyS1Lou6uN9f/78Gblz50ZkZCSuX7+OSpUq6WReSfnxg5t23rgB9OsXu4LQwGnfvj127tyJGTNmYMyYMfo2R2BIRETwxt7Bg1xF8uABELMqf+FCYMgQwNaW/wcA4OJF4PBhTjqxtFSf6+UF5M3LDdn3749/zhEjgLlzOXnl77+18KYEguQh/AHdvW8iQpEiRfD8+XPMmTMHw4cP18m8kvPlC1fMrVwJfPumPl6zJl8bmpuneGhvb2/Url0bz58/x/Xr11GmTBnN7RUYHqGhvK4aiUSrQJAakGpdlKwOMm/evGjcuDEaN24sgiJGyreYToKxI5dzE+67d1maqVAhbrC9aZPGQ1tbW2Pt2rXYunUrzMzMsHPnTty4cUMCo00MOzu+0E6TBjh7Fli7lv8uK1fysXPnuOfIr7HZsWNZ/iQyEujWjQMbmmBlxRsCjo68QdagQWxt0MGD2S4PD5ERKRAIBADWr1+PyMhIVK1a1TiDIgBfwHbpwrrQxYvz+m8kkonz5s1D+/btMSKGrOSePXtw//59/RklMAwsLVkKpkIFDpL82itEVSkSHMwJQpkzc+Bj6VLg/PnY565dy+clVplkZ8ebQRkzSvc+BAKBUXDx4kU8f/4cdnZ26NWrl77NSTlZswKTJgHv3rGcYIcOfI148SLfNMDJyQl2dnaIiIhA9erVcfnyZSksFhgaadKIoIhAYKJoHBhRKpVYt24dOnToADc3N7i6ukbf3IR+rdHg6emJ7Nmzo379+oiIiNC3OdIgkwFlyrATtHUrH7t8mQMkEtCxY0d07twZADB58mRJxjQ5ChcGpk7l+3//Ddy5w8d27+YKnk2bgAkTYr9GJuOMnowZgSdPuP+HphQqxNUpDg7Af/9xtYqvLz+XLRtLab1/r9ahFQgEglSKQqHA2rVrAQB9+vTRszUakC0brzmVKnHQu2vXuPtbGSDZsmXD9u3bYf4zgzU8PBw9evRA6dKlRQWJgCtqy5Xj+58+xX5uzBhgyxaWNH39mgMamTIBvXoB2bPHPtfFhX8mVk01bhz7T+3aSWO/QCAwGlb/lDbu2LGjaVTnWFmxnOC2bewXAFxdqgEymQzHjh1D7dq1ERwcjD///BM3b97U3FaB4XLvHvf7UiUjCAQCo0bjwMjQoUPRq1cv7Nq1CxcuXMDFixdj3QTGwbp166BQKKBQKGAZs8zeVChZkjPeAgJ4s10ixo0bBzMzM5w8eRLXVU3GBbEZMgRo0oQrPwYN4ozdRo1YKzt9eqB+/d9f4+QELFvGG1pSXYhXrMjZkk5OXElUowaXVQNA0aKxdWgFAoEglXLmzBm8e/cOjo6OaBmzF4Exkj8/SySOHs2Phw0DHj/Wr00p4Pv379HJRrNmzcLmzZv1bJFA7zRvzjKgjRrFPi6TAZ06cdX0mjWcCf35MyecFC/OPpinJ5/77h3/TCwwYmbG4woEglTHiBEj0KtXL/SO2avIVBg+nPcFVEl8GuDg4IAjR47A1dUVQUFBqF+/vqjyNFUiI3kNPnQIGDhQ39YIBAIJ0HgncMeOHSAiZM2aFVWrVkWNGjWib9WrV5fCRoGW+fr1K1auXAkAxl0imxDm5sCePdxnonhxyYZ1cXFBly5dkC9fPoSFhUk2rkkhlwObNwPduwMHDqgvrrt1479H1arqcyMj1fdbt+YeI4ULS2dLmTJcNZQtGzvCv24u7dkDbNggWSM+gUAgMCaioqIwbdo0AEDnzp2RJk0aPVskAebmXHnYoAEQFga0b88yW0ZE1qxZceDAAYwbNw4A+2q3bt3Ss1UCvVK7Nm/qxSd15+QE9OzJSSBmZnzs3TtOFKpQgf8XVIERZ+fkza1QxNboFwgEJkuZMmWwatUqlCpVSt+mSE++fCw5KBHW1tY4dOgQqlSpAj8/P9SpUwfPnj2TbHyjRBf7I4sWAW/fJnyORIohALhqc/163tNYt46rNAUCgVGjcWBEoVAgR44cePPmDa5cuYILFy7EugkMn759+8LHxwfFixdH06ZN9W2O9qhXjx0gibPe5s2bh6dPn6JWrVqSjmtSODiw45ApU+zj6dOr7587B5Qty3rXKmJWcUilDV+4MMtpTZjAjddVfPzIcl/duwNVqrC8lkAgEKQiFi5ciKtXr8LOzg6DBw/WtznSIZNx0DtTJq4YOXVK3xaliClTpqBJkyYIDw9H8+bN4R+zX5YgdXLrFjdHP3068YBf9uzcY83bm/2dq1f5eHIDI82bA3nyAEeOpMxmgUAgMBRCQ7nPpESkTZsWx48fR9myZUFECDWyRAxJ2bSJJRu12XPl8WPuF1q8OAfsT54EBgxgpQoiXhvr1gVsbbnCQyrc3LiPLQD06cP7CAKBwGjRODDSrl07hIaGIjJmprfAaPj27RsOHz4MANi2bZtpymhpmXTp0sHCwiL6cbimzcJNHSLu9/HhQ+xjo0YBjx6xlnVMvn8HWrXiC3epvmfy5AEmT1YHyZ484SxKGxuWXLt5k6tLxo0DoqKkmVMgEAgMnMqVK6NHjx5YunQpcufOrW9zpCVzZq4SHDYMUCWBPHgANGwI/PknMH484OOjXxsTQS6XY+vWrcifPz8+f/6M6dOn69skgb7Zvx+YO5eTfxwdWbI0Pr/F3Fy9kbN2LX/+LSyA5Fb416zJARaBQGCyDBw4EG3atMHdu3f1bYp2Wb4cKFgQkHA9dXBwwKlTp3D58mWUKVNGsnGNjurVgZUruW+otlD5bba2QGAgy3cvW8ZzlyrFa+OZM1wZJLVs9vjxLNUdEsLJNwKBwGgx13SAtGnTIiAgAKVKlUKTJk2QLl26WM9P+LWxssCg2L9/P5RKJcqXL4/iEkpMGSSLF3OTyvbteaGUGCLCggULsGrVKly7dg0ZMmSQfA6TYNgwYMEClnc4d06tXT19OvcbWbyYZbRUElvp0nFTPB8f4No1fp3UHDzIAZgfP4Bjx7i6Zd8+ll+5fh3YufP3aheBQCAwMapWrYqqMeUNTY169fimwseHA/UAcPw4sHAhZ9IPG8ZSRAaInZ0dFixYgEaNGuHTp08gIshE/4fUS61anCV75gz7uIsXc/bzzp2c7PEr3bvzJtW0aUDlyvz6QoWSN+fQofyzcWPN7RcIBAZHZGQktm7dih8/fqB///76Nkd7EHEvpshIya/zMmTIIPYC8uThmzapXJmDIt7eHLA/fJj7k6rkRm1tWVZy8GBA6oQfMzOgf39OqNy4kQMlwh8TCIwSGZFm+jRyuRwymSzeCzOFlHp+qYiAgAA4ODjA398f9vb2WpunUaNGOHbsGObMmYPhw4drbR6DoFIlXrh27+aNd4kJCAhAyZIl4enpCVdXV5w8eTJWJYngJy9fsmRWUBBnLk6apH6ue3fOuMiVi8tuVfIOnToB27ZxVcmsWdLbRAS0aMEBkt69Obtl926gRw+2M0cO4P59ILU7uAKBHtHVumhopNb3rRO+fGFZrdBQzqC/d4+Pp00L/PMP93CQOsNQAogIDx48iKX5Pn36dOTIkQPt2rWDlZWV/owT6Aci7uPWsSNruleuzFJX8fktRGIDR2C0pNZ1UVfv++TJk2jQoAEyZ86MT58+wUzVp8jUePyYJZgsLXljXQu/U6VSiW3btuHly5eYKkGTd6NHG2tPixa8/k2axHsLL1+yZHbJkixz5ego7XwxCQ4GsmblapVLl5JfgSkQCDRCqnVR46u9XLlyIVeuXHB2do6+H/MmMGz27duHo0ePokOHDvo2RbsQsVwSABQtqpUp7O3tcfjwYaRNmxbnz5/HRJVcQWpCoeCAxj//cBAqLgoU4MADAEydCly8qH5u/nzuA/P+PUs1qBqDNmzIP1WZvVIjk7H8BMABmMBAoE0bzjYpWJCzIlWbC6GhQECAduwQCAQCPUBEmD59Om7evAkN82WMi6xZga5dgb59gTt3ONOwTBkOiE+aBHh66tnAuJHJZLGCIv7+/pg6dSq6du0KZ2dnTJ06Fd7e3vozUKB7ZDLeHDp7ljeBrl8Htm5N+PyYvH4NvHihXRsFAoFRsHv3bgBAq1atTDcoAgB79/LPevW0EhQBAHd3d3Tu3BkzZszA06dPtTKHURAZydLYOXIA589LO/aff/LPo0f5Z4ECXDU5Zgyvh9+/c+/QQ4dYtaJLF6Bz56SteU+fso8Yc78iJra2nLS5fz8n4QoEAqNE44oRgXZIrZkwWuP9e3X1wdmz3DBLS+zduxetW7eGXC7Ho0ePUKRIEa3NZXC0bcuVFgBLkcydG/+5quqQbNmAZ8/UDunHjyzt8Po1l7zevMkZu5kycYBr+3aWQ5MaIm7M/uIFN2mbMoV1QwMCAGtrziYCgJkz+X3duaP98mCBQBBNal0XdfG+7927h7Jly8La2hpeXl6ws7PTyjxGARGwfj1LJHTtqm9rkoSfnx+WLVuGlStX4uPPBqCOjo549OgRsmfPrmfrBDrn6VMOikyfnrTM3M+fuTE7wFKi3btr1z6BQEOEP6C99x0aGops2bLBz88Ply5dQnVTzoAvVYp7Lc2bp5YI1AItWrTAgQMH0K5dO+zYsUNr8xg0U6dyFQfAva0ePky+jGN8fP3K+wlEhFy9aQABAABJREFULCtZu3bs5/v2VSdlxsTGhhM6y5aNe9x377g3SUgI+4Q3bgDlykljs0AgkASDqRgRGCdRUVEICwvTtxm6w84OyJKF79euzRvrPzcPpKZVq1aoXLkylEolHjx4oJU5DJa3b/lnjRrAnDkJn7tkCVeHfP4M/Puv+niOHMCFC4CLC/+tMmRgrfc2bfj5Dh24qkNqZDIOhshkwOnTnH0SFsYBG1VQ5OpVYOxY7kUiYsoCgcBEmD17NgCgWbNmqTsoAvAa0KOH0QRFACBdunQYN24c3r59i3/++QcAV5EolUo9WybQC0WKcI80VVDk82eWiovPbzEzAwYMADJnVvs7AoEgVbJ27Vr4+fnB2dnZtHuOAbyZDvCG/alTWpum609/4uXLl1qbw+CJKa8fGSmtTGmWLLxPYGEBRET8/nzNmjxfnjxA8+bA5MnAH39wwCMhKfnwcD5HZb+//+/nEHEygkAgMGpS9I00ZcoUrF+/Pvp+QjeBYbJt2zbkyZMHa9as0bcpusHRkXVE+/ThC8WdO7lZlpZQNVsLDg7W2hwGSZ06/DN7dvUFeWho3E6Kra26omTZstjyVDlycFbG6tV8wQ4AW7bw3w+Iv5xVU9q0YeemWzdgxAiuFFGhUAADB/L9Hj2AvHm1Y4NAIBDokBcvXkTLZowZM0bP1hgYoaHcmLVDB6MIhltYWODOnTsAgI4dOyJnzpx6tkigd4jYZ/nf/1iWVNVHJyaZM3OyyosX3NNNIBCkSsLDw6MTJUaPHm3aMloAsGsXX7tGRUlXvRAHKoGWVN17dNAg9e945kyWu5KSjRtZFUQlvx2Ttm15L+LtW5a8mjBB3VdUJacWF7/aGFf11MqVQIkSCatkCAQCg8c8JS+aNGkSKleujO7du2PSpElxNl1XMUFVMicwGEJCQjBhwgR8/foVvr6++jZHd2TIAKxYAfTqxeWy2mji/RNbW1sA/LtOVTRowM7OqVMcSPD1BZo25ezFtWt/l3Ro0oQ3nHr0+F3b1clJfZ+INd+nT+esRi31iQHATtvPwG80t26xhNe9e4CDA9shEAgEJsDIkSNBRGjcuDFKlCihb3MMi4gIYPBgzhhs147XLAMmPDwcadKkgbm5ufC/BQwR6+dfuACcPMm3ypXZl2rVKnaFiIOD/uwUCAR6x9LSEtOmTcPChQujqxxMGjs77l95755achvgnpf9+sVOkNOAqKgoAKk8MOLoyNLZ2qpktbaOHbh4/ZqTYps148e/BvnSp48tr+Xryzb+Wsly9izg7s7y3r/+/bZv57VUqTSK5BmBQBA/Keoxkjt3bpQtWxb79u1D7ty5EwyMeHh4aGRgakWbGqLjx4/H9OnTkStXLjx79gw2NjaSji/gRmu+vr4oVKgQcuTIoW9zdEdkJAc0AgK4N4ifHwdLlMqU67c+ewb07MlBlStXkqaXLSXv3gEVKgBeXvx4/nxgyBDd2iAQCISmuBbe99GjR9G4cWOYm5vj4cOHKFy4sKTjmwT/+x8H9gGgdWuWKMqXT782JcLHjx9Tl+8hSJxnz1jjfc8ezo4GeKPn0iUgVy69miYQJBfhD2j3fRNRgvs7Js2lSyy9tHo1r/8SsHPnTrRv3x41a9bEhQsXJBnT6FEogNGjgTRpWNpKys+btzf3AgkI4ErITJkSf03Finxu2bL82ubNE26mvn078NdfvMfRsyd/XmQy4NUrDqDkzi3Z2xEIBPGj1x4jnp6e2LdvX/R9Dw+PeG8Cw8LDwwNzfvZ+WLRokQiKEPFFosSf1dKlS6N27dqpb2PCwkItpzV/Pt9fuJAfjx7NzdES4ulToFEjDrCocHDgTJ6rV1lOKzAQuHtXK+bHSfr0QPnyfL9wYc4MEQgEAiMnMjISgwcPBgAMHTpUBEXiY+5c7jcik7G/UKIE8OaNvq1KkFTnewgSp3Bh3sj58IH7qWXJAnh6ck81gUCQ6omZK5tqgyKA+hozrmbdKSQyMhIymQwFpJaPMmZWrGD/aupU6deh9OlZKcTPj4NbMfubxIVCwUERf3/g/Hlg9myurPy53/kbT56ogyJduwKrVrGP6OHB8lt58vBaKxAIjAbRfD2VMW/ePERERMDNzQ1NmzbVtzn6Z9Ag7ivRpUvii2YKUCgU+Pz5s+TjGjTdugFp07Ju64EDHEiwteVgh6rqIi6IgJYtgWPHgOXL1cezZQNGjeL7PXtySWzFiqyHrQvs7FiH9MgRziJKzWXQAoHAZFAqlejfvz/Kli0b3bBbEAcODiyvqJJjUCoBKyu9mhQX7969g4eHBxRa8GUEJkSWLMA//wDXrrFP1aOHvi0SCAR65s2bNyhcuDBWrlyJFIiJmBaq6gJVZZ0EuLm54dOnT1i1apVkYxo9oaHq+9+/Szu2mRkHKywtgcOHuZdIQp9rMzOuMnF3BxYvjtvGmFhbq2Uor18HPn7k+3I5N3Pv2PF36S6BQGDQaBwYUSqVWLduHTp06AA3Nze4urpG39zc3KSwUSAR3t7eWP+zd8LYsWNTdzaIisGDedP+yhV1ZYNEfP36FXXr1kWtWrUQFBQk6dgGzZ9/cvZH167cX+TjRyA4GDA3T7ixnUymlqgaPTp29siECSxhEhnJmRwKBWft6gpzc65kyZhRd3MKBAKBFrGyssKQIUNw584dpE2bVt/mGDYKBV8Iy+XAjh2AAVZkzJw5E3nz5sXkyZP1bYrAGMiTB1izRi1fEhjIciapfVNUIEiFzJ8/Hy9evMDhw4fF/sCBA/xTwp5i2bJlQ9asWSUbzyRQJZsAgDb2DMuXZ39NLgfWrVMnWcaHhQVQqhSQPTs/zpmTk2d/ZeVKoFo1YM4c9gXt7dX7A87OfHzrVk7sFAgERoPGgZGhQ4eiV69e2LVrFy5cuICLFy/i0qVLuHjxIi5evCiBiQKpOHXqFEJDQ1G2bFnUqlVL3+YYBnnzAgsW8P1x47g5pURYWFjgxYsXePnyJQYNGiTZuEbB4MGcYWtmBjx8yMcKFozd5DMuevTgYEpYGDukquCIXA5s3gzUqMGPhwxhp6RLF9bG1rds3+rVHDjRtx0CgUAgkB5zc77QvXyZdacNkBcvXgCAkOoQpIwBA4BJk9Q+cUw8PIBhw1hqRCAQmBQxEydHjBihZ2v0zN27wKFDfL9FC61MER4erpVxjY78+TkQT5S0HiApoUULvkYHOGCxbl3ir/H25krhFi1+37fw8gL69mVp8LVrgTt3WFUiTRrJTRcIBLpF48DIjh07QETImjUrqlatiho1aqB69erRPwWGQ6dOnfDo0SMsXbpUZIPEpGdPrnIIDwdcXbnSISHJpySSIUMGbN26FTKZDOvXr4/uy5NqUH3GVP1CbG1Zn33oUKB7d8DH5/fXmJkBu3dzcCQ8nIMjp07xc9bWHCi5cYMbuY8cycGSDx+AiRN1857iYvNmLtE9dgxo3JgbvQkEAoEBM3DgQOzYsQNREkpFmBwKBbBsmXoNk8uBqlX1a1MCqAIj+fPn17MlAqOkQgX+OXIkBwBj8uIFJ7vUqgV8+pS8cSMj2T+SWipFIBBIwrJlyxAWFoZy5cqhZs2a+jZHf0REsBy0QgG0bQuULi3p8B8/fozuP/rt2zdJxxYkQI8erGQBsLxWYlWRvXvzHsWkSb8/N22a+n6ZMtzHJGZlyMaNyV8jBQKBQSAjDYUknZycYGNjg1evXsHKADWXjZWAgAA4ODjA398f9vb2+jbH9AkIAEaMUGcV5MgBvH0rST+JsWPHYubMmXBycoKHh0fqkyw5fz7uEtm6dYGTJ9UBlJhERLBTevAga7k/eMAVJyrOnOHXq1A1PHN2ltz8BHn/HnBxia1D278/sHSpbu0QCFIBqXVdlPp937hxA5UrV4aZmRnevHkDZ11/bxoL06cD48fz/Q4d+Ls+Rw6WWcifnxtsGghBQUGws7MDACxfvhy9e/eGXC7aCAqSARE3k922jbN3b91S+1SBgUDu3BzcqFtXnbCSFHr04KCKjQ3LqgoEEiD8AWne948fP5AvXz58//4du3btQpu4pINSCytWcI9LOzuuGpFYPlmhUKBChQq4d+8eXF1dcfDgweh1W6BloqI4KNKjBydaJoV791haS+VLeXuz/xcZyYmerVrFPn/pUuDvv/k1N24YZC86gcAUkWpd1PiqqV27dggNDUWkKqNOYHB8+fIFT5480bcZho29PS+Y169zVkHOnHFv2KeASZMmIV++fPDx8cGWLVskGdOoqFKFL6gBoHBhoEEDvl+okDoT91csLbl5e+3arEH669/CwUHtqADsfCTV0ZGSNGn4Yh9Q25M+ve7tEAgEgiSgUCjQv39/AECXLl1EUCQhVDrTALB9O/sGvXuzbGKVKhzANxCsrKxQpEgRAEC/fv1QoUIF3L17V89WCYwKmYz94BIluGo6d27uQQIAadMCJUvyfZXPk1SyZgX+/Rdo2FBScwUCgeb8888/+P79OwoXLowWWpKOMhpy5eL+Inv2cFDk+3dJG7CbmZlh7dq1sLGxwfnz51GrVi1ROaIrzM05cTGpewX37wOVK/O6pfobWVlx0AzgpM9fUfUivX9fv0oWAoEgRWhcMTJ69GgsWLAAOXPmRJMmTZAuXbpYz0+YMEGT4VMtUmaEdOzYEbt378bixYvRt29fiSw0IZRK7oNRqpT6GJFkgREAWLRoEQYPHowiRYrg8ePHqUvKbNky1q7Olg14+ZIltb584YvlxFAqYwdArl/njI3GjVkHNiqKHZ0//wSmTNHee0iI5885i7hDB7Z17152wAQCgaSIDFHN3/eKFSvQr18/ODg44OXLl8ikLV1nUyEgALh5E7h9m2UbP30CPn7krPlZs/gcpZKDJmPGJN5HS4uEhIRg4cKFmDlzJoKCgnD37l2UKVNGb/YIjJT374GKFVlDHQCePOGNno4dORnk8WPuz5dUJPanBQJA+ANSvO+PHz8id+7cUCgU0Rv1ghh07coKBd26sey2KslPQ27duoU///wTPj4+cHFxwalTp+Di4iLJ2IIkoFCwSkiZMkCnTnGfs2cP9zENDeUKys2bgXr1WOlCleAZEKAOlKg4cIB7k8hkwOHDHCwRCARaRap1UePAiFwuh0wmAxHFudmrUCg0GT7VItUf+NKlS6hZsyZkMhlu3bqFcuXKSWilCUDEjcKXL+eM0NattTKNv78/smfPDmdnZ5w7dw5ZsmTRyjwGyZQpwJIlHByJK4NCqeS/g5lZwuMQccP1a9e4OejgwerXR0ZyJoeqiZs+JESiovimj8oVgSAVIDZCNHvf3t7eKFCgAPz8/LBkyRIMGDBAQitTMSq5yPr1gX37kp9RLzFeXl44ceIEunTpEn0sMDBQSHYIks7duxwIqVIFWLSIk0+uXAEmTwY0SXgj4uSRli3VftqHD4CjI1elCARJRPgD0rzvmzdv4sSJE5gUVz+F1ExUFEtmenryY5mMN8ZVVaMaJsC9evUK9erVg4eHB3Lnzo1r164ha1ISBgWas2UL0Lkzy6VfusSVIXHx9CnQrh3w6BE/XrQIGDgQ2L9fnUzr7MzH3N2BHTv4cf/+vK9kb89JNQYkuyoQmCIGI6WVK1cu5MqVC87OztH3Y95SK5cvX0bjxo2RLVs2yGQyHDx4UOc2REZGRktm9OrVSwRF4uKff4DFi9kBCg3V2jQODg5wd3fH48ePU1dQBOCLaG9vtVZ7TN6+5Wae8+YlPk5UFGd3ADzWx498Xy7noIiHBzsq5csD/v6SmZ9kzM1FUEQgEPyGIfgDADBmzBj4+fmhZMmS6NOnj15sMEnMzDiT/uRJDo7oY/2JQaZMmWIFRZ4+fYrcuXNj1apV0DAXSpBaKFuWq2HXrwd+/OCgiEwGdO+u2bgzZgBt2nCWruqzOGQIS9jcuKG53QKBgWMo/oCKihUriqBIXJibAy9ecOVA7dr8fXXyJNC8OW9+r1un0fD58+fHtWvXkC9fPnh7e+Ply5cSGW7EhIVx4GnOHK7q0BQfn7gbrXfsyMH5yEhej3x84n59kSJcMaxSWxk6FPjvP64IyZsXyJOH7V2+nBUtmjYFgoI4ebNqVa4oad6ce3QJBAKDR+PAiKenJzw8POK9pVaCg4NRsmRJLFu2TG82LFq0CE+ePEGGDBkwffp0vdlhsJw4wc1VAZZ76txZq9Plz58/dUlo/UpcFSGXLgGXLwNjx7JUQ0JYWHC2RpUq3MCzZ8/Y2q9Nm7Ik2r17fPEtEAgEBoAh+AMeHh7YsGEDAGDZsmUwF3J/0lGjBstt2NvzBnKLFnFfjOuJNWvW4Pv37+jTpw927Nihb3MExkbatMDcubwBlCNHysd5+pSTkQCgXDkOtBBxRu2PH+zDGVDfHoFAGxiCP+Dj44OnT5/qbX6jwdKSG2yfOQO8egWMHMk9JD5/ZolBDcmSJQtOnTqFixcvokaNGhIYbORcuACsXs2/52nTNBvL3R0oXTruxEu5HNiwgSs5Pn7kgH98PluaNLxH1LEjB2tatWI5cCIOlKxbx+M5OgIPHgB//cX7FXv3soT406fAtm2avReBQKATJNGb8fHxwcSJE1GvXj307t0bjx8/xubNm/H+/XsphjdKGjRogGnTpqF58+Z6mf/Jkyf45+cFyL///osMGTLoxQ6DJkMGdSm/SktZixARIuNrNm7qRESwA/HiRezjXbtyJo5CwRkXiSGXAytWsKNy6hSXq6qcmZhNz21tJTNdIBAINEHf/gAA5MmTB2fOnMH48eNRtWpVvdlhslStCly8yDJa588DW7fq26JoSpQoEX0/fcx1UiBICunTA8OGse/14wdvJlWuDLRtCxw/znKmScHBgYOHAI/XrBnL16o+k9bWoj+bwOTRtz9AROjTpw/KlCmDTZs26cUGoyRfPuDff1n6b+NGvi8BefPmjaXokaqrOosV4woLgPu5+PpygOTDh+SPlT07K4L8/Xfcz9vZAbt3cxDjyBGWwYoPmQxYuRIoWZJ7nGbJwgGRhQv5+TVrgGPHOImgXj0+P0sW7jdy4QIgKrQFAuOANMTDw4OyZctGcrmc5HI5Va5cma5cuUIymYxGjBih6fAmAQA6cOBAgueEhYWRv79/9O3Dhw8EgPz9/ZM9X0hICBUqVIgAUP369UmpVKbQ8lTAqlWqrhREK1dqdSpPT08yMzOjQoUKpb6/yaBB/DsuXJgoICD2cxcu8HP29kTBwUkb78ABIpmMXzdzJh/z9CQaOZJo2TKiHz+ks10gEBgE/v7+KV4XDQVd+wMCHTNjBq9LDg5EDx/q2xo6d+4cmZubEwAaP368vs0RGDsvXqh9ZtUtXz6ihQuJ/PwSf/2TJ0QuLkTZs/8+zvbt2rdfYDIIfyBl73vx4sUEgMzNzenOnTspGkOgHc6cOUNFixYlT09PfZuiPxQKItUeyeTJvDaUKEEUFqad+aZO5TnSpyf6+jXhc/39iSIi+H5YGFGjRkSrV6uf9/ZO+PUKhWa2CgSCOJHKH9C4YmTkyJH48uULsmfPHh3lrlatGuzt7XHmzBlNh081zJw5Ew4ODtG3nDlzpngsa2trDBo0CHnz5sXmzZtTt3xTYvTqpW4Ivnt30jPfUsCbN2+gUCigVCpT399kzBjO3nj2DOjSJfbvuXp11ukMCODsiqTQrJk6U2P7du4P4+zMGTz9+gHp0kn8BgQCgUA3SOkP7Nq1S2hX65Jhw4Bq1Xg9u3VLr6Y8f/4cLVu2RFRUFNq1a4cpU6bo1R6BCZAjB8uf7t/PVcAODsDr18DgwUDBgkBi3zVFirAEzc6dXCW8bBmwdCmP166dTt6CQGBMSOkP3Lx5E8OGDQMAzJ07F2XLlpXKTIGGEBEmTpyIJ0+eoFOnToiKKRWdmpDLueICUKtMPHwITJ6snflGjeL+pGFhwN27CZ9rb88VJgD3Nj18GPjf/7jH6aVLgJOT+lwvL+47ouLNG5b2SmwOgUCgNzQOjJw9exZOTk549uxZrOPOzs7w9PTUdPhUw5gxY+Dv7x99+5CSssGfyGQy9OnTB0+fPkXGjBkltNJEmTiRNS2PHVNLa509C2zeLE3zr5+8ffsWAODi4iLZmEZD5szAvn2s13rgADBrlvo5uZyDJQBrfiZERARw9SrnFw4cyEGRGzdYWksgEAhMAKn8gVu3buGvv/5CuXLlRHBEV1ha8sXyoUNAjx56NeXy5cvw8/NDlSpVsGHDhtSXkCGQHhsb4I8/WO5k3jzg0yeWGMmXj5vOJuW7ysqKg4d9+3IiS//+PJ5MxtIpDRqwHMnnz/GPsXw5B2PmzGGfMrVuIgpMHqn8AV9fX7Ru3RqRkZFo2bIlBg4cKLGlqYj581myuXdvyYaUyWTYvHkz7Ozs8N9//2Hq1KmSjW20/Nw3AQCsWgX4+aVsHKUSmD0bKFSIfbOYWFhwD5BHj4CGDZM3rkwGhIcDNWvybd8+Pv7pE69x9eqpAyFjxnCAp1YtltcSCAQGh8aBkdDQUGTJkgW2v2j6BwUFITw8XNPhUw1WVlawt7ePdUsuHz58QHBwcKwxBUlAJuOIv7W1+ti0abxZL6HT4+HhAQAICAhAaGioZOMaDRUrqvuIjB8fO5NCFRg5fx5IKKA6ejQ7G0uX8uP27flCXSAQCEwEKfyBoKAgtG3bFpGRkahTpw7y58+vBUsFceLoyDrUKqKitFqNmhAuLi44ePAgrGP6NwKBVKg2B69eBf77D3Bz02y87t2BkyeB06fVWvO/cvkyB1MWLeImvS1aAJMmaTavQGCgSOEPEBF69uyJDx8+IH/+/Fi/fr0IlGsCERASwkHZceOA588lGdbFxQUrV64EAEybNg0HkqqiYKq8e8c/27QB7t9PuRrE0qVcGfLiBVcm+vrGfr5IESBvXvXj16+Tnhh7+DCg6qms6nuaIQNXVwYGcrDlxw9g7VoOigQGAvXrA0ePpuy9CAQCraFxYMTFxQVPnjzB1p+NJsPDw7FkyRJ4eHigQIECGhsoSBqhoaFo1aoVihUrhtu3b+vbHOOGiBuCy+XcXGvPHkmGrVSpEuRyOa5evYoaNWrA399fknGNih49gL/+4t/xkCHqxum5c3Pm4O7dLIkVHx07cpO0SpViH4+M5MzBLVu0ZrpAIBAYA0SEkSNHwtPTE87OzmITRJ88fsyNqpct0+m09+7dQ+/evfH9+3ecPn06dTd0FWifTJlYjkTF+fNchZ1cVI3YASC+ivc7d34/liNH8ucSCFIJ9+7dw8GDB2FhYYE9e/akKLgiiIGrK39XeXsDM2YAhQsD06dLMnSHDh3Qq1cvKJVKtG3bFsePH5dkXKOkYEGWaxw7FsiZEzh1CujQgSsykkPMz3tYGFctxsf160C5ciy1npSElpjJmY6OnGxrbQ0cPMgVKl5enGxrbw8cP84B/4gIoFUrXicFAoHhoGmzk4ULF5JMJotuvh7ztmjRIk2HN1oCAwPJ3d2d3N3dCQDNnz+f3N3d6d27d0l6fXKayAQHB1Pt2rUJANnb29OHDx80NV9ARDRuHDfkcnQkkuh3ev78ecqQIQMBIFdX19TXhJ2I6PNnIltbvj15Is2Ya9eqm6d5eUkzpkAgMCiMtdmqLv0BpVJJI0eOJAAEgI4fP66p+QJNWLKE1yYLC6L//tPZtJcvX6bChQtHfw7q1atHHh4eOptfkIp5944oQwb+3HfoQPTtW9Jf+/Ur0axZRJMmxe93X7tGNGQI0fz5RLt3Ez18KI3dAqNC+ANJf99KpZLGjx9P48ePT6nZgl8JDeXvnz//5O86gEiifa/IyEhq06YNASArKyu6d++eJOMaHd7eRJ8+qZuxZ8nCv+f8+ZPXyDwqivdyAKIuXRI+d98+Irmcz+3Th1+b2Nh9+hA1a0Z0+nTs506eVPt/L1/yschIoqZN+bitLdGNG0l/HwKBIE6k8gc0DowolUrq27cvyeVykslk0UGSPn36aDq0UXPhwoXoC9KYty6JfSH/JKl/4KCgIKpVqxYBIFtbW7p8+bIE1guIiCgigqh8eV68atVK3iKcAPfu3aOMGTPSvn37JBnPKDl6lAMk8fHxI1FwcNLHi4wkKlmS/1Z//aWxeQKBwPAw1o0QXfkDSqWShg4dGj3+kiVLJLBeoBFKJVHr1rw2ZcnCF/k6IiIigqZPn05WVlYEgGxsbGj58uWpMyFDoDvCwogGDyaSydTJRevWqTe3BAIJEP5A0hIlYt6PSmyTV5AyJk/m77pSpYjCwyUZMiIigpo2bUrt27enyMhIScY0ar5+VQegAHWgISFift4jItT3IyM5+dXVNe5xNm9Wr19NmhAFBSXP1hcviFSJKA0aqMdRERpK5ObGx2vUEGujQKAhUvkDMiJp6us9PT1x52d5c9myZZEnTx4phk21BAQEwMHBAf7+/vGWvAYGBuLPP//ElStXYGdnhxMnTqBq1ao6ttTEefWK5QFCQrhx14gRkgwbFBSEtGnTSjKWyXH0KNC5M/cPSY78yK1bLLFFBCxZAgwYoD0bBQKBzknKumiKJPV9R0VFoVWrVjh06BCWL1+Ovn376tBKQbwEBQFVqnBzz0qVgIsXE5ZykJiXL1+iV69euHTpEgCge/fuWLdunc7mF6RSbt/m/n0PHvDjdu1Y7tTcXL92CUwC4Q8k/L63bduGjRs34tChQ7ARvRi1CxFfr3bsyHJKEhEeHg5zc3OYmZlJNqbRsmMHy2gBwNevQObMCZ9/6hSvOU2asCy6at3x9QXatgXOnePHOXJw36pf9y337GHp7/BwoHx5lvFObE6AG7C3aweYmfG8ZcoAJUpwr7njx4EGDfi8oCDukTVtWmwJSYFAkGyk8gc07jGiIkOGDMiTJw/y5MkDJycnqYYVJMDw4cNx5coV2Nvb4/Tp0yIoog3y5+cGjwA3z5KImEERDw8PTJkyJfVqgF+/zjqtKqys+He9fDk380wqFSqwgwEAAwcC9+5Ja6dAIBAYMObm5ti9ezeOHz8ugiKGRNq03KTV0RG4cUN9sa0jChQogPPnz2PevHkwNzdH9erVdTa3IBVTvjz3A5kzB7CwAHbuBJo25Z5wAoFAa7x8+RKdO3fG2bNnsXr1an2bY/rIZJyMJ2FQBACsrKyigyIKhQJDhgxJvX1kVfsBPXsCfn4JnxsVxX6Wnx+weTOwcCEfDwkBatbkoIitLeDiAnz8CNSpAwQExB6jdWs+L0MGDvI3bZq4jV++cFAkKop9vE6dgNBQYPBgoEsXoHRp9blp0/I+hwiKCAQGg8aBkcjISAwfPhyZMmVChQoVUKFCBWTKlAnDhg1DRESEFDYK4kFVobNy5UpU+rUZtUA6evQABg0C+vRRH7t0CVi1St08PIWEhobCzc0NEydOxLBhw1JfcGTgQM6kVQWfAHZQunfn+0uXJm+8MWOAli3576JyhAQCgSCVYGlpiQaqjDSB4eDiAuzaxRvEe/Zww1YdIpfLMXToUDx79gxdunSJPj5r1iw0a9YMhw8fRqTYsBZIjbk5MHw4sHs3N6TNm5f/BwQCgdZwd3eHUqlEmTJlMHDgQH2bk7q4c4dVC86elXTYOXPmYOHChXBzc8OFCxckHdsoyJ+ff65dC1StCgQGxn+umRmQKZP6ce7c/HPmTODxY678uH4duHKFfbOuXTlQ8itVq3I1iUzGAf2goIRttLcHsmRRP06XjueaPRvYuDH2czFRVRyNHZvw+AKBQKtoLKXVv39/rFy58rcNXZlMhj59+mBZcqRwBNEkpSTIy8sLXl5eyJUrV6oqIzYIGjUCjh0DWrTgUsl06VI81OrVq9G7d28AwIgRI/Dvv/9CJpNJZKiBc+AA/w4dHIC3b9WZE+7uXH5qYcHZHDEdnMS4fZurR6ytgW/f2FERCARGj5DOiP99L168GIULF0aNGjVgaWmpYwsFSebkSWDoUL7YVlVXBwfHfVGuZYgILi4u8PDwAABkz54dO3fuRLVq1XRuiyAV8OQJb26pvp++feNsXCGtJUgBwh+I/32PGTMGs2bNQufOnbFp0yYdW5jKmTWLk/QKFODvPIm+34KCgtC4cWNcvHgRlpaW2Lp1K1q3bi3J2EZBWBhQowbLZjs5sVRWmTLxn//kCZAmDQeq2rThY8HBwN9/s+SZmxsfCw3l8xLix4+kVwN5eABnzgBeXiwJ7uIS+3ki4No1DrqouHmTZVYBTiJITX9XgUACDEZKa9u2bQCA9u3b49ChQzh06BA6dOgAIop+TqAdMmXKhGLFiqUqh9BgqF2bN+337+eF+Wf1Tkro1asXli9fDoAzQsaNG5d6KkeaNgWKFQP8/YHx49XHS5dmGYbISCAhp/72bS5Fjfn7Kl8emD+fnSLxvyEQCEycHz9+YOjQoahbty4+f/6sb3MECVG/Pq9NqqAIEWtg167NF8c6RCaT4ciRIxg2bBgyZcqET58+wc3NDdu3b9epHYJUQtGi6qCIUslJMRUqAHfv6tcugcDEOHbsGACgXr16erYkFdK/Pwd8X75k+UCJSJs2LU6cOIGWLVsiIiICbdu2xdLkqioYM9bWLEXq5QU8fx53UOTOHQ5MALze5M2rDooAnICyfr06KALEDoo8fsyqFRcvxt5XiBkUmT+fxwgLi9vOPHmAXr14T+PXoEhUFAc9/viDe6aoqFhR3cO2Wzfg6dN4fw0CgUCLaNS6nYjSp09PLi4uvx13cXGhDBkyaDp8qsXf358AkL+/f7znREREEBGRn58fXb58mVauXEnr1q2je/fuRT8n0CK3bhHlzk0EEFlYEE2fThQenuLhFi9eTAAIAM2YMUNCQw2cCxf4dyiTEd25oz6+di0fz5ePSKGI+7UyGZ+zYoVOTBUIBPojKeuiKZLY+96xYwcBoCJFilBoaCjdvXuXnj17pmMrBSni+XP2H/gynKhxY6Jr14iUSp2aERwcTM2bN4/2QSZNmkRKHdsgSEU8f07k6MifebmcaNgworAwfVslMCKEPxD3+3737l3097iPjw8RET18+JAWLlxIJ06coG/fvunS3NTJjBn83VagAJHE+zFRUVHUt2/fWGt1qsfHh6hDB/6d29kRPXyofi4ykmjbtvj3EWLSsaPaF6tShWj37tj7On5+RGnT8vOZMxPdvZt8W/v1U88xZgxRVJTazlq1+HjBgkRBQckfWyBIpUjlD2gcGOnfvz9lzJiRgoODo48FBQVRxowZaejQoZoOn2pJ7A/csGFDqlSpEllaWkYvjjFvly9fjj73zZs39OzZM1IkZVEQJI8fP4hatFAvchUqEGngdM6bNy/6b7hjxw7p7DR0VM5IpUrqDaGgIHZw0qQhevPm99eEhal/766ucY+rVBK9fq09uwUCgc4QGyFxv+9evXpFrxtmZmYEgHr16hX9fEREBJUuXZo6d+5MS5cupVu3blGY2IQ0HDw8iLp14w1i1ZpWogTRhg063SxWKBQ0fPhwAkDm5ub04MEDnc0tSIV8/UrUvr36M+/mJjaDBElG+ANxv+9NmzZF+wNxHQNAuXLlohYtWtCsWbPo/PnzFBgYqCvzUwcBAUTp0/P3moMDUadOGu0N/IpSqaSpU6dG/z2vXbsm2dhGSc2a6nUEICpbVv3chg18LH/+xMfx9OTAhZWVeqwyZYjev+fnAwOJ5swhypAh4b2HhIiMJBo+XD3+P/+on/v2jSh7dj7ep0/yxxYIUilS+QMaS2nZ2dkhMDAQZcqUwfDhwzF8+HCUK1cOYWFhsLGxwZQpU6JvAukoWrQobt68Gd3gPmfOnGjQoAHc3NyQIUMGlC5dOvrcRYsWoXDhwnB0dESDBg0wc+ZMXLt2Lfq1Ag1Ilw7YuxfYsoVLLZVKwM4uxcMNHToU48aNQ758+dCwYUPp7DR05swBbGy4THb/fj5mawvMmwfcu8flsL8SU7c1Lk39oCCgXTvWeU1N5cYCgSBV4erqijQ/5QAUCgXSp08PKyur6OefPHkCd3d3bN68GQMGDECFChVgb2+PqlWrYsyYMf9n777Dm6r+MIC/Sdt070JbSkuBQqHsbWXKRgEBGSIqCKKi4mC4FUFluhUUF/xEEAdTGTJkyd57lFlmW1q6d3J+fxxym3TQlTZt7/t5nkBy78nN96Rp7zf3LOzbt89aoRMgFwb96Sc5fcLjj8tz4bFjckqFu1OilAetVos5c+Zg/vz5+Pnnn9G0aVMAci2SU5zagSzN1xdYsgRYvRpwcQE2bwZ69ZJTqxJRibRs2RJ+fn5Yt26dsq1NmzZ4+OGHERoaCo1Gg8jISCxfvhxvvPEGunbtivXr1ytlY2JicPPmTWuEXnW4ugLffiunc05IAH75BVi50mKH12g0eOedd7Bv3z78888/8PX1tdixK6W7uYrCuFA7IKe2AoCICGDbtnsfp1YtuQj6pUtynRhPT3kNok0buVi7iwswaRLwxReyfGGLsefH1lZe8/j2W/n488/lGiaAXE914UJ5/9tvgWXLin98Iiq50rbQaDQaodVqlf9z3ze9UdEVpeUrMjJSbNu2TRkqa5R7+oPnnntOODo65hlV4uzsLJ555hlx586dsqiC+kRECHHtWs7j2Fg5oqQETH/uWVlZ4rvvvqv6PXzffVeI2rWFWLOm4DInTphPMfLSS0K0aCHEP//kLZudLcTo0Tm9Ml54QfbUIKJKiT1EC653fHy82LJli4iMjMyTAyQmJoq//vpLvPfee6J3797Cy8vLLBf44IMPlLJ6vZ6jS60tNlaImTOF6NDB/JxlpVxt7dq1AoAYOnSoiI2NtUoMVMXt2SOEh4fM1QYOtHY0VAkwH7j3VNsFnccTEhLEli1bxOzZs8WQIUNErVq1xOXLl5X906dPFwBE27Ztxf/+9z+RlpZm8TqoRlaWEDt2CPHqq+U+PaaqGAxC/PijHGXx/vt5c6WxY+W5pXZtOZqnqC5dkqN3ASFM8mQxdarcNmxY6WI2HnvqVPN9r78uhI2NEJ99VvLjE6mIpfIBjRClW+U5ODgYGo2mSGUvGRdEokIlJibC3d0dCQkJFllcPTs7G8eOHcOOHTuwfft27NixAzExMQgMDMTFixdhe7f3/aVLlxAUFAQbG5tSv6bqvfSSHEkyaZK8X8KRJD/88APGjh2L4OBgfPTRR3j00Ueh1ZZ6sFfFk5oK2NgAJj2dzezZAzzwADB4sOxJ4exc+DGFAGbPBt54Qz7u3Rv47Tcuyk5UCVn6vFhZWLreQghcuHAB//33H7Zv345x48ahTZs2AIC1a9fi1VdfxbPPPouOHTuiSZMmcHBwKPVrUimlpsrFRNu2lTlF69ZAEXPv0po+fTreffddGAwGBAQEYNGiRXjggQfK5bVJRY4eBUaOlKOwQ0LktpSUouV6pDrMB8qm3uPHj8e8efNgMBgAAD4+PhgzZgx69+6N5s2bw8PDw+KvqSqJicDTTwPz5gE+PtaOpmozGACtFkhKApo0Aa5cAcLD5cwUfn5FO0ZyMvD998Arr+TkXMb/33wTmD695PH99puc2cLXF7h6FbCzk9uzsuT5sHXrkh+bSEUsdV4sdcMIlY2yTnyEENi+fTvi4uIwcOBAAEBmZiZcXFxgZ2eHZs2awd3dHYmJiUhISEBSUhIeffRRzJo1CwBw584d3H///TAYDNDr9bCxsYGHhwc8PT3h6emJbt264emnn1Ze64MPPoCHhwd8fHzg4+ODkJAQ1K5du8iNapVOdjbQrp0cggkAQUHAwYMlSoL++OMPvPLKK7hx4wYAoFWrVvj222/RuqqfMPV62VBi9MsvwKhRcruXF/DCC8DLL8v7H38MXL8uh6QCMpHR6XKm2Fq+XE5RkpYGPPgg8Pff5XZRiYgsgxdCyr7egwcPxjKT4fs2NjYICwtDUFAQkpKSsGXLFqVhfvLkyVi1apXSkcJgMCgXU9zc3LB27Vpliodff/0VO3fuhJ2dHZycnODt7Q1vb2/4+PggKCgIYWFh7JBxL2vWAP37yy/6gMwpBg0ChgwB7r+/zF/+0KFDGD58OM6dOweNRoPx48ejR48eaN68OWrWrFnmr08qYbyQZdS+PZCeDjz0kJzO5IEH5HQmpHrMB8qu3tHR0fjxxx/x7bffIjIyUtkeEBCAa9euKY87duyImzdvIiMjA7a2tsoNAJo0aYLff/9dKfvUU08hPj4eHh4e0Ol0sLOzg62tLezt7REcHIxx48YpZQ0GQ9XsAAjI767z5gENGwIbNwIBASU6zKlTp/Dbb7+hTZs26Nu3r4WDrAK2bweGDgUGDJDv9759QJ8+QHy8fM9XrQJatSrZsZs1k9OdvvOOPGf9+6/8f9kyoDj5kF4PTJsGjB4tp/EqSGqqnGKViPJlsfNiaYeuUNmwxhDhc+fOCScnp3wXcwcgnjNZCCo2NrbAcgDEk08+qZRNSUnJt0z16tVF//79xf/+979yq2O5ys4WYvFiIZyc5FDJuXNLfKiUlBTx0UcfCRcXFwFAODo6iujoaAsGW4EYDPK96tcv774NG4SoW9d8UbRFi3Ie79wpF1tv3FhOnWVq796cBdXeeKN86kJEFsOpM8q+3klJSeKbb74RPXv2FD4+PnnO24km0xCMGDHinnlAfHy8Unbs2LH3LHvkyBGl7Llz50RERASn9Mrt8GEhhgwRwtnZfKHRSZPKZZqO5ORk8fTTT5v93BYsWKDsNxgMIiMjo8zjIJWIihLCzs78s16zphD//mvtyKgCYD5Q9vXOysoSK1euFI888ogIDg4Wffv2Ndvv5+dX4Dm9TZs2ZmX9/f0LLNu4cWOzsp06dRKtW7cWL774oli4cKE4cuRI1Tm3nD6ds8C2u7ucoqkEU1QuWrRIABDBwcEiMzPT8nFWdmFhOeeNX36R286dE6JhQyF0OiFKs2B9eroQ06ebn5sAIYYOtUzspi5ckNc9fv/d8scmqiKsOpXWtGnTULNmTYwePbrQRdXfe++94h6eYL2eMHq9HhERETh8+DDS09Ph7u4ONzc3uLm5wdfXF7XutmhnZ2dj165d0Gq10Gq1yMrKQnx8PO7cuYM7d+6gXr16Sg+GxMREvP7664iNjUVsbCyio6Nx9uxZZGVlAQCeffZZfHt3Eaq0tDQMGjQIzZo1Q4sWLdCiRQuEhIRU7p4jH30kexUMGwYsXVqqQy1duhTDhw+Hi4sLbt26BeeqOMVARIRcMN3BQQ45Ng4tNdLr5ciQSZNkD4uvvwb69ZO9CKOigK1bZe9CAPj1VzlM1ejHH4EXXwQ2bAA6diyvGhGRBbCHaPnWWwiBa9eu4dChQ4iJiYGbmxsefvhhZWH3iIgIREVFITs7GxqNRskHhBBITExE7969lXP36tWrceDAAWRnZyM5OVnJB27fvo0bN24gMjJS6Wk6cuRI/Pzzz3BxcUHTpk2VXKBFixZo1KiR2cLyqpSWJs9hv/8uF6/WauVUk3enQytry5Ytw0cffQQhBN58800MHToUiYmJGD16NFxcXLBgwYKqOxqYyldMDLBihVz4dtMm4No1Odp3xAiZV4eGWjtCshLmA+Vf78zMTOiMI/EBbNu2TRn1odfrkZ2djaysLGg0Gri5uaFFixZK2WXLliE6OhoJCQnIyspCdnY2srOzkZqaimrVquGtt95SXsPNzQ0ZGRlmr21nZ4dGjRqhT58+mF6a6YsqgsuX5UiGo0flYzs7oGdPOe12z55FOsSpU6fQokULZGZmYujQoVi8eLGSQxHkLBGLF8v7hw8DzZvL+4mJwN69QI8e8vGVK8DOnXLaqpAQ8xGL97JzJ9Chg/m2p54Cfvqp5DEvXQo0aJATKyBHlEyZAnh7AydPymm3iMiMVafS0mq1CA8Px86dO6HVau/5BUiv15c4ODWr6glfeno6jhw5gj179qBx48bo3r07AGD//v1o27atWVk3Nze0bt0a7dq1w4ABA/Lsr/C2bAG6dpVTX1y5UqpDGS8YjRs3DvPmzbNQgBWMEHJ6rPh4ORWZSWKtWL4ceOQR4L77gP/+A+rVAy5dkvOAPv20/ML80Udybur9++WQZaMbN4AaNcqtOkRkGVX9vFiQql5vIYRZHvn4449j2bJlSE9Pz1PWwcEBsbGxcLo7rUB8fDzc3d3VeyF+wQI5defYsVYNY8eOHejSpQsMBgPmz5+PZ555xqrxUBWUnAy8+irwww/y8caNwN3vDqQ+Vf28WJCqXm8hBCIjI7Fnzx7s3bsXhw4dwpEjR5CQkAAAGDhwIJYvX66U7dSpE0JCQtC2bVu0a9cOzZo1qxzTcur1snPDrFk5DSRffSU77xXR33//jUGDBiErKwuPPvooFi1axMYRo/R0OZ12XNy9pzGfPx947jl5v2lTec3ApPHvns6fB95/X65b8vvvwMSJcsrTkvjpJ2DMGKB2beDAAXkdBAAyM+XackePysa05cs5FThRLlZtGAkODkarVq2wbNmyQhdf54LrJVPVE5+CREVFYeXKlTh8+DCOHDmCY8eOIS0tTdk/e/ZsTJ48GYCcA3XdunXo2LFjxV6vJDkZcHeX809eu1bi+UQBOaLmt99+w3333YcGDRpYMMgKplcv2SP2m29yEhZTf/8te1C0bCkbQz79VCYkTZrI5MFgkL1BtmwBAgOBlStl2dyOH5dJ6U8/FT0RIiKrUOt5UY31zs7Oxrlz53D48GGzm7+/P06ePKmU69y5M86ePYtOnTqhU6dO6NixIxo3blw5LoyUhQ0bAHt7oFOnvF+eExIAV9ei94gsplmzZuGNN96ATqfDf//9hzblNIKFVObAAeCPP4CZM3M+4998A3h4AIMH5x1lTFWSGs+LgDrrLYTAlStXcPjwYXh6eqJLly4AgMuXL6N27dpmZd3c3HD//fejU6dO6NOnD5qb9r6vqE6flgtxP/dc0RcFv2v16tUYPHgwsrKy8Nhjj+Hnn39Wb/5TEr/+Khuk9u+XnUx27Mg7EqQ8xMXJUb8XL8prIGvX5uRqR4/KfVlZwKJFcjQMESkqxeLrp0+fRkPTntpUZGpMfPKTnZ2NU6dOYe/evdi3bx+effZZZdHxJUuWYMSIEQAAPz8/tG/fHu3bt1d6jVSoXhNvvikX5Bo+PKcXABXs3XeBDz8s+rBU42JqqamyMaRLFzmtVqdOwLlzclquH38EHnss5zkZGUDdunLR9vHjgS+/LKvaEJEFqPW8qNZ65yaEQFxcHLy9vQHI/MDHx0fpSWrk5uaG++67D/369cOLxeh9WekZDEBYGHD2rOxh+NprMu/49Vdg/Xq5vV49uX3kSItfQBZCYODAgVi1ahVq1qyJRYsWKRewiMpMYqLsAGP8f9IkucAxLw5WaWo9L6q13vlJSUnBli1bsG/fPuzduxd79uxBYmKisn/ixIn4+OOPlbJr1qxB+/btEVCKDorlIjpanrOffLJIxVeuXIkhQ4YgOzsbr732GmbNmlXGAVZBQ4YAf/4JfPCBnHWipNaskY32/v5yqtPiXIs6elSOPklLyzsVuHFadg8P4MSJUnWyJapqKkzDyJ07d+Dm5mbWOn3w4EFMnz4dq1evVtaRoOJh4lO4FStWYM6cOThw4ECez5mPjw/+/PNPCCHg6OiIGjVqwM/PD3aVrCdZXFwcNm3ahF9//RXNmjXD+++/b+2Qysdff8nhqAEBwKlTQFF+B55/XvYadHaW02W5uckGkxEj5LycV6/KESJhYTnP+ftvuT4JAKxenXOfiCoctZ4X1VrvokhPT8f+/fuxfft2bN++Hbt370ZSUhIAoH///li1apVSdunSpfDx8UHNmjUREBAAV1dXa4VdNpKTgcmT5fRaxvnZQ0LkdA+5dekiR1K6u1s0hISEBLRt2xbnzp0DAAwdOhTz5s1TGrOILC4pCfjiC9nrNzpabuvXT84vX9V+x0mh1vOiWutdFHq9HseOHcOOHTuwfft2jB07Fr169QIAbNq0CT3urivRrl07dOnSBR06dEBgYCBq1qwJLy+vijHzREyMXGfizh05XWC3bgUWNRgMOHnyJLZs2QJvb2+89tpr2LVrl7IeLBXDvHmyQb1aNbmO6fDhxZ+yKve6I3/+Kaf9Lo4PPgDee0+OHNq6NWcdrexs4P775ciWQYOAZcuKd1yiKszqDSOXL19G//79cfLkSXh4eGDBggW4//77MXbsWKxevVopxzVGSoaJT9GlpaXhwIED2LlzJ3bv3o3//vsPd+7cwc2bN9GuXTtcubuuh0ajgZOTE2xtbWFnZ4fmzZtj48aNynEGDhyI6Oho6HQ66HQ62NvbK/8HBgZi5syZStnPPvsMSUlJ8PDwgIeHB9zd3aHT6aDVauHi4oL27dsrZc+fP4/s7GzY29vDwcEB9pmZ0Hl7w87ODnZ2dmYLy69ZswYnT57EwYMHceDAAVy8eFHZFxwcjIsXL1aMxK2spaTIBozISNmL47ff8iYoQsjEoEULOfLj/Hlg1CiZmPj6yh4bTz4pyx08KEeGdOkCeHqaH2fSJOCTT2TP2pMni9YIQ0TlTq3nRbXWuyT0ej2OHz+OnTt3wt/fH4MGDQIgp3WtU6eOWVmdTqech1966SVMnToVgJzSc+DAgdDpdEq+YGdnBycnJzg5OaFbt27KaNX09HT88MMPcHd3h6+vr3JzdnaGVquFnZ2dslitEEJZN0Wn05XddBfR0XLNkdWrgc6d5RfrXr2Adu3kufT99+XF5Pvuk+dLC0+tFRsbi/feew/ffvstgoKCcPLkSWVNGKIyk54uRwZPmiTvN2kiO9nwImGVpNbzolrrXVpr1qzBlClTcPDgwXz3G8/VxvP977//rox4XLt2Lb799lt4eXnB09MTnp6ecHZ2hr29Pezt7dG7d28EBgYCAG7duoXz58/DxsYGWq1W+V8IASEE6tatC8+730MTEhJw48YNODo6wtnZGc7OznB0dITm2WflNNHVq8uFw2vUwLVr17B7925cuHABZ8+exdmzZ3H69GnEx8cDADZu3Ij27dvD0dGxzN/LKunOHaB9ezmtmbOzvKZQzGnNEBkpr12kpMjHK1cCDz9cvGOkpMjc7MQJeS1j82agUSO57+BBORq4Y0dg3TqAP2siAJY7L5Z4rqHXXnsNJ06cACBHjYwZMwZhYWHYsWMHAPml78kiDgEkKg1HR0d07NgRHTt2BABkZWXhyJEj8PX1RVBQEAwGA27evIns7GykGE9WgNKr1OjAgQO4du1avq/RqFEjs4aR7777DmfOnMm3bO3atc0aNB599FEcPHgQGgCvAngTQHMAFwBUq1YN0cYebgDeeustHDt2zOx49evXxyOPPILhw4ero1EEkEnJb7/Jizl9+uTfa+Ojj+SUWw88IBOHkBDZa/Cxx+T0WU89Jedb/+EHmUgUZNo0mbxcuAC89Rbw9ddlVi0iIio7NjY2aN68eZ55xaOjo9GzZ09cu3YN169fR0JCAjIzM5GZmQkAyDCOsIBMsHfv3l3ga7i4uCgNI/Hx8Rg/fnyBZZ955hnMnz8fgBwB6mOyCKhWq1UuxGi1WgwbNkwpq9fr0bp1azg7O8PJyQmOjo5Kw4yTkxNatmyJp556SjnW119/rTTE2Nvbo6GvL9oAiE5NxY1x43LejwkTEBUWBp9Ro5D54osQ6emwsbFRbrlzjIyMDOUCTGxsLFJSUpCSkoLs7Gz069cP7dq1y1Nnb29vzJ07F2PHjkVCQoLSKJKRkYFp06bh2WefRVBQUIHvGVGJODjIHr+tW8uLUcePy2lJzp7lyBEilXvooYfw0EMP4ebNm1i1ahWOHTuGPXv24Nq1a4iJiUFWVpbZ7BOmHRfOnz+Pv/76q8Bjr127VmkYWbt2LcaMGVNg2WXLlikdNtauXYvHTKd4vssRwG4AzaKj5XRKW7Zg69ateOKJJ/KUdXJyQocOHWBnZ8dGkdLw9JSNUB9/LDtIFrdRBACCguRIxcGDZcfMe4z2KZCzM/Dvv3Kd1GPH5M3YMNKqFfDff7KTSxmtFUekZiVuGNmxYwc0Gg0ev7sA0KJFi/Dff//B3t4eL7zwAiZOnAh/f3+LBUpUVHZ2dsqin9u3bwcgh5vevn0bycnJyM7ORlZWFuzt7c2et3DhQiQlJSEjIwOZmZnK/5mZmfDw8DArO3LkSFy+fBnx8fHKLTs7G3q9Ps/cpa6urvDw8EBWejr6p6fDB8BiAPfdjdVU7969ERYWhubNm6N169Zo2bKl0rNEde67D7hyRc6nmZ/hw4Hp0+WaIsY1SVq1kl+Gv/oKmDpVJhSxsYCTkxwNMn488M8/OXOrx8TIYbPz5wPdu8uhtE8+ee+GFCIiqlTatWuHf/75R3mcnJyMO3fuKBdDTM/xfn5+WLFiBTIzM5GdnY3s7GxkZmYiNTUVqampaNmypVLWxsYGgwcPRnx8PKKiohAVFYWYmBgYB2Nr7/Hl1WAwID09XRlFkpaWpuxLTU3FkSNHCnzu4MGDlYYRIUSexpk+ANYCiNm/H2+++SbWrVun7AsZMgSG5GSkmizg2QvADY0Gvt26KSNpU1JS4OHhgezs7Hxj+OOPP3D69OkC65i7cWrx4sWYPn06Zs2ahbp168LNzQ1ubm7w8fHBhAkT8m1kISq2du3kdCP9+sm1dIyNIikpQEQE0LQpLyoRqZS/vz+ee+45s23p6elmjSNZWVlmI0x79OiB7777DnFxcbhz5w7i4uKQlpaGjIwMZGRkmF3vcnJyQr169aDX62EwGJT/NRoNNBqNWeOFnZ0dPD09kZqaatY5Iw3AYACnHBxgt2MH8M8/CAkJQfv27REcHIzQ0FDl1rBhQ2VUKpWSvT3w9tvm2zIy5PaievhhIDMzp0OnwSCnxGrSRF5vKIpq1WTjyLZtwMCB5vvCw4seCxEVS4mn0rKzs0PdunWVXvOhoaE4f/481q1bh549e1o0SDXiUNkq6upViIYNoUlJQfLffyPjvvs493ZRJSfLBg7TL7QLF8qRIYBsDDFdaPfWLTn6o2tXOaqkfXs5ndaJEzlflLt0kfOBfvCBnIbr55+LvuA7EZUrtZ4X1Vrvykqv1yMzMxMGgwE2NjZwcHAAIBswkpOTIYRAVlaW0vEiMzMTQgi4uroqF1iysrLw77//Ijk5GWlpaUhNTUVaWhpSUlKQmpqKsLAwpaepEALDhg2DwWBAVlYWMjIyUC0uDov27wcAjH/hBXxlMhLS1dUVycnJymMfAKcBuAH4uX59PH36tHKeDQoKQmJiIsLCwuDv769M93Hnzh088sgjGDJkCAAgMzMTERERCAsLK3Bk644dOzB16lRs3rw5zz6dToeNGzeiU6dOpXrviRTp6fKClvHzuGSJXHPOxkZeeKpeXU6z9f77gEljJ1UOaj0vqrXeVZ1er1c6Xxin3ar27ruw/fFH+d32q6+sHaL6/PWXXL/0l1/ktKTFdeQI8NxzwN69crruXbuAuyOLiu3MGeCZZ+Raqo0ayWsiL7wADB0KPPRQyY5JVEVYfY0RrVaL++67D7t27QIAhIeHY9++fVxTxEKY+FRhzz4LfPedvBC/YIG1o6kc/v1XNlhMny6/2Jr68EM5YkSjAfbsyX+0x9Sp8suvVisXYa9RA0hLk8Neb9+WCefgwXJO9jFj5BdnIqpQ1HpeVGu9qZRWrJDnunxGYhgMBmRkZMjerDduwOHll6Fbv17uHDcOmDsX0GgQFxcHT0/PQqfx/PrrrzF+/HgEBwejd+/e6Ny5MwIDAxEQEAB/f3+zEboXLlzA9evXkZSUhMTERPz++++4desWtm7dmmckL5HFzJoFTJkiewCbcnCQU6q++ipgW+KJFKicqfW8qNZ6q9KqVcCAAUC9enKKaCpfxus1fn7AmjXFa0DPyJDPu7sGDAA5mmTlypLF8uCDcl0RY1x3p11F27ay4YVIxSpEw4i9vb3Su+3mzZvIzMxELZNF7jQaDS5cuFDi4NSMiU8VZkx0WraUC2lR4YwNGz16yHVDTAkhG0t+/VWOCtmxw3xNkhkz5NohgLzY8/zzOfvmzAFeew3Q6WRikWvqDyKqONR6XlRrvakcCSEvAIwbJ+/Png1Mnlzkp48dOxY///yzsmZLbh9//DEmTpyY7z6DwYCkpCS4u7uXKHSiIsvMlFOoRkfLEcRz5gDbt8sRJGfOAF5e1o6Qikit50W11luV4uOBnj3l9EmffspOe+UtIUEudH78uFz7Y9Wq4q0b0rq1+XWecePklN0lcf060L8/cOiQ+fYZM4A33ijZMYmqiArRMKLRaHCvp2s0Go4gKSEmPlXYqVNyGKSbm0x61LKgemlcvAjUrWs+4sPU9euyR01amhyqGh4uv+QuXSobVYD8kwchZCPV6tXy+YcOAS4u5VIlIioetZ4X1VpvsoLPP5c95wHgxx/lSM0i5igpKSnYunUr1q1bhyNHjuDGjRu4ceMGevfujT///BO27I1PFY0QckpWD4+8c7lThabW86Ja601kFQkJckaJTZvkdZvdu4GwsKI9NyICuHFDdurMypLrnjZpUvJYjh0DhgyRU0COGCHPWfwbQGT9hpEuXboUOrQeALZs2VKSw6seE58qLD1drpUhBBAVJec5psK1by8bPT75BJgwIe/+hQuB0NCchckeeQRYvlze/+AD4J138j9ubCzQrJlsXAHk4uxcJ4mowlHreVGt9SYLEkIuANqyJVDYyIyXXwa+/FLeP3JEnh9L/LICqampcHZ2BpAzhZfpArQA8NVXX8HGxgaPPfYYPDw8Svx6RKW2erWc7mTePDnNFlVIaj0vqrXeRBal18sOlDY2ci0qe3vA2zv/hdYzM2XjxvbtQJ06coYJH5+iv9b583IarPHjLRc/ESksdV4scfetrVu3lvhFiVTNwUFeePDx4bDY4nj8cdkw8ssv+TeMjBpl/jg0VE6NNXr0vZMRb2+5KKdxYbWICGDbNrnoWoMGch97uhIRUWW1aBEwciTQtKns8ejkVHDZTz/NaUhp2jRn+8mTQO3a935uLhqNRmkU0ev1ePbZZ3HhwgX89ddfcDEZnfn6668jLS0Nffr0YcMIWU9ioswl79wBTpyQnWtq1rR2VESkZmlp8rup6fmYSmfUKHk9wZStrewIEh4uO4cYO4DrdMCyZXI9j4sX5XpVc+YU/bVCQuR1CINBHveXX4A335QdOImowijxiBEqW+wRQpTL7duAvz+QnQ2sXw/06mXZ4//xh5wL9KuvgNTUnO3TpsnF3YnIqtR6XlRrvcmCwsOBPXvk/S+/LFrPRYNBTl8JAJs3y2knhw+Xa5GUwLlz59CqVSskJycDABo1aoQGDRrAxsYGv//+OwDg9u3b8Pb2LtHxiSxi0yZg2DAgLk72Hu7aVS5827u3vMBlNH68fPzyy9aLVcXUel5Ua71V6+JF2dFPowFOn5bTSlPpNWgAnD2b81ijkR1CADlV1smTeZ9z6pRc9HzOHNlYUlyLF8tOnoDMreLjAVfX4h+HiMxY6ryotWBMRFQSphfhqWA+PsAzz8j748bJBhJLGjJEfvlNTZWjSB56SG6fNk1OJ0JERFQZde0qL+K6uMjFRItCa/IVQaMBkpOB77+XIypLoH79+li3bh2ee+45AMDJkyexbNkypVFk5MiRbBQh6+veHThwQC6cm5GRMwVKvXrAlSuyjBBAQADwyiuy4wz7GBJRWahdG7jvPrlGxZAhcjpuKr2vvjJfU7RhQzkatmnTgjtDhoUBX3xRskYRwHxaUk9PuaA7EVUYbBghsha9Xl50DwuT61xQ4ebMkYugrVpVtOmtduzIWTukKIwNIO3by6m0HnkEeOIJIDi4JNESERFZ34cf5iwE2rx58Z/ftSvw7LPy/tixJb4406FDB8ydOxeXLl3C2rVr8emnn+K1117D7t27sXDhwhIdk8jiatcG9u2T02nNng106SJzzv/+k/s1GsDOTt7/8EPg1VflCCsiIkvSaIBff5WdAw8fln9rqPR69AAOHZKN3i4ucjRIaqq8DR2at/zt2+YN4FlZcgRIcf7uN24szyHx8cDRo+adT4jI6jiVVgXFobIqkJwMtGoFnDsne4Hc7TVJFnL8uOz5YWMjExjjXKH3cuEC8O+/csquvn3l84xffonIqtR6XlRrvamCSUiQvSpv3gTeegv46CNrR0RUftLTZeOIaaecefOAF16Q90ePltPUsRdwuVDreVGt9Va9DRtyppC+fh2oUcO68VQlCQmy8Umvl1Ndubvn7Lt0CZg4EVixQq5L8tNPcnt4uFyE/X//A5580iphE5HEqbSIKjsXF+C33+QF+z/+4HRNJbFvn2zMyI9xPnW9XpYrirp1ZW/Yvn3lY9NGESGAmJiSx0pERFRZubsDc+fK+7NnM2chdXFwyDtS+fnn5YUxrVZeMPPxAcaMsU58ldnJk0BkpLWjIKq4evYE2rSR99ets24sVY27O/Dcc7KR27RR5PRp2RlkxQr5eOFCYOZMed1m4EC57a23OCU6URXBhhEia2reHHj0UXn/7betGkqls2QJcP/98ktofgPfMjJy7q9dW/TjGgxykc2ZM4HoaLktKkquOfLww6WLmYiIqLIaOFDesrPlQuyWXuuLqLJ58kl54axuXTmqJPfUKpcuWSeuyuL6dTnSZsoUa0dCVLEZ17786y/rxqEWDRrI6wzduuWsO/LWW8CaNcDLLwO1asm/X9OnWzdOIrIINowQWdv778teaGvXshdIcbRvL0d0bNsGLF2ad3+3bsCff8o1XIwjQIpi+3bgn3+AN9+UDVe3bskvuv/8A+zezS+5RESkXt98I6fx6NPHvAMCkVr17y/X8Dl8GHjttZztu3fLBpPhw+Xc8jdvVqy1SLKyrB0BUK0a8N57wLffWjsSooptwAC5aHfNmtaORB00GmDlSvn9f9o0YNw4uf3xx2WDyCefyMezZgHHjlktTCKyDDaMEFlb/fqy5wEgF1XLzLRuPJVFrVqy5wYg37/cC9g3bCgXTz9xQg4/vnBBJpWrVt37uC1bAj/8AISEyC+xjz8OVK8uF98EuBYMERGpl6+vPJ9++inXUyAy0mhkZ5qGDXO2bdkiRzQvXQp07CgbFB0cZGNJv36yMaW86PXmDZkbNgD29kDnzjmjo61BpwMCAmQsRFSwpk3lDAZff23tSNRDowEefFC+559/LtcWadBA/h0fNEheV8jOBp5+Wv6NJaJKiw0jRBXBu+/Ki+9Xr8oeZ1Q0r78ONGok1/6YODH/MsZF11eskI0iAwYAH3yQ//RbAODmJqfn+usvwMkJ2LxZTqtlnPIsv9EpREREauHgYO0IiCq+t96SOf0jjwCBgXItkqws4OJF4O+/AVfXnLJlNS3d1avA1KlA7drAd9/lbA8JkXnw9u1yBPbFi2Xz+kRkGRqN+dqXVHK3b8u/fYV1Rl26VDYiv/SSnNlj9Wo5U0VAgPx5zJ0rrxvs3y+vFRBRpcWGEaKKwN1dnnzPngXatbN2NJWHTidHd2g0cgHMjRsLLjthgpzOAJDD9h99FEhLK7h8gwY5C82+955suLK1lQvOnjljsSoQERFVSvv3y4u+CQnWjoSoYmreXE7rGhkpR2xcuSIvrM2fD/j5yTLJyXJtu1mzCu60U1xCyClhg4PllL1XrwJ//JGzPzgY2LlT/n/+vJxLvzgds/78k2sdEFmDEMC+fUBSkrUjqbyGDZOj5Vxc5LppN27kX+7pp+XC7EIAo0YBKSny2oPR6dPyWsF99wEjRpRL6ERUNtgwQlRRPPAA5w0tifvuA158Ud5/9tmCGzu0WmDIENnAAcgpsebNu/exR46UU2kZDHKkifbun8xNmywSOhERUaVkMMhz5PLlcvQmEd2brS0QFAR06gQ880zO9uXL5ejkN96QozfWr5c9mkvTSBIRIXswGwzyAuDixbLns5FWKxtDdu0CmjWTU/R06iQ7aRX2ukePyny6f3+uu0dU3nr3lp0olyyxdiSVU2Ym8O+/8n5WllxH5Ikn8i+bnCxnkfD2lh1AZs/O2TdtGtC9u7z/33+ykZmIKi02jBBVFImJ8sRKxffRR3JKrVdfNe/JkdupUzlzKTdvDvToce/jajSy8aRfPzmfemamnD+6Vy+LhU5ERFTpaLXAl1/K8+T8+ZxmkqiknnxSjhZxdJQLtvfpIxcld3EBwsLMezNHRwPp6YUf08Ym5/6GDcBjj+U/BZ6/vxzB8sAD8iLg8OFyyph7CQyUFxOXL8/pbERE5ePBB+X/H3xQtL8FZE6nk2uTmnZGLahhZPhwuU5pbKz8m9q3b94ys2bldJwkokqLv8VEFcX8+XJxxqeesnYklY+rq+zBNn68+ZfB3B59VPagi4iQUwY0bVq0Y69eLZOodevkYu716lkudiIiosqoe3fg7bfl/eeek9MEEVHxvfYacOGCzGONU2ylpsqpWry8csq99ZZsmJg2TV6sK0idOjnPK2yKLHd3md9OnSobSPr0ydmX39onXl7Aww/LKWicnYtWPyKyjGeflX8Drl8vfOYDyt/nnwNbtsiGZuM0WfkJCQF8fOToulWrzP82vvSSbLw+cUI2jMyeXXZrRRFRmdMIYanJTMmSEhMT4e7ujoSEBLi5uVk7HCprGRlyYcSbN4EFCwo+QVPRGAzsvUFUxaj1vKjWelMlkZ0tp+DZvRvo0EFebLC1tXZURJVberpcF+TGDTkVllHv3sA//8j7zs5yDvzgYODWLaBFCzl3vtHgwcCaNcBPP+WssVcYIeQoMECuYdC6tZxK5tVXK9TCz2o9L6q13pTLjz/K3/2QENnZjywjK0tehxkxQv591evv3eFy4kQ5owQgpyQ8fDjn7ycRlQtLnRd55bAMzZ07F8HBwXBwcEC7du2wb98+a4dEFdWiRbJRpGZNOdxdTVJSgLg4yx1v1So5rdaBA5Y7JhFRKTAfoCrL1lauX+DqKqcDnTEjZ59xkdhz56wXH1Fl5OAgRyebNooAwN9/y2nrmjeX+fMXX8hGi1mz5PRW2dlyMfV//5XrgERG5jSKxMYWvn6I6UW9hQvl7+7rr8tGl927839OcrLsxb51a8nqqkLMCahUhgyRHQDPnweuXbN2NFXD7dtyetBnnwXatpV/K+/VKAIAr7ySc3/MGCA+XjaqrFlTlpESURlgw0gZ+e233zBhwgRMmTIFhw4dQrNmzdCrVy9EG9c3IDL1v//J/wcNuvcaGVWJwQD88INciNLPzzKLyOn1wHvvAWfOAHPnlv54RESlxHyAqrzatXOm9Ni1S16omTkTCA2Vi8Q2aQL8+qt1YySqjNLS5FQtv/wCTJok1wsZNgw4dAj4+GPzskuXylEd9eoB3brJ0ecuLnJffLycEsbGRubdLVvKdfaeeEIu+v711/J310gI2RPduC7JyZPAQw/l37Dy1VfAzp1yMXa9vizehSqFOQGVmpsb0KqVvD9njnVjqcwyMuTom8aN5bpOkybJ7SNGFG3kR2Cg/Nv5xBOyYeT55+X1jAED+LeQqJLhVFplpF27dmjTpg2+/vprAIDBYEBgYCDGjx+PN954o9Dnc6isysycCbz5plx4ce9eeRGhskpIAM6eBTw95cWS/KbUOHIEGDcO2LMnZ9ulS3I6ACHkF8CzZ+Xt0iUgIEAOUW3aVA7rDw7Oed6SJbJH3I0bcgjrf//JL36rVskvcURUJVTW8yLzAVKN5cuBLl2AGjXkBQdAno+NFwg++kjmOpxqgqxBCCAzU05TlZ4uRzq4uuYsIH79OjB9usxbbWzkTaORN61Wrr/Rs6csGxUl55TPzJSfdb1eXqx0dwc8PIDwcNkoCMhGiXnzZDlj+YQEOVr6zh15zLfekmUTEuTjmBh5S042r8Pzz+d0/Ll1Sy6enpuDg6zf5MkyRkDm3W3byhElBX31791brjVi5Oqa8/q1agGjR8vOR7kdOyZvhw7lTCtTxirzebE0OUFlrjdZ2PLlwCOPyJkmfv658NENVUVGhpzmLylJjlLbtEleNzDmFZMny79xL70kGy6SkuRoufh4+fe5Th1ZbvNm2QASFZVz7OBg4L77gO++k3//imv9euCdd+Saa2PGMNchKgeWOi+yYaQMZGZmwsnJCX/++ScGDBigbB85ciTi4+OxatWqPM/JyMhAhvFLJICEhAQEBQXh6tWrTHzUwGCQcwFv3iy/WC1fLhtHjD21yppen/PFLz9JSfILWs2aeUe07N4tk5IjR4BTp2QDhZGjo5wj2Tgv8TPPyC9PZ87IpMXZWS7c2qMHUL9+zvNCQ+UXvvx06SIbPYyCguQXSSMbGzmfssnvHhFVfomJiQgMDER8fDzc3d2tHU6RMB8gVRo2TF6EeOIJ2Yt81izZq9LGRvYsb9hQzuWdmiovQudewDklBXByyrmocOIEsH+/nCazZk2ZJzk786JDWTAY5EWk6Gj5M9Jq5XtuXMg7K0tedHdyKvxCXFKSHHUQGysbBAwGmW9mZcl9bdvKnrqAHGX0ww8yX9Ro5AV8vV7+Hx0NDB0qc0UAuHwZePxx2ShQrZrMJ7Ozc25DhsjPHQAcPSrn4o+LkzeDwTzGqVNzpkM5elSul1OQiRNzGgbOn8/psZ2fF16QjSyAzION9czP008Dn3wi70dHyxEfplxc5HeCpk3lSJBeveR2IXIaHTMy5C07W44MyS+fT0+XObqxQSY2VubaN27IW7VqwGef5ZSfNQuoW1deKKxZs+D4raAy5gNA8XMC5gN0T//9JxcGryjrap4/Lzsp+vjIRoaaNQtem2jbNmDtWvm3JykJSEyU/6ekyNv69TJXAOSUgdOmyfv5LXC+bp18H27fls/JzMy5rmE6cuPRR4H58+X9a9fk31RfX9ng/PjjslMnEVUqFssHBFnc9evXBQCxa9cus+2TJ08Wbdu2zfc5U6ZMEQB444033njjjbd73K5evVoep3KLYD7AG2+88cYbb2Vzq0z5gBDFzwmYD/DGG2+88cZb4bfS5gP5zHFD1vDmm29iwoQJymODwYC4uDjY2dmptmeIsfWPdWfd1YJ1Z91Z94IJIZCUlIQaNWqUU3TWwXwgL/6OsO6su3qw7qw78wGJ+UBe/B1h3Vl39VBz3QF117+odbdUPsCGkTLg4+MDGxsbRJnOWQggKioKfn5++T7H3t4e9vb2Zts8PDyQmJgIAHBzc1PdL4MR6866qw3rzrqrTVHrXpmmzACYD1ga6866qw3rzrqrTVXNB4Di5wTMBwrGurPuasO6q7PugLrrX5S6WyIfqCATElYtOp0OrVq1wubNm5VtBoMBmzdvRnh4uBUjIyIiovLCfICIiIgA5gREREQVEUeMlJEJEyZg5MiRaN26Ndq2bYvPP/8cKSkpeOqpp6wdGhEREZUT5gNEREQEMCcgIiKqaNgwUkaGDRuGmJgYvPfee7h16xaaN2+O9evXw9fXt1jHsbe3x5QpU/IMo1UD1p11VxvWnXVXGzXUnflA6bHurLvasO6su9qope6WyAnU8l7lh3Vn3dWGdVdn3QF117+8664RQohyeSUiIiIiIiIiIiIiIiIr4xojRERERERERERERESkGmwYISIiIiIiIiIiIiIi1WDDCBERERERERERERERqQYbRoiIiIiIiIiIiIiISDXYMFKBzZ07F8HBwXBwcEC7du2wb98+a4dUau+//z40Go3ZrUGDBsr+9PR0vPDCC/D29oaLiwseeeQRREVFmR0jMjISDz30EJycnFC9enVMnjwZ2dnZ5V2VQm3fvh39+vVDjRo1oNFosHLlSrP9Qgi899578Pf3h6OjI7p3746IiAizMnFxcRgxYgTc3Nzg4eGBMWPGIDk52azMsWPH0LFjRzg4OCAwMBCzZ88u66oVqrC6jxo1Ks/noHfv3mZlKmPdZ8yYgTZt2sDV1RXVq1fHgAEDcPbsWbMylvqMb926FS1btoS9vT1CQkKwcOHCsq5eoYpS/y5duuT52T/33HNmZSpj/b/55hs0bdoUbm5ucHNzQ3h4ONatW6fsr8o/98LqXlV/5uWJ+QDzgcp4TgTUmw8A6s4JmA8wH2A+UHaqWk7AfCAH8wHmA1Xt3MB8gPlApcgHBFVIS5cuFTqdTvz000/i5MmTYuzYscLDw0NERUVZO7RSmTJlimjUqJG4efOmcouJiVH2P/fccyIwMFBs3rxZHDhwQNx3333i/vvvV/ZnZ2eLxo0bi+7du4vDhw+LtWvXCh8fH/Hmm29aozr3tHbtWvH222+L5cuXCwBixYoVZvtnzpwp3N3dxcqVK8XRo0dF//79Re3atUVaWppSpnfv3qJZs2Ziz549YseOHSIkJEQMHz5c2Z+QkCB8fX3FiBEjxIkTJ8Svv/4qHB0dxfz588urmvkqrO4jR44UvXv3NvscxMXFmZWpjHXv1auXWLBggThx4oQ4cuSIePDBB0VQUJBITk5WyljiM37x4kXh5OQkJkyYIE6dOiW++uorYWNjI9avX1+u9c2tKPXv3LmzGDt2rNnPPiEhQdlfWeu/evVqsWbNGnHu3Dlx9uxZ8dZbbwk7Oztx4sQJIUTV/rkXVveq+jMvL8wHmA8IUTnPiUKoNx8QQt05AfMB5gPMB8pGVcwJmA/kYD7AfKCqnRuYDzAfqAz5ABtGKqi2bduKF154QXms1+tFjRo1xIwZM6wYVelNmTJFNGvWLN998fHxws7OTvzxxx/KttOnTwsAYvfu3UIIeULVarXi1q1bSplvvvlGuLm5iYyMjDKNvTRyn/wNBoPw8/MTc+bMUbbFx8cLe3t78euvvwohhDh16pQAIPbv36+UWbdundBoNOL69etCCCHmzZsnPD09zer++uuvi9DQ0DKuUdEVlPg8/PDDBT6nqtQ9OjpaABDbtm0TQljuM/7aa6+JRo0amb3WsGHDRK9evcq6SsWSu/5CyJPgyy+/XOBzqlL9PT09xQ8//KC6n7sQOXUXQl0/87LAfEBiPlD5z4lqzgeEUHdOwHyA+YAQ6vqZl5WqmBMwH5CYDzAfUMO5gfkA8wEhKt7PnFNpVUCZmZk4ePAgunfvrmzTarXo3r07du/ebcXILCMiIgI1atRAnTp1MGLECERGRgIADh48iKysLLN6N2jQAEFBQUq9d+/ejSZNmsDX11cp06tXLyQmJuLkyZPlW5FSuHTpEm7dumVWV3d3d7Rr186srh4eHmjdurVSpnv37tBqtdi7d69SplOnTtDpdEqZXr164ezZs7hz50451aZktm7diurVqyM0NBTjxo1DbGyssq+q1D0hIQEA4OXlBcByn/Hdu3ebHcNYpqL9fchdf6PFixfDx8cHjRs3xptvvonU1FRlX1Wov16vx9KlS5GSkoLw8HBV/dxz192oqv/MywrzAeYDQNU5JxZEDfkAoO6cgPkA8wGjqv4zL0tVOSdgPsB8AGA+oIZzA/MB5gNGFelnblvsZ1CZu337NvR6vdmHAAB8fX1x5swZK0VlGe3atcPChQsRGhqKmzdvYurUqejYsSNOnDiBW7duQafTwcPDw+w5vr6+uHXrFgDg1q1b+b4vxn2VhTHW/OpiWtfq1aub7be1tYWXl5dZmdq1a+c5hnGfp6dnmcRfWr1798agQYNQu3ZtXLhwAW+99Rb69OmD3bt3w8bGpkrU3WAw4JVXXkH79u3RuHFjJS5LfMYLKpOYmIi0tDQ4OjqWRZWKJb/6A8Bjjz2GWrVqoUaNGjh27Bhef/11nD17FsuXLwdQuet//PhxhIeHIz09HS4uLlixYgXCwsJw5MiRKv9zL6juQNX+mZc15gMeZs9hPpCjsp0TC6KGfABQd07AfID5APMBy6iqOQHzAYn5APOBqnxuAJgPMB+ouPkAG0aoXPXp00e537RpU7Rr1w61atXC77//bvU/1FR+Hn30UeV+kyZN0LRpU9StWxdbt25Ft27drBiZ5bzwwgs4ceIE/vvvP2uHYhUF1f+ZZ55R7jdp0gT+/v7o1q0bLly4gLp165Z3mBYVGhqKI0eOICEhAX/++SdGjhyJbdu2WTusclFQ3cPCwqr0z5xKjvkAAerIBwB15wTMB5gPMB+ge2E+QADzATVgPsB8oKLmA5xKqwLy8fGBjY0NoqKizLZHRUXBz8/PSlGVDQ8PD9SvXx/nz5+Hn58fMjMzER8fb1bGtN5+fn75vi/GfZWFMdZ7/Yz9/PwQHR1ttj87OxtxcXFV7v2oU6cOfHx8cP78eQCVv+4vvvgi/v77b2zZsgU1a9ZUtlvqM15QGTc3twrxBaKg+uenXbt2AGD2s6+s9dfpdAgJCUGrVq0wY8YMNGvWDF988YUqfu4F1T0/VelnXtaYD8SblWE+kKMynROLo6rlA4C6cwLmA8wHmA9YjlpyAuYDzAcA5gNA1To3MB9gPlCR8wE2jFRAOp0OrVq1wubNm5VtBoMBmzdvNpuTrSpITk7GhQsX4O/vj1atWsHOzs6s3mfPnkVkZKRS7/DwcBw/ftzspLhx40a4ubkpw7Iqg9q1a8PPz8+sromJidi7d69ZXePj43Hw4EGlzL///guDwaD84QgPD8f27duRlZWllNm4cSNCQ0MrxFDRorp27RpiY2Ph7+8PoPLWXQiBF198EStWrMC///6bZyivpT7j4eHhZscwlrH234fC6p+fI0eOAIDZz76y1j83g8GAjIyMKv9zz4+x7vmpyj9zS2M+wHwAqLznxJKoKvkAoO6cgPmAOeYDzAcsQS05AfMB5gMA84Gqcm5gPmCO+UAFzQeKvVw7lYulS5cKe3t7sXDhQnHq1CnxzDPPCA8PD3Hr1i1rh1YqEydOFFu3bhWXLl0SO3fuFN27dxc+Pj4iOjpaCCHEc889J4KCgsS///4rDhw4IMLDw0V4eLjy/OzsbNG4cWPRs2dPceTIEbF+/XpRrVo18eabb1qrSgVKSkoShw8fFocPHxYAxKeffioOHz4srly5IoQQYubMmcLDw0OsWrVKHDt2TDz88MOidu3aIi0tTTlG7969RYsWLcTevXvFf//9J+rVqyeGDx+u7I+Pjxe+vr7iiSeeECdOnBBLly4VTk5OYv78+eVeX1P3qntSUpKYNGmS2L17t7h06ZLYtGmTaNmypahXr55IT09XjlEZ6z5u3Djh7u4utm7dKm7evKncUlNTlTKW+IxfvHhRODk5icmTJ4vTp0+LuXPnChsbG7F+/fpyrW9uhdX//PnzYtq0aeLAgQPi0qVLYtWqVaJOnTqiU6dOyjEqa/3feOMNsW3bNnHp0iVx7Ngx8cYbbwiNRiM2bNgghKjaP/d71b0q/8zLC/MB5gNCVM5zohDqzQeEUHdOwHyA+QDzgbJRFXMC5gPMB5gPVN1zA/MB5gOVIR9gw0gF9tVXX4mgoCCh0+lE27ZtxZ49e6wdUqkNGzZM+Pv7C51OJwICAsSwYcPE+fPnlf1paWni+eefF56ensLJyUkMHDhQ3Lx50+wYly9fFn369BGOjo7Cx8dHTJw4UWRlZZV3VQq1ZcsWASDPbeTIkUIIIQwGg3j33XeFr6+vsLe3F926dRNnz541O0ZsbKwYPny4cHFxEW5ubuKpp54SSUlJZmWOHj0qOnToIOzt7UVAQICYOXNmeVWxQPeqe2pqqujZs6eoVq2asLOzE7Vq1RJjx47Nk9BXxrrnV2cAYsGCBUoZS33Gt2zZIpo3by50Op2oU6eO2WtYS2H1j4yMFJ06dRJeXl7C3t5ehISEiMmTJ4uEhASz41TG+o8ePVrUqlVL6HQ6Ua1aNdGtWzcl6RGiav/c71X3qvwzL0/MB5gPVMZzohDqzQeEUHdOwHyA+QDzgbJT1XIC5gPMB5gPVN1zA/MB5gOVIR/QCCFE8ceZEBERERERERERERERVT5cY4SIiIiIiIiIiIiIiFSDDSNERERERERERERERKQabBghIiIiIiIiIiIiIiLVYMMIERERERERERERERGpBhtGiIiIiIiIiIiIiIhINdgwQkREREREREREREREqsGGESIiIiIiIiIiIiIiUg02jBARERERERERERERkWqwYYSIqpStW7dCo9EgPj6+3F9bo9FAo9HAw8OjSOWNsWo0GgwYMKBMYyMiIlIT5gNERETEfICI7oUNI0RUaXXp0gWvvPKK2bb7778fN2/ehLu7u1ViWrBgAc6dO1ekssZYhw4dWsZRERERVV3MB4iIiIj5ABEVFxtGiKhK0el08PPzg0ajscrre3h4oHr16kUqa4zV0dGxjKMiIiJSF+YDRERExHyAiO6FDSNEVCmNGjUK27ZtwxdffKEMN718+XKeobILFy6Eh4cH/v77b4SGhsLJyQmDBw9Gamoq/ve//yE4OBienp546aWXoNfrleNnZGRg0qRJCAgIgLOzM9q1a4etW7cWO86jR4/igQcegKurK9zc3NCqVSscOHDAQu8CERGRujEfICIiIuYDRFQSttYOgIioJL744gucO3cOjRs3xrRp0wAA1apVw+XLl/OUTU1NxZdffomlS5ciKSkJgwYNwsCBA+Hh4YG1a9fi4sWLeOSRR9C+fXsMGzYMAPDiiy/i1KlTWLp0KWrUqIEVK1agd+/eOH78OOrVq1fkOEeMGIEWLVrgm2++gY2NDY4cOQI7OzuLvAdERERqx3yAiIiImA8QUUmwYYSIKiV3d3fodDo4OTnBz8/vnmWzsrLwzTffoG7dugCAwYMHY9GiRYiKioKLiwvCwsLwwAMPYMuWLRg2bBgiIyOxYMECREZGokaNGgCASZMmYf369ViwYAGmT59e5DgjIyMxefJkNGjQAACKlTQRERHRvTEfICIiIuYDRFQSbBghoirPyclJSXoAwNfXF8HBwXBxcTHbFh0dDQA4fvw49Ho96tevb3acjIwMeHt7F+u1J0yYgKeffhqLFi1C9+7dMWTIELNYiIiIqHwwHyAiIiLmA0RkxIYRIqrycg9N1Wg0+W4zGAwAgOTkZNjY2ODgwYOwsbExK2eaLBXF+++/j8ceewxr1qzBunXrMGXKFCxduhQDBw4sQU2IiIiopJgPEBEREfMBIjJiwwgRVVo6nc5sQTRLadGiBfR6PaKjo9GxY8dSH69+/fqoX78+Xn31VQwfPhwLFixg4kNERGQhzAeIiIiI+QARFZfW2gEQEZVUcHAw9u7di8uXL+P27dtKj47Sql+/PkaMGIEnn3wSy5cvx6VLl7Bv3z7MmDEDa9asKfJx0tLS8OKLL2Lr1q24cuUKdu7cif3796Nhw4YWiZOIiIiYDxARERHzASIqPjaMEFGlNWnSJNjY2CAsLAzVqlVDZGSkxY69YMECPPnkk5g4cSJCQ0MxYMAA7N+/H0FBQUU+ho2NDWJjY/Hkk0+ifv36GDp0KPr06YOpU6daLE4iIiK1Yz5AREREzAeIqLg0Qghh7SCIiKoCjUaDFStWYMCAAcV63qhRoxAfH4+VK1eWSVxERERUfpgPEBEREfMBooqPI0aIiCxo+PDhqFmzZpHK7tixAy4uLli8eHEZR0VERETlifkAERERMR8gqtg4YoSIyELOnz8PQA6RrV27dqHl09LScP36dQCAi4sL/Pz8yjQ+IiIiKnvMB4iIiIj5AFHFx4YRIiIiIiIiIiIiIiJSDU6lRUREREREREREREREqsGGESIiIiIiIiIiIiIiUg02jBARERERERERERERkWqwYYSIiIiIiIiIiIiIiFSDDSNERERERERERERERKQabBghIiIiIiIiIiIiIiLVYMMIERERERERERERERGpBhtGiIiIiIiIiIiIiIhINdgwQkREREREREREREREqsGGESIiIiIiIiIiIiIiUg02jBARERERERERERERkWqwYYSIiIiIiIiIiIiIiFSDDSNERERERERERERERKQabBghIiIiIiIiIiIiIiLVYMMIERERERERERERERGpBhtGiIgqoIEDB8LT0xODBw+2diiKihgTERFRVVYRz70VMSYiIqKqrCKeeytiTETFxYYRIqIK6OWXX8bPP/9s7TDMVMSYiIiIqrKKeO6tiDERERFVZRXx3FsRYyIqLjaMEKlQly5d8Morr1SZ16kIunTpAo1GA41GgyNHjljkeK6urkUuW14/z/xiGjVqlFL3lStXlnkcRERkGcwHLI/5APMBIqLKhvmA5TEfYD5AlQMbRoiquPxOisuXL8cHH3xQKV/HkiydMIwdOxY3b95E48aNLXbMyuCLL77AzZs3rR0GERHdA/OBgjEfsAzmA0REFR/zgYIxH7AM5gNUmdhaOwAiKn9eXl5V6nVyy8zMhE6nK/fXdXJygp+fX5HKNm/eHNnZ2Xm2b9iwATVq1LB0aGUaj7u7O9zd3csqNCIiKiPMB8oG8wEiIqpMmA+UDeYDRBUfR4wQVXDr169Hhw4d4OHhAW9vb/Tt2xcXLlxQ9hsMBsyePRshISGwt7dHUFAQPvroIwByCOO2bdvwxRdfKEMZL1++bNYT4rvvvkONGjVgMBjMXvfhhx/G6NGjixRDUV4HkD0wXnrpJbz22mvw8vKCn58f3n//fbPXTUpKwogRI+Ds7Ax/f3989tlnhfbc6NKlC1588UW88sor8PHxQa9evQqNu6CYje/pjBkzULt2bTg6OqJZs2b4888/i/wzM/rzzz/RpEkTODo6wtvbG927d0dKSgoA4MiRIzhx4kSemyWSnjVr1sDd3R2LFy8GULT3tCzjISKi0mM+wHyguJgPEBFVPcwHmA8UF/MBooKxYYSogktJScGECRNw4MABbN68GVqtFgMHDlQSlTfffBMzZ87Eu+++i1OnTmHJkiXw9fUFIIcwhoeHK0M4b968icDAQLPjDxkyBLGxsdiyZYuyLS4uDuvXr8eIESOKFENRXsfof//7H5ydnbF3717Mnj0b06ZNw8aNG5X9EyZMwM6dO7F69Wps3LgRO3bswKFDhwp9n/73v/9Bp9Nh586d+PbbbwuN+14xz5gxAz///DO+/fZbnDx5Eq+++ioef/xxbNu2rUg/MwC4efMmhg8fjtGjR+P06dPYunUrBg0aBCFEkY9REkuWLMHw4cOxePFi5edX0veUiIgqDuYDzAeKg/kAEVHVxHyA+UBxMB8gKoQgokolJiZGABDHjx8XiYmJwt7eXnz//fcFlu/cubN4+eWX77nt4YcfFqNHj1Yez58/X9SoUUPo9fpCYyjO63Tu3Fl06NDBrEybNm3E66+/LoQQIjExUdjZ2Yk//vhD2R8fHy+cnJzyHDv367Ro0aLA/QXFnV/M6enpwsnJSezatcts+5gxY8Tw4cPvGYPpsQ4ePCgAiMuXLxcaV366desmfHx8hKOjowgICMgTT36v/fXXXwt3d3exdetWZV9J39OSxARArFixoljHJCKikmE+kH8dmQ8wHyAiUhPmA/nXkfkA8wGiouAaI0QVXEREBN577z3s3bsXt2/fVnphREZGIjU1FRkZGejWrVupXmPEiBEYO3Ys5s2bB3t7eyxevBiPPvootFptoTEUdyGxpk2bmj329/dHdHQ0AODixYvIyspC27Ztlf3u7u4IDQ0t9LitWrXKs60kcZ8/fx6pqano0aOH2fbMzEy0aNGi0DiMmjVrhm7duqFJkybo1asXevbsicGDB8PT07NIz9+0aVORXwuQw3Kjo6Oxc+dOtGnTRtlemve0tDEREZHlMB9gPlAUzAeIiKo25gPMB4qC+QBR0bBhhKiC69evH2rVqoXvv/9emeuzcePGyMzMhKOjo8VeQwiBNWvWoE2bNtixYwc+++yzIsVQXHZ2dmaPNRpNnvlLS8LZ2TnPtpLEnZycDEDOwxkQEGC2z97evsjx2NjYYOPGjdi1axc2bNiAr776Cm+//Tb27t2L2rVrF/k4RdWiRQscOnQIP/30E1q3bg2NRmPx1yAiIuthPlA0zAeYDxARVWXMB4qG+QDzAaKi4BojRBVYbGwszp49i3feeQfdunVDw4YNcefOHWV/vXr14OjoiM2bNxd4DJ1OB71ef8/XcXBwwKBBg7B48WL8+uuvCA0NRcuWLYsUQ3FepzB16tSBnZ0d9u/fr2xLSEjAuXPnin2sosSdX8xhYWGwt7dHZGQkQkJCzG4FzYtaEI1Gg/bt22Pq1Kk4fPgwdDodVqxYUey6FEXdunWxZcsWrFq1CuPHj1e2W/I9JSIi62A+wHygqJgPEBFVXcwHmA8UFfMBoqLhiBGiCszT0xPe3t747rvv4O/vj8jISLzxxhvKfgcHB7z++ut47bXXoNPp0L59e8TExODkyZMYM2YMACA4OBh79+7F5cuX4eLiAi8vr3xfa8SIEejbty9OnjyJxx9/vMgxGBX1de7F1dUVI0eOxOTJk+Hl5YXq1atjypQp0Gq1xe7hUJS484vZ1dUVkyZNwquvvgqDwYAOHTogISEBO3fuhJubG0aOHFmk19+7dy82b96Mnj17onr16ti7dy9iYmLQsGHDYtWjOOrXr48tW7agS5cusLW1xeeff27R95SIiKyD+QDzgeJgPkBEVDUxH2A+UBzMB4gKxxEjRBWYVqvF0qVLcfDgQTRu3Bivvvoq5syZY1bm3XffxcSJE/Hee++hYcOGGDZsmDInJwBMmjQJNjY2CAsLQ7Vq1RAZGZnva3Xt2hVeXl44e/YsHnvssWLFUJzXKcynn36K8PBw9O3bF927d0f79u3RsGFDODg4FOs4RYm7oJg/+OADvPvuu5gxYwYaNmyI3r17Y82aNcUa4urm5obt27fjwQcfRP369fHOO+/gk08+QZ8+fYpVj+IKDQ3Fv//+i19//RUTJ04EYLn3lIiIrIP5APOB4mI+QERU9TAfYD5QXMwHiO5NI4QQ1g6CiKggKSkpCAgIwCeffKL0cqmIunTpgubNm+Pzzz+3diiFKqv3VKPRYMWKFRgwYIDFjklERAQwHygLzAeIiKiyYT5gecwHSM04YoSIKpTDhw/j119/xYULF3Do0CGMGDECAPDwww9bObLCzZs3Dy4uLjh+/Li1QzFT1u/pc889BxcXF4sci4iICGA+UBaYDxARUWXDfMDymA8Q5eCIESKqUA4fPoynn34aZ8+ehU6nQ6tWrfDpp5+iSZMm1g7tnq5fv460tDQAQFBQEHQ6nZUjylHW72l0dDQSExMBAP7+/nB2drbIcYmISL2YD1ge8wEiIqpsmA9YHvMBohxsGCEiIiIiIiIiIiIiItXgVFpERERERERERERERKQabBghIiIiIiIiIiIiIiLVYMMIERERERERERERERGpBhtGiIiIiIiIiIiIiIhINdgwQgTg77//RmhoKOrVq4cffvjB2uGQlcTHx6N169Zo3rw5GjdujO+//97aIZGVXbp0CQ888ADCwsLQpEkTpKSkWDskIipDzAfIiDkBmWI+QKQuzAfIiPkAmWI+UPVohBDC2kEQWVN2djbCwsKwZcsWuLu7o1WrVti1axe8vb2tHRqVM71ej4yMDDg5OSElJQWNGzfGgQMH+FlQsc6dO+PDDz9Ex44dERcXBzc3N9ja2lo7LCIqA8wHyBRzAjLFfIBIPZgPkCnmA2SK+UDVwxEjpHr79u1Do0aNEBAQABcXF/Tp0wcbNmywdlhkBTY2NnBycgIAZGRkQAgBth2r18mTJ2FnZ4eOHTsCALy8vJj0EFVhzAfIFHMCMmI+QKQuzAfIFPMBMmI+UDWxYYQqve3bt6Nfv36oUaMGNBoNVq5cmafM3LlzERwcDAcHB7Rr1w779u1T9t24cQMBAQHK44CAAFy/fr08QicLK+1nAZBDZZs1a4aaNWti8uTJ8PHxKafoydJK+3mIiIiAi4sL+vXrh5YtW2L69OnlGD0RFRfzATLFnICMmA8QqQvzATLFfICMmA9QftgwQpVeSkoKmjVrhrlz5+a7/7fffsOECRMwZcoUHDp0CM2aNUOvXr0QHR1dzpFSWbPEZ8HDwwNHjx7FpUuXsGTJEkRFRZVX+GRhpf08ZGdnY8eOHZg3bx52796NjRs3YuPGjeVZBSIqBuYDZIo5ARkxHyBSF+YDZIr5ABkxH6B8CaIqBIBYsWKF2ba2bduKF154QXms1+tFjRo1xIwZM4QQQuzcuVMMGDBA2f/yyy+LxYsXl0u8VHZK8lnIbdy4ceKPP/4oyzCpnJTk87Br1y7Rs2dPZf/s2bPF7NmzyyVeIiod5gNkijkBGTEfIFIX5gNkivkAGTEfICOOGKEqLTMzEwcPHkT37t2VbVqtFt27d8fu3bsBAG3btsWJEydw/fp1JCcnY926dejVq5e1QqYyUpTPQlRUFJKSkgAACQkJ2L59O0JDQ60SL5Wtonwe2rRpg+joaNy5cwcGgwHbt29Hw4YNrRUyEZUC8wEyxZyAjJgPEKkL8wEyxXyAjJgPqBdXiaEq7fbt29Dr9fD19TXb7uvrizNnzgAAbG1t8cknn+CBBx6AwWDAa6+9Bm9vb2uES2WoKJ+FK1eu4JlnnlEWVBs/fjyaNGlijXCpjBX1b8P06dPRqVMnCCHQs2dP9O3b1xrhElEpMR8gU8wJyIj5AJG6MB8gU8wHyIj5gHqxYYQIQP/+/dG/f39rh0FW1rZtWxw5csTaYVAF0qdPH/Tp08faYRBROWE+QEbMCcgU8wEidWE+QEbMB8gU84Gqh1NpUZXm4+MDGxubPItjRUVFwc/Pz0pRkTXws0Cm+HkgUhf+zpMpfh7IiJ8FInXh7zyZ4ueBjPhZUC82jFCVptPp0KpVK2zevFnZZjAYsHnzZoSHh1sxMipv/CyQKX4eiNSFv/Nkip8HMuJngUhd+DtPpvh5ICN+FtSLU2lRpZecnIzz588rjy9duoQjR47Ay8sLQUFBmDBhAkaOHInWrVujbdu2+Pzzz5GSkoKnnnrKilFTWeBngUzx80CkLvydJ1P8PJARPwtE6sLfeTLFzwMZ8bNA+RJEldyWLVsEgDy3kSNHKmW++uorERQUJHQ6nWjbtq3Ys2eP9QKmMsPPApni54FIXfg7T6b4eSAjfhaI1IW/82SKnwcy4meB8qMRQogyaXEhIiIiIiIiIiIiIiKqYLjGCBERERERERERERERqQYbRoiIiIiIiIiIiIiISDXYMEJERERERERERERERKrBhhEiIiIiIiIiIiIiIlINNowQEREREREREREREZFqsGGEiIiIiIiIiIiIiIhUgw0jRERERERERERERESkGmwYISIiIiIiIiIiIiIi1WDDCKlCRkYG3n//fWRkZFg7FKvi+yDxfZD4Pkh8H4jUhb/zfA+M+D5IfB8kvg9E6sLfeYnvA98DI74PEt8HddEIIYS1gyAqa4mJiXB3d0dCQgLc3NysHY7V8H2Q+D5IfB8kvg9E6sLfeb4HRnwfJL4PEt8HInXh77zE94HvgRHfB4nvg7pwxAhRIebOnVvsfbm3mz4u7P69Xq8whT33+++/L9LzKkq8le39zW9/Ydsq2uehIsdblPe3KJ+NgupARHQv5f03qrR/n+71/JLkA7kfl2e8JckHCoqN+UteVSE/tGb+QkTqUtm+s1jiO2FFircy5VulzV9M71eG/LAi5AP3iq8o95kPqJAgUoGEhAQBQCQkJBT7uQ0bNiz2vtzbTR8Xdv9er1eYwp4bGhqa7/tQUeMtq/e3pJ+HksRb2LaK9nmoyPEW5f0tymcj97bS/H0gosrHmueA4vyNKs3f08KeX5J8wJrxliQfKCg2a+UDhcVb0fKBihxvWeVbzAeI1KWy5ANFec3ixmOqKN8JK1K8ZZFvVaTrRUWJtzTKMj+sCPnAveIryn3mA+pja4W2GKJyl5qaCgAYN24c7OzsivXcGzduYNSoUcXal3u76ePC7t/r9UoTKwDcvHkTQN73oaLGW1bv77hx4wAU//NQkngL21bRPg8VOd6ivL9F+Wzk3hbm3hAAIDizJJEqfPbZZwCscw4ozt+o0vw9LSzekuQD1oy3JPlAfjHm3lae+UBh8Va0fKAix1tW+Zbx85CdnV2iuImoclm9ejWAip8PFOU1SxNvUb4TVqR4yyLfKmk+UFi8pc1fCoq3rPKt0uaHFSEfKCze4uQD8fHxnEpLBdgwQqpw7tw56HQ6BNepCxtbG0AAuS+B5lwTFXLf3TLtwu9HjaDgu/sFlH8F0Oa+++FbsxaEyUYBoHW7cFSrEaS8Rqu24fD2DwQAtGwbDi+/QAgALdrcBw/fmoAAWrS+D+7VA9C8dTu4VQtQYjK+ojE+YfI6Sj2E3NK4RRvo3P1MYhRm/zds2goZGRmwcfOFRmujlGvQtDWEUzWIu69Tv0krZDv6AAKo37gVshy8AQHUa9wKmfbeEAIIadQK6Tov1G3UEml2XoXGZvoeCwAwCNQKbYF4g7tSWJg9EQis1wxxGS5mxwaAmnWbIjbVWR5XADVrN0FMsiMAICC4CWISHSAABNRqjOgEe0AANYIaI+qOPWoENkJMvAPq1muJmDv20Grl58EsOOMbbxqPAGr4NsCtqxqT7aYVAmr4hOLWRYPZcWp418etCL1Z2Rqe9XDrTJa871EPt05lAgLwdwvBzRMZ8r5rXdw8lg5/l7q4eSQt33hyfUjuPsx5HX/72rixOyn/+gHwsw2Cj3sWov5LhEajBQTgpwnE9c1xMP3A+YmauP5PDAQAP0MArq2NBiDgl10D1/6+BQgB3yx/XFt9A76Z/ri68rrpL5TJ+5nzoRC5H0Ogmt4Hl369cPeRUMoZH3vqPXB28WnlsYCAu8ENJ345rhzD1eCCo4sOK0dwFk44+PMBAAJOwhEHft4PR+GIff/bCwEBe9hDBx200KKORx38vetvhIeHg4iqrmnTpqHdffcVmBOUJB8AZE5QvWatIucDQP45QYs298G9es1S5QMA0OhuTlDUfADIyQeMR67fpBX0jj7Kses1boUse28IACGNWyFD522RfAAAgkKbI97gZnZ6NT45sF4zxGW6KO+18fj3ygcg7uYBiQ4Wygdy4qnh1xC3rmlynZtzPkj55QMAUMOrPm6dy1a2lzgfgOnrmsRnEkNp8wEIIXOCTbHKsQvMB/Q1cG1NVE4+8NdNmQ+sunE3JmEeXxnnA8YjmeYELsIZhxYdhBA5+YCAgKNwwN7/7YE97LFvyV7YwQ6B3oH48dcfMXToUGi1nHmaqKr69ttv0aBBwzLPB4C7+UBAkHKMVm3D4V0jSHmRe+UDgFByAkvkAznxFpwTlCYfgADqhsmcoKj5gBJTCa8RFDUfUO7H2xeQDzjk/N2/Z06Qcz/fawSlyAcgBGq4h+DWyUwAOTmBv2uIzAdc6+Lm0fQC41HemHzyAQgBf11t3NiVVPJ8AJD5wIbbymfImBOUdz7gpffE2SWnlc9UUa4RFCUf2L9kHxzhiJBaIQhBXRxIOQgnJydQ1cTF10kV9uzZg0cGD8b5y5HI+WOaK9lR/gaLXH+jTR+LnHOOQD7HKuJxlPsi53GuBEEIwGCyPXc5Y5m820xjKuR5ZmUAg+l+s2Qrn2PmPn6BdSvgdQ3GREfuEMK4LeekKGRQyrGURM5kO0xiQBGPYdxmUvF73zeY/JBz35c/9nz2FeP4ueqTsx13j2let5ztuV4XJTmGfL5QjnP3/3y2CZN9BT1PHt9g8t7k/1xh+hwIGITh7udP/m8QBggY5O/A3f8NMEDc/V/ZrpQ1f05+ZQEUeLwsZOECLuIiLsEH3thwdCOaNm1a3D81RFQJ2NjY4FTEeQQF1UKJz+MWyAdg3JbnvJn3nF0e+QDMyuWfE5RrPmB8r4Tx/5xzZX7bYBJDmeQDxh/YvXKCfO8X8fgm9ws7l0N530z3mb92ueYDQOE5QQHPLYt8QIZz75ygwOPBgKu4hnOIgA46LPl7CR588EFoNJri/7EhogqtU6dOGP3MMxj26GMoyXnceF4rLB9Agc/N9TjPebNs8gGgoHL5n7vLOh8ATMqU8BqBxfKBnDendNcI8r1fjGObxFPaawSWzAeUeEpzjaCA55UkHwBQ6msEBeUDAgK3cRuncRbpSMencz/F008/DZ1OV6K/N1RxsQsMERGpnh3s0ACh6IYH4AQntGjWAjU1ATh//ry1QyMiIqJyooUWtRCEruiCQNTEoL6D4K31xvbt260dGhEREZUTDTSohmroiPZogsZ4/YXX4WnvgUWLFkGv11s7PLIgNowQERHdZQ97NEYjPIAu0EKL0HqhqKWphevXr1s7NCIiIionNrBBHdRGNzyA6qiGbp27obqmOg4ePGjt0IiIiKicaKCBP/zQBZ1QH/Xx7JPPwtPWAytXrlRGYFHlxoYRIiKiXJzgiOZohk7oiCxkIahmEOpq6uD27dvWDo2IiIjKiS1sUR/10A0PwA2uaNu6LWpo/HHmzBlrh0ZERETlRAMNAlETD6AzaqEWHh34KLy0nti0aZO1Q6NSYsMIERFRAVzhgtZoifa4H8lIhn81f4Rq6iMxMdHaoREREVE50UGHMDRENzwAHXRo1LARgjSBuHLlirVDIyIionJiAxvURjC6ogv84IcHe/RBNY0P9uzZY+3QqITYMEJERFQID7ijHdqiLdrgFqLg4+7D0SNEREQq4wAHNEUTdEEnZCEbdYLr4N9//7V2WERERFSObGGLeghBN3SFBzwQHh6OME1Da4dFJcCGESIioiLIQAZu4RaSkYxq8IGjo6O1QyIiIqJypoceUYhGHOLgDjfUrFnT2iERERFRORMQiEUsohANRzji03WfWTskKgFbawdARERUkWUhCxdxCRdwEd7wwsHDB9G8eXNrh0VERETlyAADruE6ziECtrDFn6v/RN++faHRaKwdGhEREZWj27iN0ziLNKTh468+xtixY2Fvb2/tsKgE2DBCRESUDz30uIzLiMAFuMIVW3dsRYcOHawdFhEREZUjAYGbuIWzOAsDBH5Y/AMeffRRaLWcfIGIiEhN7iAeZ3AGCUhAXdTFgeSDcHZ2tnZYVApsGCEiIjJhgAGRuIoIREAHe6xetxq9evVij1AiIiIVERCIwW2cwRlkIAOff/sFRo8eDTs7O2uHRkREROUoEUk4i7OIwW3URjDOxUXA09PT2mGRBbBhhIiICPICyHXcwFmcgwYa/Pz7IjzyyCPsEUpERKQycYjDaZxFEpJQD3VxIPUQ1xYjIiJSmRSk4hzO4QZuIgiBuHbzGvz8/KwdFlkQG0aIiEjVBASiEI0zOIssZGHuj3Px5JNPwtaWp0giIiI1SUAizuAsYhGLuqiDSwmX4ObmZu2wiIiIqBylIx0ROI9IXEUN1MCFSxcQHBxs7bCoDGiEEMLaQRCVtcOHD6Nt27Zo0rRZASWEyb9mm/Juz/3Mgp5kfJTPk/M+ReT7Gnl/O03KFRSfMP3PvFC+r2FWLP84Cn+uMN+Wbyy5nyfy2Vi0/cqm/P58CbMCBf5MjfsLfo1clS7suXleO9eG4rx2Ac8VhezP+zifH8C9nivy255zDFFYuYKOld9rmx1CmGwW5tvNXkaYvEwR/s33d8u8lACQjWxkIQv1EIKD6Ye4aBpRFefk5IQ6detCp8vvd71884H8Xyvvubg88oG8ceaTE5RzPlDkMuWZDxT3+WWQD5jdved5PdedsswHcpe9V05QxvlAvlvz/G7lzQcEBJKRjGDUwp7ovahWrRqIqOrq0aMHIs6fh5eXdz57yyYfULYUctoql3zg7sN7n9fzj8PS+UDO0wo+J5ZLPlDoa+Q+vxXjuaXJB+7x/PLPB8yPk29OUG75QM5rFJQTlCQfAIBkJKM6qmHTyc0ICwsDVV1sGCHV+Pfff5GYmGjtMIiogtFqtejatStcXFysHQoRlYMjR47g8uXL1g6DiCqgVq1aITAw0NphEFE5uHr1Kg4ePGjtMIioAqpduzaaNWtm7TCoHLBhhIiIiIiIiIiIiIiIVIMryhIRERERERERERERkWqwYYSIiIiIiIiIiIiIiFSDDSNERERERERERERERKQabBghIiIiIiIiIiIiIiLVYMMIERERERERERERERGpBhtGiIiIiIiIiIiIiIhINdgwQkREREREREREREREqsGGkTLw/vvvQ6PRmN0aNGhg7bCIiIionDEnICIiIuYDREREFY+ttQOoqho1aoRNmzYpj21t+VYTERGpEXMCIiIiYj5ARERUsfBMXEZsbW3h5+dn7TCIiIjIypgTEBEREfMBIiKiioVTaZWRiIgI1KhRA3Xq1MGIESMQGRlp7ZCIiIjICpgTEBEREfMBIiKiikUjhBDWDqKqWbduHZKTkxEaGoqbN29i6tSpuH79Ok6cOAFXV9d8n5ORkYGMjAzlscFgQFxcHLy9vaHRaMordCIiogpJCIGkpCTUqFEDWm3l6ddR3JyA+QAREVHBmA8wHyAiIrJYPiCozN25c0e4ubmJH374ocAyU6ZMEQB444033njjjbd73K5evVqOZ3DLKywnYD7AG2+88cYbb4XfmA/wxhtvvPHGG2+lzQc4YqSctGnTBt27d8eMGTPy3Z+7R0hCQgKCgoJw9epVuLm5lVeYREREFVJiYiICAwMRHx8Pd3d3a4dTKvfKCZgPEBERFYz5APMBIiIiS+UDXHy9HCQnJ+PChQt44oknCixjb28Pe3v7PNvd3NyY+BAREd1V2aePKCwnYD5ARERUOOYDREREVNp8oPJMylmJTJo0Cdu2bcPly5exa9cuDBw4EDY2Nhg+fLi1QyMiIqJyxJyAiIiImA8QERFVPBwxUgauXbuG4cOHIzY2FtWqVUOHDh2wZ88eVKtWzdqhERERUTliTkBERETMB4iIiCoeNoyUgaVLl1o7BCIiIqoAmBMQERER8wEiIqKKh1NpERERERERERERERGRarBhhIiIiIiIiIiIiIiIVIMNI0REREREREREREREpBpsGCEiIiIiIiIiIiIiItVgwwgREREREREREREREakGG0aIiIiIiIiIiIiIiEg12DBCRERERERERERERESqwYYRIiIiIiIiIiIiIiJSDTaMEBERERERERERERGRarBhhIiIiIiIiIiIiIiIVIMNI0REREREREREREREpBpsGCEiIiIiIiIiIiIiItVgwwgREREREREREREREakGG0aIiIiIiIiIiIiIiEg12DBCRERERERERERERESqwYYRIiIiIiIiIiIiIiJSDTaMEBERERERERERERGRarBhhIiIiIiIiIiIiIiIVIMNI0REREREREREREREpBpsGCEiIiIiIiIiIiIiItVgwwgREREREREREREREakGG0aIiIiIiIiIiIiIiEg12DBCRERERERERERERESqwYYRIiIiIiIiIiIiIiJSDduSPCkyMrLYzwkKCirJSxEREREREREREREREVlMiRpGgoODodFoilxeo9EgOzu7JC9FRERERERERERERERkMSVqGAEAIYQl4yAiIiIiIiIiIiIiIipzJW4YadGiBZYvX15ouYEDB+Lo0aMlfRkiIiIiIiIiIiIiIiKLKXHDiL29PWrVqlVoOZ1Ox9ElRERERERERERERERUIZSoYcRgMBS57J49e0ryEkRERERERERERERERBantXYARERERERERERERERE5cViDSN79+611KGIiIiIiIiIiIiIiIjKhMUaRoYMGWKpQxEREREREREREREREZWJYq0xMnTo0Hy3CyEQFxdnkYCIiIiIiIiIiIiIiIjKSrEaRjZt2oRFixbBxcXFbLsQAtu3b7doYERERERERERERERERJZWrIaRLl26wNXVFZ06dcqzr2nTphYLioiIiIiIiIiIiIiIqCwUq2Fk+fLlBe7buHFjqYMhIiIiIiIiIiIiIiIqS6VafP3WrVuWioOIiIiIiIiIiIiIiKjMlaphpGfPnpaKg4iIiIiIiIiIiIiIqMyVqmFECGGpOKq0mTNnQqPR4JVXXrF2KERERGQlzAeIiIiI+QAREVHFUKqGEY1GY6k4qqz9+/dj/vz5XJyeiIhIxZgPEBEREfMBIiKiiqNUDSN0b8nJyRgxYgS+//57eHp6WjscIiIisgLmA0RERMR8gIiIqGJhw0gZeuGFF/DQQw+he/fuhZbNyMhAYmKi2Y2IiIgqP+YDRERExHyAiIioYrEtzZNtbGwsFUeVs3TpUhw6dAj79+8vUvkZM2Zg6tSpZRxV1TXUZrDZ49/1f1opEiIiohzMB8qfaU7AfICIiCoC5gPlj9cIiIioMKUaMXL48GFLxVGlXL16FS+//DIWL14MBweHIj3nzTffREJCgnK7evVqGUdJREREZYn5ABERETEfICIiqphKNWKE8nfw4EFER0ejZcuWyja9Xo/t27fj66+/RkZGRp7RNvb29rC3ty/vUImIiKiMMB8gIiIi5gNEREQVU6kbRrp27VrgPkdHRzRv3hzjx4+Hn59faV+q0ujWrRuOHz9utu2pp55CgwYN8Prrr3MKMiIiIhVgPkBERETMB4iIiCqmUjeMbN26FRqNJt99QgisX78eCxcuxJ49exAYGFjal6sUXF1d0bhxY7Ntzs7O8Pb2zrOdiIiIqibmA0RERMR8gIiIqGIqdcNIp06dcPDgQWRkZKBp06YAgGPHjsHe3h4NGzbEiRMncOvWLUybNg3ff/99qQMm9RpiM8jscfM64cp9LqRGRESkDvfKBwDmBERERGrAfICIiEqr1A0jjz76KA4dOoTjx48jNDQUAHDmzBm0adMGo0aNQu/evdGsWTNs2LCh1MFWZlu3brV2CERERGRlzAeIiIiI+QAREZH1aUt7gBkzZqBmzZpKowgANGjQAIGBgZg1axbq1KmD9u3b49atW6V9KSIiIiIiIiIiIiIiolIp9YiR27dv49q1a3jjjTcwZMgQAMCKFStw5swZODk5KeVM7xOVBYPBgMuXLyM6Ohq3b99GTEwMEhISkJaWhtTUVPTt2xft2rUDAFy6dAnffPMNHB0d4ezsDCcnJzg7O8POzg52dnZo2rQpGjZsCABITk7G0aNHlX22trawtbWFVquFVquFl5cXvL29AQBZWVmIjo5W9hlvtra2cHR0hJ2dXYFr8hAREZFl3bhxA+vXr0d0dDTS09OVW3Z2NmxsbNC3b1/06NEDABATE4OFCxfC3t4e9vb20Ol0ys3e3h6hoaFKR6D09HQcP34cGo3G7GZUrVo11KxZEwCQmZmJM2fOKDmB8fjGmzE/ICIiIstKTk7GlStXcP36dXTu3Bn29vYAgLVr12L9+vXIzMw0O4/b2tpCp9Nh/PjxCAoKAgAcPnwYe/bsyZMb6HQ62Nraok2bNvD09AQAREVFITIyElqtFhqNBgaDQblpNBqEhobCw8MDAJCQkIDbt2/DwcEB9vb2sLGxMbvpdDpotaXuy0xERPdQ6oaRvn374o8//sCcOXMwZ86cPPsyMjJw8OBBNGjQoLQvRXRPn3zyCV577bUC91evXl1pGLl69Wqez6upGTNmKA0jZ8+eRYcOHQos+95772Hq1KkAgIiICDRq1KjAsq+88go+++wzAEBkZCRatGgBjUYDGxsb2NraKv/rdDo89thjeO+99wDIpOmRRx5RGmVsbW2VhhqNRoNOnTrh2WefBSAvwIwbN04pJ4SAEEKJoVWrVnj66aeVx++88w50Oh0cHBxga2sLjUajJHK1a9dGv379lLJLliyBXq8HAGg0Guh0OtjZ2UGn06FatWpo27atUvb48eMQQiiJnfGYWq0WDg4OCAgIUMomJiYq74ONjQ3s7OyYBBIRUbEIIXAh7TwuXryIOnXqAADOnTuHMWPGFPgcX19fpWHk2rVr98wj3nzzTUyfPh0AcOXKFbNzXm6vvvoqPv30UwDyIkmzZs0KLPv0008r6/DduXMHgYGBynnT9Fyo0WgwZMgQfPPNNwBkZ4w2bdqYddgwbZzp3LmzEi8AdOjQAQaDAQCU3MBgMEAIgZYtW2L+/PlK2ffee8/sYpG9vT2cnJzg6OiI2rVr46GHHlLKrly5EpmZmXnO9xqNBp6enmjfvr1SdsOGDUhPT1fqZswLtFotXF1dcd999ylld+3aheTkZCWHMY3ZwcEB3bp1U8ru3r0bSUlJefIpOzs7ODg4mOVmCQkJAJCnswsREVUdtzJu4qmnnsKSJUuQmZkJQH6vr1+/PgBgz549+Oqrrwp8/rBhw5SGkQ0bNuCNN94osOy2bdvQqVMnAMDvv/+Ol156qcCy69atQ+/evQEAy5cvx+jRowss+8cff2Dw4MEAgGXLlmHUqFH5dtywt7fH1KlTlXPz3r178dFHHxV43BdeeAG9evUCIBt93n33XeW8rdVqzY7/2GOPoXv37gCAixcv4vPPP1disLe3V64F2NnZITw8HG3atAEgz7UbN25U8gIbGxtoNBrlnB4SEqJcI0xJScF///2n5BHG87jxuNWrV4e/vz8AmftcvnxZyQf0er2S2wCAl5eXcp3BYDDg6tWrea5F6HQ6uLm5wcbGpsD3iIjUo9QNI/Pnz0d2djZWrFhhtn3QoEH49ttvERMTg3feeQdNmjQp7UuRymUYMs0ev3Lkedy4cQP16tUDADz++OP44IMP4O3tDR8fH/j4+MDDw0P5Im/6GQwICMCECROQnp6OlJQUpKSkIDU1FVlZWcjKykJwcLBS1sbGBiEhIcjKykJ2djays7ORlZWl9PxwcHBQygohYGtrC71eb9YYYeTo6Kjc1+v1iIuLK7C+MTExyv309HRs3ry5wLI6nU5pGMnIyMBPP/1UYNkhQ4YoDSN6vf6eSdODDz5o1jAyZswYpKen51u2c+fOZnPlPvDAA4iNjc23bJs2bbBv3z7lcePGjXH16lWzMsZkqGXLlvjvv/+U7c2aNcONGzfg6uoKFxcXuLi4wNnZGc7OzggMDDRLcGfOnIm0tDQEBgYiKCgIAQEBsLOzU35OdevWVcrGxsYiOzvbrMeQMYmztbWFs7OzUvbOnTvIyMgwa6TSarXIzs6GXq9XegEREZHl5c4H3jo3CQsXLsQnn3yCkxdOwvFjW8ybNw8AULt2bfTu3Ru+vr5wcnJSemXa2trCYDDg/vvvV47j7u6OkSNHIi0tDZmZmcotIyMDGRkZqFWrllLWxsYGtWrVUnIBI+O5383NTdmm1Wrh6+sLIQSys7OVY2ZlZQGQ53AjvV6PlJSUAuuelpam3M/KysLRo0cLLOvn52f2eNeuXfnmJvmV/fjjj81ey1Tnzp3NGkaefvrpIp/vn3766Tzne6OwsDCcPHlSeTxmzBicOXMm37K1a9fGxYsXlcfjx4/HwYMH8y3r7e2N27dvK48HDBiQZ25/Y6cNd3d33LhxQ9k+atQopazpSGDjz/z8+fNK2eeeew7r1q2DnZ0dvLy84OPjg2rVqsHT0xO2traYOXMmbG3lV6/du3cjKioK1atXR61atVCjRg2OKCYiKqbc+cDbEZOxbds2fPjhh9i0aROwUG43Xiw3Pa917twZBoNBGbFpbHzPzs5GRkYGatSooZStV68eBg0ahIyMDLP8IDMzE9nZ2XB1dVXKuri4ICgoSMkPTC/KA3lnUnFxcVFGsuZmPGcA8vyfnJyM5OTkfN8LY6M/ANy6dQt//fVXge9b3759lfu3b9/GmjVrCizbpEkTpWHk5s2b92xM+vDDD5WGkcuXLyszyuTnrbfeUq5DXL9+XWksys/48ePx5ZdfApCdTYyNW/kZO3YsvvvuOwCy86XpdZ3cRowYgV9++QWA/PmPHDkSnp6ecHJyUjpPGDujNmjQwOx9W7x4sdKAY3oDZIdc4/sAAPv27YODgwOcnZ3NZh4xdjwxzj5ijNnOzg729vbstEFUTkrdMOLh4YFly5bh4sWLypeZxo0bo3bt2sr+l19+ubQvQ2QmG3o89NBD0Ol02LBhAwDA398fsbGxRZqOom7duvjkk0+K9FrNmzdHREREkco2atRIudAB5CRYWVlZSEtLM0tuAgICcPLkSaW3g/GiurFxxvQihZubG5YsWaI0yhj/z8rKghACYWFhSlk7OzvMmDFDKWdMwoz/m5Y1GAx4+eWXkZaWhrS0NKVBx3hr2bKlWf169Oih9LgxGAzIyspSksLco8J8fX1hZ2en1Mu0Z6qLi4tZWdOLSkZ6vR5paWlmSR4gG35u375tdpHDKCQkxOzx0qVLC7xoFBwcjEuXLimP+/Tpg/379+db1sfHx6yhqn///maNNaZcXV2RmJioPB48eDA2b96sNJgZe7UYR8jcuXNHKfvss89i3bp1+SZYBoMBx44dUy6gTZw4EStXrgQgE2xjI5GLiwu8vLzw8ccfK0O6t2zZgtOnT5tN4RITE4O+ffuaNQ4REVU2AgITJ05URmO6uLjA3d1d2V+rVi2sW7euSMeqU6cOFi5cWKSyISEhuHz5cpHKBgQE5LvWnsFgUM6pRp6enrhw4YLSC9J01KfBYDBrcDHmQMZOG8YRnYDMP0wv6gCyZyqQkw+YjuzI3TDy0ksvITMzU3n9zMxMpKamIjU1VemQYtS+fXvEx8eb9dw0nvNNcw4AaN26NQICApQLRqb5gXGUj1HDhg1hb29v1mBgvJiQu26hoaHKe6DX6806shjPhUa533Pje5uamponh7x16xauXLmSp7yREEKJzzh9CgBcuHAhT9kZM2Yo97/++mssWbJEeezm5oawsDA0bNgQHh4emDNnjnL+X7ZsGU6fPg2DwQB7e3vUqFEDgYGBaNy4MXx8fAqMjYhIbTZs2IA+ffrAYDBAq9Vi8ODBePXVV81GIxp169bNbOThvQwaNAiDBg0qUtmnnnoKTz31VLHLGs+JpjfTTpUDBgzA+fPnlc4VuTtvmI5Mbd68uTISNT+ms2GEhYXhhx9+AADlfJyVlaW8hmkHksDAQLz99tvKPmMnj8zMTGRlZZmNznRwcFBGquaeTgyA2ewR9vb2aN68udk1EeM5PDMz0+w8rtVqlTzPdHStcTSKaZ5kfA+zs7OVupledzBOqwbIKdcWLVpU4Hs2ZMgQpWHEYDDg8ccfL7Bs3759zRqmunbtWmCnl65du5p1gA0JCVGuOzg5OSnTtnt7e6Np06ZKvgvIkczJyclwcHBQOn8aczB/f3+8+uqrStk5c+bg9u3bSt7i5eUFPz8/+Pr6olGjRggMDCywPkRVnUYU1HXMAm7fvs2EvYQSExPh7u6OhIQEsz/uatZfI09EmcjCfhxAHOLg6uqKq1evml0EoconMzPTLAk0bXABYNbT49q1a0hISEBSUhKSk5ORlJSkjPpxcnLCE088oZSdO3cujh8/jqtXryIyMhLXr1+HXq+HRqNBrVq1zBpNWrduXWBv0+rVqyMqKkp5/MADD2Dbtm0FjgpKTU1VHnft2hVbtmzJ97g2NjZmvYMGDhyoNHbkJy0tTRmh9MQTTyg9XPITExODM2fO4OjRo3jxxRcLLHft2jWzxJSoolLreVGt9b4XYz4gIHASp3AJlwEA06ZNw0svvcScgO7J2NCTeyRweno6srKyzHqinj17FgkJCWadRvR6vTKitG3btspFngsXLiAuLg6ZmZmIi4tDTEwMYmJiEB8fj+zsbMyaNUvp/TllyhT8888/iI6ORmRkpFmjFgCzi0eDBw/GsmXL8q1LUFAQ9u3bB19f37J4q4gqJLWeF9Va73sx5gNGS5KWol+/fvD19cXMmTPvOVqA1CszMxPx8fHQaDSoVq0aADmd1/z583H79m2kpaUpnVCNt3bt2infqfV6Pfr06WPWMcXYmAPIhqfPP/8cgMw56tevr1y7yN1Q9MADD2Djxo1KbB4eHnk6hhq1b9/erHOmv79/vh1vADnLxpEjR5THISEh+XbaAGSnYdMRsOPGjcOVK1eUKdOcnZ3h5uYGNzc3uLu7Y/To0Xk6nRBZg6XOi6VuGBk3bpwy17GpyMhI9OzZs8Ah8HRvTHzy6q/pi1SkYS/2IRnJcHNzw5o1a+65/gdRcZle/DBeADEYDGY9dow9LYy9WrKysqDX65WhtqYjg6KjoxEXF2c2lNp4YcRgMJj1vL148SLi4uLy9BYCZO+Y9u3bKz1IIyIicPv2bRgMBmVo9a1bt/Djjz/iwIEDcHNzMxu5MnDgQAByWjZj7+nmzZtj9+7dZtPBEVVUaj0vqrXe99Jf0xcGGHAER3EdctqjuXPn4vnnn7dyZETFl5GRgYiICJw+fRpnzpxBWlqa2dow3377LQ4dOgSNRoO0tDTcuHEDly9fxoULF+Dp6YnY2FilEeXFF1/E1atX8dBDD+HBBx9EzZo1rVUtojKj1vOiWut9L/01fSEgL2dpoMFq8TfS09NhZ2fH9SOoUjKOwsnIyEBCQgJiY2MRGxuLuLg4eHh44MEHH1TKfvLJJ4iPj1emYjOdEjwgIMBsxMj06dOVfMFgMCA2Nha3bt3C9evX4e3tjW3btillAwMDce3atXzjCwoKwoULF8yudxBZS4VpGNFqtXjhhRfM5ho8c+YMevTogRs3buTpAUVFw8Qnrx6abvgPO5GODDjAAXuP7kXTpk2tHRZRhbBjxw488cQTZlN+eHt7o0OHDggMDMTs2bOVxh3j6BrOZ06ViVrPi2qt97301/RFBjKxE7uQilT8svgXPPbYY9YOi6hcJSQk4NKlS2jevDkA2dnC398f0dHRSplBgwZh1qxZeaYaJarM1HpeVGu976W/pi9O4hS00KIhGmC1+NvaIRFVOsap54x+//13pKamKtO0paamIjExEYmJiejQoQMeffRRAHKtu06dOqFevXpo3rw5mjVrhrCwMLi5ucHR0ZFrpFCZs9R5sdTNfE5OTpg3bx40Gg2+/PJL7Nu3Dw899BBiY2M5dJFKZaD2YeW+EAJ2feyRvi4DYWFhWL9+PedBJDKxa9cuXLlyBcHBwRg5ciT69OmD1q1b59tbynQheSKiis40HwCgXPi4fPkyIiIi0KNHD2uERWRV7u7uSqMIINeO+eeff7BmzRqsWbMGe/bswfLly/HXX39h/PjxeOedd5SpL77//nvs2LEDoaGhytomISEh+fYATUpKwsGDB3H//fcr65wREVmLaU7wyuYJyjohK46vtFJERJVb7gaMoUOHFul5y5cvx549e7Bnz55812f56KOP8NZbb1kkRqKyVOqGkY0bN6JPnz6YO3cubt68iQ0bNiApKQnNmjUr8mKXRIVJRgp2bd0NnU6HZcuWsVGE6C7jPOSTJk2CRqPBuHHj4Orqau2wiIjKXHBwMDvhEN2l0WjQvHlzNG/eHG+//TZOnDiByZMnY/369fj000+h0Wjw8ccfAwBu3LiR5yKGv78/nn/+eQwbNgx169aFVqvF9evXERoaipSUFLRu3Rp//PEHf+eIqELIFtl45plnAMjp3Rs3bmzliIjU5eGHH8bq1atx5MgRHDlyBEePHjVbx8R0cftLly7hxx9/xMSJE7k+CVU4Fll8/ciRI+jZsydiY2MhhEC3bt2wYsUKuLi4WCJGVeJQ2bw9RD+O+BT79+9Xhu4REfDTTz9h9uzZeOKJJzBixAhesKAqS63nRbXW25RpPnBAHMTrX72B559/nkP0iYpg/fr1+PDDD7Fy5Ur4+PgAAE6ePIkVK1bg3LlzOHXqFE6fPo3U1FTlOXFxccqFi1atWuHIkSMwGAxwdXXFp59+ijFjxnA6TrIatZ4X1Vrv3Iw5wSlxGucQgZo1a+LkyZOqfk+IKgrj+qepqalwcHCAq6srLly4oEzp2b9/f6xatcrKUVJVYdU1RqZNm5Zn26lTp/D777/D1dUV48ePV4Zav/feeyUOTs2Y+ORtGFlh4B9QIlMGgwENGjRARESEsq1ly5ZwcnJCdnY2fH19sXLlSmXf0aNHYWdnh+rVq8PLy4sXFalSUet5Ua31NmXMB6JEFHZjL2xtbXH69Gmum0BkIZmZmfjjjz/w3XffITY2FidOnFD2RUdHIy0tDcOHD8fu3bsBAO3bt0d4eDjmzJljrZBJxdR6XlRrvXMbqH0YySIZ/2IrDDBgxYoVGDBggLXDIlKdW7duYfv27ahevToaNGgAPz8/ZZ9er0dMTAy+/PJLfPLJJ8jMzAQAfPnllxg/fry1QqYqxqoNI1qttsi9hLj4eskw8ZFJT5JIQiay4K3xYsMIUT4SExOxfPlyLFq0CFu2bIHpn/SgoCCzxdjbtGmDAwcOAJB/x729veHs7AydToc6deqYTX+YkZFhNvyVyNrUel5Ua71NDdQ+DIMw4F9sQTJSMHHiRGVKICKyLCFEvt/z9Ho9Pv/8c7zzzjtIT09HcHAwLl26pOw/duwYmjRpwpEkVObUel5Ua71zG6h9GLvFXkQhCr169cK6dev4d4eonKSmpmLlypVYtGgRNmzYAIPBAAAIDw/Hrl27AABpaWlwcXFR9gFA9+7d8fnnn6NRo0ZWiZuqJqsuvh4UFMSTD1lcf01fs8erDH+ha9eu2LH1P3z91ddWioqoYnNzc8OoUaMwatQoXLt2DXv27IFWq4WNjU2eRdZ1Oh28vLwQFxcHg8GAmJgYxMTE5Hvcjh07Ii0tDV26dEGXLl3QqVMnVKtWrTyqRERklhOsFn/jk08+wepJf8PX15ejkYnKUEHf8WxsbDBx4kQ8/PDD+Pvvv80WYt++fTt69OiBoUOH4scff+Qi7URkMbmvEcw58wkaN24MW9ji888/53UponIghMDPP/+MV155BfHx8cr2Zs2aITk5GWFhYco2R0dHODg4IDU1FQ0bNsSMGTPQv39//q5ShVWihpHLly9bOAyivP766y9s3boVDg4O6Nu3b+FPIFK5mjVrYvDgwQXu37lzJwAgKysLsbGxiImJQVpaGjIyMmBnZ6eUS05OxqFDh6DX63HixAl8/bVsmKxVqxaqV6+Onj174sMPPyzbyhAR3RUbG4sPPvgAADBjxgxV95QlsraQkBC88sorZtsiIyOh1+vxyy+/4NatW1i2bFml/T2NiIjAp59+ipYtW2L06NGwsbGxdkhEZCI0NBTHjx/H7t270aBBA2uHQ6QKQggsWrQI8fHxCA4OxhNPPIEnnngC9erVU/abunTpEjw9Pc2uMaSnp2PVqlX4/vvvcefOHaSnp2P27Nl46KGHyrUuRLlZZPF1sjw1DpU17Q0iIHC5cSROnDiBN954AzNmzLBiZETqExMTg23btuGnn34ym2LLiKcOKm9qPC8C6q23aU4Q9npjzJo1C82aNcOhQ4e4PhJRBZOQkIDRo0dj+fLlAIAJEybgk08+sXJUxZeUlGT2d3bOnDmYNGmSFSOi/Kj1vKjWeuceMbJa/G2lSIjUx3R6zatXr2Lp0qWYMGFCiToNXLlyBcHBwWbbbG1tERkZCX9/f0uESypj1am0iMpaNKJx4sQJuLq64vXXX7d2OERWJYRAeno6kpOTIYRA9erVS32827dv4/r168jIyIDBYICTkxOaNWsGQM4j/uyzz+LQoUNma5QY+fj4lOr1iYiKKhvZmDdvHgDggw8+YKMIkRXp9XqkpaXBxsYGjo6OAOTaIu3bt0dycjIAmSP06NHDmmGWmIuLC4YPH45ff/0VWq0WXbp0sXZIRHSXgEAa0qwdBlGVEx8fj3PnzuHcuXOIiIjAhQsXcO3aNVy9ehX9+/fHZ599BgAIDAzE5MmTS/w6Go0GjRs3xokTJ5RtAwcOhLe3d6nrQFQabBihCikCFwAA48aNg4eHh3WDISpHmZmZ+O6773D69GmcPn0aZ86cQVRUlLJ4Wbdu3bBp0yalfP/+/XHt2jVkZWUhKysLer0etra2sLOzQ7NmzbBo0SKlbL9+/XDmzBlcu3YN6enpZq/bunVr7N+/H4CcR3zfvn24fv067OzscN9996Fr165o06YN/Pz8EBAQUA7vBBERYAtbbN26FYsXL+ZQe6Jycu3aNQwcOBBJSUlISkpCcnIy0tLSkJWVBQB4++23lSk1fXx8lPnFX331VYwYMUJpNKlsNBoNlixZgiVLllg7FCLKJQrR2I8DeOaZZ/Ddd99ZOxwiqxJCIC4uDlFRUYiKikJiYiL69u2rjOTYtm0bDh06pDR0JCUlITs7G9nZ2dBoNDh48KByrCeffBJ//fVXvq/z+eefo0WLFnjyySdLHXNQUBCOHz9e6uMQWRobRqjCiUUc7uAOdDpdnjmMiaqChIQEnDt3DmfPnsXZs2fh6emJCRMmAADs7OzwzjvvICEhId/nGi9KGP37779ISUnJt6yLi4vZ48OHD+P69evK4+rVq8PZ2RlarRY1a9Y0K/vll1/Czc0N4eHheRZxJyIqTy1btkTLli2tHQZRlSKEwNmzZ7FhwwZs2LABHTt2VEZpa7VaHDhwoMDnnjx5Urnv7++PrVu3olOnTlxYlYjKhIDAeZwHAHh5eVk5GiLgxo0bWLZsGU6dOgV3d3fMnDlT2ffTTz/hypUr0Gq1SE1NRWJiIhITE5GUlAQHBwf8/vvvStmpU6fi0KFD+U5TrdVqsXLlSuXxiy++iA0bNiA+Ph537txBdna2WXnT6wSzZ8/G2rVrC4w/IyMD9vb2AAB3d3f4+/ujfv36qF+/PurWrYugoCAEBgYiMDAwz3UCoqqGDSNU4WQhCw5wwBMjn+Bcg1RlPPfcczh8+DAuXLiA2NhYs30hISFKw4hGo8Hzzz8PvV6Phg0bomHDhggMDISrqyucnJzM5vMUQuD333+HRqOBnZ0d7OzsYGNjA71ej+zs7DwNIwsWLIBOp0NgYCACAgKUZCg/gwYNsmDtiYiKzwADtODUWUSWkpiYiLVr12Lz5s3YsGEDIiMjlX0JCQlKw4iPjw9Wr14NV1dX5ebk5ARHR0c4OjrCwcFBeZ5Go0Hnzp3LvS5EpB6y22Q8tNDi5ZdftnY4pFKXL1/G2rVr8dtvv2HHjh1KY0b16tXNGkYWLlyIHTt25HsMV1dXs8e7du3Chg0b8i2bu7NBVFQUIiIizLZ5enrC19cXnp6esLXNubzbtWtXODk5oV69eqhXrx68vLxgY2MDW1tb2Nraml1TWLBggdlzidTGYp/+vXv3ol27dpY6HKmYH3xRHdUwa9Ysa4dCVCxCCOzfvx8//vgjoqKizHp4HDhwwGzIqp+fH0JDQxEaGoqGDRuaLWw2ffr0Ir2eRqPBgw8+WOT4Kuuc30SkPnrosQ3b4Q0fxMXFsYcoUTEJIZCQkKBMSZuVlYU6deqYdc7Q6XTo2LEjevXqhV69eplt79evX3mHTESUr4i7o0UCUZMdJ8lihBBYtWoVTp8+jXr16qF+/fqoV68etFotYmJiUL16deh0OgDA6NGjsWDBArPnh4eHo2vXrnB3dzfbPmjQIDRp0gR6vR5OTk5wc3ODm5sbXF1dleMZvfzyyxg8eDA0Go1ZQ4gQIs+6eu+88w5eeukleHp6wsPDA9WqVSuwo+PEiROL/D6wUYTUzmK/AUOGDDHrdURUGlpo4enpae0wiO7p3LlzOHPmDHQ6HSIiIvD9998r82ba2NggJSVFmYZqypQpyMrKQt26dVG7dm24ublZM3QiogrtKq4hBanQIxpOTk7WDoeoUsjOzsa2bduwdOlSrF69GllZWYiNjVVGlvbq1QsHDx7EQw89hO7du6Nz5878/SKiCi0e8YhBDDTQoC7qWDscqkI++OADTJkypcD9Bw8eVKZybdSoEWxsbNCuXTsMGjQIQ4YMQVBQUL7PK8508MXp5NisWbMilyWioitWw8jQoUPz3W5c+IeoNNKRjju4A1/4cuoMqlD0ej1++eUXHF26FG/88AOq3118fPny5XjzzTfNyjo4OGDw4MEYMWIE7OzslO3seUlEVDQGgwEXcREAEIK6ZtP2EJG5uLg4bNu2DRs2bMDy5csRHR2t7NNoNIiOjoavry8A4Pvvv4ejoyPXAiGiSuMSLgMAAlADzuC6h2Q5I0eOxLdffYWOHTviyo0bOHv2LOLj4wHIURSma36OGTMGY8aMUUZhElHVUayGkU2bNmHRokV55q0XQmD79u0WDYzUob+mr3L//ikdMHXqVAwaNAjLli2zYlRUbtLSgLffBoKCAGPPCr0eMBgAk0aFcqPXA6dPA7t3A3v2AK1bA+PG4a233sJXs2cjAYCmTh2gbVugdWs8GBEBf39/CL0eKU5OEBMmYMTjj3O0ExFRMZnmA1GIRgpS4eHhgT3X9loxKqKKb+bMmZgzZ47y2MvLC4MHD8bQoUMRHh5uNiKEo0OIqKIzzQf00CPdJwO4DSzbuxxt27a1YmSVhBDAli1AixYAv5MiLS0Nf/31FyIiInD58mVcvnwZf//9N+zt7VFr2jRcT02FZsMGoF8/iNdeQ2ybNrBxcYGHx//ZO+vwpq43jn+TKhUqWBWneCnDrbg7DBkug7EBxcZwZ8iADRtMgN9wh+FOcS8wKC4ttNRL3ZOc3x8vaRLaUsmN9nye5z5N7r0559wkzXnved/3+9qrBBFwhwiHY7zkyzHSokUL2NrawtvbO8sxT09PwQbFKXzIIMPff/8NgGTZOIWA8HCge3fg9m3gzz8V+/38gH79gHXrgC5dcn69kPj6AuvXA+fOAQkJiv2Rkdhha4tffvkF1QBkWFjAKi0NuHYNuHYNngAyf/lGjQLGj9fOeDkcDseIkUeHjhgxIlOOkMPhEKGhoShSpEjmIk2bNm1w/PhxtG7dGp06dUKbNm1UMlY5HA7HUDGBCd6+fYvjx4+jXr16uh6O/iOTAWIxsHgxcPkyBfm1bQsMHAhUrZq3NgICgEOH6B799m0gNhbo0QP4/nugYUNNjj5XpFIp4uLiEBsbC4lEAhsbm8wtsx5Hejpw8CCkwcEIf/UKl//9FxmRkWgMoD+AmgDev3+PSpUqAYxBlJxMr9uzB6I9e1Dcxoaud9QoIJt1Tw6HY3yIGGNM14PgZCU+Ph52dnaIi4sz6loE8oiQMITjLu6hRIkSCAoKyrGIFMeIGDNG4RA5dw5o04YeL10KzJwJmJgA798DLi6aHcfr10ClSorn1tZI9fTEgyJFsOP9e2x4TcX+pk2bhmVLlgCvXlE2yaNHlGEiFlNkztSpirHKZIBIRFtAAHDxIlCiBNC+PcC/2xxOgSgs8+LnFJbrltsDyUjGBfhCJBLh9evXKF+e64lzOB8/fsS5c+ewe/duHD9+HO3bt8exY8cgFovBGOPSWJxCRWGZFz+nsFy3csYIABxlx3U0EgOkdWvA2RkIDASuX1fst7FRDf7LibQ0oHJl4N27rMfEYuDMGcU9e155/RoICgJMTQFLS6BYMdqKFkVqWhpev36NtLQ0pKamIjo6GhEREYiIiEB4eDjat2+fWYPj4cOHqF27do7dTJkyBStXrlSsJeTA4aVL0Xz0aDg6OpJSREYGkJoK7NtHW1AQnWhpCTx/DpQpk7/r5XA4WkOoeVGt4uthYWFwcnJSpwkOBwDwAR8AAIMGDeJOkcJC587Apk3kXGjbFujTB7CzA+7epePly5Mz4RMZGRlISEiAhYVFZgRxSEgIzp49i4SEBCQmJiIhIQESiQQmJiYwNTVFu3bt0KxZMwBAbGwszp07h4SEBMTGxiImJgZRUVH4EBCAZZaWqJaaCkyeDPzyC25fu4bYFi3wI4CvRSKYV6mCRjY2wC+/AMnJZNitWqW4loAAQC5PkZREUTliMRlbz58rzrO3B44eBT6NCVIpOYCUycggh4qpWj/PHA6HY5B8QAgAoGXLltwpwjF4PndaPH36FC9fvkRISAg+fPiAkJAQREdHIy4uDnFxcbh7925mtsepU6dw9epV+Pr64s6dO5DJZJntxMTEIDQ0FK6urtwpwuFwjBIZZIZVd1Qmo/s4sZg2eZCctn6jX7ygYLzPKVqUAhKVxxkaSg6AoCAgOJgkrUUiCuBr1YqcKsOHAw0a0D3p8uXA6dPAy5cKx0hiIr02KYnalEqBxERIfX0RMGAAQqKj8eHDB5T/6y80uHQp67hMTWFmYYGvk5Lw4tOuyQB+BCABkAYg7dQp4OFDoEED2NvZQQSAgWQhzczMkJCQkDk3FilShBpp1QoAEArghLk57Nzd0cnNDdaXLwN9+6Jnv36AoyOdq5xFU78+3evfvg1s3Qr88INwTpGICJIQ504WDkcvUStjxNPTE48ePRJyPJxPFKaIkAxk4CzOQwYZ/Pz88NVXX+l6WKpERQFnz5L0U/v2QLVqtD8xEQgLo4gHGxsyDF69ou3jR5KJyk1ijjEySEqUAOSTuR6Rnp6OmJgYfPz4EXFxcahUqRKKFSsGAAgPD8eTJ09gamoKU1NTMMYglUohkUgglUpRo0YNODs7AwACAwNx7NgxmJiYwMTEBIwxJCUlwfn+fTS9eBGlw8JU+s0QidC/TBkESyQYFxWFkzIZ9qSnAwA2bNiA77//HgDg6+uLVp+Mn+xYvnw5fvrpJwDAvXv3ckzBdgCwvndvDDhwAAA5XGK9vFAtMjL7hh0c6DOW064d1SU5cgT48AEYMkRxzMSEjMrAQPouhYUp9F4HDgQOHqTvT1oaGUxSKX0X2raljBrufOZwABSeefFzCst1K2eMfEAIlh5ehh49euh2UBz1SU0lW0cPbRxNkJycjBcvXuDSpUvw9fXNdITIJT4GDx6MHTt25Pj6qKioTDtryJAh2L59e+axGjVqoFOnThg6dCiqyW1RDqcQUljmxc8pLNcttwf88RTRiMau47vQuXNn3Q0oNpYC3Z4/J+dD2bLAd98pjhcvTtkYn+5VVfD2JkkrOU2bUpCdoyOtIbRvD/TvrwiwU5d794Dffyc1hA8faD2iRQvA3JyOv39P960vXmR9XZ069PjlS8o6sbXNPJwWG4sPp04hoGRJREREoPSePWhy9GiOw2gJ4NKnx5MAjABFZFsBcDI1hblEknluUwcHvLO2hoWFBaanpODbkJAc2426exdFPT1hbm4OREaCRUQgtXx5JCQkwNzcXFEHJDUVrwICUKFyZZp/lZUqxGK6N3dxoc/A0ZHku5s0yb5TmYzWd/z86H168UJRE9XKCvj336znP3pETqrLl+k1ISF03/+F+Z/D4eQfvcgY4SpcHCEIRRhkkKFq1apfTI/UKm/fArt3AydOkGyS/Lu+fbvCMXLpEtC1a85tuLoqHCP37wN37pBRYmZGGQZy3c7oaPorLyZ35Qrwzz9AcDBYUBBYTAwy7Oxg6uICEycnYPVq3AoIwJkzZxAfHw+JkmHBGENiYiKmT58ODw8PAMDRo0exfPlymJqaQiwWq0QWikQiLFq0CI0bNwYAHD58GHPnzs3MqEhKSlK5pAMHDqB3794AgMuXL6Nfv345Xv62bdswePBgAMDjx4/h4+OT7XkiAOeGD0fr2rWBuDi8e/wY3+3bhzOBgSgKwA7AbgAtAEwEkJiYqPQWu6Jjx46wtbWFjY0NbG1tYWpqmumgUXayWVhYoFmzZrCxsYGDgwMcHBxQrFgxuLu7o0yZMqhevXrmuS4uLnC5f5/SiN++pS0wkCJprKwos0WZ9+/JUTZ0KPD4MbByJRnP7dqRg8Pengyop09Vi+DFxpJDJC1Ntb2UFDKkPi2OAKDXlitXaBaXOBxO4cQKVqiEisbjFLl1i26+3d21FzWqD/j7A2vX0iIAY2QzNWig61GpTWxsLB4+fIiGDRvC0tISALBp0yZs3rwZAQEBCA8Pz/KaR48ewcvLCwBQrlw51KtXD66urplb8eLFYWdnBzs7O9jY2GS+rnHjxjA3N0ejRo3Qvn17uLm5aeUaORwOR9fIIEMIQpCGNN2sOUkkwK5dwLJlpACgTNu2qo6R1NTsnSIA3fcr899/dM8oZ98+UiwYOpTazMbpnZSUhLdv30Imk8Hc3BwWFhYwNzeHVCpFamoqihUrhuLFiwMAYipUwPXevZGeng5JxYqQREVBuncvJBIJxElJ6LNmDaxevwZMTCAtVQofTEwQY2ODq7/+ikBnZ0ilUqSnpyMsLAxff/01vvnmGwDAk7dvUWfAgMwxDQHQBEAcgHgA1ra2cCxeHDAzQ3K1asg4dQoV3d3h4uKCcDc37HB3h5ubG9zc3FCjRg1UdHWlNZCUFFwrXVohNR0eTkGEEgk5m+7fV6yZvHuH4k5OtJ6SkAB07AjR27cocuIEijRqpPqmWVqiknI2yNy5lB2yZw/ZZTdvKo4VKQKMGJH95weQ2kPPntkfU5qzAQCjRwMHDgAxMar7RSIgLk7xnLG824SM0XsVFET9OTmpOK04HI76qOUY4anbHCGIRSwAktHS+Xfq7Vvgxx/J869shHl6AtWrq9aiSE2lyUlu3JibAxUqAB4eNLl37Kg499QpYPbs7Ps0MQGqV8e///6Lbdu2YeCNG+j96cZa9GmzCA+n6A0AWLcOt27dwvz589EIQDoAv8+a7NevX6ZjJCQkBDdu3MjxkidMmKB0Sanw9/dXOS4SiWBvbw87O7vMRQAAsLW1RY0aNSCRSJCRkQGRSARTU9PMrBDlgrnOzs7o27dvpsNCJBKpFEuz7NEjM0rD9uNH+AwdimlFisDKygpuR44AS5fiOwCjq1eHqFu3zHY9PDxw8uTJHK9NmZo1a+LKlSt5OhcA4OZGW07RI8r4+QFeXqShOm5c9tEgJiZAzZqq+/bsocyTxET6zhQpQltQELUlN6YZo4ifyEhgwAAy3urUKVyLbBwOh6MrUlNJa1pOTAzJIkRGUiZgSAg5zwMD6YZ17VrFuV270jm2tmRHeHoCHToAnTrpRc0pmUyGgwcP4tWrV7C2tsaQIUNgZ2eH48eP482bNwgPD0dERAQqVqyI4cOHZ2aCZoufH3DjBuJ37EDRO3cU+21twTw9sWXzZnTv3h3Fd+yg965xY5pj5RGen5BKpQgJCcHbt2/x8uVLvHjxAi9evMDLT3bQsmXL0PPTIkVycjISExNRsmRJQd+X+Ph4BAYGIjg4GP7+/rhz5w7u37+PgIAAAMDz589RuXJlAEBQUBBu3bqV+Vo7Ozs0btwYLVu2RKtWrVBTae5fuHAhFi5cmKcxjFGWPuFwOJxCRBSikYY0mMEM7du3127nEgnw1VcU7CbH1RWoUoW2unVVz//vP1oHsLSkv4xR1oBMllUy+dw5ICYGAX5+eHjoEBq+eAHnuDhg7Vo8+/13eBcpgri0NKxZsyZTIeHWrVto84W6HitWrMCPP/4IAHj58iW6ZhO4KQJwFJSxgVKlgDt38DwhATVq1KATPnf+AChTpkymY8TZ2RnFihWDk5MTSpYsCamdHSba28PaxQUlS5ZE/fr10eiTc6IIY7iKPKwVZufsL1WKNjktWigep6UpMl8kEnocE0PSXgcOqK69fI6LCzBhAm3yANXoaNrKl1dd45Fnz4hE9L7060f3515e9NnXrEn2m0ik6viSyahofUwMrRF5ewMtWwKNGgG1aimcKIGB5AhbvlxRzD42lmxNuVJEbCzQty85iQICVJ1pAL3+n39yvl4Oh5MvuIg9R+d4oibKoSxGjhypnQ4ZoxvyFy/I4ClaFBg0iI5ZWVGWCGMU7d+rFy1euLtnbefrr2lLSwPi4ykN83PjR46HB0UapKdDlpqK4LQ0nI6JQY9ly1CybVvAwgKBgYE4fPgwSgK4DyAYQBCAWAAu5uZYOmkSapYsCTg6onbt2hgzZgymHj+O8sHBiC1aFE8rV8azypUR5eGBChUqZHbdvn17HDp0CFKpFFKpVGVYMpkMdeRpsyBN9/Pnz2c6QhwdHWFnZweTbK6rY8eO6PglA0SJunXrYu/evXk619HRMbPIGk6fJuOkRg3A3x+iJ0+Ab78Frl7N/sWnT1OU6tix2s2ssLambKImTYCdO2kBbM0ahfGWE7a22Ud8ODqSASXnwwfSrI2LAzZupM3Li6JSBgzImsHC4XA4BoYUUjyCP0qiOJygAwnB//6jSMXoaLIRXr6kTL2nT+lG9eFDxbkNGpCsQnZ8CkpQOffMGYpuvHWLtr/+ImfAqFGkZw2QtIavL2UVVq6smjGoQXbv3o1BchsIQLdu3XDnzh107949y7m//fYbduzYke0ilWz7dog/yUgWBSAFcNvZGY337gXKlsXzwEB8++23GD9+PB6LRKiQnEyvE4ngX7o0LCZPRuVx4wCxGDt37sTQoUNzHLNy9PDZs2fRs2dPVK5cGY0aNYKjoyMsLS0zI2oHDBiA0qVLA6D6HteuXcvMMo2OjkZAQAACAwPx7t07bNiwIVOiav369Zg1a1a2/ZctWxZpSpmevXr1gqenJ8qWLYty5crBwcFB94E+HA6HY8C8AxX/doVLZt0ljcAYrQmcO0dyS2ZmVFOjeXMKepg6lTI5PnPgq6B0350rnxbC35iZodecORABaAtgAIDpUimiPi2AO9+/T4v4pUujbGoqutrZIcjcHO8lEqSlpyM9PR2mpqawsLBQuU+3t7dHvXr1YGZmBjMzs0zJaxMTE3wICkLGq1cwO3oUcHNDycBATB88GEVFIlhJpSgikcBSIoGFTIaEBg3g2bJlZrvOzs6IiorK0yVqbP5TDiZxcKDPrE8fCkDt3JnWbSpXJqmzkSNJMgug4BQLC8U9d7lytGXH1avk0ChWjPowNyenSo8eZLPlJmN55Ah9f776Kmu2kJyffyaFkH79aJ3j/Hlg0iQKgpTLfUmldH3KlCpF9VwSE7VmI3I4hQVeY0RPKWwaogBwlB3XTCcyGbBtGxURe/yYjJ/YWMXxevVI5krO1q20TyD9ZsYYnjx5ggsXLuD8+fO4fPkyEhISAFDU47Rp0wCQ3NSVK1fg5OSEYsWKwcHBAfb29nB0dISNjU1WI0MqJa3KY8doQUWOhQVQuzY5dObMEeQadEJ6OjlElBefnJ2BJUuAYcOynp+SQg4FeTqz3Bh58IAKncmLrGmS9esBHx8yskuXJikuOf/8Qw6OihVpq1w5a/qtnJgYcrilp5NDxN2djKyLF4EtWygaRb4oU6QI8Pff9F0ACp2eO6fwUFjmxc8pLNftKaqBx3gCS1igJVriJDul3QFUqEBZo9lRq5aqY8TDg5woJUrQ5uRE80zZsvT73qWL6uvT02kue/KE5Bv276f54Ntv6fcboPmibFnFa4oXp3micmWKUPX21ogU1cWLF9G6dWsAQM+ePbFlyxbY29vj/v37mDVrFipXrgx7e3scOnQIjx8/hkgkwsqVKzF58mQAVL/r1KlT2PfXXzgRHAx/UHBHaKdOaDZ4MPr37w8AuHv3LsaMGYP79+9jBICmIBkOFTdShQrA2LG4Xrs2WrRti7Jly6JChQqoUqUKKleuDA8PD5iYmKB69eooUaIEAKolNn369Byvz9fXFy0+RZxu2LABY8eOzfHcs2fPom3btgBIDvTHH3+Eq6srypcvj4YNG6JOnTrw8vKCozbsCQ6HkyOFZV78nMJy3c1FzXAF1wAALeANX3Y5l1cUkFevqMD2+fP0/MoVoFkzevzxI91LakiyKDIyEn/88UdmJob83r9IkSKwtLREqZ9+gtnu3VlfWLw4Bcf973/ZZ1zkRlQUtTFlCvDrrzmf5+dHi/sAZS08e0bZD/pGRgYFRMptKYCcWMpSVs2b02fr7U0F5b/+Oud78L//pu+EklS5CgcPkgMGyJ8cljJxcbTW9OoVOV/kY61Vi953ExOyG/fupc+qXDmyD6OjyVkXFkb2ZEICMGuWcPVpOBwDRKh5US3HSO3atfHgwYMCd87JmcJg+MTExKC/Y19YgLz/GnOMALRg8f694rlIRAvXNWpQbY+5czXS7aNHj9ClSxcEBQWp7Hd1dcWQIUMwYsQIVKxYUb1OUlIoouDwYeD4cTJ4AMpQOXSIHjNGE2q5chRB0bevXkh4fBHGSNJMKiWD9ZtvqGBdTlk579/T5wyQM0wkIqOialUybqdNI6eFpo2H48cpi0MsVnXAtWpF0cDKuLnRglfTpsC8eYr9FSsCb94onru60mcs10r9+JEyVP78kwzV06epeB9AtXEGDqTvt3xRrUIFxVapEjlZOBwDozDMi9lRGK5bJpPBzqQoEpGE6qiG8iinWZsAoJtKpdpS6NKF5pFixWirUIECJKpVo99R5fdeIlHvd1QqpZobzs6KIIywMBpDeDgQHJz1NZMnA6tW0ePwcLox9/CgCMOOHQs8p0ulUri7uyM0NBRr167F+PHjVU+QSIDVq5GRkoI/b93CstOnsefsWTQNDgaOHMG39vbY/L//AQDK2Nujz7ff4rvvvsvWtmGM4f79+3j79i0iIiIQGRkJ0zdv0PrlS9R7+hSmiYlAt26Q7t8PJhbDNI/v8cePH3H9+nU8ePAAycnJSE1NRWpqKtLT0/HTTz+hSpUqAIBjx45h06ZNSEhIQEJCAuzt7VGuXDmUK1cOZcuWRcuWLeH0ScaCMcazPjgcPaUwzIvZUViuu7TIHUEIhgucUQdfCW8PpKcDK1YAixZRoJmZGS2ez5tH92Qa4p9//oGzs3PepMGOHAGuXaMgCvkWEED3uGIxLYqrc087fz6wYAHdV9vako1jY0OPLS1JFtrNjfpt1oxslAsXSBZKH7l6leSxAgLo/Vm3TnGsUSPK1pVjbQ0MGUKOIWWZVDnh4SRrnZ5OW3g43V9fukT75c6yiRMpW6VuXcr+6NAhd7WIpCTq/9kzCnZJSCD7bfZsyk7KyZY7e1Zxr69M377kQOFwCil64RjhaA5jNXyGmQ/OfPxQ+h+em73EggULMrMmBCE9XRG5L7+pXryY0g7r1KEFjkqVNBJRL5VKERUVhVKftDGTkpIyi6F5e3ujTZs2aN26Nby8vCCWp3cKCWO0oH77NqVbyvVIQ0MpDVROyZKUFvztt7SAbgw8eECRLc7OFE0BkIZnt24KjVhnZ2D6dEqF1WRGRUQESXq1aqXY9/vvlC776hVtERGKYyVLktElp21bMj7lOrXp6RSRfOkSfX/lMEb9lCuniHz5+eec69kAwMKFhp1JxCm0GOu8mBvGet3K9sAHWQjOSy/C1tYWwcHBmrtOxihq8PffKWvjxAnKrtQ3kpJIyuvFC9qeP6ebX3nxz5s3qT6HHDs7cpQMGkQRnZ8t6KekpODMmTMoXbo0ateunWXB//fff8e4ceNgaWkJPz+/TDkpAMDKlXSzroy5eWah2SMjRuDv8HD07dsXffr0QZGCzq1JSfSZ9OlDiwbZERxMwSBubjwrksMpxBjrvJgbxnrdyvZAKkvDEdNjSE1NxfXr19FYea4Tgrt3SXng6VN63rYtSRTnRw4rjzDG8OrVK5w5cwZnz57F2bNnkZ6ejvPnz2dmauaLlBQK6njzhhbiAXKUTJhA9/TKMsy5kZxMtoKl5ZezHjIySEbq5ElSX7h2TRGoJzQpKXQ9VlbC19EMCqKgwn/+UahR5PeeWO7UkNOiBXBZKZvJwYFsmHbt6N5cnnETFQUsXUo254sX9Hj6dFIzOXCAMl6+FCjLGDl3bt9WZCrb2NDflSspyDIvyGTkIDp6lOzI2rUpmLJuXV63lGOwCDYvMjWJjY1l7969Y8nJyYwxxg4cOMB8fHzY5s2b1W26UBMXF8cAsLi4OF0PRVCGmg1iQ80GsUGm3zBLWDIAbM+ePcJ1kJjIWLt2jAGMffutcO3mgXfv3rGmTZuy2rVrs7S0tMz9t2/fzvz/0Bnp6Yw9fMjY4sWMubrS+yPfPDwYO35ct+MTgrNn6Xpq1FDdL5EwtmMHY+XKKa65eHHGVqygY7ri40fGbtxgbMsWxhYtYkwmUxyTShWPo6IY8/SkcTs7MxYQ8OV2ZTLGIiIYu3qVsU2bGJs2jbHevRnz8mKsfHnGjOw3hVN4MNZ5MTeM9brl9sBQs0HMTeTKALDx48drprOMDMZWr2asShXV+W/+fM30p2kiIxnbt4+xyZOzzunVqtHv/yd27drFAGRulSpVYqNGjWLR0dGZ58hkMtahQwcGgI0YMUK1r+Rkxrp3Z6x2bcaqVmVMLKZ+XF0ZW7qU5ihNIJMxNmkSY2vXMvbrr4zVr696nWfPaqZfY2TvXsZsbOh9W7FC1d7gcAwQY50Xc8NYr1vZHhhiOpCdPn2a+fj4MJnQv1USCWOVK9NvYYkSjO3cqbHfw3PnzjFPT0+V+RcA69q1K5Mq3+epy59/0vWYmjI2Zw5jDx4wlpoqXPuM0fpKgwbUj7s7Y0FBwrafkcHYzJmMWVhQH5aWjLm5MfbVV4zduiVsXzKZ4j2ztaV75oISGsrYmTNkizk7q9ootWopzktKomuSHxOLGbtyJe/9XLigeF/CwvI2rtGjGevQgbHhwxmLiaHrlkgYK1ZMdZwAYxUq0FqErterOJwCINS8qLZjpF+/fkwsFrN79+6xo0ePMpFIxMRiMROLxWz58uXqNl9oMXbDp4WJNwPAXFxcWHp6ujCNZ2TQBAAwZm2t9Zvm7t27MwDMxsaG3b17V6t954v0dLpJ9vZWLHAoLaKwq1dpsePOHZrIDYV//1VM8H/8wVhKiurxtDTaX6aM4rytW3Uy1HwTEcFY9eq0qBcURMbL7t2M3b3LWHQ0OTs+fqTFMmWjJiaGsSdPFEa/TEaf6ZAhjG3bppNL4XAKirHOi7lhrNcttwe+Nu2VuWDw4sULzXQ2fbrid9/Ghm4YHz7UTF/aRipl7NIluib54ven9/H58+esHsAaAcwEYJaWlpnv9bBhw1SaCQkJYYsXL87dJnv5kt7PVato0xTyhQvlTSxmzMqKHvv7K869eZPmQk5W/Pyyvo+nT+t6VByOWhjrvJgbxnrdyo6RoWaDNNvZjRuMffONRueMN2/eMDMzMwaAmZubs1atWrHly5ezBw8eCOsUYYyx8HDGevZU/Y03MSEHUKtWqgvpUVFZ74/zSmSkwqkkD8K4cEFxPDW14G3v2JF1npI7eyIjC9bml5BKGWvRggJGExOFaVMiYezcOcZGjmSsYUPGPrOx2KpVjO3fz9iAAXRtZmYU/PHxY+5tR0aS02vmzLyNpUuXrO+lmRljTZrQ37ZtGdu4kbF+/RgrUkRxzvr1+b9uDkfHCDUvqi2lValSJXz8+BHR0dEYNmwYtm/fjnbt2uHMmTOoWrUqnjx5ok7zhRZjT5W9KrmGtywQP/74I1asWKF+w2/fUhri6dMkr3D+vKrMhBaoXr06nj59iuPHj6Nz585a7bvAxMZSCmjHjgpNzB9+oJRiOU5OlA5atSowaRLVZdFHYmNJPm37dnru5ESa7J07U2qrvT2lC0sklLZ67hyl0BakcJ0uCA+n4mwfPwJNmuR83urVlFINULpzs2Z0jZ07U8rvkiUkLWZrS599jRqKQvUcjh5jrPNibhjrdcvtgefSl7gtu4NGjRrhxo0bwncUE0OSkYmJwIwZtGmomKrOiY8n++dTYdDU1FQ88/BA7aAgJJmZwbJcOcSnpiI+NRV2zs6wr1uX5nv5HBAVRVILZmaIkcnQf8AALJozB/UPH6a6K0ePkpSDMlIp6XkDNLdUqCBMLa/ERJrLbt2i+mEdO5KcWMmSNN/b2pJcalwcSUxKJKSZbm9PkhnyOi3Dh5NMRGFF/j5u2ULPu3alor3Fiul2XByOGhjrvJgbxnrdylJaAPBP+nZhGpZKqZi2hQXNBVri1atXWLx4MV68eIGTJ0/C0dFRsx0yRjVB/v6b5mHlGpcJCQq5ZXmR8po1aU6dOJGKe+eVd++Ahg2p3ggAHDtGtdEA6v/776nOhpMTjUkmo/WF6tVJCjSnvt68IRmwpCTFvo4dScZTUwXfC1o4XV0SEqgW6XGlujn16tFaS7lyJH1ubU1btWqAp2f++zh+nOb6nDA1BcaNA377jcazfDlJjCnXM+VwDAS9qTFibW0NDw8PPHjwAHXq1IFIJMK9e/dQtWpVBAcHIyEhQZ3mCy3GbPhImRR7JQeQgQz1tUNTU4Fly2iTF0/bv5+KkWoZd3d3BAcH4969e6hTp47W+xeMXbuoiNfVq7SgpIyJCWmyenjoZmy5kZwMbNpEepufFbwHQNfVt6/2xyUkjx9TsbjXr2mTG6dyfv4ZmDmTHvv7k7GVmqp6TsmSZBDNnUvOkrNnuXOEo/cY67yYG8Z63fKFkPeyIDyTvcDUlVMxefJk4Tu6fRvo3Zsc5I8eFT4d5VGjIDt4EOLP53OAFi9CQxXP69WjWlgAIu3tUTk2FosAjFV+jUhECyOlS9OCx5YtdJOdkkIOCpkM+PFHusEvVowWQkqXFsZZkh3PnwNff02669nx668U1FHYkd/uFbbvP8coMdZ5MTeM9brl9sBL2SsksETs89+Pquou0N64Qfc6Dx6QY+TBA60v+jLGstT00kKnVDD9+XMKqhs4UHGsXTta/JZjbU3Okh9/pHoVeSEhAXj4kIIRatZUODu+/RbYvDnn1z16ROcDNC//+y8Fs3bqRIGNhw7R/ehff9E5Y8dSzVhtEBNDDh3G6B65ZEn6zshzKUaOBOrXF7bPM2fofj02lgJ8s6NRI+DixewLxOeH1FT6Thw9CuzcCfj5kTPkp5/ouExGn2duheM5HD1EbxwjDg4OsLe3x/Pnz1GiRAn06NED27ZtQ61atRAYGIi4uDh1mi+0GKvh01vcE+EsAtdxAxawQJIkCSYmJgVvMCGBCk6FhACtWwPr1unM021nZ4f4+Hi8fPkSlSpV0skYBCcmhibrt2+BPXto4jx8WHFcJlNEiuoT6ek08a9fTwXYY2NprGfOkFFoTKSlkdFmYkLb559HSgrg60sF386cocWqrVup6Js8u2bqVOCXX7Q/dg4nHxjrvJgbxnrdvcU9VZ4flB3O4UwBSE8nZ7kGiqsaBFIpOdXj4ui9SE+nx2lpqlG0devSDfMnbpYrhz4BAdgLIF0sRnSLFmi4bBnc6tXL2seTJ5SZ+O5d1mOmppSps3AhPX/1ihZFAgNpHKNHA97eBb++jAxg7Vpg927KGHFzoy0sjG7+5dkRv/1GUa3Nm1N/7dppzmHD4XA0hrHOi7lhrNcttwcuMF/EIQ5btmzB8IJmeCQlUZacfJHe3h5YtAgYM4bmosIMY8D796Qo8OuvwP37tN/KioqQT5tWcOc5Y1TY/tw5WogXi6mtxESyD44dU7z/o0dT5oqcv/8mx0pqKtlq7u75dwZERgIBAWRTxMVRpqncVgkKAr75hoIALS3J6VGmDAXWFilCxeWPHMm57R07VB1MQsEYObCeP6exBwQAERH0HU5Opm3GDOEDfp8/J7soN2eYckAFY2RrpaaS7VismH6uAXEKHXpTfL1Ro0ZMLBYzOzs7JhaL2fpP2nSOjo6sWrVq6jZvkGzYsIHVrFmT2draMltbW9awYUN28uTJfLVhrBqivUQ9WHmUYwBYWZQRptEjR6gIqQ6LSWZkZGTqdoeHh+tsHBpHuZhbUBAV8/7tN8bi43U2pDwhk1EdjrQ0XY9Ef1i7VlV79PBhXY+Iw/kihjovqmsTGOp150YvUQ+VjaMnyGRUs+NTDbJnc+cyLy+vTBvH1NSUfffdd9m/NiWFdLQ7daJCrRUrMmZnp6j9Jefw4ay1QxYv1rwd97nudvnyVIdLV9y7R/XDunUjG8UQuHCBsUqVqJbfnDlUt47D0TKGOi9yeyB7eol6sA5olznPRBS0IPbbt4zVrKn4jR85kmpwaJF9+/ax+/fvC184XmhkMsaOHWOsTh16r8aO1V7f9+9TvQ0fH+q7SBHGHj8uWFuhoYyNGEF1VZTn9zFjFOd8/Jh9DZO1a+l4YiIVeT96lLFNmxhbsoSx+fMZW7CAsYULGXv0SNHW8uV0XOhaMfrIs2eK+iTyurTyrUQJxpYt0/UIORz9qTFy8uRJ9OrVC+np6ahQoQL8/Pzw9OlTNG7cGMOHD8fmL6XUGSnHjh2DiYkJKlWqBMYYtm7dihUrVuDBgweoXr16ntow5oiQZJaMUITBAfbwZZfz30hKCuloOzrqjfxPSkoKbG1tIZPJkJycDEt1Ux4NgZkzgaVL6XHRosDgwRR5+tVXXKrBUNiyhdKDAdIw/e8/3Y6Hw/kChjovqmsTGOp150ZvcU+EMrIFLEWWmskYefWKsuQKe5RoQZg9m6QZAbBp03C2ZUssX74cN3x9Mfa777Bq3TrFuWIxZSxmhzxC1daW7DaAPpd58+izCQigTA8AuHNHEeGpCUJCgCtXqL7WkSMkI2ZqSrroc+fmT2tdCBo0oGsGgBUrSM5En0lNpc9RIlHsk0f6cjhaxFDnRW4PZE9vcU+8Yq/xGP4ojmKIZFEFa6hnT8pGdHQkaabmzQUd55d48+YNli5dmrn2de7cObRp00Zr/RcYxoCDB6lWiHz94sABqlNRvjxtNWtSDRChkclISuvMGcpeOHQIaNo0f20MGkQqEQDV5yhWDLCzA7p1I0UEgK7x0CHKnk1MJOmupCSSk/b1zVs/6enArFkk1w0AJ09SHRRjhDGqS5OWRu9ZTvzyi+I95nB0hN5kjDDGWGRkJPPz82Opn6LJ4+Pj2evXr1lMTIwQzRsFDg4ObNOmTXk+35gjQtSOED1+nDzVdeoIO7h88OrVKzZnzhwmkUgy961YsYItX75cZ2PSOqmpFAHq4aEaQVCjBmMrVuh/FgmHomMcHBhr1oyxHTt0PRoO54sY07yYH5vAmK5bma7ozMQQMwCsHdoK30FyMkUQWlpqPWLUKEhLY+zbb+k9PH06c/ebRYuyj7wsUYIxT0/Gzp5VtJGXiNnr1+n1lpaMRUdr4EJyIDxcNYNkwADt9S1nzhxF/3fuaL///CKTMTZjhmLMX33FWHCwrkfFKYQY07zI7QFaH7CHPQPAasGz4A2NH89Ykya0VqAlnj17xgYNGsTEYnFmxsuIESOY1JAzCpo1yzrHd+zImL+/8H1FRDBWuzb1Ub06Y/K1lbAwxk6cYOzlS8YyMnJ+/cmTquNcsoSxK1cogzU70tMZK12azl21KvfxSSSUKVmtmqIPb2/GYmPzf62GwtGjjJUsmb2tBzDWrx9jvr6kHsLh6Bih5kVBQuiKFy+O4kpRVra2trC1tRWiaYNHKpVi//79SEpKQqNGjXI8Ly0tDWlpaZnP4+PjtTE8wyTqUxSJFiP7IiMjcfHixczt9evXAAAvLy/06tULAPCjvkf6CY2FBfDdd8CoUcD588D//kf1R/z9FVquHP2mfn0gOppn+HA4WiIvNkFhsQeC8QEyyGALW1hDA3UeHj2iSDdHx7wXFS2kJCYmIioqCmXLllXsNDenbIDZs6l4+ifK55QRGxlJmzL791M9q5Ytqf5I27aUcaDMoUP0t39/RUaJNihZkjTPL1ygMc6bp72+5cyZQ1kiIlHW90UfEYmAJUtozBYWpM3ONcY5nALB7QEF8SwesYiFCCK4wbXgDa1dK9ygciEwMBCTJk3CkSNHwD4JsHTs2BFz5sz54pqP3sMYMH48FSN/84a269eBU6cos2PMGKrhKdS9Y4kSVPNk/HiaW+TZp1evAn360GNzc6BSJaBsWZpzGKPsjYYNKWvjwAFg9WpqZ+ZMeo2ZGdWXsbCgbds2oHFj2r9oEa0nTZz45bEtXkznpqcrxrpiBTBkiKLuxqRJpLjw999AxYrCvCe6pksXyrxKSCA7OiODirc/fUr1Yu7coZptzs66HimHIxgFcoysXbsWzs7O6CP/sfoC+/fvR2hoKHx8fArSlcHy+PFjNGrUCKmpqbCxscHhw4dRrVq1HM9funQpFixYoMURaoe+Jl9nPpYwCfytX8DTvjZq2deFiaiARde16Bi5ffs2JkyYgDt37mQaPQAgFovRrl07uLm5aXwMeo9YTAVM27WjIuf79lF6qo0NHWcM6NWLUnG9vSlFVl4IlaNbuEOEw9EK+bEJCoM9AAAfreKAZKCJU0vULdFS+A7lRcTr1OG/dTmQnJyM9evXY/ny5fj48SM2bdqEkXJ5RTllyqg8fdOjBz5+9RVKu7igVKlStDM9nQqdh4bS+y3n6lVFQdEtW2hBolkzktx0dyf5zRUrSEojtxvstDS6KTcxASpUAKytBXgHALRuTTf5yt+R6Ojc7ZSHD2mhoHPngvdtZqY3krD5QpsOLA7HyOD2QFZ7IK04gCigsm11NC7bXjeDyie2trY4c+YMGGPo0aMHZs2ahbp16+p6WOojEikcEnJevaIAgkOHSP5KaJvKygr4XH7f3Jxknl++JBnHJ09ok6Nsq/TuTesLu3eTE+faNbJJlIM1lCUghwzJOoagILJHZsxQ2CN2dmTfWFiQvfLzz6rzn0hEcuKXLlH/Z85oRnJM24hEgBDOvfh4YMMGICaG5Mtc1XB6cjgapkA1RsRiMRo1aoTr16/nem6jRo1w584dSL+kT2eEpKen4/3794iLi8OBAwewadMmXL58OUfDJ7uIEHd3d4PXEFU2fAJZIO4yPxQzL4FJHjMhEokw89GE/Dc6YwawbBkwYQJFBwhARkYGNm/ejLt378Lb2xtDhw4FALx48QJVqlQBAHh6eqJ169Zo1aoVmjVrBjs7O0H6NnquX8+qF+rlRQZWv346GRKHwzE8DFlbOz82QWGwBxJYAk6zsxBBhJ+qzEdRM7uC2QM5kZoKtGoF3LxJUYWLFwvXthEgkUgyHSJhYWGZ+8ViMXbs2IFvvvkmy2vS09Px9u1bzJ07F/v378ekSZNgZ2eHjRs3ws3NDUeOHIHr5ze9CQlkA5w5A5w4QYsrysTEUERn9oME1qyhWmbR0VmPV61KjhKh2bYNGDeO9MObNqVFoPBwsjt9fMgpExNDDqCAAMo0mTePO984HC3C7QHDu25lsgRKFE/Cjegr6OnaH9XtPAtmD8iXtDTwW8wYw8aNG3Ht2jXs2rUrc//u3bvh5eWFqlWrCt6nXnLtGmVuyIMi/P0p63L0aMog1AQyGdUpe/YMCA6mz1cspqAGeeBGejo5UuQwRo6OuDg6lpYG1KhBTozPkUhobWnNGsqMmDwZWLWKjkVFUU0Sd/ec66iFhdE40tPJkXLiBNCkibDvgSGSkUFBscHB9NzCgrKNFi9WBM9yOAIglD1QYCmtoKAgLFy4MNfzguX/DIUMc3NzVPyUTlenTh3cvXsXa9aswZ9//pnt+RYWFrCwsNDmELXOOxYEAKjtUA+ighotkZEk1wQoJmUB2LJlC77//nsAFEEpd4x4eHhgx44daNmyJVxcXATrr1Dh6UlF0a5coe3ZM4q07N+fFhsKWTYZh8MpfOTHJigM9sD7T/ZAJZsqKGomcJDB8OEUNShfTDKGCE4AMpkMwcHBcHBwyFGuNigoCKamprC1tYW1tTXevXuHW7du4fbt27CxscGiRYsAACYmJpg1axaSk5NRpkwZzJ8/H1evXsWWLVtw+PDhTMfIv//+i40bN+L169cIDAyETCbL7Ov+/fu4fPkyACA8PBxTpkzBnj17VAdka0tyHB06kOzCq1fA2bMkzREWRosIOXHhwpeLkcfF5eFdyyeMAXv3kkOnWTPK5sjIUBz/+BHYvp2iWzt2pEjIBQvovFmzhB8Ph8MxOrg9kJVWpTrAu0Sbgq8PAMDChbTo6uGhmlkgANeuXcPYsWMBAD4+PmjYsCEAZBtEYNR8Hug4fTo5AhYuBIYOJXltoZ1EYjFJaClLfcqJj6c5eP9+KgTerx85TkQiFQnQHHn2DBg2jLJGASrG3rWr4njx4jkrlCQkUH8LFwKvXwNVqpBdMnUqcONG/q7RGDEzA775hiRLGQNevCDnU4kS3F7i6CUFdox8+PAhT6mdjDH1JjkjQSaTqUR8FDYyWAYiQemMNe1qF6yRmBigTRv6YXV1zT4NsoB4eXllPm7btm3mY5FIhIEDBwrWT6HE1hYYMIA2AIiIoAjQ1atJ27NZM6B2Ab8THA6HY4AUdpsgFKEAgJr2Xuo1FBxM2tI+PopaB+bm5BRxcgJ69KAFbANmxYoV8PX1xc2bNxEbGwsAKFq0KNzc3NCkSRP89ddfmed27doV//33HwCyX5STwmvWrJnpGBGJRBgwYABq166NkSNHwsLCAoMGDYK9vT2GDx+e+ZrIyEicPXs287m1tTU8PDzg6emJGTNmYMSIEbhx4wYqVaqEcePG5X4xlSrRlhcaNiSHyunT2R9fty5v7eQHkYgWWPr2pcUeZadIuXLAoEH02MIC+P13WgAaP55qhZib0/etYkWePcLhcPJMYbcH5JiK1Sh9u349MH8+Pf4U3CgkVapUgaWlJVJTUxETEyN4+wYJY0C3bpQ18u4dBT/89hvd13//PclbKWdxaIKgIJqrg4JoEf6bb0jqSh7EUaOGQu67bl1F1kd6Oi3Sz5lD9qKdHfDHHxS0mVfmzqW6K6dOKfaZmgI//CDc9Rk68+eTM617d3petizZVxyOHlKgGcjb29tonB2PHj3K92uqVasGU9Oc37oZM2agY8eOKF26NBISErBr1y5cunQJZ86cUWeoBk04IsDAUMy8BIpbFLAIalwckJJCix0XLwqqU9igQQO0atUKFy9exMOHDwVrl5MNJUsCv/5KRou7u8IpIpPxIp4cDkdnaMIeALhN8DnpLB2xoGh/D5uca699kYwM0pfeuZPmDi8vivQDKFpvyhRagDcgWzUiIgJbt27F27dvsXHjxsz9hw4dwq1btwBQpodUKkV8fDyePn2abSFesVgMmUwGxhhMTU3h5eWFhg0bolmzZirn/f333yrPTU1NsUouH/GJVq1aYfPmzahQoQI8PDzg5OSkYv/nRVK3wNjZqS44JCaSdJVYTBGHmqozZ2UFHD9OCy0AyYNYWtL+z22UceNIzmvjRuCnn2j7+mtyrgC0cBQeThnOBvRd5HAKO9we0A6MMcQiDjImg1hUwHvA/fsV6gOzZ9PvsMCUKFECw4cPx8aNG7F+/Xp0NPCAC0EQiUhCa+RICmD46y+aO69epc3bG/iUVaoxqlenwue//EJ1Pi5epMxOOdeu0TZ3Lo1z0ybaf+eO4nvSoQMVTpfXjb1xg7JVU1LIsVKjBlCzJtCypapc2Lx5ZJMcOULP3dyozqoQtTmMBSsr4NYtstdatqTvSE7yqRyOjilQjRFjQiwWZ4mqy+38ly9fonz58jmeM3LkSFy4cAGhoaGws7ODp6cnpk2bppKJkBuGrJ2qTDdRFwDAQ/yHIARj4sSJ+O233wreYFQUyWlpQMvzwoULaNOmDSwtLfHu3TuULFlS8D44SjCmulAwYABw7hwZFmXLKiJLPTyABg1oYUJXxMaSM6d5c9I05XA4WkfT86Im7AFAfZvA2OwBAEhHOnxOTESnTp0K1tgPP9BiNEA334sXU5SigcEYw82bN7Fhwwbs378f6enpEIlESEhIgPWn4uI7duzAx48f0aRJE3h6eiItLQ0fPnxAcHAwEhMT0V0eiafUZkpKSub3poimdL85REYGRZ4eP041bWbPpihUgDKa3N1p++cfqnvDKThSKb3furQHOXoBtweMwx5IQCIu4TJKly6NN2/e5OpYysK1a6QmkZYGjB1LmYQackK/fv0alStXhkwmw6NHj1CzZk2N9GPQfPhAzoc//ySZLW3KZWdkkFynWExbejrVODt7lqQ5160DBg+mc//7j+bjX34BRoyg74xEQrbkokWKjBNlunVTOEHkMEYy4cWKUeCupgI2DBl5hpW9PQ8Q4WgEoeZF7hgRi3Hnzh2UKJF7FgNjDDVq1MCjR49yNXzUxZgMHwaGc7iANKTh3LlzaNOmTf4aef6cdBs1DGMMDRs2xJ07dzBjxgwsWbJE431ylGjWjAzc7ChWjPRiBawrk2fCwyn9Vl4vaelSMvY4HI5W0cZCCLcHNIeyYwQAjrLjBWvozz+pgKNIRDXHPnMMGAqBgYEYOnQorly5krmvfv36GDBgAEaMGJFjHRGOHpOcTIsx8ojIy5dp8UUmI73tbdvyJ9URGUma7Q0akHysiwsQGkoBI8uWkYNQ6EzbjAxqW67Xvn69bhwRiYnAzz9ThKlEQtG7cmmzBg0oClWDxZY5+g23B4zDHniDt3iKZ2jbtq2KbGOeeP4caNyYFl67dwcOHsy5QLZA9O3bF/v378egQYOwfft2jfZl0GRkkCNbPnccOQIcPUoSlLqYTyQSGo+8Xo/c8aE8f6alkYTnw4ckm9mnD609+PtTNsq2bRQc+XlgJ4fD0Sk6L75uLDRv3hwVK1aEfR7Tury9vXn0XT7JgARFURSxiIG3t3f+XvzwIS1Kb9hA6ZoaRCQSYdGiRdi5cydCQkI02hcnG44eJedDUBDw9i3w8iVFfjx8CJQpoxunCEARJnKnCADMmEHZLXkp6sbhcAwGbg9oHgYGEdS8oZw3j/76+BisUwQA5syZk+kUGTFiBL7//nvUNZJC8YUWKyva5DRvTsVh69alRbzx4xXFYfPCjBm0oHTkCDBzJlC0KLUHUFuVKgHt2wt7Dfv3k+wIAGzeTNcgj7LVJmvWkIMmO27fpv/92Fhyjjo6anVoHOOH2wPaIQzhAIDOnTvn/8U7dpDMdoMGwK5dGneKAMCUKVOwf/9+7N69G5s2bYKFfKGdo4qZGW0A/U4PHUqf1f37NMdUrKjd8Zia0iYnu4ACCwv6Hv37L8mxmptTlghAAQ8yGc27JUsqskI5HI7RUOgzRvQVY4sIAQAJJDjJciiimRNTppCEUa9eFAmiYRhjRlM/x2B5944iNCIiaBs8mIwRAWvK5IsXL6hIfHw86Y7OnAksXKgVA5zD4SgwlnkxvxjLdXcTdcEHfMBbBKAcyuE+e1Cwhr7/nopkli5N9R0+SU4ZGps2bcKoUaPQqlUrXLhwQdfD4WgCxoBp04AVK+j5vHmKAsGfExJCi/zXr1NGlLc3yX106kTHTEwo4lXOgAGUPWVjI+yYY2KAnj0p26VePQpacXISto+8EBhImcTKgSnZ4elJjhIur1WoMJZ5Mb8Yy3V3E3VBMpJxAb4AgKCgILjJazzkh9BQWuTWUvBcRkYGDhw4gLi4OIwaNQom/F4wb5w7R3NWVBQFD4wYQffWFSroemSqSKXAV18B0dHkFOnYkeqYpKdTYfeHD2kufv2aZL85HI7O4VJaRo4xGT7K5Es6IyODMgVCQylaTu615xgnUilFB86bp3rz37UrRZfoOiqHSzZwODrFWObF/GIs191N1AW3cRcRiEAlVMRL9qpgDSUkUKH1yZPpRlskAlJTDW5hVCKR4O7du2jEC3UaLzt3kiQHQEE+kyYpjsXEkJa5qSnJiN68qThWpw5w755qW2lptBiTkgLUrq3Z4AzGqD8LC93aPDIZZQ7v309Fbt++pXuCqlWBJk2Apk1pEcvcXHdj5OgEY5kX84uxXHc3URe8wms8xwsUQzFEsShdD4mjaT58AAYOVBRkF4uBHj2AWbPod1wfeP2aHPIREdnXGSlenCS1OnbU/tg4HE62cCktDcAYw4EDB+Dr64uIiAjIPvtBPHTokI5GZrjEIR4WMIe1qAARnf/8QzdAJUsCHTpQxP6uXRQd2qqVRjIIkpKSYGpqylNjtU1YGC0eyKNma9SgIuwlSgDOzmSguLt/uQ2ZjBYaHB01cyPPHSIcTqGB2wPCk4pURCISAFAaufyeZ4dEQk4RBwdaNFb+TW7ShI517Qp89x3VYNBzTE1NVZwi4eHh+OuvvzBjxoz8F6Dl6Cdff02yHM2aZS1C+/Ej8NtvqvsaNqTaGXFx5ABRluaxsKDIVW0gEumHo1EsBipXpoL2BeHRI8o8kevLy2RA+fKAl5dC5oXDyQVuDwiPCCK8RxAAwB35zBRJTiaHaa1aWY8lJZGjlP9/6x+uroCvL93rr1oFnD4NHD+uGjCgaypWJOfI+fPAvn1UX+T5c8oYadmS5NtcXFRfExEBnDgBXLxI88uCBboZO4fDUQtBKvZFRUVh3rx5aN++PUaPHg1/f39s27YN79+/F6J5rTFx4kQMHjwYAQEBsLGxgZ2dncrGyR8ymQwP8BDncRGhLCx/L05NJbkigKSLjhyhAuzff08FKN3cSEbj++8BAb9nS5cuhaWlJSbp0ySt72RkAD/+SJ+XcqZHfpg+nQwlKyvgf/+jm9lTpygqY/nyrE6R6Gj6HmzcqNgXGkqRHO7uFKXJ4XA4BYTbA8LzEq/AwFASJWErymdh8YwMyhIpUYKkfZSdIikpNGe8ekVR+ZUrA23aAEpFzfUdxhi++eYbzJ07FxUrVkSbNm1Qp04diEQiiEQiNGvWDG3atIG7uzu++eYbhIeH63rIhRfGqIC6j0/2EaXKWFjQ4orcKfLHH/Q9BaheyLRptCj0++8UTXvzJi3kv3ql6hTh5I+DB4Fy5WjhtHt3oHdvoG9f+tzq16dadhxOHuH2gPBEIhLJSIYFzOGGfAY6/v47OTenTKFFaeV7z99/pwC5Bg00ci/44cMHHD58GL6+voK3XSgQicg+O3UKePyY7LmmTXU9KlWsrWne2LmT5CyTkoDwcFqnUHaKJCaSJFipUvR3xw5g717F8YgI4K+/tD9+DodTMJiaBAQEMBcXFyYWi5lYLGaNGjViV69eZSKRiE2dOlXd5rWKg4MDO3HihK6HwRhjLC4ujgFgcXFxuh5Kgbl06RIDwExhyjqjI+sh6pb3F58+zRjAmIUFYy9eMGZuTs8rVGCsXj3GxGJ6DjA2cqRgY/bx8WEAmFgsZj179mSPHj0SrG2j5fBhxWdx5kzB2oiKYqxTJ8b8/BhLTc39/FmzFH3u3MnYtWuMzZ+v2AcwFhlZsLFwOBy9RJvzIrcHhCUxMZGJIGIAWDM0yZ89wBhjly8rfttr1856/ONHxg4dYqx1a8V5pUoJM3gtsW/fPmZjY8MA5LqNHj1a18MtvERHM+bszFj9+ozdvZv9OTIZY3/8wdjFi6r7LSzou3n/fvavk0oZS0kRdryFjbg4xW+AuTlj9vb0WXl7M9asGWNlyzK2bx9jXbowFhio69FyCgi3BwzXHmCMsR6ibswbTVl91M2/PeDpSf/fc+eSPbBxo+JYr16q94IfPgg67iNHjmTOwxMmTGCxsbGCtl+oefCAPr+oKF2PJG+sXKn6XXN1pTURmYyx3btpn0hE9imHw9EYQs2LameM/PTTTwgNDYWrqyvYJw3+pk2bomjRojh37py6zWsVOzs7lC9fXtfDMBqufIrWLIVSMBPlM6W1QQPAzo40jt+9Iy/9jz9SUe47dyhj4NAhYOVKyhwQiHHjxqFNmzaQyWQ4fPgwatWqhREjRiA4t+KPhZnmzSkV9n//K3jUR7FilIZ64gRQqRLpbl++TJHA2TFsGGUNAaRX2rSpakHTYcMoe4TD4XAKALcHhOX27dtgYCiCIigmKpb/BurWpYi8/v2B8eOzHndwoILR3t703MQEmDtXvUFrmT59+uDdu3e4cOECRo8erXJs+PDh2L59O7799lvY29vD53NZJo72cHQEbtwAunQBatbM/px166iA+vDhJPEmp0YN+nvrFv1ljOpmbNpE320nJ2D1ao0O3+gpWpSK0p8+TZIocXHAgwckXeboSM/79iW7dccOXY+WYwBwe0AzOIoc4SJyyf3Ez+nQgf7+/DP9b69Zo8ga2beP/s8BoH17kmMWkDZt2qBPnz4AgDVr1qBy5crYsWNH5hoYp4DIZCSpfegQ3d8PHEhrP7llZeqSAQMo+0XOhw9UoL1TJzoG0DU5OOhmfBwOJ1+oXXzd0dERpqamCAgIgK2tLRo2bIgbN26gVq1aeP/+PWJiYoQaq8bZunUrTp8+jS1btqCIjlPYjaG4Wvv27XH27Fl4oibKi8oBAA7LjuS9ge3baXJs2VJDI8yZp0+fYv78+di/fz8AoEiRIrh79y6qa0vfuTAikwGenuT8kmNmRkVI588nA1eZuDiSTfHzA549I4mV4sXJUTNlCmlTczgco0Gb8yK3B4Rl4cKFmDdvHlzhinqiOgDyaQ/kldRUWvScOpXqOhgQDx48QPXq1WFubg6pVAqpVArzz4pKM8Yg4vWu9J/ERHKaBAaSg0Qu+/nrr2SfAECvXuRgCftMarZjR+DkSXoskQAPH5JsTHZ1Z5KTaUHQNp/SdIWF588p0Co+XnW/mxsweDA5ripV0s3YOGrB7QHDtQcAoKe4u8rzfNkDUVEklZeYSL+LFy4ogiL27KHFaUtLup/UkEPr7NmzGD9+PF6+fAkA+OGHH7B+/Xo+P6vDw4cU2Pjff4p9ZcqQPFrnzroaVe4EBVFd3J07gRcvFPu/+47GbmKis6FxOIUBoeZFtR0jRYoUQaVKlfDo0SOIxeJMx0iFChUQGhqK5ORkdZrXKikpKejZsyeuX7+OsmXLwuyzwl3379/X2lgM1fDpLe4JgG7ej+EEJJDgwYMH8PLyEq6TO3fohlMLxumtW7cwdepUZGRk4ObNm9zg0TSpqRTBd+4ccO0aEBJC+83NKfpPB04yDoejH2hzXuT2gPrI7QEACGPhqDTUA+3atcMAeSQdJ5Pk5GS4urrCwsIC165dQ8WKFXU9JI66+PoCrVrR43PnKLL0wwegdm0gMlJxnpkZUK8eHW/Thhby5Q6x58+Btm3J8bFiBUWiikTkMFm/nrKibG0pQMTJSfvXaAgwRrUIHz+m2i01a5It+fli1YcPlKncs6fi/oIx1XpGHL2B2wOGZQ8ACpvgLQtA7eFfYciQIWjRokXBGvvlF6pBunEjMGoU7YuPp3qkoaFU93LOHGEGngNpaWlYuXIl5syZA8YY5syZg4Xy+qicgsEYcO8eqVDs2kVBkCYmwObNwNChuh7dl2EMuH8f2L+fMpV8fKg+3tKlZAsYWLAOh2MoCDUvZhN+lD8qVKiAJ0+eYMendOS0tDSsW7cOAQEB8PT0VLd5rTJ06FD4+flh0KBBKFWqFF8EV4M4xEECCWxtbVEzJ6mB7Fi3jibEFSuAkiWzHo+IoMwBR0fg/HmKGNEgDRs2xJUrVxATEwORSISUlBSdRwsZFHfuUGHR27epYNnMmRRBkdP/lqUl8O23tDFG0ZaTJwP//gscO6aeY+TePeCHH6jQe69eBW+Hw+EYPdweEBYnUSn8888/mmn86FGKvJ81y2Aj53ft2oXY2FiUL1+eS7YYCy1bAmPHUsTowIHkHPH0pAyR+fMBGxugcWPKis3JrqxcGZgwgTKgunShxZVx4ygLJSKCzklIAL7/Hjh8WGuXZlCIRBR1XKZMzuesW0eLWAA5reSfx8qVtEC3YQNQ0AVcjsHD7QFhCUEIHv7vP9StWzfvjpF37+h+sG9foF8/+k308aH7RjlJScBXX1HU/tSpGhm7MhYWFpg1axaKFy+OiRMnol69ehrv0+gRiShQoF49YNUqum/fto0kEvUdkYjm8zp1FPv+/JPm+/nzgTdvNJbBxOFw1EftjJE1a9Zg0qRJ2RoJv/32m0HpIFtbW+PMmTNoWtA6CQJiqBEh8miQV+w1HsMf7du3x+nTp/P2YqmUUmIrVSJtRuWaEXImTiQt0dq1gbt3tZqeeO3aNfTp0we7d+8ueIRLYcPLSzUlFqDn+XGapqZSeuqIEepF7jVsSA4aU1OK4OBwOAaFNudFbg+oj3LGCAAclGlg4TYmhiLAP3yg2lSzZwvfhxbo27cv9u/fj2LFimHq1Klo0aIFateunUVKi2NgJCaSvRMQQLbHxo0U+JEfYmKAPn1ILkYZc3MK8tizh56HhvKskYIQGkqBO3K++YYcUi4ugLzWj4sL/cZw9AZuDxiWPQCQTSBlUhzHSUghxX///Zf3INrp04HlyyloMiQk5/t/xqgOqRbrTDLG8OHDB7jJa19yhDYExuYAAQAASURBVIMxCrJs0EDXIykYnToBp07R49mzyU7lcDiCItS8qLYIv4+PD8aMGQOAJga5n2XUqFEG5RQBAHd3d4MzMvSVciiLBqiPyZMn5/1FJiaUBbJ2LUXXfU5kJPDXX/R4+XKtOkWOHz+Odu3aISwsDCtXrtRavwbPvHmqz8eOVRQfzSuWlsDIkQqnyIsXwLJlZPjmdyxnzlD0JofD4XwBbg8IRziLQCyL1Uxx0rFjacHSw4OyEw2UadOmwcPDA9HR0Zg+fToaNmwIe3t7xMbG6npoHHWwsSG7tls3et64cd5fyxjw99+UIS13ipQtS8XZly6lxcHatWl/ly5AqVJCjrzw4OSkCMRycAB276bncqcIQPccnEILtweEIwKRkEIKNze3/ClKfPstSQsuXvzl+3+RSKtOEX9/f7Rs2ZLP1ZpCJFJ1iuzbR7WhLl3S78LscubPp4zEwYNpLYPD4egtameMyAkMDMS9e/cAAHXq1EE5DUscaYITJ05g3bp1+OOPP1C2bFmdjsVQI0I0GiE6ZgylJNatS9EDWkhlDgsLw08//YTt27cDADp37ox9+/bByspK430bDc+fU2H0N2+A+vXVb++HHyjqskgRYNAgkpmoXl39djkcjl6jzXmR2wPq01vcE4wxnMV5JCEJhw8fRo8ePYTrYPduyi41MSEpLSHmFx2Snp6OzZs349SpU7hx4wYcHBzw6tWrzOO88LqB8/IlOfDk/PUXyW3lVPw7MRGoVo0KuwIkobV0KTlblPn3X2rHzk64sb55Qxr+RYoAzZsDrVsbhpSJOsTFUV0Yf3+qSfL+PWWKLFgAuLvrenScz+D2gGHZAwDZBPfYfbzHe/j4+GDNmjXCNPz8Ocne/fyz1hzE/v7+WLhwIfbv3w8AaNSoEa5fv87naE3TujVw8SI9LlOGHGZTpmil7qxGSEmh2lcGVn6Aw9En9Kb4+pUrV1C0aNEsxbXT0tIglUoNagHZwcEBycnJkEgksLKyylJc7ePHj1obi6EaPgPN+qs835mxR5iGHzwgzUbGqDiit7cw7eZARkYGNmzYgLlz5yI+Ph4ikQhjx47Fr7/+muV7wcknjAGvX9Nn+uAB8PAhGbLLluVNBmLPHrphf/CAnovFZBBPnMiLZHI4Row250VuD6jPQLP+iGWxOCk9AzHEiI2Pha1QNUBu3wbataNiq/PnZ81ONHAYY4iIiECpT4s84eHh6NChA3755Re0bdtWx6PjqM2DBxTkY2oKTJsGzJiR/cJOVBQVWn/5UuN2byZ79lC2REKCYt/NmyRHyuHoCdweMCx7AAC+Me2LQ9IjSEc6Ll26hObNm6vfKGNAx46kCNCvn0JaUAPExcXh7Nmz2Lt3Lw4dOpSZBfv1119j5cqVKPOlOkYcYbh+HfjnH8ociY+nfZUrA1u25C8jUx9ISgLatKG1ixs3FPtXrqR6rAZaM4/D0TZ64xgRi8WZXnJlGjVqhLt370IikajTvFb5559/vujpHzp0qNbGYqiGz0Cz/rgr9YMFLFBRXAGHJUfUb5QxoFkzmgy/+QbYtUv9NnNBWSu0bt262LBhAy+qJhSTJwO//ZZ1v5MTRT7mRUeUMeDaNWDFCirKDtCN/IYNWpVY43A42kOb8yK3B9RnoFl/PJY9wWOZP1xFLgiWCaTRf+MG0L49RdQ3b05FrY08YGHcuHH4/ZMM5KBBg/D7778b1HeB8xlv3lD269mz9NzdHZg1izKgdLUYwhgtxvz9Nz1v2pSiWO/cof85MzM657ffKJOlQwfdjJPDAbcHDM0eAIDWJi1xUXYJFrBAkiQJJkLcrx07RlKF5ubAkydAxYrqt5kDHTt2VKmb2qdPH8yZMyd/kmAcYUhJAQ4coMCC0FByLkycSOsChrAOIJUCXbtS/ZEmTYCrV+ka0tJIQtzGhvZ9FnjO4XCyItS8aCrEYLLzrSQlJWlGT1qDDBs2LMdjKSkp2huIAZPK0vCavQEDQ1kIFDkREkJ/HRwoU0ADxMTE4NKlS+jZk6TAXF1d4e3tjYEDB2LkyJHCGG8cQl6EDKAJf+RIYPx4ICyMIn+Vj+eESETOsqZN6Sb9xx9JlqJyZXK8cDgcjhpwe0B9GGN4LyMZIDeRq3ANHz8O1KpFC8gHDhi9UyQ1NRX169fPdIzs2LED9erVM7g6fhwlKlQATp8GDh2i2jhBQSQXO2UK0LcvOUkqVNDumO7fVzhFGjYkWSlTpdvEuDige3fK2nZ1BYKDtTs+DkdHcHtAGGSQwQ5FUVxUTLj7anndz8mTNeoUAcgxEhAQgM6dO2PYsGHcIaJLihShuh1dutBnf/48SVXKZIbhGPHzU6x3XL9OQT7m5oC8Vk1iIjBnjiL4k8PhaJwCZ4y0atUKAHDp0iUULVoUX331VeaxpKQk3L17F/b29lpNL1UXHx8frF27Nsv+pKQkdOnSBb6+vlobi6FGhNQzqYN7svtwgAM6mrYTTkoLIO+6hia7ESNGYPv27bh16xbq1KkDgOt5a4wXLyg6Ql48/e1boGRJkkZJTFQUKc0PO3YAR44A//tfVv1tDodjFGhzXuT2gPp0Mm2PU9KzEEOMXibdsV9ySLjGGQMyMuhG0oiRyWQoV64c3r9/n7mvc+fO2LZtGxwdHXU4Mo5gpKRQ/byNG0kyy9mZCssq1yPRBlIpOWUuXwYCA+n/67//yEZ7+xbYu5dkUAFg2zZalOJwdAS3BwzLHgAoi5QxBimk2Cs5oH6D6elU+ygtje4tNfCbGRgYmFlXRiqV8kBJfSUhwbCkpzIygNmzgV9/pTUQeRCwnPLlSRaOq5VwOLmi84yRS5cuQSQSQSQSIT4+HpcuXcpyTps2bQo8MF1w4sQJODg4YMGCBZn7kpKS0IGni+eZQNk7AEBZsQZ0NjVkjISHh2Pnzp2QSCSIli/WA9wpoikqV6ZIxF9/JX3QcuVo/ydnK/z8KH00OJi2bt1IXuJLDBoEDByoqDESE0OpqIZajI3D4egUbg+oj9wecBW5wFwksANDJDJ6pwhAcrVt27bF2bNnMXDgQAwcOBA1atTQ9bA4QlKkCEmATJhAkaPFihV8gY+xgtdaMzGhDKzoaAow2b+fHCXKlClD59StW7A+OBwDhNsDwiESiWAqjGAJ1WpKS6PfzEqVhGlTifDwcHh4eKB27do4d+6cwTmiChXKThE/P+DjR0Cf67GZmQHLl1N26LNnlDWank7fZ1dXGjtfh+JwtEqBZya5nubWrVtRokQJdOrUKfOYlZUVqlSpghEjRqg/Qi1y9uxZNGvWDA4ODpg4cSISEhLQvn17mJqa4lRe5H0KId1EXTIfJyEZUYiGSCRGl8E+sLMupn4HjFEWgQajAP7880+kp6ejQYMGaNeuncb64ShRsyZld3yesHbiBKXFKlOyZO6OEUDVgBg3jjJQNm7Ub8OIw+HoJdweKBjKNkF88QwgCmjdfjBqlOeFm/NCcnIyZs6ciZEjR2bKdPz666+wsbGBWCzW8eg4GkUkInlQZc6eBYoXB5Sy8nNk716S4vL2powO0wLc4olE1B9AsjSVKlHkavny5KwZMgTgmUqcQga3BwqGsj0QjWh0HjUJFmaWwnUgL1jdqJFGFpE3bdqEjIwMiMVi7hQxFAICqP5VXBypSXzu3Nc3ihal2qq51VdlDHj4kCTD6tQBWrbkjhMOR2AK7Bj53//+BwDw9fVFnTp1Mp8bMhUqVMDp06fRsmVLiMVi7N69GxYWFjhx4gSsra11PTy95wOosGolV09hnCIA8O4d3ZDVqUML3QIvDKSnp2Pjxo0AgAkTJgjaNicPKE/q4eHA8OH0uGlToH59Kkhav77inNu3ARcX2p8T0dEkQxESArRrR5GY2RV753A4nBzg9oD6+PRegZfB/6GSm6ewDZcqRdHtd+9SZJ2RcO/ePQwaNAgvXrzApUuX4OfnBxMTE74gU1i5cYMyZi0tgWXLqDB6dgshqanAqFG0CAQAu3dTMNEff6i3cFK7Nkl7fQmJBPjpJ5IDa9ECcHKiaN2pU0nr/Y8/gNGj+QIOx6Dh9oB6ZCADt3AH9/43FD99sx72tiWEadjCghy2jRsL054SEokEf/75JwBg7NixgrfP0RAuLqRAsW8f0L8/KUh8952uR6UemzYBCxao1vWytwcuXqR5msPhCILauYyBgYFIS0uDr68vQkJCIJVKVY4PGTJE3S60iqenJ44fP462bduiQYMGOH78OIpwOZ48EYJQAEBtj+bCNbp/P3nJTUwEd4oAwLp16xAWFgYXFxd8/fXXgrfPyQcHDgCRkbTQde4cLQYoExoK9OgBVK9Ox3O60S5WjNJS+/enwmarV1OqqjwKksPhcPIAtwfUw8TEFFXL1BG20a1bgYgIsgeU60lFRlJmYc+ewA8/CNunlvjpp5/w4sULWFhY4JdffuFa5oWdGjUoKOjGDeD77yngY8sWwMpK9bzp08kpIhbT/8DOncBff5HEaLNmmh3jlSuKwJM//sh6fMwYoFOnLwezcDgGALcHCk44wiGDDA62JWBnI+C92A8/0CaTCdfmJ86cOYOgoCAUL16crw8YEhYWwK5dwP37VBNryhTDdox8/EjBBa6udG1pabQ/NhaYMQM4fVqnw+NwjAm1HSOvXr1CmzZtEKzsxfyESCTSe8dI7dq1s60lYWFhgZCQEDRp0iRz3/3797U5NINCBhmKwhasiBjVygqkPRwfD/zyCz3WwKT27t07zJ07FwCwaNEimJmZCd4HJx+0bEl/4+JIZ/Nzx0hiIkV+XLhAzpFq1YCqVUmWq1UrheNDIqHoiitX6Hn16uQs4XA4nC/A7QE95+RJYORIejx1KmBnpzg2ZgxJDJw/b7COkdTUVAAk78llPTkoWpS+z2vXUpHWvXuBV6+Af/9VOBru36fjAO3v2pXqfzg5ad4pAlB276xZJI1avjw5LV+/VixUrl0LuLlpfhwcjsBwe0A4IhAFAKhetr5m6ndqIHBy27ZtAIBBgwbB8vP7UY7+whiwYQMQGEjPO3fW6XDUxsEBOHqUnCL161NdnZYtaf1j6VJdj47DMSrUdoxMnz4dQUFBQoxFJ/To0UPXQzAKxBDjK9SG97BRwhk9K1YAUVGUJjt4sDBtKvHs2TOYmZmhWbNmGC6XcOLojmrVgD17SP6qaFHgxQvK/LCyApo3J63rpUuByZNp/7NnitdaW1NUhbk58OefFCECAE2aUIQll3HgcDi5wO0BYUhCEm7jDmKvidGtyUhhbIKkJGDYMEAqpToHS5YojqWkkNMEAP7+W/2+dIy9vb2uh8DRF4oUAaZNIw393r3JEVK+PDkcvv8e8PIC1qwhZ0TXrvQabcrCmpsDixfTpoxMppHFSg5HW3B7QBgYGKI+OUY8Sgsk+xMaChw8SJH05ubCtKlEbGwsjhw5AsDwlE8KPTt3Aj4+9LhfPwqUNGREItXaq97ewIcPJBnG4XAERW3HyNWrVzOLj7Vt2xa1a9fGTz/9hPHjx2PPnj1CjFGjzJs3T9dDMGjszexUnv+4obswDX/4AKxaRY+XLStYEclc6NChA54/f47k5GTNRLBw8k+/forHBw9SJCJAchIXLgCTJgF9+gD+/grnyK1bFJEoN45HjgS2bwe+/RYYMUJxc/7+Pe0fOBAoW1arl8XhcPQfbg+oj72ZHcKl4UiSJcPEMUE4m+D330kuq0IFutFVXnTdvZvqLJQpQ84TDsfY8Pammjo9e1IB1uRk2i8WA+PH5/y6V6/Ibvr9d/r/0BZfcor8+y/wzz9koykv+HA4egS3B9TH3swOH1kM0iRpMIUp1uybCnMhHBnz5lEQxI0bJJskMAcPHkRaWhpq1KgBLy8vwdvnaJB+/Sggsls3ChKQr+88eUJ1R8aNA0oIVONGF4jF3CnC4WgItVebY2NjUbVqVbRu3RoikQhmZmbo168ffv75ZyxZsgStWrUSYpwcPYYxhljEwR52uZ+cV+bNoyjQJk2oroSAJCQkwNbWFowxODk5Cdo2R0BcXChK8ulTKubZpQtw9iw5QdzcgA4dFOempyseW1oCN2+qZomcPEna23FxdEN+/z4VJ+VwOByOoIQwqjcmmBxUQoJCVnPuXEBZ9pIxipgHgOHDNRJEoS2cnJyEWTTiGCdly5ItFBiYd3nQH34gOa4rV4D16ynbSpfMn09FZAHgyBFavNq2TVUWj8PhGA2hMrIHSolKCjO/PX0KbN5MjzVUFH3w4MEo8WnxnAdOGhhmZjTnKTvnz52jNYT0dODxY+DQId2Nj8Ph6C1q5znb2tpC9klL1sbGBs+fP8ft27fx/v173Lx5U+0BahpHR0dERUXl+fzSpUvj3bt3GhyR4fGRfcRxyUkclZwAY0z9BlNTgWPH6PGKFYLLIHXt2hUnT57En3/+KWi7HIEZNoyigXx96ab52jUqNJYdnxvbn39nFiwgpwhAkhPnzws+XA6HY9hwe0B9pEyKMBYOQEDHyKNHVENqxgxycCuTkEDHAVp0/f574L//hOlXw7x58yZTxxwANmzYgDp16sBGuag8h6OMWExSWnl1JGzcSAFGCQnA0KGUXSKRaHaMOZGYmFVy6+hRiuLlcPQMbg8Iw4dPgRIuImdhGly7lqT6evSg3zYNYG5ujm7duqFbt24aaZ+jARijbMRTp7JmLC5bpgiglK8vcTgczmeoHVrn7u6Ot2/fQiqVombNmrh58yYaN24MAChXrpzaA9Q0sbGxOHXqFOzyeJMRHR0NqVSq4VEZFsEsBABgL7ITJrLC0pKktO7dAxo2VL+9z/j666/RtWtXWFtbo0uXLnDjhSH1m9q1SSqlUycyiHv1IlmJ/DBzpiLzyNQUaN1a8GFyOBzDhtsD6hPBIiGBBJawRO3aAumJ16tHUaLZyfMULUoR56tXA6VK0TkeHsL0KxCpqal4+/YtnJ2dYW9vj9DQUCxatAibPmlfN23aFOXLl4eTkxNWrVqFunXr6njEHKOhYkXg8mXg558pE3v9epLX2reP/ne0iY0N2WLly9NC1YsXlPnbv792x8Hh5AFuDwhDQ5N6+CALgbtYgHttmYwyzQAKgtAwT58+xb59+zBv3jyeOaLvbNlC8oxWVhRY6eMDVK5Mx378Ebh4kR7Xq6ezIXI4HP1GbcfI0KFDceXKFbx69QqzZs1Cz549kZ6eDhMTE8yfP1+AIWqeoUOH6noIBgtjDO9l7wEALmIBNQ9NTTXiFAGA77//Hjt37sStW7cwadIk7N+/XyP9cASkY0eqHbJ5M/Drr/l3jHTvTjJc1aqRNre2FwQ4HI5BwO0B9XjHyB5wFblALETx5dRUCpaQc+ECEBVFDhATE3KcDx5MW1oaYGGhfp8CwBjLXEjx9/dHvU834xYWFpDJZMjIyAAAtG/fHhKlCP5GjRppf7Ac4yE4GHBwAKytFftMTEiCrmZNYNAg4MwZirQ+c0b7WuULF9JfLy9aqJo4kRdp5+gt3B5Qn6KioihqItA91507QFgY3cO1aCFMmzmQkJCANm3aIDQ0FDExMVi9ejV3jugz/fsD//sfcP06sGEDbR06ACtX0hrCuXO0rpSWpuuRcjgcPUVtx8ikSZMwadIkAECVKlXw7NkzPHjwANWrV0dluadWj5HLgHEKxmvJG8QiDiYwgZ1UAI1gmYxkkHIyPu7fB4KCaHE7OZkkAerVo8WRPBosJiYm+Ouvv+Dl5YUDBw7g1q1baKghJ0yhQCYDpk4FIiKArl3JABGqfsfu3cCUKaSLvWoVRT9++r0BQIVI7e1JnsHV9ctttW0rzJg4HI5Rwu0B9YiKisIb2VsAQElWUv0GZ8+myPKxY6nGiIUFyWVdu6Y4p3hxyjA1N9e5U4QxhtOnT2PFihVo06YNZs6cCYAWWOzt7REbG4u0TzflTZo0wc8//4zmzZvrcsgcTZGRoVoLRxscO0Y2UevW5PT4nJ49qdZI164UVevgoN3xKePlRRuHo6dwe0B9YjPihG1Qni3SsWNWCeWPH4Fbt6g+qXyztgZatgSc8y/jZWtriwULFmD06NFYu3YtpFIp1q1bx50jmubpU6ojmt8ARmtr4OpVkt9es4bmw9OngWfPqPB6mzZ0Hpcq5XA4OcE0yNOnTzXZvFETFxfHALC4uDhdD+WLlEAJBoCVQ1nWFZ3Vb/DYMcZKl2Zs0SLV/UlJjPXuzRipSKpupUszJpPlu6vhw4czAMzb25vJCvD6QsXdu4xNnsxYWFjWYydOqH4e5uaMdezI2JUr6vW5apVqu3PmqB5PT2fMzIyOOTgwdvq0ev3t3MnYkiUF+i5xOBzNYyjzotAYynVHRkayCijPiqMY64JO6jV24YLq77+XF80/Pj6MtWzJmLe34pi/vzAXoAbXrl1jXl5eDAADwDw8PLLYFcnJyezt27fs+fPn3OYwZtasYUwkYuzbb7VnT7x+rfr/Eh2d87nv36vacnkdY+fOjBUtquhjyhTG0tLUGzeHU0AMZV4UGkO57osXLzJHOLD6qMu6orMwawTDhtFv6+7dqvsPHcp+fQBg7ORJ+p0KCSlQl5s3b2YikYgBYLNmzVL/Gjg5s3at4p7+2TP12nr9mtaHAMZmzxZmfBwORy8Ral5UO385JiYmi6amn58fevXqBU9PT3Wb5+gxwcHBiEQkAKAcBKonc+wY8P49pcoqc/48cPBg9q95/75AXS1YsAAWFha4cuUKzvNi3F/m5UvS6zx6NPtjU6cCzZoBlSpRgbNTpyhD49SpgvXHGGliK7NmDWWnKHPkCFChAhATo5BoKGh/d+5Q1tGzZwVvh8PhcAopxYsXRzVURUM0gAhqRlXu2EHSh3I78uFDYO9emgfOnQNatVKcGxqqXl8CMHXqVDx8+BDW1taYMmUKzp8/nyWytEiRIihXrhwqV67Mo06NmZ9+Ipti0yaq56ENDhxQff4lO8bdnerxyJk0CZg2LXeJkRMngPh4xfNVqyiLm8PhcD5j06ZN+IgYhCNCuEb/9z9aH/i8KPqMGTm/pls3ypDz9CzQesGIESOwZMkSAMDKlSvBGMt3G5w8sm4d/Y2JAf74Q722KlQgOa3q1UmKm8PhcHKhwI6RwMBAeHp6onjx4ihZsiSOHj2KqKgo9OzZE/Xr18eRI0d4GqqRc+rTorcDHGANK/UbZEyxkN6xo+qxDh2Ab74BciqCd/duvrtzd3fHd999BwDYvHlzvl9fqOjdG0hMBLLT2504kWROrlyhYppPngCdO9NN9pgxBdPzFIlUHR1Vq5KklrIWtZkZ7Zcvig0blv9+lPv79VegXz9FsTYOh8Ph5Bu1nSIA/f6fO6dYyKhZk2wAgOYB+YLs0KEa1xrPC+Hh4QCA48ePY+XKlXB3d9fxiDg6Y/lyoF074OuvSf5TGwwdSrKicvIqU/XkCTkbf/kFqF8f8PfP+dy5c1Wfz5sH1K2b35FyOBwjRyKRZK4RuCIXmeP8UrIkOTqUWbuWfv+yWwCXSACplO5FDx0qUJeBgYEAgE6dOvGgBk3y22+0DRlCAZfq0rkzcO8eULas+m1xOByjR8QK6Pru27cvDihFKBUrVgzVqlXD1atXAQDm5uYYMmQI/vrrL2FGWsiIj4+HnZ0d4uLiUFRPC0VLJBI0N/MGgwzFURwAcJQdL3iDfn50k2VlRcVVixQhZ4lUSsXYGaPCkr6+VF8kKYl0nJs3Bxo0KFABx5CQEJw+fRqDBw+Gmbb1oI0RiYQKfUokwLhxwIQJFPVbUNauBcqXJ+OGMdXP+O+/qY/0dCrG7uvLi3hyOEaMIcyLmsAQrvvcuXMAgDXtfoP4U8yNWvaAnAULyEFy7JhqTYTISCre3K+f+n0IgIODA2JjY/Hs2TNUqVJF18PhFEbevAFiY8kZY2dHWdaTJ1PkbIsWtDVokLUWz7//AqNGkd3t4EDOkeyKsqekUECKqdrlKTkctTGEeVETGMJ1X758GS1atIAZzNAebTODJdSyCeLjs9adUK7lJJFQfYq7d2l9ICmJzq9ShYLonJ3zXItUGalUigYNGsDPzw+XLl3idcEMmRMnKHOIB65wOEaFUPNigR0jzs7OiIiIwKBBgwAA27dvh0gkgrm5OcaOHYspU6bAuQDFrjiEPhs+w8wHZz7+J327cA3PmgUsWUJRdvv3A/v2AePHU1HtW7eyFlrj6BfXrgE//EAyEp9+F1Tw9SW5rYLeVKekkONDflN/4ADQpw9QujRw9izP9OBwjBx9nhc1iT5ft9weOCk5jUgWhT///BOjR48WrgPGyPmdmkrOkf799W5hViqVwvTTmMLDw1GypACF5zmGQUICSbwdOAB06kQ2q75EFN+6RYFD6emKffb29H/UtKnqueHhlJn98CEVZz9yJO/XkZFB2SMhIRTlW7167q+RSimIJjfS0kgOpVYtVfk8TqFHn+dFTaLP1y23B+5K/fBU9gxDhgzB1q1b1W84KorWAho3psXtuDhSJDh1in57P5fWEhjGGJ49e4aqVavyjBFdkpgIfPhQsPv9bdtIWaJiReDyZXKUcTgco0CoebHA4dVRUVGoVKkStm7diq1bt6JSpUoAgCNHjmDlypUG6RRp1aoVFixYkGV/TEwMWnGDXPPIU1x79AAGDqRI0IgI4MEDcpJomIyMDISEhGi8H6Pl6lXg8WPgxx8palGZu3eB1q0pI+hLUg1fYsoUoEYNiggCgPbtgcBAipLkThEOhyMg3B7IOyksBZEsCgDQuXNnYRsXicgZvn49MHgw0LOnsO0LgEwmw8aNG/Hzzz/DQTmrhWO8JCcDY8fS4sqoUcCZM1Sn4+1bXY+MkEopO+TgQfrf6duXJGhiY0mmJCFB9fxSpYDt2yn6+tgxYOfOvPWTkUGLkkuXAlu3ko02ZAjtz4lx4wBra+DPP7/cNmM07smTyX5cvDhvY+JwBIbbA/kjWBYMAOjataswDR47Rg7e2Fjg5k1yvh49Sr8zs2fTb4UGEYlEqFatGneK6IqwMJJStbWlDKBRo/L/mbdoAZQpQ3W/WrWirGMOh8NRosCOEalUCkdHx8zn8sft2rVTf1Q64tKlS1i/fj169OiBpKSkzP3p6em4fPmyDkemfzyUPsIt6R34F3SR+3OkUkWRyrg4YNcuemxjA3h4UP0KDXL8+HF4eHjgt99+02g/Rs3kyfRZhYeTcys1VXEsOJikHf77j7S3g4Ly1zZjFJX5+jUtjMlkZCCVKaN30cMcDsfw4fZA3glhVOfJEY5wdRVYT1zO2bP0t317zbSvBmZmZhgzZgxmzpzJJTkLCzdvUiZDUhLg5gZ8+y3ZrRUq6HpkxM8/k61Uvz45cPbuJRvb3R0ICABGjMj6mho1KPMDoNfExOTez/37wOnTqvu2bwdu3Mj+/Kgo4PffKRMkNw35t29p8VPOkiVfdrhwOBqC2wN5J5ElIh4JEEEk3JrQixf019UVWLVK8dtUvTodi4sTpp8cYIxBKpVqtA/OF9i3D9izR/F80yaax/JD6dIkv+ruDjx/TvVoNOxQ43A4hoVagvwPHjxA+fLlUb58eTx8+BAAMp+XL18eFfTlBiEfnD9/HmFhYWjYsGFmsS1OVt7L3uOF7CVevnwpTIMmJsDw4cD06RQV+u23tD8xkaLwVqwQpp8cWLFiBQIDA1GWF+gqOBYWZLjY2lKa6uDB5MAA6Ab95UsyYkNDgS5d8mfIikTAypX09+VL4KuvgJMnuVHD4XA0BrcH8kYEo8g7J3EpzXXi4UF/P3zQXB8CEBkZib59+/LsU2PH25uCPADKHpk8WTWbSZeLaFFRVAD+yBGgZk2FU7FoUcrMrlyZavdkx7RpQO/e5EjJS/ZTvXpUvH3BAsrqqFYN2LiRZFOzo3hx6mPWLODXX7/cdvnyZCvKmTtXUU+Aw9Ey3B7IG+nIgJOoFEqJSgkn9dW/P0kpnzhB0f5KgbkIDaXAOw0xffp0ODs7Y/fu3Rrrg5MLw4YBbdsqnnfqBJQrl/92ypWj75C5OWUhbd4s2BA5HI7ho5ZjJD09HYGBgQgMDERaWhoYY5nP5Zuh4ezsjMuXL6NmzZqoV68eLl26pOsh6R3pLB0xiAUANGnSRLiG//qL0vFtbenx4sVA7dpUR0KDRk9kZCSuXbsGQMC038JK7doU4WdmRrqvixYpjpUoARw/TnIOjx6RkZOXiEQ5w4eTvEPRopR50rkzpcbevCn4ZXA4HA63B/JGpIwcIyVFJTTXScOG9FfPf+/HjBmD/fv3o169epkBQxwjxMyMZKrq16cAEGVb5ulTkvv47jvgf/8jeyUlhYoHh4VpPuuheHHK2KhRg+RoO3YkJwRjJGf65Ak5MAAKNJkxg+S2Dh2iMR44QPVG8oJYDPj4kNPi/Hlqe8wY2p8Ty5aRfS8PgDp6FBgwgKJ4lRGJ6P0LD6dgm2nT8v9ecDgCwe2BvOEockB707ZoZ9JauEa9vEg+CaDfpxs3qFbEggXkJNGgxFVaWhrCw8Nx+/ZtjfXByYWiRUmu8vRpklTbvbvgn3nNmpRRCQATJwLv3ws2TA6HY9gU2DHi7e0Nb29vNG/ePMfN29tbyLFqHLl2pIWFBXbt2oUJEyagQ4cO2LBhg45Hpl8ESN4BAKxhhVKlBIwQ/XySmzmTFkFsbYXrIxuOHz8OmUyG2rVro3Tp0hrtq1DQogXwxx/0eP58cobIKVuWDJtixajuSKtWWbWuv8Q335C8wo8/UobKlSsk/cBTnDkcjoBweyBvRGZEZQZKWEgtNddRo0b09/JlWoCVk5ZGhZnHjKEFkzdvVItNa5lffvkFVatWRUhICJo1a4bTn8sMcYwHGxuKPr16lYoCy1m+nGQ///qLJKu8vAArKwrwcXZWdQD88QdlRsyYociwVSY1lTI/kpPzN7ZatcjGGj6c2p0yhR6npqoWPf/vP3JUjB9PmSLVq5MzRU5gIC1CaYpDh0h6dfduyhBXHteFC+TkKVmSMnS4vj9HR3B7IG/EZsRlbnGSeGEbX7AAKFIEuH2bfpf8/ek3S8PUr18fAHDnzh2N98X5AiIRSamamZGjRB0mTSKbMimJsiM5HA4HABgnE5FIxMLDw1X2HThwgFlbWzOxWJzndpYsWcLq1q3LbGxsWIkSJVj37t3Z8+fP8zWWuLg4BoDFxcXl63XaoALKMwDMHW6a6eDyZca8vRk7eFAz7X9Gt27dGAC2YMECrfRXaJg4kbEOHRiLicl67PFjxkqVYszHhzGZrGDtBwUxtmIFY2lpag2Tw+EYBtqcF7k9kDeaoSkDwKxhxbqjq+Y6kkoZs7dnDGCsVSvF/kuXaJ/yJhIx5uZGdsSFC5obUw7ExMSwVq1aMQDMxMSErV27lkmlUq2Pg6MD3rxhLD2dsd27GZs0ibEWLRizs1P9ft65ozh/xgzF/lGjGMvIUG1PJmOscWPGXF0ZO306/+ORyRhbvZoxsZj6qF+fsbAwxfG7dxkbP56x3r0Zc3Ghc/r2VVyLrS1jZmaM+fnlv285Hz4wNnUqY1euqO6/dYsxCwvqs2lTxqKiaP/Nm4wVKUL/7wEBBe+XY9QYoj3AmPo2gT7bA+3RjrWAN+uOrpqxByZPpt+LYcOEbzsHAgICMufykJAQrfXL0TC3btGcVNA1CA6HozcINS+qJaVlbAQEBKBECVUpiN69e+P27dvYsmVLntu5fPkyxo4di1u3buHcuXPIyMhAu3btVAq2GSrx8fF4B0o7dIaTZjo5cYIyAQ4c0Ez7SqSmpuLcuXMAgO7du2u8v0LFihWULWJvn/VYjRpUtHP16oJHAbq5UeaIuTk9Z4y0ZjkcDkdNuD2QNxzhgJZogcqorNmOxGJg4UKgaVPKNJRTpw5pRU+YAHh6UkQpY0BwMHDtGvDLL5odVzbY29vj1KlTGDp0KKRSKXx8fODp6YmgoCCtj4WjRa5cofodc+aQBOyvvwK+viSzFRNDcloyGdXlkOPjQ1kjIhHw998kYRURoZo90qkT1db5+mvKiMoPIhH9b5w+DTRvDty5Q7J08t+funWBtWvJ3t62jfYdPUr/Q+XKAW3akPRXjx4kA1YQjhyhwunK2cMA1aRLS6MI4E2bqKZJQgJde0oKEBsLnDpVsD45HAERyh4AjNsmeIO3uIQreAGB6o9+zk8/UZaZFmtDyLOFpFIp7t+/r7V+ORqmQQOqhcUzETkczidEjPHqxZomMjISJUuWxOXLl/MsLxYfHw87OzvExcUJV7xMAFavXo1JkybBBjZohRY4wo4J38m2bcDQoVTY8swZ4dtX4vz582jbti1cXFwQHBycaQBxtMzHj8C+faTJXZDPQCaj1Njdu2kxTF6ol8PhGA36Oi/mB2OyBwCgh6ibyvN/2VEdjeQTjNHCcmAgUKoULUjXrq2joTCsX78es2bNQqlSpfDixQuIv1R7gWPYLFlCRcUBqqG2Z49qkeAvcfAg2b3yxVEfHypqDpD8Vfv25Hhp1Ij+mprmf3zPn5NTJC6OxnfsGEmSytm4EfjhB+rjxg3a9/EjPX/5kuqpXLpEzsf8kJwMREaSA8TFRbH//Xsq2P76dfav++or4OJFjdYY5Bgu+jwv5of82gT6et2JiYlwtHVEBjJQH/XgDCfd2wMCMHDgQOzatQtNmjSBr68vzMzMdD0kjtDExFAQJ18D4nAMEqHmRX6HpgXi4uIAAI5fuEFKS0tDfHy8yqaPlChRAlawQgWUhwgamkDkN0Gf3jdN4u7ujqlTp+K7777jThFNwBhF9owaRTfY2SGVAv37A99/DwweTJGC+SUlhRwikZHkUAsPV2/cHA6HowGMyR6I08IcnW9EInKINGhANa105BShoYgwfvx4vH//Hvv27ct0imRkZGDFihVI12EtFI4GmDmTnCFWVsC5c0C3bpQRkRd69wZu3QIqVKDnf/+tKApraQls30628c2bVLvt40eyr+T4+lJB8379KJP28mVAIlHto0oV4ORJwNqaxtevn2oheGtrqjHSowc9j4qiPo8fJwfPnTtA9+75r3diZQWUKaPqFAGA0qXJbhs6lAriyhGLqVbd2bPcKcIxenKzCQzFHvjnn3+QgQxYwxpOELD+qA4JCgrCvn37IBKJsG7dOu4UMWSSkigA4fPMrEWLaC46eVI34+JwOPqDELpenJyRSqWsc+fOrEmTJl88b968eQxAlk0fNES/FvdU2SQSCUtPT9dch76+pCFaubLm+uBojvv3GatXjzSrjxxhrGxZ+jxPncr+fJmMsXXrGDMxofO++oqxd+/y329EBGOVKlEbjRoxlpKi3nVwOBy9Qp+1tfOCMdkDnUTtmQlM2MCBA1mavtV5iozU9Qi+SL9+/RgA1rt3b5bxeU0JjuHz8KGirsiAAfnTMP/4kbFffmHsv/+yHtu5U7VWifLvQfv2WWvtODgwNmgQ1exQ5sIFRW2PBg2oHpwyEgm9BmCse3ca/5UrjFlbK+qBCP1bFBLCWHg4Y0lJWd+vvN5vSKVUg6BdO8aCg4UdH0fvMHR7gLG82QSGYA/0FvVg1rBmANjvv/+u2U5/+41qjCjXatIgT548YWvWrNFKXxwNIZUy1ro1zV/NmjGWnKw4NnWqYi7k9UY4HIOE1xgxEMaOHQt/f3/s2bPni+fNmDEDcXFxmZs+a1GbmJhoNmpCXpNCH6NROV/m7l3Ssb57lyIzuncnSROAIhqzQyQCxo0Dzp8Hihen2iM1awL//JO/vkuUUNQ0uXmTZLk4HA5HTzAme+A1ewMppAgNDYW5vM6TPpCWRpHxDRtSXQY9ZOTIkTA3N8fBgwcxcuRIyJTrSXAMn1q1yP4xNQV27QJmz1bN7vgSDg7A1KlUL+dzBgwApk1TyF8pS1p16gQMHAgsWwYMGQIUK0byIDt2AJ07q2Z5tGqlqOF3+zbVevPzA96+pX0mJlS7B6D6IH//TVrs585RBoe5uaK2m1A4OwMlS1J2iXL29rNn1Ff9+rlnqixZQnVdzp6ljJOcspQ5HD0hLzaBIdgDIQhFEpLg4OCAoUOHarazkyfp/vD5c83284lq1arBx8dHK31xNMTatcCFC/T46lWaK+VMmUJZmbdvK87hcDiFErUdI61atcpx69y5M2bNmoWwghbsM3DGjRuH48ePw9fXF25ubl8818LCAkWLFlXZ9IlUlooQFop0pgXpB2dn+hsWRhOYBomNjUXnzp1x5coVjfZTaNizh4pnAiQN4eSkOPbrr3SjnhMtWgD37tENcHw8MHw4GSxSad779/CgG34TE6pV8+hRgS6Dw+FwhMSY7AHGGN4jGAAwYcIEHY/mM86cAaKjgaAg1flHj2jbti327dsHExMTbNu2DT4+PlxWy9ho3ZpqdgBftnvyy7JlVHMkI4Nqdsjx8SEnyLRpwNatJCd69SowbBjVPbGyovOOHgV69qT9ytStS84QeUCSmRlJjAAkc7pxI9UauXaNnCWWlsJd05eQB9Q8fkwLV19CeXH59WsaK4ejp+TVJtB3ewAA3jNy1owaNQrW1taa7Uwuybd/f94dzgWEMYYTJ06A8XK8hs3x46rPjx0DEhPJ2b5yJSC3v27d0v7YOByO/qBu6opIJGJisTjbTX7MxcWFvX//Xt2uDAaZTMbGjh3LXFxc2MuXLwvUhj6lCH8t7snqiGozAKw4immn05EjGXNxYez8eY12M2XKFAaAOTo6shcvXmi0r0JBaChjTZoo5CMyMhjbt08h7TBzZu5tSCSMLVhA55cvz1h0dP7H0asXvX7y5Py/lsPh6CX6NC/mFWO0B9qJWjMATAwxS9E3ycKhQ+m338dH1yPJle3bt2fKopQpU4b9+eefXFrL2Dh0iOwgOZcuZS+TpS2WL1fYY1ZWjHl5kWytqytj9vaMbd6sOFciYWzUKMX5HTsy5uen3fHGx5Ms1rZtucucnDrFWMmSjBUtytg33+RdgotjkOjTvJgf1LUJ9Om65TJalrBgANiNGzc03+njx4yZmdFv0q5dGutGJpOx/v37MwBs3bp1GuuHowUePWLMw4OxP/5grFo1xg4cYOz2bcbKlVPMb/37MxYbq+uRcjicAiDUvChiTD03eIsWLeDn54e0tDR4fkr9fvToESwsLFC1alX4+/sjLS0NI0aMwN9//61OVwbDDz/8gF27duHIkSOoXLly5n47OzsUUU59/wLx8fGws7NDXFyczqND+pj0wm3ZXQQhGFVRBU/ZM813GhdHU5VcVktDJCcno2XLlrhz5w4qVqyImzdvonjx4hrt0+iRSEjORDlq6N9/KUrR2prkGkqWzL2dfftIUqtqVXr+9Clw8SLJc7m7f/m1R48CP/8MjB8PDBpU4EvhcDj6gz7Ni3nFGO2B1+wtHrL/UBIlEM4idDoeFTIyqPB6TAwVn/b21vWIcmXnzp348ccfERYWhpo1a+Lhw4eZRdo5RgZjZNM8eQJ06ADs3q1xGzcLz56RfdS8OWWI5CaLyxiwcCEVfAfo/+v5c9Vxh4UBa9YAKSkUfWtqqqnR505aGkX/2tioSnJxjA59mhfzg7o2gT5ddx+TXgAACZMgCtG4mHZJOwXKFy4E5s0jycDHjxVKEwKzbt06+Pj4wNLSEg8ePECVKlU00g9HC6SnkywjYzQ3rF8PLF9Ox/74gyQnORyOQSLUvKj23Vf//v0hEonw+PFj3Lt3D/fu3cOjT/I1w4YNg7+/P6ysrHD27Fl1uzIYNm7ciLi4OLRo0QLOzs6Z2969e3U9tAJhKbZEJKIAAO4mrtrp1M5O9cbr8GGFRJOAWFlZ4ejRoyhTpgxev36N1q1bIzIyUvB+ChWmpqpOEYCcGfXqAUlJwNKleWunb1+FUwQAdu4kR0fZssC6dV9+bdeuJLvAnSIcDkeHGJs9UMSkCD6CtPtdxC46Hs1n+PqSU6RkSaBJE12PJk8MHDgQb9++xerVq7Fs2bJMp0hqaiqOHj3KJTyMiYQEoFo1kvo8fRro2JFkQ7VJ1aokt9WwYe5OEYAWkObNAzZvpto9ixYpbPPQUGDSJKBcOZL4iorSrVMEoPortrbZO0WSkoCvvqKaKhyOjjAmm6CISREUMSkCW1NblDMtqx2nCABMn051mKKjycF7/bpGuhk7dizatWuH1NRUDBo0CBKJRCP9cLSAvC6WfG4YN44CNf39uVOEw+EAEMAxsnTpUri5ualEPVSpUgXu7u5Yvnw5ypcvjyZNmhSqOiOMsWy3YZ9r+hoIcYhHKlJhAhMUF+kgm+LiRapXUacO8OCB4M2XKlUKp0+fhpOTEx49eoSWLVviIy/aKCwiEbB4MX2GnToVrI0qVYDGjQGZTKGn/aX+5MhktHE4HI6WMTZ7gDGGMBYOAHASldLxaD7j0CH627MnLT4rs3s3FZ3WQ1u0SJEimDBhAjopzY3r1q1D9+7d0aRJE0RE6FFWDqfgFC1KmbD37gGOjqRn3qlT7kXF9YERIyjbZNQoer57N2n9r15NNU88PICZMylj+PBhispNTgZ++IHsMZGIFjO1yYcPlDl24wZls1hZ0ULYpEnA9u3aHQuH8wljtAm0jrk51ZOsWhX4+DFrMJ5AiMVi/O9//4ODgwP8/PywZMkSjfTD0RGmphSIy+FwOBDAMRIVFYUXL15g+vTp8PPzg5+fH2bPno3nz58jOjo68zwreeE/jsERIAsEAJQUlYCJyOTLJ2sCS0vA1RV49Qpo0IAW2FNSBO2iSpUquHTpElxcXPDkyRNMnDhR0PY5ANq2Be7epb8FYfBgKqYp/2y+/x4IDv7ya2QyYPRoujnnzhEOh8NRCwaGOia1UUJUHMVEjroejioPH9Lf5s2zHnv6lBahL17U6pAKinyx6ebNmzhx4oSOR8MRFC8v4Nw5yry4fh349luNFxEWnM+j23/+mSJvq1cHevUCTp0CXr5UFKAHgN9+I6krbXH3LtC+PWWPFS0K1K+vKC6/e7f2xsHhGCkpLBVHJcfxSPoYMqble6xKleh//ORJ+k2VExQkaDcuLi5Y/SnLbN68eVi6dCnP5DQGrl2jYJnYWF2PhMPh6AlqO0a6dOkCxhhWrFiB+vXro379+lj6SSqnS5cuSEtLg5+fH9dlNFCSkpLwUvYKAOAhrqSbQTRuTAse3buThvicOZQ9sHu3oDeTlStXxuHDh1G7dm1MmDBBsHY5n5BHDarbxqpVQKNGQGIiZY58iVu3gC1bgD//5M4RDofDUROxSIyK4groYNoOYpGe1cIYNIgCJ776KuuxESPISf7119ofVwEoW7YsAKBo0aLo3r27bgfDEZ6vvqLaa6amZMtu2aLrEeWPbduAb75RSGf16QP060fOkGLFyAHh5UXnFS1KMqhHj5LUlbbo3JmyV5ydKZPl3j3ab21NkmAcDkctXspeIh4J+MBCIIIOavpYW9Pitpzbt0nab9QoQbNDBw8ejJkzZwIAlixZguDcgvI4+o1EAgwbBly6RPNEUpKuR8ThcPQAtYuvx8bGYuTIkTh8+LDK/l69emHTpk1ITEzEwYMHUbNmTbRSnrw4X0RfiqudOXMGHTt0hA2s0c20C8QiMbal79TNYBgDdu2idHy5UdKrF3DwoMDdMIh40UbNERQE/PUXGSZ5rTfyOY8f08KCRAIcOQJ065bzuTt2AEOG0Pfnu++ADRsAXtyWwzE49GVe1Db6dN1DzAeqPNeZPWDESCQS1KhRAy9evMD8+fMxb948XQ+Joyk2biRJmH//pdoYhkZICF3DH39QcdspUyirV59+nxkD3r+nQBl5kFXDhroeFUdN9Gle1Cb6ct3JyclwtHZEGtLgbdIUZcSldW8PLFoEzJ1Lj62tgQkTKGBCuV6lGqxevRq1atVCy5YtBWmPo0MePaLs4thYyiw8elRRh0ROWpp2nfkcDqdACDUvqu0YkfP27Vs8efIEAFCjRg2UK1dOiGYLLbo0fLqJuqg8X/9uA4KCgtBEX4qZJidTSv7SpbTIPWQI7Q8IANasoSi1mjXJEFJTwk0mk2UWQ+UIxK1blPFhYwOEhxf8M5o+HfDzo+9ApVyymZSdI0uXal/rmsPhqI2+LAhoG32xB57hOSb9PhnDhg3j8qgaZOvWrRg2bBiKFSuGt2/fFqrveqEkIyNvhdA/JzkZePGCpGZLlhR+XPlBJhMmK5jDySPcHtCtPRCId3gMf5QrVw6vXr2Cyed1vXTFjRvA5MmUPSKnZk3KaJs2TZHlJgAZGRnaKzjPEZ6bN4E2bWgu7dMH2LlTMRdfu0ZOtT//JMcJh8PRW4SaFwVb8S1fvjy6du2Krl27cqeIkVG6dGn9cYoAtJA+axbw5g1NWnJOnCDHyPDhQN26FC3i7Q3Ex+e7i7i4OEyZMgW1atVCRkaGgIM3QmQy0m4vWzZvqcsNGgBlypAUljra6YsWAWfP5u4UAeh7sm4dPf79d0AqLXi/HA6HU8hIRgre4C3Gjh2L58+f63o42SOTAa9fU+SfgWqAp6enY/78+QCAadOmFaoFv0KLfCGGMWD5cqo/khPBwUDLluSAsLamzNnSpSlzVpeIxYbnFHn/nmzD9+91PRIOx6BgYHiLtwCAyZMn649TBCD57Zs3gf37SSbJzIxUBvbsEdQpcvPmTXh4eODOnTuCtcnRMo0aUbamuTl9X8zNyUkC0Pfl3TsKqoyM1OkwORyOdlDbMSKTybB582YMGDAArVu3RqtWrTK31q1bCzFGjo6QQKLrIXyZUqVUJZG8vEjHWJmrV4EHD/LdtKWlJXbu3Al/f39s27ZNvXEaOykppM9Zsybd0GdkUCHOnIrcikSkTQ0Ay5YVvO6HmZnqjfipU192eIwcCTg60sLCqlUF65PD4XAKIR/wAQwMLVq0wFfZ1fDQBzIygFq1SCpnzx5dj6ZAMMawdu1azJgxA2PHjtX1cDjaZNs2ymbt1IkyW+ULNMr4+pIuujJpaYZXo0Qf+PCBgqy4vjyHky+i8RFJSIa9vT2GDx+u6+FkRSSiemLHj5Mywbp1wKtXQGCgYF2sWbMGgYGB+PHHHwVrk6MD2ralOl/y9aStW+nvihUUiBsRQY42Dodj9KjtGJk8eTJGjx6NvXv3wtfXF5cuXVLZOIaJBBKcxXncwE3ExcXpejh5o2lTYO1aMoQAiqJbvJj25xMLCwtMmzYNALBw4UKkpaUJOVLjwtqaIi769AEGDKDHs2cDrVtTcfSUlKyvmTSJNKjv36fFAHWZMoUWE+bMyfkcS0sydMqVoygRDofD4eSJMIQDAL6RO7X1EQsLhUzipEmkHW1gWFhYoGvXrliyZAmXKyts9OsH9O9PtdNmzgQqVKAM1/R0xTkDBpB9BQB371IwSuXKWYOCOLnTsCFJ7lasqOuRcDgGRfgne6Bbt26wtrbW8Whywd6eZJHS0khKSyBWrVoFMzMzXL16FdeuXROsXY4O6NWLAg4OHQJGj6Z9Dx9ScIKVFWVpcjgco0dtx8ju3bvBGIOzszOaNGmC5s2bZ27e3t5CjJGjAyIRCSmkSEGq/ks5vHgBbNqkeN66NRX4fveOosEKmOI7ZswYuLi44P3799i8ebNAgzVSHBwo3dTEBFBOK163DqhXD/jvP9XzS5ZUODFmzCBZLXWoV4/+Ll0KHDyY83nDhwP+/kCzZur1x+FwOIWEVKQiFrEAgC5dunz5ZF3z00+0UBweTvM/h2MoWFqSxvnWrQpp0nHjAA8PhbyWiQnJiDJGkrFt2gBPntBfTv6QZxzzGgEcTr5whhPKogwGDhyo66HkzvLlwN69JKM1apRgzbq6umLYsGEAgKVLlwrWLkdHNGsG9OypWDOSZ4707g3Y2hqsPCuHw8k7ajtGpFIp3Nzc8ObNG1y9ehW+vr4qG8cwCUMEAMAJpSDSZ93gp0+B5s3J2Nm1i/ZZWgJubmo3XaRIEcz6tLCyePFipGSX+cDJip8f/R06lOTOnjwBxozJalSMH08RkWFhlMmhDv37U7E9gGS6Zs/OPlNFJFIt9m6AEcUcDoejTcI/2QP2sIeLi4uOR5MLFhbAxo30eONGVUe9npORkYE5c+bg7NmzkPI6WIUTsZiCTF68ADZsAJydKcjn228p4jk78hr88+wZSW5xW5bD4aiBIxxREzXQrl07XQ/ly5w4Qdl3ALB+veAO5J9++glisRgnT57Ew4cPBW2bo0NSUhRyrAMG0PxrbU3ZJFxBhMMxWtR2jPTv3x8pKSm8QLURIYMsM022FErpeDRfICiI0hvDw0lXXAMG2siRI1G6dGmEhoZi7dq1grdvlPTtS86JadOo4F3fvnQz/rmDzcKCan189x0ghJb68uUk5yWvcVKjBkl1ZQdjJFFRurRBLZxxOByOtpHLaDnpsz2gTMuWwODB9Ds/YYLBRPqFh4dj8eLF6NSpE8Ritc1zjiFjbg58/z3w+jX93bWLbKaCwBgFjtSoQbXW+vb9cj02DofDMXQCA2lRmzEKzvvuO8G7qFixIvr16wcAGD16NCQSPa/Namg8fUoZG48eabff48eBuDiSWWzXDggIIGfJ33+TKkl29b84HI7Bo/adl42NDeLj4+Hl5YXJkydj4cKFKhvH8AhDODKQATOYwREOuh5Ozly/TkWxAKBJE8DOTvAuLCwsMG/ePADA9u3budGTF8aMoZv4qlWBEiUohblq1ezP7d4d+OMPktZSF1NT6uvgQcDVFXj7luqOZGfAiETAjRtAQgKXW+FwOJwcYGCwgDlEEBmOYwQgR7mJCXDrFgVRGACmpqYAKBP73r17Oh4NRy+wsqLMkSZNFPtksvy1sX078NtvitcdP0719zgcDicfMDA8hn+mtKZec+sWEB9Pjz09NdbN8uXLYW9vj7t37+LUqVMa66dQ8ugROSOiorTbb1IS9evrS1mcq1bRPGxnR2tPf/2l3fFwOBytIGJMvVA6sVgMkUgExli2kktcDqBgxMfHw87ODnFxcVqt8cEYg4PYAXGIQyVURBVUxlF2XGv954uMDIqCW7+enjdpQqmPAshoKSOTyTBz5kyMGjUKFSpUELRto4YxyuZxclLs27+fpLXmz8/+/AkTSONT3UJncXFUTE1elD073r2jaBCJBLh9G6hfX70+ORyORtHVvKhrdHnd3URUUyQVqbCEpf7aA9kxbBhJa86cSdmBBsCgQYOwc+dO1K1bF7du3YJJAWukcYwQiYQWZ9atAy5eBNzdc39NYiLVK4mOpkza0qUpm0okAi5f5vXWOAYLtwe0f911RXXgh/swgxnaojVOMD12BGRkUI2m3bvpHi+nAD0B2L17N0qUKIFWrVrxbE8hkcnIMSEvgq5r/vyTgj/LlqVsTm6fcTh6gVDzotqOkbJly36xBkVAQIA6zRdadGX4XLp0CS1btoQYYrRBK1jAQv8XQg4cIHmA+Hhg9WpaXNcwe/fuRYsWLVCqlAFF0GqT5GSSfzh3juSsnJyABw+Ar76i45cvA97eqq+RGxwWFsC+fUC3buqNgbGs8l2fM2wYFVjr0QM4fFi9/jgcjkbhCyG6c4zI0Xt7wMAJCwtD5cqVER8fj40bN2LMmDG6HhJHX5DJgHr1yKaqUIGiWfPiHLl4kRwqu3dTofHRo2mxafVqchxyOAYItwd44GSeePcOKFOGHjNGKgW9elENTA4nPyQnU3BBdDStPfXuresRcTgc6JFjhKMZtGn4KC98yCCDVdkSSMiIh7cTFSmbcU+A+g+a5vVrSntctkyxGD5+PO3v1o02V1dBujp16hS6dOkCJycn7N69G96fL/BzKEqxQQPSB23eHDh/nqSuvv0W2LwZKF+eUmStrRWvSU2l2iT//kvOkStXhMvieP2aFgFWr6ZxyHn+HKhWjYxlf3+genVh+uNwOILDF0K0aw+EIRxNqnVAySKKrD+DsAcMnHXr1sHHxwcODg548eIFSpQooeshcfSF9++BFi1I87x8eXKOZJcNlZAA2NhkHxwilapGukokqnYRh2MAcHtAO9cttwmiEIWbuA0zkRmm1lwIGzNbw7MHrl8HmjalGk59+wJDhtDvqZmZYF3kpKDCMRJmz6bsy549gUOHdD0aDocD4eZFnu/HUUEMMWoXq5/pFDEYKlYkTXG5McIY1Zo4fRr44QeS16pfX5ACXhUqVICHhwdCQkLQsmVL/P7772q3aXTY2JDBYGtL2SEzZ9L+VasowvHtW2DuXNXXWFqS1FbXrkBaGhkd8hoy6pCWBrRqRcXWJ05ULcRbpYoi4mPpUvX74nA4HCNAAin+wyOsfroYbxNe6Xo4BScpCbh0yaCKTX///ffw8vJCTEwM1q5dq+vhcPSJ0qXJpipfnuyoFi2Ajx9Vzzl/HihWDPjpJ8W+5GTg2DGyf5SdIunpQM2aZJt9iZ07Ker64kXBLoXD4RgOr/EGAFCneCPYmNnqeDRq0KgR/e7t2EGFtUuWpIVuNYmLi8PUqVPh6emJuLg4AQbK0UvGjqU6qnv36nokHA5HYArkGFm4cCG2bNmS+fhLG4ejM86fp8XuRo3IYXL3bu43f3nAw8MDd+/exdChQyGTyTB58mQEBwcLMGAjo3Jl4H//o8crV1IhPDs7knQAgF9/pewRZUxNyVitUgUICSEDRF0sLKjwKEDOkRkzVJ0j06fT3/37FYX6OBwOpxATghCkIx0O5sVQxqa8rodTMJ4+Jed8y5Yk3fj6ta5HlCdMTU2xceNGlC1bFj4+Ppn7AwMDed0+DgWXXL5MTpKAAODoUdXjhw6Rvv7KlSSb9fXXQPHilDn94IHqub/+Spmzq1d/uc9bt2jx0NdX0EvhcDj6TyISEYkoiCBC01KtdD2cgtOkCXDjBq0HjB5NTpHYWMoC8PdXq+kiRYpg586d8Pf3R7NmzRAWFibMmDn6hbMzqVsImGXE4XD0gwI5RubPn4/NnxY058+fjwULFuS4cQyDDGTgCq7iDd5AyozgxlskIomk6dPJCDp2jPYLdFNnY2OD//3vf/D29kZ6ejqW8myD7Ondm1KVGQP69QOiooAuXRTOiNGjFZ+NnKJFKRrD1JQ0PA8cEGYc8sjb5csBHx/S6wao7snq1YCfHy2icTgcTiHnPd4DAOqXaAITkYEWmKxWDfjnH/pdv3EDqFWLpDQMgIYNG+K///7LlNFijMHb2xtubm44ftwAdN05msXNDWjzKbM7KEj12M8/k0wMQBKzBw8CKSlUMDY8XPVceUFiJyd8kZ9+AgYMABYtUnvoHA7HsHgP+o2pbFcdjhbFdTwaAahbl+pahoQAnTrRvj171GrS3Nwcx44dg5OTEx4/foy2bdsiOjpagMFy9JaEBAr25FUJOByjoECOkdKlS8PpkxFdunTpL24cw+ADQhCHeLxHEMTGqLDWogXJBwQFkUazAIhEIsyfPx8AsGnTJgR9fnPKIdasASpVovd94EAyIJYsocLnMhnwKhuZltq1yXlia0s39EIwfjywcSM5zdavB0aOJG1tkQiYMAGoUSP3Yu0cDodj5MQjHjGIhQgifFWsoa6Hox5DhgCPH1PGSHIyLe7Gxup6VHlCWSf3/fv3SEhIQFhYGPr164eHDx/qbmAc/aBOHaBt26w1RhwcSObjzBmgTx+SMvXzI+mtjh3pHPlCzrt39FdenDgn3N2pYDuHwyl0WKEIrGCFesWb6HoowmJiAkyaRJlzP/ygdnN16tTBtWvX4OLiAn9/f7Rv357Lahkr6emkSDJ2LPDXX7oeDYfDEQBefF1P0WZxtb4mvXFWdh5xiIeXyBMPZP9ptD+dMXs24OIC9O8PODoK1myLFi1w9epV/PPPPxg8eLBg7RoVT55QpsjmzVTvAyCpB19f0njNjrQ0qjHi7i7sWHbsIKeMVArMnw/Mm6c45u8PFCkCVKggbJ8cDkdteLFVzV93f9M+uCO7hwAWCDe4IogZiUxkQgLg5UWLw/36Abt3G5wjPD09HV26dMG5c+dQpkwZ3L17lxdm5+SP6GgKTLl9G7h6FfjxR1oUnDxZEKlZDkdbcHtAO9fd37QPAMpa3J2xD2LuIM2VZ8+eoXnz5oiMjETjxo1x5swZ2NjY6HpYxo2fH2UFm5pqr88VKyib0sICuHmTgjo5HI7W0Zvi61euXMk2ci0tLQ3JycnqNs/RAv7sKeIQDzOYoawol6gxQ2bxYooIEdApAgBr167FkydPuFPkS1SvDrx8qXCKAKTPqewUefeOMjfkvloLC+GdIgAwaBDVE2nUiIqxy5HJgOHDSX5l9mzhMlU4HA7HQAhhoQhggQAAD3FF3Q5GSGxtyRliakrR9J9LOBoA5ubm2Lt3LypWrIh3797h66+/5jVHOJQJfe5c3mwWExOSkLl+nSRL31BB5SxZJ7kxfz7ZdU+e5Hu4HA7H8BCJRMbrFGGMguUEomrVqjh37hwcHBxw48YNXLhwQbC2DY4zZyiz8elTzfUREkJZwfXqUUBlSIhq7a24OKq51aULZRALxZQp1GZaGslXJiUJ1zaHw9E6as9wLVq0wNhsCiS3aNGiUEVwGCopKSl4xUjKqJ64DixEFjoekeHh6emJKlWq6HoY+o9yobLoaNWbeMbIKbF2raJgu5ykJEpTHTlSOB3Pnj2Ba9eoGDwAJCZSgd43byg99uefAU9PXmiUw+EUKpJZCqxghUqiiighMrJshPr1gYULgcaNVeszrF5Nko9Xrui9VrSDgwOOHj0KW1tbXLlyBVu3btX1kDi6Zs8eCjJxdKQFqC85/eztqbYbQEEiR47Q41q18tfnu3fU79WrBRoyh8PRf7Zu3Yo3sgCksXRdD0WzHD1KGaWnTgnWZK1atXD69Gls27YN3bt3F6xdg6NoUar1FhWluT4ePyap1NBQWjOoXx/o3h2YNg2YOpWCLKdOBV6/Bi5eFK5fsRjYuhVwdaW29+4Vrm0Oh6N1BHH9Z6fGlZSUlO1+jn5x6tQpSCCFFazgBlddD0ezXL4MnD8PxMRorIu7d+9i9OjRPIrzS/zxB1C+POleyxGJgA4d6PHkycCHD6rHfHyALVuEjThRjnyaO5cWxQAqpObiQkZO69bkJJEXaudwOBwjpqK4PLqIO6KWqKauh6IZpk0DTp8GrKzo+cuXpDE+cSLQvDltFy/qtYOkatWqmfXNfv/9d25rF3ZMTMhmSU0lG7dbN3L05cSSJVRzDQBKlaLvf/Pm+etz40bAw4NkSTkcjtHBGMPixYtxj/khnIXrejia5bffSEpZYEdv/fr1uZpEo0bkOPD21lwf9erRPX14ONlu33xD+3/5hTJFEhKAqlWBOXNoPUFIHB0V8+nngZ0cDsegKLBjpFWrVmj1SRbn6dOnmc9btWqFBg0awN/fH3byaGyO3rJv3z4AgLvIDSID09vONwsXUjTdv/9qpPn4+Hi0b98ef//9N2bPnq2RPoyC/7N33/FNVe8fwD9JdwsdtEBboGzK3lO2IEORoaIMAUUZCoqgoOhXwPETFwoiCKIsBUFRUEFQZCt7T5lll5YC3bs5vz8esrpH0qTN5/16hSY3NzfPTULuk3vOeU7lykBsrPTSNe3Z+Oqr0ssjJkZ+bKfe76Hk6Ql06SLXLdibx8w77wCNGkmj2d27wJkzwPPPS4L1v//JCJO4OOs8NxGRHdFoNHDSONk6DOvQaqWsll7FivIjun9/wNVVTox06ybHnAMHbBVlnsaPH4+PP/4YO3bsMORuf//9N65fLyVzwlD+TZoEXL8uZa3GjJFlr7wijYDZdepwd5fRuTduAJcvy9wiBc3/3d2l3Km7e1GjJyI7dPToUVy4cAFOcEKQJsjW4VjPrVvGjnFjx1rtaa5cuYI//vjDatt3aOXKyUhgQDq+fPKJzCdarpzkchs2SMPX0KHWmVvu6aclt/znH+lUSUQlUqEnX9dqtYYfYzlt4oknnjCceKeCsebkaoOdnzJcj1J3kFTLFS1rdEalctUBAJNXPGnR57MbgYHSm2DfPjkBbwUrV67E0KFDAQA//fQTnnjiCas8j11LSQH275eGBl/f7NeZOFEaRsqVA44eNc4lcvo00KKF9Hx89FFgzRo5WfXFFzL/yIMPAtaq1frdd8Dw4VJr+9Il6YW5eLHMS9OsmYw4cnW1znMTUZ442ap19lufE0SpO+j25Eg4aY2TV5bafCA7168DH30kpRtTU2U+kjNngFr2P9dKeno6KlWqhDt37uDxxx/HpEmT0KZNG1uHRcVNKekl+8YbcvuTT2SCdaJShvmAdfOBY7rjOKP+Q6MqbTCs4yQApTQf+Oor+Z3XurWcH7CCQ4cO4YEHHoCnpycuXryIchae67REWbhQJir/8EM5L2MpH30kx72HH5aGEECOh5kbQtLTgbNn5dyDUsDAgdLIn5vkZOmY2bEjEBCQ/TpDhsg5jylTgGrVirgzRFQQNp98fcSIERg+fDiUUihfvjxGjBhhuLzwwguYM2cOlnBImd0L0PijX8tnDI0ipdadO9IoAsiQTisZMmQIpkyZAgAYPXo0bt++bbXnskuffw5UqCBDZvV1rLPz4YfSAHL3rvTg0PdqrF9fal67u8tokoEDgbQ0oHdvuX/XLmm0sIaBA6Wh5upVKTWRlASMHCmTlOobaACZSO6RR6xako2IqDglqST8rduC99eORXJaoq3DsY3KlYG5c2WuqSeflFGDJaBRBAAiIyNRt25dZGRk4Mcff0Tbtm3RvXt3xMfH2zo0Kk4ajYwUWbpUyovkloeZio+XHq8ajeQ8ROSwlFK4pmT0YeOQdjaOxsrWrJG/jz9utado2rQpQkNDER0djY8++shqz2P3fvpJRuUsWyYltu7etdy2+/SRv3//LZ1cAPNGkRkz5NyCiwvQsKGM8hg2DGjbFsjtXE1srKzz2GPSSTKnUbkrV0opbjaKEJVYhW4YWbJkCZYsWYKQkBB06NDBcHvJkiWYN28eXnrpJXh5eVkyVqLCS0qSEQAA0Ly51IG00rwR77//PurUqYN79+5hm6NN3v3tt5JEBAfLD/OcuLnJJGVly0pjx/ffG+/r0cPYOHL5smyvdm2ZDD0tTSbIs0aJE3d34IUX5Pq0aVI/OzlZGnD0jWnXr8tcKH/8AYSFWT4GIiIbOKfOAwDKe1eCu4unjaOxscqVZWLpuXNtHUm+BQcHY8eOHTh27Bgev3+CZ8uWLbhy5YqNIyObGDFCeuXqe86lpEgv2ZyEhwM1a0quY61RuURUIoQjHPGIhzOcUa9SM1uHY12RkfL3u+9khKgVODk54fXXXwcgx2WHZXpO5PJly77e9evL+YHUVCC7ajWurnIcBIAyZYD27WX0x9Gj0gkmJ2fPAseOyfXr13M+/5CeXpToicgOFHny9cuXL2PlypXYtm0bVqxYgeXLl5tdyD7dVrfxr24PolW0rUMpHpUrS93J0FBJgkaOlN4CVuDi4oJa93uZJiQkWOU57Ja+xucTTxgnt81JzZrAW2/J9TfflAYQvR49ZGTGtm2Av78s++036bURFycjTqxhxgzgyy+BqlUlhsz1s++PBkL79tJzhIiohEtVqTivpC5y53p9bByNndBopJQWII3gixfbNp58aty4MYKDgwEA7dq1Q/369W0cEdmMk8k8QTNmAE2aAJ99Zpy/zVTt2sDx4zLq9803iy1EIrIvSimc0p0GANTS1ISrcymfR2jlSiAoSOagiIqy2tPoy7s4OZXS+dvyw3Ti8/79jecMLEGjkREp774r5boze/VVOa9w/rzMZfrPP9IJoFYtmacrJ82bm9/u2jXrOnv3AnXrWq0UGxEVD+e8V8nd+fPn0b1792wnfNRoNBg+fHhRn4IsTCmF47qTuI3bcIULHrR1QMWle3f54ffFFzLZ9pAhVnsqz/uNAomJDlaSpHdvYNEiqcU5Z46Mypk6VRqkRo7Muv6ECbL+00+bT4gLSDkuU1WryiiUjRut1qgFZ2dg3DgpP2FagiQqSnpf/vCDJF9z51pnAjciomJ2Rv2HdKTDBz6oV6mFrcOxLxERctI4I0Mm8axRw9YR5SolJQW//vorAOC9994zzAVIDkynk5N+KSlycuiTT2SS9tGjZXSvnoeHlBQlIoelgw5lNGUQrWIQqqlj63Csr1EjOaH9448yh4Te/v1SjtBCx9C0tDQAgLNzkU+9lVx160rZKp1ORnBYOj+pVQt4+23j7aQk4MYNWe7mJh0eTTVuLKNWcntPnJzkPMbMmcCAAVnnTj1zRhp5IiLk/NKKFZbaGyIqZoWefF3v8ccfx9q1a7PfuEaDjIyMomzeYVlzcrU22lbYrw7CCU7ooemOP3SbLLr9EuHOHeNIBCtYvnw5Tp48iX79+qF9+/ZWex67Exsrr2t6OnDhgiSWQ4ZI0vHXX9n3tIiOznmSdv02P/9c3rMvvrBW5DlLTga6dQN275bbo0fL5HFEVKw42arl9/u///5D/Xr1oaDwgKYt/tXtsej2S4WePeX4FRQkvRGfeSb3H9I2lpCQgLVr12Lo0KFsGCGhFPD11zJy5NYtWebsLHO8LViQdXQskZ1jPmCd/R7o9BgAIEElwkvjiZ8yfrH4c9i9GzekQ8S6dVlPphfS6tWrMWjQIHTu3Bnbt2+3yDZLhb/+kkaSLl0su93UVGmwuHxZymXp5wnNzTPPAAkJQMuWcmnXLvfqF2fOyHmNiAgZkblzp5SvzMgwztlFRFZn88nX9Xbt2gVnZ2ds3rwZANCsWTP88MMPCAgIMCwj+xEXF4fj6gQAoK4mFF4aB60lbtooEh4OWHhkx/Dhw/Hxxx87VqMIIAmBfp9/+AEYNAgYPFgaSoYMMR+FoWfaKJKQkLXx47//5Mf8vHmS3Oh0sl5xuXED0Ndp9/EB3n+/+J6biMiKXn75ZSgoBCEQwZogW4djnz79FKheXXKFUaPkB7Np6Uc74+XlhaeffpqNImSk0cgokStXJDfr0EHysmXLpMGEiMiEw54fAKTzW1KSdMqzkPT7c1C4uLhYbJsl3p9/SseTbt2kooclxccDBw9K40V+JrxXSuY3XbMGeOMNqTJSvTpw5Ej269++bd4osmWLnAOJjpaRxY0aZX/Og4jsVpEbRqKjo1GvXj1069YNGo0GLi4ueOqppxAYGIgPPvjAEjGSBX399ddIRgrKwAt1UMvW4djenDky18X9SdGsoYiDskqe/v2lZ8b06cCOHcA330iPi1u3gHPncn6cUsDDD0t5rT//NC5v3Rp47DFpEHn0Udluo0bSM6M41KwpI19eeglYuxYoX754npeIyIoSEhLg5OQELbRoomls63DsV6NG8uO6Xz+5fewYcPGibWMiKgxXV+mwsmuXnASqWxd49llbR0VENhYTE4OXXnoJcYonc9GypfzN7TdrAdWtWxffffcdfsxuYnBHtWuX/NXpgEOHLLvtcuWkUwsATJsGfPdd7usrBfz8szSiPPGELIuMzPlcw4UL0igCyHHUy0uuh4VJ+a3bt42dKomoRChyw0jZsmWh0+kAAGXKlMF///2Hffv24erVq9izhyUZ7Elqaio+v9/7IVRTB04aB54ATK9ePekV8uWXwN9/W3TTGRkZmDlzJgYOHOhYjSPjxwN9+wL16wMNGkhda/2InJo1c36cRgO0uF/ffuxYwHTeoq+/lnlKrl+XERthYXJyqrgEB8tIluxKgRERlUBeXl7YuHEjemt6oIzGy9bh2DcnJ/khDMhEnc2a2TaebEyZMgW1a9fGokWLbB0KlQR9+8rJKP38bkoZT1QRkUP5+uuv8eWXX2KP2udYv1mzs3Gj/O3e3WKbbNGiBZ5++mn4+flZbJslXq9exuuWnIhdb9gw6WwJSAeA337LeV2tFnjwQWDKFOMk8V5eUm4ys717ga++kk61Tk5y/igyUu5r2lQmeD9/Xs6BEFGJUeSGkSpVquDKlSvIyMhAo0aNEBcXhwceeABxcXEICmJZBnuyatUq3LhxA+5wRwiq2Doc+9CjB/Dii3L92WdlHgsLOX/+PGbMmIGff/4Z8+fPt9h27Z6zs0w+tn27jK44IaXbULWqlKLKzbRpMnT18mWpN3rtmiz39wc2bQICA+V2164ySfp33wHPP1+8pbWyc/y4NJwkJdk2DiKiAvLQeNg6BPvn7Axs2wa8845MXm2HTp8+jQsXLhg6KxHlybR++pw5kltlV/8+NVVysOTkYguNiIpHamoqZs+eDQCoo6nl2GUYIyOB1avl+oABto2ltHvgAfn9npQE1Klj+e1rNMBnn0kDSUYG8OST0qiRF/1UAP37AwEB5velpsrcI999J500//xTRpqEhBif08lJymoRUYlS5NkjR4wYgZ07d+L8+fN46623MGDAAKSmpsLJyQkzZsywQIhkCcNchiBNpaGltjnGfv0innvuOVuHZD8+/lgm/7pwAWjYEJg1S+bFKGJiWLduXXz00UeYOHEiXn31VXTp0gUNHKX3gKurcR6Xs2flb82awL17kpTExAADB0ryYMrXV36Ud+kipUq6dpWTUVWqANWqSWmu1atlRMnatcDw4fK4kBBpVLGF48elXndcHLBnD7ByJSdcIyK7NcxlCK7qriFA4w9PR51cNb/On5dJWAFp6LfVcSYfzt4/1taxxgkGKv2OH5eTR089BRw+DFSqZLxv2TJg9GjpUbtxY/4msjWVlAR4sAGWyN4McxmCi7pLuKm7CQ944J+k3XBzc7N1WLbz0kvyW7VxY4uOGAGAe/fuYdGiRThw4ABWrFgB14J+j5Y2Wm3uk5tb6jm+/Vbm/vj9d+CFF+T4ltvv9OnTgd69sz9mmc7JtWePdAR1Njmd+t9/cr6Dc8kQlThFHjEyceJErF27FnXr1kXv3r1x5swZrFmzBidPnsTTTz9tiRjJQlw0LqirDWWjSGZeXtLaX6eOzIMxdKjUErdAr8sJEyagd+/eSElJwfDhw5GRkWGBgEuY6tXl79atUvPz4Yel4el//8t+/ZAQaRypUUMaR7p0kSQVkPfo7bdlZI/p98usWdLYUtzi4mR/4uLk9qpVwNy5xR8HEVE+JapE/KPbjXUZvyNOxdk6HPu1dq0cc9zd5cTwP//IaMbUVFtHlkVKSgrCwsIAAJ7WPtFApdOXX8rJwMhI6biSkmK8b9AgOdGzdSsweXLBtrtggZz8evhhy8ZLREWmUzqc1p0BANTV1nHsRpE//pARAIGBwJIl5ie8LUCr1eKTTz7BmjVr8Pbbb7NkWXFxcZH3s29f+ZtX50UnJxkVUreu+fKkJODdd+V6//7ApUvmn5Ft22Re1NGjLRo+ERWPIjeMDBkyBJs3bzZ8uVevXh2PPfYYQkNDixwcWUZqaioylAOekC+Ixo2lt9z770vv/x07LHLyQ6PR4Ntvv4WPjw8OHz6MTZs2WSDYEubBB80nLNePEtm0yfyHtyl940hIiAyzPXXK/P7Tp81LOsTGGidBK07h4cCNG+bLLD2BHBGRBR3WHYUOOgTAH2U1ZW0djv3Sz5OXkgI88wzQsaM09Lu5yZxXdtRAkp6eDnd3dwBA586dMXXqVMTYorMAlVyensAvv0jJ0z17gMcfl1wLkHlInnpKruenFImprVslDyzo44jI6s6ri4hBLFzhgtqaWrYOx7bOn5cRAD/8ADRvbvHN+/j4YM6cOQCAjz/+GC+//LJjdpi0BX9/4NdfZQ6Q/LhzR+ZK/eQTY0fZe/eMJdf79MnacJaUJHOqLl0qHSWJqEQpcsPIqlWr0KtXL4SEhODNN9/Ef//9Z4m4yII++eQTrM/YiFu6W7YOxX6lpMjJjrfekhPyp05JL1ELCAoKwvPPPw8A+PLLLy2yzRLljz+A27fl9f3vPyA9HVizRn4k59YzqUoV6X1x5Yo0VgHAzZuyrf79gY8+kh6O7u7Su9EW5UPq1JGexDt3SiNOzZpSmo2IyA5t374dl9UVAEALJ8v/8C9VPvgAWLcOeO01oHNnGcWoP2Y1aWJeTmj3bpuEqOfl5YVdu3ahc+fOSElJwYcffog///zTpjFRCVSzpuRnTk7Ahg0yeWxMDLB/v5wwBKQDUUF8+aXkgZcvWzxcIiq827dv45juGACgibYJXDUOXtrp5ZeBRx6RSgWAfNcNGya/8Sw0umPIkCH4/PPPAcg5gUGDBiGZczcVvw0bjHOgZmfZMplDZMoUKat16xYQHCzzzAEyv2lcphHXDz9srIbxwgtS9YKISgyNKuI4vo4dO2L37t1QShkm62rVqhWeeeYZDBo0CL6+vpaI0+HExsbCx8cHMTEx8C7CBE5XrlxBvXr1kJSUhPbadqiurYbv0lZaMNJS4JdfpDTApk3GWuIWdunSJdSqVQtarRbXrl1DUFCQVZ7HLr3wgpRSGDdOfiAXxfDh8n79/rvMPwIAV6/Kj3jTeti2cOOGNLDVqGHbOIhKKUsdF0saS+13WloamjZtitOnT6OOphZaO7UCAOYEBaGU9BjMyAAqVpRlZ89KyYUPPwRef93G4Sn8/vvv+Omnn7B8+XLHnkSXCm/RIikHUqOGnECaPh348UcpNfv990Xbdng4YJoDK8V52ajAmA8Ufb+Tk5PR1qsNbupu4iGnbtBqtMwH9NLTpcNbeLjcrltXvhNHjJCy0EW0atUqDB8+HGlpaXj44Yexbt06uHBeiuKxbp2MiAwOBg4ckNJpmSkFfPMNMGGCjASpUEHOP7RrJ/PQhIbKqJEaNaTs6rFjwBtvyPmITp2k82fDhjL6skyZYt9FIkdiseOisoDr16+rzz77TLVp00ZpNBql0WiUVqtVHh4elth8ibRjxw7Vp08fFRQUpACotWvXFujxMTExCoCKiYkp1PMPcxmihrkMUVU0lRUA1alTJ6XT6Qq1rVJt40alXFyUApR69VWrPtXixYvV5cuXrfocdik2VqnDh5UKC8t6X2qqUu+8o9SmTXlvJzVVqVat5L2qUUOpxETz+5OTlXrtNaWmTFEqI8MioROR/SjqcdFW7CUfaKFtpgCogIAAdefOnUJti7Lx/fdyXAKUmjpVKTvLtaKjo1WfPn3UiRMnbB0KlSRhYUolJUkO5+4un+9Dh4q2zT//VMrNTamvvjIue/llpR55RKnIyKJtmxwK84Gi5QP6i1JKZfA3U1Y6nVIHDig1apRSXl7GY7ybm1LDhil1+nSRn2LLli3Kw8NDAVBr1qyxQNAlnE6n1Lp1Sv33n3Wf5+5dperWlfeza1el0tNzXvfUKaUaNZJ1K1RQ6uZN8/uXLzd+NoYPl324cUOpwEBZ9uSTdpcTEpU2lsoHilxKCwAqVaqEiRMnYu/evfjtt98QGBgIpRRScpo/wAEkJCSgSZMmmDdvns1iuKG7iWvqOjTQYN68eew5mNmpU8CAAUBaGvDkk1KayYqeffZZVK1a1arPYZfKlgWaNQOqVct63+zZ0hNxxIi85whxcQG2bJGRIZcuGSdA0xsxAvj0Uyll9fXXloqeiKhI7CEfSFSJOKaTsgEffvghylmgxyPdN3SoMX+YOROYOtW28WQydepUrF+/Hq1bt8b+/fttHQ6VFNWqSanS27ellFyDBpLLFVZkpMxTkpIivXT1p5N++klGpfTrZ7FyNUT2yh7yAZ3Smc09qtVa5HRQ6aLRAC1byu/JmzeBr76S+SlSUoDvvgNefbXIT/Hggw/ixx9/xBdffIHHH3+86DGXdHv2SKnsunWlpGNRnD8PtGol71Vmfn4yysPLS0p2v/deztupX19GfzRpIsewgQNlXlNARp48+6xx3eXLZU6S4GCJ38VFRlouWFC0fSGiYmGRI+H58+fx/vvvo1GjRujXrx8i7p/gLOPAQ8d69+6N999/HwMGDLDJ86eqVOzNkB/AdbV10LBhQ5vEYdfOnjVO4P3008ZJwck6Nm4E4uPNl40bJ5PZRkTkL3EoW1YaUwApW2Ja0sH0hE9udUOJiIqRrfMBAHCDG+pqQ1FeUx7Pmv6QI8uYMkVOnADSOH/ggG3jMaH/3CUlJeHIkSM2joZKnBo1pNTs4cNSUmT8eOnQ8u23QHR0/rcTHm5cf+NGYP58KdnVoIEsO3pUOioRlWL2kA+c0p3BhvRNuKO7Y7MYShRvb2DsWPkO3LcPGDIEWLzYIpvu06cPXnrpJYtsq8QznXd0/34pZ7Z/v5QuLSitFli5UspdZaduXWMnyvffB3LLjTw9pYGjbFk5Bmq1Mm/WwIES2/DhwNy5sq6+0b99eykf/tZbcj8R2b0iN4y0aNECdevWxfTp03Hq1CkAQNeuXbFs2TKE6+syUrFSSmFPxj4kIhFlUAZNtE1sHZJ96t9fGkQAYPBgq5/IiIqKQo8ePfDiiy9COVqvuE8/lUnJnn3WvEegp6exp8bSpYBOl/e2nnhCJsMFgJEjpbcHACxcKL0/WrWSCfSIiAgA4KRxQjOnJujh1I29Q61l7FjJKZSSY1NMjK0jwvXr1/HMM88AALp3746RI0faNiAquVxdpcfsvHkyYvf554HKlWUeudOn8358kybAkiXSizY8XBpYxowB/v5b7p8yRZ6DiKwmUheJY7rjiEEMomH7Y1SJotEArVsDK1ZkPy9FEd2+fRsTJ05EUlKSxbddIrRoIROa79ghnR8XLwbatJGKEAVVs6bMG+vnl/M6Q4YYGzeefTb3hvk6deR8w/r1MmdIvXoyMmTwYOkkMH488NtvwOrVxjmzRo+WRhcvr4LHT0TFrsi/jo8cOQKlFGrXro33338fly9fxt9//41hw4bB09PTEjE6hJSUFMTGxppdCis5ORkKClpo0dHpAbhonC0YaSmi1crBrEcPICFBDor5OTFfSBcuXMDmzZvx+++/O15ZswcekB/Da9ZIb1pTAwZIb5zLlyUZyo+PPpJkJi1NypgkJQEPPSTDW/fvl0nRiIhKIEvmA2fPnjUvmaFho4hVffKJTMp+8iQwZ45NQ4mPj8ejjz6Kmzdvon79+lizZg0nd6Wi8fQE/vc/aQRs0EBy5wUL5Hq/fnI7N888I52QFiyQzkn9+gF9+8r2pkwpjj0gKlEsmQ9ERkZiZ8a/UFCopqmKGprqFoyUikIphR49emD27NmY4sjfhWXKyOTlWq2xEsSKFdLgYA1z5wL+/jJ5+o8/5r5uixZAUJBcr15dSmwtXy63ExOBRx+VuAFpbLl71/jYpCQpv2YHHWaIKHtFPmM+ZswYjBgxAm3btrVEPA5r5syZeOeddwr9+OGuQ81uX8m4imPHjqFp06ZFjKyUc3WVk/UjR0ptcP0B7dIlwNkZCAmx2FNdvHgRAFCzZk2LbbPEeOABST7GjgXefFPqVPfoIfd5egKDBsmQ1qVLga5d896eVivJiJeXJBoeHsblREQlmKXygSSVjA3pG9GgZQOsW7cOlSpVslSIlJPAQCmxsHy5HOts6Ouvv8bRo0dRoUIFbNiwAT4+PjaNh0qBChWMo3yVArZvl9zu11+lt+zPP+ddNqRJE7mMGZP1Pp1OGhR1OuCVV3Iucfvvv3KCKThY5kLx9S38PhHZsaLmA4DkBDqlw5aMbUhCEurVq4f9+/c7dMnzIvnlFznGP/igxSoUaDQazJw5E71798aXX36J7t27o1+/fhbZdol16ZLx+gsvAD17Fv67ft8+aWCZMEFGk+hVrCgVJxITZQRJQQQFyXGwd29pJPnnH6BhQyA1VY6Dp05Jh89y5eR49913Mlfqpk1WGXFEREVT5LOIX331FRtFLGDq1KmIiYkxXK5du1bgbeiUcbSDRqNho0h+lS0rkz/WqmVcNm2aHDiXLLHY0+gbRgICAiy2zRJl9GgpvaDTSUPIjRvG+/Q179esyb03xeLF0hjy118yKeiSJZKEEBGVEpbIB5RS+DdjN5KQhPj4eJ4UL07Nm8tcWM62Ha3bvn17lClTBr///juqVatm01ioFNJopCPLL78AO3fKnCFFraU+dSowaZKUS33++ezXuXkT6N4deOQR6WTj5wesWlW05yWyU5bIBwDghO4UbqkIeHl54eeff2ajSFFcuCCNwYsXy4lvC1Wb6NWrFyZNmgQAGDlyJC5cuGCR7ZZYYWHyt1Yt4JtvCt8osmkT0KGDNOL36GGcX1bv8ceBYcOMJbDS0/O/7e3bgT//lHMXzz0nyyIjgV27ZORw374yemTSJGmEOXZMYrl8uXD7QkRWU6hfbe+++y4qV66MkSNH4t1338113WnTphUqMEfj5uYGN9NJpwphb8Z+6KBDS6fmForKQSklB7X0dOmh0KqVRU6+e3t7AwB+/vlnvPrqq/j0008dq6SWRiMTkR05Ahw6JBOSLV0q97VpAzRuLH9zm2QtI0MSj8jIrPcdPix/m/PzT0QllyXygQvqEsLVLTjBCWvWrOFJEFtJTpaJqh95RMpDFJPw8HB07twZ1atXR/ny5YvteclBtW8vF73r12W0h77sSH7p8zhA8sTsLFuW9cTWwYPS4YaolLFEPhCjYnBCdxIAsHDhQtSrV88SoTmuOnXk77FjQJcuMmpt8eL8VTzIw8yZM7Fz504cPHgQ3bp1w86dO1G1atUib7dE0leD+OoraQy/ckXm+Rg6VMpz59fhw8bGjkuXpBHD3T37de/ckREgL70kjSV5uXnTeP3SJTmHVLmyNJZ06CCjGxcvBkaNkusPPQRcvAh06yaNJ8HB+d8PIrIuVQgajUY98MADhutarTbHi6OKi4tTR44cUUeOHFEA1GeffaaOHDmirly5kq/Hx8TEKAAqJiYmX+s30TZSABQA1dPpoaKETkoppdMp9fDDSgFKNW6sVFJSkTeZnp6u3n77bcP79MYbb1gg0BJo3z55XQGlTp40Lk9MLPw2f/hBKa1WqUaNlEpNLXqMRGR3CnpctBfFnQ886NRZaaFVAFRzbbOihE5F9dZbcqwLDlYqPLzYnnb16tXK2dlZAVCenp5q1qxZKi0trdienxxYYqJSLVoo5e+v1NKlkk/n14EDSoWGKlW5slI7dmS/zo8/KtWggVK9ein1/PNKffqpUvHxlomdSgzmA/nf78HOT6qKmoqqiqZyYcOmzP75R75/vL3lGO/lpdSePRbZ9K1bt1RoaKgCoGrWrKmuX79uke2WODt3ynFAfwzp2VNe61GjCradu3eN5x1q18593Y8+kvW0WqVWr8572zExxm1/+qn5fbNny/IKFWQ9pZS6cUOpGjVkef36St2+XbB9IaIsLJUPFKphpGrVquqxxx4zXK9WrVqOF0e1bds2wwlw08uIESPy9fj8vsE6nc7sZHtzbVM1zGWIBfaA1K1bSpUvLweviRMtttlFixYpAOrFF19UuoL8YCxNpk5V6uefc/7BnJ5esB/Tt2/Lj3BAkhoiKnVK6omQ4soHlFLqt99+MzSKVNFUVkOdBxUxeiqS2Fil6tWTY1P79kqlpBTbU589e1Z17tzZ8Hlr0aKFOn78eLE9Pzmoa9eUatLEeLLowQeVOneuYNtw1NyY8o35QP73e5jLEDXI+Uk10PmxQkZNOUpIUKpHD/muCwmx2DH++vXrqkaNGio0NNRxG0aUMh4LEhKMxxRAqbNnC7adkyeVSk5WKjJSbm/bptTMmbJdUxkZSj33nDyHRqPUF1/kL0adTs5d6Leh00lHzTp1ZFtTphjXv3RJqUqVZHmXLjzeERWRpfIBjVJKWWkwChVBbGwsfHx8EBMTYyjB1FfTx3D/b2o9lFJ46623MHPmTADAJ598gtdee80m8ZZa69cDjz4q1//6S4ZAWsA///yD9u3bO1Yprfy6elWGrw4fbqzXmR/LlgHPPCPDY7dtAzj3EVGpkt1x0RHklQ8AkhOkpaWhUaNGOHv2LAYOHIgVK1bApSDlBsg6zp0DWreW8g1jx0pZiGKi0+mwePFivPbaa4iJiYG7uzvmzZuHkSNHFlsM5IDS0oDPPgNmzJCyV25uwLx5BcvpiHLBfCD3fOD06dNYv349pkyZYoswHUtCAjB4MPD221J+20KuXLkCd3d3VKxY0WLbLLH+/BPo1Uuub9gAPPxw7utfvixzVfXrZ14SSylg5kzgf/+T6z16yHwxpqW1MjKAceNkUnYAeOUV4NNPpTxkXi5ckNKpbm4yb+q5c3IeycVF5hzRl2E7cwbo3x9YvlzKiBNRoVkqHyjy5Os7d+7E0aNHsyxPSUlBYmJiUTdPuZg9e7ahUeTzzz9no4g19Okj84wAwMqVFttshw4dDI0iycnJ2Llzp8W2XeIkJgKpqcbba9bIRJ4vv1ywycmGD5fkIzlZ/oaHWzxUIiJ75eLigj///BMTJ07EypUr2ShiL+rUAVaskHm2FiyQCUCLiVarxfPPP48zZ86gV69eSE5OxpEjR4rt+clBubgAr78uJ4IeeghISZHJ1D/7TE5GEZHV3L17F127dsXrr7+OBQsW2Dqc0s/LC/jtN4s2igBA1apVzRpFNmzYgLt371r0OUqMv/+Wv88+m3cnVaWAgQOBn3+WcwO//mpcPnKkzHGqFODsLJ1eBw0CdDrj452cpAPLhx/K7dmzpVNLXhISZJ6Zc+eAEyekwaN5c5mzpHJl4PZt47r16gGnTrFRhMiOFLlhpEuXLhg3bly2yx2pB4ctrF69GgDwzjvv4JVXXrFtMKXZp58CTZsCY8YYl4WFAadPF3nTqampeOKJJ9CtWzf8qj9wO5IFC2TSuu++My575RWgY0dpMPnyy/xvS6MBfvgBaNIEiIqS3olERA6katWq+Oyzz+Ds7GzrUMjUI48A770n119+GZgzp1ifPigoCBs2bMCiRYvw6aefGpavX78e8+fPx71794o1HnIQNWtKT1/9b5SffzZOgktEVrFjxw5ERkYiJCQEAwcOtHU4jiU9HTh7VqofWNCKFSvw6KOPolu3brh165ZFt10iaO+fslyyREaOmDZkZKbTAefPG2+fPSt/v/4aWLpUGkQWLgQ2b5aRItHRQFyc+TY0GmncX75cbi9bBsTH5x5jTAxg+t5ER0snzSVLpBGkfXvz9U3z9GPHpEoJEdlMkRtGACC7alwJCQnZLifLeeONNzBr1iwMMx0iSJbn6Qns3Wveqv/JJ9IL4Ouvi9T7zcnJCT4+PkhPT8fAgQOx3tEOiomJ0oPio4+MP5a1WmDyZLm+dKmMAMkvLy8ZygzIe5OSYtFwiYjs0eHDh5GUlGTrMCg3b74JvPGGHOMefLDYn14/esTNzc2w7MMPP8S4ceMQFBSE4cOHIyoqqtjjolJOo5GRIl99Bfz4o4wmAThyhMhKLl68CABo0aIF/P39bRyNg3nlFaBuXWDUKItutkmTJihfvjyOHj2K9u3b48KFCxbdvt2bMMF47Ni6Ffjnn5zXdXKScwCffirlGydMkOVt2sgI3o8+AkaPBrp0AXbtktEoPj7Zb2vYMOCXX4AbN4AyZXKPMThYql706QO0ayedNVu0ACpWBDw8jOslJJg/7uBBKf89aJBFOt0SUeEUeo6RB+//qNu+fTu8vb3RvHlzw30JCQk4cOAAfH19HXfIXxHlZ44RsqGBA+XgB8iBbOFCoJAjpNLT0zF06FD8+OOPcHV1xa+//ope+jqapV1cnIwYuXtXyouMHy/L09OB6tWB69elBMmQIdk//t49ICJCklC99HQppTVgADBihNT5JKISjzXFs88HdNBhR5ldyMjIwPHjx1GrVi1bhUr5cfmyHPf03nxTfpS/9JJ0xCgmSil88cUX+Pbbb3HixAkAQM2aNfHHH3+gjr4ONpG1vPiidGaZMUP+EhUA84Gc5xhJeDAJW7duxezZszFBf1KYikdYmJx8T08Hdu+WE+QWcuHCBfTs2ROXLl1C+fLl8ccff6Bly5YW277du35dfvPHxGTfuSQjQ/7mNhdIQoI0Umiz6RseFSWjO8aOBcqWzf7xO3ZI/la1au6xKiWdAjIvW7hQjnk7dxrnG0lPl7lOtm2TZQcOFPqcEpEjsvkcI9u3b8eOHTug0WgQGxuL7du3Gy4HDhwAAHTv3r3QgVHB6HQ6hIWF4dq1axypUxxWr5ZRI87OwKpV0iNg//5CbcrZ2Rnff/89Hn/8caSmpqJ///7YunWrhQO2U2XLAu+/L9f/9z9JeAB5XZ9/Xq5//XXOjx8yROp0/vuvcZmzM7Bxo/QGYaMIEZVyd3AX8fHx8Pb2Ro0aNaCUQqrpvE1kX0wbRc6fBz7+WEaS1Kwp5SOLaaSjRqPBhAkTcOzYMezevRvVqlXDxYsX0bZtW+zYsaNYYiAHdeaMjCD59FOgYUMpt0VERZaGNMO8lY888ggAID4+HmfOnEFyQUbgU+FUrw4884xcf+cdi266Vq1a+Pfff9GsWTPcvn0bXbp0wd/6uTccQeXKcr4lc6OIUlLqqmJFaYiKiTG///p143Uvr+wbRQCZS2TKFGn0mDFDGkpMpadLh8saNYAnn8x6v6nMjSKANNwsXy7nOtq1M86boj+XVLmyzE/yzDMcUUlkA4VuGBkxYgSGDx8OpRTKly+PESNGGC4vvPAC5syZgyVLllgyVjIxc+ZM/O9//8OQIUPQtm1blC1bFjVq1EBISAgqVKiAffv2GdbN0Legk+VotcBrr0mLf5UqwIULMgzy9deNPRYKwMXFBT/88AP69++PlJQUDBgwALt27bJC4HZo9GgpSxYTIyeH9J57Tl7nHTuA+8PCzaSnA5s2yXV97fbs5FaHlIiohItEJAAgIiICDz30EMqXL4+pU6ca7ldK4Y033sCKFStw/vx5dp6wJzVqAN9+K40lt27JqJHgYCknaeEa5TnRaDRo164d9u7dizZt2uDevXt46KGHcPz48WJ5fnJA9epJPfWQEBlB1auXdJLhdxNRkUQhCun3SxPrR49+9913qF+/PsqWLYumTZti1KhRWLhwIY4cOYK0tDRbhls6vfmmnOz+80+pXvDddxb7bgsMDMT27dvRrVs3JCQk4NFHH0VYWJhFtl1ivfiiNCbcuSOjLUzLmG3dKp1O3nor7+00aiQjNu7dk0atoCA516Mv9R0VJffrdMBPPwGvvlqwOJ2dpSxXq1ZSKaNnT5l3CwAqVJDrrq7A2rXAN98UbNtEVGSFLqWlV61aNbRo0QI/6/9jk0XkNVQ2sVsytmzZYvYYV1dX6HQ6pKenIzw8HIGBgQCAadOmYenSpWjdujXat2+PTp06oWnTpnDKbagh5d/du8DEidILwN8fOHpUWv0LISUlBT169MDBgwdx8OBB1KtXz7Kx2qt9+6RhSaMBjhyRCdQBSXQ6dgRGjsza+yIlRSZNA4Bu3Yw9L/SUkhNOn3widT5Nyv0RUcnD0hnZ5wNncQ7ncN7sMb169cLGjRsBAGFhYahRo4bhPj8/P7Rq1QoPPPAAOnXqhDZt2sCzGEs4UTZSU+V49f77wM2bsszJSX4gP/posYWRlJSEESNGwN/fH/Pnz4fm/nE3IyODOSNZXnw8MHWqjJQCpEHwo4+y721LZIL5QPb5QCRuYx/249NPP8Wr90/c7ty5E7169cp2HjJ3d3esXr0affv2BSAdKTT8/1d0r70GzJplvD17tnGuCwtISUnBzJkzER8fj8ceewwPPPCAxbZd4nTvDpieE2vVyljF47vvgOHD5fqVK9IYn5uMDGmg+Phj4NAh4/ZXrwbKlZPbn34qx6omTeScT0ElJ0tVjBUrpHPM2bPGidhnzZLPjoeHzD1Sv37Bt0/kYCyVDxS5YeTYsWO4cuUKWrZsieDgYADAjRs3cOjQIVSrVg2NGzcuyuYdVl6Jzw/xq/HTTz/h4sWLaNiwIZo0aYJatWohPT0dp06dQosWLQzr9u7dG5v0PevvK1u2LDp16oRnn30W/fr1g7P+C5kKb/VqIDAQ6NxZbmdXXzIfkpKScPjwYbRv396wLCwsDNWrV7dUpPZp0CCZmPPzz43JY+bXMC3NOPkaYLzv44+NE7brxcQADzwgE5l5ekoC0r+/VXeBiKyHJ0KyzwcUFF7YMA7//vsvatasiSZNmqB+/frwuD/Z45UrVzBr1iwcOHAAR44cQUqmUk2TJk3CLNMf8GQ7+pGQn38uP+yvX895UlAr0el0UEoZGkJOnTqFhx9+GNOmTcPIkSN50owsb/Zs6WAESP43e7Yto6ESgPlAznOMTD/4DkJDQ1Hm/mTR+lM9165dw6FDh3DgwAHs378fBw8eRExMDE6cOIGGDRsCABYuXIgvv/wS/fv3x+jRo1GlSpVi3LtSRClg714p7fzrr1LyOa/Ju6lwoqNlXpCtW6WU2bffSolGQBo6OnYE9uyRBo6//sr/uZlffpFGlYQE2f5XX8ny+fOBceOAvn3lvS2MxEQZKXz7tjTePP20LNfpZATl5s3mz0lEObKbhpE2bdrg+PHjuH79Ovz9/QEAd+/eRaVKldC0aVPs2bOnKJt3WJacfD0uLg6HDx/G3r17sWvXLvzzzz+IuV9/0cvLC9evX4evr69F4ycAX3wB/PGHlHlq1arQm9mxYwe6du2KYcOG4b333kNIXr0dSqorV4DYWBnKmp3ISGl0euMNqfGZHzExUgdUnwh99JH0xOCJHaIShydCcj4Rkt+cIDU1FSdOnMC+ffvwzz//YOfOnZg3bx769esHADh58iS++uorjB07Fg0bNuRJcFuKiJCa2YCcZHnqKSm9MGKEsXdhMXjppZfw5f0e/f369cM333yDgICAYnt+chCLFsnJptWrpfwMUS6YDxQ9H9DpdLhw4QJq1qxpaAgfMmQIfvjhBwCAk5MT+vXrh3HjxqFTp07sRFlY6enGY7ZOByxeLJUQcprrggpOKRmBWKZM1t/4584BTZsCSUlS/uqjj3KfoN3U8eNSJn3VKmMnFRcXeU+L2og/c6aUXatfHzhxwvh5iIiQOVNefTX/cRI5MLtpGPH29ka1atWy1CJu3LgxLl++jNjY2KJs3mHllfgEulU0Wz86zXyiqWSd+QRrWpPpZH5OX4sTJ07gp59+AgD83//9HwDpUdKoUSPUqFEDzZs3h4+PD2JjYxETE4O4uDh06NABI+6fkI6Pj8ebb74JnU4HnU4HJycn+Pr6ws/PD35+fqhfvz7atGljeM49e/bAz88P/v7+8PPzK/3JVXq69FrQT/g1aJCU2jId7ZBP77zzDmbMmAEAcHNzwyuvvIK3334bXl5eFgy4BHjvPWDaNLn+6KMyQVqHDnJ7/36px/7EE1kfp09e5s+X29Ony6RqRFSi8ERIzidCTHOCguQDCgprM36F9v4PsrFjx2LhwoUApORWs2bN0KxZM4SEhCAuLg5vvvmmobFk2bJlOHDggOGEij4fACQ3fP311w2dLo4ePYqrV6/CxcUFnp6e8Pf3N1xcXV2L9Po4hF9/NY54DAgA+vUDHn9cykha+fVLTk7G3Llz8dZbbyEtLQ3BwcFYvnw5OnfuDKUUXAqR1xBl6+pV81InEybIiN9HHgGaNZOJc4nAfCC/+QBgnhPklg8AwKLIb/H333/j66+/xvbt2w3L3d3d0bFjR/z111+GZdOmTUNUVBRSUlLg7OxsuABASEiIoZQXAHzzzTdIS0uDr68vXF1d4eLiAmdnZ7i5uaFixYqGESulnn503LBh0kBSyPMht2/fxrlz5xAaGsqOCtm5cUM6UvbtCwwcCCxYALzwgtz3yCPAypVAYb83GjSQahRffSXzZW3dKg1eb79dsHwsNlY6u4wdKyNG2AhCVCh20zDi6emJMmXK4ObNm4aDYVpaGipVqoSEhAQkJCQUZfMOy5oNI+vUb9k+58WLFw0TtWVnzJgxWLBgAQAZFaQfIZSdYcOGYfny5QCkh6qbm5vhPo1Ggxo1aqBt27Zo27YtunTpUjoTokuXgHfflVZ/QMpEDRxYqE0dOHAAkydPxo4dOwAAderUwaFDhwzDpEudY8eADRukJ4WePumYOdM4id2IEdLrpnt3SS4PHABq1wZeflnKaOnriiolyeikSdIjY/Xq7BtRiMhu8USI5RtGAPOcYMeOHZgzZw7Wr1+f7aSsiYmJhhJdw4YNw/fff59j3FFRUYY8YcyYMfj666+zXS8wMBCbN2825AE6nc7QUEP3paUBc+cCH3wgE4zq+fkB338PPPyw1UM4cuQIhgwZgv/++8+w7Pvvv8fQoUOt/tzkgKKjpTytvvSfVis59Lx5Mp8fOTTmA9ZpGDHNB06dOoX58+djxYoViImJQefOnc0aS8qXL4+oqKhs42zVqhX26+d5gDSUXLt2Ldt169Spg7Nnzxpu6ztgtG3bFi1btkRQUFC2jyuRVq6U36YZGUCnTjIPZuvWBd7M6tWrMWjQIDRp0gRHCzPPRWnXu7eUJQWAXbukI+UPP8g5g+Rk6aw6bFjhtr1tm5TnXr5ccjO9yZOltLclpaQAY8ZItYvSeK6MyAIslQ8Uudt+3bp1cezYMQwePBiTJk0CAMyePRtRUVFo1qxZUTdPxahy5crYtWsXDh8+jKNHjyI5ORne3t7w8fFB2bJl0bJlS8O6Hh4eeOutt6DVaqHVapGWlobo6Gjcu3cP9+7dQ4MGDQzrxsfHo0aNGrhz5w5iYmKglMLFixdx8eJFrFixAkOGDMGKFSsAyASfX3zxBZo0aYKmTZuinH6iq5KoRg1g6VLp4TZ/vkwMVsiGkVatWmHbtm2YNWsWJk+ejPPnzyM5Obl0Noxcvgy0aye9BKdONQ6J1WqB//s/aQyZPl2Gtf71l5TXSksD3NyASpWkIWrhQklYmjWT0lwajfTQOXlSeujkkJwTETmyzp07o3PnzkhNTcWpU6dw+PBhHD58GFFRUfD29kZGRoZh3QEDBqB69epIT0+HRqMx5ANKKUOSqletWjW0adMG6enpiI+Px507d3D37l3odDpERkaazaE1YcIEbNiwAU2bNkWTJk0Mo1YqV67suKW9XFykYf/ll4EdO6T29S+/ALduyeiR3buLVLIzP5o1a4ZDhw5h0qRJhlFF+pNiSiksWrQIADB69GirxkEOwsNDaq+vXi2f7/Bwub5rF/DhhzISm6OViKymQYMGmDdvHubOnYsLFy5k6ez68ssvIz09HW5ubsjIyEB6ejrS0tKg0WhQuXJls3X79u2LGzduICYmBmlpaUhPT0d6ejoSExNRs2ZNw3o6nQ4LFizAvXv3DMsqVKiApk2bomnTpmjfvr1hovgSacgQKff01FPAzp1Amzbym3fQIDlHkM9GIH2nk2PHjmHBggUYO3asNaMueUwb7G7flr+DB0vnyV9/Nc7pER8vJbbKl8//trt2ldGN335rvvzChaLFfPGidHYxPff1zjtyXuP4cWDfPh7ziKyoyCNG5s+fj/Hjx2f7Y3XevHn8oi4kW4wYKQ7p6em4ffs2jh8/jn379mHv3r3o27ev4XPy33//oV69eob1Q0JC0KJFC7Rp0watW7dGy5YtUbZsWVuFXzhr1wKPPSYn6DOVnCuoiRMnYvbs2ejTpw9+//13CwVoZ1JTgbJl5e+FC4BJwmywYQPQp480fOzYIQ0icXHAn3/K6JGHH5brdeoABw/K9gApq/XzzzLviKOeYCMqodhD1PojRoqTTqdDdHQ0rly5YtaRpkOHDvj333+zrO/v74/mzZtj3bp18PT0LM5Q7VNamvR+BOSHczGOsrl9/0RDuXLl4OTkhI0bN+Lhhx+Gi4sLdu3aZVZKlcgiDhyQHr76nuVLl+Z/vjkqdZgPWH/EiC2kpqZi2bJl2Lt3L/bt24czZ84YSnQCQPfu3bF582bD7XfffRe1a9dG69atUaNGjZLTeSIsTEpEL1smFREA4K23gPffz9fDlVKYMmUKPv30UwDAwoUL2SnB1KVL0gC1b5+U387JDz9IY1XVqlJJ4pNP8nd+QClgyRKpZNGyJbBxI/Dll0Bh34O//5aGsbZtgfXrjWW1bt2S0l1377IUOFEO7KaUFiATM86fPx/6TWk0GowbNw5ffPFFUTftsEprw0heTp06hWnTpuHIkSMICwvLcv9bb72F9+8nDcnJybh37579D7G9dUt6gGg0UhqgCP9h9+7di7lz52L48OHo2bOn5WK0N23bSjKzcqX08Mjsm2+AUaOkTuj69cArrwBz5hhvR0VJo8n160CvXtLLMLvXPSFBGkr0JbeIyG7xREjpahjJyd27d3H8+HEcPXoUR44cwZEjR3D69GlkZGSgUqVKuK6fuwvAiy++iPj4eHTq1AmdOnVC7dq1S86JEUvQ6aQkh74X4ZUrUmaomEeTKqUwcOBA/Pzzz6hcuTIOHz6M8gXpgUmUH4mJUhb1p5+APXsAd3dZvnevzE0SHGzT8Kj4MB8onQ0jmSUmJuLkyZOGfKBRo0Z48cUXAQB37twxm18jICAAHTp0QKdOndCxY0c0bdrU/uc0vXkTWLNGqiAsXCidKPNJKYVXX30Vn3/+OQCZx+W5556zVqSl0wcfSIOU3smT0hCRXykpUrEiNlY6pxQ29zp6VEqAJyUB//ufNJrprVol50KcneXcSPPmhXsOolLKrhpGAODKlSs4cOAAAKB169bQarVYvnw53jSdI4DyzdIJX+akqSRIQxpiEIsYROMeohGNGDREAwRCEr4EpwRszdiOMiiD6s5VUdmpEqo4VYa/thw+iPvExtFn0qaN1Er+4gvplUC5e/llqaf+yivA/YTPjFLSeyIlRX4IX7ggo0OUAs6dk6Gye/cCXbrIOvXqydDZ2rWN20hJkbqux49LuQb9sFoisks8EeK4+UAGMhCHOKQiFRVQAYBMHP8nNiMNxhrP7nBHeU0A6rjWQlWnEAQ5BeL92I9sFXbx69lTetaPGwe89JKU8ty+XUZQ7tsHtGghtapr1LD4U8fGxqJVq1Y4d+4cHnzwQfz888/w9fW1+PMQQSljr96MDKBuXWkUHDKEtdgdBPMBx80H9JKRjAu4iHuIRixioYPO7P7a2lpo69QaIe6VoVM6pCAVHhp3+88JlJLftaa/WXNcVWHixImYM2cONBoNFixYwJEjBRUbKx0r//lH5rC63/BWKLdvy6TsQUHSgbMgvv/eOO/JgQMyEgWQz8OTT0oDWsOGUgnDZO5eIkdnqeOixcbdV61aFX369EFqaiqef/55VK9eHdOmTbPU5skBucAFAfBHTdRES7RAdzyIivdPiABArIoFAMQjHifST2Fjyl/4OnExZsXPwaBBg3Dq1Cmk6CdttLV9++TEfCEaRW7fvo358+fjl19+sUJgdkpfhmP7duMQY1MajfSK1fcOrFXLOPns9Onyt21bKbMVHCylF1q3ltE7em5uQP/+cn30aGN5BiIisitOcIIvfA2NInot0Ay1UQsVNBWghRbJSMY1dR1bUrZjS8p2s3Vv3bplNkdKqRMbK+Uj7t2TchxVq0ot7D59pKPB/v3yg71OHeDdd+XHtgV5e3vjl19+gaenJ7Zu3YratWvj22+/NSuDQmQRpqPCbt+Wk1BpaVKWpmlTGUFs4c83EdkXd7ijIRqgI9qjF3qgPR5APdRFJU2wnEPQ+BvWvaWLwGfxX+DrhMWYNm0a9u3bZz/nCEzduQM89JCcFL96NV8PGTNmDMaNGwcAZvO1UT55e0unEkDmIb1ypXDbOX9eGrOmT5fzCtmUhM3V008DQ4fK9ZdekhGSgBzv5s8HKlSQES3/93+Fi4+IcmWRESO7d+/G0qVL8dNPPyE2Vk5WK6Wg0WhK949QK2KPkLz5uvggVaUiSkUh2SkF1zNu4GZGuKH36MmTJ/HYY4/h1q1bCA4ORqVKleDt7Q1nZ2c4OzujZs2aeM9kqOKsWbMQFxcHV1dXuLm5wc3NzXDd398fffoYX8O9e/dKDL6+8PX1hY+PD1xdXaHVaotUxiMuLg4XL17EoUOHcPDgQRw8eBBHjhxBRkYG2rZtiz179hR62yXKjRsyt0hKCvDxx8Dkydmvd/064OsrQ1e3bpX6oPfuyWS0n30mvWJv3ZLesgcOyATspnOWZGRIqa2//wY6dJCGlGKs005E+cceoswHcuLr4oMMlYE76i5uq9uI08YjSBuIjm4P4P3YjxAdHY0KFSpAp9MhKCgIlSpVQvny5eHi4gIXFxf07dsXQ+//II2NjcWsWbPg6uoKFxcXODs7w9XVFZ6envD09ERoaKhhTpSMjAxcvHgRPj4+CAgIgJO+LrStZGQA69ZJ3eszZ4AmTaSEZ69e0uFg9Wo5HgLAmDHyY9vCx7ydO3di7NixOHPmDDw9PXHu3DlUqlTJos9BlMW+fVIW5bf7pYDGjJEGQU5WWyoxH2A+kBNfFx/olA4KCk4aJ4S4V8bR1OPYkLIpy7oVKlRA5cqVERQUZDjmu7i4YMqUKWjcuDEA4Pjx49i5cyfKlSsHPz8/+Pn5wcvLy3CuoGLFinDXl/UrqowMoH17+T5r00YmaHd1hVIKMTExuHTpEs6ePYuzZ8/i9OnT2LVrF27duoVDhw4hLS2N83sV1n//SaN6SoqMtL1wQSp9FMTBg0CrVsbbhalGcfmylFOLj5eqF7//bizPpZ8PJShIJmr38CjYtolKKUsdFwtdePHGjRtYtmwZli1bhgsXLgCA2Rwjs2fPxmOPPVbowIjyw1XjimBNMELcKgMAdEqHcF0EQt+uj/r16+PmzZuIj49HbGws/vvvP7PHtmrVyqxh5IsvvsDVHHpn1KtXz6xhZOTIkThz5ky269aoUQMXL1403O7duzdOnToFNzc3NFcK46KiMCM0FBnu7ihfvjzWrFljWLdFixY4f/58lm22aNECAwcONDQ4lnqVKknZsTFjpNSVadkEvR9+kPtHjpSa0w8+KJNxPv64jM7ZuBF49VWp1TliRPaTdDo5yXwlDRrIENqvvwbGji2OPSQiIgty0jihgqY8KqA8Qtwrm923d+9e6HQ6ZGRk4Pr162bzlABAtWrVDA0jUVFRePfdd3N8nhdffBHz5s0DIPOhhIaGAgC0Wi0CAgJQsWJFeHl5QavVol+/fpgyZQoAICYmxpBHuLq6Gi4uLi7QarXo1KkTxo8fD0Dy6TfeeANeXl7w9PSEh4eHoWHG09MTVapUQdOmTQ0xnTt3DlqtFi4uLnBr3x7ew4fDc+pUqOrVofnlF+Px89lnZdTIuHGAp2f+JhkFcO/ePdy5cwcJCQmIj49Heno6WrVqBU9PzyzrdurUCceOHcPcuXPh5ORkaBRRSmHnzp3o1KmTY+QxVLzatJFGwVmzgClTpF7/+fOSDxbznDtEZFtajXmDf1PXxqjjUhsX0y/BqbcrTp8+jbNnzyIyMhKRkZFZHv/8888bru/atQsvvfRSjs+1fv16PPLIIwCA5cuXY8yYMXBycjJctFotlFJQSmH58uWGPODXX3/F+PHj4eHhAS8vL3h5ecHDwwPBrq740tkZZfftk++y2bOxZMmSHOcPcXNzw7lz5zBo0KACv050X926wKFDUkarRo2CN4oAMsrn9deBj+6XanvwwYJvo1o1YNMmoHdvqZoxf758BgBg0CBpEHnuOTaKEFlBoRtGqlataviSB4DGjRtj2LBhmDFjBhITE/Hyyy9bLEii/NJqtKjkFIQ33ngDgDTg3bx503DR/6BPS0tDhQrmJTlGjBiBqKgopKSkIDU11fA3NTUVlSubn2SpWbMmkpOTER0djejoaJgOvMr8gz88PBzXrl2DE4A/AdQAMHT/fjwPZJk4vmrVqrhz5w6aNm2Kli1bomXLlmjdujWqOuK8JKNGAdWrA927Z3/yxt8fiIuTBpSHHpL6oH37AseOydwkmzcDp04ZewvGxkrt0NdeM+9BWLWq9DKcMEGSj759OYEnEVEp0qtXLyQnJyMiIgI3btzA9evXce/ePaSlpSEtLQ3NTSaz9PLywgsvvIDU1FSkp6cjPT0dqampSExMRGJiIurWrWtYNyUlBd7e3oiLi4NOp8tykqWRyUSq6enp+Oeff3KM0bTHaVJSEj7++OMc1x0wYIBZeU1944xeXwC/Aji0bh2mPfII/vjjD8N9Lb/9FvVq1sTF3buh7dgRTk5OCEpLQ2KZMmjYsiU++OADAEBCQgL69u2LU6dOISIiIksMdevWxalTp6DNZsSJi4sLJk2aZLZs27Zt6NatGxo2bIguXbrA29sb3t7eCAgIwOOPP875SKjoNBrJ8UJDpWdtuXLSAAhIWValpEMMETkcT40HGrk0wPu/fASlFO7evYtr167h+vXriIiIMOQDaWlpqFOnjuFxNWvWxBNPPIG7d+/i3r17uHv3LpKSkpCSkoKUlBSzY3dCQgKSk5Oze3oAQGpqquF6XFxclk4aevcA/AZIWcARIwznC8qXL4/Q0FDDpVWrVmjbtq3lRqw4sgYNpDEil/cvTx98IPOkmp5HSEuTidPz2yGkfXupZLFsmXTw1NNopLMnEVlFoUtp6UsGtWzZEosWLTIMN/Tz80NsbCxLaBWRow4RLol0Op2hwUX/uS9fvrzh/rNnzyI2NhYpKSnw2LcPzSdPhkYpbJwzB8lVqmDAgAGGdVNTU+Hq6lrs+1BijR0rvQI9PaWUln4IsVJSTuH//k8aSYYMkZ6y69dLPWq9558HBg6UxpcHHpAa7M8+KzVGiciuOOpx0VH3uyRJT09HVFQUIiIiEBERgaSkJOh0OlSrVs1Qdis1NRW///674brpRSmF0NBQPPTQQwCAxMREvP3224iPj0dSUhKSkpIMDTOJiYl48MEHMXPmTAAyEqNcuXLIyMhAWloaUlJS0FYp7L4fW79HH8Wv+vJCkNEqaWnGCeudAewH4AFgbqtWmLd/v2G7/v7+uHfvHgCgbNmyhl6t8fHxGD9+PP53/0e6Ugo6nS7XUmLffvstXnnlFcTHx2e5r1atWli/fn2WBh6iQjt9Wnrf6htGtm6V+u1Nm0qt9goVgJAQGU3M79USx1GPi4663yVFfHw8oqKikJGRYRilqtPpoNFooNFoUKlSJZQtWxaAjDi9dOkSkpKSkJCQgISEBCQmJho6Hj+xYgW8Nm8GZsxA6tSpSE9Pz3aUJlnJrVtSyvv//k+OFQWVmAjMnAl8+inQowfw009AYc/xxMRIacjXXgP0jWC//y6dAEwa8YgckaWOi0VuGAGAwMBADB06FE8//TQ6d+7MhhELYOJTij3yCPDHH3KwzaVHKJmIipKJyF56SRow9NLSZD6RjRtlBMmJE1J7M7PNmyUpcXaWictCQ4H0dPl7/TqwZYtMxv7RR5LAVKtWbLtGRPnjqMdFR91vKhylFNJTU6HGjUNqjRpIGTMG/v7GSWh37dplaGzJyMiA59Wr6PzOO/CIjobOyQna774DBg8GAGzYsAHly5dHvXr1DCdzAGnYycjIgMf9cg5//vknRo0ahd69e6NXr17o3Lkz/Pz8soygjY6OxqpVq3D9+nXExcUhNjYWW7ZsQXJyMg4ePIiQwpx8IMqPl14Cvvwy6/IGDaRnbosWxR8TFZqjHhcddb8d0rffSge+Nm2A+3ObUjHq0wfYsAHo2FE6Vhbk/1tamsw3cuyYcdn48dK4URhjxki576ZNpXx4ly7GGO93uCFyVDZvGFm6dCmWLVuGnTt3ms17oL9+6tQps3IDVDBMfEqx778Hhg2Tyb537bJ1NCXDuHFSZ3P4cPkBayohQZKWI0ek7uY335jfv3078PDDQFIS8MwzwJIlsjw1FXjySak/XbkycPSoNK4QkV1y1OOio+43FaN794DRo4E1a6RH419/AZ075/vh3bp1w9atW82WeXp6olKlSggODsZzzz2HYcOGZfvY27dv4+rVq2jBE9NkTampknNfvQpERgI3bkg+GRsrPXCvXJFRJFQiOOpx0VH32yFduSId9Ro2lN+oLANYvP77T+YNSUgAGjeWTq3350zLU0aGdNQ0rVLx+OOSYxXGunXSSHbnjvnyAQMAk7KqRI7I5g0jepcvX8bSpUvx3XffISwsTDZ6v5EkNDQUp0+fLsrmHRYTn1Ls4EHpRRAYCISH2zqakmH3bqm5WaaMDG318jK/f+9eoF07qb955AjQpIks37VLJjBLSJDGkV9+kZEhevHxQPPmMkFn376SeHBSWCK75KjHRUfdbypmOp10Fvj5Z8DXV4679erl66GJiYnYsWMHNm3ahE2bNuHcuXOG++rWrYstW7YgmHN3kb2JjJT55WrWBN5/39bRUAE46nHRUffbISklnRbKlbN1JI7r0CEZlXHrljRQ7d4NmIyezdX69dK48n//B0RHy+iThx8ufCxr1kj5by8voH9/Gdnbo4f5vKlEDshuGkZM7dixA0uWLMHPP/+MhIQEaDQaltQqJCY+pVh0NODnJ9djY/N/gHVkSskP17AwYOVKQ5kPM6NGSQ3QV1+VmtKDBwOrVsl9PXrIyJDsJqc7cgRo21Z6E/r5Afv2AbVrW3d/iKjAHPW46Kj7TRaWni7lJHOTlAR06wbs2SM/vvfvB+rXL/BTJSYm4ubNm7h586ahFFduTp48CXd3d1StWhUu/JFPxU2nA7RauX7+vJwMGzTItjFRrhz1uOio+01kM5cvSxnv8HAph/7rr/kfvZOcLCMT16+XzpdFHfUTFiYjGzN3ECVyYJY6LmotGBM6d+6MpUuX4tatW1i8eDE6depkyc0TlQ6+vkCjRkCnTtJIQnnTaICnn5br33+f/TqLFgFvv22caPN+7XP06SPJSHaNIgDQrJnMKwJIz5w9e4AdO2SCs0WLLLYLRERENrFvn4y4HDNGOhrkxMMD+O036Rnp4gLUqmW8Lykp98ea8PT0RK1atdCpUyezRpEVK1ZgxowZWdZv164dateujStXruR3j4gsR98oEh8v89YNHizzAKan2zYuIiIg38deyqcvvpCyWCEh0hmyYUOge3fgzTel4cP09a5Wzdi5csMG4N138/887u6Sd/3+uzSKHD8uz3HhQuHirl6djSJEVmLRESNkOewRQpTJ2bNA3bqSWJw7B9Sokfv6kZHSoFK+fN7bVgp48UWZJC0iArh0yXjfr79KmS0isilHPS466n6TBeknEQWkVNZjj+W+flqa9JzXjxYJD5eylGPGAC+8UKgQzpw5g4YNG0Kn08Hb2xvPPfcc6tatCycnJzz//PMAgFu3bqFixYqF2j5RkWVkANOmAR98ILdbtgSGDpXyJ7Vrm5daXbBAJmxv1co2sTo4Rz0uOup+O6xr12R+zYsXgTNneFLcUurXl9czO5UqAdevZ13+449ScvG336SxpKB27AC6dpVzDlWqyLmMnDptElG+2eWIESIiqwkNlYQiI0Mmr8+rJ1+FCvlrFAHkx+5XXwHz5kmjiKur8b7Ro7NOdkZERFRSmM6tpdPlvb6Li3kJrbVrpePA5MkyeXUh1KtXDx9++CHatm2L2NhYfP755xgzZoyhUaR27doICAgo1LaJLMLJSerB//ijnIA8eBCYOFHyz6pVZVSx3pUrQJcuwN9/2yxcIirlKlSQE+jXrkkHPvZntgx9FQq9Ro2k4oSPD/DUU9k/5sknpcxiYRpFACAx0fj+XbtWuG0QkdWwYYTIlv75R3qjcS6e/Fm8GKhYUV6z/NTpTE8v2Gt79Kj8bd9eyobUry9zwISHFypcIiIim1u0SGpdb9sGPPFEwR8/dizQoQOQkCAjRgp5cmby5MlYvXo1Fi5ciFdeeQW9evVC06ZN8e677+Lw4cNwKmr9bSJLGDhQehN/9pmUV3FxkRNZe/bI/UpJA2NiorHmPBGRpbm5AStWSLm/5cvldzAV3WuvSYfIunXl9okT8n1euTLwySc5P850DrSbNwv2nL17Ax9+KKN316/naBEiO8NSWnaKQ2UdQGys9ECLjgbeeUeG71PeEhON84jkJjxcevn16SMTtufHX38B33wj5RFef11GjwQG5u/5iMiqHPW46Kj7TXbmzBmgaVMgNRX44QdOTk2OIy5OOjLVqQPUrCnLUlKkk87PP0tHneXLgSFDbBunA3HU46Kj7rfD++AD4K23ZCRbRARLalmKTgds3gwsXCgdKV96CejWzVg2MSNDOpYsWgRMmCBlzZQCXn5Zyinu2gW0bWvbfSBycJY6LrJhxE4x8XEQK1bIcE4PD+DyZRkyS/kXGys/SLNLEJcvB0aMkOuXL0sjVFEpZV5jmoiKjaMeFx11v8kOvfsuMH26lKk8cwbw97d1RES2k54OPPec5JsaDfDggzJx+3PP2TqyUs9Rj4uOut8OT6cDatUCwsI492VxCQsDBgyQMqKAnG/YtElGEY4cCSxZArRrB/z7L88NENkQ5xghKg2GDAFat5ayTR9+aOtoSpZ9+6T36pQp2d8fF2e8/uOPBdv2rFnA4cPGciE6HfD55zLfCBERkSN64w2gQQPg9m1g1ChbR0NkW87OcnJswgTJF7dskREkptj/MHfR0VKObNw4W0dCZL+0Wvl/AkgZJrK+wEAgJgbw9QU6dZLRIwMHAhcvyiTsnp5SXnHVKltHSkQWwIYRIlvSaKQHJgB8+aVMsEb5Ex8vvTkWLACOHMl6f506QM+ecr1y5fxv9+xZqT3aooUkoWlpwMmTwKRJ0iswOtoi4RMREZUorq5S49zJCbhwQU4aEDkyrRaYPVv+P3z8sUyQrHftGlCvnjSepKfbLES7ppSU5hszxtaRENk3/SiRw4dtG4ej8PAA1qwBzp8H/vxTSmZFRwOPPSaNJa+/Luu98gpw544NAyUiS2DDCJGt9ewJPPywnICfONHW0ZQc3bpJjXOdTnquZv7R+dBDMuT1yhUpbZCQAMyfD1y9mvt2dTrgySflBNDGjVLTtXFjmYg9NZWTbBIRkeNq3RrYvVs6JPj42DoaIvtQsyYwebLMa6c3e7Z0thk5EihXDmjUSDrcvPACMHeujLyylQMHJI/+v/+TvNdW/PwAb2/Js4koZ126yAiF/fttHYnjaN5cOoMcPSqNJBUqyHmE06elYaRePSAyUjpUElGJxoYRInvw+eeAiwvwxx8ykRflz+zZ8qPq0CFgzpzs1wkJkb+zZslQ/YYNgZ07c95mvXrA6tXSgw0APvlEGkj0E81yyCwRETmy1q1l1AgR5ey99ySH9PeX8q4nT0qev2CBTN577571Y1BKTqaOHGlegsfNDdi6Ffjf/6TzUEqK9WMhosJzcZFRC1qevis2X38tDSB9+kgHy19/BQ4eBFq2lO/Qb7+V6h9LlwK//27raImoCPjNSmQP6tSRXlurVgEdOtg6mpKjYkXg00/l+ttvA5cu5bzuhAmSxMTFSS+5b77JfduPPWaseTx8ONCxo1zfvBmIiip67ERERCVZYiKwcKHU3iYic56e0pP4xg3gzBkpx7JokYxEfvxxmUwZkMaLmTMt3zFq0yYZifHAA1LOa948432hoZLjurjIPHy9exesNN6tW7Yd8ULkyNLTedwtigkTAHd3qRDx1185j5obOlQaQe7cke/sJk1kdKBe/fpS7cPbm+USiUo4jVKcFc4excbGwsfHBzExMfD29rZ1OET2Symge3fp+da9uyQ4Gk32654+DXTtKsNeAWDFCmDIkJy3nZwMtGsnQ2hdXeUSHy/Dap991uK7QkQ5c9TjoqPuN9k5nU5OEpw8CXz1FTB2rK0jIiqZliyRER1eXtKQMnFi0cvU3b4t8+ulpkqt/CefBEaPlkYSU3//DQwYILltkybS67lKldy3feUKUK2aXI+IkPIyxcxRj4uOut9k4o03pHPfd99JgyYVTFoaUKaMfDfqPfOMfA9nJyICaNBAGkfeeQeYNk2Wb90KPPEEsG4dULWqXIio2FnquMgRI0T2IiNDel9SwWg00mPVzU16fyQk5LzuggXGRhGtVnrz5cbdXcpqBQTISJ74eCkfktePRiIiotJMq5WTuYCcyD1+3LbxEJVUgwZJx56EBDnxVqmS1LYfMKDwE/veuGE88XfjhpR6ydwoAsjz7tghI7CPHZORJFu35r5t/dx+zz8vnZOIqPgkJ8t3wnvv8f9fYTg7A7Vrmy/z8Mh+3Zdekrmh9N/BpustXizlED/5hI0iRKUAG0aI7MXatTIfxuzZto6k5KlVCzhxAvjtN+kFkpMnnwQefFAmYb9xA+jfP+9t16kDXLwo2544ETh3Tn5IEhERObIJE6THanKyzFOQlGTriIhKHg8PKbP1008yz11CAnDkiPREnjNHyl3pvf22lHTZuzf3bTZoIJ17gLzLvzZvDuzeDbRvLyNVWrfOff3q1aX2/qJF0qBCRMXn9dflO2PPHvN5gyh/NBo5Z7BunVSOCAszLzNoKiVFRt9pNMCrr5pPsj59uixfv17yoKNHiyN6IrISltKyUxwq62CUAlq1kknEp02THmNERGTgqMdFR91vKiEiI2Ueg4gImbPgyy9tHRFRyZWRIWVfr1yRS3g48P77xvsfekjKXwFAp05ykrRaNZnzw99fymHpdeok85Z88YX0fM6LUsC1a9JJC5CRIePHA889B7RoYbFdtARHPS466n5TJlOnAh9+KKPA/v3X1tGUHkpJQ0mNGnL77Fmp5lGzpswjktnjjwO//CLXAwPl+9PZufjiJSKW0ioJ5s2bh2rVqsHd3R1t2rTB/v37bR0S2astW6RRxMMjfz9eKGcREfIahofbOhIiIgDMB6gUq1ABWLZMrs+bl7UHq07HSWKJ8svJSUq39OkjDY2mjSIA8OmnUsLOxQXYuRN45BEZHdKtm4wu0UtLAyZNkpN248bl77k1GmOjCCD/r7/6SkaQvPQSEB2d/eOUAvbvB+7eLdCuOjLmBFQkL74of/fuBWJjbRtLabJ7tzSCPPmkfK+FhgLNmmXfKAIAU6YYrw8fLt/fhw5JQzURlShsGLGS1atXY9KkSZg+fToOHz6MJk2aoGfPnojUz29AZOqLL+TviBEyn4WjOHcO6NdPhu/v2mWZbT72mPRYnTXLMtsjIioC5gNU6vXsKaUmAZkYVqeTkwPjxkkv9oYNgfPnbRsjUUkWGQn89Zc0iHz7LXDpEtC3r/k6S5ZIA0mNGoCrq5R+6d1b5gNKTpZRH716ydwgb7whtfG/+07mFDl3znyeQ6WA9HQpx6XTSV7doUP2cxosXQq0aSMNKGwEzRNzAiqyKlXkBL5OB6xZY+toSrawMGlEbtHCWCrb11caivPSpo1MwF6xojQev/UW0LKljKJlUR6iEoVjvazks88+w6hRo/Dss88CABYsWIANGzZg8eLFeOONN2wcHdkdPz/5++ef0iPL19eW0VhfUhIwcybw0UfGySH1lJJRH+fOyRDWsDCZiLJJE+lF5+Njvn5EhMwXcuOGnIjZs0eW+/sXz74QEeWC+QA5hJkz5cTqyy9LD0vTydijo4G2baWmd8eOtoqQKHcxMcD27VIKxclJLhqNXLRamWBXX2IlPl5K2KSmSh36jAzpVezjIzl8UJAxt09JkZr2KSnGS0yMTNx7757MKzJggKyblAR88IHUtb99WxpELl40joJ+/XUpoVO5MjB3rsx/Z8p04nRvb2kgAaQh5fDh3Pe/Tx/g99/lukYj/5eTk433+/tnf7LQ11cmgv7xR3mdKFfMCcginn5aSm/PmSMdK52cbB1R8bt6Vb7znnnGuOzHH+U76aGHcm/cOHMGmDFDGpZ0OuPy8uXleza/fvzR+Dze3vId+OCDsk1HfE+ISig2jFhBamoqDh06hKlTpxqWabVadO/eHXv0J20zSUlJQUpKiuF2TEwMAKmZRg7g3Xflx1hYGDB0KLByZf56KtiD1FTgwAGZdOz0aUk0zp+XpCQ0FPjhB+PEkd98Iz/ONmwALl+WZe3aAZ07S8NHbKw0jNStKz8as/P448DixcbbtWrJD1RTzz8vw4z5/4eo1NAfD0vS1GjMB8ihfPyx/NVo5ITso4/KKM7PPpOOC926yejQevUKtt07d+Q4HxJScnIjMkpPl9JO+rJq6emSn/n4GBsPYmMlj3Rxkfc4Pd24bmSk5Ij168u6UVEy0jo4WEZZ60c36C/Nmxvn2ggLk3JQ9+5JqafERGmYSEqSSc5ffllyRkAaL/r3z3k/Xn1V5gEEpPNOr145rzt+PPB//yfXr1yReQRz8txz8n9Dv2+Zy2fp1aoFuLkZc1svL2Nvcf0+ZWRIo0mtWtKLWZ8fe3vLuleuyOtw9678v4qIAG7elMudO+Z5c6tW0hjUtq3k6jVrZp9Xd+sGdO0qPabj4nLeTwsqifkAUPCcgPkA5WjCBPk+e/FF+S6zB0rJd623d95zbURFSWPtjRvyvREXJ98vCQlyefddGRkDGCdKB+Q7TX+5dEmWNW0qjdYpKfI9FBkp5xKqVJHvunv3pIPGgAGSjwDS2Pzjj3L9wQelFFbjxjJnk5NT4c4hvPgiMHq07Lu9vCdEpZzF8gFFFnfjxg0FQO3evdts+eTJk1Xr1q2zfcz06dMVAF544YUXXnjhJZfLtWvXiuNQbhHMB3jhhRdeeOHFOpeSlA8oVfCcgPkAL7zwwgsvvOR9KWo+wBEjdmLq1KmYNGmS4bZOp8Pdu3fh4uKCkJAQXLt2Dd45TfxUSsXGxqJKlSrcd+67w+C+c9+57zlTSiEuLg7BwcHFFJ1tMB/Iiv9HuO/cd8fBfee+Mx8QzAey4v8R7jv33XE48r4Djr3/+d13S+UDbBixgoCAADg5OSEiIsJseUREBAIDA7N9jJubG9zc3MyW+fr6GoYGeXt7O9x/Bj3uO/fd0XDfue+OJr/77pN5jiE7x3zAsrjv3HdHw33nvjua0poPAAXPCZgP5Iz7zn13NNx3x9x3wLH3Pz/7bol8gDOkWYGrqytatGiBLVu2GJbpdDps2bIF7dq1s2FkREREVFyYDxARERHAnICIiMgeccSIlUyaNAkjRoxAy5Yt0bp1a8yePRsJCQl49tlnbR0aERERFRPmA0RERAQwJyAiIrI3bBixkqeeegq3b9/GtGnTcOvWLTRt2hSbNm1CxYoVC7QdNzc3TJ8+PcswWkfAfee+OxruO/fd0TjCvjMfKDruO/fd0XDfue+OxlH23RI5gaO8VtnhvnPfHQ333TH3HXDs/S/ufdcopVSxPBMREREREREREREREZGNcY4RIiIiIiIiIiIiIiJyGGwYISIiIiIiIiIiIiIih8GGESIiIiIiIiIiIiIichhsGCEiIiIiIiIiIiIiIofBhhE7Nm/ePFSrVg3u7u5o06YN9u/fb+uQimzGjBnQaDRml7p16xruT05Oxrhx4+Dv748yZcrg8ccfR0REhNk2rl69ikceeQSenp6oUKECJk+ejPT09OLelTzt3LkTjz76KIKDg6HRaLBu3Tqz+5VSmDZtGoKCguDh4YHu3bvj/PnzZuvcvXsXQ4cOhbe3N3x9ffHcc88hPj7ebJ3jx4+jY8eOcHd3R5UqVfDxxx9be9fylNe+P/PMM1k+B7169TJbpyTu+8yZM9GqVSuULVsWFSpUQP/+/XH27FmzdSz1Gd++fTuaN28ONzc31KpVC0uXLrX27uUpP/vfpUuXLO/92LFjzdYpifv/1VdfoXHjxvD29oa3tzfatWuHjRs3Gu4vze97XvteWt/z4sR8gPlASTwmAo6bDwCOnRMwH2A+wHzAekpbTsB8wIj5APOB0nZsYD7AfKBE5AOK7NKqVauUq6urWrx4sTp16pQaNWqU8vX1VREREbYOrUimT5+uGjRooMLDww2X27dvG+4fO3asqlKlitqyZYs6ePCgatu2rXrggQcM96enp6uGDRuq7t27qyNHjqg//vhDBQQEqKlTp9pid3L1xx9/qLfeekv98ssvCoBau3at2f0ffvih8vHxUevWrVPHjh1Tffv2VdWrV1dJSUmGdXr16qWaNGmi9u7dq3bt2qVq1aqlBg8ebLg/JiZGVaxYUQ0dOlSdPHlS/fDDD8rDw0MtXLiwuHYzW3nt+4gRI1SvXr3MPgd37941W6ck7nvPnj3VkiVL1MmTJ9XRo0fVww8/rEJCQlR8fLxhHUt8xi9duqQ8PT3VpEmT1OnTp9XcuXOVk5OT2rRpU7Hub2b52f/OnTurUaNGmb33MTExhvtL6v7/9ttvasOGDercuXPq7Nmz6s0331QuLi7q5MmTSqnS/b7nte+l9T0vLswHmA8oVTKPiUo5bj6glGPnBMwHmA8wH7CO0pgTMB8wYj7AfKC0HRuYDzAfKAn5ABtG7FTr1q3VuHHjDLczMjJUcHCwmjlzpg2jKrrp06erJk2aZHtfdHS0cnFxUT/99JNh2ZkzZxQAtWfPHqWUHFC1Wq26deuWYZ2vvvpKeXt7q5SUFKvGXhSZD/46nU4FBgaqTz75xLAsOjpaubm5qR9++EEppdTp06cVAHXgwAHDOhs3blQajUbduHFDKaXU/PnzlZ+fn9m+v/766yo0NNTKe5R/OSU+/fr1y/ExpWXfIyMjFQC1Y8cOpZTlPuNTpkxRDRo0MHuup556SvXs2dPau1QgmfdfKTkITpgwIcfHlKb99/PzU998843Dve9KGfddKcd6z62B+YBgPlDyj4mOnA8o5dg5AfMB5gNKOdZ7bi2lMSdgPiCYDzAfcIRjA/MB5gNK2d97zlJadig1NRWHDh1C9+7dDcu0Wi26d++OPXv22DAyyzh//jyCg4NRo0YNDB06FFevXgUAHDp0CGlpaWb7XbduXYSEhBj2e8+ePWjUqBEqVqxoWKdnz56IjY3FqVOnindHiiAsLAy3bt0y21cfHx+0adPGbF99fX3RsmVLwzrdu3eHVqvFvn37DOt06tQJrq6uhnV69uyJs2fP4t69e8W0N4Wzfft2VKhQAaGhoXjhhRdw584dw32lZd9jYmIAAOXKlQNguc/4nj17zLahX8fevh8y77/eihUrEBAQgIYNG2Lq1KlITEw03Fca9j8jIwOrVq1CQkIC2rVr51Dve+Z91yvt77m1MB9gPgCUnmNiThwhHwAcOydgPsB8QK+0v+fWVJpzAuYDzAcA5gOOcGxgPsB8QM+e3nPnAj+CrC4qKgoZGRlmHwIAqFixIv777z8bRWUZbdq0wdKlSxEaGorw8HC888476NixI06ePIlbt27B1dUVvr6+Zo+pWLEibt26BQC4detWtq+L/r6SQh9rdvtiuq8VKlQwu9/Z2RnlypUzW6d69epZtqG/z8/PzyrxF1WvXr3w2GOPoXr16rh48SLefPNN9O7dG3v27IGTk1Op2HedTodXXnkF7du3R8OGDQ1xWeIzntM6sbGxSEpKgoeHhzV2qUCy238AGDJkCKpWrYrg4GAcP34cr7/+Os6ePYtffvkFQMne/xMnTqBdu3ZITk5GmTJlsHbtWtSvXx9Hjx4t9e97TvsOlO733NqYD/iaPYb5gFFJOybmxBHyAcCxcwLmA8wHmA9YRmnNCZgPCOYDzAdK87EBYD7AfMB+8wE2jFCx6t27t+F648aN0aZNG1StWhU//vijzb+oqfgMGjTIcL1Ro0Zo3Lgxatasie3bt6Nbt242jMxyxo0bh5MnT+Kff/6xdSg2kdP+jx492nC9UaNGCAoKQrdu3XDx4kXUrFmzuMO0qNDQUBw9ehQxMTFYs2YNRowYgR07dtg6rGKR077Xr1+/VL/nVHjMBwhwjHwAcOycgPkA8wHmA5Qb5gMEMB9wBMwHmA/Yaz7AUlp2KCAgAE5OToiIiDBbHhERgcDAQBtFZR2+vr6oU6cOLly4gMDAQKSmpiI6OtpsHdP9DgwMzPZ10d9XUuhjze09DgwMRGRkpNn96enpuHv3bql7PWrUqIGAgABcuHABQMnf9/Hjx2P9+vXYtm0bKleubFhuqc94Tut4e3vbxQ+InPY/O23atAEAs/e+pO6/q6sratWqhRYtWmDmzJlo0qQJ5syZ4xDve077np3S9J5bG/OBaLN1mA8YlaRjYkGUtnwAcOycgPkA8wHmA5bjKDkB8wHmAwDzAaB0HRuYDzAfsOd8gA0jdsjV1RUtWrTAli1bDMt0Oh22bNliVpOtNIiPj8fFixcRFBSEFi1awMXFxWy/z549i6tXrxr2u127djhx4oTZQXHz5s3w9vY2DMsqCapXr47AwECzfY2NjcW+ffvM9jU6OhqHDh0yrLN161bodDrDF0e7du2wc+dOpKWlGdbZvHkzQkND7WKoaH5dv34dd+7cQVBQEICSu+9KKYwfPx5r167F1q1bswzltdRnvF27dmbb0K9j6++HvPY/O0ePHgUAs/e+pO5/ZjqdDikpKaX+fc+Oft+zU5rfc0tjPsB8ACi5x8TCKC35AODYOQHzAXPMB5gPWIKj5ATMB5gPAMwHSsuxgfmAOeYDdpoPFHi6dioWq1atUm5ubmrp0qXq9OnTavTo0crX11fdunXL1qEVyauvvqq2b9+uwsLC1L///qu6d++uAgICVGRkpFJKqbFjx6qQkBC1detWdfDgQdWuXTvVrl07w+PT09NVw4YNVY8ePdTRo0fVpk2bVPny5dXUqVNttUs5iouLU0eOHFFHjhxRANRnn32mjhw5oq5cuaKUUurDDz9Uvr6+6tdff1XHjx9X/fr1U9WrV1dJSUmGbfTq1Us1a9ZM7du3T/3zzz+qdu3aavDgwYb7o6OjVcWKFdWwYcPUyZMn1apVq5Snp6dauHBhse+vqdz2PS4uTr322mtqz549KiwsTP3999+qefPmqnbt2io5OdmwjZK47y+88ILy8fFR27dvV+Hh4YZLYmKiYR1LfMYvXbqkPD091eTJk9WZM2fUvHnzlJOTk9q0aVOx7m9mee3/hQsX1LvvvqsOHjyowsLC1K+//qpq1KihOnXqZNhGSd3/N954Q+3YsUOFhYWp48ePqzfeeENpNBr1119/KaVK9/ue276X5ve8uDAfYD6gVMk8JirluPmAUo6dEzAfYD7AfMA6SmNOwHyA+QDzgdJ7bGA+wHygJOQDbBixY3PnzlUhISHK1dVVtW7dWu3du9fWIRXZU089pYKCgpSrq6uqVKmSeuqpp9SFCxcM9yclJakXX3xR+fn5KU9PTzVgwAAVHh5uto3Lly+r3r17Kw8PDxUQEKBeffVVlZaWVty7kqdt27YpAFkuI0aMUEoppdPp1Ntvv60qVqyo3NzcVLdu3dTZs2fNtnHnzh01ePBgVaZMGeXt7a2effZZFRcXZ7bOsWPHVIcOHZSbm5uqVKmS+vDDD4trF3OU274nJiaqHj16qPLlyysXFxdVtWpVNWrUqCwJfUnc9+z2GYBasmSJYR1Lfca3bdummjZtqlxdXVWNGjXMnsNW8tr/q1evqk6dOqly5copNzc3VatWLTV58mQVExNjtp2SuP8jR45UVatWVa6urqp8+fKqW7duhqRHqdL9vue276X5PS9OzAeYD5TEY6JSjpsPKOXYOQHzAeYDzAesp7TlBMwHmA8wHyi9xwbmA8wHSkI+oFFKqYKPMyEiIiIiIiIiIiIiIip5OMcIERERERERERERERE5DDaMEBERERERERERERGRw2DDCBEREREREREREREROQw2jBARERERERERERERkcNgwwgRERERERERERERETkMNowQEREREREREREREZHDYMMIERERERERERERERE5DDaMEBERERERERERERGRw2DDCBGVKtu3b4dGo0F0dHSxP7dGo4FGo4Gvr2++1tfHqtFo0L9/f6vGRkRE5EiYDxARERHzASLKDRtGiKjE6tKlC1555RWzZQ888ADCw8Ph4+Njk5iWLFmCc+fO5WtdfaxPPvmklaMiIiIqvZgPEBEREfMBIiooNowQUani6uqKwMBAaDQamzy/r68vKlSokK919bF6eHhYOSoiIiLHwnyAiIiImA8QUW7YMEJEJdIzzzyDHTt2YM6cOYbhppcvX84yVHbp0qXw9fXF+vXrERoaCk9PTzzxxBNITEzEsmXLUK1aNfj5+eHll19GRkaGYfspKSl47bXXUKlSJXh5eaFNmzbYvn17geM8duwYunbtirJly8Lb2xstWrTAwYMHLfQqEBEROTbmA0RERMR8gIgKw9nWARARFcacOXNw7tw5NGzYEO+++y4AoHz58rh8+XKWdRMTE/HFF19g1apViIuLw2OPPYYBAwbA19cXf/zxBy5duoTHH38c7du3x1NPPQUAGD9+PE6fPo1Vq1YhODgYa9euRa9evXDixAnUrl0733EOHToUzZo1w1dffQUnJyccPXoULi4uFnkNiIiIHB3zASIiImI+QESFwYYRIiqRfHx84OrqCk9PTwQGBua6blpaGr766ivUrFkTAPDEE0/gu+++Q0REBMqUKYP69euja9eu2LZtG5566ilcvXoVS5YswdWrVxEcHAwAeO2117Bp0yYsWbIEH3zwQb7jvHr1KiZPnoy6desCQIGSJiIiIsod8wEiIiJiPkBEhcGGESIq9Tw9PQ1JDwBUrFgR1apVQ5kyZcyWRUZGAgBOnDiBjIwM1KlTx2w7KSkp8Pf3L9BzT5o0Cc8//zy+++47dO/eHQMHDjSLhYiIiIoH8wEiIiJiPkBEemwYIaJSL/PQVI1Gk+0ynU4HAIiPj4eTkxMOHToEJycns/VMk6X8mDFjBoYMGYINGzZg48aNmD59OlatWoUBAwYUYk+IiIiosJgPEBEREfMBItJjwwgRlViurq5mE6JZSrNmzZCRkYHIyEh07NixyNurU6cO6tSpg4kTJ2Lw4MFYsmQJEx8iIiILYT5AREREzAeIqKC0tg6AiKiwqlWrhn379uHy5cuIiooy9Ogoqjp16mDo0KEYPnw4fvnlF4SFhWH//v2YOXMmNmzYkO/tJCUlYfz48di+fTuuXLmCf//9FwcOHEC9evUsEicRERExHyAiIiLmA0RUcGwYIaIS67XXXoOTkxPq16+P8uXL4+rVqxbb9pIlSzB8+HC8+uqrCA0NRf/+/XHgwAGEhITkextOTk64c+cOhg8fjjp16uDJJ59E79698c4771gsTiIiIkfHfICIiIiYDxBRQWmUUsrWQRARlQYajQZr165F//79C/S4Z555BtHR0Vi3bp1V4iIiIqLiw3yAiIiImA8Q2T+OGCEisqDBgwejcuXK+Vp3165dKFOmDFasWGHlqIiIiKg4MR8gIiIi5gNE9o0jRoiILOTChQsAZIhs9erV81w/KSkJN27cAACUKVMGgYGBVo2PiIiIrI/5ABERETEfILJ/bBghIiIiIiIiIiIiIiKHwVJaRERERERERERERETkMNgwQkREREREREREREREDoMNI0RERERERERERERE5DDYMEJERERERERERERERA6DDSNEREREREREREREROQw2DBCREREREREREREREQOgw0jRERERERERERERETkMNgwQkREREREREREREREDoMNI0RERERERERERERE5DDYMEJERERERERERERERA6DDSNEREREREREREREROQw2DBCREREREREREREREQOgw0jRERERERERERERETkMNgwQkREREREREREREREDoMNI0RERERERERERERE5DDYMEJERERERERERERERA6DDSNERCXUgAED4OfnhyeeeMLWoQCwv3iIiIgchb0dg+0tHiIiIkdgb8dfe4uHKDM2jBARlVATJkzA8uXLbR2Ggb3FQ0RE5Cjs7Rhsb/EQERE5Ans7/tpbPESZsWGEyM506dIFr7zyikPEYA/7Wly6dOkCjUYDjUaDo0ePWmybZcuWzfe61n6tc4rnmWeeMez7unXrrBoDEVFpYg/HSeYElsecgDkBEVFB2MMxkvmA5TEfYD5AtseGESIHl93B8JdffsF7771XIp/HkiydKIwaNQrh4eFo2LChxbZZEsyZMwfh4eG2DoOIiPLAnCBnzAksgzkBEZH9Yz6QM+YDlsF8gOyFs60DICL7U65cuVL1PJmlpqbC1dW12J/X09MTgYGB+V6/adOmSE9Pz7L8r7/+QnBwsCVDs2o8Pj4+8PHxsWZoRERkJcwJrIM5ARERlSTMB6yD+QCRbXHECJENJSQkYPjw4ShTpgyCgoIwa9Yss/t1Oh1mzpyJ6tWrw8PDA02aNMGaNWvM1tm0aRM6dOgAX19f+Pv7o0+fPrh48aLZNj7++GPUqlULbm5uCAkJwf/93/8BkOGLO3bswJw5cwzDGC9fvmzWC+Lrr79GcHAwdDqd2fP269cPI0eOzFcM+XkeQHpfvPzyy5gyZQrKlSuHwMBAzJgxw+x54+LiMHToUHh5eSEoKAiff/55nr02unTpgvHjx+OVV15BQEAAevbsmWfcOcWc3/clP9asWYNGjRrBw8MD/v7+6N69OxISEgz3Hz16FCdPnsxysUTCs2HDBvj4+GDFihUA8ve6WjMeIiJHx5yAOQFzAiIiYj7AfID5AFHxYcMIkQ1NnjwZO3bswK+//oq//voL27dvx+HDhw33z5w5E8uXL8eCBQtw6tQpTJw4EU8//TR27NhhWCchIQGTJk3CwYMHsWXLFmi1WgwYMMCQpEydOhUffvgh3n77bZw+fRorV65ExYoVAcjwxXbt2hmGb4aHh6NKlSpmMQ4cOBB37tzBtm3bDMvu3r2LTZs2YejQofmKIT/Po7ds2TJ4eXlh3759+Pjjj/Huu+9i8+bNhvsnTZqEf//9F7/99hs2b96MXbt2mb1mOVm2bBlcXV3x77//YsGCBXnGnVvM+Xlf8hIeHo7Bgwdj5MiROHPmDLZv347HHnsMSql8b6OwVq5cicGDB2PFihWG97CwrysREVkGc4KsmBMwJyAicjTMB7JiPsB8gMhqFBHZRFxcnHJ1dVU//vijYdmdO3eUh4eHmjBhgkpOTlaenp5q9+7dZo977rnn1ODBg3Pc7u3btxUAdeLECRUbG6vc3NzUokWLcly/c+fOasKECbku69evnxo5cqTh9sKFC1VwcLDKyMjIM4aCPE/nzp1Vhw4dzNZp1aqVev3115VSSsXGxioXFxf1008/Ge6Pjo5Wnp6eWbad+XmaNWuW4/05xZ1dzIV9XzJv69ChQwqAunz5cp5x5aRbt24qICBAeXh4qEqVKmWJKbvn//LLL5WPj4/avn274b7Cvq4FjQeAWrt2bb63R0TkKJgTMCdgTkBERMwHmA8wHyAqXpxjhMhGLl68iNTUVLRp08awrFy5cggNDQUAXLhwAYmJiXjooYfMHpeamopmzZoZbp8/fx7Tpk3Dvn37EBUVZeiBcfXqVSQmJiIlJQXdunUrUqxDhw7FqFGjMH/+fLi5uWHFihUYNGgQtFptnjEUdBKxxo0bm90OCgpCZGQkAODSpUtIS0tD69atDff7+PgYXrPctGjRIsuywsSd3/clL02aNEG3bt3QqFEj9OzZEz169MATTzwBPz+/fG/j77//zve6gAzLjYyMxL///otWrVoZlhfldS1KPEREJJgTZI85AXMCIiJHwnwge8wHmA8QWQsbRojsVHx8PACp81ipUiWz+9zc3AzXH330UVStWhWLFi0y1Pls2LAhUlNT4eHhYZFYHn30USilsGHDBrRq1Qq7du3C559/nq8YCsrFxcXstkajyVK7tDC8vLyyLCtM3Pl9X/Li5OSEzZs3Y/fu3fjrr78wd+5cvPXWW9i3bx+qV6+e7+0URLNmzXD48GEsXrwYLVu2hEajscrzEBGRZTEnEMwJLIc5ARFRycN8QDAfsBzmA+ToOMcIkY3UrFkTLi4u2Ldvn2HZvXv3cO7cOQBA/fr14ebmhqtXr6JWrVpmF30dyzt37uDs2bP43//+h27duqFevXq4d++eYXu1a9eGh4cHtmzZkmMcrq6uyMjIyDVWd3d3PPbYY1ixYgV++OEHhIaGonnz5vmKoSDPk5caNWrAxcUFBw4cMCyLiYkxvGYFkZ+4s4s5P+9Lfmk0GrRv3x7vvPMOjhw5AldXV6xdu7bA+5JfNWvWxLZt2/Drr7/ipZdeMiy35OtKREQFx5yg4JgTFA1zAiIi+8N8oOCYDxQN8wFydBwxQmQjZcqUwXPPPYfJkyfD398fFSpUwFtvvWUYelq2bFm89tprmDhxInQ6HTp06ICYmBj8+++/8Pb2xogRI+Dn5wd/f398/fXXCAoKwtWrV/HGG28YnsPd3R2vv/46pkyZAldXV7Rv3x63b9/GqVOn8NxzzwEAqlWrhn379uHy5csoU6YMypUrl228Q4cORZ8+fXDq1Ck8/fTThuV5xaCX3+fJTdmyZTFixAhMnjwZ5cqVQ4UKFTB9+nRotdoC92zIT9zZxZyf9yU/9u3bhy1btqBHjx6oUKEC9u3bh9u3b6NevXoF2o+CqlOnDrZt24YuXbrA2dkZs2fPtujrSkREBcecgDkBcwIiImI+wHyA+QBR8WLDCJENffLJJ4iPj8ejjz6KsmXL4tVXX0VMTIzh/vfeew/ly5fHzJkzcenSJfj6+qJ58+Z48803AQBarRarVq3Cyy+/jIYNGyI0NBRffPEFunTpYtjG22+/DWdnZ0ybNg03b95EUFAQxo4da7j/tddew4gRI1C/fn0kJSUhLCws21gffPBBlCtXDmfPnsWQIUMMy/MTQ0GeJy+fffYZxo4diz59+sDb2xtTpkzBtWvX4O7uXqDt5Cfu7GKuVq1anu9Lfnh7e2Pnzp2YPXs2YmNjUbVqVcyaNQu9e/cu0H4URmhoKLZu3YouXbrAyckJs2bNstjrSkREhcOcoOCYExQdcwIiIvvCfKDgmA8UHfMBclQapZSydRBERIWVkJCASpUqYdasWYYeLvaoS5cuaNq0KWbPnm3rUPLFGq+rRqPB2rVr0b9/f4tsj4iIyBRzAutgTkBERCUJ8wHrYD5ApRHnGCGiEuXIkSP44YcfcPHiRRw+fBhDhw4FAPTr18/GkeVt/vz5KFOmDE6cOGHrULKw5us6duxYlClTpsjbISIiMsWcwDqYExARUUnCfMA6mA+QI+CIESIqUY4cOYLnn38eZ8+ehaurK1q0aIHPPvsMjRo1snVoubpx4waSkpIAACEhIXB1dbVxROas+bpGRkYiNjYWABAUFAQvL68ib5OIiIg5gXUwJyAiopKE+YB1MB8gR8CGESIiIiIiIiIiIiIichgspUVERERERERERERERA6DDSNEREREREREREREROQw2DBCREREREREREREREQOgw0jRERERERERERERETkMNgwQgRg/fr1CA0NRe3atfHNN9/YOhyykejoaLRs2RJNmzZFw4YNsWjRIluHRDYWFhaGrl27on79+mjUqBESEhJsHRIRWRHzAdJjTkCmmA8QORbmA6THfIBMMR8ofTRKKWXrIIhsKT09HfXr18e2bdvg4+ODFi1aYPfu3fD397d1aFTMMjIykJKSAk9PTyQkJKBhw4Y4ePAgPwsOrHPnznj//ffRsWNH3L17F97e3nB2drZ1WERkBcwHyBRzAjLFfIDIcTAfIFPMB8gU84HShyNGyOHt378fDRo0QKVKlVCmTBn07t0bf/31l63DIhtwcnKCp6cnACAlJQVKKbDt2HGdOnUKLi4u6NixIwCgXLlyTHqISjHmA2SKOQHpMR8gcizMB8gU8wHSYz5QOrFhhEq8nTt34tFHH0VwcDA0Gg3WrVuXZZ158+ahWrVqcHd3R5s2bbB//37DfTdv3kSlSpUMtytVqoQbN24UR+hkYUX9LAAyVLZJkyaoXLkyJk+ejICAgGKKniytqJ+H8+fPo0yZMnj00UfRvHlzfPDBB8UYPREVFPMBMsWcgPSYDxA5FuYDZIr5AOkxH6DssGGESryEhAQ0adIE8+bNy/b+1atXY9KkSZg+fToOHz6MJk2aoGfPnoiMjCzmSMnaLPFZ8PX1xbFjxxAWFoaVK1ciIiKiuMInCyvq5yE9PR27du3C/PnzsWfPHmzevBmbN28uzl0gogJgPkCmmBOQHvMBIsfCfIBMMR8gPeYDlC1FVIoAUGvXrjVb1rp1azVu3DjD7YyMDBUcHKxmzpyplFLq33//Vf379zfcP2HCBLVixYpiiZespzCfhcxeeOEF9dNPP1kzTComhfk87N69W/Xo0cNw/8cff6w+/vjjYomXiIqG+QCZYk5AeswHiBwL8wEyxXyA9JgPkB5HjFCplpqaikOHDqF79+6GZVqtFt27d8eePXsAAK1bt8bJkydx48YNxMfHY+PGjejZs6etQiYryc9nISIiAnFxcQCAmJgY7Ny5E6GhoTaJl6wrP5+HVq1aITIyEvfu3YNOp8POnTtRr149W4VMREXAfIBMMScgPeYDRI6F+QCZYj5AeswHHBdniaFSLSoqChkZGahYsaLZ8ooVK+K///4DADg7O2PWrFno2rUrdDodpkyZAn9/f1uES1aUn8/ClStXMHr0aMOEai+99BIaNWpki3DJyvL73fDBBx+gU6dOUEqhR48e6NOnjy3CJaIiYj5AppgTkB7zASLHwnyATDEfID3mA46LDSNEAPr27Yu+ffvaOgyysdatW+Po0aO2DoPsSO/evdG7d29bh0FExYT5AOkxJyBTzAeIHAvzAdJjPkCmmA+UPiylRaVaQEAAnJycskyOFRERgcDAQBtFRbbAzwKZ4ueByLHw/zyZ4ueB9PhZIHIs/D9Ppvh5ID1+FhwXG0aoVHN1dUWLFi2wZcsWwzKdToctW7agXbt2NoyMihs/C2SKnwcix8L/82SKnwfS42eByLHw/zyZ4ueB9PhZcFwspUUlXnx8PC5cuGC4HRYWhqNHj6JcuXIICQnBpEmTMGLECLRs2RKtW7fG7NmzkZCQgGeffdaGUZM18LNApvh5IHIs/D9Ppvh5ID1+FogcC//Pkyl+HkiPnwXKliIq4bZt26YAZLmMGDHCsM7cuXNVSEiIcnV1Va1bt1Z79+61XcBkNfwskCl+HogcC//Pkyl+HkiPnwUix8L/82SKnwfS42eBsqNRSimrtLgQERERERERERERERHZGc4xQkREREREREREREREDoMNI0RERERERERERERE5DDYMEJERERERERERERERA6DDSNEREREREREREREROQw2DBCREREREREREREREQOgw0jRERERERERERERETkMNgwQkREREREREREREREDoMNI+QQUlJSMGPGDKSkpNg6FJvi6yD4Ogi+DoKvA5Fj4f95vgZ6fB0EXwfB14HIsfD/vODrwNdAj6+D4OvgWDRKKWXrIIisLTY2Fj4+PoiJiYG3t7etw7EZvg6Cr4Pg6yD4OhA5Fv6f52ugx9dB8HUQfB2IHAv/zwu+DnwN9Pg6CL4OjoUjRojyMG/evALfl3m56e28ruf2fHnJ67GLFi3K1+PsJd6S9vpmd39ey+zt82DP8ebn9c3PZyOnfSAiyk1xf0cV9fspt8cXJh/IfLs44y1MPpBTbMxfsioN+aEt8xciciwl7TeLJX4T2lO8JSnfKmr+Ynq9JOSH9pAP5BZffq4zH3BAisgBxMTEKAAqJiamwI+tV69ege/LvNz0dl7Xc3u+vOT12NDQ0GxfB3uN11qvb2E/D4WJN69l9vZ5sOd48/P65uezkXlZUb4fiKjkseUxoCDfUUX5Ps3r8YXJB2wZb2HygZxis1U+kFe89pYP2HO81sq3mA8QOZaSkg/k5zkLGo+p/PwmtKd4rZFv2dP5ovzEWxTWzA/tIR/ILb78XGc+4HicbdAWQ1Ts1P2KcT/99BM8PDwK9NiYmBisXLmyQPdlXm56O6/ruT1fUWIFZEggkPV1sNd4rfX6/vTTTwAK/nkoTLx5LbO3z4M9x5uf1zc/n43My9asWVOoeImoZDp48CAA2xwDCvIdVZTv07ziLUw+YMt4C5MPZBdj5mXFmQ/kFa+95QP2HK+18i3954GIHMOlS5cA2H8+kJ/nLEq8+flNaE/xWiPfKmw+kFe8Rc1fcorXXvNDe8gH8oqX+QBlxjlGyCHs2bMHHTp0QOs2baHVagAAWT74Kvubt8LDERgUBChAZVop4lY4KgYGmS9VWZfL7cD712+hQkW5Hhkh15UyXjcsA4D7/z0zb988CmNUURERCKhQ0fwxyrhOVOQtZKRnoHxgEDQaYyW9O7cjUC6gouFRd6IiUS6gAgDg7m2T61ER8AuoaHK9Au5FRcLPv0I+4kSW1zD6TiR8y5k8NtPXUfTdSPj6VZDHmNwVc+82fHzLGzYacy8K3r4Bcl90FHx8AwAFxETfluUKiI2JgrdPAGKjo1DWuxyi70XC17cCNBqNWXxmV5T5zdi4KHiX8c9mfbkRG3cX3mXKmd0fG39HHmOyb7Hxd+HtJevFJtyFt6efyfX7yxPvwtvDD7GJ9+R+w0uQ6YXN/kWWbSRHw9vNN9O6xn2LTbmHDKWDr5sfNJDXITYlGt6uPmZPE5cag7IuUlszLi0GZZ29AQXEpcdmul5W/jqVzfr/SWV6TTO9xgoK8bp4lNGWMXm/lclboJCgEuCl8TLcr6CQqBLhofE0rCW3Pe4/J5CERLjDA4BCEpLhAXckIRnucDcsc4ITEpCAWqiJw/FH4OXllflFJaJSxN3dHeXK+aNqtWrZ5wSFyAcA4Nb9Y7/pA3PLB+R21pxAv6wo+QAUEBUpOUFB8wH/8hXvP53CnahI+AdUMGzj7v18QUHygHIBFS2SD0DdP+aXq5BDPnAbvn7ljXt5/+7c8gHT+y2WD9y/Hht3B95ly+VwPM4+HwDu5wRexuWFzQeMm8wtJyhaPgAFxKZGw9vFJ//5AIC4NNN8wDtLjMWTD8iapjlBokqCB9yhACTBeD0ZSXC/nxu4wgUxiEVlVMae63tQqVIlEFHp1bVrVxw/fgJ1QkOtmw8AiAg3LlMAIm+Fo0JgkGGrueUD+mXlKwZaJh8wbCDnnKAo+QAUJCcwWT/7OGH23a9XmHME+c0HAIWY6Pt5QHb5gN/9fCCH47vZ7TzPERQuH4BScuz3NM0Pyt1fdj8f8PAzbK8g+QCQKScoYD6gX9s0HwCMOYHkAMWfDxjuycc5gvzkA25wQwxi4I9y2HToTzRv3hxUenHECDkEjUaDwKAgbN25C4CCuv+9qky+hJXhu1YZ7st6Wxm+z/VJgsrhdq7bMVxXxtsmiZUsA3QmyzOvp18n6zLTmPJ4nNk6gM70/vvXgRy2mXn7Oe5bDs+ru/9a3r9DKf2y+8+rlNynM27LkAiaLIdJDMjnNvTLTHY89+s6kzc583V527O5rwDbz7Q/xuW4v03zfTMuz/S8KMw25PHKsJ37f7NZpkzuy+lxsn2dyWuT/WOV6WOgoFO6+58/+atTOijo5P/A/b866KDu/zUsN6xr/pjs1gWQ4/ZuIwr/4Sz8y/jjky8+wejRo+Hm5lbQrxoiKgHS0tKw7Z9/EBJSFYU+jlsgH4B+WZbjZtZjdnHkAzBbL/ucoFjzAf1rpfR/jcfK7JbBJAar5AP6Nyy3nCDb6/ncvsn1vI7lMLxupveZP3ex5gNA3jlBDo+1Rj4g4eSeE+S0vTjE4yzOIaRyCKqhKvbd3o+AAOPJNSIqPTIyMjBrzmw8NWgICnMc1x/X8soHkONjM93Octy0Tj4A5LRe9sdua+cDgMk6hTxHYLF8wPjiFO0cQbbXC7Btk3iKeo7AkvmAIZ6inCPI4XGFyQcAFPkcQU75QApScREX0apFK1REBWw9sw1169Yt1HcN2TdOvk5ERA6vPALQAQ+gERrirZffhJ+7H5YuXYqMjAxbh0ZERETFpCzKoCWaoz0eQBziEVQ+CKGaOoiLi7N1aERERFRM3OCK+qiHB9EVrnBFg3oNEKKpgitXrtg6NLIwNowQEREB0ECDIASiMzohFHUw7tkX4evsi59//tnQu4qIiIhKP1/4oC1aozVa4jaiEOAdgAaa+khOTrZ1aERERFRMPOCOxmiELugEHXSoUa0GamiqIzIy0tahkYWwYYSIiMiEBhpUQWV0RRdURzUMfWIo/LR++Ouvv9hAQkRE5ED84Y/2aIemaILruAE/Dz8sWrQIaWlptg6NiIiIiokXvNAczdAR7ZGIJARXDEYdTW1ER0fbOjQqIjaMEBERZUMLLaqhKh5EVwQjCH169kF5bQB2795t69CIiIiomGigQUVUQCd0QAPUw8TRE+Hn6odVq1ZBp9PlvQEiIiIqFbzhjdZoiXZog7u4hwp+FVBfUw+JiYm2Do0KiQ0jREREuXCGE2qhJrqhK8qhHDq174RATUXEx8fbOjQiIiIqJhpoEIxgdEEn1EINPDv4Wfg5+eL06dO2Do2IiIiKkR/80A5t0ALNEY5wlPMqh99++83WYVEhsGGEiIgoH5zhjHIoB094IhoxSElJsXVIREREVMy00MIPfvCGN+KRgKioKFuHRERERMVMAw28URZ+8EMqUvFmv6m2DokKwdnWARAREdm7u7iLMziLOMShNmriYOJheHh42DosIiIiKkaJSMRZnMNNhCMEVXAj/AYCAwNtHRYREREVozSk4SIu4RLCEAB/HD12FI0bN7Z1WFQIbBghIiLKQQxi8B/O4Q7uoCZq4FL0Jfj4+Ng6LCIiIipGyUjGeVzAVVxDMIJx4dIFVK9e3dZhERERUTFKRwYu4zIu4CK8URY7/92JBx54wNZhURGwYYSIiCiTeCTgLM7hFm6hGqriZORJlC9f3tZhERERUTFKRSou4hLCcBnlUR4nTp1A/fr1bR0WERERFSMddLiKaziH83CHOzb8tQHdu3eHRqOxdWhURGwYISIiui8JSTiH87iOG6iMSrh89TKqVKli67CIiIioGKUjHZcQhou4BD/4Ys/+PWjVqpWtwyIiIqJipKBwAzdwFuehhRYrf16JAQMGsEGkFGHDCBERObwUpOACLuIyriAQgThz9gzq1Klj67CIiIioGGUgA1dwFedxAV7wxOZtm9GlSxdbh0VERETFSEEhAhH4D+eQjnR8tfQrPP3003BycrJ1aGRhbBghhxEbE4Np/3sLgAKULFOmKxgW3/9Xmd11/282j1Wm21FZH5fNbZXpOZQyfWbjNjMvN7ud3WOVMUbjY8zjyjkGwx5mfQ6z/czHtu7fyH4bJuuarCC3TbejfxHMX3fDPpvsoPnrYRasLFCmT6XMnztTHDCJw3A907ayXM+y8zlsJ6/rmePJdD3z65JtHFnuN38Ole1zm/w12WfD6254DpNtG96rzPepTDEp4/Pm8Jzq/nYMny+o+3Hev+/+bbM1lPE+w7+Gx+i3Ybxl+jnLtCWkIQ3XcQPlUA6HjhxC06ZNQUSl2+effoKy3j4wPV5k+tqC6feGyV33/+b2uPtrZH5cNtvJ9hia5bieaVk262T/OGUWU175gHkMhr3MEovp62PtfMA0Fv1XudlrX5z5gMk28rxu9phMyyyQD2T3umSJI8t95s9h6XxAHpb5fpXlMcWRDxhi0W8DWXOC7PIBHXS4iXA4wxlrfluDPn36sEcoUSn3848/4tTJUzD7ftXfaXK8A8y+7ky+WnN7XC6PzeZ2ceUDxuco/DkC80NS0fIB02co7DkCy+UD5s9hFmxBzxFYJB/IJp5M14szH7j/amVaZrL9fJ0jUMbnzeE51f1tGD5fyD4fMMRjssx8LaAw+YCCQhTuIAlJ+HTupxg1ahTc3NxApZNGGf4XEJVeycnJmDFjBmJjY20dChHZGa1Wi0GDBqFDhw62DoWIisHcuXNx5swZW4dBRHaoQ4cOGDRoELRara1DISIr27BhAzZs2GDrMIjIDtWoUQMvvPACvLy8bB0KWRkbRoiIiIiIiIiIiIiIyGGwKwwRERERERERERERETkMNowQEREREREREREREZHDYMMIERERERERERERERE5DDaMEBERERERERERERGRw2DDCBEREREREREREREROQw2jBARERERERERERERkcNgwwgRERERERERERERETkMNowQEREREREREREREZHDYMOIFcyYMQMajcbsUrduXVuHRURERMWMOQERERExHyAiIrI/zrYOoLRq0KAB/v77b8NtZ2e+1ERERI6IOQERERExHyAiIrIvPBJbibOzMwIDA20dBhEREdkYcwIiIiJiPkBERGRf2DBiJefPn0dwcDDc3d3Rrl07zJw5EyEhITmun5KSgpSUFMNtnU6Hu3fvwt/fHxqNpjhCJiIisltKKcTFxSE4OBhabcmqBFqQnID5ABERUc6YDzAfICIislQ+oFFKKQvGRQA2btyI+Ph4hIaGIjw8HO+88w5u3LiBkydPomzZstk+ZsaMGXjnnXeKOVIiIqKS5dq1a6hcubKtw8i3guYEzAeIiIjyxnyAiIiIipoPsGGkGERHR6Nq1ar47LPP8Nxzz2W7TuYeITExMQgJCcG1a9fg7e1dXKESERHZpdjYWFSpUgXR0dHw8fGxdTiFlldOwHyAiIjo/9m777Amry8O4N8k7CWggIOhgiLuvffeq2q1dbfO1tFWrdrqr2qtdjiqba12WEer1VZbrVur1lG14hZFZIigCAKyIev+/jgmJAwFkhDG+TxPHjLevO8N6z3vPfeemz+OBzgeYIwxxowVD3AprWLg7OyM2rVr4/79+/luY21tDWtr61zPOzk5ceDDGGOMPVfay0e8LCbgeIAxxhh7OY4HGGOMMWZoPFC6inKWUqmpqQgNDUWVKlXM3RTGGGOMmRHHBIwxxhjjeIAxxhgzP06MmMCcOXNw+vRpRERE4Pz58xgyZAhkMhlGjRpl7qYxxhhjrBhxTMAYY4wxjgcYY4yxkodLaZlAVFQURo0ahfj4eLi5uaF9+/a4cOEC3NzczN00xhhjjBUjjgkYY4wxxvEAY4wxVvJwYsQEdu7cae4mMMYYY6wE4JiAMcYYYxwPMMYYYyUPl9JijDHGGGOMMcYYY4wxxli5wYkRxhhjjDHGGGOMMcYYY4yVG5wYYYwxxhhjjDHGGGOMMcZYucGJEcYYY4wxxhhjjDHGGGOMlRtFWnw9MjKy0O/x9vYuyqEYY4wxxhhjjDHGGGOMMcaMpkiJkerVq0MikRR4e4lEAqVSWZRDMcYYY4wxxhhjjDHGGGOMGU2REiMAIIQwZjsYY4wxxhhjjDHGGGOMMcZMrsiJkSZNmmDPnj0v3W7IkCG4fv16UQ/DGGOMMcYYY4wxxhhjjDFmNEVOjFhbW8PHx+el21lZWfHsEsYYY4wxxhhjjDHGGGOMlQhFSoyo1eoCb3vhwoWiHIIxxhhjjDHGGGOMMcYYY8zopOZuAGOMMcYYY4wxxhhjjDHGWHExWmLk4sWLxtoVY4wxxhhjjDHGGGOMMcaYSRgtMTJ8+HBj7YoxxhhjjDHGGGOMMcYYY8wkCrXGyIgRI/J8XgiBhIQEozSIMcYYY4wxxhhjjDHGGGPMVAqVGDl+/Di2bdsGBwcHveeFEPjnn3+M2jDGGGOMMcYYY4wxxhhjjDFjK1RipHPnznB0dETHjh1zvdawYUOjNYoxxhhjjDHGGGOMMcYYY8wUCpUY2bNnT76vHTt2zODGMMYYY4wxxhhjjDHGGGOMmZJBi6/HxMQYqx2MMcYYY4wxxhhjjDHGGGMmZ1BipGfPnsZqB2OMMcYYY4wxxhhjjDHGmMkZlBgRQhirHYwxxhhjjDHGGGOMMcYYYyZnUGJEIpEYqx2MMcYYY4wxxhhjjDHGGGMmZ1BihDHGGGOMMcYYY4wxxhhjrDThxAhjjDHGGGOMMcYYY4wxxsoNgxIjMpnMWO1gjDHGGGOMMcYYY4wxxhgzOYMSI1evXjVWOxhjjDHGGGOMMcYYY4wxxkyOS2kxxhhjjDHGGGOMMcYYY6zcsDB0B127ds33NVtbWzRu3BgzZsxA5cqVDT0UY4wxxhhjjDHGGGOMMcaYQQxOjJw6dQoSiSTP14QQOHz4MH766SdcuHABXl5ehh6OMcYYY4wxxhhjjDHGGGOsyAwupdWxY0fY2dlBJpOhSZMmaNKkCWQyGezs7NC8eXNYW1sjJiYGS5cuNUZ7GWOMMcYYY4wxxhhjjDHGiszgxMjIkSMhkUhw8+ZNXL58GZcvX8aNGzcAAOPHj8etW7dgZ2eHo0ePGtxYxhhjjDHGGGOMMcYYY4wxQxicGFmxYgU8PT3h7++vfa5OnTrw8vLCp59+ipo1a6Jdu3aIiYkx9FCMMcYYY4wxxhhjjDHGGGMGMXiNkadPnyIqKgrz58/H8OHDAQB79+7F3bt3YWdnp91O9z5jjDHGGGOMMcYYY4wxxpg5GJwY6d+/P3bv3o3PP/8cn3/+ea7XsrKyEBgYiDp16hh6KMYYY4wxxhhjjDHGGGOMMYMYnBjZuHEjlEol9u7dq/f80KFD8e233yIuLg4ffvghGjRoYOihGGOMMcYYY4wxxhhjjDHGDGJwYsTZ2Rm///47wsLCcPv2bQBA/fr1UaNGDTx9+hSenp6YNWuWwQ1ljDHGGGOMMcYYY4wxxhgzlMGLr0+bNg0AULNmTQwYMAADBgxAjRo1EBkZifbt2xvcQMYYY4wxxhhjjDHGGGOMMWMxODGyceNGzJgxQ++5u3fvol27dggJCTF094wxxhhjjDHGGGOMMcYYY0ZjcGLEzs4O33zzDWbOnAkAuHTpEjp06IDo6Gj4+PgY3EDGGGOMMcYYY4wxxhhjjDFjMTgxcuzYMTg6OuLrr7/G8OHD0aNHD8THx6NRo0Y4f/68MdpY6q1cuRISiQSzZ882d1PKrE8CVuvdGGOMsZKG44HiwfEAY4yxkozjgeLBfQSMMcZexuDESJs2bXDq1ClUrFgRe/bsQUpKCrp164YzZ86gcuXKxmhjqfbff/9h48aNaNiwobmbwhhjjDEz4XiAMcYYYxwPMMYYYyWHRVHetHTp0lzPde3aFbt27YKjoyNatWqF1aspI7948WLDWliKpaam4vXXX8d3332Hjz/+2NzNYYwxxpgZcDzAGGOMMY4HGGOMsZKlSImRjz76CBKJJNfzEokEqampWLFihfa58pwYeeutt9CvXz90796dAx/GGGOsnOJ4gDHGGGMcDzDGGGMlS5ESI97e3nkmRli2nTt34sqVK/jvv/8KtH1WVhaysrK0j5OTk03VNMYYY4wVE44HGGOMMcbxAGOMMVbyFCkxEhERYeRmlC0PHz7ErFmzcOzYMdjY2BToPStWrMCSJUtM3LKyZartJO39Gh3ambElrKBWTfvjha+/t2GwWdqhTsjUezz315F6jz9/dafeY6lr9t+1Mdtc2HYV5r0iXaH3WObp+MLtC0P3+5FzXznb/GmXH/Qev3/yDb3Hnw3Ylu9xJHaW+sdJ1G+zrLK93uM5W4dr738+9Bf9nVnqL7GVq509f9J7bOHrrL2f82eec1upi/73QxWdfSErq+akv+0LvndA7p9bzu+Brpyf4Yuxu/Xfa5//e1/288+5b92fU87fpZf9TeT8e9KV8/tRXP8TTIXjgeKhGw8AHBOUFi+KCYrzb1+3HYbEA4Dp2p3zuC+KBwD9z6QMfab3Ws5z1MvOQ4Xxsn3ptruw8cCLzn/q2DT9drjrxwMvOofl3G+ubftu1Xss89E/j+vKFR/k+IwSByu9xyJVrr1vUaei3muFjeN0f866MUtR6B67MD9TQD/emrvnNb3Xcv7N5/x+5XxdFZWiva/7eTPl6Xk3vATjeKB4cDxQOhX2HGcsL/uf9LJz/osUVx9BYeIBQP9cIbGW6b02b/8YvccvOw/rfj9eFju87Hun2673j47Xey3nuTTn+VJxM1Z739Brbd3vQc5r6Vx9Dy+5BtZtd864JGfc8qIYoDD9AcCLv9eF/R3XPQ8D+t+fwv596B77ZX1XOZn6f4LBi6+z3AIDAxEbG4umTZvCwsICFhYWOH36NNatWwcLCwuoVKpc71mwYAGSkpK0t4cPH5qh5YwxxhgzFo4HGGOMMcbxAGOMMVYyFWnGCHuxbt264ebNm3rPTZgwAXXq1MH7778PmUyW6z3W1tawtrYuriYyxhhjzMQ4HmCMMcYYxwOMMcZYycSJERNwdHRE/fr19Z6zt7dHxYoVcz3PGGOMsbKJ4wHGGGOMcTzAGGOMlUxcSosxxhhjjDHGGGOMMcYYY+WGRAghzN0IlltycjIqVKiApKQkODnlv8hfeTLeSn8xqJ/k+S/SzBhjrGwpr+fF8vq5X4TjAcYYK7/K63mxvH7uF+F4gDHGyi9jnReNNmPk4sWLxtoVY4wxxhhjjDHGGGOMMcaYSRhtjZHhw4cjMjLSWLtjzCBZWVl4+vQpkpKSkJGRgfT0dPj6+qJq1aoAgMTERAQGBsLW1hb29vaws7ODvb09LC0tYWlpCTs7O17sjjHGGCvllEolYmJiEBsbi8zMTO1NqVRCJpPB398ffn5+AICMjAzcu3dPu+CtlZWV9qZ5LJVyFVrGGGOstNGc9yUSCQDg3r17uHfvHuRyOSQSifZmYWEBKysrtGzZEhUqVAAAJCQkIDExMVdsYGVlpbdPxhhjpU+hEiMjRozI83khBBISEozSIMaKauvWrVi6dCliY2ORkpKS6/Wvv/4a06dPBwDcvHkTPXr0yHdfn3zyCRYsWAAAuHr1Ktq3bw9LS0tYWFhobzKZDFKpFDNnzsQ777wDAAgNDcXAgQMhlUr1bhYWFrC1tcWrr76KadOmAQDi4uIwc+ZMSCQSyGQy7T41wViHDh0wfPhwANRZs379er3ja9ojlUrh6+uL9u3bAwBUKhV2796t3Q6gv1ENT09PtGjRQvv49OnTsLa2ho2NDSwsLCCRSCCVSiGRSODk5KRNJgFAbGws1Go1AEAikegFhZr3MsYYY+aSnJwMiUQCR0dHAMCJEyfQu3fvfLf/+OOP8cEHHwCgTpLGjRvnu+3777+PlStXAgDu37+PFi1a6HWm6J4Dp06dimXLlgEAHj16hKZNm2pjAk3iRXMbMmQI3n//fQBAamoqxo4dq40xdBMxEokE7du318YySqUSCxcu1J7vNedujYCAAL3YfcmSJdp4QAgBIQTUajWEEKhevTomTZqk3fbUqVNQq9Xaz2VtbQ07OzvY2trC2dkZ7u7u2m0TExO1sYym3Zr3aWIgjczMTADQfjbdmCM/+bXZyspKu41uWxljjDGFQoHffvsNmzZtwr179xATE4OwsDD4+PgAoL6D5cuX5/v+ixcvomXLlgCA77//XnuezsupU6fQqVMnAMCmTZvw/vvva89tarVae5NIJPjtt9+0/RC//fYb3n//fW08oNsnIJPJsHTpUnTu3BkAcO7cOaxevTrPgRvW1tYYNmwYmjZtCgAICwvDwYMH821v586dUb9+fQBAZGQk/vjjD73ztu7+mzVrhlq1agGgBNH58+e1bbC2toalpSWsrKxgaWkJd3d3uLq6AqA+ibS0NG1coEkgac7puvGB5jk+hzPGzKFQiZHjx49j27ZtcHBw0HteCIF//vnHqA1jrCCysrK0Mzvq16+P0NBQ7WsymQwVKlTQXsjb29trX7Ozs0P9+vWRmZmJtLQ0pKWlIT09HUqlEgBgaWmpd4z09PR825CUlKS9n5mZiaCgoHy3bdWqlfZ+amoqdu7cme+2KpVKmxhJSUl5YTA2fvx4bWIkMzMTo0aNynfb4cOHY9euXQDob1cTbOWlT58+ekGVj4+PtlMjp44dO+L06dPax/7+/nj27JleEkkTbDVq1Ah79uzRbjto0CDExsZqg0BNgGVlZYVatWrh888/1247ffp0JCUlwdHREQ4ODnBwcIC9vT3s7e1RqVIlvU6g06dPw8LCAl5eXqhatape5wxjjLGyIywsDOvXr8cPP/yAhQsXYv78+QCAatWqwcLCAu7u7rC1tYWNjQ1sbGwgk8mgVqv1kv9CCFSpUgUZGRmQy+WQy+XauACA3kxSpVKJZ8+e5duetLQ0vW2fPHmS77ZNmjTR3s/MzMTevXvz3dbCwkKbGFEoFHrnx5yGDh2ab2Ikp169euklRvr27YuMjIw8t+3UqRNOnTqlfVy7dm08ffo0z21btGiBS5cu6W378OHDPLetX78+bt68qX1ct25d3LlzJ89ta9SogbCwMO3jVq1a4fLly9qOFk3nkqWlJTw8PPRisylTpuDatWvaASaarzY2NnB0dMTWrVu1265btw63bt0CAL0BL5rkzIYNG7TbbtiwAVeuXIGlpSVcXV1RqVIluLm5wcXFBRYWFujevbs20ZWUlKSdocwYY8x4nj17hu+++w7r1q1DVFSU3muPHj3SJka8vb3RokULbZJd839dqVRCLpfr1auXSqVwcHBAVlYWFApFrmPqXmNmZGS8MD7QDDIEKNGgey7LKTExUXv/wYMHetfPOdWtW1ebGLl58yZmzJiR77YbN27UJkaCg4Mxa9asfLddvXq1dhDonTt3MGDAgHy3Xbp0KRYtWgQAuH37Nho1apTvtgsXLtQmpkJCQuDv759rwKgm4TJ58mTtYJPHjx+jbdu22oESKpVK73s6evRobWyUkpKCZs2a6Q02kUqlsLS0hLOzM3r06KHXx7Jt2za4urrCzs5OL0bQnNc9PT2128bFxeklsTQ3ANqZR4yx0qFQf62dO3eGo6MjOnbsmOu1hg0bGq1RjAHAWKvX9R5vlf+s93jRokV48uQJNm3aBABo2rQpTp8+jSpVqqBSpUqoUKFCviUvmjdvrnfxrSGEgEql0nuuSZMmCA8P13aQKJVKKBQK7cgP3U6V6tWr4++//4ZKpdIb1ahQKJCRkYHatWtrt3V1dcXatWu1x1SpVNp9KxQK7QgVALCyssL48eO1r+tuBwANGjTQa3OXLl202+mOZBVCwN/fX7udQqFAQEAAMjIykJGRoW235qaZPqyhOxozZ+eKbjIJoNkl+QWFuiNNASAwMBDR0dF5btugQQO9jp8TJ07g3r17eW5bo0YNvU6gWbNm4fr16wAooK1cuTIsLS0hhICXlxfOnj2r3fb111/HrVu39L5fmtEtFStW1EsQTZgwAYGBgXqzd6RSKRQKBWxsbPQ6jJYvX44bN27AwsJC+3PWjBiSyWT49ddftdt+8803uHLlSp4BllqtxurVq7VB1ubNm7WdTXZ2dtokkYODA1xdXTFgwABth8uTJ0+QkpKiHans6OgIe3t77b4ZY6wke1k88Mcff2DEiBHac+KJEye0iZG6desiKyurQCWwGjdujEePHuk9p1artUkS3YvcmjVrIjg4WHue153VAAAVK1bUblu5cmVcv35dr8MlKytLe/P29tZua29vjw0bNmgv9nXPtWq1GnXq1NE+lslkmDNnjjY2yRm/5Jz9MnXqVADZIzJ1Z3bk7LyoV68eMjIytJ9NLpcjPT0d6enpuUqN6nZIvExBZobk9/hFr2naoPl56coZn9y+fVsvWaNLM9NI4+DBgzhy5Eie20okEr3EyLFjx16Y1MrKytJ2wM2ePRs//fQT7O3t4ePjg7p166Ju3boICAiAs7Mzevbsqf2dvX//PhISEqBWq2FtbY2qVavCzc2Ny7oxxsol3ZggZzwQHByMLl264PHjxwDomvOtt95Cv379UK1aNbi5uWm3nTx5MiZPnlygY86ZMwdz5swBAO21ve4ACmdnZ+2248aNQ58+fbR9BboDBAGgSpUq2m0HDx6MBg0aIDMzE1lZWdprRc1Ntz+gefPm+Oabb7QxhOb4mliibt262m2rVq2qHWCpoXv+rVmzpva+h4eH9vpZ03+hUCi0x6hWrZp2W0dHR7Ro0UL7miZRJJfLoVAo9AZQ5zwXv4huDKWJaYDsQSa6g01UKhUiIiLy3ZfuoFW5XI6QkJB8t9Xtx8nIyMDYsWPz3XbYsGHYvXu3tp05+zN09e/fH/v379c+rlatGlQqFezt7bUzfDW/E61atcIPP/yg3bZPnz5ITU2FlZUVHB0dUbFiRe3Nx8cHI0eO1G576NAhKJVK2NjYaPs4NHGpo6Oj3qDcf//9F+np6RBCQCKRwNXVFZUrV4abmxsncVi5JxEvuupgZpOcnIwKFSogKSlJb7RCeZJfR4gQAosXL8bHH38Ma2trPHnyJFcHPjM93Q4eTW1W3aDw7t272uRMzkSRvb29XjLn+PHjSEtL0waBusGmg4MDXnvtNe22u3btQnR0NFJSUpCamoqUlBTtrB83Nzd8++232m1Hjx6N8+fPIyoqKtfoHh8fH72gqlmzZrhy5Uqen9Xd3V1vtG/nzp31ZsfosrOz0wveevTogePHj+e5rVQq1evIGjp06As7VTIyMmBjYwMAGDNmDLZv357vtnFxcahQoQIiIiIwdOhQ7YhXXdWqVUNQUFC5/R/DSpfyel4sr59b14sSI3/++SdGjBgBuVyOTp06YcGCBejRowd3GhcjzXled+Sm5pwvk8n0fm/T0tL0yoro3qRSqV6nVXx8PFQqld6gDE1ngkwm00tiPHv2DHK5XG+giWYQiRBCr8PowoULiIuL08Yomu00M2KnTJmi3XbHjh0IDQ3VGzSiUqm0bfjwww+1bfv9999x9+5dyOVyJCQkIC4uDnFxcXj27BmUSqV24ANAnWF//vlnvt9TzTEA4JVXXsk1StjKygr16tVDs2bN8Omnn2pLlzBWHpTX82J5/dw5vSgxcuvWLXTv3h2Ojo5YuHAhRo0apb12YsVLM1BBNzbQDA4EaBaura0tAIojEhMToVartTGF5twsl8vh6uqqTdDI5XJcu3YNAPRmgmgGgbq6usLLywsADQK9ePEilEqlNi7RtCsxMRHe3t7aQd+JiYkYNWoUnj59ioyMDO0gVE2sMHDgQO2AXKVSmWvQha5+/frhr7/+AkB9JhYWFvkOIunatStOnDihfezi4pLv4NI2bdrg/Pnz2sfVqlXLNaBHo1GjRtrvEwD4+fnpVVfRkEgk6NSpE06ePKl9btu2bYiPj9eWTLO3t4eTkxOcnJxQoUIF1KlT54Wfn7HiYqzzokGpwZiYGFSuXNmQXTBWKAqFApMnT8ZPP/0EAFi2bBknRcxEIpFop5bqlinT0B3V+jLdu3cv8Lb5rXWUF03iQK1W48mTJ4iOjtZ2suQc8bphwwYkJSXlqmGuUqlynfg///xzJCUl6XWoaLbLud9Zs2ZhwIABeiOGNJ0dOfPSo0ePRvPmzXONFgKg7YTRGDp0KPz8/KBWq5GRkYHU1FSkpaUhKCgIly9fxsSJE3Hq1CntejuOjo5Qq9XIzMzU7jM6OhpZWVkF/n4yxlhJ8sMPP2Dy5MlQq9UYNmwYduzYwaPezEB3TbOXySteyI/urJuX0R2Y8TKtW7cu8LYvKk2a0yuvvFLgbffu3YvU1FQ8efIEoaGhCAoKQlBQEIKDg5GZmamX2HN3d4ePjw8kEgkyMjIQGxsLuVyOq1evIigoCF9//bV2282bNyM9PR39+vVD9erVC9wexhgrC+rXr48zZ87A2dlZL9HOip9UKi1wUsrCwqLAPy8rKyu9mTQvYmlpqS03/jIuLi44fPhwgbbVJDo0CRzdQRmaNuoKCQlBamoqUlNTcw0KyRm//PLLL8jIyEBWVhaSkpIQHx+P+Ph4JCQkoEaNGnrbNmvWDJ6ensjMzMxVKUS3UglAZc5tbW21697Ex8dr149NTU3V23bJkiV5JlEAwMHBAVFRUdwHx8oUg2aMNGzYEDdu3DBme9hzPCIk9wjRjUnfY8iQIThy5AhkMhk2bNigVw+bsfIsISEB06dP1yvNBdAMFk9PT1y9ehV2dnYQQuDcuXNISEhA+/bteZQpKzXK63mxvH5uXXnNGHn8+DH8/PyQnp6OiRMnYuPGjZwUYeWCQqHAw4cPce3aNTx+/BhvvfWW9jXddVnq1q2LmTNn4o033uC/DVamlNfzYnn93DnlnDGyZ88eWFhi1lV4AAEAAElEQVRYYODAgWZsFWOlj0qlwpMnTxATE6NdnwagNV2fPXumLdOWnp6O5ORkJCcnY9CgQdoy50IIfPTRR6hVqxYaN24Mf39/nknCilWJmDHCVbhYcfroo49w5MgR2NnZYffu3ejbt6+5m8RYibFo0SL8+uuvkEqlaNWqFfr06YM+ffqgadOmeiNPJRJJgUfOMMZYSVWlShXs3r0b586dw8cff/zCtSsYK0ssLS1Rs2ZNvRrxAHVwjB8/HgcOHMC5c+cQFBSEqVOnYv369Vi1ahV69eql3fb8+fMICwuDv78/AgIC9OrC50VT6owxxkqSBw8eYOzYsVCr1bh8+bJe2UTG2IvJZDJUrVpVb60VgNY9LYh///0XS5cu1T62srJCrVq14OTkBHt7e0ycOLFQM28ZMxeDEiN8EcqMab7jHL3HlSyzSygkqBOxatUqAFTvmZMijOn7+OOPERwcjBUrVqBFixbmbg5jjBlENybQjQd09e3bl+MBxp6TyWSYN28e5s2bh8TERGzduhVLly7F7du30bt3byxatEjbgfH7779j9erV2vd6eXmhU6dOmDFjhl6JkpiYGIwdOxanT5/GzJkz8cknn/BoUMZYscqvj0AIgSlTpiAtLQ0dOnSAv7+/OZrHWLnl4uKCGTNm4OrVq7h+/TpSUlJw+/Zt7es9evTQ3k9JScHNmzfRtm1bczSVsRfioT+sVHCROGPz5s2YNm0aT5NlTMf58+cxc+ZM3L9/H8eOHeOkCGOsTLupvIVbt26ZuxmMlWguLi6YNWsW7t+/j3fffRc2NjYYPny49vUePXqgQ4cO8PDwAAA8fPgQ27dvR6tWrVCjRg0kJCQAACpVqoTbt29DLpfjiy++QMeOHREcHGyWz8QYY7ruqu7hyJEjsLa2xnfffae3FiNjzPQCAgKwbt06nDlzBs+ePUNoaCiOHDmCPXv2YPv27ejXrx8AWqy+WbNmaNeuHebMmfOSvTJW/LjgLCsVJBIJxowZgzFjxpi7KYyVGEIIvPfee7hw4QLWr18Pf39/DBkyBHZ2dlAqlXBycsJ7772n3Z5LYTDGSrNEdSL+lp9G06ZNcevWrVwLSzLG9Lm4uGDVqlVYuHCh3mL2vXv3Ru/evQHQGmU3btzA5s2bsXPnTqSlpcHFxQUALTC7ZcsWPHz4ELNnz8aFCxfQuHFjzJ8/H82bN9d2ejDGWHGSCzn+kZ8FQOWEebYIY+aRmJgIJycnyGSyPMt8njp1CrNmzUJISAgAID4+3hzNZOyFDEqMcFaemVqWyIIEElhJrMzdFMZKpEWLFmH79u34448/EBwcjJUrV2pf8/Hx0UuM9OjRA3fv3oW7uzvc3d3h5uYGe3t7WFlZwcPDAx9++KE5PgJjjBXIafkZqKFG7x69OSnCWCHoJkVycnV1RefOndG5c2esW7cOEREReuWSu3fvDgDo1q0bJk2ahKNHj+Kjjz6Cp6cnHj58qN1OLpfDyorjdcaY6V1Q/Id0pMPPz49HoDNWzGJiYrBjxw5s27YNV69ehbW1Nfr374/ffvsNAJCZmYmBAwciJiYGN2/eBEADNZYuXYqpU6eas+mM5cmgxMjVq1eN1Q7G8nRW8S9CVWHobtXF3E1hrMSRSCTaGvvJycnYs2cPzp8/D6lUCgsLi1wdIbdu3UJsbCwePXqUa19+fn56iZGZM2fC0tISnTt3RocOHeDs7Gzqj8MYY/kKU4UjXP0AUkixZs0aczeHsTKpQoUKaNSoUZ6veXt74/Dhw9iyZQt27dqlFxc8fvwYnTp1wgcffIBx48YVU2sZY+XRM/UzXFVeAwCsXbsW1tbW5m0QY+VESEgI3nvvPRw8eBAqlUr7fFZWll5VCmtra5w8eRJKpRJSqRRTp07F0qVLXzhIgzFz4lJarMR4kPFQ7/GH1xfjy4ZfQy3UeOcIjwRh7EWcnJwwfvx4jB8/Pt9trl+/jujoaMTFxSE2NhZxcXHIyMhAVlaWXgeHQqHADz/8gPT0dKxevRoSiQRNmjRBs2bN4O7ujiZNmuCVV14x/YdijJVbujHB1oztqF+/PnAPeG/uezxbhDEzkUgkecYaGzduREhICMaPH4/o6GgsWLBAb9ZJaSKEQFpaGiwsLGBjY2Pu5jBW7uXsI9ie9QtaftcW58+f53J+jBUTtVqNIUOGaBdXb9WqFcaOHYthw4YhNTVVL1EikUiwfft2ODo6om7duqhevToAOr9mZWXh2rVrePz4MZKSktCrVy9UqVLFHB+JMS2JEEIYsoOkpCQkJSXBzc0Ntra2+P333/HPP/+gUaNGmDhxorHaWe4kJyejQoUKSEpKgpOTk7mbUyxGWbyq9zi9Xyb27duHoUOH4vfffzdTqxgrf7KysrBnzx6cPHkSp0+fxr1793JtY+Cpg7FCK4/nRaD8fm7dmKDrhu6YPHky3NzccP/+/XL1fWCsNFCr1Rg1ahR27doFAFizZg1mz55t3kYVgVwuR506dRAeHg4A+P333zF06FAzt4rlVF7Pi+X1c+fsI9ih/NVMLWGsfDt16hSWL1+OdevWISAgoNDvf/jwIby9vfWe8/DwQHBwMCpUqGCsZrJyxFjnRYNnjEyZMgW7d+/GpUuX8OjRIwwfPlw7Qujp06eYN2+eoYdg5dAz8QyH9x2FVCrFJ598Yu7mMFauWFhY4NmzZwAApVJp3sYwxso1tVBjxYoVAICFCxeWq84gxkqDiIgIvPnmmzhx4oT2ObVabcYWFZ1arUZqaqr2cVZWlhlbwxjLiQdmMWYaQgjExcXh3r17CAsLQ1RUFB4+fIhu3bph2LBhAIDOnTujU6dORZ4Rmtc5VSKR8N81MzuDEyOBgYFwdnZGs2bNsH79ekgkEvTs2RNHjhzBli1bODHCiuSOCAYAvPLKK/D39zdzaxgrPmq1Gvfv38edO3dw584d3L17F0+ePEFqaipSU1PRpEkT/Pjjj9rtV61ahbi4OCgUCigUCqhUKlhYWMDS0hLVq1fH22+/rd32iy++QHh4OB4+fIiHDx8iOjoamZmZUKvVaNq0Kf755x8AgEwmwwcffIDExETt45YtW6JFixaoXLkyGjZsWLzfFMZYuSUgMHXqVGzfvh2TJ082d3MYKxfi4+OxevVqpKSkICUlBampqcjIyNDeJkyYgEmTJgGgWRYnTpyAVCrFK6+8gnfeeQdt2rQx8ycoGhsbG0RFRSEiIgJubm5wcXExd5MYY889E89wXv0vfvrppxeWDmasvBFCIDMzEzY2NtqkRWZmJkJDQxESEoLQ0FCkpKRAqVRqBz2uXLlS+/6ZM2di69atSEpKyrXvbdu2wcPDAx06dAAAg8pk1qhRAzExMcjKykJWVhYUCgWqV68OOzu7Iu+TMWMwODHy6NEjba3nmzdvokmTJjh06BACAgIQGRlpcANZ+ZMq0hAp6Hfn/fffN3NrGDMNIQRiY2MRHBwMtVqNzp07AwBUKhUaNGgAuVye5/tyBg7Lly/XJjByat26tV5iZO3atYiOjs5z2/T0dL3HEyZMgEwmQ6dOndCxY0c4OjoW9KMxxpjRyCQyzJs3D3Pnzi21axYwVlIJIRAcHIyjR4+iRo0aGDBgAACKCV40Y7tmzZraxIivry8WLlyIyZMnw8fHp1jabUpWVla8jhFjJdAdcRfJSMHhw4c5McJKhODgYAQFBcHW1ha9e/fWPn/jxg2kpKRAKpUiPT0dycnJSE5ORkpKCiwtLTFlyhTttvv370dkZGS+syZ0r+V//PFHXLlyBc+ePUNCQgKePHmCJ0+eIDY2FgqFAnK5HJaWlgCAvn374uTJk/m2ffny5ZDJZACA2NhYJCUlQSKRwNvbG76+vvD29oaXlxe8vLyMtgaITCaDh4eHUfbFmDEZnBixsrLCs2fPkJWVhZCQEAwePFj7vFQqNXT3rIybZfeW9n4Va/oneV1xA0It0KNHDzRr1sxcTWPMqH7++WfcuXMHYWFhCA0NRXBwsHZURpMmTXDlyhUAgKWlJVq2bInU1FQEBAQgICAAXl5ecHR0hIODA9zd3bX7FEJg3Lhx2vdZWlpCJpNBpVJBqVTCy8tLrw0TJkyAWq3WBjmenp6wt7eHVCqFtbW13rarVq0y5beDMcb06MYDQHZMoMFJEcaM4+nTpzh58iSOHj2Ko0ePageyDRw4UJsYcXV1xdtvvw1HR0ftzc7ODra2trC1tUW1atW0+5PJZFi+fLlZPgtjrOzJKx5IUichMpMWYeeBk8yc7t+/j19//RW7du3CjRs3AABubm6IjY3VbjNjxgxtJYacHB0d9RIjX331FY4ePZrntlKpVC8xsn//fvzxxx/5ts3CIrt718/PD4GBgahVqxZq1aoFV1dXyGQyWFhYwMLCAkqlUpsYWbhwIT788EP4+vrC1tb25d8ExsoYgxMjAQEBuHjxIjw8PJCWloZWrVoBAKKiouDp6WlwA1n508iyIarIqmDu5/PN3RTGCk0ul2P//v148OAB3n33Xe3zn3zyCYKCgvS2lUgk8PHxgZeXF4QQ2o6/M2fOFOhYEokEa9asKXDbli1bVuBtGWPMnIQQOC4/ieoyb6jVah5sw5iBFAoFevXqhVOnTumNTLW2tkaHDh3Qq1cv7XP29vZYv369OZrJGGO5BCqvQkDAR+qNJk2amLs5rAyJi4tDZGQkatWq9cJ17FavXo1vv/0WISEh2ucsLCzQpEkTuLm56W3r6ekJPz8/qFQq2NnZwcnJCU5OTtpBBro6dOgAJycnSCQSvUFAQohcse+wYcPQoEEDODs7w8XFBe7u7vDw8ICHhwcqVKig9/7169dj48aNBRpYxGWyWXlncGLkww8/xNChQ5GcnAxfX1+MGTMGFy5cQGJionb2CGOF5S51Q6NGjczdDMZeSC6XQ61Ww8rKCvfu3cP333+PLVu24OnTp3BwcMCsWbO0IzFeeeUVdOjQAb6+vvD19UXt2rXh5+cHGxsbM38KxhgreR6oI3FLdRt3VHcRGxuLypUrm7tJjJUK6enpOHDgAPbt24cnT55oR6JqymsIIVC/fn1069YNvXr1QqdOnbi+N2OsxEpVp+KW8jYAoIUlV5NgxvPzzz9j0qRJyMjIAABUrlxZW0oxLi4Oe/bsQZ06dQDQbMuQkBDIZDJ069YNI0aMwJAhQ+Dq6prnfgvqww8/LPC2r7/+eoG3zVkNgjGWP4MTI3379kVUVBQiIyNRr149WFtbo169eggJCUHFihWN0UZWTiiFEgooYCvh6Xus5Hnw4AGOHz+OUaNGaTsQ1q5dm+d07ipVqmDkyJFIT0/Xrs2xdOnSYm0vY4yVZv8pAgEAjSwacFKEsZdISkrC33//jd27d2Pfvn1IS0vTe61ChQoAgDVr1sDZ2blMrAXCGCsfrilvQAU1qkqrwFNa7eVvYKyAPDw8kJGRAScnJyQnJyMmJgYxMTHa1x8/fqxNjIwdOxYtWrRA165dtedUxljZUKTEyLp161ClShUMHz4cAFCpUiVUqlRJ+7qmFi0A7N69G48fP8bMmTON0FxW1jyRZ9di7LGxN6ZPn453330XK1asMGOrWLE6fBhQKoH+/c3dEiIEEBkJXLgAeHgAnTtj7969GDl8OIJUKqR/9x3s+vUDmjdHleBgdAEgAZAkkaBqv354c9Ik9O3bV6/GJ2OMsRfTjQeeiSREqaMhk8nwZ/h+M7aKsZLv448/xv/+9z+o1WrtczVq1MCIESPQvn17vVGjPBubMVbS6cYDKqFGpFsU8ARYt2s9XnnlFTO2rBQRAuC12bTi4+MRFhaGiIgIRERE4N1334VMJkP3sDA8bdMGrhUrIqN3b9ytUwd3nzyBTCaDu7u7Xtm2OnXqaJMkjLGypUg9d7Nnz0abNm20iZEXWb16NS5dusSJEfZS3377LeRyOc80Ki9UKmDBAuDzz4EvvshOjISEACtWAMuXA1WqFE9bkpKAnTuBI0eAf/8FNCNFRo3CbTc3jBkzBrVUKvgCwMWLdAMw5vkNAJRt2sBi3z4OQhljzEAh4j4AYMiQIbxeHWM5CCH0ao/7+vpCrVajVq1a6NevH0aNGoUWLVoUqK44Y4yVZFJIsG3bNvzyyy8YOHCguZtTOggBNGgAODoC3bsDPXoArVsDVlYFe79KBQQFZV/zPnsGDB5MN3t7EzbciOLigCdPoEpIwI+rV+OfP/+EJwBvAAsBjBo1iuLLAwdQ8d9/AQB2f/2FppaWaNqjBzByJNC8OX0PGWNlXpGHND98+LBApWGioqKKeghWjiSIRFy+fBlWVlYYP368uZvDisPy5ZQUAQAvr+znL14ENm8G/voLuHsXyKNup1HFxgJ16wLx8dqnhIUFMmrXxpnoaLzeqRPS0tJQrXNnKJcvh0VgIM0muXGDAkepFBACFmvW5J8UefgQcHICeNotY4y9kFwo8EBEAgBmzJhh5tYwVnI8ffoUu3btwvfff4/Bgwdj8eLFAIABAwYgMjISXrqxFGOMlQESiQQ9evRAjx49zN2U0mHJEqBGDUpiLF9O16wffww0agRcu/by92dlAV27AufP6z//229A1arAuXNA9eomaDjJzMxEbGwsYmNj8eTJE9SsWRMBAQEAgPv372PatGlITEzEs2fPoFAo4ODgAEdHRzg4OGDEiBGYPHkysGMHxOuvQyIEZAAmPb9p3B00CCqVih68+SbQoQOQmQns3k3X9wcP0s3NDbh8GfD2NtnnZYyVDEVOjERHR2PJkiUv3U4IwSOW2EtFiAcAaHSoblk2VobplppauZJmbTg7A1u30nMZGfrb5EEul+Pp06dISUnR3pRKJSwsLGBhYYEaNWpoRxsrlUqkpaUhJSUFz549Q2JiIp4+fYrY27cxNiUFtgAdf/9+HHv6FGeHDIEngDcByKtVw+KFC2FhYwM0aQI0bAh06pR/w77+GpDJKLFz4ABw/z5gaQn07UtBar16Rf++McZYGRYtoqGCCgEBAejQoYO5m8OY0aWnp+PRo0eIjo7Go0ePEB8fj6SkJCQlJWHlypXamSChoaF4+PAhTp48icOHD+O///6DEAIAcOfOHYwfPx7e3t5wcHCAg4ODOT8SY4wxc4uJoetMhSL3a/ldUyclAVFR2demVlaAiwvd79IFaNWKrmE3b6bt1q8HVq3Kvw0KBQ1ybNcOAkBCQgKU8+bBbcsWqKVSKGQyCFdX2Hl6AhUrIlmpRNfr1xGuVCIzMxM909MxGIASQBYA0acPApYuBRo2hFqtxvHjx/M9dIsWLeiOSgXJ83PlfQApUilqu7rC/ulTYMQIfLluHZXLBoABA+gGAB9+CNy5A+zaBWzZAsyZoz9401Bc3oyxEksiNBF2IXTu3LnQyY6TJ08W9jDlWnJyMipUqICkpCQ4OTmZuzkmM9JiONRCjX3qA8hCFv766y/069fP3M3KLTaWbt7eNPI/PwoFEB4OJCYCjRsDOnWdy5OcZR5SU1MRFRUFCwsLyGQyCCGQlpKCip9+Cvc//oBFRkauffzcsyfOensjIDgYN2xtESqXIzk5Ge+//z5GjBgBADh69Ch69eqVbztWrlypXRz92rVrenVCdbUA8E3Llmh+/jwgk+HOnTuIb9gQ7ZXKvHdcqRJN0dV4/XXg8WPgp5+AkyeBnLOepFJAU/s7NBSoWZPuf/IJjeRxcKAROhkZdHNwAHr3BsaO5Sm8jD1XXs6LOZWXzz3SgsqzPhaPcVd9D7OWz8bChQvN3CrGCk8IgaCgIPz9998ICgrChg0btK+NGzcOWzUDQPLw7Nkz7aKukydPxnfffaf3euPGjTFu3DiMHj2aBxKxcqu8nBdzKi+fWxMPhKnDkYJU/Hl3H2rXrm3eRglB13rBwYCtLZWm0hg5EkhLo1kHcjl1fkul9LVxY/1EwsKFdE3o6gpUrEilrnx8jNPGZ8+ADRvoFhAAhIUBgwbRrW1bGrSXlQW89x5drz58CKSk0HsfPMieGXHoEODpSeW4NCIigB07oJ4zB4nJycjauhUOmzfD8vFjSDIyYCGRwEIioe+BQoG+1arh76dPkZWVhc8AzH1Bs+sCuPP8/kcA/pfXRtbWUNWpgz/ffBPWNWrA2dkZllIp0hMTkaRQICUlBXXr1kXTpk0BAOKff/DDpUto0KEDGjVqBJuVK2k2DUCDHAcOpBkwFSvSz6JePcDdPft4eSUx4uKAwED6HVCp6OdoZQXktWSAEMDt28Dp0zTr5MoVGlS5bt0LvhOMscIy1nmxSDNGTp06VeQDMqaromVFRKoikaXOQqVKldCzZ09zN4mo1XTiO3CAbpcv0/ObN2d3ep88CbzxBp1QHR0puAgPpxMlAHz6KTBvHt1PSKBgxcqKRl2Eh1OH+MWLwNWrwPbtVMcSoIW/z5+nURkPH9L7KlWik7W7O/DKK3iSkYGwsDAkJydDqdN5L4RAamoqunbtCvfnJ/fAwED89ddfsLCwgFQq1UtqSiQSDB06FLVq1QIAXLp0Cb/++qt2RkViYiISEhKQkJCApKQkbNu2DYMGDQIA/Pbbbxg5cqR2doYQAiqVCkqlEiqVCj///DNee+01APQ/Y4BmNEYO3gCOtmsHfxcXICkJKdHR+CosDAuPHoUvqA7oWNDMjVOgMn4azs7OkMlk2im0jo6OsLCw0LZDd72a1NRUAIBMJoOLiwtcXFxQsWJFeHl5wcfHB8l9+lDACFpcTbJrF005DgujW0QEBUh2dvQz13X1Ko0wGTOGfl927KDHPXvSLJFu3ejneupUdlIEoJ///nwWFj58mBIuGkrlS2fQMMZYaVXRkv6vVkRF1Ed9LFiwwMwtYgZRKoE//gC+/55iqrVrqWxlGaBSqSCRSLSDP86cOYPjx48jPDwc4eHhCA4ORpzO4IkFCxbA+3mHk8Xz87idnR2qVauGatWqoVKlSqhQoQIqVKigF6PJZDJ4eXmhTZs26N27N3r27Ilq1aoV4ydljLHip4kHjmf9jXiRgNOnT5snMfLgAbBmDV2X372bnUTo31//+m3fPhrYlpecY5A3bKBrew2plK4Vp06lQXHPr0WLxNkZYv58KGbPhjw9HUqpFEqViq6LY2KgUipRed48WO3apfc2haMjgn76CU9at4ZKpYJcLkfM+fNonJ6OVq1aAQBuJCejz1df4cmiRVCpVJgMYGM+zVC5ukIWHY2s54+/dnXFsapV4enhAR83N3Rr3BjtAwKAp0+hSE7Gr02awMLdHdbW1nAPCYG4fh0SlYq+31euAJcuAYmJkF2/jqGDBtEsDiGAadPoWv3AgVzX5pKOHfFmx47ZTzRvTt/no0fpuv3qVf1GHzhAr2t3oJMUCQqiBNbjx7k/rKOjfmLku+/oGP/8Q4Nqddna5vMdY4yZG/eyMbO7p6JFVkeOHAlLS0vzNiY9naZOrllDi4Drqlgxe2opQNNVw8PppsvWFrCx0T+5btxII0Ty4+ODmzdv4ty5c6i/bRva56zrqatXL2z75RfMnTsXFQE8A6DKscmJEyfQtWtXAMDly5fx0Ucf5bu7gIAAbWLk7t27WL16db7bZmVlae9rEiAqlUrveY20tDTtfZlMBmdnZ23CQiKRaEs/ODg44Mpbb8F/1CgAQGxoKJ6sX4/5traws7PDg3Pn0P7IEfwG4EHfvtmLtIOmzCoUigLNYGvXrh0yMjJgbW390u0lEgkwZAjdCmL9ehp58s8/wLffUlIjp/r16abrnXfo86Sm0u+MrS3dIiMp+HJ2zt62d2967Y03gH79KMHGGGNlVKkpw5qeDjx6RMnziAj6Xz56dPbrVavSTNN69ejWsCEly3XjCTOLi4vDgwcPYG9vD19fX1hZWSE5ORkPHz7EkydPEBsbCz8/PzRr1uzFPxe5HAgPh3LPHii//BI2T57Q81IpUKkSHjx4AB8fHxokIJEALVrQYIN8qNVqPHz4EMHBwQgODsa9e/cAAGPGjEHLli2N+B3In1wuR1BQEC5duoQrV67g6tWruHHjBu7cuYPqz+usHzx4ECtXrtR7n62tLdq1a4euXbvCxsZG+/wXX3yBVatW5UqC5EV3pgljjJUn8ep4xIsESCHFsGHDivfgSiXw9tvAjz/ql6WSyWiAW841J778ks5zNjY0CFIIGhCgVuvPQgCoPFN8PNKjo5F2/TrcgoNpXc2//sLDChUwr0sXpCgUmDp1Kvo/v+Y9c+YMRowYAbVaDSsrK1hbW8PKygoqlQqZmZlYuHAhpkyZAgC4cOEC2rZtm+fH+gDAx5rP8cMPuOfigiaDBiE9JQX4X+55GgsWLNAmRpycnPDo0SPtaxccHPCWnR3SXF1h4+6OHr164ZURIwBLS6grV8b8y5exrmpVVKlSRe8cmJMlgAa6T9SsCeSsBiEE9csEB9NgUYAGj+7eTYNPO3SgZMTz8tl56t+fbvHxwO+/0wDV+Hh6f/36+v02mZn0swTouP37ZydF/P1pJo21NcUxOZMdn31GJbQBeq19e6BNG6BpU7oB9Dv12Wd0TV+5cvZ7VarsxFh6OvDNN/r9TQ8fUlWJypWBoUOBuS+ah8MYKwxOjDCza2PZCm6qSnjzzTeL98BqNc0EyMjInip67x4wfTrdd3CgEf/9+gF9+gBVqui/v1cvGkESH0/1OatWBWrVoq85L3alUsDenjoNFAqoK1XCAw8PVBs6FFZt2gBubjj444+YP38+vgIlOqIAPAQlPlwBvN69O6rJZEClSvDw8EDNmjWxIT4eLdLS8I+zM065uOCSkxOsHB1hq3OSDggIwNSpU7VJDP1vgVo7ihEAGjVqhHnz5sHZ2RkVKlSAq6ur9lahQgVU0fkeDB48GI8ePYJSqdQmJzSlsjSJEI0+ffogMTGxQD8WX19frF27lh6EhNBicQkJwH//wefgQepE2b0bQB4dZ3FxFLjUq5drxI1EInlhYGaQbt0oKJ40CfjgA1r07pVXXv6+zp3p9jIPHwInTtD9v/6ixeAmTKDj+fkZ0nLGGCsRhBAIUd+Hp7Qa7CT5d5ablFpNpTDj4igeCAqim0xGM0Y1hgyhUYxxcblHiTZqpJ8YcXGhfQQHA3v20HOaNafGj6cFUgG68NfMDCzGpNDp06fRo0cPKJ53/oSEhCA6Ohrdu3fXm5EKAF27dsXPP/+MyroX8hqnTkE9ciSkT57AAnSBkWJtDce5c4G6dfFECFSvXh3t2rXDLw8fwjsyEmqZDCn+/oho1w6us2bB63mN84MHD+K9995DeHh4ngMv2rVrp02MnDlzBjNmzEDHjh3Rpk0buLi4wMbGBjY2NrC0tETt2rXh+LwkZVJSEhITE7WzTOPj47WzPB48eIAJEyagatWqACgpsWTJEjzRJHdyiImJ0SZGWrdujcmTJ6N69eqoUaMGatasiUaNGsE6j3KqLiUoIcYYYyXVXRUlwn2k3qb/vykEnfNr16bzr4UFDVJTKGgh8ilTqPPc1zfvMtmTJuV+Lj8ffAAAOPbnnxi8axdqAZgC4FUAY5OScOqPPwAArzZoQG3x9oZVaipiYmLy3WVCQoL2fl7nHQCwlMnQQpOw+eorYNw4WIaHo4qvL6ytramyhEQCG4kE9lIpHKpWhb+/v/b91apVQ2BgICpXrgw3N7cXDma1BJ2njUYioZ+N7qwhb2/gzBnqj7lzh9ZC+d//KHFRvTq9nlcsVbEiMHky3fISFQW0bEnX5y4utA+JhH5uc+boD1rMSaUCXnuNYsYuXWg/ef08pk0DfviBqo8cPgxER9Osk9atAc1s6fT0vBMfT5/SIBxNpRHGmFEUaY0RZnrlpYboW7ZTtfe/zvjWdAd69Ag4dw64eZM6J4KDKQDKyKCAR9PpDAATJ1I90AkTjLa+gxACd+/exfHjx3Hs6FEcPnIECoUCW7duxZgxYwAAhw4dwsaNG1G5cmVUrFgRzs7O2pJPHh4eaNCggbbuNAA6+fr60jRfDQcHoF07Cg46dqQO+9JKCEpIHTmi//zUqTQNOSelkgKhx49pBoYmOZSWRkkpUxMCePVVbdIGr79OJdI0rlyhn5mfX9FGCt+9SyOXtm4FdDtqunShQPBFi8EzVgaUl/NiTuXlc/e36osDikOwgAXGWo/GD5mbX/4mY2rUiGKEvMLiRo2oXING7dr6s0rt7Oj8U706JeY/+yz7tYcP6f/37dvArVs0SvH2bXqtXz9KdgN0Lq9enc7jtWsDderQBb6/P92vVeuFsyuKavfu3dp1u5ydnXH37l04OTnhq6++wvz58+Hv7w9nZ2dcuXIFWVlZ8PDwwI4dO9ClSxcANJP06tWr+GvlSnz4559QArgN4BcHB1iNH4/P168HABw5cgQDBgyAQqHAFgBdAeiO7VRYW8NywgTgrbdw7PFjbWlVS0tL+Pn5wd/fH7Vr14ZMJsOYMWMQEBAAAFi2bBkWL16c7+c7efIkOj8fgLBx40ZMnTq1QNtu2rRJOwLXyckJrVq1QtOmTdG0aVM0adIEvr6+2lJajLHiVV7OizmVl889wWYstmX9AhVU6GfZB3/JD5rmQAoFlXlct446xG/fzi75ePMmDZTQLcdkRPfv38eECRNQpUoVVKxYEW4uLqjg6gpbOzvY2Nhg0MmTqKhzHam2tobc0xNptWohpWZNRPXqBbi6wsbGBl5eXvB4vpi4UqlEamoqrKysYGlpCZlMln2uUqupZNSAAXQtvXUrkJxMt9RUKl2lGUR58SJ17AP03NOn2QuWlySRkVRV4c6d7OdsbCixoEmMTJhAfT/9+tH6nS9aUP3DD2kB+7x4eVFlkefxT5EFBdH3Ni2NSnSdP0/t9fSkpIdMRq9NnUqDIWvUoJu3Nz3/+DH1Udnb09oxjJVjZl1jhDFjKLacnFpNHRW69Tw1bGxy1/L88UejHToiIgLLli3DoUOH8DhHXcpmzZrp/fH26dMHffr0KfjOZTKaqvnPPzQK9Y8/aMTBkSN069pVPzHy5ps0PXXs2BdPNS0pFApq71tv0SJwI0fSLWc5Ko2nT+nzAzSNWWPQIJqx88knph1dIZEAv/xC39s1a6jerK7FiykYBWiRtzp1sm+NGtHsJI3+/SnQk8vp1rYtlWP77DP6HAcOAJs20ffl5MnsWU4AcPw4sGxZdoda7dqUQKtZM3taMGOMlTDXVTcAAPVkdWEjyXvEo1HlXLdJIslOijg60v/NunXplvPc8d139P/UzY1uDg75z/Lw8qJbjx7Zz92+DWzblneHS2oqJdKvXNF/fsoUKtUIUOfF6tX0/713b4PKcvXp0we2trbIyMjAb7/9pu1cmTt3LuZqRitev47w+/cxbPFiXAkKwq1bt9DFzw84cABTLlzAli1bAABnAKTXr49JM2bg8/HjYaVzLu7VqxcePHiAn376CWfCwrAnLg7SyEg0jY7G6ykpqJGRQZ/vxAm0eL5mR82aNeHl5aVdlyMvkydPhr+/P86cOYOrV68iPT0dmZmZyMzMhFwu1xs9q1QqYWNjg8zMTACAVCqFl5cXatSogerVq+utSzZ48GC0bNlSuwZIqSntxhhjpdxtVRBUUMFD4g5v6Qs6sQ1x4QLNGrh5kx5bW1OHtSYx0qBB/u8toqtXr8LLywuVKlWCn58fzpw5k//GERFUejM6GoiPhzQrCzahobAJDUVFANWXLMkuK6XDwsJCr2qDHqmUkiIADRq9cCH/42v2kZlJg/1u3qRBpm5uBfikxcjbG/jvP2DlSkrmhIdTwiDnGiGXLgH//gssWkTJiOnTs2fs6lq6lPoawsKyr8OfPKG+lqgo/bVCf/iBBs00b079DS+aTaKrbl2ahTxiBF23A1QO7Ntvs/ul7O0pTtQICaHyWVFR+gms994DvviigN8sxlh+eMZICVVWR4RMt82etnhHeReZzRX44IMPtDU0jebmTf2AZuBAOpE0a5bdYezvTx0fhixylgchhPYC+vHjx6hWrRqEELCxsUH79u3RrVs39OvXDw2MHXCp1XRy1izq3qxZ9mJgiYnUGQ/Q5x06lF5r165YS3YUieZf1MvaeesW/cwrVaLyJgAFEfXqZdeHHT4c+Ogj0y8Au38/BWlLl2Y/N3YsBT95Ldzm40MBsEb79hR86urcmRIiuiOGHzwAfvsNGDWKSrgBwOefA/Pm5T6GRAJUq0ZTdHUTKYyVEmX1vPgyZfVz68YDiepE7JT/BqlUitDQUG2JIpNIS6Mk9vLlVJNaU5rhwQNKdri46CfXi4taTWU5nzyhkY1372bPcL1zhy7m33mHtr12DWjShO5bWVFyZNQo6vDIZ4ZkWlqatlxGTtOnT8eGDRvg4+OD69ev689O3bmT9g1AyGRI8PCAa716kPz9N6BSYcWIEVjy558YNmwYpk+fjjZt2hQ+iSAErTvy3Xd0jjbxIrsKhQKpqalwcHAw/9p2jLFCK6vnxZcpq59bNx5QCRX2uRxETEwMduzYgZEjRxr3YCkpwPz5NGNCCCqt9NlnNPjOBLMyhRAIDg7G0aNH8fnnnyM9PR0HDhxA69atC76TzExKZNy9S+f/iAgaIKfxxx80wK4w7b99mwZYOjrSzcmJBnk4OlIsZGFBiZSYGCrx9OABrQv299+0XUkmhH6/wX//Ud/Q1q3A6dPZz+/aRX0DBZGZSdfmuoNO+/fPHvRoZUUzUl5/nX4WulVH5HIayHjgABAYSP0D3bpRQmPzZiqZNW7ci/s6XnsN2LFD/zlra+DXXykpU1AKBZUg+/dfiiN79OB1S1mpZqzzolESI0+fPsX69etx4cIF+Pj4YObMmbhy5Qo6d+6st34BK7iyHvgIIbBbvgfxIgGfffZZ9qhEQwlBIwYWLqQs/sSJ9LxaTSd3E1IoFPjkk0/w4MED/Kgz6+SLL75A48aN0b59e9OtcfEySUkUQP31F80w0fD3pxPim2/SrIXS7PRpSh74+1PgqBEeTqWmtm/PDpReeYVqhTZuXPztTEujQFTT2XX3LgWdf/+dHRBduULrqlhZ0Ro248ZRIN+tGyVdci70pissjIIdTYdaSAgQGkrTpK2sKBDmdUlYKVRWz4svU1Y/t25HyD+Kc7itCsKgQYPwx/P62kZ36xbNvNu2jc6JAC18+f33pjmeMWnqgmsGcty7R0nwCxfoc2k4OlLc8847lHAHEB4ejoULF2Lnzp1wd3fH8OHDMWzYMHTq1EmbwEhJSUHjxo0RFhaGSZMmYZNuh8vduzQDNa+kfpcuUHzyCaQtWkBm5EEmAOh816YNJYt27qQFUzMysmdmco3tgomOpg6VBw+opIhmAVjGSqmyel58mbL6uXXjgSwhh/NbFXH48GFcu3bNuMlrlYo6gzWzRMaNo87pPGZeGOrp06f49NNPsWvXLkRGRmqf9/b2xu3bt+FgrOTCmTNUTtnPjzrZjbm2h0ZwMO03Pp7W9Ni3z/gDSE6fBj7+mK6TK1Wim4cHxWnGvG4NC6MBGNu20QDZO3eKnhj44w/g7FlaJ0RTIlWjaVNKggB0na+7Vm3FisCNG9mDGl/m/n3q31Cr6Vj161NyysEh7wG+mjVzUlOBrKzsclsKBc1g1i3J7eZGM1fGjs0uncZYKWK086IwUHh4uKhataqQSqVCKpWKNm3aiDNnzgiJRCLmzp1r6O7LraSkJAFAJCUlmbspRjXNZpKYZjNJDLEaKAAIW1tbER8fb7wDfPyxEHQ6EGLRIuPttwBmzZolAAgA4ty5c8V67EK5dk2IN98UwtY2+3v155/Zr0dECHHlihAqlfnaWBS//579ee7dy/36jRtCDB2avY1EIsSxY8XfzqI4d04IBwchHB2FCAoS4sIFIQrzd6NWCxEbK8Tt2/R4+3Yhrl41SVMZM5Wyel58mbL6uTXxwJvW44UFLAQAcfz4cdMc7Jdfsv/3A0LUqCHEF18IkZlpmuMVp5s3hVi4kD6T5vM9/z5GRUUJbwcHIXsem+jeFuWIkc6fPy86duwowsLCch8jIUEIpVKIhw+F+OsvIebPF2LnTjqvmsrRo0LIZPo/N93b5cvZ2yYm0nmO5Xb/vhBWVtnfN5lM/3vHWClUVs+LL1NWP7cmHtDchBBCZarr0I0bhfDx0Z4nTSExMVF4enpqz7dWVlaiW7du4tNPPxWPHz827sH+/luIatWy/8e7uQnRrZsQM2YIsXKlEM+eGec4Fy8KYWdHx6hXT4jZs40XAxw9mv+5/u5d4xxDV0qKEO7uQnToIER0tOH7U6upf2XuXCG8vKjdXbrobzNwoBCTJgnRsCG97u8vxKFDBdt/YKAQLVsK0bdvwbafMkX/e9iiBb13yRIhatWi35EhQ+ir7na7dhXuczNWAhjrvGjwGiPz5s3D48eP4enpiaioKABA+/bt4eTkhGPHjhm6e1ZGharCAADDhg2Dq6bEkyGUSho9+OGH9Pizz2haYjE6efIkAJoh0rYkL4TVqBGVq/j8c5qlcOKEfp3z776jEiOurlRyqmZNWvArIIBqcVoXQ+33omjcmEZnXLlC63YMH05lozQzYRo0oNGmt27RFNbAwJI/FVijbVvg4EEqEZaVRVOaASr5UrMmTXdWqeg2d6627AnOnqWp4b160fTeTp1ozZZvvqH3XbkC6JZMYYyxYhapjoISStSsWRNdu3Y1/gGUSppFCtCIx8WLqb50WVk4u359OmcvWwYcOwb8+SfN8ABgZWWFz4RALwBnraxQv08fBN2/j8iYGDS6epXKSAwdClhYoE2bNjh16pR2FolKpcLatWsxZcoUOFy8SKM39+2jOtu6IyPV6uzZjllZxosRPDxoZsiDBzQytVcvOrf5+NCC9ppyWyoVzXytVAn48ks6p0VF0TYSCZW0eNEsy7LOxgaoXJnWLQPo+5NPuTXGGCsppMY6R9+5QzMNNTPlJk2iskQmvAYMDg6GWq2Gk5MTtmzZgh49esDeVP93u3ShGTCzZgE//0zXiidO0A2gqhAan3xC1/7NmwN9+9K6FgUtfdmyJZVv7t+fYoDbtynW0JQGP3mS+haGDKFzjmamq5UVlbX29s7/WHlV1PDwoDVg/P0L/r0oKAcH6geoVs04JcUlEupvaNSI+qBSUmjmi64//6SvwcHU7xIcDPTpQ7HLlCnZC6xXrUrnaM3N2pp+dy9coBkgBaE7OwWgUmIA9SUA2Wui7NpFZb4XLwYuX9Yv/8VYOWNwKS1XV1dYWFggPDwcjo6OaN26Nc6fP49GjRohMjISiYmJxmpruVKWp8oKIfCzfCdSRCr27t2LwXktfFUY585RZ+/16/R43jzg008Nbmth1ahRAxEREbhw4QJatWpV7Mc3mvffp47zvE6+fn60sLvuwmMlSUgIlRDR1PsEKOhxcaEF0ZYto3JbgHE7cIrTqVPA6NHZC83ntHIl/QwBCnJatMh7uzFjqOTWmDEUEDFWwpXV8+LLlNXPrSmdcV15AxeVlzH7vdn4whQLSJ44QYkQNzfqZC9nneTqRo0gvXEj7xcdHamsmKZjYORIbVmJW7a2aHT2LD6qUAGLNKXHNGQyqkduZUUJCEtL6gTp1InOuYsW0QW+od9rlYpKUFSunP96cJcvU8JLLs/79fffp/NieaZS0c/V3h5wd+fECCv1yup58WXK6ufWxAOP1TFQCzV+T/8jz/WwCiUlhQbCrV1Lnc3XrtH1YDFRqVR49OgRvLxMtHh8XtLTaaHxmzepDOaTJ1ReS3OO79Eje7FvgBIj//sfJTgKmiA4e5b6ApRKKkVWpw49P3UqlSvNz7lz2SWdDh6kwXm2thSfNWpE/TfbttE5H6CkyIv2Z0xqdfa1sLs73ayts+dStGhBiR1jSUyksmHr11MclTOJojFyZO51RQoqM5MGicTF0S06mga3HDtGMcHs2TSoGKC/lZAQLrPJSqUSs8aIra0tatWqhRs3bkAqlWoTI76+vnj8+DHS09MN2X25VVYDn1EWryJRPMMR9VHIIENyWjLsDFnoLC6OTlSZmRTsLF9OJ2YzLChesWJFJCQk4M6dO6ijCRJKK4WCEk2hoVSLMyyM1iepWJECS0ODVVO7fp06QnbtomBH48ABGiFTFqSn088lIiK79rxMRqNoNYmrrCyq2XrwIP38QkPp72T7dhrZo+mELMzic4yZSVk9L75MWf3coyxe1d5XCAW+fbIJlUxQ5xtA9mKlhg7EKI1UKuqAOHmSkiAKBSURkpLonKG7xkrTpsDVq9qHK1xccDwxEQcASKRSPGvVCu5Tp0IycCANNtAVGEidB7qXFba2NBrS15dGrb7+Oj2fnk4X4RER1I7+/WmWalHduwfMnEmdNRIJJVI8PalT6OjR7BGnBw5Qp06nTpRM4dGRjJVKZfW8+DJl9XNr4oFTqn8Qgxh88cUXeO+994q+w127qONXszbWgAE06M/T0/DGlmY3b9LMg7Nnad0uzYCCdu2AVasAQwZ2BgfTjJKjR6lfRiql83FqKp2j4+Ozk/K6SRQLC0qaNGsGPHtG7apenapW1KhR+Hao1dmDOzV/I0+f0s/fwoJmp9jY0OzTvn2pjbNmAevW5b/P7duz4xdjevyY4paLF2lN1PBwIDaWEiUKBW2zcyfw6qsv3k9hPHlCfx9dutCMY8ZKuRKzxki9evWEVCoV27ZtExKJRDRt2lSsW7dOSCQS0ahRI0N3Xyp98803okGDBsLR0VE4OjqK1q1bi4MHDxZqH2W1huhI2QhRX1JPABDVUNU4O128mNbMiI01zv6KQK1WC5lMJgCIaGPUqiyJkpP163ympQkxebIQt26Zr00vExNDtbSPHxdi924hjF3XtTRRq6nWeFwcPR47NrumqIODaWq4MmZEpfW8aGhMUFo/98uMlI3Qu7ES4OJFIY4coTrUgFBbWYn1U6aIKpaWwu55rfQGDRqI7du35/3+q1eF6NVLCEvL3HXCV6zI3m7HDv3XPD2FOHvW8PbHxwshl2c/zlmjfsyY7GNKpXQezMgw/LhF9eyZEO+8I8RXX5WeNVLi4oRYtkyICROE+Ocfc7eGlVOl9bzI8UDeRspGiKHSwUIKqQAggoODi7ajzEwhpk3L/j/v60vrYhWjBw8eCIVCUazHLJKoKFqHxNqavledOpnuPJSVpf942zZab6NFi+x134q6FopSSWuetWghhJMTrSEKCPHWW9nbPH6c9/ol+/bR6+fOCbF0qRBvvy3EiBFCdO4sRNu2QrRrJ0T79hQXaZw9S7GSqcnlQiQlmTc2iIwUomdPIfr1E6J3b/odadVKiMaNhRg1SogDB8zXNsaeM9Z50eAZI19++SXeeecdbU1iXWvWrMHMmTMN2X2ptH//fshkMtSqVQtCCGzZsgWff/45rl69inr16hVoH2V5REi0iEaoOhzeEi/8q75g+E6FMMsMEV2pqalwfD7yMDk5WXu/TPvySxqNA1Dt7+nTqVampaVZm8UKYd06GiUD0AjaU6fM2hzGXqS0nhcNjQlK6+d+mVEWryJLZMFaQiUNdyh/NXOLmJYQwMCBNNPQwwPx77+PT6KisGnTJqSmpqJ///7Yv3//i9+fkkIjROPiaBZnhw7ZJTcuXKARvNWr00jOiAgayRkUBNSqZbrPtXcvsH8/zaQMo7XuUKcO1UXv16/4Y8l+/bJrfv/4IzBhQvEev7AUChrBq1vK86+/6HMwVoxK63mR44G8jbJ4FRHqB7ggLsIJTkgSSS9/U15mzAC++or+ly9cSGuP5rV+hQmoVCr89ttvePPNN2Fvb4+9e/eiTZs2xXJsgzx6BHz0EZXA1JT9un6d1hCpWZNmfFaqZJrzY1IS0KQJzZTo1InWAq1YsXD7mDs3uwKCrrFjgS1b6L5KRf0UKhXNZvnzT5pVMnBg9tofBfHvv1QOTCqlWR7NmxeuraXJuHEUn2lilLyYqXw9Y7pKzIwRtVotpk2bJqRSqZBIJEIikQipVCqmTJli6K7LFBcXF/H9998XePuyPCLE4BGip08L0aABjTQwE5VKJc6cOaP33Pjx40XPnj2FurSM+jPUtWtCDB2aPTIDEMLdXYh33xXi+nVzt44VxPHj9HOTSISYPt3crWHshcrSebEwMUFZ+ty6RkiHCWtYCxe4iAHSfsY/gFIphJ+fEH37CvH0qfH3X9Y9fkzfP0CIb74RQgiRkJAgdowfL5IaNKARlZpb9+5CvP66EHPmCHHjxsv3rRsn3byZHUOEhprow+Th77+FqFQp+9hTpxbfsTVGjsw+/q5dxX/8wlIohGjZMrvNNjZCnD9v7laxcqgsnRc5HqD+gaqoIgCIupKAou9I8//pk0+M17iXUCgUYuvWraJOnToCz2dW1q5du3T/jIYP159Z4e4uxJo1uWd+GMOlS1S5AKD+HaWSnpfLC3a8lSuz2+njQzOEkpPzn2mRni6ErS1tX9D+ysREuk7WHKdCBSGKOqupNLhwIe8ZNppb7dpCLFwoxH//mbuljBntvGjwQgESiQTffPMN5s2bh8uXLwMAmjVrhhpFqQlYBqlUKuzevRtpaWkvHDWQlZWFrKws7ePk5OTiaF7pFBVFNTJNVYs8H0+fPsXp06fx999/4/DhwwgLC8Ply5fRrFkzAMBXX30FOzu7PGdPlUmNGtHIjtBQYMMGWjAtNhZYvZoWuouOpjrfrORq1Qr47z8gIIAXY2WsGBQkJigv8UAMniAL9DltYYIF0e/dA+7fp9GQOdfDYC9XuTKNGP35Z2DUKACAi4sLRjZuDPz0U/7v69QJaNCA7v/7L43Y7NKFZpZqfg66cdIvv9DX7t2z18cqDl260O/HihUUswwaVHzH1li7FnjnHaon3rlz8R+/sCwsgPPnaZZInTq0howxF6RlrBzheCBbpsjEY9Ci2z4SA/6nXLxIa1gVw1qY6enp2LJlC1atWoXQ0FAAgLOzM2bPno05c+bAvrReVwkBeHjQuTw0lK7nY2PpXPXVVzRDYOhQ480gadGCYoXBg2kheJmMnj9yhGZ0+PjQdWqdOjTLVCqlNvbrRzHDvHnUN7RjB/DgAa1ZZm8PtG5NcYy1Nd1mzsw+b02dSjNUV6x4cdt27qT+jYsXaQYsALz2Gs1QqVKFHh84ANy4Qd+fYpqdZHI+PjSTNiaGZtkoFPR7cPs2/U7ExADvvWfY2nCMlTAGnzX++ecfODk5oXHjxqhevbr2+aysLKhUKsMW1i7Fbt68iTZt2iAzMxMODg7Yu3cv6tatm+/2K1aswJIlS4qxhcVjqu0k7X21UKP5py0xfPhweBtyIfX0KX0thsRIREQEfvjhBxw8eBBXrlzRe83JyQkhISHaxEipDYAM5etLAcKKFcDhw9QJoln8VOPrrwE/P5p+Wh7KjJUWDg5lexowYyVEYWKC8hAPAIDHK5WB3cC02dOwZs0a4x8wMJC+Nm6cfaHNcrl69SoWL16Me/fuYefOnWjSpEn2i1ZWuco7iQEDIPH0BJTK7CflcrpQfvyYOjA0Dh6kBVY3bqSfQbt2tNhp06ZUssPPD5g0iRZL7dTJxJ80DxUqACtXUllQD4/CvTchAcjIAKpVK/rxPTwKf1xzk8nMk0RirIzgeCB3PNB5dVf8MXsfmjdvjoP/HTZs58XU9xQZGYnp06cDACpVqoT33nsP06dPL/0lziQSYP367MeZmbT4+KJF1Cn+9deUGDGm+vWBW7f0EwvR0ZQAiYig26FD+u/x9qbEiERCpaHHjAGWLKGF3JOSgBMn9LcfMSK7nOdnn+VOnglBSY7u3bPb8eBBdikpf39awL1rV/33fPstDRY4dgz444/sBd9Ls8qVgTlz8n4tM5O+LwXt9woMBBITgW7dzF76nrEXMXiNEalUijZt2uDcuXN6z7dp0wb//fcflLoXTuWIXC5HZGQkkpKS8Ntvv+H777/H6dOn8w188hoR4uXlVepriOoGPlGqKBxQHEalSpXw+PFjWBR1NMfixcCyZcC0aXSCMpL79+8jMDAQ3t7e2pE7586dQ/v27bXb1KtXD127dkXXrl3RrVu38rGWSFHorvsSHk7JEyFolEfTphRUvPUWjzRkjBVYaa6tXZiYoDzEA5kiEzvELsjlcly7dg2NGjUy/gE1tcZnzKCLZqYlhMCdO3fw0UcfYffu3drn3d3dce7cOfj5+eX73vnz52PDhg2YM2cOXn31VVy6dAlWVlYYOnRo7rju3Dlgzx4aNBEUlHtnjx+/eGZpaCjwzz9ASAhw+TJw9SrFEX5+NCvl228L+9Ff7vZt+p3ZuRNwd6fnhKBOmfbtqdNDrabRqleuALt2mSepw1g5xvFA6fvcunImRp72S8Tvv/+Or776Cm+99ZaZWvViQUFBOHfuHCZNym779OnTUadOHbzxxhtlf4BkairNIhg0iK7lAZpFERMDFHAN3UIRgmaq3LsH3LkD3L0LPHxI/QtSKc1YaNEi9/vUajqPX7xICRK5HMjKokEePj55H+vwYWD+fFpb5auvqI8CoAolFy7Q2mdt29JgkZxu36bEDgA0a0aJFE3sUJ7J5cCQIdmJpWbNKHHVty8nSJhRGSseMEpipHXr1jh//rze8w0bNsTt27ehUqkM2X2Z0b17d/j6+mLjxo0F2r40B3y6dAOfE/KTuK8OxVtvvYWvvvqqaDtUqegf6tGjtKDasmVGaee+ffswePBgCCHw5ptv4rvvvnt+OBUmTpyIrl27olevXqjMpaEKLziYZpP88w8lSTTs7Wl0RWlYmI4xZnZl5bwIFC4mKCufWzceuK0MwlnleTRu3BhXr1417oG+/poW0zx2jB7/9BMtIllOxcfH49KlS8jKysLgwYMBAEqlEra2tlAqlZBIJBg1ahSCgoJw7do1dO3aFSeej7S8ceMGjh07hvv37yMkJAT37t3Dw4cPAQC9evXCkSNHtMeZOXMmvvzyy/wbEhFBozGPHs0uxRAbSx0cebl0ico95qdKFSqTZkxC0CzKK1doVnKrVjQ68v59GiH50UdU6iMujkaV3rhBMygOHgR69jRuWxhj+Sor50WA4wEA2JC+CRcvXoS/vz9cXFyKttMjR6g8oY+P0ZPmt27dQtOmTaFQKBAZGQkvzSLl5d2772aXopwyBejRo/hn6B45QiU/P/648AMus7LovP7pp3T+d3Cgzvt33335e4UAvvwSmDiRBm907Ehl3Pr2pViHAa+8QvG4tTV9bwDg+++BN94wb7tYmWKs82KRS2l11ZlGFhQUpPc4LS0Nt27dgjPXdNZSq9V6Iz7KG7VQI1JNF9OjnteqLvxO1FRy4ehRmv7Yv7/R2qdUKqHJEVatWlX7vEwmw5YtW4x2nHLJ3z+7HnlUFCVI1q6ltS369aORGLVrm7OFjDFWrMp7TPBAHQnAgHhAQwiaiaA7WvH06eykiK8v0Lu3Yccws8uXL+Ps2bM4f/48bty4ARcXF3h6esLT0xMNGzbEBJ1SV/3790dERAScnJzg6OiI8PBwhISEAABatWqlTYxYWFjAz88P/v7+WLp0KRo2bIgnT56gV69emD17tnZ/J0+exJw8yilUqVIF48eP10uM1NGUqMhP9eo0CrOgo4ErVnzx61OmFGw/hSGR0EyRLl2ojEfOzg21mr66uVFN9HHjgN9+A0aOBE6epLXXGGOsEMp7PADQmrWtW7cu+g4uXgSGDwdSUqhkkpFZWlpCoVAAAO7cucOJEYDirydP6Osff9DNxwd4803q+NaswWFKFy4AAwbQGhjbttHMjqZNs8/VDRrQoIXmzXMnbAID6Rx++zY9njiRZsQUdN2MtWspgbJqFZXE1HT8v2DGbbnz2WfA6NHZpddkMkCnn42xkqTIiZFTp05BIpFAIpEgOTkZp06dyrVN9+7dDWlbqbVgwQL06dMH3t7eSElJwS+//IJTp07pXUCWNzHiCeSQo2LFikUPfG7epEU6pVL6+qKRhIU0cOBA+Pr6IjQ0lBN6puTpSYuWDRpEtSZdXQ2rz80YYyUcxwT6FEKBR+rHAIABAwYUfUfbttFF7M2bNDNRk2B/4w2gQ4fsRcBL0ZT969ev486dOxg5cqT2uTFjxuDu3bt5bu/n56eXGLl37542EaKrdu3aaJGj5MTNmzf1Sl95eHggMDAQUp0ZHM2bN8err74KX19f1K5dG7Vq1ULt2rVRsWJFSCQSvXYanaYEZ2oqEBZGs0zCwigGdHOjUZmmUKsWzRjZv58e29pSvfG6dbPrkwNUx377dhrwceECrWXj40OdK4sXm6ZtjLFSjeOB3AwsXkIllvr0oaRIly7A5s3GaZgOf39/9OnTB4cOHcKff/6JnjxDkGKrn38GPvgA2LQJ2LqVZlYuWkSzLiZNMmrJ8zy1bk0lNqdNo0EyISF009i9m87HLi7A3LnAggX0fGAg0LIlJVDc3WmG0ZAh9NqzZ5T0yMigEln162cv2p7z2J6eFANERVFssnw5LQbPiK8vlRsFKD7asYMrhbASq8iJkXHPyxJs2bIFbm5u6KtzgWJnZ4c6depg4sSJhrfQxG7cuFHo99StW/eF62PExsZi7NixePz4MSpUqICGDRviyJEj6NGjhyFNLZXi5fEAgGD1PQBAnz59ICvqFMtGjWghrQcPaFSIEVlYWOD999/H5MmT8cUXX2D69OmwtrY26jGYDnt7qudpbw9YWtJzn35KZSk8PWlkaa1a1NHl6Zl/qY3iIgTVSq9Th8prMMbKHFPEAwDHBBqaeEAlVGghaYY2s9u9fJZBfrZuzS6PZWNDHdmaxEivXnQrJTIzM7Fr1y588803uHjxImxsbDBs2DDt71W/fv3g6+uLdu3aoVmzZkhNTUV0dDSioqJyjTLetWsX4uPjkZKSguTkZLi5uaFVq1ZwzWMEZF6/tznjs3bt2qFdu3ZG/LRF4OAANGxIt+Li7l6wUg/W1sDvv1Pt8r//pvg0MTH79cREStC1bEllPrgcK2OlAscDpqWJB7JEFo6K40gfk4XNmzcXfv3RmBhKiiQm0oDJ/ftNtvj6vHnzcOjQIfz444/46KOP4ObmZpLjlDp161IiYcUKOh9++y1dMxfXmiv16gGnTlG5zn37qM9AKqU1Ls6do76jxET9hd0lEkqKjBhB5Vc11/ZnztAi7g8e6B9DJqO1x9asyX6uTRtKyqxdS9UxvLyAzp1N+1lLo06dgPPnqQ+lqGXyGCsGBq8xUr16dTRr1gy///67sdpUrKRSKSQSSYFHK0ilUty7dw81a9Y0abvKSg3R4TKaOndUfRzJSMGOHTsKP8JQqaTSWSaWlZUFX19fREdHY9OmTXqLq7Fi0KMHcPx47udtbGhk6MaN5klKKJU0LXjLFsDZGfjrL8DcHUWMlUOmPi9yPGBamnhAY7dqT9F2dOkS1XLOygLefhtYurRUXmzJ5XJ8/vnnWLNmDeLjqZPI0tISPXr0wJYtW1CJk/ClS2oqdcJ4emaXdjt7lmYvAUCNGrSAu79/wfepVlNZuDp1sheNTU+nxWEHDtSfwWJMFy7QjKxOnWggkjlmXQlBpVd/+406PzMy6CaXA02aAOvWFX+bWInB8UDZiAceiEj8JwLRpEkTXLlypXA7SU2ljujAQCpfdP48zSY0ESEEWrZsicuXL2PRokVYunSpyY5V6l27Rj8LTVWIe/doAIspZ5nmR6mk8t3Vq2eX90pJoZnGzZtnb5eeTtvExQE1a1LC7fZtmpUcH08JH1OU8GSMGcTsa4xoREREICsrCydPnsSjR49yLbY+duxYQw9hchcvXixQ1l8Igfr16xdDi8oWuZAjDemQQIJehR3F+egRXZj99pvJazdbW1tj/vz5+OSTT/DNN99wYqS4vfsu1YJ/+JDKZdy7R18zMymgMVfH19q1lBQBaHpt9+40ksTd3TztYYyZDMcDpcDo0ZQUGTCAFr4094zCIpo3b552sXIfHx9MmTIFb7zxBtz53FI6OTjknqlUvz4tPDpzJhAeTuuqhYQUPNHwv//RTBOARuUGBNBCs6mpwPvvU2yk27FjDMeP00AVgMqg2NkZdU2/AvvxRxqUkpegIEowJSZSGZdSVC6PlR4cD5jeI0FlNfv161f4N8+fT0mRSpUo6WziGRwSiQRz587Fq6++ivXr12Px4sWFn+FSXjRunH0/OZkS+cHBlHT/7DPAyqr42mJhkbt8k6Nj7nOnnR0NwvzjDxp84OhIzwsBXL9OAx727aNKF336FEvTGWPFx+D/5iEhIejevTuioqJyvSaRSEp8YqRTp07w8/Mr8LoSHTt2hG3OGoPshawkVhiAvohHAlwK27n9yy/A/fvArFk0TdLEpk6dirfffhtqzaJdrPj06ZMdaMjlwNOnwOPHNKojMzP3omnFJSCApgOnpdHj+vWLb3owY6zYcDxgevEiAY9FDLwlBixc6ulJncua/8mllKPmohtAaGho0cuMspLL2ZkSd0+e0ONatV7ciR8SQrNOevWika0BAdmvBQXRTcPF5eUL1BdFlSpAhQpAUhKVCvP0NP4xCqJ69fxfS0ig2WIAjUL+5Rf9MimMGYjjAdNTCAUeIwYAMHjw4MLvYOVK6vCuUaPYFrzu378/xo4di5SUFO4rKCh7e1q/Y+VKGsxy5gytQdK3b8kb2DJkCK2DMXMmrYnarh0lTAICgDlzaKZixYpU+psXEWesTDG4lNYrr7yCvXv35r1ziSTXDBJWMGVtqqxGoUtnNG5MWXqevlg+/PsvjRDUvfhftYpmk5hTejpNo01Lo1GKPDqRsWJXVs6LhVVWPvdw2VBcVl9BBB6gOnwQLiKKtqOQEIoNhg2j2KCUdkYlJiZi/fr1mD17dqn+ubIX+PtvGvAhl9Osi19/za5/n5EBnD5No1nPngX27KGSHQDNhtq3j+6r1TST9s4dumVk0IyOZs1M16n05AnFPTY22aVHzCEykmq4r1pFM26io2n0roMD0LYt0L49zeLlxVzLnbJyXiyssvK5h8uGIkI8wGVxBY5wQJI6GRK+tirb9u8Hxo+nxDZA19PvvktrepSUOC44WL9EpURCZbUAIDSUvr77Lq2nUpyzXhhj+SoxpbTOnDkDCwsLHDp0CD169ECTJk0wb948zJgxAzt37jR096yUmWE3Te/xxrjv4ezsDGlRLt5OnqSkiJVV9mLrYWF0UckLWJYtajVNrf3wQ0CTTJXJaHr0tm3AoEGAr6/52mdnZ7LF/BhjrCzKGQ/8kPgTvL29gSRg88mfir7jWrUoea5ZcwEApk+nTuIBA6jTuKSNQsyDi4sLFi9erH2sUCjw33//oW3btmZsFTOqmjVpQdbGjYGdO/XXy9MsGqxLJqMY6NgxSoDY2tLvso8P3Xr3Lp52e3gUz3FextubboMG0eOsLEraVK1asLUHhaD3KJX0fVWraRYPd8AyVux0Y4Ldqj3o0KEDcBZ4/+P5hUuKCEHJZmtrE7SSmcyAAcCtW7SA+aZNlISYMoX+H5eU8uX+/rRWzZ49wObNNChSkxCpWJFKa+dV9i0qivqt7O2BoUNzv84YK/EMnjFiZWWFgIAAXL9+HTKZDC1atMCFCxfQsGFDuLu743heiymXUEII/Pbbbzh58iRiY2NzTZHcs6eIC4UWQWkdEZKzIyS860OEh4fj+++/R5vCjOgSgqYv/vsvTZefM4cy9JqfQd26QNeuNFKsTx+jZe03bNiAX3/9Fa+99homT55slH2WCydPUuKgVauivX/qVKrrCdDCbKtX04V5fp1bajWVTqhdG2jZkp5LSMgeRfn+++ZNpDDGjK44z4scDxguZzxQdZE3Fi5ciDp16uD27duFHzCxeDGV1Ny8Wf//u1JJnZ2a0lo1a9LF9htvmKbUkInMmTMHq1evxvjx4xEQEIBq1aohJSUFUqkUFhYWiIuLQ1JSElq0aIGBAwcWbcAJM46ffwacnKij52WePKHfT2trKr9Rrx4lQB48oLIdcjmVgRk6lGaV7NkDdOnCMYwhIiOBDRtonZLYWP3XXFyAS5eKrfQOMw2OB0pXPADoxwTDDo1E586dYWVlhbCwMFTTLNJdEH/8QSW2P/mEyh3pJlV++YWS0F270roWmtH+RpKVlQWFQgF7e3ue4WKIlBTghx9oofOPPy6ZyWoh6Pxx+zatedu9u/7AXCHod/HTT4GLF+m5Nm0osQJQX8WdO3TOZ4yZTImZMeLo6KgNEBwcHHD37l1cvHgRkZGRCNVkWEuJ2bNnY+PGjejSpQs8PDz4hGegBHUCDhw4AKlUWqDF6/ScO0dJESsrYNw4oEkTWmRRKqUTkabW8ldfUSf4ypVGaXNQUBBOnz6NiIgIqNVqTJgwAdY8IuXFTp2iABSgi80WLQq/jylTqMTEF18AEye+PEBavx6YPZvuJyVRB8X9+1Rr+soVCoqjouh5xhgrJI4HjEst1Fi9ejUA4IMPPih8p35gILBsGd2fMAH45x+dnaspWXLyJHWKhIVRXLBtW3ZpohJOCIHU1FQIIbB58+aXbr9o0SIsXbq0GFrGcklMBKZNo84OPz/9dUB03blDo0e9vbOf69qV4pLjx6nD7sqV3O/Lb8FxVjAZGTRDJzEx/9ft7SmOHD8+e4FdxvLB8YDxNWrUCEuWLEFGRkbhkiIAVRiIjKTZB2++SaWYOnem1/76i0o27d8PLFpECWhXV6O1++DBgxj6fEbAgQMH0LdvX6Ptu1xxdMy+jtdISAB27wYmTy4ZiRKJhAZp5jeDcts26qPSqFqVzvFCUMnXoUPp9y8qitbtYoyVaAYnRry8vBAWFgaVSoUGDRrg33//1ZYBqFGjhsENLE7btm3Dnj17+CRnJA/V0QCAbt26wa+wI7OqVKEkiFxOJ5h33wX27qUpjFWqUF3mH36gRbl1y2kYqG/fvti8eTMePHiAadOm4bPPPsOKFSswfPhwHp2Zn2rVKPiMjS16ibMmTSjIPXCAgoy33gKaNgUsLfPevnbt7PsVKtBslfT07OeqV+eFOBljRcbxgHE9FfF4+vQpnJycMHLkyMLvQHedgwYN9F/TlNscPpzORx9+SM+XolF6EokE3377LQYMGIAzZ85gw4YNSE5O1r5ub2+PoUOHYtu2bQCA+vXrm6upzNmZFmD94Qcgv0E/O3dSp3v79lQWS9PJY2tLa2Vcu6Y/kjkykpIlJ07QrJFRo0z8IcowCwugWzf6+69Xj5JYAQGULKlRA/juO0pWKZW0VsmECeZuMSvhOB4wPmdnZ71SkoXi6Ulff/mF/ncGBtJNJqNBETt20OseHkZfu6J58+aoVq0aoqOj0a9fPwwaNAhr165F9erVjXqccketBkaPBg4dooTDpEm0jpy9vblblr9atbLLXwLA48c0W2TtWlqDJC6OzkEODmZtJmOsYAzu6R03bhy6deuGkJAQfPDBB7C0tIQQAlKpFB999JERmlh8KlSogJpGnnJZnsWoYwAAHTt2LPybfX2pvNKCBXTx+OGHNE2xfn0qjTF0KHWinzhB2xlJnz59EB0djS+//BJVqlRBeHg4Ro4ciVatWiEsLMxoxylTatUCli6lRXC9vIq+H3t7YMkSCohat6bOh27dgP/9j6aw6urTh2YUtW5N9UA1SRFLS5rqeuIEL4rGGCsyjgeM6/HzeKBt27awKMjaADlVrQooFFR+4csv899u7FjqrF6yhModlSIKhQL9+vXDypUrER0djZMnTyIzMxNKpRJJSUnYunUrMjIyEBsbixEjRpi7ueWXREJJjzNnaB20vDRvToN7TpzILhMKUKlQAPjgA3p+3DiadeLjQ6XffvmFBgGxorO0pFHHH31ESdT4eFrc/quvgPfeA+7epaRIs2ZUVouxl+B4oIRZtIj+D0dG0uNx46iDGqBOas1Axo0bjZ4Y8fLywp07dzB37lxYWFjgzz//REBAAHbt2mXU45Q7Egmt3WFpSVVDxo+nwZZvvgk8fGju1uWtTRuqWrFlCw2CEIJmLr/7LiVFGjcG/v47+3eTMVaiGbzGSE7h4eG4evUq6tWrB39/f2Pu2uS2bNmCw4cP48cff4StkU+khVVaa4iOtXodAJWF2KP8A+nIwMmTJ9FZM8XVGNLSimUEQVpaGtasWYNPP/0UTk5OCAkJgR0vwG1agYFUq/P4cf0yCNWrU6BUtar+9kJQCS2plDrDHB1LxvRbxpjRFed5keMBw2niAQAIUt1FtPsjvP322/jggw9Me+CkpFJXtkCtVqNBgwZo2LAhVq1ahao5z3Ws9Fm3jurg29tTSbcaNYCrV2k2bE4yGa2Xplk3T7Mm3+3btN7IiBE0SER3hsqNGzR4yM6OkoA8GCS3rCyanXPzJt3u3aNkybhxuWeUCUFJFFfX/Ne3YyUGxwOlKx4AsmOCJ+onmLD9TXTq1AlVdGeDFsZrr9HMkDFjqGNaIqFZB23b0kDKV1+lmXsmFBQUhLfeegunTp3SJkl4VpGBoqLo57l5c/ai51WrAkePlvxZwBER9Du5ezfNcv75Zxrk+e+/VOmiFK15x1hpYqzzotETI7ru3LmDgPxq75ZAGRkZGDJkCM6dO4fq1avDMkcZnyt51QI2kdIa+GiCnlSRhr3KP2FhYYGkpKSCJxRu3KCLl1dfpenwOcnlVHapRQtg1apiOcnExsYiJCQE7dq1M/mxypykJOD772kERZMmwOuvA3XqvPx9mgXLzp4FPv+cgqNRo2g0ZVE9e0aLpHXrZtjMFsaYWRTneZHjAcPpJkYAYEvWdigUClgZuwM3KAiIicle66oUOnLkCHr37g0nJydER0fDgUsvlH5qNSU1/vmHOutOnKAF2G/eBGbOpBi3bVu6tWmTdzJPCFoLY9YsWptkwQKaWbJ0KS0urinh8b//0QwJVjRXrlBd+8BA4MkTwN2dnj94kF6bMiX/smnMLDgeKF3xAJAdE/yjPIsHIhLLly/HwoULC/bmrCy6BmzfnioVpKbS/9aePbP7C+7fp/+nGRk0M6ywa5cUgVqtxujRo7Fjxw7Mnz8fK1asMPkxywUhaFbm9Ok0QODDD7PXmStNDh6kmTDe3hSrluTSYIyVUiVm8fXExEQ4OTlBpjNNLDAwEMuXL8f+/fuhUCgMPUSxGTduHAIDAzF69GheXM1AsSIWANC0adOCJ0VUKqBRI7ofE0NT3nP69ls6scTFAWvWGKm1L+bu7g53d3fExcVh+vTpWLduXdFHuJQ3Q4ZQUgSg0meffkrB6sumpEul2fWhe/YE5s8HvvnGsLa89hrVLq1YEXj61LB9McbKNI4HjE8ikRg/KaJSUTnNM2eAL77IO24oBX5+XvarSpUqCAkJQaNGjXhds9JOKgV+/BFo2JDqjjdoQANFOnWiuKgg/1MkEioh26ABJVQWLKCbRpMmNAtl+XJgxgwekVoUCQlAhw7ZJVn37QPq1qVO1X796Lldu2jgFiuXOB4wHiEEYkUcABRuwOHnn1MJLXd3Kq/s4ADknJ3h5wcEB1MysxiSIgAglUqxZcsWDBw4EK+++mqxHLNckEiAjh0p+bVxI60dUxp9/z19jYykQQ7z55u3PYyxfBU5MRIREYGBAwfi9u3bcHZ2xubNm9G2bVtMmjQJ+/btM2Ybi82BAwdw5MgRtG/f3txNKfWcJRVQS+pXuDrYUikFPd7eeS+oLpdTYATQaLlirA0cGRmJnj17Ijg4GAkJCThx4kSxHbtUa948OzECFG0qaY0awK+/Zj9OTKTFS/MqR/EiLVsC7doB168X7n2MsXKH4wHjyRAZsIa1aXa+ahUlRRwcgFdeMc0xikHnzp3xyy+/IDg4GE2bNoWzszPatGmDHTt2oEIpKwvGdPj6UjmNqVNpNPOzZ/R8QTtW79+n2QpJSfRYKqVES4UKwMKFNNjj6lWKmR0dTfIRyjw7O0ownTtHjydNyr1Ny5bF2yZWonA8YDzxIh4ZyICDgwNatWpV8Dc2bw7s30+D7F60ZoOLC1UGKCZyuRxffPEFpk+fzgkzU3B11R8MEBhIJREHDaL/3SVdr140mPf2bT6PMFbCFTkxMm/ePNy6dQsAzRp54403ULduXZw5cwYAYGVlhbFjxxqnlcXEy8ur1E1LLalcJa5oLWuJ9wozelMioYRHfjZsoNqTVaoAEyYY3sgCEEJg+/btmDNnDmJjY+Hl5YVvDJ25UJ58+imVzvLzo7JY771HpSQMsXEjBUnt21N5icGD8y67lhOXmWCMFRDHA8bzj+oskkUKJv79N7oas9zV9etUXgGgBdmrVzfevovZxIkT0aZNG3zwwQc4cuQInj17hv/++49/B8uCwYOppNbOndSZo3HjBhAQQIvN5iU1lQaApKTQ4/r1qe568+ZUZkQzojYri8qNGHM2llxOnZC2thRrleXfQxsbGpV85Ahw+jTN7omMzL7eWL0aGDbM3K1kZsTxgPFEiigAQL9+/WBjY1PwN/buTV/798/92rNntAbF8OHFts6kQqHAli1bsHz5ckRERODSpUvYu3cvJ0dMbe1aYPt2OicNH06J7MIk2IrblClUphHgNVAZK+GKPE//zJkzkEgkGDNmDMaMGYP4+HicPXsW1tbWePfddxEeHo5NmzYZs60mt2rVKsybNw8RERHmbkqpZSO10bsZTWws1VAGqIPb0M71Arh58yY6duyIsWPHIjY2FvXr18e5c+fg7+9v8mOXGRIJMHEiXbwvXKj/c0tMpNkka9ZQ3Vi1umD7fPqUEiFnz1JQVLs28N9/pmk/Y6xc4njAcDZSG6glasSKOGQiE7Vq1TLezuPjqTyiQkGdzcU0WMKUAgICsGfPHiQlJeHy5cv48ccftZ0sCoUC8+bNQ2xsrJlbyYqkQgXqINGIi6OSWs2a0YynvDg4AHv2AMeO0Wzqy5cpKQJkd7DY2FCZ0fr1jdfWsDAqLTVsGJWScnHJv41lhVRKi96vXElJkogISjhFRhZrZysrmTgeMA5riTUePk+MDB061Hg7XrqU1ibNa7aXkSUkJGDTpk2oXbs2Jk2ahIiICHh4eGDs2LGcFCkO9erRDMnkZOCHH4DWrennrplVWRJJJHmfQ4SgEmEdO+o/f/ly8bSLMaanyIuvW1pawtfXF3fv3gUA+Pv74/79+zh06BB69uxp1EYWFxcXF6Snp0OpVMLOzi7X4moJCQnF1pbSurjaZJs3cF8VCgeJAzwk7vgu60fj7HjSJKrT2LQpcOnSi6fRGkFkZCRq1qwJlUoFOzs7LF68GO+8847x66OXRzt2UJIk5wVG797Atm1ApUov38ejRzSDaONG6mCwsaH38qg+xsqs4jwvcjxguMk2b+CO6i7OKs/DTVIJseo44+z4yROgRw9ac6FyZZo5olksuYxavHgxli1bhkqVKmH16tUYPXo0d8KUZqdPU+m3+Hh6/Npr1Lnn62vedu3aRfF2cjLg7EzxWFgYDWTR/O/57z+q31+1qlmbyso3jgdKVzwAAMOshuJ3xV7IIENiciIcjVH+LyiI1idVKmnWlwn7oCZNmoQff/wR6ucD+Tw8PDB//nxMnjy54OupMsOp1ZSs//57mj0C0Dlp06bc686UZJ98AnzwASXlDxyg5IlaTYMiBg6kdXWdnc3dSsZKPLMvvq5SqeDq6qp9rLlfWpMiALBmzRq+0DSQSqhwTvkv5JBjgGU/4+w0Kgr46Se6v26dSZIiQghERkbC5/naJl5eXqhUqRI6dOiAVatWwdvb2+jHLLdWrMhOilSuDLRoQSUbDh8Gpk0Ddu9++T6qVgWWLQPmzgVGjQIOHqRRfXv20ILvjDFmAI4HjCNcFQEAqC6tbrydzpxJSREPD+DEiTKfFAGALl26YNmyZXj69Km2TO2YMWPM3CpWZJ060SLBCxcC331Hs2Z37KDa+G+8QUmT/EpsmcqdOzTqGqBZIteu0Zp/cXGUFBGCFo+dNYtG7T4vp8xYWcfxgHHEPV90vZq0qnGSIgBVkVAqqWShifugKleuDLVajfr162PixImYMmUKJ0TMQSqlc2inTpTInzgRCA0FfvwR6NqVBkuWdLdvU1IEoLXCli+ncphPnwIZGbS2qoVFduKHMWZyRU6MAMDVq1dRs2ZNAMDjx48BQPsYACQSCUJDQw05RLEaP358vq9lZGQUX0NKsUj1Q8ghhx3s4C5xM85OPT1pVN2dOyarI/nZZ59hzZo1uHnzJtzc3CCRSHDp0iVOiJjC3LmAZv0htZqSXR9/TJ0CtraF25eTE/Dnn5RQOX6cFmpnjDEDcTxguDSRjkfieWwoq268He/cSWstJCRQfFCGqdVqDBs2DPv379c+V6lSJTRo0MCMrWJGUbEizXqdMoXWyjl0iOKYkycBN7diXUAYAP0t+fgADx7QaFxvb4rRsrKovNSmTbSQPAC0bVu8bWPMjDgeMA5/WW1Uk1aDXMiNs0MhaHAEQCWJTEAIoU2KTZ8+HZMmTeK+gZKkY0dar+vmzZK91khOVaoATZoAV6/S40WLcm/TqVPxtomxcs6gxIhcLs9Vb1P3cWkbXTFz5kysW7cu1/NpaWno378/Tp48aYZWlS6h6jAAgJ+sJqSSIi9hk5uTk8lOeJmZmVi1ahXi4uJw4MABbQDMgY+JjBxJIxC//JLqbvv40PTRhg3p9cxMKt0QFUW3evVe/LO3sKAa2ykpgGYWm2ZhUsYYKwKOBwwXqgqDgICHxB1OEiOW/JBIADs7upVxUqkUmZmZUCqVaNq0KV5//XVMnDgRzlxeoexo2pRmvYaH0+zoOnWKPykCAI6OVNv8zh2Ku/bsoRm5cp1OTJkM+PRT4N13i799jJkJxwPG4yCxByT2xtnZvXs0QMLGhv6PGllmZiaaN2+OIUOGYP78+ahSpYrRj8GMwM5Ov58gIYH6EkpyuUdXVzrfHjsG3L9PyZ2sLDrfVq1KMzO9vMzdSsbKlSInRjp27FjqEh8vc+DAAbi4uGDJkiXa59LS0tC7d28ztqpkm2g9Vns/S8gRbfEIkANbA7ejUaNGZmxZwe3cuRNxcXHw9PTE6NGjzd2css/Ski6qZ8wAoqP1ExghIUCXLvS8xty5L0+KWVpmJ0UAWkAzJAT4/HMalckYY4XA8UDR6MYEikZK4Arwv68/wrRp08zYqtLlwIEDaNu2LVxcXAAAn3zyCb744gvUrVvXzC1jJlWjBqDz/wYADQ5xcChYnfGICFqnpEMHYMKEorWhUiV6P0CzVuRyGnzi4wPUrg0sWJD9OmPlBMcDRaMbDyiFElvlvxj3AOfP09cWLagMkZHt2rULt2/fRkpKCj766COj75+ZQFoa0L8/8PgxcPQoUKuWuVuUP6kU6NWLbgWhVFIJrpo1aSADY8yoipwYOXXqlBGbUTIcPXoUHTp0gIuLC2bPno2UlBT06tULFhYWOHTokLmbV+I9UD+AXCVH/fr10VAz+t9QCQnAgAFAu3bU2S014iwU0BTZL7/8EgDw1ltvwcLCoElUrDAsLYHq1bMfKxTA669TUsTBgV7z8qKLcY34eAoGXhQAJyRQaa70dFq75LvvqPYsY4wVEMcDhtu0aRN+/vlnDB8+3Lg7Hj2aOmtXrSpTie9nz55h7ty5+P777/Hqq69ix44dkEgkaNy4sbmbxswhOhro3Jlm1v78M80kyc+2bcBbb9HM2c2bKb4ydKBP8+Y0i8XTk/7e8nP6NA1wadKEYrdr12gWr6srMH48EBBgWDsYMzOOBwyjFmr8pvgDT3r1wk8//WS8mRc3btDXNm2Ms78cvvnmGwDA1KlTITPB+qbMBBISqCpFRATQvj2VqDTBbKJidecOlR3fuxd48oRiggkTaH2dChXM3TrGygzuBdbh6+uLw4cPo0uXLpBKpdixYwesra1x4MAB2NsbadpnGRamjgAAjB492niziY4fpxEh8fHAZ58ZZ586Dh06hGvXrsHW1haTJk0y+v5ZIWzfDvz3H53kb97MPYVUoQAGDQKaNaMyXPlxdaWpqRMm0DTrV18FYmM5eGCMFRjHA4Zr1qwZmjVrZtydXr+evc6BbkygVAJr1tCFsIk6SUztzTffxO+//w6ASnmq1WrujCnPEhKApCRaVLZhQ2DDBlqYPaeffsqeIVKtGiVUJk6khIQhf3+2tvqDV/Jy+TIlbzSsrPRLb335JRAZCbi7F70djJkZxwOGeSxikIEMXL16FW5uRlp/FABWrwZmz6YSf0Z27do1XLx4EVZWVngjr/+7rGTy8gLOngUaNKBr//79gUePzN2qoktOpkEKajWVBwMoLli7lmbF7Nxp1uYxVpZwYiSHhg0b4q+//kKPHj3QqlUr/PXXX7At7ILQ5ZBaqJEkkgEAQ4cONdJO1cDy5XTf2CNOAaSnp+Ptt98GQAuqVSxDI09LJU0iRAjgeQkRPZcvA+fOAf/+S6MT69alC/969fTLaAFUb9Tamu47OJSLWvSMMePieKCECQ8HNKVLunenUj8ay5ZRGSE7OyqlUAo9en7xvnDhQizXxD6s/GrQgBZBf/ttWmD4zTdphPSqVdkzOKKiqBY5QCVKV66kddxcXF48w8RYvLyA+vWBW7doRrc8x6LKPXrQGoGMlXIcDxRdlJrKIw8aNMi4lRkkEirzZwJbtmwBAAwePBjunNgtXR49AlQqul+S1xkpCFtbYPJk6udo0oRmw0ycSK/17GnetjFWxpT7xEiTJk3ynN1gbW2NR48eoV27dtrnrly5UpxNK1WkEilGWA7FrEvvwc/Pzzg7/flnugisUMEkCz3+/vvvCA8Ph5eXF9cOLQm6dqXRkIMGUSAgl9MoYEtLurVpA4wYAezapT9jRCKh+rJnztBoxe3bqXyDSkVltzZtovczxtgLcDxgHJkiE1dV1/Hnn39i4MCBxplBqlYDw4YBMTHUYbx7d/b6VEIA69fTfWPPUDGDli1bmrsJrKSoU4dmwH78MbB4MZXTOHOGEoH9+lGCpGNH4OlTmkElk9EI0uKKeTw8aIavEJSQjI+ntiQkAL6+VAudsVKI4wHjiVY/BgD0KuhaCi+TmQmEhdEAORNQKBT45RdaD2XcuHEmOQYzkUOHgKFD6XekZk3geYKr1LK0pNnQGunp9NyQIQDPVmPMqMp9YmQwrz1gNEathZ2ZCXzwAd1fsCDvGQQGGjNmDJydnWFlZQUHBwej758VklQKfP999uPPPgMWLqQL/VmzgC++oDraffpQwuzOHbo9eEAX5Zp1R7p0oVHDvXvTVFPNaBGVCrh6FWjc+MX1shlj5RLHA8bxSB2Du+p7+PDDDzFo0CDj7HTvXuDKFUp2Hzqkvxj1iRNAYiLNDty/3zjHY6ykkEiARYtoZsaYMRTH3LtHiZHKlYF9+6jchqacjG5SRLPmyPTppo17JBL6+3NwePkI7ocP6e/0lVcoscJYCcTxgHGkijQkIQkSSNCtWzfj7PTrr4F586h/4OOPjbNPHUePHkVsbCzc3d3Rk0flly5NmlCfUZMmNFBS03+UkUExZJs2Rl+vtljZ2Rm+fhhjLE/lvnfwf//7n7mbUCYIIYy3rghAo+IePqRp+jNnGm+/OQwYMMBk+2YGUirpq0pFdWSlUkqWjB+vv93jx7QYmUa1akBQEC0YqhERQYHEuXPAwIHUyVaaAyPGmNFxPGAcjwSVhDLa6FC1mhaZBIB33qH/8bo0MwjHjy/Va0kZtcQIK3uGDKFBIUeP6q+jI5Hk/3s/Zw7Nmt2xg0bO1q5dPG3Nz/HjVOorPp4GvixfTkkbY14/MGYEHA8YxyM1xQOVJJXgYoxBjgkJlAxRq2lWmgn4+vrirbfegru7O5+XS5vKlWltWm/v7Ov8hw+BAQNojboFC4BPPjFvGxljJRL3DDKDpYhU7FL8jnPKfyGEMHyHWVlUJxmg4MfINVynTp2KqKgonD171qj7ZUY2fz6Ndty0iR5/8QUtMppTlSo0C0SXblIEAMaNo6QIQKMrjxwxdmsZY6zcE0Joy2YYbaTl5cuU7G7RghIjutLSgAMH6P5XX1HSOyLCOMc1MZVKhbt372ofr1ixAgEBAZBy0p7lp2ZNYOpUoFGjgm3frh2t8XHhApWZ27fPtO17kdRUYPBgSooAtIDs22/z4rGMlWHRguKBapIqxtnh+vXAs2dUUnPsWOPsM4c6dergq6++wuLFi02yf2YiT54AoaFA9er6gx+nTaOkCEBxImOM5cHgq6+uXbvme+vXrx8++OADxMTEGKOtJuHq6oqnT58WeHtvb288ePDAhC0qfaLU0UhHBpJEsnFmjVhaUqmMJUuA1183fH85WFhYoHXr1njjjTeQmZlp9P0zI7G0pLIMkyZRPW0AmD2bRn4UVqdO+o/9/Q1uHmOsbOF4wHCJIhHpSIcFZOjYsaNxdlq9OpUOOn9ev4QWANjY0GxAqZQGUSxYAFhbG+e4JiKEwN69e9GwYUN06NABKSkpAIB27dphxowZaN++vZlbyMqMsWNpYfROnSgxMWgQzbw1xiCmwrK3p+Sm7oLsHh5A06bF3xbGXoLjAePwlFRDNUlVeEqrvXzjgvjtN/o6d252+UATSU1NxalTp0x6DGYkf/4J+PlRVYg//8xefB2gAQIamnMPY4zlYPD8wFOnTuXbGS6EwOHDh/HTTz/hwoUL8PLyMvRwRvfs2TMcOnQIFQpYfiE+Ph4q3X+2DJFq6qg2WtAjlQKtWtHNBD7++GPs2bMH9+7dwyeffIKlS5ea5DjMiBYsAP76C7h4EZgxA/jjj8K9f8kSmnbt70+BNC8IyhjLgeMBw0WKKABAFUkV2NjYGGen7u50A2iUuVpNcYJMRp2tW7cCn39Oiz7XqWPyzpLCun37Nnr16oUqVaqgSpUqePToEQIDAwEALi4uuHHjhnYh32nTppmzqaws8vKiBdzfeYdq87//PhASAnzzTfEt0g5QuaxDhyhx+fPPdNuyJftvm7EShOMB46gl80UtmZFKXoWFUaJXJqM1lkwoPT0dAwYMwNmzZ7Fr1y4MGTLEpMdjBtKsHxoURDMTa9Sg/oIpU6gCRWoq0LZt7sE1jDH2nEQYWPuoc+fOCAwMRFZWFho2bAgAuHHjBqytrREQEIBbt24hKysLEydOxHfffWeURhtTUUoW3L9/HzVN3LGanJyMChUqICkpCU4lLLs91XaS9v7sq+8hICAAEokE9+7dg5+fn2kPLgQtzJ6eTjelkhZ6LOTP8ffff8ewYcNga2uLkJAQVMtZs5wVzqFD1CnVpw9QqZLx9hsSQjWoR46kUcPTp9PFfJ069Prq1VRKa8SIEtcZxhgzLlOfFzkeKDzdeEAlVDhY8QgePXqErVu3YsyYMYbt/MABYNUq4N13gf796bmOHYEzZ7K3adsWOHu2xKxRkJiYiI0bN6JOnTraxXuPHj2aa70Ve3t7vPPOO3jvvffgzBfqzBju36cFzfv1y7+G+vr1NPPW1RUIDKQ67OYiRIn5u2WlD8cDJTseAIBvM4zc77NmDcUDXbsCJ07kfl2hoD6CjAy62dsDFSsW6f+MUqnE2LFjsWPHDlhYWGDHjh0YNmyYET4EeyFDzgtRUVQqa9MmIDGRnuvRg8pn87mGsTLLWOdFg0tpjRw5EhKJBDdv3sTly5dx+fJl3LhxAwAwfvx43Lp1C3Z2djh69KihhzIJtVpd6Jupg57SZO3atQCAgQMHGicpcvUq8OabtLikLiHoRFepEmBnR1+9vWnkf506hS4LMHToULRr1w4ZGRlYsmSJ4e0u6xISKLDQLIiu6+ZNoG9fKtng4QF07kzBa0KCYcc8exZo3ZpGFA4YQCOF/v47OykiBC3I+9prQJcuQGSkYccLCwOuXTNsH4yxUovjAcOkiTRUqlQJVapUwauvvmrYziIigFGjgJMn6f//7NmAXE6zRXSdP2/4/34jiI+Px/vvvw9vb28sWLAAq1ev1r7Wtm1bXLp0Cfv27cPGjRuxbt06hIaGYtmyZZwUKYvOnQN69QJ+/bX4jpmaSknDGzeAFStorb68zJhB64z88UfhkyL/+x8wbx6wdCkwcybwzz+GtZk7qlgJxvGAYZLUSVi2bBni4uKMt9P9++nroEH6z4eGUge4lRWVSvLwoMF0bm6FrzDwnIWFBbZt24bRo0dDqVRi1KhROKBZz4yZxrlztHj60KG0xmhheXrSGrVRUcDGjVRe9dgxYNs247eVMVbmGDxjxMfHB/b29ggKCtJ7vm7dukhLS8ODBw/Qu3dvnDx5Eln5Beosl9IwIkQu5Ngh2YXMzEycPn3aOPXEP/iARrqNGKF/UXnsGPCihVyL8Gt87tw5tG/fHlKpFHfu3EHt2rWL0OBy4quvgDt3gObNgQkT9F9bsoQWvNUsbKZRowZw6lTRRiQKAVSrBjx+nP1cpUq0sJpmFFdGBrBwIfD999Qp0L07/Z4UhRA09fbpUyrL4mukad+MMaMpyedFUyrJnzvnCNEN6ZsQFRVleOnUqVOBH34AHB2zR/5t3EgDJ9Rq6pTt1o2eP3qUOkXMqH///tpOkwYNGuC9997D2LFjjbPuGitdPDyA2Fi6Hx5OHXSmtno18N572Y8vXCh4Odpff6VR1d27v3i7vH6XAwN5jRBmFiX5vGhKJflz68YD/you4IbqFgYPHoy9e/ca5wBJSVShoGNHoGrV7OebNMl/YFv79lS+T60GDh6kdckKQaVSYezYsfjll1/g7OyMhIQEPq+bSr16VAoLoPJXK1YYtr9PP6VE/o4dtPYIY6xMKjEzRp4+fYrg4GDMnz8fgYGBCAwMxIcffoi7d+8iPj5eu52dnZ2hh2IlTJQ6GpmZmfDz80OHDh2Ms9PDh+lrztqhDRq8eF2I8PBCH6pdu3bo378/1Go1li9fXuj3lyvDhwNt2mR3ROmaNYsCUpWKfg5r1tCojfBw2r4oCVGJJPdFeocO+iXTbG2pzJabGz1u1Kjwx9E93qZNwObNNFqFMcZYoUkkEuOsJzdsGM0G0ZS5dHCgc5BUSv+v336bnq9du0R0zN6/fx8A8NVXX+H69esYN24cd56UV61bZ98vrngiZwxe0AEp4eGUbOzRg2K5jIz8tx05Uv9xw4Y8iIQxlosQAhFqWoh+7NixxttxhQr0f0g3KQIAmvU/8oo9zp6lslsnT+ZfYvAFZDIZ6tWrBwDw9fXl87opDRtGZR5dXV88GLag3n2X1iblpAhjrAAMnjHy6quvYvfu3blOFEIIjBgxAlu2bIGnpyf8/Pzw77//GtTY8qQ0jAhJUifBb54/KlasiNmzZxu+48hIWi9EIgFiYnIvyPjsGXDpEo3oT08H0tKonminTrS4VhEuQP/77z+sWrUKixYt0gY+zAiioigpsmgRMHp00fYhl9PMoVq1aOSITKa/aNqhQzRb5eJFCoZv36bRxYyxMqkknxdNqSR/bk08kCpSYQMbfJ+52Xg7l8upjFZgIP2/b9Ei+7XAQFpvau3aEvF/393dHXFxcbhx4wYaNGhg7uYwc9LUSE9MBFxciu+4f/5JcVDjxlTeNCQE+OwzSl507gw0a5Z7sfW0NCqP9c039Lh5c+pItLbOvf/QUODBA6B+fV4wnZldST4vmlJJ/tyaeCBRnYhd8t9hZWWF+Ph4ODg4mP7gQUHAvXs0O0DTR+DoSOWXAwLoa17/A19CpVKhevXqiIqKMs7aaezF1GoaaFnIn1OBREfTYEorK+PvmzFmNsY6L1oY2pCNGzdCqVTmmiY5dOhQfPvtt4iLi8OHH37IF4pliEqoAAAOEgcsW7bMeDvW/A516EAXXZGRVCqpcmXg88+pU7xnT+OMIniuRYsW2Llzp9H2V64lJVEN6tdfpw6sGzf0L65TUgrXgWVlBfz22//ZO+vwps4vjn+T1J3SIgUKxd1t6LABw8dwGzrc7TfBNmC4bGzAcHdnuLsXd1ooXkpd0+T9/XFIkxvaUkmatDmf58nTe3Nv3nuSpn3PfY98KSCSWIbOhw8UFJHL6abeDBbHGIZhLAmNP3BGeQ6v1K/RcFNjdNTPLE8rNjbAjh3A69dUMfryJVUjArTAsXy5Ya6TToQQ+PhJU8vd3d3E1jAZjr8/fU+//pqqlzT+SkYGRQDqu6/be//ECWo1qsHJiSpxFy3SZlw7OtJ+8+aUxHL1KvD770Bivn2hQklXiBw/TglN7doZfkHr7l2yN6M/T4ZhUoXGH/BT+QMAGjRoYJigSGws3fs3bkxVADY2wD//kF7S/PkU+ChZkh6tW6f/ejooFAqcO3cOO3bsQPv27Q06NpMIcrm0O4ShuHyZKkdq16bgmVW6l0AZhslipPs/j5ubG7Zv344nT55g9+7d2L17N54+fYpt27bBzc0NefPmxbBhw1C/fn1D2MtkZTSBke++A1atoqy09euBOXMogy0DSGcBlWXz00/AggXAwIGU7aEbFHn7ljRHRo4kPZCUYmWlXWT4919q9RATQ/u1alH7K19fuqlnGIZhMpx4EY9X6tdQQYWSJUsadnBHR6oa3LKFgiPjxhl2fAMQFxeHli1bom7duhwYsSR27aLFuoIFSd+jZk2qqjAX+vUDxoyh6pFs2cj32rUL+OGHz3X5mjYlfwqgvu7Xr6f8OrNmUYVwly60YLluXfLnb99OC1SXL3957Dlz6F6gWDFqh8MwjNnzQh0AAGjRooVhBjx2jHTFFi0i/aaGDamd5uHDVPFmZLy9vTF8+HDYJlZJxxgflYpaXX/9NXUWSUtCa0gIVXFu2wZ06wbExxvaSoZhMjkGC8kWLFgQLVq0QIsWLeDj42OoYTOU+vXrY/LkyZ89HxwczIEdPfxVz+Gveo7IyEjDDKhSaYMfOXKQwHd4uPa4kas6Hj9+jF69emHKlClGvU6W5tdfARcXyjj8+WfpsS1bgKAg0h9p3pxapKQGISjwsnChNhvIxwfo25f0ZxiGYQwI+wMp5436DVRQwQmOxqsOXrGCWmeaoV6dra0tduzYgZMnT8Le3t7U5jAZwalT1Nf+yBHyT3x8gEGDzEdzY+9eqqSdMQPYv58qbM+cIeHhI0eAX375/DVt21LFh0oFdOpEVcBfwtf384XJbt2SDnp8/Eh95Pfu/XLf9+fPgdGjaTswkOxTKr9sE8MYGPYHUk6MiMV7EQgAaG6opLXTp+ln7drAkCFUDadh3z7pegGT9ViyBOjVi+bdFy8oCB8QkLoxvvmGgiJWVrSmxOs9DMPoke7AiFqtxvLly9G5c2c0aNAA9evXT3g0SEyo2Yw5efIk/vrrL7Ru3Vqy4B8XF4dTp06Z0DLz447qLo7GH8fmzZsNM6BCQb2NK1WikljN4oqDA2WxGbmn5/jx47Fy5UpYcWll2smVC/jzT9qeMYPKmzUMHQr89x+1uzp1igIaqanOkcm04nqHD9PNclCQwUxnGIbRhf2BlPNWvAMAeMm9jCdMqtGXMvOMTZVKhWXLlkGlUpnaFMaYlC6tFfotW5YqLGbONK1NGoKCgN69KVDz7bdUsSuXU5XtwoXkb5cokfhrFy0i4fZWraj11pcoWBBo1ow+j5w56bk2bajKKzHc3LTt8Jo2TX7sXLmk49Svb5y+8wzzBdgfSDnBIhgA4CpzRb7ExNDTQrVq9HP3btJQ0tCiBbUxNGJCwubNm9G9e3ec0A3GMBlL/frS33HBgtr5JjW0aEEdSQBg6lTg4kWDmMcwTNYg3YGRkSNHol+/fti8eTNOnDiBkydPSh6ZjaNHj+Lt27eoXr06/P39TW2OWaISKgSKDwCAmjVrGm7g3bspy6x8ecpsa9CAyvJr1gSqVzfcdfSIiYnBoUOHAABNmjQx2nUsgu7dqQ0DQK0lDhzQHmvaFNi6lW7K16yhtlipCY788w/Qpw+9Zs4ccoymTk1day6GYZgUwv5Ayninfg8AyCk3oiDzV1/RzwsXjHcNA/C///0Pffv2RYsWLRDOWaxZl+zZKUkje3bSUzt0SNsXPSoK6N+fWka9epU6P8cQZMtGFSF2dsDBg5R0dOUKHevbF7h/n/REAKokOXECePiQsq49PYGbNynIo1B8+VouLpSxff06/W3GxdFCZVJ6IHI5abIIQVVgAGkIrVpFARxdbG2pF/zu3VSF/KUWXQxjRNgfSBm55bnQ3aYLGlkZMDm2dWugbl1qpfz0Kf0vsLYGChemQKwRkxoPHTqEtWvX4hi38jMdxYvTPDFyJHDnDs2taRVQ79KFHmo1Jd0aqvMJwzCZHplIp6hCzpw5ERgYCC8vL/j4+HyWcZ+ZIuxyuRxv376Fq6srevbsiSNHjmDr1q0oUaIEvLy8MjQDMCwsDK6urggNDYWLi0uGXTcxhjsOluwHxL/CjrhdsIMdotRRxssQjYsDHj2iTDQjsn//fjRv3hx58+bFixcvjPd+LAUhqLf1smV003zpEjk1GlasoGxGgM7755+UC60JQTf6//sf3bwDJHZ6+XLKbuIZhsm0ZOS8yP5A4uj7AzGqWCyLXQkVVOhk0wEbYo3U9vLCBaBGDdp+8UKbrS8EtfL56iugXj2TCzRv3rwZPXv2RHR0NMqXL499+/YhT548JrWJMSKXL5M4eM+e2uc6d6YFfQ05cgBFi1IbqKgoChwULkzHDh4k3Y/vv6e++YkRFZW2FnL37tG49+9TkGT5crJNlz17pILtzZuTfZrKjPh4WogsViz1108Jjx7R33VQEGXvajLDIyKoJ7ymuoRh9GB/wPz8AaVaqtuwKHqx4S52/Tp1lZDL6X9ubCx1lzCGULcOixcvxoABA9CwYUMcOXLEqNdiMoiQEPruvHxJaxD9+5vaIoZh0oGh5sV0zyYqlQp58+bF06dPcebMGZw4cULyyExoFsRtbW2xYcMGDBs2DE2aNMHff/+dqnGmT5+OKlWqwNnZGTly5EDr1q3x8OFDY5hsEt6o3wAAcslzGieIEBZGlQD37xs9KAIAu3btAgC0atWKgyKGQCajdgy1apFwrn42Rq9elB0ol1NwIzo6dWM3bUoO8oYNQKNGlDnCQRGGYQwI+wMpI1AEQgUV7GAHN5mr8S5UoYJ2sXboUO3zd+4As2eT/oCHB2k8NGhAwfepUynLMAPp0KEDTp06hRw5csDX1xfVq1fHTU0Qn8l6VK0qDYqo1VQ127MnUKoU+Tnv35OG3qVLwO3bUu2Oixepf3rjxolr6UVHU1CiY0eqPkkNJUvS+M2bU6Z1ly7AuHFkoy7FilGbU4CqP2bMoO3Xr8mP+/prqixJK7GxFCh69076/Nu3QJMmFBSxt9e2Rnn2jKrEmzXjbF7GLDCUPwBkbZ9AJVRQCSMFiSpWpMoRtZrm9nLljB4UAYBqn4K1ly5dQnRq7lcZ88XNDfjtN6qsbNzY1NYwDGMmpHtG6dixI6Kjo6HMAoJ4+sUzv/zyC9avX485c+akapxTp05h0KBBuHjxIo4cOQKlUolvvvnGcELlJkQt1Lirug8AyCs3UibXyJE0WaXB4UwtarUae/fuBUCBEcZA2NhQwOLqVcrw0adHD8pUPHiQgiepRS4ncdDDh4ECBbTPZ3TLCoZhsiTsD6QMT5knalnVRBFFYeMmFtjZAd99R9u6vxt7exJjLVGCFkyePQOOH6fKxF9+IZ2FDKZKlSq4ePEiSpQogZcvX6Jq1aoYPnw4glgXK2vz+jXpjTx6RN+/O3eo8uHSJWDzZmoJdfiwVDejXj0K6qnVVM0xfbr0+21nBwwYQK+vXz/1gQIXF6pI+d//yNeaOZOup7lGy5bAgweUkKTpvT5rFh3Plo2ef/uWbIuPT+oqybNmDemV6IvdzpoF+PlRwPPBA60vp1RSRvitW9w+izELDOUPAFnbJ7iveoD1sZvwVPXMOBeYMIH+H06dapzxE6Hwp+q+8PBwbqeVlfjhBwqO+PiY2hKGYcyEdDdldHJyQlhYGMqXL4+WLVvCTSOQ+YkJEyak9xIZhp+fHzw9PSXPtW3bFsWLF8fVq1dTPM7Bgwcl+6tWrUKOHDlw7do11KlTxyC2mopnKn+EiTDYwhYlFEYqrf/qKyr5T212XBq4efMm3r17BycnJ9StW9fo17Mocnyh33yzZtptlYp6XJcsmfbr7d5N4u979qSt7QTDMMwn2B9IGQqZAmWtjF/ZCYCyzpcvlwbTCxcmQWmAFnCfPCENg8ePgfz5qcrQBPj4+ODcuXPo3r079u3bh1WrVuH33383iS1MBvHbb7Sg36QJBTjGjKHAXdWq9EiMunWB2rWBwYOppcdPP9FjwwZK/pDJSED9778p4DJyJFWYpAaFApg2jSpHatemQMnvvwO//io9TyO2rvm/Z29Pf3M1agBHjlCl1qJFqf+bql+fWmLlzi19vmVLGi82lv5WGzUinZOXL+m4mxsFjhjGxBjKHwCyrk8ghMBN1W1EIAIRwkhBngoVMiRpUpd58+YBAPLkyYPqRtQ7ZRiGYUxLugMjM2fOhEwmw7Nnz7BgwYLPjmemwEj+/PkTfb5UqVIoVapUmscN/VQ27+7unuQ5sbGxiI2NTdgPCwtL8/WMyftPIqulFCVhLbM2zkU0wbWQEOOMr0NISAjKlSuH/PnzwyatQl5M0ggBBARQxmSLFpT9mBgTJpCg+pIlVE2SWsLDSZj9wwfqqb1nj1HF+BiGydqwP2CGyGTJVxjmykWPWrUyzqZkyJYtG/bs2YPDhw/j9evXcNIsPAPw9fVF+fLlTWccY3jmzaNqh+XLqWXVmzf03JeQy2mxr3x5CpAolSSSXrMm4O1Nz69ZQxokS5dSoES/wjkmhiosbt8m/Z26dUm8XJcaNcjPGjGCfC5HRwq0aPD1pZ+tW2uDH+XKUZCmTRsK3Hh5USVWaihUiH5Wrix9vm5dqhr+4QcgMJCCLxpcXOhY0aKpuxbDGAFj+QPAl32CzOIP+Kn8ESpCYQMb4yVOZjBv3rzBzJkzAQBz586Fh4eHiS1i0kVoKOCq1/L1+HFKFFi4MEPatzMMY76kW3y9QIECybZP8PPzS8/wmR61Wo2WLVsiJCQEZ8+eTfK8SZMmYfLkyZ89bw7iaoPspaJUQ31HIFu2bMjxpYqAtHL0KGWOlS5NN3kZgFKphLW1kQI9lkZoKLVI8PYG2rUj4fX374Hz56kaSB+Vilo77N5N+0OHUs/41P4+zp+n701UFLVW0WQRMwyTJTAn0dG0kJX8AaVQYn/cAUxbOR1dunSBFQeiU8zcuXMxatQoLFiwAEN19VKYzI8QFEDQtHBbtAgYODDlr79wgYIW331HgrC691djxpBv5OhIuiAnT2q1QWrXJh0TDU5OVLnSsiWNpRtQnDpVG9wYP57af3XqRPsvX9I1P3wgPbiuXSmQMncuMGqU9jXTphmuGisuDjh0iHxHJyd6lC9PmkGp5b//SJ9w6NDU+5BMpiKz+wNAynyCzOAPAMCuuL14rX6NsWPHYoZGp8gYnD8PPH+uDRwbEaVSiSVLluDw4cPYvXs365BmZiZMoACIZv7S8P331Pq7c2dg/XrT2ccwTJoxlD+Q7sAIkzwDBgzAgQMHcPbsWeTNm7QmR2IZIfny5TM7xwcAFkUvNu4Fr1yhtgN581K1AZN5ePeObsY1mYe2ttQmAaAbes2NtT5qNTB5srYHdY0alHVZvHjqrr9rF2U2ApSBOWBAat8BwzBmSmZfCMlK/sDt+Ds4E38OhQsXxsOHDyHPABHUFCEEzUHVqtGCbrZsprboM3QXupYvX45evXqZ2CLG4EyfTi2x5HISNG/aNP1jxsZSAOTKFdqPidFWhQweDGzZApQpQ4GBN2+0r8ubl1qValqMCkG2/fEH7SeWhBQWRpm1cjktRFarRtUmo0dT1Yivr7blljEJDgY6dKDqkp9+Sj4Yc+AAtQtTqynZZuNGDo5kYTK7PwCkzCfIDP5AoDoQW+N2wMrKCn5+fsn6N+mmfn3gxAltu0GG+RKahFsNM2dSogFAc1mFCjTXPXgg1QBjGCZTYCh/wEzuZLMmgwcPxr59+3DixIkvOgm2trZwcXGRPMyJeBGPOBGXMRfTlBO/e6ftNWwkhBBYsGAB3ujeRDJpZ9YsbVDEw0MbFAGA+fOTFu+UyykwsmMHZQuePw9UqQLs35+667duTQsSADBsGPWcZxiGMTFZyR8AgLuq+wCAESNGmE9QBKBF48OHaRFXoTC1NYkyceJEjBgxAgDQt29fbNu2zcQWMQZn/HhqEaVWAzNmSAXV04qtLXDuHHDqFFVG6LZ/nTOHfOZjx8hvvnKFNEQKFKCgjCYo8vQpsHgxiZ5ruHMHyJ6dfC6Vip5zcaE2Wmo1+VU3blBiy4oVtMiUEUERgBY/jxyh95JMlR0AYOxYshegDGA9LQeGMSdS6hNkJn+gffv2xg2KANo1gmvXjHudT3z8+DFDrsMYEd0KEYCC7BERtP3+PVVUqtU03zAMY7Gk6W52ypQpWLFiRcJ2cg9LRAiBwYMHY+fOnTh+/Dh8fHxMbVK6ea5+geWxq3Ak7pjxL1awILVcio83+o3NpEmTMHz4cLRo0QKRkUYSi7Mkvv+eNGLKlqVqnxs3tL2wX74E1q5N/vVt2pB46ddfk9PSoQO1dEgN48ZRxZFSyWWxDMOYlKzoD0SJKHwUtFjQoUMHE1ujhybI0KIFLe6aITKZDHPmzEGfPn2gVqvRsWNH9OzZE0+ePDG1aYyhkMlIM23AAGDzZm2lw9u35JukFWtroE4dCnboVk/Y2mr35XLS85gyhSpFZs3SnrdsGbX22rxZOu7Hj8DVq9Lnjx0jX+7tW6rYmD+f/LkSJdJuf2pp3Jh0VTp1IluSQ/d/UeHCibduZRgTkxV9gpfqVwCAThlRwdGlC/2cP1+biGcEhBBYtGgRvL29cfr0aaNdh8kA+vShRIIWLWj/xx+phWOPHjTHREaSNtf335vWToZhTEqaWmnJ5XJ89dVXOHfuHORyebI9F1Wa7CMLYuDAgdiwYQN2796NYsW0AmSurq6wt7dP0RjmVCI8yL4/TivP4o7qLsooSuFW/B3jX/TBA1oQN7KI6tOnT1G9enV8+PABrVq1wvbt26Ew0yzTTMPz5+Rw6Jajzp5NZav589ONur4oqD5KJfXobtSIdEoA+j4EBVFv7S+xeDHpjAwbRtdmGCbTY07zYkrJiv7AY9UTHFEeg4fMA4HqQJPaI0EIWhB99ozaCmnmDjNFpVKhT58+WLVqFQAgV65cePHiBeudZWWaNqW2VaNGAcOHG06nI6UcO0bZs3Xr0qNkSSA6mhJRIiMBHx+ptkdoKFWMnDxJ+7VqUUWW7v8uIeh4VBQJw5uqD78QtFAqk9EiV/bsprGDyRDMaV5MDen1CczpfQ+y7w8hBF6oA/BS/QqnP57JGJs0uhAVKgCXLhmtZV7v3r2xYsUK5M+fHzdv3oSrvnA3k3m4excoWpTaTHp7U6vV+fNpvhgyhPRHNJpdDMNkKkyqMVKgQAFUqlQJ27dvZ/H1REjq81i5ciV++OGHFI1hTo5Pf/u+2By7DSEiBN9YN8ShuCMZb8SrV0CePEYZ+ty5c2jQoAFiY2PRu3dvLF261Lxag2QFoqOBQoXIIUmtGKmG+fPJkSlZkto5VKuW9LkREXTNjGr3wDCM0TGneTGlZEV/4JTyDB6oHqKsogxuxt8yqT0Sbt4k0WY7OyAwkNoyZgIuXbqEKVOmoG7duhg7diwAylYNCgqCR1oEqBnzJCyMFmbevaP9YcOAefNMF0hIKbGxlFm7eTMFG9esob8xIUg0fdIkWpysWJF+WlmZ2uLEiY6mlq1t2iTvPzKZAnOaF1NDen0Cc3rf/e37SvYXR/+bMRd++xYoVYoq3Zo1A1atkgZ0DUR4eDjKlSsHPz8/9OjRIyGJgcki3LoFhIcDNWua2hKGYdKBSTVG/P39sX37dgDA6tWrsXPnTvj5+Uke9+/fx927d9NsWGZGCJHoI6WLIOZGpIhCiAgBAOSW58p4A168IEHJH37Q9oQ0IDVr1sTatWshl8sThFAtsdLJqNjbA7/8QpUioaFpG+PNG7rhvnePxHVvJbMg5+TEQRGGYUxOVvMHAOC1+jUAII/cy8SW6PHJL0WTJp8HRR4+BObOlepemQnVqlXD/v37MUYjBgpgz549KFCgACZOnIj4pLS5mMyFiwtV1M6dS/sLFpAuhiH0R4yJrS0Jmb94QcEROzvSJSlShCpgLl2i86ZNIx8tKEj72n37aNGpY0fazkiio6kKRvP52trSZ96wYYbpEzCMPlnRJ8hwcuWiBDlbW9KiPGacNt/Ozs4J6wOrV6/G/tTqXjLmTdmyHBRhGCaBdKfF16tXD4MGDUr0eVNnMjCG4bnqBQDAQ5YddjK7jDfg5ElaTF+9GqhUSXsTZkDatWuHDRs2QKFQYPXq1ZgzZ47Br2Hx9OlDwp//+1/aXj9jBomk1agBhIQAbdsCMTFfft369Z/302YYhmFSjUqo4SnzhAIK5JLnNLU5UjSLIy1bfn5s/nzSH9mxI0NNSg26mcTbt29HZGQkpkyZgs08f2UdbG2p8nXJEtqfPRv46y/T2pQSNO2pNN/RkSPJn9Nw6xYlMA0YQNXd9+6RxlyLFsD58+SDtW+fsYHJAwcALy/SXKlfn5JzYmIowerXXzPODobJoqiECmeV5/FO/R5paECSPlq1ovWASZOk+kIGtqNmzZoYMWIEAKBLly44c+aMQcdnTMS7d8D06SS6zjAMAwMERgAkOhlGRkZm/CTJGBy1Wo3bqtsAgCKKwqYxont34Phxutl69AioXh3o1o3EvQ1Ihw4dsHjxYtjZ2cH2SxoYTOqxsUl/O7Rs2Sjr0MsLePKEMhST4/x5+v507szBEYZhmHSikMnR0KY+uth2go3MxtTmSClcmISpExOz7dAB2LMHqFcv4+1KA0OHDgVAwZIKFSqY2BrG4PTrB8ycSdsjRhgt49lozJgB5M2r3a9ShdqlLl5MwY+dO4HixSkYAgDu7qSpkpG+de3a1K4MAE6coEUwDboLqQzDpInHqie4q7qHI3HHoIYJ1nzKlQMmTtTuv35NVQBbtxo0QPLbb7+hdu3aCA0NRePGjRFg4PUHJoOJjyc9rJ9+AkaPNv+qTYZhMoQ0B0bq16+P+vXrAwDu3buXsF+/fn1Uq1YNd+7cYZGqLMDBgwcRIkJhAxsUV6RA9NpY1K1L/cO7daP9deuoV/PUqQa9TO/evfHw4UMM09xMMYZHrQbOnKEb57SQLRuwcCFt//EHcP9+0udWr069sdVqDo4wDMMYCHtTVI9+idWrgVOngK+//vzY119TD/JcJmgHmgZ+/ZTR3qVLF5QsWdLE1jBGYfRo8mk9PDJf688KFYBnz4ANGygoEhtL1Rg1a1KV988/UwvVzZvJ/woI+HIii6Hx9KRF09u3gaVLgV69SAdl7lzyCxmGSTNqtRo3PyVOlrEqBYXMDLQ5Z86kNn/t2wO1apE/YICKAHt7exw6dAjNmzfHL7/8gnz58hnAWMZkWFkBgwfT9rx5JLzOMIzFkybxdQCQy+UJZf9JDfH9999jy5YtabfOgjGluFp7xfcJ2yqhQsuVrREeHo7BmknE1Fy9SmX8Z85QtF8THAkJoQqB8uWB3LnNX9DSUtmzh0qg8+alfttpEboXglo0XLhAQbKmTZM+V62mNl4rV9K19uwhsT6GYTIV5iQ6mpGYiz/wSrzGygerULRo0Qy1wdI4e/YsateuDYVCgYcPH6JQoUKmNokxFjExJCRcoICpLUk7QlDbLKUSqFqVfW8mQ2B/wLT+wBvxBmfFebi4uCAgIMA8fgeRkdSecOZMICqKnsuXjwIlHToAlSun6/+TSqWSrH8xmZyFC7VVhQsXAkOGaI99/EjVnBMnAgULmsY+hmFShEnF1wGgR48e6N69O4QQ8PT0RI8ePRIeAwYMwIIFC7By5co0G8aYBwqZAj169DCfoAhAjs2pU9QrfPx47fMHD9KCd548lIFXvTrw229AGoTUhRA4dOhQQl9R5gv8/TcFq1LyWX/zDeDsDLx8SYGstCCTUQbggwfJB0UACoYsW6atHJk8OW3XZBiGsVDiRTyuiKsoXrw4Lly4YGpzkic62tQWpBkhBH755RcAQK9evTgoktWxs5MGRc6fp3YwSaFUkl5OvXrUNs7Tk3zdR4+MbWnSyGRUiVGtWuYKioSHk4BzaKipLWGYTMdD8RgA0K9fP/MIigCAoyMtZD96BPTtS/eaAQHAnDmUTJfO6hGFQpEQFAkODkbv3r3x7t07Q1jOmIKhQ0mjRrOdO7e2rdaAAcCaNdRtQqk0mYkMw2QcaQ6MrFy5EitXroS3tzdq1aqVsL9y5UosWrQIQ4YMgaOjoyFtZRgtMhnQpg05PRpiYoBin9p9ffxIomwTJlBlSSr58OEDWrVqhfnz5+PkyZOGsTmrEh5OGRe+vsDGjfTclSv0O0gMOzv63QHpEx318pK2nwgKSvpcuRyYNYvKZ69coSAawzAMkyICEAAllChUqBCqVq1qanMSJyaGdA4cHIDr101tTZqIjIxE2bJlUalSpYR2WoyFcPgw0KABUKMGVUYnxrp1lMV68iT5th8+kK+rmyTEpIxz57SVywzDpJgwEYZABMLKyipBD8usyJOHkufev6ckyg4d6P4vJsZgl+jWrRtWrFiBcePGGWxMxgRMmKCtGnn7Fti2jbZnzqR2kJcuAYcOmc4+hmEyjHQ3hPT398f27dsNYQtjRgghcFp9FvfFA0RGRpranJTxww9UQbBkifa5OnWASpVSPZSnpyd69+4NgHp9p7HjnGXg7Ew6H7lzAw0b0s161aoUpNq7N/HXDB9Owa3Nm9NeNaLLzp1U6rprV9LneHoCAwcCCgXw8GH6r8kwDGMhvBKUxd6jRw8oFAoTW5MEdnY09wBA//5pqhY1NU5OTli4cCGuXr3KfcwtjSJFtAv1VaoA7dp9rqHWvDmdB9BiTr16tP1J85FJBY0aUYKNt7epLWGYTMVrvAEANGzY0LznKU0i3ldfAa9eATNmGGxoTeLCunXr4O/vb7BxmQxGJiPdqYkTyW/U+JBCUPWxTAaULWtaGxmGyRAMopQVFxeHEydOYP369VizZo3kwWROghCEd3iHh+IRbG1tTW1O8kRFkbiihjZtqDz+1StquaVbVZIKfvrpJ9ja2uLs2bM4cuSIgYzNohQuDKxfT8K2mgqbDx+Ali2pHFXT61VDhQokhAlQ9mN6xfFOnwbCwoDu3Sk4lhTTpwOXL2uzQxiGYZhkiRfxeIf3AIBWrVqZ2JovMGcO4OJClYG6SRIMY+74+JBuWpcutBizbRtQujQl/WjatXh6UpuYwEASjT1+nPb79zep6ZkShYI+Xzc3U1vCMJkKa1jDCU7m7w8AwNGjwKhRtJ0WTcskqFatGho2bAiVSoXZs2cbbFzGBMjl1FLrn3+A/PnpOc0aZv36HDxnGAshzeLrGh4/foyGDRvi5cuXnw8ukyE+Pj49w1ssphZXu6m+hUd4DG9447kw4zLzyEjqG3rtGjk/VaoYdPiRI0di3rx5qFKlCi5dusSCaymhdWtg926gXDng5k16rlYtCl7ofn5v31LmY0QEOSDduqX9mkolZf+dOkX9uletAurWTcebYBjG3GCxVdP4A6/EK5wXF+EIB4SrI8x/HvzrLxLRdHGh6sBcuUxtUYoQQuDs2bOoUqUK7OzsTG0OY0ru3AF+/VVbBVugACV9pCdRSamkAEvevIawkGFMCvsDphVfB4CNcZvNt4IUAJ4+pXWB4GDSmVy50qA6SMePH0eDBg1gZ2cHf39/5MyZ02BjMyZECEr4fPaM1hPs7amNZffuwPfff/HlDMNkLCYXX9cwfvx4BAQEQAiR6IPJfAghEspkvWS5TWxNMkRGkvD2iRM0icXFGfwS48ePh4ODA65cuYK9SbWFYqS4uQHZswMLFwJHjlCrgpEjP3dGc+UCfv4ZKFo0/QtX1tbUlit/fsDfH/j6a8qyDAlJ+jW3b1Prr7dv03dthmGYLMxr8ckfgJf5B0UAqlKsXJmqCDNR/+/379+jTp06cHd356QiS6d0aWoReukSUKoUMGZM+oIi+/cDJUsC+fIZtJ0MwzCWi1kHRSIigFatKChSrRqweLFBgyIAUK9ePVSrVg0xMTH43//+Z9CxGdA9/Jw5wOvXGXvdc+coKOLkRMmeP/1ErcHbtaN1C17fZJgsSboDI2fOnIGVlVVCq6EKFSpg48aN8PDw4PZDmZRgBCMCEZBDjlww4+yHnTu1wuq//ALUrGnwS+TIkSNBWG7kyJG8WJESVq2iNg+1alHg4dEjrdi6PiNHUoCiUaP0XzdnThKA17SUWL2axtVv4wWQU9OvH3DsGAmvMQzDMJ8hhMBHBAMw80QJXRQK4O+/aXvtWuDjR9Pak0Kio6MTfn748MHE1jBmQdWqJMQ+YEDax7hyhdqaPnlC++PHA/v2GcY+hmEsitfiNVQiE+h37doF3L1L22PHkt6IgZHJZJgxYwZkMhlWrlyJK1euGPwaFs3OnTQHPnqUsde9eJGCIJs2Aa6uwNSpFCABgGnTqCsGwzBZjnQHRkJCQlCiRAk0aNAAMpkM1tbW6NChA3LlyoVp06YZwkYmg3koaALKi7ywllmb2JpkaNJEK4g1fjwtcBtBbHX8+PGoVKkS5s+fDysrK4OPnyWRyahnpxCAo6P2+RcvgEOHtPs2NvTQsGtX+io43NyoR+i5c4CHBwVm7O0Tt0/TE3bVKtKjYRiGYSTIZDI0kjVANVlVeMLT1OaknCpVqP1QgQKZpirQ29sblStXBgCMGTPGxNYwZoOdnTbT+e5dYODAlFdIK5VAnz6k49a6NVXSAtQS5LkZt8llGMbs+CiCcU5cwAFxyPyDI02aUOUdYJS1AQ1169bF0KFDMXr0aOTKJG07Mw2tWgHFiml1PzKK/v2BLVuAZs1ov0MHCtJotGrmzs1YexiGyRDSHRhxdnaG+pNwspOTEx48eIBLly7hxYsXuHDhQroNZDKWJ0+e4CVokbi4rKiJrfkCHh4U1e/Xjxbgf/sN+OMPg1/G1dUVly5dQvPmzROee/r0acL3nkmC9euBb7+lG3MAuHWLnNT27YGAgM/P37ePenfWrk3tsNJDjRp0vWnTki6drlkTqFOH7JszJ33XYxiGyaLIZXJ4y/JljjZaujx+TO0QSpY0tSUpQi6X4++//4ZMJsO6detw6tQpU5vEmBNxcZTs8c8/QKdOWt8qOdRqWtzJlQtYuhRYsoQycL28gNhY49vMMEyW4aF4CADIAU8oZGbcRgugNYILF4CNGyn7X4MRqg/mz5+PWbNmIV++fAYf26Jxdwdy5AB8fDL2uk5OiT8/ciS17j5zhio5GYbJUqRbfL18+fJ49uwZgoODUbduXUkwxMfHB080pdtMqshIcbVOVh0StiNEBNw6uyM8PBy7NKKPmYH16ymCf+IECa4CJLIWEkItBAoVMtil/Pz8ULVqVVSvXh2rV6+Gu7u7wcbOMgQGknBZWBg5EnPmUMZOrVoUzGrcGDhwQBq0ePqUWl/5+VF2yJUrgKeBMpRjY4GDByn7RJdDhyiryMGBsic9PAxzPYZhDA6LrWasPxApIrEjdhdXSmYw/fv3x5IlS1CqVCncuHED1tZmXLnLZCwaPyYujlqUbtokrbpNiogI7WLPmzfkJ+tW8zJMJoP9gYx53xqfIFyE4z9xEEII3L59G6U11RiZCX9/Wg+oVAkYMgRo25bu/xgmpXTrRkLsnTvT2hPDMCbHbMTXe/TogQYNGuDx48f4+eefYW1tDSEE5HI5Jk2alN7hmQzGSeaEtWvXYseOHaY2JXV06UIL6bp/DPPm0aJ84cJUqfDLLyTClk5u376N8PBw7Nu3D+XLl8fly5fTPWaWw9OTWlQBFLDasoX6vq9cSQKihw4Ba9ZIX1OoEHD2LP2+nj+nypKUZER+idhYoEEDaiOxcaP02DffkIMcFUVi8QzDMAyEEDitPotixYrh2rVrpjYnfXzS7sgsTJs2DR4eHrh79y7+/PNPU5vDmBNNmlB/c1tbau3Rvj2gr30XEEDJJxoNPoCCIuHhtJ07tzYoIgQwaBBw/nzy133wgNqIcPsthrFIHoiHEEKgWbNmmTMoAgCXL1PG/5Ur1E7QwwP47jvp/8o0olarceTIEYwePRrpzDlmzJmRI4EePUi3hmGYLEW6AyMjRozAzp07Ubx4cTRt2hT379/Htm3bcOfOHXTt2tUQNjImQC5P91cj49G1Wa0GevcG6tenBfm7d0k8a+rUdF+mZcuWuHDhAooUKYKAgAC0atUKUYkJfFs6bdpoHYd+/ShLsXhxQBMwHTIEuHFD+hovL9IZcXICTp40TGs0W1ugenXa7tGDMi41yGTATz/R9t9/f77AwDAMY4G8wzuEIhSBgYEoZMCKywzl/n2qUsyRgzTIUqrLYGLc3d0xc+ZM2NjYoHbt2gnP82ILA0AaHNm9+3Mh9UmTgMOHqVXo1q3UPuubb4Ds2YGXL6XnbtxIvk+XLslfc/JkCp5w21GGsThiRSz8hD8AYGxmXhDWtHKeOpX0x6KjKcDcqFG6tciCg4PRvHlzzJkzBz/++CPi+X4ya1KhAiV+litnaksYhjEw6V797ty5M44cOZJww+bj44PvvvsOxYoVS7dxTMahFmrcVN9CiAgxtSmGQS4Hhg0Djh2jtk6//krPHz1qkOErVKiAa9euoUCBAnj79i2WLFlikHGzHFOnApUrA6GhFJRQqSjb4uuvKXuxaVPqAa9LqVJ0Iw+Qbszt2+m3Y8YM0i9RKqm1mm5FVMuW1IP7p58yzcIZwzCMMXmqpv/LPXr0gJubm2mNSSvFigEFC1Ibod9+owD5mzemtipF9OjRAydOnECVKlUSnmvUqBG6du0K//RqcDGZn8aNyacBSEtHl8GDAc3fbPv2JCR75Aj5P8eOSc/VBNuS6qmuYeBAYPt2rS/NMIzF4C+eQw01ypcvLwnWZ0o8Pel+79kz4Pp16igRG0tB5HSQPXt2/Pnnn5DL5fj333/Rq1cv1iK1BO7fN7UFDMMYiHQHRjZt2oQmTZrA29sbP/30Ex48eGAIu5gM5g3e4r54gOPqk4jLaovD2bJRqwCABLlDQgwyrLOzM37++WcAwIwZM7hqJDGsrKh9loMD3Zj//DP1w961i7It3r0DZs36/HWdOlHAQqkENm9Ovx0KBfUCbdeOxmzfHli7Vmvjvn0UsOFeswzDWDgxIgYv8QoA0K9fPxNbkw7kcmrZuGULZcvfuAF07UoVpWaOXC5HjRo1EvZfvHiBY8eOYf369fjmm28QbIC2oEwmJ08e+o6HhUmfr1CBKkNGjwZcXSk5Zfp0Eh3u0UN6rsZv9fZO/lq1a1NFr6F03xiGyTSEgv7H9OvXDzJdbcjMjExG/yv796ckvaJF0z1kv379sHXrVigUCqxduxaDBg3iSs+silIJ9OwJlC0L6OgrMwyTeUl3YKRmzZoAgFevXmHGjBkoVaoUqlevjsWLFyPEQAvQjHHJYeOBAAQAAEpZlYBNSoQcMxs5cwI1atBiuwG/lz169ECBAgXw7t07rNJoajBSSpem4AhAvV2FoJv1Awfoxj0xbQ+ZDPjnH1rQ+u03w9hhYwNs2AD88ANVrnTvDqxYIT0nLIzbaTEMY7HksPHAe/l7CAjklOVEmTJlTG1S+mnXDjh3jgLfx48Ds2eb2qJUkzdvXpw9exbe3t54/PgxOnbsyK06LJ2JEynTOTEfydGRkk5CQqif/vjxQJEi5H8dOqRtaarRDMmfP6OsZhgmE5HDxgPN7Zqgm23nrNkifdAg4L//qArPAHz33XdYu3YtZDIZFi9ezJojGUVMTMZez8qKEgvi44EOHYCPHzP2+gzDGJx0B0bOnDmDFy9eYM6cOahSpQqEELh8+TIGDRoELy8vQ9jIGJnHqifwV9PNUSlFSRNbY0TOnaNKhQIFDDaktbU1ZsyYgUWLFqFPnz4GGzfL0b49cOcO3cBrso1y56Ybd2tr2o+OBvbs0b7Gy4sWtAyZnWRlBSxfTvombm4kvK7LwIH03KlThrsmwzBMJiFYHYIr8VcBAGWsSpnYGgNSrJg2CP/zz8DVq6a1J5XI5XLUrFkTu3fvhoODAw4fPoxx48aZ2izGlDg4kE8THZ3yRSE/P8qOnjwZuHcv7YGRI0eAMWOoTSrDMFmebHI3ODs7m9qMTEGnTp2wbNkyAMDcuXOxZcsWE1tkQp49o3t9Y1a5RkVR5caoUUBkJCU/vnolPefWLfIBDWWHTAb8+y9QuDDp1vTooW1NyTBMpsQgCtt58uTBiBEjcPHiRezZswe5cuWCEAKxsbGGGJ4xImq1GmeU5wAAla0qwl2ezcQWZT7at2+PgQMHZs1KG0NSSmeRTYjPHYjx40mw/dKlz1/r5wds2mQYO+RyYMECwNdXK54mBAVtNmwg5+nrr4FevYCgIMNck2EYJhNwV3UPSsQjrzwPiivS31rCrOjVC2jbltprajQYIiNpgfj+fW1bITOmfPnyCdWpc+fOxdmzZ01rEGN6Nm6k7/Q339AClP6CkC4FCwItWtB2qVLAunW0XahQ6q45fTr95EpphsmyXL9+HWHqcFObYXzu3AFGjCBNUgPRq1cv/PXXX+jevTvatm1rsHEzHWfPUrWiMX2Vs2dJa2vVKtIvbdmSAiVHjwKHD9PcWK4cac/+9ZfhruviQp0tbG2pJfehQ4Ybm2GYDMcggZHHjx/j999/R5kyZdCqVSu8e/cOAOD0JTE/xuRcuHABESIS1rBGVavKpjbHuHz4QD0hjUhoaKhlZ4akhMuXgQYNtBofAAUm3r6l3u89e0qzHz98oJv5Tp3oHEMgk0kzJKdPByZMAHx8qNUWQO2/ypShSiOGYRgLoJZ1DXS17YRG1vUhlxnERTQfZDJg2TK6WS5cmJ67eJEWiEuWBPLmBX7//XPNBjOjXbt26Nu3LwBg5MiR3KbD0rl8mXymI0eAsWOB8uXpuaRYsIB8Gw1ffQU0b566ay5dSj6TJS/4MUwWZ+jQoVgVuxYP4x+Z2hTjMm0aMH8+aU0akEGDBmHVqlWwsrIy6LiZiu7dycdq0MB419AE9sPCKDDy4QO1tmrUiFqkHTlC1ZXTpgFDhxr22hUqAJ/8MU4UYJjMTbrveitVqoTixYtj4sSJuHv3LgCgXr16WL16Nd68eZNuAxnjsnXrVgBAQYUPrGRZfOLu3Zv6Lmsy5AxMWFgYqlevjg4dOmD37t1GuUaW4MgR4MQJalv16JOzrdEUyZmTMncnTtSe7+GhbXl18KBxbGrVisR5nz0D6tWjYEiJEsCbN1Q98uefXCLLMIxF4C7PBmd5Fm2Z4eZGmYQarK3pf7+zM7VY+PVXarc5dSrdYJspv/32Gxo1aoQFCxYkiOEGBQVxkMQS+ecfynieN48CHh8+kB9z4EDi5xcoQLojW7YADx/SeXZ2qbtm4cL0N5M3b7rNZxjG/Hj58iXOfUoMy6PIwq3Ro6IAzT27oRfNgYT5Wa1W4+XLlwYfP1NQpAi1fjQWhQoBxYuT3seNG9QOu3t3OuboSJUijx8D//sfaZwaml696OeuXcZtGcYwjFGRiXTeRcnlFFspWrQounfvjm7duiFfvnwGMc6SCQsLg6urK0JDQ+Hi4mLQsXvZdk/Yvqu6j9DC4Zg1axZaaMrrsyqFCwNPnwLHjgH16xvlEoMHD8aiRYvg6OiIS5cuoVSpLNSj3VCoVEDDhsDJk5TZeOGC9qZ8507gu+9oe84cbfbOr79SJm/79sDmzcaxa9o06j1fvTrZFBEB9OlD18uRg9qtZM9unGszDPNFjDkvmjPGft8an0At1FgVZ5zEAbNHpaKF4ilTgAcP6DkfHxJrN6AumbEQQqBMmTKQy+UYNmwYunTpArvULnYzmZ+ICKriOHwYUCiA9etJGJZhshjsDxjXH7iruo/LqquoVasWzpw5Y/DrmA07dtD/zPz5qW2zIXUtP/Hw4UN07NgRMTExuH37tmVXkNy+TY8OHWiOMhSjR9O6QffuwOrVlMx4/Tp1nMiWSJv4wEDy+3LlStn44eGUDJAYQtB6RmQkrRno65cyDGNUDDUvprti5Mcff8SFCxfw4MED/PTTTxwUyWSUUpTA/fv30axZM1ObYlyioqgaAABKlzbaZebNm4cGDRogMjISnTt3tjydnfPnqbenvT0weHDi52hu1j08SOdjzBjtsTZtKAgCkIja3Lm0/e239PPwYSAuzji29+5NpbYXL1K/Uicn6t09dy4tmGmCIo8eUSsKtdo4djAMw2QwSqHEJuU2tGvXDuFmXClhNBQKatd45w7NT/nz0w1zJsmIDwgIwJMnT3D79m306dMH3t7emDlzJleQWBpOTsDevUDXrrSIk9LkHJWKFqrq1wfevzeujQzDmD3+6ucASEczS7NtG/38/nujBEUAIFeuXAgICMCDBw+wcuVKo1wjU3DrFrVu7NIFaNeOKjwMhWYda/9+IDaWfpeVKmmDIps30/qEmxuQJw8lPObOTdoyydmhVlMlkYsL0Lq1tNW3BpmM9EUeP+agCMNkYtIUGJkyZQpWrFgBgP7ZHzp0CFOmTEn0wZg/MpksofIny/LypbYVUu/eVDliBKytrbF+/Xpkz54dt27dwtGjR41yHbOlb1+6KY+N1fbcTAwvL2DNGtr+6y8KRmiYPFkbHJk0iXRFqlalQEpICFCnjnFu3HPm1Far1KlDTltsLDlNdevS89HRQO3awPDh1IqCYRgmC/BM7Y9YxOLGjRuWrQ+nUACdOwM3bwJbt1KwPBPg7e2Nt2/fYs6cOfD29kZgYCDGjRuHmzdvmto0JqOxsaGM2StXpIlAyWns3b9PCSA3bgCzZxvfRoZhzJZgdQjeCxIiz/LC4Zr7zzdv6J7PCLi6umL8+PEAgFWWrEPx119UVQFQhwhDCrLXrk3BjqCgxOewK1dofSI0FHj9Wvv8/PlUKZwUly9TO22AWq7t35/4eblyGS2wxjBMxpCm1fBJkyZh+fLlAIDJkycn+2DMkwgRgUeqx1AJlalNyRiKFKHeklZWwL59JLQ6bZpRLpUzZ05UrkxC9kFBQUa5htlSrBj9HDZM2sc9MZo2JaF1gFpmqT59F2UyCo78/juJ5ObKRYtVq1ZRb9BLl+i4MVi4kDJKhKA+3fqtSGbPpqBM3rxGrTxiGIbJKNRCjduqOwCoHaSMb+5orsmTh7aFoExAM8fNzQ0jR47EqFGjAAB58+ZF8eLFTWwVYxLkcmofq2HTJhKJvXEj8fNLlKBs3qZNgSFDMsZGhmHMklvq2wCAAjJveHllYX0RgO4n5XJgwwYKDhsJzVysTC5AndVp1Uq7XbQoJT0aCisrYMkSCpAkphUzdCh1oli0iHREw8JoXUEuTz4BRv9ev2LFz8959w7o14+SNxmGybSkKRXO29sbuT715PP29uab6EzITdVtPFI/wRvxztSmZAwyGQVCunWjRfsjR4yaCerwSWQsUpMZYSk0bUpZIJcuaTMnDh0CPD0TdyZ+/53KW21tqRpDk6ksk5Hehy7NmlHJ87x52pJZQ5MzJ2WE3LkjLa1VqYBXr4Dp02l/9mwSdGMYhsnkPFU/QzgiYAdb9E2u0s8SefeOKgZfvKCMUmMIdxqQ2NhYTP80T/3yyy+sM8JQK5ApU6gqpGpVqoYdPJhammj8NIWChNs3bDCtrQzDmBSVUOG9+gMAoKyijImtyQC6daP2SosWUbWohogI7T2pAdAERCxaX+Tbb0nTxcGBEk8MLcjeujUlN+p2QYmLoypKb+/PK0l69CBdUU1SZ2I4OdE5msoiHx/p8chIasN29ix1uNizxyBvhWGYjCdN/539/f0T3WbMlx9suiVsD7kwHKuqkMDq6lNrTGWSaShRghbq//sPaNTIaJcpVKgQypUrB1czX0QxOE2a0M9Ll4CPH0lzpHVrKm+9dAnQ1yDy8gIOHgSqVPm8OkOX8+eB58+pB3zDhkYzPwH9DJFRoyjjMjqa2mxl9Z67DMNkWXT9gTgRh0fZnwLvgSkzf4MjB3yl5MhBi8bR0aTbMG+eNBPfzLC1tcX27duxePFi9NRUZDKWjVwOnDoFDBgAbN9O2mkbN1IFyejR5FdxghvDWCS6/gAArI5bj78jI7Fz50507drVRFZlMC1a0ENDdDRpRezZk/yieSrQBEasra0NMl6mRCYjLVFdPn6kOcrNzTDX0A2KTJ9OLbR27Ej6fN3f7+LF5O9VrkzrAJrf1YkTlMCpr0USGUmJmmfPkgbJjBmGeQ8Mw5iEdAtLnD59Gr6+vp89Hxsbi6ioqPQOzxgYIQQGDhwIIQS6dOmCWrVqmdqkjEcmo4nMxob2hdDqjxiIWbNmwdfXF511s08sgXz5SOxTrSah9Nq1geLFKdO2Y0dtuyxdateWBkX0e6KfOAHUrEk39R8/Gtf+xLh7l/qivntHDteCBbyIwDBMlsBXfRPv379HsWLFMGzYMFObY37IZMDEifRT04Zz1Cia48yUGjVqYM2aNbDR+DgM4+lJFbdXr1ILUzs7aqvVpQuwfr2prWMYxoxwdHS0nKBIYsyfDzx6BMyda7Ah4z8tqlt0xYg+jx9ToknJknSPbUjevgUmTKAuFnv3puw106dTS6yKFQFnZ6oE+fiR5kuZTBsoAUiPplkzSjpwcaGk2xIlKHgyZAgwZoxZ+4kMw3xOugMjX3/9NQYNGpTo8y4uLukdnjEwL0QALl++DGdnZ8yaNcvU5pie06epncCKFaa2JOvw7bf0c/Bg6uG5Zw9lWpw/Ty2qkkIIciSqVJH2c69bl/RKQkMpuHLsGJU+Bwcb931oKFWKFsSKFaPWX+XLZ8x1GYZhjIhSxOOZ2h8A8Ndff/FCelK0bw/4+lI7BaWSFksuXza1VQyTeipVIn/35UtavHF0NGyfd4ZhMiVqoUaA+iVUiSWwWRolS9LPgwcNNqSzszO6deuG//3vfwYbM9OzfDndy795Q508DEmuXMCIEbTdowdw+3by56tUVD3ZoAG1TI2NpQrLT5rKn3HuHAVFAGDQIPIPAeD6dUqmnD2bdLsYhsk0pDswAlAVgj6RkZGJPs+YDiEEbqvvAgCGDx+O3Llzm9giM+DyZWrxNHw44Odn8OEvXryIRYsWGXxcs2bUKOpVHRtLuhxeXrSYBFDWYnLcuUPnDhyofY1cTjfyjo6kDdO4MbBuHQUpMoomTYAHDwB2aBmGySJYy6zwnVUrbNy4EQ0zokVhZqZkSeAD9V1HzZqJa2aZmNWrV2PQoEE4fvy4qU1hzJ3s2Skr+uRJEsHVEBZmKosYhjEhL0QAjqtOonbt2rx+c+MG/axQwWBDtmjRAmvWrGFfSxfdoLzuPGQoJk2i5NfgYOCbb4Bnz5I+V6EA/vgDOHqU1oU0NG36+blBQdTeW9M+fMYMqjACgHLl6Ptz/DglVjIMk2lIcz1f/fr1E7bv3bsn2Y+MjMSdO3fgZqh+gYxBeCfeI0gEwc7ODoMHDza1OebBiBFU0XDmDGUUnDhBk6MBuHfvHmrVqgUhBMqVK2c5bcty5qQKi1evKIPi+nUqJ3V3B5ILxslk1L/9xAlyTDp2JF0Pa2vKcty6lXrAqlQkojZxIgUrbt0iMVFTtreKiQH8/altGMMwTCbBRmaDjh07mtoM88fKCli5Ehg/nnwGM6yu2b9/P7Zu3YrChQtLfHKGSRS5nHqpazh5kjJmr1wB8ub9/PzoaMDePsPMYxgmYxBC4M6nxMlGjRpBZsntgpVK0mACgO++M60tWZ0mTYD9+2ndpVo1w4/v4EDrEXXrUuJlo0ZU6ZErV/Kv27ePfjZq9LnmqBBURXz8ODBlCiXJuLtrAzu2ttxZgmEyKWkOjJw8eRIymQwymQxhYWE4efLkZ+dwVNx0DHOQtjfLZZsTMhVQMM4HTXo1RY4cOUxkmZmhUACrVlGrpjNnSBTszz+B/PnTPXTJkiXRuXNnrF27Fl26dMHNmzctJ1jo7U0PQFu+WqgQBS+io4HwcBK11ad4cRJJa9OGfuoGR5o2BTZsoN/PrFnA69eUCRISQj09TaXnEhJCOil37gALF1J7CoZhGDMhMX8gTB0GZ5mzZS+ApASVSpssUasW+Qlm+pk9+pSxWNQYmZdM1uePP6gve7t21CJEN/i3ahXw44/ATz9RUgrDMJmSxPyBF/EBCIr/CCtYceLkzJmU/e/uDrRsadChhRC4efMmrly5gr59+xp07EyJg4O2/baxcHcnzdNatahiZPBg0ttKjqZNgYgIbUs1XQ4fpqAIQBUpsbGUOKMhLs4sE2cYhvkyaW6l1aNHD3Tv3h1CCHh6eqJHjx4JjwEDBmDBggVYuXKlIW1l0klORU60s/8OCxcuNLUp5kXBgsCSJTSx7d0LFChAC9wGYNGiRShUqBBevHiBoUOHGmTMTIemfdaVK5QR4upK7bW2b0/8/G+/JbE0GxsKjnTooBVtb9+eFqaKFiXRs5AQen7iRAqOZDQqFdC2rVY7ZcQI0kBhGIYxU5RCidXR67E6eh1C1dw6J0nu3SO/4NdfqQe2EGYbFFGr1QmBkSJFipjYGiZT8vffgJsbcPGitje7hqZNacFn0iQKkqSGK1eAr78Gli0zjJ0MwxiUS8orAIAyVqXg+aWWx1mZe/eA336j+8+FC+n/oQEJCAhAlSpV0K9fP+zcudOgYzPJkDs3rSu4uwM1apAvlxwlS9K6Qrt20ufVaqoa1nD7tjQo8vYtrXPwXMcwmZI0B0ZWrlyJlStXwtvbG7Vq1UrYX7lyJRYtWoQhQ4bA0dHRkLYyBkJhoFZRWYouXUhctU4dai8wfDhVNqQTZ2dnrFmzBnK5HGvXrsUtSxTiqlRJu335MpUpq1RUWREbm/hrvv0W2LWLnNOdO4FDh6THDxyQ9gp98gS4e9fgpn+RO3e0mSMAva+lSzPeDoZhmBRyRXkNUSIK0SIGTjL205JEow/2++8UzHd0pKB8vXqUPR8XZ1r7dAgPD0f0J5+lffv2OHHihIktYjIdBQsCa9fS9t9/A//8A0RF0X7OnNqq3PnzUzfur79Sq1HOkGYYs+N5/As8U/lBBhmq2FT68guyMtu3A+PGAVOnGqULgbe3N0aPHg0A6Ny5M3bt2mXwazBJULYsEBAAjByZsgQXlQro2ZMC+xqeP6e1IoA0T/UrStato+MDBwI3bxrKcoZhMoh0i6/v3r0bPXr0wOvXrxOee/XqFfbs2WOZi8BmyFPVMxyMOYwoEWVqU8ybUqWox/LTp8CWLQbrpVyjRg20bdsWAPDXX38ZZMxMRWAgBZsAaoP1+DHQrx9pidjaJv26pk2BzZvJKdGU2sbHU6ZHixZAw4ZUQQKQ2Jl+H9CMoEwZoGtXyjCysgLs7IBhwzLeDoZhmBQQpg7DhTgSlqxrUwsKGSdKJMm4ccCgQYCPj7YN5OPH5CfcuSNtlxAZaTIzAcDV1RV//fUXnJ2dcfPmTdSvXx/r1683qU1MJqR5cwoEArS4U64cZcm+eUO94AHS40sNEyZQ9a9+ggvDMCZFJVQ4EkfJXeWtyyKbPJuJLTIxAwdSpcCoUTTn79lDwWIDJEpqmDhxIlq0aIGYmBi0bdsWixcvNtjYzBdwcNBuBwQAoaFJn7tgAVVH1qhB7bvVauooommv1rs3tQXXZdQooFUrSgDt2lWbWMAwTKYg3YGRfv36oUOHDrDVWeC0t7dHhw4d8OOPP6Z3eCadKIUSp5VncTP+Nq4rfU1tjnny+DHQqxc5PjIZTXzff2/QSwz5pDuxbt06BAcHG3Rss2f1anIoWrSg3p6FC1PrsmLFvvza1q2l4qBTp5KIWmgoZWts2gSsX0+ZvaaohJLLyWn+5RcSa9u8mZwohmEYM+S08hziEY988rwoYVXc1OaYN97ewF9/UXViZCRVJp46RXPOzJna84KCKNv+7FnT2Qpg0KBBePLkCQYNGgRvb2+0bt3apPYwmZSfftIGP/z9gWvX6PseGkr+WGrbwtaoQQK133xD+19qY8IwTIYQg1g4wB4OMnvUsallanNMT/bsdF8nk9H/qYkTge7dqWJ06FCDdCaws7PDjh070KdPH6jVagwYMAAzZswwgPFMivH1pZZX339PQYzE6NmTjsfHA2PHUrJmYCCtaXh5AXnyAB8+0LkvXwLnz9P3ZulS0lC9c4eqJHm+Y5hMg0yI9P3Furi4oECBAp9Vh5QtWxb+/v4IC+P+1WkhLCwMrq6uCA0NhYuLyxfP727TRbK/Jo4yBX/55RdMnToV3t7euHfvHrc30+fFCxLkCgigTBFN6wwDI4RAt27d0KBBA3Tq1Al2dnZGuY5Zcv486YJUrUotSBI7njMnibMnh1JJC1Vv31K1yOHDn5fDap5r1Mhw9jMMYxakdl7MKhjKHzhw4AC+/fZbKBQK3Lx5E6VKlTKKvRbH0qXUWsvenlo/Nm5saosQHR0N+09Vr2q1GosWLULv3r3hoJsxyTBJERdHSR+VKlFlbJ48wLt3pMPXvHnax/X3p0rfZcuotQkArFxJmbeDBpkmwYXJlLA/kPL3resTaPwBDUII+Pv7w8fHx6B2Znri4ykg/O+/9H9LQ82aNN+3b59814MvIITApEmTMGXKFADUgaWlgcXeMyUhIYCzs3HnguvXqXV6ZCQwejRVhCSGEDRXDRtGybNVq9J6hkwGWFvT8bt3aazgYGo/2b8/cPo00KABfYfmzv1cs4thGINiKH8g3RUj8fHxePv2LeJ1hI+VSiXevn0LlUYw2QI5ffo0WrRoAS8vL8hkMpP0kXz8+DFmffpnP2/ePA6K6BMURBNXQABVL0ycaLRLyWQyrFu3Dj179rSsoAhA2YLjxiUeFFm+nAJTXbsmnbWhwdpa237r6FFqd6bLvHm0IPXNN9TqhGEYxgwwB38gJiYGQz9leg8bNoyDIoaka1egSRO6cW7RAti929QWJQRFAGDWrFkYOnQoqlevjjdv3pjQKibTYGNDrULKlwfu3wciIiibOj1Bv5gYqgK+coU05jR5efPn08LT8OHpt5thzBxz8Ad0kclkHBRJDCsrqp57+hQ4eBD47jtarD93jqpI2rRJ1/AymQyTJ0/G+PHj0apVKzTihD7q4JEtG3326a3OCQ0Ffv5ZqhGioWJFrZ7W7NnUMi0xZDKq+rh8GXBzo5+jR2sF1/38aM1B0wlkyBBap6hThwIiADBmDD3HMIzZk+7ASPHixREUFIROnTrhwoULuHDhArp27YoPHz6geHHLbdMQGRmJcuXKYZGRKhC+hFqtRt++fREXF4fGjRujTTon8CzJf/9RawyAFuhz5DCtPVmdd+8+Lylt0IB6fl68SL08v0Tx4sD48bTdty+gW6mmW4q8Zk26zWUYhjEEpvYHAODjx49wd3dH7ty5MdGISQAWiYMDBUPataMAf/fuVNloJhQpUgQAcPv2bWzatMnE1jCZjtKlyX87eJD29+yhxcGAgNSNc/26VpC2UiVaVPLzo4phgCq2Y2MNZzfDmCHm4A/s378fAwcOREREhMlsyDTI5RQQ3r6dukz89htV0P3yi0GGnzZtGrZv3y5JZrBYnj7Vbi9cSD/T2tjm0SOgY0eqQEmMNm20wfg+fahNVlKULk0ttAASWH/7llqsfv016W+VLk3+X3w8BU6EoNbhPXrQXGdBFW0Mk5lJd2CkT58+EEJgx44dqFWrFmrVqoVt27ZBJpOhb9++hrAxU9K0aVP8/vvvJgtIzJw5E6dOnYKjoyP+/vtvyPRbDjEkkKUR7O7dmypIjEhkZCRmz56NHTt2IJ0d7DIfx46RuL0mg0JDgQLaQMfKlSkb63//I52R8HASZX/5kp7XLVXt0CHdJjMMwxgCU/sDAODl5YVz587h+PHjFtV2JMOwsQE2biQNhrAw6kduBvN8XFwc/vrrLwBA3rx50bFjRxNbxGRKHB3pu/3+PfnOtWpRa9P69al9XEo6BFSrBnTuTNvz5lH71IIFSS8OSHdrGobJDJjaH3j9+jV69eqFf/75B/PmzTOJDZkWLy8KiDx9ajA9SZlMBsWntlFCCBw4cMDy1gg0NG5MFYojRtDnfPQoVZCkRaC+QgXAx4danyXFjBnUKjIwkKoWk6NlS9Kc27ULyJ0bePiQAiTFi1Mb7zVrKBhy8CBVmmj0Ri5coOAIwzBmT7oDIwMHDsSgQYMA0D90zT/zwYMHo3///ukd3mKIjY1FWFiY5JFW4kU8li5dCgCYP38+ChYsaCgzsxYuLsCBA0DevDTBtWpFIuFG4smTJxgzZgz69etneYGqhw8p8DR2LDk6uvTuTeXJFy7QeV/C1pZuxIsXB169Apo1oxYmY8cCz59Tz1CNyCfDMEwmw5D+gFpo5zQrKyuLruQ1OgoF8PfflGG6dSu1aDAhQgj8+OOPOHHiBJycnLB//37kzp3bpDYxmRylkvqsFyxI3/MTJ6jFTKFCVPGR3IKeQkHZtgsWAD/8QJVW9vaAnR2NN3Nmhr0NhsksGNof6NixI96/f4+yZcti9OjRBrTUgjBCAFcIgTZt2uDbb7/FqpR0UMiKyGR0bz93LpAvH1XihoZS0EJPy/iLWFkBTk40zySFjQ2wYgXNZRs3koZWcgwaRG2yABJj37cPOH6cAiV2dsCffwKentrzra1pbA2HDplFwgzDMIljZYhB/vzzT4wePRpXPvXxq1KlCvLnz2+IoS2G6dOnY/LkycmfU/XvhG2ZjfRXpy+mFhQUhHXr1qF3796GMzIrkjcvTVQNGlCGp2YCi42lCdOAAYxnz54BAAp9SWQ8KzJgAPX5XLWKSluvXqVqEYAciiZNgP376fj06V8eL1s2aoVWrx4wcCA5JDIZZTAyDMNkYlLrDwBSn0DjD8THx6Nhw4YYPXo0pk+fDmtra8Mby0ipUgVYsoRukLt0+fL5RuTff//FqlWroFAosHXrVpTViF0zTFopUAC4dIm2X7wgsdl//6WklMGDqbLkhx+Sfr1MRr42kHSV8M2btHhUvnzS44SE0IKXjU3q3wPDZCLS6w8AWp9g3LhxWD9zE5ydnbFt2zZu35RWbtygZL5ixWj9wADIZDJUq1YNu3fvxuDBg1GjRg0UK1bMIGNnWvz86GdcHNCtG2l8pDUoFRpKwumNGknHqFyZdEBev059FZAmCXP6dGovuWYN4O5Oz/37Lz2nCbzMmkUJnD/+SEkExhSXZxgmTaS7YkRD/vz58f333+P777/noEga+N///ofQ0NCER0Bqe/fqkT17dgwbNszyKhPSQsmSVBbbvr32uUmT6Kbsxg2DXebpp96ZFlnBI5PRDXTlylQ50qYNCXFq6NmTfq5Zk3xLhosX6bWPHlGJ7KNH5GTw95xhmCyCofyBX3/9FadOncLSpUvT7VMwqaBPH0oE8PIyqRmVPrVv+PPPP9GkSROT2sJkQby9aUEoIACYMoUqR9LbxnTrVhLGrVCB2pAkRa9etLglkwHVq2u1Sxgmi2Eof2Dv3r2Y+akqa+XKlQnaU0waOHyYqgfmzqWOBQZi7NixqFevHqKiotCxY0dEG3DsTMmnhFLI5RS0SEnLxsR48oTmlBYtgO+//7xqY9o0Wn/Inj31Yz98CPz0EyV3ajRLnj2jpM3Vq4FRo+g5V1ear5YsoXmS9bQYxuwwSGAkLi4OJ06cwPr167FmzRrJg0kZtra2cHFxkTxSy7Jly7B27VrL7U2ZHnRLLYUANm+mss1WrZIW7kolIZ/GOXDgAPbt22eQMTMVdnbAjh1UZurrSz2mNbRoQQ6JoyNlbSTF5s3Uf3TLFtrXzRaMijK6TgzDMIyxMYQ/cPHiRcyYMQMAsHz5cssMyJsS3bnp6NHUC1Wnk5iYGPTp0wdVqlSxaL0/JgOwtwd+/RXYto22AcrwTcsi1vz52pa2n/5/fcbs2dROVcOlS9TCjmGyIIbwBz5+/Ig+ffoAAIYPH462bdsa2kzLIls2+vnff0CuXJQM8eZNuodVKBRYt24dPDw84Ovri7Zt2yLWkhfQNW3jFi+m5Epr67T5UitXaqtP9u37fAzddldqNWmZ3rmTsrHPndNub9tGa0gFC1IHDIDmtFOngH79aO3CxgbYvp2ScZXK1L8XhmGMRroDI48fP0aRIkXQsGFDdO/eHT179kx49OrVyxA2Ming+PHjGDp0KLp37469X+qRyCSPTEblmoUL0+Q5YIBBekIOGzYMtWrVQmhoKFq3bo39+/cbwNhMRr58WgH2adNIuAwgR+HQIXJE8uVL+vVz5wIPHgA//yx9/uxZEndnXSOGYSyc58+fo3PnzhBCoHv37mjXrp2pTbJc5syh1g3dumXoTfDGjRvh6+uLK1euoHr16rhhwOpXhkkUTeWuEJQt27gxVWOnhh9/1G4nJYbr6irdr1uXxHoZhkmU0NBQyOVylChRAn/88Yepzcn8dOsGTJwI5M9Pi/fLlwP165OIdzrx8vLCjh07YG9vjwMHDqBjx45QWuoC+pgxwG+/UYUgQG0Y8+cnrarU0LWrdtvKKvl1hpkzgT/+ABo2pK4UX6JePe12587aebBLF1o/Amh+UqmoWmXfPqp23LOHumUYUduWYZjUke7AyPjx4xEQEJAgvK7/sFQiIiLg6+sLX19fAICfnx98fX3x4sULg1/rccg9NGvWDNHR0WjWrBmaN29u8GtYHB4eNPEqFMCmTcD69V9+zRfw9PTE8ePH0aVLF6hUKkyfPt0y/0Y6dwa++oocFd2e95UqfblftMbh0G+d5exMQaxt26iclWEYxkzISH/gY8wH1K1bF35+fihYsCDmzJlj8GswqaB5c5qfTp0CMlDotmvXrliyZAnc3Nxw7do1VKlSBePGjUNUVFSG2cBYKE+fAhs2AMeOAaVLU+VHShf2unWjyt83b4AhQxI/p317qiyOj6cgzMmTJNjLMJmAjPQHNPj4+OD48eNYvXo1bI0gHG5x2NtTy+1nz4ATJ0iv9MEDEuSOi0v38LVr18aePXtga2uLQ4cO4U5KqxeyGsOGASNHUkWHSkWVI0LQPJGav5cSJaiCY+9empdkMiA4GLh+/fNzf/wRKFcOePeOgu7XriU/to8PrT+8evV5lePkyRTIv3GDWnUBlCizbRsFaNavp5ZslrgWxDDmiEgnnp6ewtraWhw9elTIZDJRsWJFsWnTJuHp6SmOHTuW3uEzLSdOnBAAPnv06NEjRa8PDQ0VAERoaGiy5x04cEDY2toKAKJZs2YiJibGANYzCUyZIgQghIuLEM+eGWTIuLg4MXHixC/+brM0cXFJH1Mq6XO/eDF1Y44eTb8rb28h3r1Ln30Mw5gdKZ0XzY2M8gfi4uJE0aJFBQBRpEgRERAQYADrmXSzaxfNTYAQK1dm6KXfvHkj2rVrl/CdK1WqlLh3716G2sBYII8eCVG/vvZ7X7asEDdvmtoqJgvB/kDy7zsiIkKcP3/eABYzX+T+fSFy5BBi4UKDDrt//35x8uRJg46ZablyRTufDBkiRFRU8udHRwuxeLEQDx58fuzcOSFy5qSxfvvt8+Pv3tGcBQjh4CDE3r0ptzMqSohBg4QYOZJsmDWLxsmZUwjdv9lNm4SQy4WYNy/lYzMMkyiG8gfSHRixtrYWZcuWFUIIIZfLRbVq1YQQQpQpU0Y0aNAgvcNbLCn5BR89elTY2NgIAKJVq1YiNjY2Ay20EJRKIWrWpEmte3ejXSY4ONhoY2c6Jk+mz7tQISHCw1P+uogIeg0gRNWq5JAwDJNlyKwLIeklNe97//79omzZsuLVq1cZYBmTYiZMoLnJ1jb1QX8DsGfPHpErVy4BQDRu3DjDr89YIGq1EKtXC5E9O333s2WjxS2GMQDsDyT9vuPi4kSdOnWEnZ2dOHr0aAZaZ8FkwH38q1evhEqlMvp1zJJp02geado0Zef37Ennu7kJcfu29vnVq4WwttYGWQAhZs/+/PWhoUJ88w0dl8uFWLHiy9dUqbSvAYSoXl2IkBAhihalMbZvl57/6FHK3gvDMMliKH8g3a20nJ2dof7UH8/JyQkPHjzApUuX8OLFC1y4cCG9wzPJMG3aNMTFxaFNmzbYunUrbL7UhohJPVZWwNq1gIsL0KyZ9vnISIOUywLArFmzUKZMGTx79swg42Uqrl4F2rYFjh/XPjd0KODtTe0Yli1L+ViOjtRGy92dNGJWrza8vQzDMGbMt99+i+vXr8PLy8vUpjC6TJwItGgBxMYCTZpkeMvHFi1awNfXF+3atcMynXn1wYMHePz4cYbawlgIMhnQvTtw/z5QvTq1LmnXjgVnGcbIHD9+HKdPn4a1tTWcnJxMbY5l4OYm3TewdsSdO3dQoUIF9O/fHyqVyqBjZwo0rbOOHyfdkeSIj9e2rgoJATZvpu0LF0ivRKkkvY+JE+n5GTPoPF1cXEgPpEcP+l0OG/bldR8/P+DwYe3+xYvUrmvlSmrJ9d130vOLFNFuR0RoBeIZhjEJ6Q6M5MuXD8+fP4dKpUKZMmUQHh6OGjVqIDw8HLlz5zaEjUwSVK5cGY0bN8ZPP/0Ea12tBsaw+PgA584Bbdpon1u4EChfnsTC00F0dDRWrlyJly9fol69evD390/XeJmO1auBHTuA6dO1z7m5AePH0/bSpanrvVmsGPDrr7T911/ct5NhGItA90ZZoVCY0BImUeRy6iddsybdgJtgcThnzpzYsmUL8ubNm/DchAkTULRoUdSpUwfr1q1LSHRiGIPh6QkcPEg+9KpVUm05hmEMzvPnzwEANWvWRLVq1UxsjYUxbRol9w0ebNBhb926hcDAQPz777/o0KEDYmJiDDq+2fPDD/QzNhaYMIGCDklhZQUMH06Jkp6eQL9+9PyjR6Qd27EjsGUL6cTMnUtBC/3AFkBz1YoV9PolS768plCoEF1XQ69eQJ06QI0atGaUFM+eUfJAkyZAWFjy12AYxmikOzDSo0cPNGjQAI8fP8bPP/8Ma2trCCEgl8sxadIkA5jIJMWMGTNw8OBBVK5c2dSmZH1Kl5bezO3cSVlwVatSJkAaF+Dt7e1x7NgxFC1aFC9evED9+vWNKsBndoweTU7K0aMkiKahSxeqALl/Hzh7NnVj/vADZXoUKwaEhxvUXIZhGHNDCIFixYqhcePGljV/ZDacnYEjR4Dly4FWrbTP796duAiokRFCQKlUQi6X48yZM+jWrRs6d+5seQsujPFxdaUkmLp1tc+tWyfNrmUYxiAc+3Q/xesDJqBmTRLjXraMfhqIzp07Y9OmTbCxscH27dvRpEkThIaGGmx8s6daNWDTJuDPPyl5MrlAAwDMmgUEBQEvXwL58tFzPXpQQGXJEqpoBIARI7TH4+IAX1/pOHI5nd+pE2BrCwQGJr/mM3cu8OGD9jugn6h06xZVjkRFaZ9zcgJCQylw88MPnNTJMCYi3YGRESNGYOfOnShevDiaNm2K+/fvY9u2bbhz5w66du1qCBsZxvzYtw/45hsgOpoyAnr0oDLINJA7d24cP34chQsXhp+fH+rVq4dXr14Z2GAzJX9+YMAA2h48WFum6uJCTghADklSjBlDFT26zqebGzlC27bROAzDMFmYW7du4enTpzhz5gw8PT1NbQ6THPb25DNobspDQmi/UiVqM3T/foaZIpPJsHPnTrx48QKTJ0+GtbU1Nm/ejPr16yMwMDDD7GAskBcvgP79gcaNgW7daLGJYZh0o1QqcejQIQBAM90W0EzGULcuUK8eVYXqdkMwAO3bt8eBAwfg7OyMU6dOoU6dOnj9+rVBr2HWdOhAawXTpwN2dtJjT57Q8Z9+osCCxseysZEGGipUSHptYO1aOt6sGXD+fOLntG5NybLLliXeLk0mA7JnB/Lm1dqgIT6eKid37qS57907ej5HDmD7drJ1505q7cUwTIaT7sAIAHz48AETJ05E48aNMX36dBQtWjRBZ4QxDmfPnsXFixexadMmTJgwAa1atUKRIkVQokQJdOnSBQ8fPjS1iVmbHDmAAweAqVMpm2DtWqBkyTRnv+XJkwcnTpxAwYIF8ezZMzRt2hTvNBNmVue336jU9cEDYP587fOa0tdt2yj7Qh8hgNmzAX9/4OefpcecnY1lLcMwjFmx/5NeRXR0NBYuXIjOnTtj8eLFknOOHTvGi93mSEwM0LQp3UBv20Y33G3bUmVJBmUN5smTBxMmTMDhw4fh5uaGCxcuoFq1apape8ZkDO7uQJ8+9L1ftw4oUQI4dcrUVjFMpuf8+fMJlQRVqlQBAKxduxb58uVDw4YNMXbsWGzduhV+fn4QnJluHDTaFcuXA//8o9XHMAD169fH6dOnkStXLty6dQt169ZFiL4+hqWxbh1Qtiy1x5o+ndZmNDx5Qoknly59eZwnT2hN57//qPKnWjVa69Hw6hVVfNy7B/TtK71OSrCyIu0TFxfqhlGpEnD3Lh2rWpWqYQBa02CdZobJeNKrAu/n5ye8vLyEXC4XcrlcfPXVV+LMmTNCJpOJMWPGpHd4iyU0NFQAEKGhoYkeL1mypACQ5OPRo0cJ565du1b07t1bLFmyRNy5c0eo1eqMehuWwenTQhQoIAQghLW1EM+fp3koPz8/kTNnTgFA7Nq1y4BGmjmrVtHn5+wsxPv39JxaLUTFikJ06CBESMjnr4mMpNcAQtStm/i49+8LMWiQEEn8HTEMk3n40ryYVfnS++7bt+9nPkDbtm0TjgcGBiY8X6BAAdG+fXsxe/Zscf78eREbG5tRb4NJjlu3hGjdWjunAUKULi3E+fMZasaDBw9EwYIFReXKlUVYWFiGXpuxQC5dEqJsWfq+29kJsX+/qS1iMgnsDyT+vletWvWZD7B///5E1wo8PDzEt99+K85n8DxjEdSvr53LbWyE2LjRoMM/e/ZM1KhRQ5QpU0bs3bvXoGNnOjRziOZRrJj22J9/ap+PivryWI8fC9G7N63nAELIZEL88QetSQhB6xHdu9OxcuXSZu+DB0IUL/75+oVaLUSXLvR8wYKJr30wDPMZhvIHZEKkL12gffv22LZtG/LmzYuXL1+ievXqOH/+PNzc3ODj44MbN26kZ3iLJSwsDK6urggNDYVLIiV/t27dwh9//IGnT5+idOnSKFeuHEqXLo24uDj4+vpi7NixkMupIKhDhw7YsmVLwms9PDxQu3ZtfP311+jUqRO33jAEUVHAkCFUNTJqVLqGun//Pvbt24cxY8YkPCeEgEy/JDMroVZTtsS1aySePmUKPR8YCHh4fF6OqkHz/I8/AnoZ0ggNBQoXpmqT0qWp/Vn+/MZ7DwzDGJUvzYtZlS+978DAQEydOhXnzp1DoUKFUK5cOdSoUQN1P/Xzv337Ntq1a5doJam9vT0mTZqEsWPHGv19MCnA15fEPlesIL/i8WMS9MxANJVFGt8wKCgIY8eOxbhx41C0aNEMtYWxAGJiSAx3927S8tu4kaqmGCYZ2B9I/H0rlUrMnTsXnTt3Rr5P2gnh4eG4efMmHjx4gGvXruHq1au4efMmlEolAOpCUbNmTQDA0aNHceDAAbRu3Rq1atXK2veexiQkBFi4kCoObt+mub1wYYNeIsuvDaSUy5epjZa/P+1v2KBtx/3xI1CqFPD2La3PzJ6dsjHfvqXKn6VLaX/MGGDmTNpetQro2RNo1CjtOlkvXwIFC1LLtbNnqUIFoO9NhQr0XjSi7wzDJIuh/IF0B0bc3d1hZWUFPz8/ODs7JwRGypUrhxcvXiA4ODg9w1sshnT4jh07hhMnTuDChQu4cOECoqOjE47Z2dkhICAAHh4e6TWZ0fwpaZyUo0ep5HLAAOornkb8/f3RpEkT/Prrr+jUqVNCwCvLceoUOY79+5PAmT4qFQWfBg+mABRAN9Tx8RRYSezv5OpVoEULcnBy5KAb7+rVjfo2GIYxDrwQkr73HRoaimvXruHy5cu4ePEizp49i6CgIKxcuRI//PADAFoUv3DhApo1awaFvmgkk3GEhADHj5NIp4alS4H69Q2+uPIlJk+ejEmTJsHOzg5z585F//79eTGGMSxKJdC9O4nrjhwJzJljaosYM4f9gfS979jYWNy8eROXL19Gr1694ODgAAAYNGgQ/v77bwBAmTJlMGjQIHTp0gVOTk4Gsd/iEIJEtYsV0z735EmGz+NZntBQSiTJlw/ImVN6bN8+WguQyYC9e0lDJKUsXky6JadPU5IlQC2wrl9Pf+CiXz/g33+pnep//2mfv3QJ+OUXCsDkyZP28RnGQjCbwIi9vT2KFCmCW7duQS6XJwRGChUqhDdv3iAqKio9w1ssxnL44uLicP36dZw+fRpbt25Fjhw5EvqTA8DIkSNRsGBBVKxYEa6urggLC0NoaCjCw8NRoECBhH6lcXFxOHz4MNRqNdRqNRQKBdzc3ODm5oZs2bIhW7ZscHR0NJjdmQ4haOK8cQPInZv6UPbsmaahBg8ejEWLFgEAKlSogNmzZ6N+/fqGtDZzMGUKZW+4upIuSa9egOY7FhpKwQ9dx1NDQAA5RDdvUsBlxw7g228z1naGYdINL4QY9n0LIXD//n3kypUL7u7uAIBp06bh559/Rp48eVCzZk1UrFgRFSpUgLe3N8LDwxN8AAC4du0aXr16lRBA0fgDAODi4oKvvvoKdp8EMmNjYyGEgLW1NeRyOS+sp5YbN4DKlalHdevWlFH/7bdABixWXb9+HePHj8eRI0cAAC1btsSyZcu42pgxLCoVZfp27apNMNq4EciVC6hTB+BALaMD+wPGed8HDx7E5s2bsWXLloQ1HBcXF9SuXRvVqlXDr7/+mnDuqVOnEBwcjNjYWFhZWSU8AMDV1RW1atVKOPfevXuwsbGBm5sbbG1tYWVlBWtraygUCsvyB06cIOHtf/8FevRI8zAqlYp9qeRQKinQXqsW4ONDawYrV5KGyJw5wLBhSXej0Cc0lNYeNOTKRcLpM2YAw4cDV65Qgmbt2qmz8elTSvRs145ss7ZO3esZhgFgwHkxXY24hBClSpUScrlcrF27VshkMlGxYkWxcOFCIZPJRLm09t5jMqx3anh4eML2u3fvktUt6devX8K5Hz58SPbcrl27JpwbHx8vnJ2dRb58+UT58uVFw4YNxYABA8Tq1avFw4cPs6bmSXy8EMuXC+Htre1tee5cmoaKjIwUU6dOFc7Ozgmfb8+ePYVKpTKw0WZEeLgQR45InwsMFKJGDe3n6e4uxL//kqZL4cLUjzM4mM7dtk2I69el47VoQa/Llk2Ip08z7K0wDGMYuKe48d/3rFmzhLu7e5Jzu64mSbdu3ZL1A968eZNw7o8//pjwvI2NjcidO7coXbq0qFu3rujevbvw8/Mz+nvL1Dx+LMQ330j7aNvaCtGmjRAvXhj98iqVSsybN0/Y2NgIAMLV1VXUrVtXHD582OjXZiyUuDghPD3pu+7oKETt2kIsW6bt9c5YNOwPGPd9BwcHi3nz5okiRYokzN0VKlSQnOPm5pbk/F+1alXJuQULFkz0PLlcLipXriw5d9euXeLEiROSNYosw5gx2jl88mTSy0wDu3fvFo6OjqJTp04GNjCLMHw4fcZubkL4+QkREyPEDz9oP/tly9I+9pQpNB9Vqyb1ydasSf1YGl3V5Fi/XoiPH1M/NsNYCGajMbJgwQKMGDEi0Yj1vHnzMHTo0PQMb7GYIhPm/fv3+Ouvv3D9+nX4+voiJiYGrq6ucHFxgYuLC1q3bo0RI0YAoH6lDRo0gFwuh0KhgFKpREhICIKDgxEcHIxu3bph5cqVAKg/dXKtujp06IBNmzYBoAzWe/fuoVixYglZJ5ma2FigSRPg5Elg7FjKLkgjgYGBGD58ODZs2AAAeP78Oby9vQ1kqBnx7h3QsCEQGQk8eyY9FhsLLF9O2R7PnlE1zvjxlPnh6Eh9Rq9fB7p1o96d164Bbm702rg4oEYNeq5vX23fUIZhMgWcIZox7zs6Ohpnz57F9evXcePGDVy7dg0fPnyAi4sLbt68CbdP/1MnT56MAwcOID4+HjKZDAqFAnK5HEIIhIaG4saNG7D91BaxT58+WL58eZLXfPv2LXJ+an+wePFi+Pr6onz58ihXrhzKli1r2RWoGoSg9pDbt9PjyRN6Pm9eartVpIjRTbh58yY6d+6Me/fuAQAWLVqEgQMHAgDu3LmDqKgoVK1a1eh2MBbAx4/AuHHA1q2UsauhRQtg0SJqmcJYLOwPZMz7VqvVuHz5Mq5duwZHR8eEtpsA0LBhQ0RGRsLOzg4qlQpKpRJKpRIymQylSpXCqlWrEs4tW7Ysnj17hsjIyM+uUblyZVy5ciVh38fHB/7+/pDL5ShRogQqVKiA8uXLo3z58qhQoUJChWumRK0mrYv582k/Vy7SyezQAShRIsXDbNmyBR06dICNjQ3Onz+PSpUqGcfezEqhQto1hGXLgN69yYdasADYsoV8pk8VzWlizhxg9Gjpc40bAwcPpn3MuDiqjNStjvzzT2DoUKBLF2DdurSPzTBZGLNppSWEwKBBg7BkyRJohpLJZOjXrx/++eef9Axt0WRmh08IAZVKlRDYUKlU8Pf3R1BQEIKCgvD+/XvcunULly5dwtWrVzF27FhM+SS2/fr1a+TJkwe2trYoU6YMypcvj0qVKqFatWooXbo0rDNjmeHKlVTCWbs29ahMB3PnzsWoUaNQvnx5XL9+PWuW0IaGaoMZ798DibXrOHqURM9KlgT27ycHSK0G7t6lYEnFiiRc1qoVsHOntlz29WsSd//zT+BTP12GYTIHmXleTA9Z4X3HxsYiNjYW8fHxiIiISPAHPnz4gFevXmHUqFEJ5zZt2hQHdW4u5XI5ihYtigoVKqBixYoYPHhwQosui0UI0uTq3Jnaa50+DWTLliGXjoqKwq5duyCEQLVq1VC4cGGcPn0aTZs2hZubG27cuIEcOXJkiC2MBaBSAQ8ekEbc5Mm0eGRlRW22vv/e1NYxJiIrzItpIbO/7/j4eMTHx0OpVCI+Ph5RUVFQKpUoUKAAAGrV3aVLF1y8eBEvX7787PVVq1bFpUuXEvbPnDmDEiVKZC6tVCFokXvCBK1gOED3p5/WQ75EdHQ0GjVqhHPnziFbtmw4duwYKlSoYBx7MyN799LnfOQIJaXq3vPHx9McAgCHDgH/+x+1Km3dOuWttiMiqAXWwYOkIxsdDfz+O/Dzz2mz99Urms+++YbmOQ0XL5Iwu1pNrcDbtEnb+AyThTGbwIgGf39/XL16FQBQqVIl+Pj4GGJYiyWzOz4pJS4uDjExMQnv8fz582jSpAnCw8M/O9fe3h6///47Ro4cmdFmpo+HD4HixSkzISwsXT0k//nnH0yZMgWTJ09Gv379DGikmVGiBN0I79+fuJOyZg31Zm3YkJye776jAMiAAcDff1NVSI0adAM9ZQqJmCUVRPLzo/6jDMOYNZYyL+pjae973759OH/+PHx9fXHjxg28ffs24ZiLiwuCg4Mhl8sBAKtWrYKVlRVq166N/Pnzm8pk0/HhA81zXl60r1KZRIshPDwcVatWxYMHD1CvXj0cPnw4a1T9MubFzZvU0/3CBeD5c63IbkgI9YDPislCTKJY2ryowZLe96tXr3Djxg34+vom+APffPNNQuJtdHQ0XFxcEB8fj4IFC6J69eqoVasW6tSpgxIlSiT4CWZLXBxVL2zcCBw+DBw4QPe1KSQ8PByNGzfGhQsX4O7ujuPHj6NcuXJGNDgLMnkyMGkSbSsUpEuaO3fKX3/jBumbHjsGlCkDfArwpZqNGynRBQD27KHKSA3/+x/wxx+UKHr3buIJowxjwZhNYOTRo0dYvnx5Qll9yZIl0bNnTxQvXjw9w1o8luT46KNWq/Hs2TP4+vri+vXruHr1Ki5fvozQ0FCsXbsWXbt2BQBcunQJffr0Qa1atVCzZk3UqlUL+fPnN78qCiEADw9qA3X1KgVJ0oFSqYRarU5oUZIl6dGDgh8TJ2odFl2ePwfOn6fKkqZNqVVZvXqUEfLqFT2/eDEFSgCq2Pn7bxJf1xAXRy24Vq2im+zy5Y39rhiGSQeWOi9a6vvW8PbtW9y4cQM3btxAXFwcJunMCYUKFcKzT+0SvL29Ubt27QR/oFSpUua/MGJo+venOXDsWBIdlckos/HECeDSJcqKbNmSBEgNzP3791GlShVERkZi3Lhx+OOPPwx+DYYBALx4Aei2kq1fn6qNR4+mrNvMWF3OpApLnRct9X1rUKvVCfP606dP0bx5czx48OCz89zd3TF27FiMGzcuo01MG0FBFNzVJBSkMMkhLCwMjRs3xsWLF5E9e3YcOnSI22qlhjdvaA1gzBhqvbVhA9CpU9rHE4J8LVfXVLVGAwAMGQL89Rfg4kJJtbly0fOxseS73blD89uWLZwEwDA6mIX4+rJly4SNjY2Qy+WSh7W1tVixYkV6hrZ4LFVULilUKpV48OCB+KgjPjVjxozPRNxy584tWrVqJZYvXy451+Q8fSqEUpnmlz9+/FjcuXPHgAaZOYsWkZBZ48YpO1+tFqJMGXrN7Nna52bNEkIup+erVyfxNQ0qlRDffkvHChYUIiTE8O+DYRiDYanzoqW+7y+hVCrFmDFjRLVq1YRCofjMH6hbt66pTcxYQkOFsLfXCoFWry5E//5CWFtLBUKLFxfi5EmjmLBp06aEz79Zs2bi8ePHRrkOwyTw6pUQDg7a73fBgkJcvWpqqxgjY6nzoqW+7+QIDg4Whw8fFpMmTRINGjQQDg4OAoCYM2dOwjlPnjwRVapUESNHjhRnzpwR8fHxJrQ4GeLihPjjDyEqVhQiOjpFLwkJCRFVq1YVAMSMGTOMbGAWZcQImj/atRMird+NsDAh6tWjcezthXjyJHWvj4sTonJlen3v3tJj164JYWVFxzZvTpt9DJNFMbn4+o0bN1CtWjXEx8cnetza2hqXLl1Cec7CThOWnhGSEj58+IDTp0/j3LlzCUKxut/HY8eOYdWqVYiOjoaXlxfy5MkDFxcXWFlZwcrKCp6enmjWrFnC+ZcuXYJKpYKNjQ1sbW1ha2ubsG1nZ4dsGdS/WwiBly9f4urVq7h69SqOHDmCK1euoHXr1ti5c2eG2GBybt0CypWjjIgjR4AGDRI/T6WizFeZjETZ+/Sh5xctAvr1o8ybw4eBXbuowmT5ckA3k+bjR9Ijef6cMm1ZF4lhzBZLnRct9X2nhoiICFy8eBFnz57FuXPncOHCBXTq1An//vsvAKq0/Oqrr5A9e3bkzZsXefLkgaenJ6ytrWFtbY2yZcuiSpUqAEgP5erVq7CxsYG1tTWsrKxgY2MDBwcHODg4wMnJCTY2NqZ8u0nz+DGJgq5aRVmGRYrQcz4+QLVq1KojNBSwsQHWrzeKRsP06dMxYcIExMfHw9bWFk+ePEHevHkNfh2GSSAoiPy3P/8kbTp7e6o6Zg2SLIulzouW+r5Tg1KpxPXr1xPmegBYs2YNevToITmvbt26yJcvH/LmzYvcuXMnzPnW1tZo2LAhvD61qNRoorm7u8PNzc24bSKDg6nS4N07EmVfvPizU4KCgvDw4UPcu3cPZ86cwYkTJ7B37178999/GDdunOVVyhqCY8e0bcwqVaJW3ppWjSnl4EHqYqFhxQqgZ8/UjXH6NFC3Lm3/+iu1+tJUh/zyCzB1KrVOffKE5jmGYUzfSqtXr15YtWoVChQogPnz56N27dpQq9U4ffo0Ro4ciRcvXuCHH37A8uXL02ycJcOOT+qJiorC9evXcfLkSRw/fhyHDx9Grly5EBQUlOj5lSpVStDFAQAfHx/464qg6VCsWDFJqW7ZsmXh7+8PNzc3uLm5wdXVFTY2NpDL5ciTJw9WrVqVcO7kyZMREBAAW1tbuMrl+OrhQ1z76itY29jAxcUFQ4YMSTj3u+++w9mzZxEYGCi5vkKhQLNmzbBr1y7zaxVmLPr2BZYtA776Cjh37vOy0Xv3KBDSuzc9lEpg2jRt662yZYEFC4CvvyahtdhYarWlP86JE9SGASCHpHZtY78zhmHSgKXOi5b6vtNDfHw8wsLC4O7uDgA4cuQIvvnmmyTPHz16NGbNmgWANPOS08n78ccfsfjTYkVwcDAqVKgAV1dX5MyZM+Hh6OgIuVyOSpUqoXnz5gDIR5kzZw4AwMbGJuFhbW0NuVyOIkWKoO6nG2IhBI4fPw5HR0c4ODjA3t4e9vb2cHBwgKOjI2xsbJL3BWbOBMaNo7ZZs2cDhQvT3BcWRq0lt2+nue7kSaO01Xr06BGGDh2KHDlyYM2aNQnPR0dHw55v5hljERpKbVAOHKD9334jMVxL8ZstCEudFy31faeXN2/e4NSpU/jvv/+wd+9eCCEQGhqa5PlHjx5Fg09JeYsXL8YATWtmAM7OznB0dExIoly6dGnC3H3s2DEsXLgQCoUi4SGXy6FWqyGEwKhRo1C1alUAlJC5dOlS2Nvbw9HREY6OjrC3t0fBx4/x3bJlkGlE2rt0wYEDBzBx4kQ8e/Ys0XWNFStWoGdqF+EZKYsXA+PHU8vz8+dT7xsplUCTJsDx47R/6xbpjqSW2bOptRdA6xhDh9J2VBQFXkaPlmqQMIyFY6h5Mc0h7/Pnz0Mul2Pbtm2oWLFiwvNt2rRBvnz5UK1aNZw7dy7NhjFManFwcECtWrVQq1Yt/PLLLwDImXn9+nXCIzIyEkqlEvHx8ShatKjk9QUKFIBCoUBcXBxiY2MRGxuLuLg4xMXFfabnERsbi/DwcISHhyMgIEByrFChQpL9Xbt2wdfXFwoANwCUAXDgyBH8AyBnzpySwEhgYCACAwOhUChQpkwZVK5cGVWrVkWrVq2QI0cOQ31UmYOFC0krJKmb2gMHqC/ovXsU2PDxoXM9PSnL4tYtYO5coGpVCogoFCTKXr68tocrQNokffpQEKZPHxL3tLPLqHfJMAzDGBgrK6uEoAgAVKtWDYcPH8bLly/x6tUrvHz5EsHBwVAqlVAqlShVqlTCuWq1GoUKFUo4Fh8fj7i4OERFRUGpVMLBwSHh3IiICDx//jxJO3788ceEwEh0dDQmTJiQ5Lldu3ZNWFyJi4tDw2REWPUrSH18fCCTyWBlZQVbW1u0iIrCNAB3Tp3CptWr8fvvv9OJLi4Y7+ODr2vVgm/16oj7/XcoFApYyWSwsbdHwYIF0apVqwR7Fy5ciLt37+L+/fsICgpCZGQkIiIiEB8fjzZt2mDDhg2JZqcWLVoUBw4cQGxsbMJzjx49QtWqVdGrVy/Uq1cPLi4ucHFxgYeHB/Lly5fke2WYFOPqSsK1Y8YA8+dTVdTw4YCTk6ktYxjGhOTOnRsdO3ZEx44doVQqE+a1ly9fIiAgAO/evUuY85VKJXLrCHDL5XK4uLggLCwMABLu/zXExcUlbD99+hR79uxJ0o4OHTokBEaePHmCFStWJHreZAATAOp+8PXXiI2NxZUrVxKO58uXD8WKFUOVKlVQr1491KxZMw2fCiOhf3+gTRtKIElLwoi1NbB1KwVVKldOfcWJhtGjqap36VKp3omDAyWzcKCfYYxCmitGXFxc4ObmhhcvXiR63NvbG6GhoclG45mk4YwQ4zJniNRpGfVnyyTPnd1rO9RCDblMO0lGxIQiJi4K0XGRiHEBomMioFar0LRtKTg6OqJ169YJ565cuRKvX79GbGwscqzdi8H+voiWK9CyVD3EqmzRspo2w6PuAG/I5XKULFnys6zK2T23S/ZlNnqibEX0Wn3pTOpOPtJjHrmkN4ltvyog2Z8z7qD2tTWkLTB+bFUayTFn7hnJ/qiRSVdgLFx9VbKvfKH3/yJeLd3PrbV7VJ8qQM2awOXLQJEiWDLgT0Q70/u0iwhF9V1LUPbMLhzsOQEPqjZGtdObUXXbP1i64hwUdiTMWeLwVryoVBtqF2e0G9ACDsEfcLn7cJRdMUdy2X9WXJHsuxfKnrAdExojOWbnKg2qxEXFSfbD9N6jUx7nhG0bJ2kA7uPll9LrVpX+Lgrk0H4eDx5Kq4w8cjtL9l+c8pfs23i7SvZz6XxHYpXSz/3dOenCX92OZSX7Fy5I5wGvQtoFSf/T0usiLFa67+kg2S1cI3/CdrxKaof/tVeSfUcv6f/GyGcfJftWHo4J20563/nYUKkdQi29lmtu6djvH31AUlg7JC/0GqfzHbHSO9fKXrpvl036dx/yUO+6ur66lZ7jrvfnItM7LqKV0hN0/r7svKTfF31iXodLn9AdW++zhKv0e1younTR0//uO8m+fXbtd8DVXfp9CNf57KKjIjCsQzWLmxfZHzAuqfEHZg7cAQEBKwX93cYFhuN1sD+i4yIREROKCHkkIqJCoVTFQggBn9wlUbEYBTtilTF4Lo7R6z4lXWgeQgjIgj1RpzwFJWLiorDp/FREREQgOjoa0dHRiIqKSmgXWj5fDXSuTkkVQgiM29ZZYmd9AMc+bZcsXBX3Hl9KOGZvb4+YGOm8tRZAFIAdNWqgYdGRAAC1WoWf13dDvEo6h2moXLUp/jsmbe/pqTeHzV2qve6hvf/i8L7Eq8g7d+6Mmu3HwNZO+/+vd+NiiZ7LMCli+XKqGP6UrPT64nW4zpmJuHIVoPLwhEehfCTgXoy/Z5kRS50XLfV9ZxTJ+QPx8fEICQlBcHAwoqOjERMTg9UzjiGXe3442DlB/TEG70Jfwi/wAYRQQyhAP4UAIIPMVoES+SvDw42CLk36F8Lu3bsT5vfIyEhERUVBCIH7l55jR+AzeIe8wrE6/XCmUgM8f3kP2dxywcPdC7Zx0jWAH/9okrC9uP8uybHRK9qm7jP47VjC9qhfpa2s5/17SbKfvXB2yX73eoUl++tOPk3YVustOX5dzkuyv3XVNcm+zEnbslTo3UtDJR3LqaC7ZP/HNsmvVejy9+abkv2BHcp9MlitbTmqsybzz/bbCdsOevdsPepL3z9Onwb++AP49ltg8GBsPeeXcOjFzbfSc/Xeo52rFVQ2tgm25P3wFIFFtRUoVgGvoLR1gNLeETK5NFgSGyb18XzKSz/rD+8jErbDH+jdZzpJW8VmL+Yh2Q9/K70fjNO5B8xbNpfk2Mvz0vUBeTbpGolCby1LGaH9DJq1KSU5dvTkM8m+fnzIp6hnwvb9w4+lBxXS++EyjaS/p6dPpVVYti5aO6ODIiXH8haSfuefXJYmSNtll97HxrzXvt4uh6P0WGCU1M44qUSFjc5aTnyU9B5eHSn9vtjrrVtEf5DarfuBOeSUrolEPdGrQrOW/l5ket8JO53fo7eP9G/v4SXp56Gwl9Zh5Nb5PUXFSt9v9Efp5xEdECbZt3KX/r05ffp8oiMjMKRtZdNVjERFRaF06aT/6eTJkwevX79O6/AMY1boBkUAwMnOFU52tLAsy6v9A+zSpdFnr9UtbZ0jaiFwaX94vvfD/3IXwfU8UodD0+Oc0UMIlLp5GC9sayLc/dOka2UF7NwJ1KgBPH6MVn+OwtYx/0BlbYsYJ1cc7zwG51v2Q5y9I5yC36PKjqUQMjlc3wUgIn9BAEDpA5tQftdK7Ju5Dpd6jkbVVXMQnpszVxmGYZjPUSikbrOVwhreHkUS9uXuSVcb2lrbYcmfS5I8rrsgY2fjgNu3b392jlKpRFRUFBb02CZ5fkjjqVALNdRqFeLVSijc5Xh7cBECnLOjTnXposiYMWMQFRWF6OhoqFQq5PzwAV23U+LF9/fvY3eOAAS55YNcrkDtEt+ifodKKFmyJLy8vODo6IiNW+8jKioczs7aYPrTx4+xYM5MfN+mFRo0aAA3N7fPbP+meR+MGPQ9li5dilevXiEsLAxhYWF4+/YtNm/ejHwVm6FI6UqfvY5h0kTv3pJdx21b4LhtMxy3bf78vAULAEfpggXDMIwuVlZW8PDwgIeHdqH4jJd0cTuna17kdKUkNpmt3uKiozQRqlSpUpJqVV3mDNkD/2vb4X1hDQo8vw7fut+jdHGdqpC4xBMWGAPSrRuwYQNw9SpVIKamUkMIYMgQ0jwFqMuFvT1QvH6Kh0gIigAoe3wbvl43C7ebd8HFHqNQa8nvKHF0B2426oDT3cem3C6GYZIkzYERtVqNGzduoGDBgokef/36NdJYjMIwWReZDLfLN0H9w/+g4JPLnwVGmMSpfWwFqp7fjMsx73CmzUDtAS8v4NAhoGZN5PK7i/LHt+Ba424Jh2OcXOEQGoTv5w2GTXQk3hUsidCc+aAAoIiNgVwVD9d3L1Fv9lj89/sy+H/VAPH2juCCZIZhGMbcsLa2hqurK+xttIu4MpkM+bJLs9/khbJhffGagEyOInpjTJky5fOBT50CevSA+/PnaHtkKtY3m4ZIB3d8W7krRv8iDawcPhGG7HovnzZlIvbu2oFN69dCoVCgfPnyyJcvHwJDrODi6oFipaojX/7iaNKkCZo0aSJ57alTp/Dw4UMo8nNQhDEeUd+2gCwuDoqXAVB8CITd+7fAw4dUWXLsGHDpEmBpLWsZhjFb/L0roM6FNcj3+g5kahWEXPHlFzGGo0MHCowsXAjExFCQwyqFS6dxcdQKS5dNm4BJKQ+M6OIcRAG4MvvWo8y+9QnP53p6J03jMQzzOelSXIyLi4O/v3+ijziOZDNMorzPRWX9bsFcUZVS3uYhPZgSVw5TaasuxYqRlgiAqvtXwj48OOGQfdhHtJs3CO7vXiDcIxcODZ+V0GJMZWuHg+MXIs7OAV63L6P8ln8Rb88ZgwzDMEwWQJYKF79uXdLgKlYMLpEf8N3R6bBWRqf45X37D8SPg4agePHiUKlUuHbtGnbt2oVzJ7fh6H8rER0VnuRr69ati379+qXcVoZJA8py5REy8TcE/bsK73fuBx48AA4epHZaZcuSPh3DMIyZ8CF7fuxtPAarOv8FkZr5nDEMLVsCf/5JlSJLlwI//ECVICnB1hb46SegUSNAU2HUrl2aTTnXYSiutdP6SVFu2eH7TUccHDQ9zWMyDCMlzRUjderUgYzFfxgm1YS45wEAuIS8g1ylhFqRvD4BAzwrUg0xto5wDn6PvE988bJoRekJXbvi3a/TEG9jB9uocEQ7Z0OVA6tR9swuuAa9QbibJ3b9shThntIem6Fe+XGm3y9osPAnVF7/J9RWVrj1Xa8MfGcMwzAMYwZkzw789x+iSlVAzo9+6HBwEvbUG52il1avWQvVa9aCp5Mtnj9/jhs3buD169fYue8K8uYvjqIluE0oY4Y0bgzcuUPZwJp72shI4O3bBG0ShmEYUyDkCjwqUot2eM3NNAweDOTNS0GN9euBEiWA4knr0En49VcScu/Th0TTO3cGbgZ+8WVJcb1Df0R45kZ4Di+8LlMVsVHqL7+IYZgUk2bxdca4sLhaFkYIwNmZbr6ePOGbr5TSty+wbBn1g1627PPjHz7Qwo7GeezalZyY3LmBU6dwMEIr2KQvLt5q0a/AmjW0s3AhXev0aXKGSpZM1qz7r6Ri6k/fSIWi3gZKxa9cXaTitO1q+iQ59iO9sYrqCWvtvKgVRW9TPb/k2KXHUufr5gPpfg09IbbS+dwStred95ccC9cT7fb2dEz2eG4dAe2S3tkkx568kX5eynjp76JATq3Q2B0/qZh6Mb2x8rhJRbhuBwRL9svk055/4vYbybF6ZXJL9i88fC/Zr1BYKjYXHadK2M5mn3ww82WwVDwsbzbt53HxkfQ61YtKW3c81Pt8iuV2TfZaurwOkWZ46wsd+uqJyzWvnLSeTrCeCGA2B5skzgRe6Iml5XCV6izYKZLPdHv8NizJY8ERbLJmHQAAMfVJREFUWlG/iPBwNKhYyOLmRfYHmHTz+jXNa127Ap06JX/u5cskWq1UAu/fA9myJX9+MsSopP/ff5uzE6HB71GsdDUAwJAulORQuHBhqFQqHD9+HD4+NCfqzm/A53Ncavh33z3Jft/myc/rGcWxW9LK4QZlvZI4k8kQhKD2KUeOABs3Anpt3xjzwVLnRUt93wyTHKfuSu/x6pbKncSZnzhzBlixAlAo8CoyHsLGFnEenggrXQHl2zUGnKTi1FiyBOjfn7a3bQPaUotR/fufG0+kQubfVKRkWEREAE5OuHH3JZxvXkN4+SpQW0vvq0ro3eNe17uPD9YT21artfd4HWsnLm2g4YjvK8m+Suf+0FrvHk3fDzn34J1kv2bxnJL98zr3z/pjfdATgde9xweAfJ7Sz9lKoQ0Avg2W3tOG6d2XltX7vHTvJYvkkv5v1P9+uDlJ12KK5XWT7F/Sec9f+i49C4yQ7Ae8l1ZI677+hr/0PrxCAWlj2jeh0vccqvM7z59D+tnFKlWSfd3PDgCcbJKuf9D/3nq7OyRxZuL46bxnH73foT766wlyudZOV7vUJYe/CJKuqWV3ofWGsLAweHm4m058nWGYNCKTAb6+QJ48JMTFpIyuXSkgsm1b4kKZHtKFbPTrBzRtShmBHh7AjZdJj71oEbUR8fengMjPPwPh4YCDA3D9OrXrYhiGYZjMyOTJwH//0aNYMaBixaTPrVqV5r0zZ7RBEZUKGDGCFo1rpk2F69nTp1g4tS8iwoJRuUZTVK75LZ7Xyg65XA5/f3+oVCrY2CQdgGUYoxMeDrx8CYSEAN9+C4wdC3TvTlnC+hnbFy5Q4oxrypMXGIZhUsXHj7Qo//Qp8O+/XDliKEaOJFF1AHk+O+ZGn7vuZ/3jj8D9+/Q7UKRB68XJCbLnz1GhRX3YBzxHcM2vcXfpRv59MowZwQ0LGcYUFC7MQZHUUrs2UKAAEBoKjBnz5fPr1AG6dPk8YJIYTk6UJXv8OAVewj9F+6Oi6KY4Pj5dpjMMwzCMybinUzFx/vyXzy9enCpMNMybR722e/QAolOuPaJL3nz5kL9QaSisrHH1/AEsnjUEBQoUgLe3N1QqFezt7ZE9u76sO8NkIC4uwIkT9N0XApgxAyhVCvDxoXYosdoKRqxZA3z1FfDqVdLjMQzDpAeZDJg0CVi+HPj7b1Nbk3XILa0CiChSAiq7T9XuFSsmHrCYPZuSKFu3TtMl5cePwz6AKmGznTsJRUTS2msMw2Q8HBhhGFPy8SOwerWprcgcyOUkfgZQWxBDByscHIAXL2i7QgXg+XPKBLx+Hbh0ybDXYhiGYZiMYt484MYNEgPt0yf1r+/Xj6pcnz6l6pM0YGNjg15DZ2LguEUoV6UBcuUpCGtrKqOvVasWTp48CTs7uy+MwjBGxtaWfM1Nm6iVlq0t+YPLl9OiGEBBE3t7yiCuXRvw8zOtzQzDZE2yZQOmfxLYHjECuHLFtPZkFTZtAtq0SQiAOD2+D0VMDILqNgT27k38NVZWlDSiIZVqBKpOnRBSvRbCKlRBwI/DoHLmVngMY05wKy2GMRVhYZSV8Pw5OT4tUyjmZck0akTtC6pV+3L5aUwM9VJv2BAYNChl4wcHUzCkUiXA2xtYuxbIlw8oXz7dpjMMwzCMSahcmX6mdS5zcaFs1VatKGuyQwdKIEgl1tY2KFKiEoqUqAQAGNChLIKDg+Hh4QEZt5RgzIkOHegRFUVVJEePUks5gPzPoUOB3buBZ8+AWrXoeIkSprWZYZisx4gRwNmzwM6dQMeOwKNHaWvnxGhxcAB27AD8/BAweQZyb98AqNWILFwM2fUTNB48oCTWLl2A0qUpILJ7NzB5MhRrt0LllUJtMDs73F2+hRI9AYBVnhnGrGDxdTOFxdUshJEjKZMzb14SYre1/fJrGClCJB4k2bKFbmoBar+V0r8jIXD5pj/UDloNE32B7NN33yZs+7+Xim51r1dYsr/rklRA1s5G6sw66Ihj1SmVK2U2pgBff6lwedE80j7YDtZJO9X6gvIl9F774LX0eHGvpHts6wuNuTtLHc782aVaMboi6F8Vk37uX7IzVzZpezp726Rj//qC4B/1xMHc9cTGdUWEvyQmrs/7cK34XA69968v2lbwCyJmSdmUmF2pEVD/0tjxKqmrEBWrrdjK4Zz8/63wWGl1l3Myvxd9dAXlw8PCUDx/LoubF9kfYEzJjIYrE7Zb3f4bxd9fhapiJcSePQcH+9T5LHNG/SfZHzXnW+2x+Wekx4bXTn6s345Jz/+1gfbYwnPSY0Oluij/bL8t2c+VR/t3pSsMCQCBQVKRyj5Ni0v29ccqVNA9YfubCp91L5dw92WIZL+UngBocsxZfEGyP6r/Vyl+bXpYe/KJZL/b14WTONMCeP2aEnbu3UOMqzsedOoD9XdtEetdIOGUL/kxWZ2Lj95L9vX96bRiqfOipb5viyckhFr6hYQA584BNWqY2qKshaYLhZXO/UlYGDBlCsSCBZDFx0PkzInYCxdxPdYepbu0hMv1ywj6vhMCZv2V8BK13rLqszfSdlnldPwDfYHwm8+l9+3v9cTHSxZwl+w/fBGcsJ0/l1SYOzpWKsz99qNUtLpsQW3bUv370qtPpQLyBfTG9nCU+n26/+PLF5K2L9e/L9V/j/qi57rnP3kn/ewiY5SS/Til9D7VwU77u9P3paLjpefaW6VuDSA5giKlr83umPRrn+oJs0fp3R+XyScVlDckuvf1kTHS6yZnMwBExEnPT07Y/Uvo3td7uaVOViCpdQ9DzYvcSothTMm0aYCXF4k9rlhhamsyFyEhQOfOJEqXGKE6i+bbt6d8XJkM9s+efN6qy9eXf0cMwzCMxXK0aBcINzcorl+D1R/TTW0Ow5gWLy/g1Cl8LFYadqEfUX7xTBQd3vfLr2O0xMZSklhSvjzDMICbG9C4MW3v329SU7IkVlbSoAhAgZF//qGgiKsrZO/ewea7NpDHRMN/3CQAgPv2TbC/czPj7WUYxuBwYIRhTImdHfC//9H2pEnSxXwmeTZtAjZupM8vMPDz4zY60e+3bz8/nhRBQSjVsRkq1i2PXKsW03N37gBVqgBjxwJKZfKvZxiGYZgsSKStK+JmzQYAWM+ZzT4Lw3h44NjCjbgy6je8rVwTQc1aJxySR0dRyy3WIEmaoCCgZ89U9+tnGIujeXP6uXOnae2wFPLmBRYuRNy+/Yi9fgMiRw7IfX1RaMJoRJStiMBvW0MmBPL9PNLwuqcMw2Q4HBhhGFPTrx9QrBjw/j3w22+mtibz0Lcv9UsPCaFsM306daIgxvLlwKhRdNP15AmgVn9+ri737kHl5AKbD4EoMH0isv+3i8TWsmWjG7jjx43wZhiGYRjG/FH1+AFx06Yj5rovaXIxjIWjsnfA01adcXLuGrzurdW0y7VhJfDnn+Tjt25Nvuj8+dTb/uHDL/ujxsTPD5gxAzh/3nQ2AFR1kzs30L27ae1gGHOnRQtg8uTUdUFg0kfv3hBuboCDA+I2boJQKOC5dztcrl6E/7jJUDm7wOGWLzxXLTW1pQzDpBMOjDCMqbGxIZ0RAFiwgG6WmC+jUFDpvVwOrFsHHDwoPW5jQ2WxvXrR9tq1QJEiQL16wIcPiY8JALVr4/qZm3jdawAAwOeXUcDz50C7dnR80yYjvSGGYRiGMX/iR4+B8PExtRkMY9aEVq1JGiRKJYn1zp1LQspt21LCzbVrGWNIbCz5rnfuaJ978wYYPx6oXRtYauJFPQ8PEkNmGCZpXF2BCROAEiVMbYnlsH8/bBo2gE3LlhCVKyN+3nw8mv0Pwqp8BWXOXHj10xQAQO4502D77MkXBmMYxpxh8XUzhcXVLJCWLQFPT2D6dCCHZYs1pooRIygDL39+uulzSkK8+vx5oOYnAVYfH2DPHqB06aTHjY+nIMrZs0DlysAffwANG5KI+/v3gC2Jj+mLZweHx0r2I6Klolx1S+WW7OuKjccqpWJpX5eWnhumJzzmYmedsP1e77ohEdJ9Rztp79QYvWsVyiEVV0sNyQmPBerZoY+nk1TETfd8lVo6PcXpiad5uyd/I61rl56e7mdC5PqCaOn5PD5ESt+zvlCdLhFx0t+DlUJqqL5wXWpE4PXtsNY731Xn+/MlIffUoD+WPsmNnZwAnqXOi5b6vplMwtOnQKFCKTp1zsQjkv1RkxslbC9YeUVyTKb3f0L5VCraqftaQE+M3cFacgyRei0w9YQ3oft/11HvtYFS8XVFPmmVjFMe6d9kxJuwhG1ViPR/sHNhqXhq+OMgyX7JegUl+28+aK8d+jxYckymN1cM71VVsr/1nLZ9U7uayQex/t4q7ZGeJ79UADSvh2PC9tlTzyTHipaT+ikKmdSu56/DJPt9m2kX9TaflbaYCgmUCsT+2CYZH82MOHNP2641SM8Xa10tP3DxInD5MvDiBT38/YFHj4B373DBn9rROV+7hNINqgI5c6bZjjsBIQnbpfO5Aa9eUTBm9WqqeO7TB/j3XzohNJRaxD5+TPuTJwO//gro/f4S4+jNV5L9huXypNnmtGKp86Klvm+GMSgbN9KjZUugY8ek1w4ePKC1g48fgfbtgU2b8OyDdp4q6OFIwe9jx4Dp03G/2wDJy21tFJL9gp5JXAfAozfSuVKud+Pqp3e8UXnt/91jt15LjjnZS/2YakU8Jfsn77xJ2C6qJ1T+XE/0XN8ORzvp2KXzaV/v/0E6hxfQ8R2AL99rhkRrfTVba+kxeyvpZ2ku6L8npd5ahbNt2oXKszqpXXtg8XWGsRR27KC2TxwUSR2//UZBkefP6aYuKWrUAO7epc/Xzw/46ivg6tWkz7eyAjZsANzd6bwVK8hxCgv7vDqFYRiGYSwJtRro0oUqMc+eNbU1DGO+VK9OWiOzZwNbtlCQJCgoIcHG9exJlOzVHmjQwHCtraKjaUFv7ly6Vt689LeqwdWVKtR/+YX2J04EBgxIUa98RWQEqnRuhso/tIE8NsYw9jIMkzJ276ZFet0KMCblqNXA8OHA3r3UltvZGfjnn8TPLV6cEimtrOh/94YNCYcU794B334LTJsGbN5MFXgMw2RaODDCMOaCFUeU04STE7D4k0j6li1ARETS5/7zD1V7AHTeqVPJj50vH7ByJW1v2KAdOygo6dcwDMMwTFZHLqf2N0IA3boBwcFffg3DMIRCm/0amy8/4l1cKHmnZk2qTh4/nnzW//6jIEdquXuXEoYAWgD09wfGjpWeI5NRctGiRbS9ZAklDd2+nezQDi/8YPvhHRyeP4PtuzfJnsswjIFZvRrYuhWYOdPUlmRO1OrP7+O3bUv83OXL6f+wptXfFW1lq8eYoZQouXYtBaoYhsnUcGCEYcyFq1dJnPHiRVNbkvlo0gRYtiz5VloAUKcOYGdHn/O6dZQx8iVatgROnqQbzFKlqA3BDz8Yxm6GYRiGyazMmgUULEiLrv36UZCEYZhUEZPfB7e3HabsZYWC2rLMmAEMHAg0awaE67Q22byZAhhfCpYULapti1WliiQQ8xkDB9LCoJMTcOtW8n40gPDipXF+9xmcPXgJ0d6sNcQwGcpPP9HPdesoAMqkDisramU4aRLQvTu1yt66NfFzT5wA1q+nbhGVK5PGyydC+3xqm7V8OSVPKpWJj8EwTKaAAyMMYy7MmEHlsX//bWpLMie9ewPZsiV/TsuWQGAgsHMntQBJ7kZRl7p1AW9vyqLr04cyZRmGYRjGknFzo4VaKytaWNVUWDIMkyricuYmEfSHD6nl1pAh5LNWqUL6gxo2bgT696cWslOnaiu1hIAsRqetlYsLULIkbR8+/GUDvvuO9EY2biQdPg07dwJRUp0dyGRQ29tDbWuXtjfLMEzaqVwZaNuWEhEmTza1NZmTggWpfeDq1cC4cdQ2W4NugkeHDhQ42bEDOHNGcl5M7bpAxYoUpO7ShdpupaAVIcMw5gmLrxuRRYsWYdasWXj79i3KlSuHP//8E1WrVv3yC8HiahbHo0c0oQpBi+/JiYIzySMEsG8f8M03Cf2b08vZ++8k+7VKJC2OqS/GnpzQmj7B0dJsk2x64mmpITlBdAB4/FYq4pZPx87oWKljpy9UbirehUl7Wed0ybib8uh4rUi6MQXgDCmCntXIzPMi+wNMlmbGDGr94+gI3Lgh1TJII3suv5Dst6zqnez578O188OmndIsWpXenDagVxXJ/sOXIUmOe9tP2iLs3XmpXTlrSO2KU2rnitgwqRB3tJ4wqWMuqX8g15tbFDrCrcFPpa0/5Hpzg0JP5FWhI/gZpycIbusmnTv1x4qLkPoP8Tq+iZWeX6LUm5c/E7aPVUl23Utr/aeIt1KRV3307bLW8WP0hesdvF0l+/q3tw7uDpL9oLvvE7btPKXHVHFSm5V6n4dCT0zV2klrl1BLr/uZlrneE9nzaP+nh36QBiBkCum58dHxKHl0GyruWg6XD9TCSmnngDhHZ9iHBOF+/TY43Y80Q+Jj41Fh/xq4vH+FG826IUfdipKxHl6XivV6FM4u2Veq1PC8dwPNh3ZARM48uDz4V7ys2QAAUDyf9LP+GB5L7Wk+JQ19XdYr4diOc36Sc0MDpe8xj95YH0Kk36de3xRN2F5/6mnCdlRkOPo1q5Bp58W0+gTsDzAAgGvXKEDi6EjBUeu03y8yOvj7A40bU2B60CBAJvtMFN3BTvv/33HXdmTr1R0AEN2uA+y3bJKc+zxIOufnzy4VI9flwetQyX5IhHTettbzD+J17hf1Bb/L+LhL9mOV0jkth7PWB3gZLP2fbGstvY6z3pyvf18apTO2g3Xq7o/D9XwzcxQq17fRWt/H0UP/89G9rzeXe/pIve+DYyp/b7qYw7oFi6+bOZs3b8bIkSMxceJEXL9+HeXKlUPjxo3x/v37L7+YsTzmzKEF/ebNLSsoolRSb+NJk7TaH+mlUyfKsktKSI1hGCYDYX+AyfKMGQPUqwdERlLmpFpN8/vu3UC7drTIEMMizQyTHuTxSjyu2RQb5u/BkcFTEe2SDdYxUXAMege5Kh6ljmxF+V0rUGfpb2g5YxCyBzzB6R5jEZYjL6BSoeiffyD/huXIdXgv8t6/Co+AR3AIC6K/10SwDQtBvI0tnN69Qv1f+6PGzPGJtstzu3kVTSrnR7n/DeJ2eimAfQIm3VSoAGTPTnPu+fOmtiZzo1aTVsj//keVOI8ekeD6Z1Htz4lp2RrxhYtAyOWI7D+QtE5lMqBRowwwnGEYQ2J+Ybkswty5c9G3b1/07NkTALB48WLs378fK1aswPjx401sHWN2PHtGP5VKSdZVlubMGWDAAG1/1AIFpNodajUQEAD4+QFeXkChQsm3voqJAa5fp97MADk2DMMwJob9ASbLI5cDa9YA9esDo0dT9ciaNcA7nWrL69cpUOLhYTo7GSY51P9v796Dorrv/oG/dxd2YUVYCDdRQbyAMV6DlaAxNT+ZiMnTBhMbQmi8tDU1kUkTL01M2pjkmalOO83EZlLHefordvL4yK/tT00fb08SFXNDo/5EJSqKYjCGi4LAwi6wl8/vjxMWDoKCLpfd837NnBnY892z38+eXc6b/e45XzcMzlaIUwe3Xn/7LO52w+ByINDWCr3bjdZgM0R3+29e6twuGG2NMDU1INzqgtMcAmv8aGWdy4mYkpMIbriBYOsNBNXXIrTyCu4pO4fw8os4tvCXOL5gGS48+BhuTLkfTy2br9p22taNnp8dRhMO/Pw3EL0BwVXfYcyW9z3rpnW4j8sQAHtkDMrnzMf/W/79MUkED7/9IgJa27+1PPzwwS7rCT9xFGU/XYaE//O3bgdZqB0zAd01vR6YP1+ZZ+SFF5S5gXp6eWh/IqJ8TjB6dPttZ88qnxuEhXV/P0D53GDrVuXLqWfPqtetXduzxw8IQM2ufdBXVcE5ZSrwq+eVxy0r42W1iHwMB0b6QGtrK44fP461Hf6o6vV6pKeno7CwcAB7RoPWH/8IpKYC//M/wPr1wOuvD3SPesfhUAYiiouV5dw55Tqc994L5OYq1x8HgKIi5YOSbduU63oCQHAwMHUq8NOfKr+LKM/F6dPqb5iazcCkScq3T1etar/9gQeA0lKgpsNlFVJSlGsvExENIOYB0owRI4AzZ5SfX35ZOdZHRwMLFyofPnz5pXK8/uQT5YsQRD3hdsPcUAtXgBHuIcqgmqHFjvjzx9EYFgnb0HBABME3HNC7XdC7nGgxD0XLkKEAAFNjA2LPFyHUbYfJWo+AZjsMrS1wfFeLwBY7SifPRmXU/wIARJZfQNZr2aqHF50OAh1Ep8NXjzyLL/9tGQAg4rtLWLRO3RYAWk3BaDUPxcl5T+PEj5YAAEKuVyBrbTYMzlYYHEo/O7qQmYPjK99W+ttkxeO/WdLt02G5etnzs+2eaJzOXKw8J44W6Jts0LlcaIyKQ70lGuWTHoA7ULnMl+gNKMtZhuDvrsBYVwupvIagxjqYG+tgcDkRUnUVEeeL2x9Ip4MzKBgtYeGonpiC6okpuDIrvctvUZct+iWCr5aj/Oml2vxwtheYCchr3nlHmRfoj3/03fed3a5khYaG9qWxUVkWLGifO/TYsfYzY6zW9qWgQPlyaUWFMueZiHLWammpMvdoQoLy+UBNDVBXBzz4oDKQBAD//d/KvKEAMHSoMp/I1KnKZxDTp/e4BHfsMLhjhym/bNoEPPookJ7+/WcfLbe8LxENHhwY6QPXr1+Hy+VCTIx6HoKYmBicO3euy/u0tLSgpaX9j2d9vXKdwYaGhi7bk58ZNUoJNitWAL/5DXD4sHKa7NixyrW6R41SriPaGw6HEpTavvF24YISHsxmZRkyRDkF98oV4NtvgUWLlMkaAaC+Xrn/d98pAx7nzyuXukpMVOZCmTlTCRGAEjC6mpwRUL41sXRp+z9Sixcr32pps3ixchmtiAj1/RsblUGRgABg5EilHzYbcOSIUtOyZe1tL15sHxQxGoE5c4D/+A+lnZfeP02N6utgNzQEd9vWalXPMdJg6vm35xo6zTFicNz5NWOtneYYCXSp5wlptKqfm4797DzHiME5OOYYsXa6lnkwWrtp6X0d5xhx9OMcI62D5Hqkg0Hb8dCXpkZjHiBNevNNICREmesrMFA5G3ThQuU2o1E5Nl+6BPzXfynH6rg4JeckJAAuF7BrF1qnPgLnEGUOjuEffYiG7P8N3HefMgATFqbklbAw5X5Tp8Iq7f/SNNvVx2FXp3kuOr+XVMdDpwsBN2pgaKhH64iRsDcpxx2DvQkGRytamhogHT6Esjep80Gro/1veKvVBqO9EYHNdrgCAuFudMJtCIQzwAjo9dB/H3v0DgcCm20IcDQj0G4HAIhBD50pAPaIKDiDhqDZ3gSj3Qqz9QacgSa4goLhDDQp23E5ode74TCZ4f7+WvNGmxND6q/D2GhFwPXrCLbWwdjSBLchAAg1o2rcFDTEjAAAmJvqEHXpLAJtTTDX1cB4vRrmhhvQu1wQnQ5f/2Aero5TzjEIv34NyV/ug8MUBGegEa1uA5wBJoheB4PTiarR43EjOgEAEHm1FNM/2oagpnro3U7o3W4EmAzQu5wItDfh2LwcnJ+pnPEQXXYWmRtegNsQANHroHe5oHO7oRfl+fzy6RdRkpkDAIgoO4d5m1/u4oWnOPqTX6LosWcBACFl5zB7w4vdtr1uCkLZdGVuB7vNipv+yooAEEAAW2szmu1NMLgNaHQ6bm4LAC12oMUOuV4Bu60ROh2gb7ajtenm1g5jEBxDQ3Et1AJbkxV2mx1ia0R5zEi0DA1Dc1gEmsPC0RQRjdqEcbgWOxqNETGATXl9uwJMKPhpbvv2OuQ+Z1uO+75t7cgo1D7X/pxdOKnMUaJ3uhBsrUWcuRl6p8Pzena4BP/5/v9Fa2g4VDGkyYpGqzqXNNla0BT+/RwljVbV+8vW6f1ht9lVv9sa1duyN6k/SOxuW/bv6/KlPAD0PhMwD1C3TCblC5U6XfuAQkuL8v+9yaQexGx7n7Td1tqqHHvvdEDFZlMGNKqrlS9Btn1+sHUrsHmzcmZo2zF9+PD2OVBmzWo/a/Tf/10Z3OnuLLNx44ApU5Sfd+3qfqL5oCDg00+V//+vXVM+27BagXffvbmty9X+Rcy5c4G0NOCxx5TPQDqeYdLh/dX5/2VXa3vWMOjVA8VDwoKBjAzPNqxW9RwjDYHqLNJR58dp6vR/fECnfeVydz/HSEOD+iPe1k5zSgRJ+7atDerPb1o7zTchnT6L6Px/acc5Rpx3OceI+MEcI52fn47/1w+W/+k7zzHi8uIcIwNRo9c+HxDyuqtXrwoA+fLLL1W3r1mzRmbMmNHlfdatW/d98ubChQsXLly4dLdcuXKlPw7lXsE8wIULFy5cuPTN4kt5QKT3mYB5gAsXLly4cLn9crd5YPANy/mByMhIGAwGVHW8tjKAqqoqxMbGdnmftWvXYuXKlZ7f3W43amtrERgYiPj4eFy5cgWhbaPxGtHQ0ICRI0eydtauGaydtbP27okIrFYr4uLi+ql3d495wDv4HmHtrF07WDtr98c8APQ+EzAP3IzvEdbO2rVDy7UD2q6/p7V7Kw9wYKQPGI1GpKSkYP/+/cjMzASgBJn9+/cjNze3y/uYTCaYTCbVbRaLxXNqUGhoqObeDG1YO2vXGtbO2rWmp7WH3W4yxUGGecC7WDtr1xrWztq1xl/zAND7TMA80D3Wztq1hrVrs3ZA2/X3pHZv5AEOjPSRlStXYvHixZg+fTpmzJiBd999F01NTVi6dOlAd42IiIj6CfMAERERAcwEREREgw0HRvpIVlYWrl27hjfeeAOVlZWYOnUq9u3bd9Nka0REROS/mAeIiIgIYCYgIiIabDgw0odyc3O7vVRGT5lMJqxbt+6m02i1gLWzdq1h7axda7RSO/PA3WHtrF1rWDtr1xot1X63mUBLz1VnrJ21aw1r12btgLbr7+/adSIi/fJIREREREREREREREREA0w/0B0gIiIiIiIiIiIiIiLqLxwYISIiIiIiIiIiIiIizeDACBERERERERERERERaQYHRoiIiIiIiIiIiIiISDM4MDKIvf/++xg1ahSCgoKQmpqKr776aqC7dNfefPNN6HQ61TJ+/HjP+ubmZqxYsQL33HMPQkJC8OSTT6Kqqkq1jfLycjz22GMwm82Ijo7GmjVr4HQ6+7uU2/r000/xox/9CHFxcdDpdNi5c6dqvYjgjTfewLBhwxAcHIz09HRcuHBB1aa2thY5OTkIDQ2FxWLBz3/+czQ2NqranDp1CrNnz0ZQUBBGjhyJ3//+931d2m3drvYlS5bc9DrIyMhQtfHF2tevX48f/OAHGDp0KKKjo5GZmYmSkhJVG2+9xgsKCnD//ffDZDJh7Nix2LJlS1+Xd1s9qX/OnDk37fvly5er2vhi/Zs2bcLkyZMRGhqK0NBQpKWlYe/evZ71/rzfb1e7v+7z/sQ8wDzgi8dEQLt5ANB2JmAeYB5gHug7/pYJmAfaMQ8wD/jbsYF5gHnAJ/KA0KCUn58vRqNR/vrXv8rXX38ty5YtE4vFIlVVVQPdtbuybt06ue+++6SiosKzXLt2zbN++fLlMnLkSNm/f78cO3ZMHnjgAZk5c6ZnvdPplIkTJ0p6erqcOHFC9uzZI5GRkbJ27dqBKOeW9uzZI6+//rps375dAMiOHTtU6zds2CBhYWGyc+dOOXnypPz4xz+WxMREsdvtnjYZGRkyZcoUOXz4sHz22WcyduxYyc7O9qyvr6+XmJgYycnJkeLiYtm2bZsEBwfL5s2b+6vMLt2u9sWLF0tGRobqdVBbW6tq44u1z5s3T/Ly8qS4uFiKiork0Ucflfj4eGlsbPS08cZr/NKlS2I2m2XlypVy5swZee+998RgMMi+ffv6td7OelL/D3/4Q1m2bJlq39fX13vW+2r9//rXv2T37t1y/vx5KSkpkddee00CAwOluLhYRPx7v9+udn/d5/2FeYB5QMQ3j4ki2s0DItrOBMwDzAPMA33DHzMB80A75gHmAX87NjAPMA/4Qh7gwMggNWPGDFmxYoXnd5fLJXFxcbJ+/foB7NXdW7dunUyZMqXLdXV1dRIYGCj/+Mc/PLedPXtWAEhhYaGIKAdUvV4vlZWVnjabNm2S0NBQaWlp6dO+343OB3+32y2xsbHyhz/8wXNbXV2dmEwm2bZtm4iInDlzRgDI0aNHPW327t0rOp1Orl69KiIif/7znyU8PFxV+yuvvCLJycl9XFHPdRd8Hn/88W7v4y+1V1dXCwA5dOiQiHjvNf7rX/9a7rvvPtVjZWVlybx58/q6pF7pXL+IchD81a9+1e19/Kn+8PBw+ctf/qK5/S7SXruItvZ5X2AeUDAP+P4xUct5QETbmYB5gHlARFv7vK/4YyZgHlAwDzAPaOHYwDzAPCAy+PY5L6U1CLW2tuL48eNIT0/33KbX65Geno7CwsIB7Jl3XLhwAXFxcRg9ejRycnJQXl4OADh+/DgcDoeq7vHjxyM+Pt5Td2FhISZNmoSYmBhPm3nz5qGhoQFff/11/xZyF8rKylBZWamqNSwsDKmpqapaLRYLpk+f7mmTnp4OvV6PI0eOeNo89NBDMBqNnjbz5s1DSUkJbty40U/V3JmCggJER0cjOTkZzz//PGpqajzr/KX2+vp6AEBERAQA773GCwsLVdtoazPY/j50rr/N1q1bERkZiYkTJ2Lt2rWw2Wyedf5Qv8vlQn5+PpqampCWlqap/d659jb+vs/7CvMA8wDgP8fE7mghDwDazgTMA8wDbfx9n/clf84EzAPMAwDzgBaODcwDzANtBtM+D+j1PajPXb9+HS6XS/UiAICYmBicO3dugHrlHampqdiyZQuSk5NRUVGBt956C7Nnz0ZxcTEqKythNBphsVhU94mJiUFlZSUAoLKyssvnpW2dr2jra1e1dKw1OjpatT4gIAARERGqNomJiTdto21deHh4n/T/bmVkZOCJJ55AYmIiLl68iNdeew3z589HYWEhDAaDX9Tudrvx0ksvYdasWZg4caKnX954jXfXpqGhAXa7HcHBwX1RUq90VT8APPPMM0hISEBcXBxOnTqFV155BSUlJdi+fTsA367/9OnTSEtLQ3NzM0JCQrBjxw5MmDABRUVFfr/fu6sd8O993teYByyq+zAPtPO1Y2J3tJAHAG1nAuYB5gHmAe/w10zAPKBgHmAe8OdjA8A8wDwwePMAB0aoX82fP9/z8+TJk5GamoqEhAT8/e9/H/A/1NR/nn76ac/PkyZNwuTJkzFmzBgUFBRg7ty5A9gz71mxYgWKi4vx+eefD3RXBkR39T/33HOenydNmoRhw4Zh7ty5uHjxIsaMGdPf3fSq5ORkFBUVob6+Hv/85z+xePFiHDp0aKC71S+6q33ChAl+vc/pzjEPEKCNPABoOxMwDzAPMA/QrTAPEMA8oAXMA8wDgzUP8FJag1BkZCQMBgOqqqpUt1dVVSE2NnaAetU3LBYLkpKSUFpaitjYWLS2tqKurk7VpmPdsbGxXT4vbet8RVtfb7WPY2NjUV1drVrvdDpRW1vrd8/H6NGjERkZidLSUgC+X3tubi527dqFgwcPYsSIEZ7bvfUa765NaGjooPgHorv6u5KamgoAqn3vq/UbjUaMHTsWKSkpWL9+PaZMmYKNGzdqYr93V3tX/Gmf9zXmgTpVG+aBdr50TOwNf8sDgLYzAfMA8wDzgPdoJRMwDzAPAMwDgH8dG5gHmAcGcx7gwMggZDQakZKSgv3793tuc7vd2L9/v+qabP6gsbERFy9exLBhw5CSkoLAwEBV3SUlJSgvL/fUnZaWhtOnT6sOih9//DFCQ0M9p2X5gsTERMTGxqpqbWhowJEjR1S11tXV4fjx4542Bw4cgNvt9vzhSEtLw6effgqHw+Fp8/HHHyM5OXlQnCraU99++y1qamowbNgwAL5bu4ggNzcXO3bswIEDB246lddbr/G0tDTVNtraDPTfh9vV35WioiIAUO17X62/M7fbjZaWFr/f711pq70r/rzPvY15gHkA8N1j4p3wlzwAaDsTMA+oMQ8wD3iDVjIB8wDzAMA84C/HBuYBNeaBQZoHej1dO/WL/Px8MZlMsmXLFjlz5ow899xzYrFYpLKycqC7dldWrVolBQUFUlZWJl988YWkp6dLZGSkVFdXi4jI8uXLJT4+Xg4cOCDHjh2TtLQ0SUtL89zf6XTKxIkT5ZFHHpGioiLZt2+fREVFydq1aweqpG5ZrVY5ceKEnDhxQgDIO++8IydOnJBvvvlGREQ2bNggFotFPvzwQzl16pQ8/vjjkpiYKHa73bONjIwMmTZtmhw5ckQ+//xzGTdunGRnZ3vW19XVSUxMjDz77LNSXFws+fn5YjabZfPmzf1eb0e3qt1qtcrq1aulsLBQysrK5JNPPpH7779fxo0bJ83NzZ5t+GLtzz//vISFhUlBQYFUVFR4FpvN5mnjjdf4pUuXxGw2y5o1a+Ts2bPy/vvvi8FgkH379vVrvZ3drv7S0lJ5++235dixY1JWViYffvihjB49Wh566CHPNny1/ldffVUOHTokZWVlcurUKXn11VdFp9PJRx99JCL+vd9vVbs/7/P+wjzAPCDim8dEEe3mARFtZwLmAeYB5oG+4Y+ZgHmAeYB5wH+PDcwDzAO+kAc4MDKIvffeexIfHy9Go1FmzJghhw8fHugu3bWsrCwZNmyYGI1GGT58uGRlZUlpaalnvd1ulxdeeEHCw8PFbDbLggULpKKiQrWNy5cvy/z58yU4OFgiIyNl1apV4nA4+ruU2zp48KAAuGlZvHixiIi43W757W9/KzExMWIymWTu3LlSUlKi2kZNTY1kZ2dLSEiIhIaGytKlS8VqtaranDx5Uh588EExmUwyfPhw2bBhQ3+V2K1b1W6z2eSRRx6RqKgoCQwMlISEBFm2bNlNgd4Xa++qZgCSl5fnaeOt1/jBgwdl6tSpYjQaZfTo0arHGCi3q7+8vFweeughiYiIEJPJJGPHjpU1a9ZIfX29aju+WP/PfvYzSUhIEKPRKFFRUTJ37lxP6BHx7/1+q9r9eZ/3J+YB5gFfPCaKaDcPiGg7EzAPMA8wD/Qdf8sEzAPMA8wD/ntsYB5gHvCFPKATEen9eSZERERERERERERERES+h3OMEBERERERERERERGRZnBghIiIiIiIiIiIiIiINIMDI0REREREREREREREpBkcGCEiIiIiIiIiIiIiIs3gwAgREREREREREREREWkGB0aIiIiIiIiIiIiIiEgzODBCRERERERERERERESawYERIvIrBQUF0Ol0qKur6/fH1ul00Ol0sFgsPWrf1ledTofMzMw+7RsREZGWMA8QERER8wAR3QoHRojIZ82ZMwcvvfSS6raZM2eioqICYWFhA9KnvLw8nD9/vkdt2/r61FNP9XGviIiI/BfzABERETEPEFFvcWCEiPyK0WhEbGwsdDrdgDy+xWJBdHR0j9q29TU4OLiPe0VERKQtzANERETEPEBEt8KBESLySUuWLMGhQ4ewceNGz+mmly9fvulU2S1btsBisWDXrl1ITk6G2WzGwoULYbPZ8Le//Q2jRo1CeHg4XnzxRbhcLs/2W1pasHr1agwfPhxDhgxBamoqCgoKet3PkydP4uGHH8bQoUMRGhqKlJQUHDt2zEvPAhERkbYxDxARERHzABHdiYCB7gAR0Z3YuHEjzp8/j4kTJ+Ltt98GAERFReHy5cs3tbXZbPjTn/6E/Px8WK1WPPHEE1iwYAEsFgv27NmDS5cu4cknn8SsWbOQlZUFAMjNzcWZM2eQn5+PuLg47NixAxkZGTh9+jTGjRvX437m5ORg2rRp2LRpEwwGA4qKihAYGOiV54CIiEjrmAeIiIiIeYCI7gQHRojIJ4WFhcFoNMJsNiM2NvaWbR0OBzZt2oQxY8YAABYuXIgPPvgAVVVVCAkJwYQJE/Dwww/j4MGDyMrKQnl5OfLy8lBeXo64uDgAwOrVq7Fv3z7k5eXhd7/7XY/7WV5ejjVr1mD8+PEA0KvQRERERLfGPEBERETMA0R0JzgwQkR+z2w2e0IPAMTExGDUqFEICQlR3VZdXQ0AOH36NFwuF5KSklTbaWlpwT333NOrx165ciV+8Ytf4IMPPkB6ejp+8pOfqPpCRERE/YN5gIiIiJgHiKgNB0aIyO91PjVVp9N1eZvb7QYANDY2wmAw4Pjx4zAYDKp2HcNST7z55pt45plnsHv3buzduxfr1q1Dfn4+FixYcAeVEBER0Z1iHiAiIiLmASJqw4ERIvJZRqNRNSGat0ybNg0ulwvV1dWYPXv2XW8vKSkJSUlJePnll5GdnY28vDwGHyIiIi9hHiAiIiLmASLqLf1Ad4CI6E6NGjUKR44cweXLl3H9+nXPNzruVlJSEnJycrBo0SJs374dZWVl+Oqrr7B+/Xrs3r27x9ux2+3Izc1FQUEBvvnmG3zxxRc4evQo7r33Xq/0k4iIiJgHiIiIiHmAiHqPAyNE5LNWr14Ng8GACRMmICoqCuXl5V7bdl5eHhYtWoRVq1YhOTkZmZmZOHr0KOLj43u8DYPBgJqaGixatAhJSUl46qmnMH/+fLz11lte6ycREZHWMQ8QERER8wAR9ZZORGSgO0FE5A90Oh127NiBzMzMXt1vyZIlqKurw86dO/ukX0RERNR/mAeIiIiIeYBo8OMZI0REXpSdnY0RI0b0qO1nn32GkJAQbN26tY97RURERP2JeYCIiIiYB4gGN54xQkTkJaWlpQCUU2QTExNv295ut+Pq1asAgJCQEMTGxvZp/4iIiKjvMQ8QERER8wDR4MeBESIiIiIiIiIiIiIi0gxeSouIiIiIiIiIiIiIiDSDAyNERERERERERERERKQZHBghIiIiIiIiIiIiIiLN4MAIERERERERERERERFpBgdGiIiIiIiIiIiIiIhIMzgwQkREREREREREREREmsGBESIiIiIiIiIiIiIi0gwOjBARERERERERERERkWZwYISIiIiIiIiIiIiIiDTj/wMorZKbBTi7SQAAAABJRU5ErkJggg==" + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAASnCAYAAACwzMTzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5QUVdoG8Kc69+ScmEQcGIacFSQKopjRNaAChjUHMO4aUNe4a17UNSMfhtUVcwIEjATJOYcBZpicezrV/f7o6eqqmsAAw8xAP79zOEx13a66fbu679t1q+4rCSEEiIiIiIiIiIiIiIiIgoChrStARERERERERERERETUWjgwQkREREREREREREREQYMDI0REREREREREREREFDQ4MEJEREREREREREREREGDAyNERERERERERERERBQ0ODBCRERERERERERERERBgwMjREREREREREREREQUNDgwQkREREREREREREREQYMDI0REREREREREREREFDQ4MEJE1I4sWbIEkiRBkiTs3bu3ratDREQUtN57772Tvk8eNWoUJEnCqFGj2roq7dLUqVPZPkREdNLYu3evEpu89957bV2ddontQ0eDAyNE1C75f8hLkoQnnnhCeXzr1q0t2tH5fxD7/5lMJiQkJOCcc87BmjVrjnv7REREx0vdJ0qSBKPRiA4dOuDcc8/F77//3tbVOyYn4oS0eiBjyZIlLbZdapy6zZtDfRxLkgSbzYYuXbrgzjvvRG1t7QmuLRHRyY3xQPOo+yaDwQC73Y4OHTrgzDPPxHvvvQdZlltsX6ci/3E2derUI5ZVt7W/vSMjIzFs2DD897//PfGVJTpOHBghonbvn//8J0pKSk74foYMGYLevXujuLgY3377LSZMmACHw9Hkc1wu1wmvFxEREQBYLBalryooKMDXX3+NkSNHYsWKFY0+p731U+2tPtQ24uLiMGTIECQlJWHXrl146aWXcPfddzf5HK/XC6/X20o1JCJqvxgPNF/37t3RqVMnFBcXY+HChZg2bRomTpzY7trjVNCjRw8MHDgQsixj2bJluPzyy5s8JoH2d1xS8OHACBG1e+Xl5XjmmWeaLLN//35cffXVSEpKgtlsRmpqKm6++eajGlBZtmwZVq9ejUcffRQAUFhYiM2bNwPQ3rL61ltvYezYsbDZbHjyyScBAIcOHcL06dORkpICi8WCTp064fHHH4fH41G2P2/ePAwePBhxcXEwm82Ijo7GhAkTjhgszJw5E5IkISQkBAsXLtTURX1FbGZmJiRJwqxZswBop+X68ssvMWLECOXKzE8//bTZ7UJERO1DcnIyli1bhjVr1uDzzz8HAHg8HnzwwQcAtFddPvvss0hNTYXNZlOe/+6772LAgAGw2+0IDQ3F6aefji+++EJZr+5f3n//fZxzzjmw2+1ITU3F7NmzNXVpTr/nv+Lwqquuwj333IOEhARkZWUhMzMTc+bMAQAsXbpU01eFhYUpfa3fhg0blDLLli07qjZTX8m4ePFi9O/fH3a7Hf3796+3rVdeeQUdOnRAaGgorrzySpSXlze4ze+++w4jR45EeHg47HY7RowYgcWLF5/wdrz66qvxyCOPIDk5GdHR0ZgyZQoqKyuVcqWlpbj00ksREhKC9PR0vP766w3W3+l04pFHHkHXrl1hsViQkJCA6dOno6ioSCkza9YsSJKEzMxMfPLJJ+jevTtCQ0NxxhlnYNu2bQB8x9u0adOU5/hfsz8Oaco555yDZcuWYffu3ejWrRsA37HQ0P7ff/99dO7cGRaLBbm5uc16DwDgmmuuQdeuXREeHg6LxYKMjAzcfvvtqKioaLReBQUF6NGjByRJwuDBg1FWVqapi19DU5+qP3+zZ89GRkYGbDYbJk6cqNSbiKglMB5ofjzw6quvYtOmTTh8+DCuuOIKAMCPP/6Ixx57TClztP3ip59+iqysLNhsNpx22mnYsGGDZp9HEye89957mDRpEkJCQtCxY0e8/fbbmm0tXrwYOTk5sNlsGD58uHJ+Qm/r1q245JJLEB8fD4vFgh49euC1117TlPGfL7jvvvtw6623IjY2FgkJCbjjjjuU90uSJKU/njNnzlFNKfrqq69ixYoV+O677wAAsizjl19+qbf/e+65B9OnT0dUVBQmTJjQ7Pdg7dq1GDt2LJKTk2G1WhEaGopBgwbh//7v/5qs1/z582E2mzWzkejPnQAN373kf/3PP/88rrzySoSHhyM+Ph4PP/wwhBBHbBM6CQgionZo5MiRAoDo0qWLCA8PF3a7XRw8eFBs2bJFABAAxLvvviuEEOLw4cMiJSVFABBWq1VkZ2cLk8kkAIicnBzhcDga3c8111yjbE8IIZxOp7j22msFAGGxWMThw4eFEELs2bNHKWexWERsbKzIzs4Wjz32mCgqKhJpaWkCgAgPDxe9e/dW9j9t2jRlX3fccYew2WyiW7duok+fPsJqtSrPycvLE0IIsXjxYmU/e/bsEQ899JAAIEJCQsSiRYvq1WXx4sXK9jMyMgQA8cgjj9TbltVqFd26dRMRERECgDAYDGL16tUt9XYREdEJ5O8TMzIylMe+/vpr5Tv+jjvuEEIE+jSLxSIMBoPo0aOHiI2NFUII8fjjjyvl09PTRVJSkrI8d+5cIYS2f7FaraJjx44iLi5OeeyLL74QQohm93v+elssFmE2m0VOTo7o3bu3uOCCC5TthoeHiyFDhoghQ4aIVatWieuvv14AEMOGDVO288gjjwgAolu3bk2207vvvluvf1Q/ZrVaRVZWllLXjIwM4Xa7hRBCfPnll0q5+Ph4kZaWJkJDQzV9shBCfPTRR0KSJOX5HTt2FACE0WgUP/300wltR7PZLMLDw5V9AhB/+9vflHIXXXSR8nhWVpYIDQ1VXsPIkSOVcmeffbZS5969eyuxQXZ2tqipqdG0uclkEmazWXTv3l153aeddpoQQojHHntMdOrUSdmn/3188803G32P/GWvueYaIYQQBw4cUI7F888/v957bjabhSRJolu3biI5OVns2bOnWe+BEEJERkaK2NhY0adPH009J0+erJTxf2ZGjhwpSkpKRJ8+fZTXUlZWpqmL+vOnj9fU27JarcJut4sePXoIg8EgAIj+/fsLWZYbbRciouZgPHDs8YAQQtTU1Ijk5GQBQCQkJCjfy0fTL5rNZuWcg9lsFgBEhw4dRHV1tRDi6OMEs9ksMjMzNb/Tt2zZIoQQIi8vT+nHQ0JCRPfu3TWxif98yPbt20VkZKQAIGJiYkROTo5Sh0cffVR5/f7zBWazWcTExIgOHToo23rjjTeEEEIMGTJEhIeHCwAiLi5OeU8OHTrUrLaWZVnz2Pz58+vt32KxCLvdLnr16iUmTpzY7Pdg/vz5wmAwiIyMDNGvXz8RHR2t7Ofrr79W9qNun++++05YLBYBQDz11FP16uI/dyKENibQb8tqtYqUlBRNm7300ktNHod0cuDACBG1S/7gaciQIUoQ8te//rXBgZGHH35YCSJWrVolhPB1mv5y77zzTqP7UQ+MqP9JkiTefvttpZw6eBk5cqQy2OLxeMSsWbMEAJGYmCgKCgqEEEJ8/vnnynZ27NghhPAFLP6ASQghduzYoWzzrbfeEkJof2jfcsstShCk/qF/LAMj999/vxDCF1xFRUUJAOIvf/nLsbw1RETUytQnFIYMGSL69u2rnHgwmUxi2bJlQghtn/btt98KIXz9VFVVlbDb7QKAuPDCC4XX6xW1tbVi8ODBmhMs6v7l8ssvF7Isi8rKStG1a1elTxZCNLvfU9d77dq1Sn3UdVX/+BRCiNWrVyt18J8YyMnJEQDEP/7xjybb6UgDIy+//LIQQoiXXnqp3j6GDx8uAIjOnTuLyspK4fF4xKhRo+qd/M7MzBQAxPTp04Usy0KWZXHhhRcKAGL48OEntB3Dw8PFgQMHhNfrFQMGDNBsa+fOnco+77vvPiGEEFu3blWOE387L1myRCm3dOlSIYQQhw4dUo4Pfzzij70AiC+//FIIIcRdd92lPOY/SaFu3+ZoKOYCIFJTU0Vubq5STr3/1157TQghhCzLwuv1Nus9EEIox5zf3//+d+Uz44/j/MfhgAEDxJAhQwQAMXToUFFeXl6vLs0dGDGZTGLjxo1CCCFef/11pdx3333XrDYiImoM44Fjjwf8zj33XGVdQUHBMfWL33//vRBCiO+//75eX3W0ccLkyZOFLMti3bp19bb14IMPCsA3WODvV/yPqc+HTJ06VQC+i0L95xtefPFFAUDY7XZRUVEhhAicL+jYsaMoKysTDodDucBUfW7A/375L2Joblvr/+mf799/XFyc2L9/vxDCdxw09z3Iy8sT+fn5yvYcDofo0qWLACCmTJmiPO7f1rRp05RtPPPMMw3WpbkDIyNGjBAul0u4XC4xYsQI5binkx+n0iKidm/mzJmIi4vD22+/jZ07d9Zbv3LlSgBAVlYW+vfvDwC44IILEBISAgD4888/m7WfIUOGYODAgYiIiIAQAnfddRfWrVtXr9yNN96o3IpsNBqVqbAOHz6MhIQESJKECy64AAAghMDy5csB+Ka4OP/88xETEwODwYCuXbsq2zx06FC9/fhvU/7www8xevToZr2Gxlx++eUAgKSkJGVb+lt+iYiofXO5XFi+fDnWr1+P+Ph4nHPOOVi6dCmGDBmiKZeVlYWJEycC8PVTmzZtUnJmXXbZZTAYDLBarbj44osBAPv27UNhYaFmG5dddhkkSUJYWBgmTZoEANi4cSMANLvf8xs9ejT69Omj1Kcp/fr1U17PO++8g+3bt2Pjxo3KFBwA8Pjjj2Po0KHKv8cff7xZ7ed/fnZ2tvLY4cOHAQCbNm0CAEyYMAFhYWEwGo246KKLNM8vLCxUppJ45513YDAYYDAYMH/+fACo97qBlm3HMWPGoEOHDjAYDOjevXuD9QegvK9ZWVno3bu3Zhvq6TtHjhwJSZKQkpKiHB/6qUkiIyNx7rnn1mu3goKCeq/1aPhzjOTk5ECSJBw4cABXXXVVvYS4drsdN9xwAwDfdBbFxcXNfg8WLlyInJwc2O12zfQZHo+n3vG+atUqLF++HBkZGfjhhx8QERFxzK+tV69e6NmzJ4BA/AUw7iKilsN44NjjAX0/c7T9on86bMAXM0RHRwPwfccfS5xw5ZVXQpKkJmOTrKwspV+59NJL623D/xo2btyI0NBQSJKEO++8EwDgcDiwfv16TfnzzjsPkZGRsNls6Nixo2afx6NHjx4YMmQIkpOTAfim4nrnnXfqlbv44ouRlpYGQHs+BWj6PZAkCTNnzkRKSgpMJhPsdrtyfqih8ynvvvsuHA4H7rrrLtx7773H9domT54Ms9kMs9mMyZMnA/C1mf7zQicfU1tXgIjoSMLDw/HAAw9g5syZeOSRR07YfvwdbmFhITIzM1FRUYF//vOf9easTExMbLSe6oDGLyQkBFVVVZgwYQLKyspgs9nQr18/mM1mJThqKJloWFgYqqqq8K9//Qtnnnkm7HY7AF9A4Kd+XmNzoRMR0akhIyOjWXM8N9ZPtbSm+r3jqc/NN9+M5cuXY+7cuQgPDwfgO5mSnp4OANi1a5fm5IJ/kOBIoqKiAAAmU+AnkDjG+aE7deqE+Pj4eo8fSxLR5rajv/5A4DUca/0B1DuBBvguoDjSPo93v4Avx8h7770HwDcn+S233IIlS5bgp59+wrhx45Ry8fHxMBgavpavqffgk08+UZK5JycnIy0tDUVFRdi9ezeA+nFXaGgoqqursW/fPsydOxe33HKLss4fdzHmIqL2gvHAscUDDocDq1atAuDrX+Li4jTrm9MvNldz44SWjE3i4uLQuXPneo/rB6FaOp7we/XVVzFq1Ch4vV4MHz4cy5Ytw8MPP4zp06dryjV1HDT1HkyZMgULFy5UBpLCwsKwefNmVFZWNnk+5cMPP8Qtt9yiaRv27eTHO0aI6KRwyy23IC0tDatXr663btCgQQCAbdu2Kes///xz1NTUAAAGDhx4VPuSJEkJDGpraxtc39D+TSYTPvroIyxbtgzLli3DggULcPPNN+PCCy/Etm3bUFZWBsB39ciqVavw4osvNlmP999/H+Hh4fjll19w6aWXKgnREhISlDLbt28H4Lsq0r/9hnz88ccAfFd4+hO29+rVq8n9ExHRyUnfT/Xs2VMZXP/4448hyzKcTic+++wzAL4TLPof7//9738BANXV1fjmm28AADk5OQCa1+81VR8gcLKkurq63rpLL70UMTExyM/PxzPPPAMAuPrqq5X17733HoRvSmAIIZQT7MfDfyXmjz/+iOrqani9XuUKT7/4+HhkZGQAAPr3749ff/1Vee3vv/8+Hn/8cVgsFs1zWrIdm6I+IeWv9/bt2+tdJerfJwA88MADyj5//fVXzJo1C9dee22z9wloT3o19F4eLX3cpT92mvse+C92CQ8Px549e7B8+XKMHz++0f0OHDgQDz74IADgtttuw4cffqis88ddBQUFykmTTz/9tNFtbdiwAVu2bAEQiL8Axl1E1PoYDwSUl5fjuuuuQ35+PgDguuuugyRJR90vlpaWYsGCBQCABQsWoLS0FIDvO/5Y4oSm+GOTbdu2Kf1KQ/2P/zVERkbi22+/Vfb59ddf46677sLQoUObvU+g6fekOdTv89GcTwGafg/8ffv111+PjRs34ttvv0VYWFij9Xj88ceRk5OD/Px8nHnmmcjLy1PW+ft2//mUoqIi5TxJQz777DN4PB54PB7l85KYmNjg4BedZFp98i4iomZQ5xjxe+uttzRzVqqTr/uTqFmtVtGzZ89jSr4+ZMgQMWjQICVxGdBwAjr9PKUFBQVKEi6LxaIk+fQnYxNCiJKSEiVRmj/RWGJiorLNhvKC7NmzRyxYsEDZzlVXXaUkiBs2bJiyrdGjR4uQkBAlwWdD2woNDRVZWVnKa1PnYyEiovatoWSrDWlsnm4hjj7ZamhoqOjYsaOIj49XHvMn0GxOv6eud0NzVKvzfOTk5IghQ4YoeSuEEGLmzJmaulRWVh6xnY6UY8RP3T/6y/nnRAd8CVnT09OF1WrV9MlCCDFv3jzlsfj4eNG3b1+lP/e/ztZoR/97rT4mLrjgAmUf/gSt/tegPiYmTJiglMvKyhLZ2dlKjOJvj4byaqjb0t8e6jnR09PTxZAhQ8Svv/7a6HvkL+tP6NqrVy8lQWx8fLwoLi5udP9+zXkP3njjDaVMSkqK6Nixo4iJialXf/1nZtq0aQLwJab1z8u/ZcsWJcbq2LGjGDBggLLc0LZCQ0OF3W4X2dnZSrm+ffsy+ToRHTfGA0cfD/To0UNkZ2dr+vTx48eL2tpapfzR9ItWq1XY7XbRs2dPJal3cnKyktvjaOME9bkF/bmBQ4cOiZCQEAEEkq/bbLZ650O2bt2qJCsPCQkRffv2Fenp6cJoNGqOlYbyavjfG/Wx4s8pZjAYRL9+/cSECROa3dZDhgxR8pYAENdee22T+z+a9+C0005T6pWdnS2ioqKUBOwN5QV59913RW5urkhNTRUARK9evURJSYkQQogHHnhAKTd8+HCRlJSk9NkNbSs0NFR06NBBk3z9hRdeaLRd6OTBO0aI6KQxdepUZGVl1Xs8ISEBy5Ytw1VXXYWoqChs27YNiYmJuPHGG7F06VIlH8iRLF++HCtXroTb7Ua/fv3w6quvYsqUKUd8Xnx8PJYtW4Zp06YhNjZWmbt1xIgReOGFFwD45iL95JNPkJ2dDVmWYbFY8NVXXx1x2+PGjcM777wDSZIwd+5cZa7Q9957DyNGjAAAHDhwAK+++qoyT2dDPv30UyQmJqK2thadOnXChx9+qORjISKiU9+DDz6It99+G/3791eufB82bBg+//zzBvu6N954Azk5OaiqqkJKSgpeeuklZd7w5vR7RzJ9+nRcfPHFiIyMxMaNG7F8+XLNdAY33nijckXhRRdd1OQVgS3h/PPPxwsvvICkpCRUVlZi4MCB+Mc//lGv3BVXXIGvv/4aI0eOhMPhwLZt2xAeHo6rr74a1113Xb3yJ7od1d5++21cfPHFsNlsKC8vx2OPPdbgVaKff/45Hn74YXTt2hW7d+9Gfn4+evTogQcffFC5Cri5evfujYceegiJiYnYv38/li9frlw925SioiIsX74cmzZtQmxsLCZNmoQFCxYgJibmiM9tzntw7bXXYsaMGYiLi0NlZSVGjRqFxx577IjbfuONNzBx4kS43W5MnjwZv/32G7p374433ngDmZmZyMvLQ1xcHF599dVGtzFw4EC8/PLLqK6uhtlsxvjx4/H55583eKU0EVFrC7Z4YMuWLdi5cydiYmIwZswYvPPOO/juu+9gtVqVMkfTLyYlJeGjjz5S6jh06FB89913yl0WRxsnNCU5ORlffvklsrOz4fF4EB4ejnnz5tUrl5WVhT/++AOXXHIJQkJCsGnTJsiyjLPOOqvZedjU7r77bowbNw4hISFYs2ZNs3O2btmyBcuXL0dhYSE6d+6MmTNn4pVXXmnWc5vzHrz33nsYPXo0bDYbampq8OKLL9bLpaaXmpqK77//HlFRUdiwYQPOOecc1NTU4IEHHsCUKVMQFRWF7du34+qrr8Zll13W6HaefPJJjB07FuXl5YiNjcXf//533H777c16bdS+SUK0wERyRETU7ixZskRJtL5nzx5kZma2bYWIiKhd27t3r5KEc/HixRg1alSb1cXpdCIxMRHl5eVYtGgRxowZ02Z1OVrtqR2p9UydOhVz5szByJEjm5yOg4iovWtP/Vh7iQdmzZqFRx99tNn5XejU4B+Ue/fddzF16tS2rQydEEy+TkRERERE7caUKVOwadMmlJeXY8CAASfVoAgRERG1DMYDRHSicWCEiIiIiIjajXnz5sFsNuO0007DnDlz2ro6RERE1AYYDxDRicaptIiIiIiIiIiIiIiIKGgw+ToREREREREREREREQUNDowQEREREREREREREVHQ4MAIEREREREREREREREFDQ6MEBERERERERERERFR0ODACBERERERERERERERBQ0OjBARERERERERERERUdDgwAgREREREREREREREQUNDowQEREREREREREREVHQ4MAIEREREREREREREREFDQ6MEBERERERERERERFR0ODACBERERERERERERERBQ0OjBARERERERERERERUdDgwAgREREREREREREREQUNDowQEREREREREREREVHQ4MAIEREREREREREREREFDQ6MEBERERERERERERFR0ODACBERERERERERERERBQ0OjBARERERERERERERUdDgwAgREREREREREREREQUNDowQEREREREREREREVHQ4MAIEVEbuvDCCxEdHY3Jkye3dVUU7bFOREREp7L22Pe2xzoRERGdytpj39se60TUUjgwQkTUhu644w68//77bV0NjfZYJyIiolNZe+x722OdiIiITmXtse9tj3UiaikcGCEKYqNGjcKdd95Z7++Glpu7nVPdqFGjIEkSJEnC2rVrW2R74eHhzS7bGu3cWJ2mTp2qvPbPP//8hNeDiIhaB+OBo8d4gPEAEdGphvHA0WM8wHiATm4cGCGiBn322Wd4/PHHW7xsW2jpgOH6669HXl4ecnJyWmybJ4OXXnoJeXl5bV0NIiJqRYwHGsd4gIiIggXjgcYxHiA6eZnaugJE1D7FxMSckLItyeVywWKxtPp+Q0JCkJSU1Kyyffv2hcfjqff4jz/+iJSUlJau2gmtT2RkJCIjI09U1YiIqB1iPNA4xgNERBQsGA80jvEA0cmLd4wQncRkWcazzz6LLl26wGq1Ij09HU888QQAwOl04vbbb0dCQgJsNhuGDx+OlStXNnvb+qsoPv30U/Tq1Qt2ux2xsbEYN24cqqurGyzbnH2PGjUKt99+O+69917ExMQgKSkJs2bNOmKdbr31Vtx5552Ii4vDhAkTAADff/89hg8fjqioKMTGxmLSpEnYtWsXAN/tnUuXLsVLL72k3Oa5d+9epf2eeuopdOzYEXa7HX369MGnn37a7DZqTtusXbsWGzdurPevJYKeb775BpGRkZg3bx4AoLKyEldeeSVCQ0ORnJyMF154od57cyLrQ0REbYPxAOMBxgNERMR4gPEA4wGio8OBEaKT2AMPPICnn34aDz30EDZv3owPPvgAiYmJAIB7770X//vf/zBnzhysXr0aXbp0wYQJE1BSUnLU+8nLy8Pll1+O6dOnY8uWLViyZAkuuugiCCEaLN/cfc+ZMwehoaFYvnw5nn32WTz22GNYsGBBk3WZM2cOLBYLfvvtN7z++usAgOrqasyYMQN//vknFi1aBIPBgAsvvBCyLOOll17CsGHDlNtb8/LykJaWBgB46qmn8P777+P111/Hpk2bcNddd2HKlClYunTpCWublvLBBx/g8ssvx7x583DllVcCAGbMmIHffvsNX375JRYsWIBffvkFq1evPqH1ICKitsd4gPEA4wEiImI8wHiA8QDRURJEdFKqqKgQVqtVvPnmm/XWVVVVCbPZLObNm6c85nK5REpKinj22WeVx0aOHCnuuOOOen/rl1etWiUAiL179zZYF3XZo9n38OHDNdsZNGiQuO+++xp9zSNHjhT9+vVrdL1fYWGhACA2bNjQ4GsTQoja2loREhIifv/9d83j1157rbj88subrIN6W0dqmyMZO3asiIuLE3a7XXTo0KFefRra97///W8RGRkplixZoqyrqKgQZrNZfPLJJ8pjZWVlIiQkpN5rP946ARDz588/qm0SEdGJwXigcYwHfBgPEBGd+hgPNI7xgA/jAaL6mGOE6CS1ZcsWOJ1OjB07tt66Xbt2we124/TTT1ceM5vNGDx4MLZs2XLU++rTpw/Gjh2LXr16YcKECRg/fjwmT56M6Ojo49p37969NcvJyckoKChosi4DBgyo99iOHTvw8MMPY/ny5SgqKoIsywCA/fv3N5oAbefOnaipqcGZZ56pedzlcqFfv35N1kHtaNqmIQsXLmz2vgDfbbkFBQX47bffMGjQIOXx3bt3w+12Y/DgwcpjkZGRyMrKOqrtH0udiIio7TAeCGA8wHiAiChYMR4IYDzAeICouTiVFtFJym63t9q+jEYjFixYgO+++w7Z2dl45ZVXkJWVhT179hzXds1ms2ZZkiQlaGlMaGhovcfOPfdclJSU4M0338Ty5cuxfPlyAL4gpjFVVVUAfPNwrl27Vvm3efPmo5pH9ES1TWP69euH+Ph4vPPOOyf8dlwiImr/GA8EMB4gIqJgxXgggPEAETUXB0aITlJdu3aF3W7HokWL6q3r3LmzMs+mn9vtxsqVK5GdnX1M+5MkCaeffjoeffRRrFmzBhaLBfPnz2+VfTeluLgY27Ztw4MPPoixY8eiR48eKC0t1ZSxWCzwer2ax7Kzs2G1WrF//3506dJF888/x2hzNbdtWkLnzp2xePFifPHFF7jtttuUxzt16gSz2axJYldeXo7t27efkHoQEVH7wHjAh/GAD+MBIqLgxHjAh/GAD+MBoubhVFpEJymbzYb77rsP9957LywWC04//XQUFhZi06ZNuPbaa3HTTTfhnnvuQUxMDNLT0/Hss8+ipqYG11577VHva/ny5Vi0aBHGjx+PhIQELF++HIWFhejRo0e9sqGhoS267yOJjo5GbGws3njjDSQnJ2P//v24//77NWUyMzOxfPly7N27F2FhYYiJiUF4eDjuvvtu3HXXXZBlGcOHD0d5eTl+++03RERE4JprrmnW/o+mbVpKt27dsHjxYowaNQomkwkvvvgiwsPDcc011yjtnpCQgEceeQQGgwGSJJ2wuhARUdtiPODDeIDxABFRMGM84MN4gPEA0dHgwAjRSeyhhx6CyWTCww8/jEOHDiE5ORk33ngjAODpp5+GLMu46qqrUFlZiYEDB+KHH35o9tyWahEREfj555/x4osvoqKiAhkZGXjuuecwceLEBsu35L6PxGAw4KOPPsLtt9+OnJwcZGVl4eWXX8aoUaOUMnfffTeuueYaZGdnw+FwYM+ePcjMzMTjjz+O+Ph4PPXUU9i9ezeioqLQv39//O1vf2v2/o+2bVpKVlYWfvrpJ4waNQpGoxHPPfccnn/+edx4442YNGkSIiIicO+99yI3Nxc2m+2E1oWIiNoW4wHGA4wHiIiI8QDjAcYDREdHEpyEjoio2UaNGoW+ffvixRdfbOuqHFF1dTU6dOiA5557rkWvxpEkCfPnz8cFF1zQYtskIiI6mTAeYDxARETEeIDxAJ3cmGOEiOgovfrqqwgLC8OGDRvauioaa9aswYcffohdu3Zh9erVuPLKKwEA559/fots/8Ybb0RYWFiLbIuIiOhkx3iAiIiIGA8Qnbx4xwgR0VE4ePAgHA4HACA9PR0Wi6WNaxSwZs0aXHfdddi2bRssFgsGDBiA559/Hr169WqR7RcUFKCiogIAkJycjNDQ0BbZLhER0cmG8QDjASIiIsYDjAfo5MaBESIiIiIiIiIiIiIiChqcSouIiIiIiIiIiIiIiIIGB0aIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIiIiCBgdGiIiIiIiIiIiIiIgoaHBghIJebm4uRo0ahezsbPTu3RuffPJJW1epTZSVlWHgwIHo27cvcnJy8Oabb7Z1ldpMTU0NMjIycPfdd7d1VdpMZmYmevfujb59+2L06NFtXZ02s2fPHowePRrZ2dno1asXqqur27pKRHSCMB7wYTygFewxAeMBH8YDRMGD8YAP4wGtYI8HAMYEAOOBU5EkhBBtXQmitpSXl4fDhw+jb9++yM/Px4ABA7B9+3aEhoa2ddValdfrhdPpREhICKqrq5GTk4M///wTsbGxbV21Vvf3v/8dO3fuRFpaGv71r3+1dXXaRGZmJjZu3IiwsLC2rkqbGjlyJP7xj39gxIgRKCkpQUREBEwmU1tXi4hOAMYDPowHtII9JmA84MN4gCh4MB7wYTygFezxAMCYAGA8cCriHSMU9JKTk9G3b18AQFJSEuLi4lBSUtK2lWoDRqMRISEhAACn0wkhBIJx3HTHjh3YunUrJk6c2NZVoTa2adMmmM1mjBgxAgAQExPDoIfoFMZ4wIfxQABjAgIYDxAFG8YDPowHAhgPEMB44FTFgRE66f38888499xzkZKSAkmS8Pnnn9crM3v2bGRmZsJms2HIkCFYsWJFg9tatWoVvF4v0tLSTnCtW15LtENZWRn69OmD1NRU3HPPPYiLi2ul2reMlmiDu+++G0899VQr1fjEaIl2kCQJI0eOxKBBgzBv3rxWqnnLOt522LFjB8LCwnDuueeif//+ePLJJ1ux9kR0tBgP+DAe8GFMwHjAj/EAUXBhPODDeMCH8YAPYwLGA9QwDozQSa+6uhp9+vTB7NmzG1z/8ccfY8aMGXjkkUewevVq9OnTBxMmTEBBQYGmXElJCa6++mq88cYbrVHtFtcS7RAVFYV169Zhz549+OCDD3D48OHWqn6LON42+OKLL9CtWzd069atNavd4lriWPj111+xatUqfPnll3jyySexfv361qp+iznedvB4PPjll1/w6quv4o8//sCCBQuwYMGC1nwJRHQUGA/4MB7wYUzAeMCP8QBRcGE84MN4wIfxgA9jAsYD1AhBdAoBIObPn695bPDgweKWW25Rlr1er0hJSRFPPfWU8lhtba0YMWKEeP/991urqifUsbaD2k033SQ++eSTE1nNE+pY2uD+++8XqampIiMjQ8TGxoqIiAjx6KOPtma1W1xLHAt33323ePfdd09gLU+8Y2mH33//XYwfP15Z/+yzz4pnn322VepLRMeH8YAP4wEfxgSMB/wYDxAFF8YDPowHfBgP+DAmYDxAAbxjhE5pLpcLq1atwrhx45THDAYDxo0bhz/++AMAIITA1KlTMWbMGFx11VVtVdUTqjntcPjwYVRWVgIAysvL8fPPPyMrK6tN6nsiNKcNnnrqKeTm5mLv3r3417/+heuvvx4PP/xwW1X5hGhOO1RXVyvHQlVVFX766Sf07NmzTep7ojSnHQYNGoSCggKUlpZClmX8/PPP6NGjR1tVmYiOA+MBH8YDPowJGA/4MR4gCi6MB3wYD/gwHvBhTMB4IJgxSwyd0oqKiuD1epGYmKh5PDExEVu3bgUA/Pbbb/j444/Ru3dvZY7BuXPnolevXq1d3ROmOe2wb98+3HDDDUpStdtuuy3o2iAYNKcdDh8+jAsvvBAA4PV6cf3112PQoEGtXtcTqTntYDKZ8OSTT+KMM86AEALjx4/HpEmT2qK6RHScGA/4MB7wYUzAeMCP8QBRcGE84MN4wIfxgA9jAsYDwYwDIxT0hg8fDlmW27oabW7w4MFYu3ZtW1ej3Zg6dWpbV6HNdOrUCevWrWvrarQLEydOxMSJE9u6GkTUChgP+DAeqC9YYwLGAwGMB4iCB+MBH8YD9QVrPAAwJvBjPHDq4VRadEqLi4uD0WislyTs8OHDSEpKaqNatT62A9vAj+3gw3YgCi78zPuwHXzYDmwDP7YDUXDhZ96H7eDDdvBhO7ANghkHRuiUZrFYMGDAACxatEh5TJZlLFq0CMOGDWvDmrUutgPbwI/t4MN2IAou/Mz7sB182A5sAz+2A1Fw4Wfeh+3gw3bwYTuwDYIZp9Kik15VVRV27typLO/Zswdr165FTEwM0tPTMWPGDFxzzTUYOHAgBg8ejBdffBHV1dWYNm1aG9a65bEd2AZ+bAcftgNRcOFn3oft4MN2YBv4sR2Iggs/8z5sBx+2gw/bgW1AjRBEJ7nFixcLAPX+XXPNNUqZV155RaSnpwuLxSIGDx4sli1b1nYVPkHYDmwDP7aDD9uBKLjwM+/DdvBhO7AN/NgORMGFn3kftoMP28GH7cA2oIZJQghxjGMqREREREREREREREREJxXmGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIqKgwYERIiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBihoOB0OjFr1iw4nc62rkqbYjv4sB182A4+bAei4MLPPNvAj+3gw3bwYTsQBRd+5n3YDmwDP7aDD9shuEhCCNHWlSA60SoqKhAZGYny8nJERES0dXXaDNvBh+3gw3bwYTsQBRd+5tkGfmwHH7aDD9uBKLjwM+/DdmAb+LEdfNgOwYV3jBAdo9mzZ7do+cbWN/fxppaPtq5Hoy3boTmPtcd2aE7ZlmyHIx0rLakl26Gp9Uf73jdnmYjoWLRWP9jYOsYDDT8ejO3AuKj5j7VWOxBRcOFvIcZFx7ptxkXNK3+ytgO1Y4IoCJSXlwsAory8vMW22aNHjxYt39j65j7e1LL/71OtHZrzWHtsh+aUbcl2aKxN2ns7NLX+aN/7ppZPRDsQUfvV0p/51uoHG1vHeKDhx4OxHRgXNf+x1moHImq/2vt338n6W4hxUeN1O57yjIuaXt/e24HaL06lRUFh27Zt6N69O5KSkiBJUotss7CwEPHx8S1WvrH1zX28qWX/30II5OfnnzLt0JzH2mM7NKdsS7ZDY23S3tuhqfVH+943tVySVwInnNi9ezc6duzYrLoT0clr1KhRWLp0aYt997VWP9jYOsYDDT8ejO3AuKj5jzXUDv54YOXKlRg4cGCz6k5EJ68ZM2bghRdeaLfffa31W6il+wDGRUeu97GUZ1zU9PoT0Q5ffPEFzjvvvGbXnU5OHBihoPDzzz9j4sSJ+OKbb2E2mwEAAkDg6BeBv0VgnfCvUx4Xyvov53+Gcy+4ULctEXhe3fb8y998+RnOPu9CXzkh6p4T2PZ3X32OCZPODzynbn8/fP0FzjznvMDz6ra38NsvMXbieb5tCGDR919g9FnnKWV++uErjBp/LoQAFv/wFUaNnwSX24kfvvgE48+7BCaj2VcH/2sXgKx/3cpr0P2tvGaBP376DkNHTdS2geo52seAlUu/w4AzJgKyULanvC4hsOrXHzDgtAl1beSrlBACq39fgH7DxintAxlYvXwB+g8eqzwXAlizfCH6DhqrtNe6PxehT/8xEEJg7arF6NN/NDxuF/5c9i0GDp4Io9EUeOGA6m9dg/hfgKx6Y/1/A1i/+Wf0zhoRePPrbSewrfU7fkXvzqdpt6v87yu/bs/v6JM5TFM3IQus378MvdOGaLa5PncZencYomnP9QdXoHfyYN/+Di1H76RBvmNXCGzIX4leCQPh9XqwKu83DEgcBgOM2tcYOAiVx4Sqfv71QldmY9V69AzJ0baTupxq25ucm9HT1AMCArKQ65pDhgxf+a3urehm6lq3XkDAV0aGjB2eXehs7FhX1vf4Lu8edDSkQRa+Mvvk/UgzpNYdszJy5QPoIKX6tiMEDuAgkpGMWtRiEzbDBSc6oRP+rFiF8PBwENGpyWg04qKLJ+OvN9/cQEzQevGA/zF9TPDdV5/jrHMuUPpnfzwgBPDjN19g3NmBvr4l4wH/K2wqJmjdeOBHDDh9vNKo/phg1e8/ot/QMwPvlezb7uplC9Bv8LgTFw+o38QmYoKjiQcgBNbv+E0VEzQvHgCAdXv/8MUDSl1RFw8MVvp7fTwAIbA+bwV6Jw5q2Xigrg3UMcHGinXoGdqr3naOJR4QkLHVvR3dTF2aFQ/skfcgQ8rwlWgkJtgvH0AHKUUTD7jhxhZsQSWq0AEp+GXvr8jIyAARnZqGDx8Oo8mEh2Y92iLxgBDAV5/7YgL1dqB+rqrb+PrL+TjnvAsCZVspHvDv/3jOEbRsPPA9Bp5xlm/7DcQEf/7yQ4PxgPocQcvFA2fDaDLV7+OO4RxBi8QDysEjsG7XH+jTcWhdHxqoW0PxAETgHEGLxgPQ1rk55wiOJh6AADY5NyPb3L1Z8QDq1gsA2z070dnYEf4oobnnCBqKB7zwYDt2oAzliEIkvl72DYYMqWtjOuVwYISCwrJly3Dx5MnYuXc/lM4cge929WOBgKShZW3gU39bzdyO0AcHIrB9pQx8P/5UAZCot9zQY+o6HeF5mjKo60C0QRfQyDb122/0tTWyX7muLVVBj5ADfyudpRzYlr9C6sehqgOauQ3/Y6oX3vTfsrbzrx8ANbTuKLavez2aYEsJFAKvLfC4br84lm2IQECjWm7oMaFa19jzfNuX6wWH+ucK9XPgOxHiD2Bk+E+MyMoJEFnUhUR1/yuPK2W1z2moLIBGtwcAxSjGFmxDNarRBZ3xZ80q2O32o/quIaL2z2g0YvOOnUhPz8Ax9+MtEA/A/1i9frN+n90a8QA05RqOCVo1HvC3lfD/H+grG3oMqjqckHjA/4Y1FRM0+Hczt6/6+0h9OZR2U6/T7rtV4wHgyDFBI889EfGArzpNxwRNxQPVqMY2bEce8pGBdPyRvwyJiYlH+U1DRO3dGWecgek33IC/XHYFjqUf9/drR4oH0Ohzdcv1+s0TEw8AjZVruO8+0fEAoCpzjOcIWiweCDTO8Z0jaPDvo9i2qj7He46gJeMBpT7Hc46gkecdSzwA4LjPETQVD7jgxi7swh7sRRzisHDDQuTk5Bz9lw21a0y+TkREBCAWsTgdw9AXfXAABxETEoM333wTbre7ratGRERErSQUoeiPfhiB01EDBzokdUA3qSvKysraumpERETUSiwwowe6YwxGIQR29OnVB6lSKnbt2tXWVaMWxIERIiKiOhIkJCIBZ2A4stEDd91wF6ItUfjwww8hy/KRN0BERESnhAhEYDAGYhiGoASlSIiORw+pO2pqatq6akRERNRKbLAhBz0xGiNhgIRuXbohU8rAoUOH2rpq1AI4MEJERKQjQUIHpGAUzkAXdMb0K6Yj2hiFr7/+WrkFnYiIiE590YjGMAzBAAxAPvIRExqD2bNnw+VytXXViIiIqJWEIAR90QdnYDhccCG9Qzq6SJ1RXFzc1lWj48CBESIiokYYYEA60jEGo5CGNFx87sWINcRi6dKlbV01IiIiaiUSJMQjDsNxOnohB/ffej+irFF4//334fV627p6RERE1ErCEY6BGIDTMAwVqERSXBK6S1morKxs66rRMeDACBER0REYYUQndMQYjAIgMGrUKBw4cKCtq0VEREStSIKEZCRhFM5AAuJxzTXX4NNPP23rahEREVEri0IkhmIwcpCNbdiOPhG927pKdAxMbV0BIiKi9k5A4DAKsBXb4IYbb7/9NpKTk9u6WkRERNTKylGBrdiGYhSjG7pi4sSJbV0lIiIiamW1qMUO7MR+5CIVqfhpz+K2rhIdAw6MEBERNaEIxdiKrahGDbqiC1bVrobVam3rahEREVErqkI1tmE78pGPTGRgY8FGxMfHt3W1iIiIqBW54MIu7MYe7EU84rFh0wZkZ2e3dbXoGHFghIiIqAFlKMMWbEMZytAZnfBn5SqEhYW1dbWIiIioFTngwHbswAEcRCo6YO/+vUhLS2vrahEREVEr8sCD3diDXdiNaEThjxV/YNCgQW1dLTpOHBghIiJSqUQltmI7ClGIjsjEtuJtiImJaetqERERUStywomd2IW92IckJGHLti3o1q1bW1eLiIiIWpEXXuzDfuzAToQiBAsWL8CoUaPaulrUQjgwQkREBKAGNdiGHTiEQ0hHGnIP5TKPCBERUZBxw61cERqLWKxaswp9+/Zt62oRERFRK5Ih4wAOYjt2wAQTPv3yU0yaNAmSJLV11agFcWCEgoYsyygpKQEgIAQgAAjhXxt4zP+gelkoy74HA89VbauB7dQVqb8d5W8RWPaXU8qoykFfTmjLCG2ZQB1FI9tpqA669ar2UddP83dd+aZfWyP7lf31DOzQ95h/m3WvRQ5sS3lvEHgcQve6NdsQgcdVL0oIALKqodV/iwYel1WPy7oyde9xoDzqb1P2HwgNPK76W9SrA1T7C7w25XHo6gTVNmT9NtTtoHvcv2+lnO9vzWPqZbmuQvrnyaKujnKgfmjguerXIgvf8QEZMgSE8P0vC9n3qPCtE6KuRN3//sdlpYzvuaJuXf2yInAsq8tAKHOE7kcuUpCMHbt2oFOnTk1+nxDRya28rAwlYeFAvZig9eIBZdtNxAStGQ9AU05XBvp96P4+EfGAv638fWADMUGrxgP+N6ypmEB5HLq/1dtpYF9HGQ9AaTfVOl39WjUeAJoREzTwXNX71JLxgK8pmo4JGooHvPDiAA5iB3YiHOFY+utSnH766Uf6OiGik1h1VVUj5whaLh5o6Ln6mKA14wHo99dQ39yK8QCgKnOM5whaLB6AqrGP5xyB8jh0f6u20Yx4wN82TcUErRkPKPU5rnMEDTxP/TqOIh4AcNznCBqKB2TIKEIxtmEbZAi8/cHb+Mtf/gKDwdCMbxU62UjCfzQRncJ2796NXr16oaampq2rQkTtUBISsXDjIvTs2bOtq0JEJ1jXrl2xc+fOtq4GEbVDkYjAx9//F+PHj+cVoUSnuKlTp2LOnDltXQ0iaodssOKl/7yMadOmwWw2t3V16ATiwAgFDafTCa/X29bVIKJ2RpIk2O32tq4GEbUSt9sNt9vd1tUgonbIbrdzQIQoSHi9XjidzrauBhG1QxaLBSYTJ1kKBhwYISIiIiIiIiIiIiKioMEJ0oiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiIiIIGB0aIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIiIiCBgdGiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIiIggYHRoiIiIiIiIiIiIiIKGhwYOQEmDVrFiRJ0vzr3r17W1eLiIiIWhljAiIiImI8QERE1P6Y2roCp6qePXti4cKFyrLJxKYmIiIKRowJiIiIiPEAERFR+8Ke+AQxmUxISkpq62oQERFRG2NMQERERIwHiIiI2hcOjJwgO3bsQEpKCmw2G4YNG4annnoK6enpjZZ3Op1wOp3KsizLKCkpQWxsLCRJao0qExERtVtCCFRWViIlJQUGw8k1E+jRxASMB4iIiBrHeIDxABERUUvFA5IQQrRgvQjAd999h6qqKmRlZSEvLw+PPvooDh48iI0bNyI8PLzB58yaNQuPPvpoK9eUiIjo5JKbm4vU1NS2rkazHW1MwHiAiIjoyBgPEBER0fHGAxwYaQVlZWXIyMjA888/j2uvvbbBMvorQsrLy5Geno7c3FxERES0VlWJiIjapYqKCqSlpaGsrAyRkZFtXZ1jdqSYgPEAERFR4xgPMB4gIiJqqXiAU2m1gqioKHTr1g07d+5stIzVaoXVaq33eEREBAMfIiKiOif79BFHigkYDxARER0Z4wEiIiI63njg5JqU8yRVVVWFXbt2ITk5ua2rQkRERG2IMQERERExHiAiImp7HBg5Ae6++24sXboUe/fuxe+//44LL7wQRqMRl19+eVtXjYiIiFoRYwIiIiJiPEBERNT+cCqtE+DAgQO4/PLLUVxcjPj4eAwfPhzLli1DfHx8W1eNiIiIWhFjAiIiImI8QERE1P5wYOQE+Oijj9q6CkRERNQOMCYgIiIixgNERETtD6fSIiIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIqKgwYERIiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIqKgwYERIiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIqKgwYERIiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIqKgwYERIiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIqKgwYERIiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChocGCEiIiIiIiIiIiIioqDBgREiIiIiIiIiIiIiIgoaHBghIiIiIiIiIiIiIqKgwYERIiIiIiIiIiIiIiIKGhwYISIiIiIiIiIiIiKioMGBESIiIiIiIiIiIiIiChqmY3nS/v37j/o56enpx7IrIiIiIiIiIiIiIiKiFnNMd4xkZmaiY8eOzf7XqVOnlq73SeXpp5+GJEm4884727oqRERE1EYYDxARERHjASIiovbhmO4YAQAhREvW45S1cuVK/Oc//0Hv3r3buipERETURhgPEBEREeMBIiKi9uOYc4z069cPe/bsOeK/vn37tmB1Ty5VVVW48sor8eabbyI6Orqtq0NERERtgPEAERERMR4gIiJqX455YMRqtSIjI+OI/ywWS9DeXXLLLbfgnHPOwbhx445Y1ul0oqKiQvOPiIiITn6MB4iIiIjxABERUftyTFNpybLc7LLLli07ll2c9D766COsXr0aK1eubFb5p556Co8++ugJrhU1x3PP/axZnjnzjDaqyfH59wdrlL9vvaJfG9aETnXqYw3g8UZNC7bjhfFA+3Y0x+OR4oN3F+3QLE8b27VV6hWMWqt9+D4En5b8HB9Je43V22u9TnaMB+hkxv6QSKu9fCbaSz1OZsd8xwg1Ljc3F3fccQfmzZsHm83WrOc88MADKC8vV/7l5uae4FoSERHRicR4gIiIiBgPEBERtU/HnHxdb/ny5RgyZEhLbe6ktmrVKhQUFKB///7KY16vFz///DP+/e9/w+l0wmg0ap5jtVphtVpbu6pERER0gjAeICIiIsYDRERE7VOLDYxccskl2L9/f0tt7qQ2duxYbNiwQfPYtGnT0L17d9x33331gh4iIiI69TAeICIiIsYDRERE7dNRDYxceumlDT4uhEBJSUmLVOhUEB4ejpycHM1joaGhiI2Nrfc4ERERnZoYDxARERHjASIiovbpqAZGFi5ciLlz5yIsLEzzuBACP//8cyPPIjrxnnt4gfaBlLCGC9aZeeMw7fNVCVWPNtn6c0/8FFiItWvWWcK1tz+78qs0yzF9kzXLJWvzAgu1Hs26mX8fo93v639oK1Lt1ixak8OVv/WJJPVKlu7V1mtkZrPWAS2blFL/mvTv04vvrFD+jsyIbnJb+nqpk1KFJuq+w2ShWZ5+ZjfN8ivzVmuWXZVO5e+YrnFN7vdokvUeqS2bSgiqX1eyo0izrK9nU/T1ONLxo6cuH6v7DOzfWaxZbio5mH6/+m2dNzi9yXqoj5c7pw/WrHvu+V80yzNnjNAst2QSs6N5j1tzW2r/mb9Rs2yJaHrqBvW+n//PMs26GX8dqlnWv4/OPaXHUkWiRuk/r2pH+uzq1+u35cyrVP7Wf38f6Xuiqe9sfdwy87Ezm6xnU599fT+j7v8BwFlRq92Xrm89Gup6VB+uaqLk8X1vHikeUL8vQNPHgL7P11PHXvr3+IjHh65t1X1tU3FIQ9uu14+r6nXLncM162xGbZrIprat/44WQhvzHM3xcKTX0JJ959Fs63jaVv+eH6lvfe7l3zTLM28/vcnyTWnq2Kz1yppl/XuudzzxpP6zrG4/fdte95c+TdbraL6Pj5ToXt0GHy7ZpfztqG76u4eC15G+C/T9pZq+7zzS95d6X8eb7Pi5B75X/p751Fnadfrf/E2wRjSdv0bfdx4prtE8V9ff6enjGs35hGW6/Di6cyb6fqiptj3Sb2u9prZ1IpNWN7Xtptq5Ifq+4mh+Azb1PXuk1380/ZB+P5eP6txkvdTf6fp66ferL6t3PL+Jj9QPNSUkPlSz3NRvCP15P716sb3qc68/j+OqcGqW07vENrlt9e/8v16oHYjXnMtE/XOOx+Old1dqlu+YNkj5+2jb/UQnmD+qgZFRo0YhPDwcZ5xR/8und+/eLVapU9GSJUvaugpERETUxhgPEBEREeMBIiKitndUAyOfffZZo+sWLFjQ6Dqi9sTtdqKsrAyyLMNoNMJkMsHjccFgMEKSmr4ai4iIiE5uQgh4PB54PB54vV54vV4AgMFggNfrgdFoUsoJISBJUltWl4iIiFqBLMsABACJ/T8RUZA4ruTr+fn5SEpKaqm6EB0zr+zFpm2/Y+vOlaisLkWVqwKVlSWodVTD43bhnofnITa+AwBg4bfv4oHb3290W2PGrEL//v0BAC+88AIee+wxGI1GWCwW2Gw25Z/JZMIbb7yhPG/D5l/xx5qvYTCaYKz7Z7ZaYDSZYTAYMXrilYg1JQIA9u7diNWrFyLk9wgYDIa6QRkJzsIaGAxG9O07BklRaQCA4pI87N2/ER98kA9JkmAwGGAymbBx7Q5IBiNS07MQGRUPAKiuLkdBwX5IkgRLVQgkyQCD0Yiw6ggYjSZExSYiJMx3m7DLWYuq8lJIBgnllcW+bUsGGAwG2KurYLZaYTKZW/7NIiIiOkGEENi1bQ3WrliE8pICfPyaE6+99poyh/trr72Gm2++udHn3zDjBfQaMBIA8Odv3+L91x6CwWCE0WjGP/5hg8VigdlshiRJmHjJDPQeOAoAsHPLKgwbdjNCQ0NhtVphNptxsNQFk8kEo8mE4WdNBupuE9+5cye+XzIHZpOlbhBGguGFjUr/PmJEYGq/6qpy7N25EeEJETCZLTAYjFgeVlIXOxiQmpqqlHW7nSgvL4TVGA5JMsB/OsdZ5YQkSQgJiYDVFtJyjU1ERNSO7d+/H3PmzMGuXbtQWFiIffvKMW3ak8r6N9+8B7t2rYUseyHLXs1z77nWAqczMGXNpZdeiu+//165sNLlge+3s8mEl2eFYtOmTTCbfb+dH3nkEfz0008wmUyaf2azGWazGe+88w5CQ33T8MydOxf/++EjSJIRRoMB+Z5FSjmDwQBT5Omw2Xxl9+xaj8N5e2A2W33nDwwGSJAgSRIkgwG9Bo9Q+vmC/P0oLcpTzjNAkuApcQB15VNSuiiv7eDBgzh06BBy9+wAJAkStANC8UnpQN1jDkcVHDWVOHjwIMxms/LanC4HjAYjDEYTDHUXm3q9HnjcbjhdDmVbBskAye2ru1I3IqI2dFwDI+PHj8f69etbqi5Ex+x/37yIFWt/aHS92+NSLTXd+RoMgbtGqqurUVZW1mjZ6upq5e/S0nxs37Ky0bL9h45HbLxvYCQ/fzd+/31+o2VTU7spAyN792/Eh58+jQ8/bbjsFdMeQf/BEwAAu3evw5w5DzW63akz/oEzzr4UALB9/Uo8/8C1DRf8F3DZTX/D+IunAgD2HdiC//zffTCZLLC+ZofZYq0b8DHghXAb7rjjDlx7rW9bmzdvxqWXXlpvk/5BnRtuuAG33HILAF8Qds011ygnmvbkVsBoMMJossBstiAjbgomT54MACgvL8d3n79Rd+LIgvDEKJgtVpjMFphMZiSmZqJjVi8AviDs999/h81mgyT5rvjZv3uLMq92nDcZCSm+/BSyLGP/zi0AAJPJDHtIGCoqkhAWFqY5FoiIqP2qdVRj5W/f4pcFnyDvwE7Nun379ikDIybTEUJfVYjgu3IUygmTsjLt/Npud+CESUV5MZYt0+ZyUOvWKzCv7vbt27Hwl3ma9V8vDPz9yiuvADG+vAWHcnfi9X/epin7hOrvp59+GiaTb27uvLzdePnlGxutw5gJV+HsC24CAGzduhXjx4/XrPf305Ik4frrr8cDDzwAADh8+DAuu+wy2Gw2HK5ww2yxwhYSBhOssNlD0SmrL7J6+vI4uZwOrPj1GwCAqWI5AMBoNMJqtcJms6Fz584YMGAAAMDr9WLFihUwGo0wGAzKRSiRkZFwOh2wWGw8YUJEREdFCIHd29diyfcf4s6rFyt3hQKA2azNwSHLXng05wkC9P1PdXU1KisrGyxbUqiNL7Zu3Ypff/210Tq+9dZbyt+LFy/GH2u+VZZ/+VNb9pFnvlYGRtb+uRC/LWnkpACAR7p/qQyM/LF4PhZ+PafRsjNnvqupz6xZsxotO2PWe0hJ9OXgXP7bl/j6f//Gkw82XPbGq55Fl8y+AIAlX3+Eea881uh2p9/8T2T38sU7c+fOxW233Yb4+Hh4YEdoWCRMZgt+/jwWJpMJd9xxB4YMGQIAOHRoF1at+qHu7y8AANHR0cjMzERmZiZ69uyJ6Oim85ESEfkd18CIPnkf0YlUL5nR1kBy6f5dRmLTtj8wqOeZiI/ugCm3jkVCQgKio6Nht9sxf0k+jHV3P5x7xS34y533+k6YyzK8Xi8uHJamTKmRHBdIXnTzzTfjkksugdfrhcvlgtPpxAdfb4DbVQvZ68Wvm9y4ry5B0dlbkpHYp5NvOx43vF4PBnaKhtvthsfjwWWXTcQ3f5QBADr26YezvNejf494Zb+yLGPDvhLIXg86D++Hmdf6trtokUBR+SrszS2DEDKELEMWMuRqJ2RZRmi5CdhRCuuAZIQWxiA+MQ0CAhDwlfN6lfq4Kzyo2F8Go9WE2jIHTCZz3edYaIJGAPBUe3zJGK1GeAxeuNy1cLlrUeOo0JQ7COC7P7bAkOlLoLRjzQZs2rSp0ffx8//+gdri7gCAImMxFi1a1GjZ/8REodjoK1tSmIcfv3q70bJDh52HyZPvBuC7c+b6h89ttOyAQWfh8im+aM7lqsVj91yoWX9P3f9xcXG46KKL0G/CrQAA2evFFx+8Am+tB5LBAIvFDst8CVaLDWaTFVER8ShZNxCA7/tx/fqliO8SBa/XA0mSYDJbMO2632A0mhERGYcOqV1hCrco5fUJqoxW7Ve0Ouk7AHyhSkauT7YemtB0sll9wvmK3DLl7y9X7Nesc5ZrTwZ6aj2a5aYS2ekTpuvpk34nd4hQ/o7RPVd/fkyfUDZal3jMHh24Mlr//WGK1v4wev2zDZpl/WtSt4k+6fuREuipt3WkJOf6xGP690K9/khJy95ZsF2zHBepfc3FquNJn4hNn/TurY/XoTH6ZOtfrdTWOU7/GnVJ3V58Z4Xy953TBze6H6LG7Nu1Ca8+eytqqsoBAGazFf16jkKHpK4IS4jHipUubN32CwDAZeqCR575GkajCQaDEXf99TQYjUYAvu/hV975U0kw2rPnGXjk/k8hy75+2hPmm2rL63FDQODeGechJiYGAHBweBzOH9sd1dXVcDqdcLvd+O77zb7yXg9ipGQlwWFe/iGcPvJiuD0ueD1u377dvjhAlr1Yv8GJLFNdotLDZegQ3xkeybcdIcsQJl/8ImQZa7ZVYFBn33ey5JZhtYYAEMqgjoCou0BARnRqAqI7x+LdRTtwYPdO5ObqkqGqLFy6BdaYZTCHWVCYn9vkXPg333YbrvvL9Zj99BKUVxTh43d8V+N+/E79soO6jMalw30XR9T2jsBDM8bXL1Sn7+BxuPaOZwEAz87+BY8/cL7vqljJUPe/BIvVDqstBF3S+uCcCdf7nljjxppNi2G1hsBitsESFQ6LxQaDZITH64bFZUBcdIqyn/zQAkiShKjYRPzrtd81F0UIpzY2ssbp7ripdjda/+ee/0WzHNZRe5JG34fp6RMBq+m//8127R2+6r7GYNZe5KE/2afvw/TbUvdT+gSw+qTA+gSh+nqq44mU1EjNOn3feqRkomr6+OjrP7XHtj6OUSez1/ez+nroX0PXoWmaZXV/+Z/3V2nWqRONAvVjAHXfe6R66Om31RT9tvXxVVNJT5uKhwBtLAHUP36acqRkqz+sOtBg2YqKCtzS7L3QqUz//XXzZX1w9tln44cfAhdMdunSH92yBiEsNApTppyOSZNGQJIkPPf8L7j8ir/D6/XCYDDg5ptOUwbqhRCY/dACPDczMGDx9ttvo6qqSpmC8+23lyvxwaWX5mi+W5OSxuCaa3rB6/VAlr0wRFgg18UDXo8H73y+VZm20xzdGxMv+iuEkOH1eJS4wev1AEIgLDYSVrsvhk/t1A19nWN95yJkL4Qs4KqsVab+NJsDn+3wyFikpHWB1+uFELLv3IDLo5zDMzmE8v229bALsQkpkOvONQCA7FH9FnBLwI5SAIChqBYmowUC3nrnD3wvyABYjSjfV4raEkf99Sr+vvy5537GypWbUV5ejvLyck2ZdXU/jy0RvfHbWgFrcjhK9h7G0qUfAwCWLq2/3UsumIEhA88B4JvVY95//4HwsBj8++kOiIlLRERkNIQQqHG6MfLsS9E5uy8A4G9P/xe//vQ/GI1GGI0mRMdFwGQ2IzwyCpHRcTBXxyE21pdE22OXUVZaAAgBt9sFYZDhcbvgqTvvEiviEBPtm13H4ajCX29cAqPR5LvYxgzIXo8Sq3Ub2g+JqZm+pna5cGjbboSGRcJmD2vwApFX5q1W/r7+sr6adbMf1Z1b0cUt/z5c1cA7UffcD7WfJ/3pXn0MUJUfGCi87cr+mnX6pN6mFG1MY4uya5a/UPUtuTuLm9xvU/J0/f3/vtnS5Lb0SeLV9di5+qBmnTVC+1ta39/pt91UgnB9bKE388Zhyt/63+Uf6ZLR5x3Unp870rbVogenapb1+/pR1Q8DQO6uwHsTojvfpI+1OvZMbHTb+nbX11m/3nmg4dfoqG78eD4axzUwwqu4qK3s3bkBB9ZtwKA+vh/UndN648Hr3lOCgfPOO1tT3mgKfICNRlNgiigjYDIDkZGBH2dmY+AHZExMjHLSw2/lLkuDderRoweGjdN+pOoF/H/4Opv0TtlI75Rd78uyoS+xsWPHYuzYsfV+QIvtJfXr0HsYHn7+i3qPe52eBsqehhfm+K7m9NdDCN8AySv/96fmxEB6ag/cf9dceLwuhPaIgdvtgsflgoCAkGXl7gsASEzJxJ2PvqXcgnvuiI7Ktj+e8ydiogLT70VExWHK9Y/5gkavB5ZICzxeDzwuF9xuJ9LTs5WyFpsdp4+8uO7KHjeE0Rd8uN1OeD0eJCZkBNpGCMTGpvjK1c0PazAZ4bsUWCA0NPB+S5AQGe2biszjdqPWUeULRAEUFRVpbqH2yl78+HkDZ3rq5HQ7DVP7DFSW577/cKNlu3QdgBtvfUlZfvCOCfB6PbDZQmC1hcJmD4UtxPd/SloXnH1x4Crg0pLDCA/nVTBERABgtdlhs4XAbg/DqLMuR9+k02C31QXrUdofMRaLDRZL4LGQEO0PRoPBqPxtNlthDlN918Zqf8Sp44MOHTqgc7r2hGlllfbEOBy+k+jJSZ1wUc7dmlVCf4J9l+8ERHpiN9x1yfNASuDHh1V3gt25x1c2rUMWnnjoK0B30jO6h6+PU1/QlNAhAw+/+hkqthcp64QQkOwmCCEQERU4wR0WEY2ptz4Ft8uJ/jnxqHU4UFVVhdqaKlRWVmDgwEC/ZzKZ0bPHab4YwOgbwPD32+6yKiREBX6ACVlGbFwKZCEAyJBlGR6PG46aSsheL2z20EBZIaOqshSNiQ6NV/6WZS8+/PKfkIXcYNme3YZh2uRHlOUXH7kWnroBKpPZgrj4VMTEpSAkJBypHbIw/IzJqnpwznkiovbKYDBgxowZWLVqFS644AJERp2O5OTACbZzzx2hKR8REejr9FPEh4VoB2/161NSAhelDR8+XLMuPb0HgB7KclMD3b0GjFSm8DyS4WMnY8IVUzWPlazLD+wnOhArjDl7CkZPvFJT1rVNe8LZb/zFU5WZIvxKdSen/ecezhhwIc4YcCFuefYs5dyBx+PBq88uhix7YTEHYqWhZ5yPQaedDW+5S5nFARCA3TdAYLEGyvbpMxoZGdmori6HN8yL6spyeL0eOMqqIctepHQIvI8JSekYe87VSn8shEB1VRlKivJQfOgAYlQXP/gHK0rLDqO07HC9196j31BlYKSw4AB+WfDfBtsIAC666C6cdtoFAIDdO9bijRfvarTshZNuw+lDfWUP5e/GG2/PaLTsJd57MPEvvos78nJ34dG7zgcAmC02RMUkIC45BTHxyYiMiUevwSPRIaF7o9sioqN3XAMjRG3hUO5OvPbP21FTVQ6jwYj+vcZCkiTNFRJ0bCRJ8s1/atG2pdlsQVysL8CI6ZrW0FMVNnsouvcaoiyPHh24Gm7Nr9rLDkJCwjFw2FnKckR6lGa9qyIwKBEWHoWLLg+cSNLfEVG1J3DCJCwsCg/87SPNevUdAp7KwC3TZosV//h34KoiIQSuvzgb5eXlyM/Ph81mw+JNvvIGScLYSVfBVeOE7PXdReMsqVDupkmKz1S2I0kSunTpD3uUTbkzx+N2oaq0Gm63E4lJmZp9OmoqIcte1Drqj3o7arSPvfT0dFRWlCAmPhHxiSkwW6xwVnsgGSSkpvfA2RcEBlHe/NfdcLlqYbKYfJ8TixX20HDYQ8KQ0CETI88OTHu2b/dGuF1OVNVGQQgBg8GIiKgYOBxmhIZHKlc2ERG1J0kdOmHGrPdgtYXAZg/V3FFKAeoT+harDZndclBSk6ctE1b/4g97SBj6D/VdiHLFBYE+PdRWv08IDYnEtCsf9y3o1ouNhZrlkNAIPPC4b0oQi2owRwgBt8upme/daDTj7ofmQgjfIInBZIAse+Fy1cLpqIbNGXi+y+1Et04DUFVTBpfLCZfXCbfbd6evyWSGzRoYcAF8c6e7XA6UFhfA43Yh/9Bu5B/aDQBw5FQqAyNCCDx8+9mIjI5HakYWMjr3RFJ4JhITM9g/EhG1E+PHj8ehQ4dgNpvr3blHLct/7sBkMsFqsddbbzKZYTKZ4a01ap/XwJ1lFosNCXUXOoZ1Clx4Ul1Q/7dxWsceSOvYo97jQOBiEb+c7NPxt5nzUFlVgtCOZpQUHUZVRTkkgwG1LhlpnQKDDAlJGTjrwuuVO3tCwkxwu12oLC9FeWkxYmM7KGUNBiNCQiIAyXchjclsgclshslkgcFYt07VDsnJneDxuH156yxmGA2+O5chAVGxCUrZ2ppqWKw2uJy1cLtqUZi/H4X5gbsYLFYbOpzpq/Pu7evQv/dVMJlMMBgMkGUZhXkVEEJAFl6MG34FBow5DwBw8MAOzH3vIVjsdlgsNthDwhEaFomQsAiEhUeje6+h6NStd4NtSnSqYxRPJ5XCw7mY/fTNqKkqR1pKFnpmndbWVaJTjCRJsNlssNlsSEz03f63eJNvmiWjyYzJ0+5BTWEgt4zYX97gdgDgxpteRJfhGZrHdi5reOqSR/75JWpra+CsrYaztgbO2hq4PA44HNXKHS2A76oXp9N3W3JJ4WGUFNa/8kVty7o/4KhpeD7cLtn9NAMj786+H+VlhQ2WTU7tjIdfCuTFmTP776goL4bRaMT3H8TAbDYjIiIC0dHROFBixqizrlDKFh3OQ1hEJGx2Jv0lopZRU1ODdevWYdgw363m6u9JOrlJkgSrTXuCxWAwILlDIFGs0aI9yeI5FOjnbNYQXPeXxwMrddP5oUI79Y+/b/N6PTi4bReKCnJRWpwPh6MaMZGBaQDKywtRVnIYZSWHsW/XRvz20/8A+E6IGI1mDB16Lq7u+6hS3uGohN3e+FXCRER0/IQQ+O6z/9QN4PtmQfAnQScym62IiU5CTHQSuo7uolmnnwowObUTzpl8k7Ksn9Jxxy97lb+zeg7BE68sUJZNNu0xpx6gyUjrgZl3v6csS6HasurpoLv1Gojn3vkdLqcD5WVFKCs+jBpPGUoK81BaeBg9Bwbueqp1VGPL5s2NvXRUq6ZAdzgqUVR4oNGykmRQBkaKCw/h83kvIiElE4kpmeiWPYhxNp3SjmtgxD8nM1FrqKwoxb+fugkVZUVISeuC6//yRINXJhCdbCTJN51XpO5xfY4RwDfNx5MvLkJ1VRlC4jwoOnwIXo8HebuLIMsywiO0U79ddv3f4HG7YLSbIHu9cLuccFRXorqyArEJyZqyEVFxsNlDYbVbIEkSPB4PKspKUFVRhrCIKE3Z7ZtXoqLMd1X2lvXaOqakddEMjMy64yrk7tmB2IRkxCWkIzElEzZ7KBw1VYhNTMZZF12nlP3yw7fhcjl9/UvdvLMA4PV4EBEVjfHnX6aUXbLgA1RVlcFmC0FkVDw6lHdGdFwiQiOiYA8JgyaLMhGdMoQQmDJlCr7++mvMnTsXQLe2rhKdAoxGE+LiUxEXr5ruS5VjJCIiFg/+8zMc3L8duXu2YN/uTdi/azOczhq43U7U1gYumti3YzOefOwyjBz5F4wefTkqK0uw9dBy5O7egqrKclx18yyl7No/F6KkOB82ewhstlAkpXRGUkrHVnnNREQnux8+fwvfffYGfl34Ke65YZxmimyik5XFakd8YhriE9Maze2R0bknfli4SMlZazAY8NU8X15Ig8GoyafWIbUbbr59NmD35Vh1VFeiproCNVXlKC8rROfugSneD+7fgTUrFirLNlsorr3rXxiQOPZEvmSiNiMJZlBvlyoqKhAZGYny8nJEREQc+QlB4LLLLsPHH3+Mzp0749dff8W8fwaSTs187uwmnlk/+ZN+fm51rg99Lg99YuHnHl6gWY4Zman8XW8uzqIabVldwsaSpXu1FS1WJSiLaDiXicJ8hIFJd+DHvKVngmZVmG6e02pdEi5156tP0l26Pl+zDN1rvOUf2kSqs59eovxd7/XrEobr5+3+y1/6aJbVibxnv/Sbth5ubfK3LqM7aZY1d2rk6e6gyNAG0GGJ2vZxO7Rzv6uPl6NJWgo03dYlmwo06/yJ2RvjdQVes9C9fmuM9u4MZ77uNmTVXS8AgHjV1CK65OreSBPcLmdgvvdyJzZt/g1OlwOy14v4rBh43G7UVFehqrIczjIJo8Zc7itrMeCJv1+E0hLdcVMno3NPPPDPwLRn900djfKKhqfBSe7QBXc/NFdZfmbWZSjI39dg2djYFDzwj0+V5VdfuB779+yAwSAhIioWdlsEwiJiYA8JQ0RkHC6+JjBN26o/foA9DAgNj4DFaoPZbEFpYS2sNjti41IQEhapOVZD4rXTsrirXJrl2rLA59oWox3MVb+HAGAO0b7nsm69QXWVtH6dPoG6Pgn6IV3SspqiwDEQlqLtZ/TJ0zK6aq+YOndQIK+QPknbnC+1Vy6F6/IyFOdq77JSJ+t7+4dtmnWdOwTqVV1ViUnDsoKuX2Q8UN+Uv87CvDcehclswa0PvIa0lGzNenXfO/PvYzTr9Mmi/clEFV218YE6mfSREgUfKZm22Kz6bkvQ3UF3SPcdrY8BKlTfKynaH8j16D5zyNV+9lGl6tM66/JV7dK1h0mbuFvdP4iaxhOPAwAM2j5ditTduWFUrffo8oGE6K72rdUleA3TrY9U5ZLRfX/Bocuzpq+HOo6J1radUZcs1Kt7zYYwM4oLDkAWMsLCo2Ct8dXrq69fxdJffPOUS5LBl/i2jtliwwtz/lDuepn95K3YuOpnzXZtIWHISM9GRmYOxo6bgpDkKO36aH1fon2N6ulFu56mvXPVq4vrCnQxkbrPAoC/Xj1A+fuN/1utWWfR5bOpdyePLnm9XZXzx1GmfZ9kXRzj0cUiJtXUbCb9hSO6w9Rs135+Sjdr765Vt8nONYc06/Qxcrxu6tbDh7SfJ3V76S9oyeymTUZfpLtbKU4VI57ZX5sA1WbUvqj/fKFNtq6PFxJUx0SJ7iroCQO02z5YrI0B+3fU9vH6fl1t3oLtmuVY3bGojo/O1yWQX7dPmx8xVxeLdk7W9nG/rgkkvr1+UuB7Plj7xWB93U1ZuXIlhg4dClmWMXv2bNx8882a9frf7Rrl2s8J0rVtOnPmGdpt6aflUv0+1Mca+ryh+t+8mt/80P5GLtHPLqCPD3T9snVIYHon/Qn0xvKEKPs9WxvXqJNpu/TxgH6qTd13uDFT+3ta/V3g+VM7bWe9OMarOyWp/g7Sn63UTdPZdZw2SfOORmZnAADovhv1OdmwT/sbReqmveDQYA60vf68hadU2x76u0LUF1roz1tAl6Te1EW7X32i8iTV7yP9bBRddOdb8g40PrtFte63obUuUXvh4VxsWL0UhYf3Y9fWNcjL3QWD0YTpM5/EsHHnq16U6sm66xFjdOdAdq/VHgP+adFlrxdVlWWoqihFXFIazGYLklMj8duib7Dyl4Xwej2orqyFkGV4vR543C7I8OKKWx5GSrrvvf/xgzlY+O17sFjtsNlCYa3LOxgWEYOI6FgMPO0sxCf5+qPK/BLIsgyr1Q5JkmCJbvxC6zTdHUN6B3ZpP08Xn6Od3u3Ln3Yqf8frYotSXazq0cWX6t/1r3+2QbMuOVX7WdP38W9+tFazrD43oT6GgfrHcaccbcL0Xrr4YP3uwHeK/o4rg25bUbrvjFJV+fL9ZZp1+mNcP0zRIU37mv0xU0VFBRJjoo+7X+RUWnRS+OKLL/Dxxx/DaDTi448/rpf8jIhOHKPRBKNd2130zD5d+bvbGO0g1PY/tAHa35/4DDXVFSg4vA8FG7agoDgXbo8LNmsIUvprT2j27zMOlVWlEEKGMcKqnEwymcwIC9F2zIPPmISqilI4qitRVlqAsqICVFQUodZRBatNO1jh8bjhcfuCgqLDhwAEToTEJaRqBkYWfvUeDuzTnqD3s1jt+NfbvyrLS77/AOFxURg69rx6uXmIqOXl5+dj/rwXAADnTL4JnbP6waX/oUvUSgwGg/JjGwA8Nb4TvZPOuQmZ2f3w1f9eQUnRIZhMFnTI6Iq0jj005QGgR++hCAuPQq2jGtWVZdi/ewtqa6qwbesK5OZuw5njr1HKfv7BC9i7cyOMFhMkyYCU9M4YPekKJCRpBz+IiE51LpcL06dPhyzLuOKKK+oNihDRsYlPTMOYiVNgsvlyrLz/yoP487fv8daz96K8tAhnXXLtMW13wbfvYs2KHyEZDHC5a1HrqIKjulI5Cf735z5FaqbvLvCD+3ZhyXefNbqtmqrAgI/L5UBJUV6jZTtn9VNirz+Xf4fP/vtco2Wn3PgYBg8/BwCw8Kv/YvYT9zZa9uyLb8TEi25odD2dPI57YGTMmDGNrrPb7ejbty9uu+02nsim47J161ZIkoS7774bAwYMOPITiKhdCQmNQGanXsiE9iqWsGHa5XMmXK/8HdpDO5dpje7KwvHnTdcsu+quvpJlGV6P9qqLx175Pwgh4PG4UVFWgq2rd6CyogS1tTWw2bRXbmflDEZKejqqqyrqEt+5UFPtQK2jCuERMZorK/5Y8jkO5e7E/DkvYdSky9BnyGgkJXaGwaC7fJWIjpsQAtdddx1qqiuQltkdoyde2dZVImqQJEno3W8UevYejtKSfETHJCEkpuE7fcZMmqI8B6jLdbJvBzb//hucToemz1mzfKHmx/+29cux+OsP0C1nEEaefRkGnKa9a5eI6FT1yCOPYOPGjYiPj8dLL73U1tUhOiWZzRZMu/NpRMUmYOGX76O44BCEEPXuNGgOp9OBw/l7G12//s8lysBIj94DEREVg1pHDVzOwN0VkiTBHhqB/Ts3o0u2b9aBHr1Ow4pfv0ZtbTVqqitQ69CeM1jx69fo1nMQAKCwoIk7igB8NvdfysCIo7rhPK1+C756jwMjp4jjHhhZsmRJox8KIQS+//57vPfee1i2bBnS0tIaLEd0JPfddx9GjBiB/v37H7kwEQU1g8EAg+7ujdiEwOB8Uod0GOXGB+svuOKuerfO5tbdiu71aqf26D9sAhyOKpQW5eOL91/BF++/goioWGT3Ox2DTp+Inv2HH+/LIaI6r7/+Or755huYzBZM+eujMBp54zO1b/68JUf7nPROPRBj1PZTQghcOGUGhCxgCjHBVevA2mU/Yd2Kxdi+cSVs9lBlYMTjcWPRgrkIC4/CwfIMhIZHIiw8AlEx8YiIiYfNHtLQromITgo///wznnnmGQC+2CAuLu4IzyCiY2UwGHDxNXdj+MSLkda5u/J4eWkRIqOb/9nr1mMQFv8wt9H1NZWBu0CS0jJRUVZSr4wQAjVV5Ti0f5fyWGhoJA4d2FmvrJ/XE/j9fs75N+GXJf9ttGy/oWcqf4848zy88+LjjZYdPvbiRtfRyeW4f1GeccYZWLVqFZxOJ3r37g0AWL9+PaxWK3r06IGNGzciPz8fjz32GN58883jrjAFr9NOO62tq0BEQU5/InbC+dfi3GtuxIol32L1bwuwefXvqCgrxrLFXyI8MlYZGCk8vB8vPnEd7KG+eU+tthCYLb78JWaLFb0HjcbgEXVXp9RUYc/29ejRZ1irvz6i9mr37t2YOXMmAOC8v9yGlPSm830QnWokSULfQb7Ep/4cI6ePvwglhXlY+s3HyOo1WClbWLAfC358z7fwv/rbOu/y6zH19r8DACrKivB/rz2K8IgYRMbEI9QejcioeISEhMNiC0FBQRoSEhLqb4SIqI28/PLLEEJg+vTpuOiii9q6OkRBQT0oUlVRigevm4is3oNx6fX3IaFDehPP9OnWfRCefmUJKstL4DZWo7y0CJXlJaiqKEVlRSkyuvRUylptdow+ZzJCwyIge82wh4bDYDDA7XLCCw8yuwVycFhsdpx1wQ2+6b8NRhiMJhiNJoSERiA8Ogax8YEk9CaTGf96JTAtdlM5RqJi4zF/2d5G1+tzjNDJ67iTr7/++uu49957sXLlSmRlZQHwTXs0aNAgPPPMMzjrrLPQp08fxMTEYN++hpPkUn1MrgYcOHAA11xzDf7zn/+gS5cu9dark5zWS5CuS65qjbBplvXzkeuTR6o5t+oShHfQJk4S6kTLukTkQpcsTYrTXqGnT+glNqqSb6c2/b7rk6dJVl0ydnViMl0CS32yceiSY2qS0dl029Ul7ayXMFXfltWqKY30+9UnANcnedUlBIM6aZX+9VbrksDG2BpfH6Vdp0+W6dUlxwzNjNIsO4oD77MtpumrLs26BLLlO7RJ8DIGBhLmWXSvf8fKA9qN6RK1WVRJv2N1CakKdR21Pum3W99eKvrPhz6xO1y691y33pYeqEvtIe0tqOG6JN6Ve7SJ/Syqz8ioMzpq1i34Vpv3IzIjSrMcrUvateen3crfVt17qH+Nki5JsDnUolsOvI9VuvfQqkpc7na7cPDwVmxa9St69B2KnIEjUF1Qhf27N+NfD1+FxoybOBUTL7gR5hAzCvL24R/3XoSsnkNw+e1/Q3rnQCI3dXJag1n7GRC6z2aVLqGuQXd8yarPbkQH7feNW/edkd1Z+121X//ZVSnN1+63Q4Y2ufP+7drvVIuqrdUJ4QFg0PBM5e/qqkqcNbhr0PWLjAd8ZFnGCy+8gKVLl2LcpY9opqtz5uv6WtXnVR/mqpOpH616CVHt5oYL+jka/57VxwNib5m2gD4pbLSq39IlExf6hJ+p2jhF3z8K1bYlfTJVXVJToYtrJPV6Y9PTKIhKl2ZZite95sOBz7sUcoRrteK1eaPqxQtq+u8n/fukT76uToKrTwCbqNuvPp+NPlZTxw+690mfmNarT2yra3uTatseXWJWfQwU3U079eS2RSuwdOnHqKmpRK2rGg5HFRw1FaioKIHbVYuzL7gRY8/y5S5xWUrwwPRz0JjLpt2EG2c+BABYv0Y7h7c+Ybo9VvseJyZpj8VcVSLgCF0i0srD2s+xvh9W99tm3XuapOvDikq0x22Crl4FqjhO1r3nI/qlaJY37tW+T2f00t7J89umQGJ3gy6WqNQlU508QhvXzP0+ENckJWiPtTzd91qoLpGtPqlpuipJ/IY92hhQ1oVtNbrjOFGXsLmj6n3rna7tw5tKzA4A3/8Z+J7UJ2KN1tXZrfsNUaH7zoxSHQNm1We+uqoSEwYxHghmbrcbL730Ev76178iPDxwvD73xE+acjG6RNSaflzfN2zTxvfI0v5m0SfTVrv5usGa5dlPL9EW0P/W1n2Hi62BfUvJumkXy5v+XSapfnvLut9dBt33Sr3n6mMAdfyvi1OgyzeJMl1/2ES3bO+brFl26JLC1+vTVcvRuu/c0q2F2rK67zOjrv28+aqYIEL3enXxkz7Ru5Sk3ZZQfZmadOcP9P20SffbW/27LUTXtmWrDqFJLt3xo/rONlq0x5K3WNv/oUT3GtV0x7Ski3k057kAGFWx6NqVi/D+Gw9CyDIsVhvOvvAmnDHuUhgMvvp4dH1Yl7GdNcs7F+7SLIf11MYxatWHtXFdt/7aflod63v0cZzO3g35muWOvbXHl7r/26eLSwbofkP8oDtXE63rpwd3D1xUcqBQu61lv+7VLMd21P7WLj0QuHsmXBcv6eMWvVLda8wYFhi0ytfFNAaj7vyAro9PbyIBvVP3fTKil/Zz/smXmzXLQrXtHF2sVaI71sortMetUXfeo7LufIOjpgr33TCy7ZOvP/XUU0hNTVUGRQCge/fuSEtLwzPPPIObb74Zp59+OhYvXny8u6Igc++99+Knn37Crbfeiu+//76tq0NEQUoIgbzc3di7YwO6ZPeHHb5gtra2BtU15YiOMsBmD4UkSTCbLcjuNwzZ/bR3eySldsL9T32M2qoqOGsdcDpr4HY54aythdtVi7SMwOCH1+uB0WTGtk3L8eiNF2DEWZMx5Y5ZMJmOcBKW6BRmMBgwc+ZMzJgxA7M/XNvW1SFq1xIS0nHJJff4FnQDLk6P9uRNVEw8ps14HBVlxSgrKkD+/lxUlBWh1lENZ201IqN9P9YdNTUoPJyLyvISdOrWp1VeBxFRQ8xmM+6+++62rgZRUBFCwOtxw+12ou+gsegyoA/m/fsxbF23HJ9/9AK++exVPPzM5wiPbPxkOlF7dNwDI0VFRThw4ADuv/9+XHLJJQCA+fPnY+vWrQgJCYyEqv8mOpKtW7fiww8/hCRJeOqpp9q6OkTtiizLcLudcFa44HbVwuNxw+GxwuN2Izo+CZHRvmDEUVOFvIO74HE7IdkkuF1O2OyhiElIRnhIHCwW2xH21H7IsgyP2wWT2XelT1lpAZb+Og9ejxu2kDDEJqSgY+eOiE1IQa2jGmERUcpzq2vKsWbpUpjMVpgtVtjtYTDB978QMmz2MIRH+k781DqqsW3zcoTFREMCsHXjcqz/czEK8nx3PF539z/RPdGXvG3Hjj8x5/2HAQAGowkRETGIjktGQmoaYhKSMeKsS5DYIQMAcHD/Diz48l2Eh8cgPCIG9pAwuF21cNTUwFlbg8zOvZX6lpUchslkgdfjhhACP3/3CQaNOhs9B5x+opuZqN3xXwXmz2d3LMkeiSjAZtNeERoeFYOx512uLBfp7uTsO6gDcvfuwkN3XofqKgdi4pJxy32vtkpdiYjUli5dimHDhsFisRy5MBEdkcfjRlHJIVRVl6JrYuC35n9evhMH922F1+uF1+uB1+uGLPvuEIiKTsAj//oKKRldMPOZ93D9Wb4L/NwuJ1b8/g3GTry6TV4L0bE67oGRSZMm4ZNPPsE///lP/POf/6y3zul0YtWqVejevXsjWyCqb/bs2QCA8847D/369Wvj2hCdeEII7NiyHssWf4/cvTthNlvgqHDDbLZi2IgL0CG1GwBg9aof8cH//aPR7Uyf+bhygmP/ns147blbGy17/uV3YNwk31Qah3J3Yv7/PQ/JIEF4BQAJRpMZoWGRCAuJRI+ew9Cxs+8K0bLSw1i9ZiGELEMIGbLHCyFkuD0ueNxO9Bl5Jnr08k1vV11dhuXLv4HNFgq7PQwxFSmwh4bDaDTB43bB7LAjJsZ3C2tp6WEsW/gVqipK4fG48NUHFrjdbpSXlmDblk2YeP5NOO0M3zzCFWWF+PL//t3oa5t258PoGT8KAFBcfAjz3ni00bKTLroVY86a4itbdAhz/vO3emVMJjMyu/VCTHzgFlG32wmTyQKPxwXZ60FZaQHKSguwZ8c6AEBm1xxlYKTg0F5sXL200Tp06toXqem+Oy+dTgectdUwW6zonN0PvQaNQFbvQY0+l+hU9tVXX+Hhhx/G/fffj8suu6ytq0N0UvJ6PSgs2I/y0kJUVBWjvKwQ1VVlcNbWQLLKyOzaE+de8Vel7N9uHQdJkmCx2hAWHoaSosOodThgsdpx1V8fa+NXQ0TBaO/evRgzZgwSExOxZcsWREZGHvlJRCeQq+4CRYvFBiFEi12843BUwemsgdPl8P2rqoLT7YDb7YTBYESfxLOVsit+/wZlJfmQZQFAQK5x+e7s8HpgMBgwcdAUpexPy/+L/MK9EEKgvLIIJZWHUV5RBCEEIsJj8cjQrwN1qK5AdXU5GuJwBKaFMhgMOG/Krdjy5x/o1K0fhgw/r0XagKg1HffAyH/+8x94PB7Mnz9f8/hFF12E119/HYWFhXjwwQfRq1ev490VBYnKykrMmTMHAHDrrY2f1CVqK7LsReHhXFRVlsIt1aK6sgwuZy0yu/ZCx26+K/+rK8uxcc0vEPDA43ZBMhhgNlvhLnHBaDQjPiEdySmdAAAbVv2O2U/cg+LDDc8vmpbRQxkYCQ/X3ppqMlvqEnhbYDSbYbMH7s4zmy2IS0iF2WyFxW6DyWyBo7oSxQUH4ax1aG5zrSgvxtaNy9CY0LAoZWCktPQwvv3mP42WjU5NUQZGysoK8O23bzRadvxZ0zH+rGkAAIejEou+ntNo2UO5O5S/wyNjMfLsv8BoNKG6shwlhXkoLcpDSWE+bPZQeNyBeaotVjuy+5wOt9sJt7PWN9d6dRUcNZWQDAZ4vYGyBoMBHTv3htNVA5ezFumdstF74Gj0OW0U7CG++Vz9OUb69z8T/fufCSnOgurKcpSXFaK0KA+VjmKUFOYhOj4wZ2nHrr3xl2l/Q3lJISorSuCoqYTFaofFbIfVFoKklMC84x279MaMR95DWmZ3RKZp5xslCjavvPIK1q1bhzVr1nBghILCqrULUFh8EE6TEx6PB5mde6Fral9ERNSfmmLLpj98JzTKoyBJBni9XnjcLpTvLkRMTDIyMrIBALWOKvzricbzXNU6apSBEaPRBCFkOGsdqHVUoaLMlxeq94AhuGTqo4iManwecCKiE+X111+HLMvo2bMnB0VONkJAkr0QRt/pR5PLgaiSPEh1jxskGUbZC4PXA4PXjdLEDFTEJjexOYHiooPweN2QKxzweN1wuWpR66yGa48XIaER6NlnuFJ+4eK58MpeGOwWGCQDJIMBkmSAVOtFZEQc+vUarZT931cvorKqFI7aKji8vn4QQkAyGJGc0glTb3xaKfvYvRegqsKX08lgMMJstsJoNEOSJCR2yMTt9wd+Az91/6XIP7QHQmhzOEiShJjoZDwwY67y2Oy37kT+4T0NvvaI8Fj0GR0YGPnj58+xd9f6BsvarKGagZEde9dix7419cpZLXbERifD5apVZpS4cvoseCodMBpNMBhMMJlMsMSGwWg0wWLV5k85/+rbMGYM7xKhk9dxD4xERUXhf//7H3bv3o1NmzYBAHJyctCxY0cUFRUhNTUVd9xxx3FXlILH3LlzUVlZiYTkTGw5HIOtH/i+vI+UBF2zTjdaf+sV2rtOnntAl7OkV6Lyp3P5Qe06XWJAUaZLYKVO8qpLDCXFajsNfZJqse6wdr0qkZLYqE0sJnT1kHRJvdXPtdVWInrbboQ5SlAaloyCyAxNUYM+Qbo+K6N6XzW6dbok1uZoXVLvDbrXpN7XTm0yyHoJUPWJpMxGmF0OuM1WyEKgOvcQXG4nQm0RsIaHad/ndF2yJbnuyntnDdxuJ8yxFnhcTng8boQbYhCf5EvGJ8sy9m3bAqvNDq/HjZKiPJSW5KO48BAkgwEdu/RCV5svoV5+3h58/9Ub2LVjNRw12uR2ADDh/OvRJcd3rFVUFGLOy/XvPPAbM+FqJGfeiH2/7IWrWKD48CFYLHZ07z4YnTr1BSAgWwGP24UOnbrCHG6Fu9SBjp37YNY/voTZbIM5LERJQJzQPXCiwluXhLtTt7548OnPAABpPQLJv4QQ2L11P0wmi5KwLTm1E66++XHIsgxr3XvmdjlRWV6KyvIS9DxjGGLqtpHSeQB2HfwLjEYjDAYDDHXBpcVqhdVqRUJmf1gifEFVZMckDB11Hhw1VXBUV8JRU4maqgrIsgyzxYK4TkmIr0t6FtLRjpHjL0dYeDQsFitSMmJhNJlhDwlBx27ZiE/pCKPRn3grBVGRgc8tAHQfkqq5Wqe4LgluPNIwcso4TdlcXeIxU10Cxq4p/fDAoI/qJSpXH2umOO00JFHpUYhFPIAuvvW6hMRSUjjCknLQqV9OvXVVxdq53uOSwpDUMRqAbyCs8FCFZr0lLPCZ6ahLlrpdN/1JdLr2R+MgXXLeFdsC3zHpusTGe3TJ5mp1Sf8qVd+DRrO2rZLSojTLYbr57W1R2inc7KrXNGlUJ826b3/bq/ztqNHWiU5t//5gDfIO7MbChQshSQaEppyBf39Q/8ccAGCf9oo2kRE49mP6aJMqVuuObefSfdptxeimGFQnA9QnKdX3WfqE6frk66pEr2K/9rMt65IOGnTxg768Zp0+TtEn9dbFRAbV6xD6pN66JJ6Qta9RqJKLS2m6fld3oaSkS3yPcG37ServQ933gv491W8buvbSJLbVxSnQJWzUx2JS90AyTaF7zyR9Mnrdd7hJF4sZVK/DrUt6b9QlarXWJQ+tLC9RpnMEgBUf/IhdWwPH+h9LfRefpXXsgdPGXogzxl8KT11i9/977xE4a3WJVuv06DsMd457E+4aN2yxIUjNyIIsy4iOT0RUbALCI2NgCwmFSbIiPikNZXm+uCYiLRKPv/U1vF4PXLUOVBZVwGAwIKNzz3rJZmt1x0+ULsl5Ual2vTrJp/7wMOkS+1p1ydeTVUlw927T/iYoKNTF37ok6KW648Wlem9yemj7xu0HtMdeYZ423tuui3sjVcdAN13/9/tmbUy8JVf72YxRJeftkqLts2N0sbq+vTJ1ie3X79bF2CoRuuO0V0dtQvW4SO1r+mFlIEH1St1r0H+fZOiSE8eq6j0oKwFNKa/Wvi/LthZolof2CMR56tdfUaH7/UCnvNraWrz11lsAgI69zlbiAf35AWt3bXJkTbJ1QNNXWHWfA6e+z9b/bt+r/Z5RxwSzb/6y6RfQKarRegCApO4f9b+PdX1JvSTwqs+koYv2NYmDut+r+iTn+vhBvaz77qtXZ33y+rr+0eKsRnLBdiQf2ILE4t2IrCxAVNVhLBh2AzZ3GQkA6LB/Ay5f1Pjd/F/0PAfzjCaUVBagqqoQtqoiWFNycOWYGb4+Wwg888TlmqTbat2yBqF75yEAAFvHKCz5xye+AY4G9Ow7ENMevBkAsHH1IWzauUy5IEAvKi4GHfv6+u7yahdCwyOUgRFZ9sLpDPTHLncNojMD74fRYqw3KAL4fpcLAyCpfotZrXbfAITFDqs1BFZ7CKxWOywWO8LComCPD/S1IyeejayDOXXnBCRYzUZIkgSTyYSQ0HBYegW+h0fUXo5eZaMhBBAVHY9wWxxi4lIQFh4NSZJgV/Xh6bHd4dZ9R+vjGJcq8b3/t79feKq2Tzu4T9v/RfXXDnzVFAXaTtZ99myR2m0f0h2b6m7pyglZmnWrdmjPqdkHdtAsF1doY/ff/wycCzRZtfHjt7pYQ0//O9+kikV252vrPOR07fm56lqPZtmi+n0do/v9kRqv7Xf1NypljO2iWV6yPnDxbY8c7fmTzrrYw6s7L5hXrI0xK1Xfk/pPX5XuOzRJ9x2bqjuHomas0T63Uwfd8aOrR/eevtdRXdUyKTuOe2DkpptuwmuvvYZOnTqhU6fACY39+/dj/Pjx2Lp16/HugoKIEAL//rdvepwzzryUc4kfhcSCHRi+ch4SivcgpDZwAuVgbFd8MDoQeBhkT0NPb3eqf/0Yd/z8ISKdviBmU1pfjMhdC3+XajJZEB4ShVB7BMxmK3IGjcbIMb6riYsKD+LFZ6ejtrbhzmvEmZNx5U2PAABcTgee+XvjVyEPHXk+unb0DYyYzRZsXOebDslisSMyKg4h4VEIDYuE1WpHSmqgEwoJi0CPvqdBckswmcwQQsDtccLr9cDtcSEiKhC4x8V2wA3X/gsdu/SG2RwIhs3x9TsPk8mMsLC6TsZgqLe+OSRJQlh4lOaxqJgEDB4xCQAQqtuvvtPrkJ6JB/7xomp72vVbVSfoE5LTcfUtjwe2pQtgw1QdZGh4JC66Yoay3K239oSm010/mNTjdwbRqePnBR8DAHoNGImY+JQ2rg1R06qryrFj+5/Yv3sT7KER6N1nDOLiUwEAufu2Yu/etSgpzENlRQlcTgfcHicc1ZU4fGgvnnh9AULDfT8Cew8ahQ4Z3RAWFQVZ9mLLmj+wb+cm5O7Zgt8XCZwx/lJln2mZ3eFy1kIIGUIIGIxGmEwWmG1WzWALANz/9EcAAIvuhLv6xIZffHKa8ndtXG299URErenjjz9GcXEx0tPTkdN/RFtXJ2iZPC6EVxfBaQmByxIFrzEwOJJQuBsTF72A2NIDkOr9egQiKwODrLLBhGpbJIRkgCwZIBtNkA0GOGUZxY4yfL7pG/gnIL4EwDwAvx1cj4zvHkfId9UIqSzFxZCw3GjC81Y7dphtsFhssNlCYQsJQ0Zmjmbfw8ddDKejBrLshSzLkGUvhAAiIsxISe+oKXvW+ddDCAF7SDhiUhNgDwmDwWiELMuIi9VeEDLr9c9hMJrgdjlhFG44a2vg9Xggy154hfZ3+t9fmAMJEiSDhKLcwLkaWfbC49AOBNxy0yswGFQn5UMaP207+ZqbNcsRugGrdWsCJ8X7DhoLk+qCD0dxwxdWEAWbFplKy2Qy4ZVXXlEe27p1K84880wcOtTwtDBEjZFlGbfddhuef/55DB5xTltX5+QgBHpvW4Axy96GSTXoUR4Shyp7NA7EBfL72FxVuGrR37G25HysHngBhMHY0BbblNPlwBffzsbDa76Hepy4Z+5aXAngdaMFHq8LHo8LpRUFKK3wXV2W3LGbUjY0LFIZFPFdMWGBxWqDyWL1XT0RHtiy2+VEeESMb55tgxGx8cmIiU9BTJzvKoZO3fooZWPjOuD8yXciPTMbqWlZMBpNMIU2nPwvJj4Zdz72Jir1V/BZG27zbl0H1L+Kh4goSJWXFmL5z18BAEaO5xRa1P4UFOzH5pUr4KipxK7ta7Bv9ybN1aDpaT2VgZGtG3/H9182PK2kJEnYvmkl+g313dl45vm+6SXN/qv8pwFFBw5h89rfUFlerHnubQ/4tqm/y9Giv7uJiOgk5fF48MwzzwDwXZRraIe/X4NBWt5GnPvLiwhxBk7qb+4yEt+NuRMAUGsNRVyp7w6dsvBEHIrviry4riiNSEF5RCIqwgJ35x2K74ZXLwr0iYYwC9weJ5788CZUepwwGkzo1+k0ZCR0w/X7V8N8YDVG1VYABwJ3U4YDyJCBitvfRGW07+pxW3U5amNi6l21d8Hlvhls9DeY6K+eB4DTRl0U2EeKdiAkKkJ7YYG1bgprs8WCEN3dFE7dXQ8xcaoZSiq0Zd0W7dXyPMaJWtdxD4yEhITg1VdfhSRJePnll7FixQqcc845KC4uRmZmZgtUkYKJ0WjETTfdhL/+9a949aN1bV2dk0bmwbUwyR7syByC5f0moySqA5zVqoCgbiqMXnsWI6q6EKOWvIXszT/hz0EXQUCC0eOGUfZgQ6/xymBJXNFeGL0u1IRGwWGPgMdsa2jXLcLpcmD33vXYvns1Nmz5FWXlBbgXQF9bOEzhCUgs3IWN3ceg08i/4mlrCFzuWlR6KlFZXYqa2kq4PS7EZgXuWLPZQnHPA/+HyKh4WK0hkCQJoamBwEZ9V0F4ZAyemL1AUx/9CQb1VBEjRl9aP6oiIqIWteDLd+F21aJj1z7omj2wratDVM/hgr34+n+zNY8lp3ZG5+794XY5EZcQuOsiLTMb/YdOQExcEiJjEmCx2mEPDYXFakOHzCzEHuGOqIioWAwdxYSmRBR8Pv74Y2zZsgUxMTG46aabMPeb3W1dpeAiBAZs/AojV7wPgxBwG80weT2QIOBSnR+oCI/HZ2c/iMPxnVETEg3hUM1S0Ywb+s0mK64adzeWrPscF4+4EZGhvrse1/U8G/mFu5Cavxm11lA4uqahJiwatppKhJUXKoMiAHDe3IcRVXIIu3sOQ2lCOpz2MMiJsagNi0RlfAoq4nj3MRHVd9wDIwsWLMDEiRMxe/Zs5OXl4ccff0RlZSX69OmD7777riXqSEHIcIxTBJ1qeu9YiPT8DdiT0g87kvvDafHNJ2h1VSHMVY2SqFRAkvD9iFuxP60v1vWYoLpCov7UByu7nQOHJRyjNn2IhILdOPubf2nWb+g1Xvl7yJ+foPv2n5XlWksoChI6Iz+rF/IysrGnxxB466Z9Stq5AZLsRVlSBtxC1J9bqQk//fIRfljyviYBdkR4LM64+AF8FN6tbhBCAJJB2a7FbENsWChio1RTLaVrBz4SkzKVZaNHNxc5ERG1WxUVFVj2s2++7okX3cAp8qhdqKwowcYVP2HIoHN8yVJjUjB4+LmwWm1ISe2K7r2GITYpcNJFnWOke8+h6DVYO/2Lyaabn52IiOr5448/AAAzZsxg0vU2cMaKuRi84QsAwMZOI7FwyPXwGE2wmjyQ1NcKSgbsyTj6C1lq3TUIge8ux07J2eiUnF2vzOH4zjgc39m3G10eGX+eFJPbiYRDO2F1VqPP7/VzvhRmdsfHT3ygLJ/z3J2IsPjOMXjCI+BIzYCQI1AR3wEVsckoT0yrtw0iOjVJorGMRUdh7dq1GD9+PIqLiyGEwNixYzF//nyEhYUd+cnUoIqKCkRGRqK8vBwRERFHfsIp4OGHH0bXrl1xySWXwGarf3fC8/9ZplmO7hKr/F3y7Q7NOlGknS9RStEdi3HaJD3yqjzlb31i8nofEV2yVbkwsC9DvG67uqSUBl3iUX+CM0n2ose+39Bvx4/4ZPTf4bKEQDJKOH3tRxi2wZc822swYV9Kb3hMFnTa/yfy47rgo0lPqCuq2XZC+X4M2PAllvebjNLYVM06u7cKw5Z/iPiivfAazfAKAzwGM748815fAY/AqBXvodu+ZQipLYfJq729U5YMeOWGD313kdjNmPzfvyFj31oAQK0tDKVxqdjTbQjWDZ6EgyVV2H1gI8oqClHmKUNFeREmnnUdkhI7AlYj1qxehHlzH0V0dBK69xqKbtmD0b3nUNhsoTDokjpLqjs5XAd0iWi9Aia3E3H5uxFdlIuYqjzE5O9DbN4eRBcewOszP4Yj1BdMd9+6FGm712JP1mDs6T4Ucqw2gaX+PTeatLezxncNHHv622Zl3XPLyrUDVEZdEliXKtGUTTf1Ra0uWag+6anbEVjvqtSWteqSlOmTmMm6fB1ClWjLpkssqq+zXphuLlOvKlnvoCxdwm9dYk2jLkHqmL6BhGiL1h7UrJs0OF27rW3abVXpkpapz6XGhGk/14dKtN8Rbl3ywZxM7dzs6uTkf27XJnGz6pIV78nXJvdTJ0/TJ1bL0OVz2at7brTulm2Xqp5ddLd3e7y6ZGlHeI3qnMr9Vd+nAJBboK3HAd0ctNnpUcrfW3LLNOtMRu3nVv8eh+uOF3WbxOsSTiZEBb5TqyorMLhHelD1i0BwxgOyLOOW+1/FhlVL8Jfpf8NtV/bXrH93kbbPr5dQfW2+8rc43HSiRFi0x6uo0H6XapJv6+4mlPRTI+qTsevIqgSPBl3iclGoi1t08YRm27rkjvViHl2MUy9RuZo+yWuN9jtKn4w8pLQI2Xt+QYijHJbaauxL6IntqUMB1I+BhD5xrW7bBvW+9cnXJcDkqkVi/g5Uh8WgLM03B7gke9F75dfY3XkwKiNViZ3V36U1uterG1gzRmv35VW9LzZdQmt//g1Z9uKNl+7C9i0rMO7cqTj/stsb2jS8LtVr1ie91x8/uu/GhDTtCb8K1fvm0SWldOvfF11CS3V8YLRoYweTrs+K08ULtS7t+6bu03VVhl0XlxTokq13V/UVAHCgKPB5dOnikOQYbeyhTy5epmoPff8WZtPWQ59MXP8+VaqOkQ07tNOThehisVDdtvX7OqD6/OnjIX2fdkD3WbWq4qthPbSJytfv0U7FatEdP9kZ2jilujZwTFQ6tJ+ByFBtPby6eEEfm/RVxUArdmpjnphw7fGif81RqilmdxzSJrKv0h3H+nihoFx7/JhVF8qN6BW4GKqiogJJsTFB1S8CwRkP+G3YsAEpKSmIjdXGq/rzA2K79nMjKrS/w6QQ1edbd9zLunxLokp7vBpTdb8XVb+9hO57U/9ladD1O0L/m0X1vaPvdyXd7zKh+57VrNf1pfJG7W8lSfedLen6A9R9v5nctfB4fX/HF+/BpV89iN+GTMHanhMDX6i670Lo6q3u8yV98vkaD4QQWLlxAb766U3ccO4spCV0DaxXf3fqY616HVGgHka3E2l71yNj+0qEVJbC6qiC3V0De2UZDnfKxjdXPqSUvW3GOFicDefYyO3cF/+99WUY636H9f/+/1CYnoXCYSMavQBU3y9bdcnI1bk9anRJvNN0v8PidL//9Imn1d+lQvd97nFojy1TiPY7Wh1PhOqOLZfuOA6x6+IH3Xd2gip+yNMdl9G66cZrdTFhha4/UG+rQteW3fSJ3Iu07af+DVyiOydiNmnfr1qnth6xuhjIpapnSqw2rq3U1StW1x/qp09TxyqRIdr20O9Xn/Q8UtV+m/aVadbF646PxGhtPbcf1Pa9kwYGBvn+98dezbpK3fvQp7M2tnDo2itC9To66NonWvcad+Rrz9d5VL9lInTHh/54Ka3Wvo/6uMVWF9tWVlSgS2rCcfeLx3THyGOPPVbvsTFjxuC///0vwsPDMWTIEDz//PMAfCe7iY4kNzcXTz75JLxeL/r164ecnJwjP+kU0aFwG85a/jpiKn2DM/12/IDlPS8EAGxPHwpAQpfclYgv249OB1Yrz7O4HTC7a+FuYIorSfbi7MUvIK40F532/4l3L58Nhz3QoThCIvHT6BuVZdHASZMlg6diyeD/Z++sw+Mo/j/+2vO75OIujdTdXWmBttACBYoUlx/u+sXhi7u7fIFCsRZtoQIt1N1d06RxvyTnd/v740pyO2mbpk1S29fz5HmytzOzs7O7M5+xz/tqJKsBg9tBWFUhiQXbSSjYjtFdg1dvwu6sori8iE2SltCQSKJqKjA5q0nct5XEfVvpPfcLvgKeQyng3apVx8DECNCx00AefOhrYmJT0FmP3F1X+/VzGfXrW5gdtgOejy7OYl9IQC+kw7q5tN6ymG7Lp2MPCWfl6MtZecZljdrpoqKioqLSPGg0Gjr3GEznHoOPdVZU/kWW6bfuJ4at+Erxs0+jC0yMyDKh1SWk56xlY8eAVkZ0eTb91/5EdEUOy7udx9bEAYd1nR6rf6PjpnnE529H6/exdNAlLEq9AYCk7E2c/uubAOQntWd9n3Fs7Dm6ae+1XpZkZv76Mdu3LMdgNNFviKqBp6KiotKSdO3a9Vhn4ZQgNWcdF/78OB69iQ8u/wyvzkhxdAafXPohLou14QQOgsftov9rF9PVaWeCNYrd5nAkJHKLdgGwdNMs5cTIEeLTG8nq2J+sjv1rfzMELxwIWggx6/KHMZkkJL8PY7WN8KJ9hGZnEV6ahy3IPVdoWSFDpr2Hxu+jLKU1qy66kV2DRqvjBioqJxFHNDHy5JNPHtCtgSRJVFdX8/zzz9f+pk6MqBwOn3/+OT6fj+HDh59SkyLIfs5e/Dbh9hIchlCWdxzPmnZjak8XR6VTHJXOoh4XE1WTT9uspei9LrZlDKY4Ov2gyYbay2vFz8yuajKyV7O5/WlHlkdJwm20sNcfzXQgT6sj315O4SeXY3dWAfA2cPrASxjX/2IivCUYtiwi86/P6Q8kAa0SOxAblUJEfCLtNVq0rXvXJm8yWTCZLAe6cqMYMvtTnBYrRlc1+9K6UZ6cTll8K0oTMyhJak2Nq27SZfXg86mITqLd+r+x2koY9uO7bBhy7lEZfCoqKioqKicreq+ToSu+rj3ekj6YMksCeVFt0Pi9jF71MfFVewmvKmJjh1EgSfTa9DuddgVcco5c8hlbJ/RXDCToPC6iy3OoDomiJiKJ5JyNpO9eyYDF39aGqbLG4NPVrXaUZJl9aV1J3ruRxLxtJP66jeS96/nzmodr3XseCS6XHUnSYCJgB1RVlrF53SJ2b1lP1q715OZsB+Ciqx8iMaX1EV9HRUVFReXwqKmpwe12ExkZeayz0iRIfh9Gdw0mVw1GWwVGdw2a/avEs9v1wa/dv1vD68Kr1QfcSLcwg5Z9g0b2Y3TbufOzS9iX0ImcxM4UxWSSld4Lr+7Q7azX5yGnaAc7cjfgqKninL5XAxBTXcppzhrKgcuqSrm5KrBTT5I0jBlyBad1Oa95b+wAbO81EpOwU9FZUFUvnCxpWD9iAp0W/U7Uvl2c8doD9Pn2PXYNHs2uwWMoT1VtAhWVE50jmhhp1aqV6u9ZpcmQZZkvv/wSgOuuu+4Y56blSCzezuC13xFuL8Gpt/Dx+DdxGQ/ufq4sIoVlPS48rLSrQmOYO+h67KYwYsv2sq31gVfd+mU/NQ4bNeWlVDttlFTmU1Sxj8LyHIpt+fTKHMaY4VcCUOO0MXXuO/XSCLfGEBuZTEJMGl69kZKYTLwxqbxvtzHSbCUlqh23p/cAwKqr4oYXLqFi9SyKktpSkpxJSWImxUltqIhJrpd2Y/jy9o/R+ry4jCHIWi1EmJB8XmRJAxoNBG1ZzW7bh+w2vYkp2IPVVsKuroPVSREVFRWV44CHH34YSZIwJQwhMjqh4QgqLYJHb+avQddz+uKPAeiYtYjCiHSMHjv9tk8nrWgTADNPu7128mN157MIqy4mY99a5gy5sd7qyrP+ep22e5Yyd/B17DUN4KKvH0AjBwaJFg+9nE1dT8cWpCXm9brZFJ3Mugv/Q6qkp9vK6Qz85yu6rJtD9Ou5/HrD81RHBNw3OhzVVFQWEREei9lSf2u93+8je/dmNm9YxOa1i8jdt50zR1/DOVcHXGQV5O5m8vt1i7s0Gi3jL7iN/sPGN1WRqqioqKgcgilTpnDbbbdx11138eKLLx7r7DRIdOU+Uoq3YPA60fvdLOk0AVkTcAM1eu6bdNwxH63fd8C472ROwaUNjAMMWz6Z7ltmUx0SRXl4EuVxrSiLSiEvuRNF8c07CP/XiJs446+3iC3JQu/zkFKwmZSCzQD0T+1JkcfJbROep+O2eYS6K5lbsJ2/i3azXfZR6XHidNvx779HrUbH2J6XotcZqYxK4qsRV+KwhJFvjeb//HqcLjsJsWnER7c6tMvPY0xNZCx/X3Y/iyfcTP+/v6X7r18QmZdFnx8+pM8PH/LHf95ib98RxzqbKioqR8ERTYxkZWU1cTZUTmWWLVvGzp07sVgsTJgw4Vhnpx5GVw2dt8/F6LZTFJ1BYVQm1Zaoo9o+GWHL57KZjwLgk7Qs6H4JLkPIAcNqfN7aFSSHg8frYlfBJtaYrDhc1Tj1JhwrpuB027E7q2mT3JVBvccBUFVTztOfXH3QtCrtdX6XY8IT6ZDeh/jIFJJiMkiIakVMRBLGsPoTCjqdnnPPvjWQRkWdb9e43B14dAYiyvKJKMun3cY6cXdHSDgLJt7B5sGBvEUUZNNqxyo0fh9ajwu9y4ne40TvcqBzu1jd7SwKU9rX3bfRAi4H5379GKG2EkKrS7FUVwDgMoXgNljY3bYff427E4CoomzSdq7Cq9Pz90V316YTUZhNmzV/E7tvJxq/j5qwKBwRsdSER+E1minI6AxtlX5AVVRUVFSOnpqaGt5++22qq6u56/FPT9yJEVkmtKaUqMo8wqqKKI1MoSC2vouIsMpCQqrLqAmNospnwq89vsW413YeS6klkU57FtB11zziK7KIr8gCwK018tvoB8hKq9sRWhrZimljHgtooElSPf2SsojAgoioijwqy3JxmUIxO2wsGH41P6R3pyh7PcVr/6CwJJvC0hxKy/KQZT8REXE8etfXLB1xBXmpnRnzzWMk7t3MyLfv5NYep7F98zKyc7Yiy346dRrEtdcGdrLb7TbeeutmXG47Dns1Xq9yICZYXyw1oyOt2/ckpVUHWqV1IqNtdyIilRoQks9LdN5uylJa1w5+RRTsJSZnJz6dDr/OgE+rw2sw4goJxxURiSs0rDasioqKisrBmTx5Mm63m6ioqIYDHyMkv5+MvNX02vI76YUbFedWtjsLtyHgFcGnNdROirj1JpyGUFwGCz5NoI8vB+0OCbWXo5V9hFcXE15dTHruutpz+Ynt+HnE/dSE1JWJzu3E7Kik2hrDoZTOalxVFJTlUlCRTbWjEpfHidvvwutzM2lkoC9cEpPOmZYoNvl20BoYAQwCYoDlOWsAcLhq6LL1L1rlbWTY/rT9QA6wDfhMb2Zrq160ju2saFcLR1wBQBgQJtgDJwJuSygrJt3O2vOuIX3F37RePIvELavJ7dKvNkzrFXPRO6rJ6dwfb1jaMcytiopKYziiiREVlabi3W/W8N3/Ano0HdL78+FTdQPl0WOUgwhyqVLQqawkJ+jkoQVPfVuVwoo4ChWHUpDAl3d3Ocj+2u2rRreNEUs/RxNkatQYrOREd2BnfC+yOg7Aadw/OeAXRLvbBG39lWVwB1ZCVkZksK3NINyGEJb2mYgtPAENKIRdQ23FjJnzJkl5m/lz5K1sHqz0ae3Xg9NZw56sjZjNoWTGdwTAWVXKp5OfO2hZ6MNDGLR/YD/EY0WSJMwhYYSEhhMdm0R8Ugax0anEJqQRE5uCFBkTuBfg/7q8jSwI0yEI1SKI1+uS61Zq7ml3Bh/2HUTiro1E5+0mtmA3Mft2Ep2zC3NNJf74mNotranrtzPyyxcOeh/5fYdg7xhYGRq+bzcJxdnkDD+TjGdXovEpjS2ToxqTo5pwo4uI/in43D487aPxv6Fl3QXX4evekX/36qTuzmXYz+8f9Lrzbn+GnVXtAmXidmGoLKEquc7wEUXKrEJ5RAiiVK271pXPluwKxTlJENaqFsTUkoOEWh0u5bnYCOXWYFGYW9z1lxZXt1tpnyBotkfYVhwsJg71hUgraupEvHYLwpuiEHebZOVK3tIgkcSBHeMV53YL+eiaoZygEgVSc0sPLvIaIYix2wSx3kxB9HXrvora//t1UA6OiUJ0vdsqBedLgu4pRhDiW7urRHE8rHui4tgsiCIGC7Ftzi5XnBPFaFvFKXeghQnvXvA9VwgrtUIFob4Bscp7bpdY99xEofo1O5X31DpJKZgXJqS9ZHPhQcOu2FYn+mqvqb+9XeXk4qeffqK6uprWrVvz2pPX1NZTrz40UxlQ+C7kfcK74a373mWv8tsX7YV64uzimoeg4KKYuMZqANmPJMu1g93dts9hxKrJGLxKwVeXzkxOYmeWdr+Qgtg2yIU1DJ3/MR2yFteGsZvCyI3rwIJekyiPEFaFBosfCuKqUpryu0EQQxbF2hXlJ9RfJCvrPkkQXSwYNJ4CxrO0ooTUHWtI2bISa0keSy+8lX1RGfh8XqpspVRWFOOWHLRt16c27h/TPyQvdyey7EfSaPBXFNEfyMlewv2uAnKe+J7QyhLK41rxy5s3kZ21GRFJ0iBpNLX2UlbbXgzUGfnI6+aGgiw2zfwfAK2AaKOZkPgkdPvFIU1WDSUl++qKKcRKlz5D6NB5IB17DCIsPDowugOYzCHc/eRnhAr1qKe8mq6/fknqqgXE7tyE3uXgmxe/p6xVwGZtt30ZAz57uV6+/2Xxa/+jcGDAtWnYbz/T/buP2Dv4DNZOuplqQYw3PMh+0AnP3CO81zahDjcGtXFG4XvRC888UhAbL6xQvrvmIOFbUSxVFGoXR+WyCpXfZmRQvvwmZeBKIe31u5UiyskxdW5XxbZRFCK3CzbRnnyl/lyQpje9BNFz0U4pF+xeUSC1U1pE7f8VguirJFQoom2hCbpWqXAdoyC27hDqnyxB1DRYQLVrprI8xPclr0TZp4oTbMb5mwpq//cJfZtqu/KZtkmJUByv2lHXbncT7LRtQbYU1LdT+raJURxnB9lxwXar6rni5Obdb9ZQWpzHggULAq7a9yTy6v2/154PHiMQxwfkEqUtLIqi+4vrzkt6ZT0iiWLiwjfoF+yF1nmrGLnhKyJqAgLnfkkiO74LNaYIPBpjYFxgv9jwotSzWZR6FnZjOH6NDoR+iVTqB6oBmH7WA4TYKwirKiKybB9hxXuIKN1D28JtWKrKcSQnImm0bN46nzdmvIrVF6h3nBotW0PC2GC2stIcQvIdb6PtGqjfvpzyJOuDFiSKXPqf5zCazPhcXkLXxCNlaSiJjGZOVBwro+OJS2zF1RkZxCWnkdS1O4Xmc/BsycC0awuRRXlYHHbSgDRghFbi64efpUpbt+hTFCZHMM0Q2j+N1cDBMAhtlkWoR5yCCLgnqG7UCf10MS1zZ2XfUxTILiysxhcezq7TzyX7nAvRul1oDUa0gDncxMBfPiIyawcAla0yye81iKqUdNyhYVTFJFDQI6C11qu30lNGniCuLrZDiYJIeqWx7j50go3XVeiXRQp93m25FbX/i/1jl/i9CDazGD49qE1rnay0RaOFMRCxjRPbpeDwFYLwtihGXyCUV9tWdWNua3cpx/2Gd1P2rRdvVo4DRoQobWa3p65eSI9XttlivjRCWyTaB8H9fvF+3UKbLoqga4MMlS5pSneCYtsp2lpthfGVLUFi7ElRShf25kTlN1FdT/g+QnFsDfqGNmYpxyLaCu9ApPAOBNtT1Y5Dl6X4/ohjXeZ/vwFv0ywqUydGVI4pXq+HVUtmA9Cn06hjmpdQeylt8lbTeu9yNLKf73rdB0CNMZyVaWcS4qoktjqXmJpcQtxVdMhfQYf8FWyp3MSM4XcBEFOezbCVk5ElDVWWKJxRUTjMYeg9Tjpsmc+0c56gOjRg9E8f88BBfYe2yl7LuOkvYHYFDKSxs19n0455vONxUWErxumsweWua/Q7dxpM5oVPAGA2hZKc2AazJQyTKQSL2YrJFILZHIrZFEpiYt1gi05v4IU3/8Ecqdyt4q4WJj+aEI8phOzO/cnu3B/t/o6t1uMmJns71e3qdoBUxyayq+9pyJIGr8GE12jGa7LgMZnwGkyUpQcmJzQeN6NeeYCYPVvZedZElt/1JPaYBMoM4dgjY0AGg70Ks8+Bzxhk3Mgyf9/5DHld+xG7bT3F7bsBUNKmM1mnnU156w54zBbMZSXo8/OxVJSgdbuoiawb9O4z+S06/vEdi+98il2jzm22MlNRUVE5FfjXreaVV1553A98mdzVDFw1g0675zN7wI3sSg1MAFRbojF4nfglDRUh8VSZo4ir3IvZXU2bnJUs7X5BbRo58Z1IKtqGxWlD5/dgcdpom72c1jkrWddtLPOHXI1XbzpYFo4p9ogYdgwczazoeBbN/ZHSr1+hrDifyooS5P3usKzWKJ54+pfaOFl7NrJ719ra43/X1iZWVWCzb8RtMFMe1wqA9DbdMJlDiYlLIT4xg7jYNOIS0ggLjwm8G/sHPvx+H13Ouombd66gKH8XPVLa0aHbAO7avobeK//i5+5Dyd1/Hb3eyO0PfURsRgJmSyiRsQlotTrsQZPK8iHW21qK8xn+2C3E7ahbFew2h2Atya+dGLFHxZLfuTcarxeNx43G60HncmKqrsRYU4U7rK5zG1JaSMyuzcTs2kxp647kDh7Z6OegoqKicjKyYmFgIqRdp75EWGMaCN0CyDKJ5buoNkVSZQlM+Pk0OiJqinDoQ1jfZiRr256JLWR/P9ErTCiaD3/Xyz/rp7Nx93JqnJVUVBXj8gQmq2OB10bdVbsQY/X2xbh8bqyABzD5ffSoKqdHVTlXACunvsE/4+8BIDw8kK/omGQSklsTERkXGB+whmI0KQfdJ1xyNxOveBBrQoTid3PQZMXWC6/Bt3/SB1nGaCvHuGU7mcv/oiylNc7wKGjG8YTjBZ+hbvBW4/Wwd9gYvCYz0ds3Ep69m/Ds3bXni9t3Zca702qP017+L5UDhlAx5Ah1YFVUVJoMdWJE5Zhir7GRltmJvJydtGnVrUWvLcl+Eit2kVmyntZl64mv2Ft7TkbC7K7CYQjMEs9rd0ntOZ3OR7xtL5lF62hTsIadqXWrIQ1uO5m5aw56zQHLv+PPkbfuz8DBBdV6r/65dlKkIjwBye9ldNZ67pfF5RUQFZVIbGxq7bFeb+Tu/3sPglaWH2pHjbYRbrqaC5/eQGHrLhgsdcZFfuc+7GvTQxFOCpo5/3fFhyxJ5PQeQnTWNtr8/gNxG1ay+IEXKU3uUBvWERlDjbBCBI2GiuQMzrt/EgZHDb89+z9KW3eiKiGFBY+/oQhqL1euntQQcKERlbUNvcvBkNcfoahDD8XOERUVFRWVw2fz5s38+eefAFx++eXHODeHQPbTde98hm/+Dos7sEIroXRn7cRITnwnPjvndSpC49m/iBNJ9hNXkUWrym0URmfWJrWu/WjWtR8NsozZU014VQH91/9E25wVpOzbiFe3vx2XZTrsmE95eCJerQE8RmRJwq/R4TKF4tSHHxP3TD6vh8kfPk5pUa7id41GS1h4NBERcfj9fjT72+7hp11Mn75j0Gi0+P0+2pZmw5wp9AFyZT/bv36GmZc9CpLEhIvvVl5L3JmwH51OT99eY+g7tE77QxtqpPWf36LzuJjw9j2sGnsVy8dfg89gonW7noQH7bZMmz+TGreELSFgR2ntDnRuJ0hQlNGpNpy5pJDR91xOWF42ztAwVl52B3ld+lISlawo+13Dz2bX8MAOX6/LB34/Efl7kTUaLD06Iu+f8NPbKskafAbJqxaSunIBGfP/UCdGVFRUVACPx83Cv6YC0Hfo2Q2Ebl50Xhcd9y2hx545JFRksbzt2fzTdRIAOTGdmN7nFnYm9sYTemCX2I3F7XXx26LPaxcY/EuIKQyNOZy90Rn8u1yiXXpPbpQ0VIdZ8RhMZHhcdHLZ6FRZwml7t1Kc0q42/jl9x3Ft+wGU9x2kaLP0IfVXWxtNlnq/HRJJwhUeRUWHHhR26KE4ZakoQed2UmqNP3Dckwi/3sC6q+5g3VV3oK+2kbR+GfFrl2EuLcZQXUllckZtWMnjIXHyJyR/+i6u+ESSeg6kqO9gCvoPxx2puuxWUWlpjv2IqMopTVh4NLf+512qKsvQ7GrBVQWyzKXLnyOlYmfdT0jkRbdlR2RXdsT2qp0UEfFpDeRFtiUvsi0L21+IJrpulUVFWCJ/DL4Vrd9DqL0cs8aByVGFLEkUJLZnQ7vTG8iWTHbBdh7S6nlGq6etz0N2anf+HnYtJRt/5bK4NGKjUzCZQjFZrRiNFvT6/QMnwva7UwVZp2fFFXdRMngEg569l7CcPYy+42LWj7+SFZfeptwlQmBCI2HTatKWz6Pz79+gc7soT8nEY26cQStrdfzx1EeM/e/NpKxayMD3nmbZjQ+hj7DitobjtTSNgayioqJyKvDee+8hyzITJkwgMzOz4QhHgNbnqfXnDdBr2x/EFezC4rahkX34NHq8Wj1ejQG7wcqCdhfgJzBh33fbdFILN5JUtguzJ7BwoSQ8hQU9L2VPUs/aND16E2Xh/7pICGz7liUNhZGZFLWqm7BXIEk4TGE4TGH8MupBUvM3QKixdgGFxV7B2X++dtD72thjNLPOu6/2OLI4m/KYVJAkQmylJG1dRVzhLna2G0hhYvuDptNYtDo9l177KEv++YWuvYZjNUYSGZVAqDUqMBniUy7K6NxliDK+WcfcuBS6zP+ZuJztAf/rTbRTaNo973DGF8+SuX4h/aZ/Rrtls8hr1wOt18uSZ9+uDdfv/ecIKS44YBqVccn8PGUeACOeup2wvGxscclMf+YzquMDz1g+hO2VuGklQz99jujsnWR3H8SqD6bUnht51VlIDjtad8D23dd32MGSUVFRUTmlWLdiLhVlRURExdF74Gh8G0objnQUaPzegHsrAFkmI28tycVbSc7fQkL5LvT+QD3v1ejRBImn+7R6tqQObtK8GHRGTus5gbmrpzFu0NV0zuhHuCkKg95YL2y/bqOh22iICurrhhrYDOQXZlMTFhXYSgL02rmKkdPfwf5DJHu6DGRHz9PY02Ug0HzaZqkblzH6w8cwVVeyu+sg1g07n6yO/ZBkP6aaajyGgBcIAEtVGQk5W3GEhFMRlYQrNK7J7IFjgSc0jJwhZ5Az5Iza33xBNpHk9VB0/iXE/fgtxsJ80mf+SPrMH/GYQ1j08idwhrpQQkWlJVEnRlSOC6zhUTjJb7kLShJLMs9h/PoP2BPThd2t+rAnoTsOUxj+MkfD8YW0/sVuDmdT27rtkFKMcmsqrvorHr0+D7tyN7Jp9zI2Z62goirgm3c6MLXjSLYPvx6v3kT4qGvoGRzR2PKrQ49nCnsMYMZnv9P73WdpPetHuv/6BWkr/2H6kx9TExMQ8B366kO0WjYPU1Wdn8W9fYYx996X8IQEJsLa/vUzKTvWYqosR+tyIsl+fB4fkl/GY7Yw/+YncP2rt6DRsPTmR5hw0zmkrFxAysoFAGy+/GbW37B/kEqWkXxeZN3xLaqroqKicqxwOp1MmRIYNL7pppuaNO3Y8r303DGLzNw1SLKf9yd8UHuude5q0gs3HDCeV6Pj7/YX1yoEtM1dQXLpdiCgF7KowwTWdh9XN5jShOQkdkWKCNKIcNvJSepMRGU+Wp8PJJCQ0fi8GN12HJY6X8LWikKufeNKKqISAYmIsrzac32W/8jPFzzB3g79OFwkn5fY/N2YqsrIz9rInu1LaZXeiZALb8UVFU27zv1o1zmQnruikfaTRsP6ERewfsQFRG3bqCjLsOJcTv/yOZacdxP5rbs2Ll3AERbFr7e9Quu18xnxzStEFOcSUZyLX6NldWUZrvAo8Psp6tgTq2UXYUW5+DX/uu40YbDXkN++R62Nt+yOJxj0ysPMeuD12kmRg2EpLaL/Zy/TZn7AFYzXYFS429BV2zAVF9bqoTnCI9k76HSQZSKydqB32Cnu1KM2fPyy+RhcDvxGI86YOCrbdkJFRUXlZGXZ/N8AGDjiXPR6AwfeL3h0aPxe2ucso8euPwmzl/DRWW8FTkgSI1d8RmR1nQ5BRUgca9NHsTF9OA7jgRdONiVjBl7O8J7nEWLe37aLWmmHQXl8wC0lnsDku97txGkKwVJVTuclv9N5ye9Uh8ewddh4Ng8/l8qE1EOkdmTURERTmtKa1C0rabN+IW3WL8SjN6D3BLbTzrj6Sbb2PROAhOwtTPjsodq4bqOZirhU1o04n42Dz1EKQ50E+M0Wdj/5Eln/eQrr6uVo584jaeEcwrJ2MuS+a9ky+UdquvU61tlUUTllkGS5AdXqw2TZsmX079+/KZJSAWw2G+Hh4VRWVhIWFtZwhBOQ2bNns3InhO/XbBDfRNc2pYCvf6dS3Eey1HWgJaGxDBZW03ldpBRson3+CgrC01mbfjroAh1dSfYjCy6tpBBB7EswRjQJSrEjOVikUhDKkgWRIE24crXHyrzF/PjH27g9dWno9Ua6dRvBgP7jSE/vUudnXbSJDMp86wUhJW+QcJLWKAzcCIWtE4Rag4XI/IJot96sLB+vU7la0iCUnz9ItFEniNjVCMJZFuEeRJHvYNEqvZBWsBBn/KK59HrxYVxJKaz78mfQapFlGDikE/qKcjzhEZQPG0XZyNGUnnE2lpC659Lq/tuJnvoNB2P5ki1EZwYGRQwb1lEdk0j4z1OJ+ehtNHY7GoeDglvvpvD2ewGwbttM+sXnUDFxEsW334spUSnyaQgS/nMJIlyi6JRREAncmVcnvFkjPIfWScp6I9SkfMblgt/XYGG2QmFwK0J4pgXlyucWZVXuytkbJAAmimmL+RSFW0OD3kXxfoOF2Q8UVyR4oZFF+AYyYgWhPt+hOx3iswlGzKdJFDNuBA6hvjEL73m1u65OCTXoDnruQASL0QMkRtZ9b07h/goE4cKUGOUOqOBnER6ifE/FtEQzwyDcU2J43QRyofCMg5+bzWYjJS76pG4XD8SpYA+Ulpby2GOPsXDhQtasWYNWq+XV5+bVBRDeR1Gk0yeIr2trHLQpWkOv7L9ILd+mOPf6ae/h1gXeuU75i4kIcVBjjsCn0aH3udHY7Oi9LrR+L0s6nx8QTwU6Zi/E7K4hL7otRRFp+DU6NNGC/ofwbhMlLI4QhJmVNyEYQaIIbHDdEFZXJ2t8XjRauXbVZestizj7m6fRewPXkiWJ4sRMvAYjoZWlTLn3Q3yt69w+OmzVFBXspcpWRseuA2sFUpct+o2igizi/R6+mzu1XnbdRhNrR1/G6jGX496/sECvg24zvyGkrIill96BWCVJQvlYguoVlyD4PezNR+iyZAZ+jZapd79NQTflZI4omKoJqoclwRbTVlfT9bfJmGzlZPUfSVH3fsjaIFciQfVMyL/l7vejc9RQpQ96hrJMqGADBYuexi34i3bvv4x1XxY6pyOwW/iiK9h753/wRkSxu6DuPdW4XURn7SBi91bK2nelKjmN/m8+ScYf07C1ymTmlD9rbZ6x148naueW2rjF7bqy/dLr2Td8DLIukF+DXouu2obXHAJaLWFB7kNF4cz8MmUbLgptikKujqC2Vmx3Rds9LV7ZtorC5cGIa4FFYdYQwW4JDfom6oUV2nifkDGrYOcGC6T276B08bJiW5HiWCe06WmCGGuwPSXaCnahrhLtBWfQR5JVVK04FyXYgMnRynZYFCINvrZZKI8yobzaCDaiWxTBDRKMLRDeF1FctbhS+e1WBJVHlV1Z54nvokN4n3KKlHV5SpCtlhjUR7DZbMRHRZ7U7eKBOBXsAYAXPpzL8gUz6NlvJFGxSYccIxDHB3AIDU9Qu6Pxe0mw7SEzbw3dds0lxBlYKGfXh/L2iLeR9ruVGrL5B0Kd5eRGtyc3uj3loQmBToWwKFET1MbLYl0nCrvHCO6pLEIbf4DFk7VUC7aDWCDB1xLGGggS7db4vLQq2krm6n9ov2QmlqpA2fm0Wj5/Ywb2iFhMQeG1BuU9uIV7zMxQ6qY4hPrPur/OtuzZScw3X9Dq96kYqur6rusefJa95wdcp4auX0WPV5/EVF6CuSgfKegey7r1Zu1jL1OTFtBJrRHqVZOQzwqhvKyWuvo/3KJsCzyC7WV3HTptU1BZi/0ZkXIhH8FtmFFIt1WcFZxOYi6/CE1VFbOf/wRvaN033kYQ0zYH9QFtQj0bLvTb9TrltcqC+lpeof8bF6l8T4PHcQ50reB2yiuUpThWI7YHYnixXQomp1jZPrZNUIY9VD9e7Jevz1bWGWLbGmwDifZRcNt4IMTyCbZ0woR3T+wfB9uIAK0T6+5RtNtEWywjQWmXiGMmwXaM+H6I9pReKC8x38E2T/D4EcCufJviOPgeQHkf4vshpiXaLanCOGH+ftujymajfav4o24Xm2yZ28SJE8nOzm6q5FROchwOBxdffDE2WxX3PzOZ1PSDuJdoCFlG73HiNdVVaB12/ENk/l5M7mqiqvJJKd2Gbv8W2HYFK9mcPAi3LhBenBRpTqocFWzMWU23zIFYLREARITH4fY4sYZG0altfzr1HEbbtr0xGEzgb/zqkKai/expDHv7cQBWXHoLay68QTGIcLxTOHgkq375G111FQTlO+u2B7C3aU91736gEwedvIQuX0zlGWPxpmfii4zEHxICGg12d+BZaOw1eMMCHULjqhUkXjwBd2or9nw/nbJrbwTA4/MpDFbr7D/QVVYQ88l7RH7/NWXPvEj1JZc1cwmoqKionDhER0fXutI6WtH1ERun0C1rHibvfnFuNGyL7snahKEUhrSqnRQB2Jw4CF3rCEV8f5myM/EvW1oNOS7dOji8Hmb+9TkLFv8IQEREHDfe+Br9HFX4NVryW3XCHRmB5PMSYiujJjyGlX9No2j+b1gKslloK6cC0OsNfPbkl7RZ8Dsg8em+HWzZuBiAuwEj4NFoMUbEkKg3EFeYQ79fP8Vaks+cG/9LVO5uRn75AklbVwOBXRLLx1yF13joTuTBWHzujZhrKmm9fiFnffI40x75hMr4lCNKy2u2sOaiG2uPNYdjz2g0eEOsKGZ3hOdv3bMDQkNwxCeBJKH1uIjcP4FR0rknOU+9SE2nA+vn+Q1Gyjp0paxDV4wVpYy+5UIid2/Dr9FgT1DuSClv2xmP0YzW5SIieyex2zcQ+9SdAOT1H0bSsvm1YYv6DGbhm5Mbvr8TgMRZv9DzkdsAKDhtDLufeQ1veGQDsVRUVE50rGGRjDr7KLXGhEHHvtumM3jTD+h9dQOXVcYI1iaPYEOS0s3jwk4TAY7aHjlaikpzWLjyV8waE2MHXnHU6fm1OnI79iG3Yx8WXXwHGWsX0PmfX3CERWKPCCxU1bqc9PnqLdyWUPwWCz6jCXtkzH53j0c2bmLPaMOGux5n000PYC4uwGMNwx8WXjuxD1DeuSfzPvsFCCwcCC3KI2HhXDp88jrhWzceEx21FsdkonTyd+Dx4C04+YXrVVSOJxo1MXLRRRcd8HdZlikrK2uSDKmcGvz+++9UVFQQGZNAcqt2DUcQkWV6b/iNQau/x6038dHln9ae6r5lFikFWxTBK83R7Intxuakgbj1jRQUO0I8Xjc5xdvZW7ydLXlryCreiozMjtx1XHXmg0iSRHpKR+75v/dJiM9AI2kg4sgGEJqaHj98XPt/32/eY8voiTgiYo5hjhqPLywcX5hyVVv+JVcDoNXWN3Qjp/9E+t034+jQmdIbbsV2zvnIxsDMdWVN/VW+/rBwZJMJ8+aNxL/yHPn/fbHuZJAhXXz7vTi69yT+hacwb9lEzN234m7fAXfP3k1wlyoqKionD00xCLErvge9ds+myhjJhuShrI4aRLWxbjD1+JvaODryCnbVTooAVFQU8c+qWcRecK8inKzVUR0Zh8fj4vvPnud+v48X9p/bK0nIskz6I5fUhr9wzFUsSMxAlmQe9PtITmtPz35nYLGGgCyTuWIufad+yKqzrwJg8Hdv1k6KAPT56RO6zvyWLYPPZvHEW/EaAxNSyZtXUNKqHa5QZfssUh0Zx4zrn2bSC9cRk7ebSx+7lAWT7mHT8POOmwmqVn9MI3rDanLGXUjOORdT2r0v/7zyOc7oWCoy25Ms7Ew8GEnL5xO5O7CzadELH5E/SOlbfOmDL+Dav5rYVFFGh+lT6P7NB2i9HsWkCEDcykWYSosh5NDuvk4EWn/+bu3/CfNmUrpiIqWnn3UMc6SionK8Y3TXMGLjFFrnr+bnAfeQFx/Q1bIbw9D73NiNVvbFdWRL2hC2Gzs2izvMI8Xv91FQvJc9+zayJ2cTa7f8A0BidHqTTIworqXTs6vPSHb3G6VYjBlanE+3nz6vF94VGsb2YePYNPoiKlKOTAfObzJRk5oOgFZz8HbcbzBS0yqTXZMyyT39bGI2r8W+P55151aGP3gTjph4ahJTKW/bieou3bC17YTPZD5omicKstmMxumg/f/eZtuVtygWeKqoqDQfjWoJ/vzzTyZPnkxoqOBKSJaZP3/+QWKpqNTnxx8Dnfie/c8ICHQ2Ar3HwZhlH9AheykQcJWF7K8VKd2V1o8ScxJ2g5UaUyTZsZ0oNTSvgJfP70O7fyWDX/bzwR+Pk12yE59fuR2zVVw7MhI64pf9aCUtOp2BpITWzZavI+Xvu58jfutauk/9hLl3v3DCTYocCbqSYnyWEMxbN5Fyzy14Xvgv5VdcQ8XESyEivl54T9t2FL33CUkTzyHqy08ov+RynJ0O4Addq6X6tDOoHjaS1Nv/j/DpPxF7+43k/bkQ2XR8TISpqKioHCsWL16MLMsMHDiw0fbAv2h9bnzawNbwnNhOfDr4eSrN0SBp8Fef3Kvu0lt1ZtzYG5n+x4dERsQTFZXI2DHXHTR8TXUlfr8PD1AaEUt0RTFpsgxeDz6dnqyO/dja5wzC+57BOElCZzqAPpYksbvfKHb0GFFrWy266Hb8RhNLJt1J5oq5dJ7zA+FFuaRtXML8y+omaUa/+wg6j4vl5/0fOy+9Br/eUD/9/XiNZn684w3GfvYEqdvXMOp/z9JxwW9MfeyzIy2uJiV/6Bm0m/wBUetXUjj0dNzRsVT0b7yIes7g06mJTyKkMI+EZfPJHzQSjctF7Ka1RO7cgqGqEm2lDb9Ww8pr72Pt5bex68qbyPhjGj6DkU6T38VYWU5x3yHsnnA5zth4Dl6qJw4bHn2JmGULaP/eS2y/6V5KR4451llSUVFpRtavX8+9995LfOZgBo44t9Hxk4u3cvbCtwh3BMTaE8t31k6M7EzqxWdnvkRpdGrtmEGw6+2Wwu/3UeOwUWWzkRCXjmb/+MGvf33EsrUzcbmVecpI7cJ5g69v3kwF2V5eg5H1E65G53Sg97jQuRzEbN+ItTCXrr9PwR4RzZojnBg5EpxxieQnJNUemwtyCcvZQ1jOHliztPZ3WaPBltGWbdfdSUW/01ssf02N5HAQM2kiycuXYiopYt39Tx/rLKmonBI0amJkxIgRWK1Whg2rb/R363bgreIqKiIul4vp06cD0KPvyAZCK4mq3Md5C14l2paHT9Ly94CrWd/+9FoDB2Bl9/PqGzoNaBEcDtVOGzXuKpx+H3ZnFYVl2eQW7ya3YBehpjBuHfsMABpJQ7XThs/vJdQUTnpMOzLjOtI5pR/RSSfGCr7CTr0o7NSL9edfW09j5F8sxQUMevtJKuJTsSW2orxVa4rbdAZRo+UEofj6WyibOInob74k7vOP0RfmE/fq88S+9gJxA4ex5YPJyAal70PHsBFUnn0e4TN+Jumheyi/+HJsPXrjbN8RAG1lBeH//IU3Nh57777kPfsKIcsWYdi+jfjLL6Jg6q+1aUk2G5iVPi5VVFRUTnaeeOIJ/vzzT15//XXuuuuuRsdvu3MRI+d9yHeDH6I0LOBqqdIS28S5PH6RJIkRQy9mxNCL637UH3yCqaYm4FP9k4gYMt+fjbasnNic7RgcNezr0Bt7Y4bUgxaclKW0YdY9rwKwdvzVrD37SpJWLUTr9SjC2SNiiN27jaFTXqfrPz+x/IYHyek34qCXqI6M44e736XvP98zaOq7+ISJlH5fvcm+7gMo6DXo8PPdRJR16UV5p+5Ebl5H2rSv2HH9nUeUjjfEytL7n2PUfVfTdtqXtJ32JT69Aa2n/m7V4o492Tv4DHxGEzvPC7jl3HPWhQq9spOFys49qOzcg13X3g5A6EkmvquioqJk6tSp/Pnnn3Tr7W3UxIjk99N/808M3jAVjeynPCSeOT2uYV90+9owLkMoLkOoYsyguckq2kZW4RZKKvMpdhRSWp6HraYcWQ70rR+/9zvCrPt1OmQZl9uO0WAhLbkDGSmdaZPeg/TkTkg1nkNcpWmpiUti2XUPAEEaI34/yasX0ebXb9k6ckKL5eVAlHfrw9w3v8ZcXIg1ZzdR2zYStX0jprISwndtU7hJj9iznXZ//EDBWRMo79jt+NhtKssHz4fXS/T1V2FcvhS3NYzdFzTtLiEVFZWD02Ti6ypNy8ksrjZjxgzGjRtHUlISd41/O+BCCiBOOSgs5yjFe+JLd3Hx709g8DqpskTxU+vryQsL7LaQBJEgWRB4rieAJhxr9l9blmVKfaXklOygxlnF0M5nI+0X+HztmzvJK9lzwHsyGsw8/Z+f0ewXwtqdtZ4wawzRrTMVrkG0JqHjKsw5+Lx1Ezga4Z5CBEFLnzDZI4qNhgWJvJkFkWaNEFYU1goWNQs1K+P+K2AZuXQ+vW68VHFO1miwt+tIdfdeFE+8nJpuPfH5ZSS3G8njQQ4Rxa2U9ygKODoE5dbg+zAJAz+igJdFEK6tDBLDSopWulOrEARxNV43sbOmk/jTN0QuX0RFn4Gs/d+02vOJQfGjywuJ7tsTyR6YjKt87iXstwR8YuuXLSVmdGDyz5OeQeH0Ochr1pB849VUXngJhc+/SnyEGamigrAuHXCOPJ2qex7A27FTII5PBrcb9PoDGlHBj1EUSBcHSSoEd2Bi+GCxOVGoXKQx4uKiGJooShZmUeYjWIjTbDj0QI9HEAsVBfNEcbFgxHsQ8ykKkYYFlYkYtqG0DiXcHn6g1dhBlAvlFVyf1Aj3mxyh3ELeUNnHWU0HDSvek8Mr1DeH6Fw0VB6iYGzwuypurQ9O62RuFw/FyXzfJSUlJCQk4PP5+M9tnxMTlXTggAU1ikNfbhWS38fwrd/Tb88fAKxLGsrMjtfUiyraA5LQHkpiPSO82lKwaLPQHopi4lKYUOccyj2mIAaNGNcmDIoHC7WKOijRgvsIof4KFp+VZRlnZSVOp53IyPh6YrJaUbRTEDkPjauzRfxCF8JZ7lAci3aJJElIPh/t5v1Cv6/fxFIZcMNb0LYr6869mqx+I2v1zEIE4XqDTouptBhjRSmVrTvg9vqIX7OUM+8JDBxkDR3NyhsfpDohBZ9Q50YJdaPYHgbbUz7B7hB3zOiF96XtvOkMfPpuvAYjcz78kT3mugUwYZKDDr9/R9SebWy48Fp8ffsq4opt2OA3HiPh95/QOQL2hDM6loouPXFFxaCPisRrtVLTuTuVw0bi9ijjlggilbqgshfbM9EGFMVoRbFZu8ImVIYV7TixnXEJ+XQGPRtRuFYUfQ8X7IPga4nvntgkiaKdIsFC3jHhyvcjr0RZ34iCsaJ9GdweiuUTK6S9ea/S9XRkkHCtmA+RGkEEVrSRg+2pCEHEdKsgNisK/4ri9MF2oCj62ipOKfK6t1ApGBssbG8S6tsKYQdf14xoxXFBufJawcLAZba6uDXVVYwf1P6kbBcPxclsDwB07tyZzZs3c+nIO+ndbkTdiUOOEcicM/cV2u1dBsDG2H7MzpxUqyd2qDECKUT5nUjCt62JV15XMutwuh2UVxVRUV1CRXUxlTWlOF12HH4nTlcNE0beTIQ1BiKM/DzjHRYu+7nefUqSREhIBLfc8iZxcWkAlFYU4HY7iE9IxxRnReNxE1mwF7cpBIfegtsUUruzw5qsdEVpD6qz/EJ97xXqDY3Qf/Y5le1lSEJdG28KV9owinrD7yeqtAB7UmrtT6FC+RmD7HuxzxIs2g3gFtrtyKA+SpFQL4j1f3yUBV1BHub1a7H3HYAxIS5wjacfJ/KdNwBwZLQm77b7sF94kaLBKChVpp0Uo3zmYr8keIxEHEYVhbpTgt1p+nyEv/YSUR+/S9UZY7E/8ji+tPTa0/m7csn473+Inf4jfoORvO9/wTmgbsGHUejXe4LqxhrBzhXHfUSC2wqLYAOKbWeIYAOJ7XawEHcrQcRc7P+VC/W/Txh/igkSNhfbndjwQ3vZqHLUPZfKGuV1UmKUY2hivzxEeG+D+56HEnUXwwLYxD5H0Lsmio031F8Opt5YnfA9iW24SPAYm1iWJYJQe0wDAvPBLubF70M89gnfSExQndvY8RSxjgjb/242Vbt4/DhVPIl4//33ef/998nKygICjfzjjz/O2LFjj23GjhP+daM1YcIENL7DHGCVZUYs+xyD10lOfEd+G3kftmxvw/EOk7yKvfy29kt2FW2u/c1ksDCk01m1YyQh5jDMxlAsZitmUygxkUkkxbcmOaUNSQltFC5AMtP376A6HlYmNBP29NZsfeR5LDlZWPbuJnTLRkxF+YRs3UTI1k1U9+5PTbeeAFhXL6fzNRfiyGhDVa++5F17C87Mtsf4Dg6OrDdQNO58isadj2lfNrrqOgPcmL8PY4ELV+eA2yx/aitsb7+H+X+fIlvD8KcEicMa9DiGDseweSP6rD3EXTKBrO9+Y+fqLUiuukZbN3sWmvJyLNN+wDLth0C6ISHIBiPa8jIq7rqPikeebJF7V1FRaVpUm+Dg/PLLL/h8Pnr06HHwSZEDIMl+Llr+MmmlgTZ7Wasx/NP6gubK5kmFJEmYzVbMZmvDgZsBWatl2+nns3vQmfT44SO6/f41CTs2kPDKvfz07JcUduixP2D9VZXO6Fic0XW7gcrbdGTrhCto98sU0hfMImXZ3/z19Afs6zagxe5n76hxpM3+iaRl8xny6C3Y7niJ0rTAKuWB7z9D679nAJCxYCa7L7iSdXc9flCf4Vsefp6dt9xPzMK5VPToS2VSq9oyiBYGkVRUVE48VHvg4GzdupXNmzej1+vplNa34Qj76bbtT9rtXYZXq2fOoBtZ5+vSrP3v35d+yeJNfxz0/BkDLglMjACtM3pQba8kNjqFmFYZxMSlEBmVQEhIOFphDWd0TJ0NZC3O4/xnbyCsJL/2N1mSsIdFYQ+LYv1Vt7N36OimvbFGYKgoY9B/7yZy91YWv/Y5le27HLO8/Is3IYmqBKUd6RgxCt2+HCwzf8e8Zxet772Z6h++Yt8r7+BpldaCmfOSdPmFWP6eC0DEtO8I/+0nbLfdhe3hxzGsXE6PKy7BUFyErNGw49UP0A5o+V2wKiqnMkc1MVJQUEBCQkJT5eWkISUlhRdeeIG2bdsiyzJffPEF5557LmvWrKFz587HOnvHFL/fz8yZMwG44IILWP195eFFlCR+HfUAQ1d+zd/9rsRtCAFKmixfq/cuVEyKpMW2IyWmNT6/Fw2BzugN5/43MOsrrJ4UV1ue7IRtWEPir9+Tc9l15F50JZog49NQmE/s1nWEbFxHTYe6d92yeweSLGPZvQPL7h3ET51CTftO2IaOpHLoaVT37l8rdH684UxppTjOfP054mb+gu38iTgGDMGQloKvTVsqv/4OOTJSsfrB07M3RT/NQJe1h4SzRmHYuIFWF55Nzjc/4YsNrGZBlvGnpeHt1h3d+nW1cTU1NVATWAFUedf9zX+jKioqzYJqExycb7/9FoALL7wQ6nsNOihhjpLaSRGA/LDMk3ohQlPgcFQz+4/PCAmN4PThlx3r7OCxhLL0sjtZd/bldJ35LbFZWyls3732/LAnbsNoq6Cwez8Ke/TH1q03PuP+VWz7V6S7reFsnHQjGX/9htFWgc7tIn3BrBadGEGjYemjrzH6+nOw5u5l4kOT+PKdP7BHxbH5nMsJ37eHqoRUMhbOovXUL/DrdGy487GDpuWJiiH/nIsCxw2sVFRRUTmxUO2Bg/Pdd98BMGrUKMzGw3ctvLHtacSVZZEX147NbUbAtqYbHzgQSTEZWIxWIqwxRITEEB4SjcUUiinEitFgITy0Tpeza6chdO00JHAg7ILEc/AFnhlrFigmRQAkWSakshSv3kDXqZ8e04kRn9mCubQIU1kJI68eR1HvQRT3GUzNoCHYOnVH1h0fa68dQ4fjGDqc8vwS4r/4mKT33yB06SLanjWcvR9/Rc3AwLPR2msI3bGV0F3biM/bg2HvbmoGDaP0+pupt434CNDv3lU7KVI9fBQgQ2oqIVMmY7v/IUK++gJDcREAmz/7AduAIZw6DmFVVI4PjqrWOvPMM1m/fn1T5eWkYfz48YrjZ599lvfff5+lS5ee8kaPRqNh8+bN/PzzzwwbNozV3/922HEdpjBmD7m5WfI1ov14Nu5bTllNoFEa1+8q0uPaK8IcynXMqUTGh68Ts+AvvNYwdt3xkOKcOz6R8rRUykePU/xeMOkaSkePI3TjOuK/n0zk3FmEbNtMyLbNJH7yDht/mYtjv3C5ddsmjOUluCOikMxWXBFR+MxK11fHDF9gC58ky4RP+57wad/XnpINBqreeJuaSfX9gXrTMyic9hvxF4zHtGUTKddcSvb3vyJbQkCWsZ47Dqkq4IpA1mqRfHVbBcv/8xiy5Ti5fxUVlUaj2gQHJjc3l7/++guASZMm8ePnOw87bqU5lgXtLqD/rukYfC7O2PYVu2K64dWemBpXzYnX62HZ0t/5c9bnVFWVodMb6N9rLNZ//ZofYxwR0Sy/5FaF+1DJ5yVx1SIM9hoS1i2HL9/BZzBQ2rE7RlsluUNOZ9W1dwMBF55GW0Vt3OL2h9Y81LhddPnuUzpP/QyPJZSdZ05g+/Bx1MQd/o4lEXd4JHPf+oZuH72MwwP2qMDCh6JOPfnl7WkgSWTOm85pL95H228/xRkdx47LbqiXjik3m+hlCykZPAJX/JHnR0VF5fhEtQcOjN/v58svvwTgsssuo3BRI+Jq9fw5qH592tRUOyuZtfw74iJS+O+1kwM/BruJsTSd/bFl6DjMlaV0mv8roeXFrBx7JWvOvBRrWSEarwepXXqTXetI8BlN/P3q5/T68CVSZ/9C3KrFxK1aDB++jDcklB23/4d9F199TPMYjD8klPxb7qb0nAtod+9NWFavRGurW5wb+/csuj5yhyKO9c9ZmNavofC1d4968aanbTsqrr6eiM8/wbx6BbsWrSHEpKPy8f+CwUD19TfiLKsk66Gn8cTGoSsvQ19cg+R04G7fEQyqbaui0twc1cSIKk/SMD6fjx9++IGamhoGDhx40HAulwtXkGsdm8120LAnOuHh4Vx11VWHFXbYislUhCWwvv0ZzZqnUFMY9499lT/Wf0uNr5q02HbNer0TmfxzJhKz4C8Spk9j9833HXZj7YmOpWL46VQMPx1dWQnhi+cTtehvzFs34QjaXdL6i/dImv2rIq4jOpaqjHbUtGnP9pvvxxcSKibfMmi1bHnpPZy33U74t1+hy8vFWFKENi8PTXERpi/+R83Fkw7oJsPTsTMFv80m7vxxaCorA5MiABoN3v4D8McnYLv8atz9+oMkYVi6BPOnH1F5213KldAuV6DM1Yk6FZUTjsOxCU4Ve+DTTz9FlmWGDRtGRkYGcPgTI0gSS9qey5q0kfTOmkONFHJKT4rIsozf70Or1SmOV6+ew+zZn1NeXgBAbFwrJlxw13EzKXIwZI2WP97/kfh1ywN/a5dhKS0ibt0KALwmE+yfGHFbw5n/+Ju4TCE4omIoa92xTmPF76/1yf4vadO/p8fHLwUOykvo/b/X6fX5G+R1H8DmcZPY3WtYvTiHQ01iCkueeJOyfcJO6P1t9e7TxhFXnk/nj14l/bfv2HH5jYCMsayYjD9+JHXeDKK2bQTAnpLG8snTcVvDUVFROTlR7YE65s2bx+7du7FarUyYMIEPFs05ZPioin103TGX+b0vQ9a2zO6ELTmrWLp5Nka9mR5thxJmiWy2a3nMISybeAsrz70Wi60cNzocYVHYwwOaPNakY982OGLiWfXkG2y97k7il84ndtViYtcsRW+rpKZ10OLSQ4mNtzDulFbs/n46ca+/iDeizg6S/H6csfGBfHfujN9iIeb9N4n4eSqGgjyyv/0loPd5pEgSJc+9gs9gpGrMOHxR0fiDNCE8Xbuz57UPa49bvf4c8d8HJt88rdLZ9+ssSE2pl6yKikrTcVTi6926dVN3jByEDRs2MHDgQJxOJ6GhoUyZMoWzzjrroOGffPJJnnrqqXq/n0ziah6PB/0hGpVXX1ugOG7/7beMW/EeAJ+Pep4Cp7IjrwkSBpKsygERX5ZSZFCyCiJCorhqsKCjjlpBeLfPhVPnJtwc1HgKAqlSsLhq5KGFE0VxVZ0gchosVGoS0hJFTHWCyJIodhQsJKURDBJRwEsvCF6GBeVLFHty2qoZMqoX+qpKKnr0JffdT/Ek1YmNioJowQJgouiUWP2Ehxiw3nU7uuXL0JSVoikpQXLX+VfxG4ys2ZgNWi3JMSHoVq3En5SEPzGJfcXVirREwcfg8vH6le4pdMIgiCisGSw8KsY3G3Qgy4R/9C5VF02CaKWQpHiPhvw8Il57kdKX3gCtNiBwtd9oLK5UCtcqBM+cTkLffh3zKy/hS8/A8eRTOMaMqzU2xXIXBfBEgdRDIQrZi4KoIkcjxn4ooa3GiJIdiOB3VxSbbYijuSeRYLFxUWhOPBYF48UWOvhTPtryCUZMK6cB0bvgfJl1h85HY8pSJDgtm81GfFTkCdkuNsYmOBXsAQi4y5g7dy5ff/01kyZNqnf+lf/7sfZ/f45S3FcKUbZ/ctB7Ivl9+B1B76BQn0mC0DTCNyiKryoQ60JBwLiekLtOEB8PFjQUPwsxrpiPMCNOZw0ORzU+vQ+3y0FZaT7bNi1j64ZlDB12IcNOuxiAGo+NJ+6re7/CwmM4fczV9Bs0Hp1Oj9ZUdy1ZKB+NYB8YBPehwcKuerEsBVsjJlbpDqVCEPWMCqtbhVlcoqxzQoLtOllGv3Mn8ZtW4zFbyO/eH1+M0tFEZFA+Q7dsoOtbzxC7eik+vYHq9DYsmBJw46pxu+h/22XsGzcRWaslZfpUYlYuro0774e51KS3AVnGVJhP5Nb1hG/ZgF9vYO9FV1FlUX6DJqG8gkU9xXanxuGm2yev4dcb2Hj17aTGhBCyeT29JgZcosgaDV5zCPqaKor6DGblO5NrXZLECwLyotiq2MaXBAlVt09RDqJlFyrtpVJBEDVSeObBAuoJgm0qinamxyu1awqFtiR497Vot6YlKOOWC+9LsKBqjSAYLOIR2iHRJgoW/RaFWosqlLaY2A6Lwq3BQraiqHmwiDmAWTgOtg9E8VRR9LZSEIH3CfcYnG/RBo4R2nDRIqpve9TddK4gTuwRxJ1FQd02ScHfiPJKHq+y7PQ6ZXmJ4uzaoDo3+FurstnomJ54QraLqj1QnyVLlvDEE0/Qrl073nnnnXrng8cI9C47lz13DdHV+Sxtdw5/x56tCKsJFQTVhTECf0VdnSW7Dq1Xqgn6bvyyn3cXPcW+ij30bTWcC3tejyaoDZNEV9vRwpiAqBNlEfqpQd+7XrBxvEI/VC/sTtGZ69IKl5xE7tqKO9RKeZtO9YS4xbrRIaQtB9lEsmAfhQr3KLY70SF6rJvXU9W5O0gSLq+Pdm89jyMphdJJ1yjCdkpTTiyFCvVfaVD9L4ouu4V6JD7i0J4VbEF1pzgWYbMf2I+rZf7fJP3fldhvu4PqBx8OxF22lIo1G/GbzMh6PTqLCVmnxxsejrNdB8KilG2ty63MZ2lQe9mhVYTiXHB7F/30Y4R//SWSx4PGXoOrSzf2/fwHcmhdGxl+iLEarWCrmvTCuEbQe2/UK8tDHCNqCGfQPZpEO1agoVHnYBOyXn9ZeG/F82Lb2ph8OIX3y3yI+2ioT3s0ffHmJPg5OYT3MrEBYfujuaeKGuX3FRH03trsSjs2TOxTCBys7FXx9eOc9u3bs3btWiorK5k6dSpXXXUV//zzD506dTpg+Iceeoh77rmn9thms5GamtpS2W0RHn/8cWbPns0zzzzToMhcRMk+zlz9KQBL2p9LcXgrcNZ15DR+H6M2f0XvvXPYmDSIuf2uxWU4fH+kh+LfSRGf38vXq96hsDqXm0c+SYQl+tARTxH8RhObnn2TLg/fTsTaFYSePZzSiy6nYtx5OLr2OOr0q954u/Z/k04DNhvabdvQbNlM6Z7cut0YskzEzf+HbttWfImJmDp2o2TiJCpGjTmi1Z5HhSRReeNtQN1YV8gvP+IYfhq+8AhFUF9yCqWvvl0vfoOXqKnG9M5bSA4Hui2bsV48EeOAgVR+8wNydEyD8VVUVI4djbEJTgV7AGDOnDnMmzePwYMHN0l6Gr+XURu+onXhWj7v+zgOw7ERF28u9mZt4u03bjro+e3bV9ZOjFTZSgGwhIRx+tirGDB4AgbDoTs+xzWShC05HVtyeu1PB+zAyDKd33qG1lM+qf1J63Gj8dZ1vvwGI0s/+qG23c0ddyGWvH2k/vQ1psICatLboLdVELv4b3o9pnStkfb95yx54SPKuvU+4vtY/3/3Kn6q6diVwvEXYOvVj219R2IsL+G0Gy4gbuUi2r/7IlvvfOTIrqWionJcotoD9Rk4cCCzZ8/G5zv0hCfAqB9fJ7o6nypTJKvajIHDlCs9WjSShnO6XsF7C/7LqpwFjGg7nriwVg1HbAFMlWWc9vpDpK6p80G25L5nqWzVmvg1i0j6Zzb2hGS2XXlL82ZEo6GqS4/aQ12VjVbff4HWYWe3x0XepGuR9SfG7l77sBFk/bUIS9vM2t/M300h5rNPDhhe1unY9+dCPJ2O3iVe6WNPU/Hks+j2ZpE0diTGjetJvO5y8j/7GvlYec1QUTnJUSdGmgmDwUCbNm0A6N27NytWrODNN9/kww8/PGB4o9GI8TgVn24KZFnm22+/JSsrC7vd3mD41J1rMfhceDV6VrQ9u975EE8lvfb+CUCXvMVsqDydfbEdmzTPNe5qSmoKKLeXsGjHTM7ufuzFSo8XSoefwfJvZ9LlgZsJ27yeuI/foXLs+IYjNhZJgvBwfP364evXj8K8ui3kUmUl/pDAZJg2P5+I/Hwi5s7CmZZB8WXXUnXJ5fgjIpo+T4eB9X+fEPvg3fhiYih54hmqJ1561NuI5egY7K++gW7hfEyfBSYNDUuXoF+6BPfZzVD2KioqTUZjbIKT3R74F41Gw6hRo5okLaujlF67Z9MzK6BZEmUvIPcEnxhxuRwUFGWRlhqwbVJbdSQ2rhXlZQUYjGYMRhMhoeG0bt+Lthm9yWxTJ1yekJjJY8//hDU8Gr3eiM/d8GDTyYDG4ybju8/r/W7ds4OR5w7GYw1ny+0PUTpgaCC8y4ms1eJISmX7rf/BvG8vnV95nNRfvwdJwmc0UZOWia1NR5Jn/oSxvJRWf0w78omRAyFJbH8hsELaVenEFRXDisdfw1heSpufvlInRlRUTjJUe+DgaA/giliBLJO5KbDDb33GadhN4VBZfeg4TUhKRAYhBis17ipyyncSl3R8TIzEb12nmBQBGPjKI/R59zn0jhoAvCYz265oHq3Wg+ENtZI77kLSvv+C1i8/RdI3n5N9412UnH4W0HyuyJoKb0qqov/ubd+RiiGnoXE6kLwetF4PkseLvqgAra0Sb2br2rCakmKwRh5V/9+blk7BlKkknTcWyz/zSBl3Bvt+nYVsDQtse5Dlll8MqqJyknJUEyMNNl4qtfj9foWP0FONXbt2kZWVhV6vZ/To0Q2G39pjJP1m/I8IezGnbfiamb2VompVxih+6nUHKeXbqLDEsy+mQ5PnOcwUwZntL2TK6nfZlLuSs7pNUgXYg3CkprPyi59p/c8fSB4P9h51AwWm7Vtxtm3frD5F5YgIyuYtRKqqQrd5I+4ffyF2yueY9u4h9bnHKN+5ldxX6m/HbgncHTvhbtcew/ZtxN9+E2FTJlP8ylt42rQ9unQvvgTdP38D4A8Lw37fg7jH1p84VFFROb45lW2Cf120HG17Gle+h87ZC0kvWk9MVV7t70vbjCM3vM1RpX0sKa0oYPGq31i2biYajZbH7v0Gvd6IRqPhnvs+Q28wohO2vXttgvsZnY6omFNPvNtvMLLog+9o8793iVm7DE9oGJaifAAseTlATq1rKoDEOb/R7Zn/UJ3eGndUDNErFyPtd5W5b+wE1j3+CpLeQPjmdSTO+Q2/xcSOSc0v8ps3fDTIMiVnjmv2a6moqBxbTmV7AAK7R9u1a0daWlrDgSWJ5aMuZ/j09+m743c2tRpKGYd2o9SUrMxeQI27ilBjGJ0Sm3CC/CjZ228ES659gN7fvofBHpgo8mu06B01OKLjsGW2Y+ON9+/vl7egRrAkseWB/1Kd2Za2H7+Jed9e2j92N22fuh/v4CFU/W8ycmxsw+kcJ9hvvJm9511ee1zrOlGW0RUXEmIK2GaSrZLks07H3r0XBS++jj/0yBfquHv0Iv/7X4i/5jKcffoFJkUAqbiI6G6dsH05BefpZx75TamoqABHOTGyZs2apsrHMeNINFI6deqETnfwonvooYcYO3YsrVq1oqqqiilTpvD3338za9aso8nqCc3s2bMBGDRoEKGhDW8B9Jgs/N7nJi6d/wxd9/7DzsRebNMqJz92xvdiZ3wv4OgHWA5G+9huaDU6SqoLKKrKIz4sueFIJwmGfdl44uJBd/Atr7LBSPkFlyh+M+7aQYdzRlJ+1rnsffkdmntjmmy14uk/kNzMruTffBdRv04j7qvPKLvs6tow2rJStLIfX2xcs+blX1wDBrFv7mLCP3ibyFdfxLxkEcnnjCZn7iJIOrp3yHXjzfjT0nBdez2eKNWFlopKU9Ec9gCoNoHI+vXrGTNmDOeddx7vv//+EaVhdtmYNP+/6H0B37V+JPIjW7Mq80y2pgyEGk8DKRx/7M3dyrwl37Npx1JkOTA4HxOVTFlFAfGxgQEjveHUWTl8pJR368OSVz9D43JiKchF57CjlwLaM8ayEirb17m5CN2zE43XQ9jOrbW/FQ0cwe7L/o+SfkNAkpAg4Ofb62HNC+9Tk5reLPnWVZQz5K7/Y8NtD1PZthNIEp6I439FrYrKyYhqD7QMXq+XiRMnUllZyZo1a+jRo0eDcVYNv4jMJXNJLd3G2JUfMKX9XchS86+a98t+/t4xHYARbcdj1B1H7ikliQ3nXsmGc6/EqveRsHoJrrBw/HoD9i49ju2uAo2GnIuuovz8S0me8inxv3yPZc9OdFu3IgfpckpbtiC3aXN0IufHCknCG5dQe2hesghdzl7Cs3Zj2rCW3Pc+xdWl+yESODSufgPImbMAX2Sd5q1+xQqkmhpCHnsY58jT1Z0jKipHyVGPWFZWVlJZWUlsbCxms5lp06Yxf/58unfvzrXXXtsUeWxWevTogSRJ9QSSD4ZGo2H79u1kZmYeNExRURFXXnkl+fn5hIeH061bN2bNmsUZZ5zRVNk+4ZgzZw4AZ56pnNF+9f7fa//3765QnNtnac3yjDH03/MHyQVb2Nm3nzLRICEg765SxSlJECysJ7YqCAdqEusma+SglZdmk5XW0Z3YXryeTVnLiWs7HgSxSIVQa7lSsLEhMVXZonzvTEHimgZBCNFzCHE0qC+G6FWIZynDegURpWhBEC7i28m0f/xevCGhVI8Yhe30sVSNOhNfeAQGQZSr2qEcgIpdswb8MtE//4DbYMbz7ru1O0dqhHsQBcNFbacqIe1gQXlRaCwlNhRiQ+GOW7HdfgvRem3tdc1P3Ifhh+9w3fcA/p49Ka9ygizjj4zC2asPRqMgcidkRO92Evb91zh698PdpRsJkXV6Nk6PMmydsJoG+w13orn0UqwXXYBu00aSb/0/HLNm1+mkoBSQE8tWFIgzG7TQrzf0640ZEGT9FBxmlXZAfKI4fQO7Aw8ltt2UImSNFvE+ik2Njcl3g/kKEoRrrGibOOd7NGXbmPJLjVKuwBOvJQquH+o6DYmxB58vqlQK+bYKyof7KETcD4fmsAdAtQlE5syZQ0FBAdnZ2Yrfg+0BACmoPhTbu5oaPV/3eJD+2X+wNa4vWVIaTp0FfMDecgh6VyRBkFF2KIUAJaswuCGIASqE3jUNLMIQ7QNB9FRZMe/XuCjaxa/zPmZXzobaM+0yejFkyIV0aNcPzb+d3aA23ivkUR8hCCsL+dAJNpA/SGhSazlUHuuLvuqCBFK9DuU5nyCIWiQIWuoEcdXgNj5EEMhNEuogf4QyX9nFNYrjYDFRrUbCpzNQmZIRyJfw/thLA7Za4aV3smrURFIL92DJ30dJrwHUtN2/CEcGZJkqlwdXVCK/f/EHtvS2xAh2XKkgEB4sACraKaIQd62It99PxwduJWbFIsKfvZftsxYGfLVX1BC6YQ0at5uIMBNoNHgTEvGk169zREHwYMF1p+BKLSFaWbZtBHH2UqEeNgSJs1oF0V9R8FSsPuOF5xgsuC4K94oiwQiLbJOi62wv8X7F4zaCCPz8TQWK4+D3RbRNxXsUn1tZlbJ84oIE6TdmlYEsY87NxrprG9WnjcJv2n/e7ydEsO2rgiZxQ4TvQxznig0/tPB9u+S65yjak6I9LQq9iwS3xSkxSg1HMa24CGW+gm11sU0PNR3kG/j3vJCvYKHW4Pv1HY2Rexio9kDLsGLFCiorK4mMjKRr1661v4v2gDhG8Hvn67lm0WMklu8i0VxKYVSdCyO/0Bf37VaOEXAIW1IjingHiVhr0HLNkPtYuGMmA9qcjqQTOhmiXewT3h3RZncrjw2xdX1xjSCIbRLqUYvQpgeLfPt1GvKGnF57bBbyaQiaRJK8XlJyNhO1bgV+o4ncM85BG1+36E4UaRbb0nAxH4INEBo0HmPQGym+9S6Kb70L497dmHJysBXtb8e9Xnqcfgb4fZRcfwvF191MXGydiHKIMK4TqVOOW4ii32VCuyzWUcFEhCjTqhJsRL1QfolB7ZDDpWw7/n1bHKPPIv+XmcTfeDXG3TvJOHskjjvuRn/bvciWwLN0C+MHYlUjCoD7W6UoAwwahGwyodu8CfOs33GPq3OrXU+MXbAJgw/dwvhRY8XXGxJcPxRiHze4PRDzodUojxvqazbmuocSWxdp6Dpi2WuCCvto8txY6vX5g0wP8ZlVuwU7X8ynUA8Ej0+J75ZIRMjBF1g3JLYu2mbiOGpt/pqoHI96YuTGG2/khx9+YPny5eTl5TFx4sTa1fslJSU88MADR53J5mbZsmXEHsY2PlmW6dKlS4PhPv3006bI1kmD1+tl7ty5QP2JkYZY2PZ8sqM6sie2G8fKiVXnhN6BiZGCVZzW9uTXctA4HGS8+QIAuppqImb8Qvgfv4FGw+6vfqSi76BDxi8edz5+nY4O995I4vdfUhVuofzJZ6ElfeRKUl2r53aj3bgBqboa05OPAyg2XdvOv4iK9z+Gg6zykhwOUs4bg2n9WgAK3v0Err7isLPiT0un6qtviBg6EN2SRWiXLsE3eMiR3JWKikoz09T2AKg2gci/O0gbaw+IFFrT+LVzQIzcX9GwdtnxilajZ1fOBjQaLb26jGTEwAtJiE2HBgYuT0ZS//6DTlM+Yul/XoSoHs1/QUmiJj6ZgiBx1QN1j53RsTijm8/dR/qn7xCzaB5+o4nsNz6sHRFPe/1ZUj7/oF74kv88hu36O+r9rnLsCcnaSe8HbsS6ewcAa36YRU3n7micDrpdOg6d182uT6fgTss4xjlVaQjVHmh+/rUHTj/99Ea5aK+0xDK92w2Uh8RTFnXoyaimJD4shQt6X99i12suNC4nPV95nKR/ZmKorqr9vXDwSGSa3xuBKy0Td1rdZJZp7x7w+9AXF5H4/JNETv2Gqq++wdehafVjWxJXvwFULFpO6F23Y/z5Ryyvv0LatB8oePsjnP0GHHX6ckwMrttux/TKy5hffB732LMUCy9VVFQax1FPjKxatYqIiAh69+7N22+/jSRJnHnmmcyaNYsvvvjiuJ8YGT58OG3atCHiMEWahw0bhtl8qHXaKiJz5szBZrMRExNDz549GxXXp9GzJ7ZbM+Xs8GgfF7j+vord+GX/0SxCPyEwFhdgKC0GYN0n35GwdjlaWyWRP32Hdf7cBidGAErHnMPOKhttn7gP68cfYFzwD5UPPUbN8DMPOgHRbBgMVM+bj2Hq9xg++hDJYcfjk5E8HoxbNuEPDz+kIaHftqV2UgTAOu073I2YGAHwt21H1cefIcfFIw1uuPxUVFRaHtUeaH5KSkr4+++/AQ5Lb+ygyH6i7QWUhpz4OhoJMa2YOPoO2rfrS0R4y7h7PF7JnPkje0ZPIGXhHMr79DjW2Wkxohf/DYCzXQdcreu0yErGnls7MeJq1wHj9oDLr/CvvgB1YuS4JHbx37WTIgA9J46mov8QQrZtRl9RBkDY/HmUXKFOjBzPqPZA8yPLMtOmTQOOzB6odafdpLk6NH7ZT4W9hKiQE7utthTlkz7jh3q/p/34NTEbV1M46ixyJ0wC7cFXezclztZt2bJkA5E/fU/iC09h2rENw9gzKPt5Ot7uPVokD82BHB1N1eQpuGZMJ+TeO9Fn7yXy3TfI7/ctAFJFOZqqanypqUeUvuu2OzG+9y76NauxPP4o9mefb8rsq6icUhz1CGVeXh7t2rUDYMOGDfTs2ZM//viDjh071nOTcDwyb968RoX//fffGw6koiA+Pp6LLrqItLS0Rq0GAdD6PQzbPpUV6WOosSY0HKEZsJoiOLvTpZj0lsPeUn0i42iVwbYnX8ZrDaNiwFCk/du7JZ+XkqsOf5VM4cTL8YZH0O7ZhzBs3ULsVZOonj4XZ49ezZX1g6PR4L3kUryXXBrIW3lgdbFx/VpcnbtiPIRGjbt7Tyovvxrj2tVoKyooeey/hB009MHxjD8XgH/XAGvnzEaTtQfvNdc3q0i9iorK4aHaA83P119/jcfjoXfv3nTo0KHhCAfA6izjolWvEOqq4P2BL+LWtZzwanPg8bgw6Iyn/KQIwOJHXsFQbcMem0Disc5MC7L9vifo/X8XYdmwloyrJrL7659Ap6O6a0/WTJ1NTaduxEWYSbloPJaF87FdcNGxzrLKQci+4HKQJDK+/QxLbg4AEcsWAuAzWyi89W5KLr3yWGZR5TBQ7YHmZ9WqVWzYsAGTycQFF1zQ6Piti9ZSYYmlzNoyO0aqnBVMWfUepTWF3H3GC1gMDWumHq9Up2aw5Nn36PLhy1iz99T+3vbLgO5b5OplaB0Otlxxc8tlSq+n/KLLsJ0+hoyrLsKyfg1R48dQ+dFneMae3XL5aAbcZ4/DM2w4msceo+yeB2t/N03/lcjbb8bTpSuGMeOpPms87vYdD3tcQI6Lw/7eB4RcfSWWN1/H164drquuaa7bUFE5qTnqiRGDwUBFRQUul4sdO3Zw3nnn1f6uUUWAVIBevXrx3XffHVHc3nvn0DdrFm2K1vLJWa9BC4irieg0Ooa1PqvFr3ssKbjwsnq/5T73WuAfrx9kGeOenVg2byRuwzpCtm+hss8Acq+/XRGn9Mxx5J91BtZ338KwaYNyUsTjafndIwKubj3qDtxu4s4fh2HjhoCjT1nGMXQ4hf/7mqIXXw8YKT7fofPscBCy4B9CF8/HFxJK2VXXQ1T9QTuppATzddegKSpC++ef1LzzPnJU1AESVFFRUTk5kGWZzz77DOCoNOiqjBEAmHwOeuXOY2naidth9no9vD3lXvKK9yAZdPToPOJYZ+mY4rGG47GGNxzwJKOqc3fWvfEZPW+7gtCliwhduojqIcMBqOlUt2s69/NvMS9bgqtL4DfJ5cK6fDGhK5ey59b7awdTombPIKokj+oRowKDLCotht9oIuvS68i69Dp01Tbi87Ox7NqGJyqa8iEjCRE1jVRUTlH+dSt2/vnnH/bOnH8xuas5a8PHGL0Ovh3xGLkxR7bQojEYdSZsznIqHWX8tu4rLu57U7NfsznJO20s+UPPIOPPXzGVFBK7bD41rTJxpbemOrMtZQOGQfNJIBwUX1Q0u7/+iXY3TMKwZDHG2bNO+IkRANlqpeSZFxW/aQsLkbVa9Bs3ELNxAzGvPIejVx9yv5oKlgYWy3g8SFVVeC66hJrt2wl57pmAB4z9i3j18//BOOM3qh9/Cswts/NHReVERpKPcgn8oEGDWLZsGVarlaqqKt566y1uvfVWoqOjSUhIYNOmTU2V12ZHlmWmTp3KvHnzKCoqwi8IEP/4448tlhebzUZ4eDiVlZWEhR3J+vTjk1ffWKD8YVd57b++PZWKU1a5kmtnP4DR6+D3PjeyIXIAIa4K/JIWh8GKFCxyZlBOmPhLBH/jgrifiBQkvKWJV4oMSoIAGkZh10uQuJoUKjQ8IYKPcEHkXIpWbrvWBYkKiUJrJiFtUZhbFDcKFrASxdLEsHZBPCwkSGhSvE6U30n6dZMIWb6k9jdZo6H4x+m4hg6vJ1y+r7i67h72C2sa9+yi3f9dStmrb+EcNuKA1wUQso0p6FmIedYKQlE+IR/B4VNjlat8SqtchD39BNbXXkbE8/obFF71f4rfNMJKDvO3X2P57hsMSxcjOYPEIRMTqXj+FZznnFc7YBFtNYLfj/aNN9A98jCSx4Ocmop7zp/4W7c5aJ4BdFrldRsrkBaMW/gmRKHOlkJ8NxsS8Qqm0WLsQTQk1NVcAmlHI0ze1NduTD4aQ2Pv6XAF5W02G/FRkS3SLqr2QNMza9YsxowZg9lsJjc3l8++2Kg4L68pVBz7g0R7JaF+6rBpLuO3fIJTZ+Hrng9SEq50QyBX1wlvaiKVbaksiPnJLkFsXRDalMKDBjKFOhhBfFwShASlGGUbr7iP/e397wu/YO7y7zEazNw16Q1iI5MD583CJHz4IQZURQF1oY0yCHG1CmF75bstCrXrhHY5NLTOjvELXQi7IArvdSqP/YLYqClItNpToxQ8jRQEwoNFmUN3b6fV91+Q8OcMSvsMYss9j2MIEiYVhSJFQWe3IBBrC8q3JJadKBAu2IBeQWDXGdS2ioKe4SX5xE/5HI3DTt5Nd1EWGqk4HztvFh2fvJfcCy5j1x0P4Q1qH9smKyeMiv5ZRo87r8Gcvw+AVT/Pw75fOL7L/11C5OJ/ALC360jhRZdTcs6F+MIjAIgIVdqiFkHYVnzNg/NRUKa0r0WRTlFMc29hleK4S0Z07f+iSGm+kHZ8pPL7CRaJrbIr35dwQUBX7N6KzzVYUF0UUxftIZvwbpYJouehQffsE94HMa1IoR8QnLa/sADJ7cGTGHARWGP3EDfzF+xpmVR36lYvrmg/Ba9HzExQthXVQr0XLaSVXVStOLYE9UfE65iEe3IJ4r3BJR0TpryOU6gDPPWEfzXCcd21gm1im81GRmKsag+coHg8Htq2bcvevXv566+/WLNe6C8HjQ9A/TGCM7d8QY/df1Eclsr/+j6BVvZh9lRTZYpCEtrDemMCQciC6LBYT0jhyjoo25XF+/P/i4zMzUMfJz2izvWhRujTS5FCmy0KB4vHQWMGuihlWiEJVsWxRRhfCG6HxD6+ONAnCqaLAuuWoDYuTEirWmjjxb632IdrFVfX384pVtYxYtthFdrpUL+H0Ndeoubm25D2a/1o9uUgh1pr27J/iRTGSKocynwG11mHEog/EOK4RnC+ReFygzBmUiqIwFuDnnlt21Bainb6b/Djj+j+/BPJ5cJ94URsn32psOVMHieGl19Cs3Ilml27kPZmIfl82D/7HP+kSRjuuhPvRRfhHzyEGqcX88cfEnbfXXg6dcb1/Q/IbereVXFsJ5iG+myHEhcXR5WPF4cYLSl63hiqhfdUtFWDOZp+eUMcq/JoyE47XJpqfOCoS/jRRx9Fr9djs9nIzMzkiiuuYOnSpZSXlzNgwNELC7Ukd911F1dccQV79uwhNDSU8PBwxZ9K47DZbNx+++3s3r37iOKfvuZzjF4HeVFt2JQ2lKE7p3Hb/Lu54587eHDONbTPX9bEOT4wPr+PdXuXsDV3DWXVRS1yzeMWv5+MqyYSsnwJsiRh79mb6quvo/y1t3ENHoo2J7t+q3gAEj95B9PePSRceTHGNataIOMNY3v4cQpXrKNg5XpcW7fheSkwSaJ79BG0e7MOGdf0xwyMf89FcjrxJSbiuGQS3szWaPPzsb77Zv0y0Wjw3XMP7oWL8Ldpg5STg+6Zp5vpzlRUVBqLag80Pb169eLhhx/m/vvvJzIysuEIh2BLbF/yrJmYvHYuXvsqoc7yhiMdp4wedDkZyZ1xuR1MnvHiKeGy80jRVVfR5/YrGDpxFGk/fImxvJT4f2ajdTkbjnwskWXaPfUAPU7vR9LHb5Pw1ad0Hz2A6Pl/KYIVnzaa+X9vYNcdDx0wGU1ZKeZ5fxLx+sv0vWYC5vx9uKJiyD33YuSg3awlZ5xFxbBR+I0mLNu3kPHMI/Qe2p1WLz99WDaaSstiyNlLx+G96TWgM63vvbn2GWlrqun84C30vWQMPa69AG152THO6amJag80PXq9nk2bNvHll19y2mmnNSpuctk2euwO1J1/9biKMGcpt/1zJ7csuJcOBc07NpAW1ZY+acMA+HXD5FOivU5+5jF6ZsQQNfWbFr2ubLFQ9eiT+KP3i8HLMmG330JM726Yp3x18rRl0dH4rroa+9SfqJkzF1mrxTD1B/QL5wfOyzK6ZUsxn3cOhuefQzdnNprdu5B8PtyXX4FnwvkgSbjffAv/4CG1yXq7dsUXn4B+8yZCBg1Au2jhMbpBFZUTg6P2Y3PWWWexb98+srOz6dy5M0ajkc6dO7Njxw6io6MbTuA4YvLkyfz444+cddap5TapuZg9ezbvvPMOf/31F5s2bWrcLKAs06p4MwDrMkeCpKFL/mJFkC65i9iW2L8ps6zAL/vZmLOcWRu/p9iWB8CVw+8jKvpU8nytRF9agnndGgAkWaZq2Ejkc8/F060HIVMmE/HgPZT99wWqrjq0m5S9j7+AIW8f4Qv/JvKZJymY9ltLZP/QaLV496+mkK1GfHfdhfbXX9EsXIDlu2+oeuDAAxUAVfc+gKd7T5zjzoEO7QNLJJxOQl59meqzz1Eu4wtC7t0b/6WT0Dz9X6TtOw4YRkVFpeVR7YGmJzY2lmeffbZJ0pI1Wma3u4yrVz1NqMdGUuUutpv6NEnaLY1Wo+XSMffy3KfXkle8m6qacsJCVdeKB8KSvZvY/ULl/7Lxoeewp6RjPXCU4wKtw07CL98j+XzIGg0+Swiy0UjCzJ8pHTZKGfhgtrLXS/wN12BZ8HftT2W9B7Du1Y/xhkdiCtqdUnDRlZRddg1aWyUxv04l9tsvCdm+haRP3sGRnonnmiN3ZafS9IQuW4QxOwuAsBVL6NcuHldiMsb83NowkSuXULJ9KzX9Bx2jXJ66qPZA8xASEsIVV1zR6HippdsAKLEmkxPbkS5b/sToC0yOty1aw7bMwU2aT5EIc2CgvqAyG4/PjUFnbCDGiU34zOl4wyOI+vE7ss+68JjlQyovR5u7D01JMRG3/B/myZ9je/VNvJ06H7M8NTW+vn1xPfY4+smT8QwI1PX6WTMJnzihNoz74UfwnjYSb0YmclJSnc3g9yvGGzwDBlE2fzHhV12GYekSjPfdg33xsuNnG4eKynHGEU2MvPXWWyQmJjJx4kQAYmJiiImJqT1vtVqxWgNdlB9++IH8/HzuuOOOJshu8xIeHk5mZssIeJ0KLF26FIARI0Y0fmuUJLG29en03/YbvXfMZFPaMH7qdisRjmL6ZM+hKDSVhR2ar3HeW7Kdn1f9j9zygCCZxWjl9K7n0yW1b7Nd80TAExtH9vv/I+71FzFt20L8my/Dmy/ji4lBW1ICgHnuHKquvOaQDa9sNJL1zGt0G9kHy4K/0W/dgqfDceYHW6PBPXky2hnTqbr06kMG9XbrQfV+vRLd/vvWZu+l5j8P4z3ExjzNnDlonwsMFPr26zOpqKgce1R74DhHljlz+9cA5Ia1Zmdsj2Obn6Okyh7Y8WIxhWENObrdNCcztk7dWf7u16T+9A3WnVspHjSC3PHHvxC5zxLC5pfeo+NDt6N1Oii84noKrrweR1llw5H3o6myITkdyFotjmEj2DNsLPlnn4+sP7jvcF9YOIWXX0fBpGtIe+4x4r+bjG3AYMwHjaFyLCg7/xI0djuR33yJedcOvFFRikkRgO0PP4u938BjlMNTG9UeOL7YmDqEgTt/IaYql8yCtWxKGIjJU0NuRBsc+uYVRN9auI45W6cBMK7r5Sf9pAjAtt//xrJ+Lc6M1sc0H3JUFKULl2F5721CXnwO45JFxAwbQM2d98BTT4Dp5NBvcj3wH9wXXwL6gFslz2kj8aWm4h82DM9NN+PvF1gULAe7tHK7MZ0zHt/YsXhuuhkILJTwJyRS8c0PxHZqi3bNGrQLFuAbNqylb0lF5YTgiFxp3XXXXbzxxhuHFfa1117j7rvvPpLLtDhPPvkkTz31FA6H41hn5aTg34mRI3Wptrz9eJx6C3GV2XTeO5+C8Ey2JvTnq36PMrvTVTgMzbM+cFv+Wj6c9zS55Xsw6Eyc0e1CHjrvbYZ2PPuIfd+dTNjGjGPXr3+y75V3qBwzDr/FgrakBFmjoeLRJyn639f1JkV0FeX1try6k1Oxjx0HQPjH77dY/htFaiq+m26uvR/dzh1I1QEfqZqiQiInTST05efr3Zt26xYiRw4j/PJLkOwH923rHzoUuW8/fFdeie+uu5rtNlRUVBqHag80LdOnT+f777+nsLCw4cCHgyQxt81EsiI78munG/BrjnoD9DFlT25gh2x6UgfVzmiA0gHDWPvi+8yfOo+tdzxyrLPTIKGb1hP/6w+UjBzDlq9/oXTsueTeeg/e6Ficya0OOx1/ZBR5v81mz85c8r/9ibzzLjnkpIgCSWLvw0+z/qc/caWm1/4c/t1XGDdvPHg8lZZBo6HkyuvZ9Ns8Vi/bwtYvprHpx9ks+3EeS2Ys5p9lO8m95NALjlSaD9UeaFpmzJhBr169eO65544ofrUpijVtzgRg1NrPkfCzPH0suRFtKQtpXq8OSeGtaB3TiYEZpzMo84xmvdbxgi8snKohw/EkpzQcuLkxGLDfdS/Fy9bgPHs8ktdL6KsvYejZA2nnzmOdu6ZBkpDTM+qOjUbK12/B9dnntZMiIrrvvkU3by7GB+4nJDmRsOuuwvjLT2C3I0dF47niSgDMZ41uiTtQUTkhOSLxdY1GQ0pKCtdff32DYT/++GPy8vLw+Q4tfn084HA4mDBhAosWLSI9PR29XimAs3r16hbLy4kuruZ2uwkPD8fpdPLC57NJSA1U8CUzle6C5II6IS6/TSlQJRl09Nwxk3B7CUs6TsBhU3YI5Jq68LIgGiQJQlqaMGEVgSig7gq8n3Z3NS/8fS8un5OOsd25sOt1hLcXOq4RpoMfC2LZCCKDhAmdWEEsTBvkCsEsCI9aBPFUUVzNIwg+Bot+WhoQCxVFvoOFyERhRFH80ehzEbpkEd7YOBxduinF1Dwe0p76D6FffIa7Zy9st96Jffx5sN8XtmnRAuLOGYPfbCZ/5Qb8CUqDVhRhDBZUDRGesSgOaREEYyuD3hdRtFwUkDUI4rsmgxZ8Pgx9eiMVF+N67HHkxCTM55+Hr317qtduAEAqKMDw7jsYP/4QqbIS7+AhVP32OxgDZSbl5+NZuhxfSgqert0DabsdEBICkoTfL6NbsxrdhvW4zjsfTYTSd/GhRLnEZyje/6lAY8TVGhIxOxohsuNV5O1oaIxwe0Nxj1TovSXbRdUeaFqGDx/O/Pnzue7+5xk6JrDbs2TqJkUYX47toPEloa2Uy5WaEn5BiDnYPpDMyrhSA++baBZrgoWqBcFKyapMW5MkrFatUQorEtz2BilcL9wwg4WbZtC/+xhOGxDYjV1PmFUQ8g5Gl6C8rk6I6xPEVfVB9+QWxEFNgq3hE4RK9UHtkNagvI4kqHaHCvkQhUqD2+KGxnxFu0UU+Q5GFIeWZZnIZQswlJZQMnQU5nilq1+nq+4etcI9mIR79AnCyxajIFy+X4hUty+b+Bf+S+jMGVSddwElDz1BjiZEEdbvlzHty8a8Lwut04nB60Ly+qgYOAxPTKzC/mqdpPz2K4V3vlAQLg8uW1Fc3evzE7pyKZ0nnRO4/959qbrqWmrOOR/ZYqGiRvlO6LVBwrUe5ftgEt5Lq0UQwRXy6QiyVUQ7TrRxRNHb8uq6fMVHKPe9iCLAPiGueC1P0HnRfnQL92gW7ClRJDi4zhAnNvOE5yLWL8HPWMxH60TlM9+cHdhZpqmqwrxlI57M1nhj4mo/nmD73C6IrYtiu6LwsWhvByPek2hDV1QL70vQtep9iwe9SoAQoaw1mgNXDE0ltno4qPZA0/Lwww/z/PMBW+C6+58HDj0+APXHCAySh8vmPsHaNmewOmowSHXvnOwU2l3hu5KC3km/UNdp45WLLiWhfpPdPvyyH7/sR6fRoW0X1JaIQ2risdBOi2MA+qBj0U6RhO/AFKms/6xB375YPxl0yrhiHX2ottcq2E+iZ2inYFuI/efgukEUchfbDrG4guvGGMEu+Vdc3TLjV2Ieug+sVooXLK3dNSKKwIdZDr6IoLGC4cHhj+VcdXB7oZVA++676F5+CSm3brehHBeH59PP8Ldpg7FPb/xdu+JesJB/mz/t9N9gzGgw1JWP+EzFtlUUmG8MYtriO6BycJpz3OJ44UjHT5rKHjjikbPc3FyeeuqpBsPJsnzCrH676qqrWLVqFZdffjnx8fEnTL6PR9avX4/T6STEGk58SvoRp7Om7Zigo4OvvG8qLIZQLu1+E2vzlzKx6/XoTvBVqC2BbDJTddrpBzghk3rDlYT+ORMAw5rVxFx/Fc5hIyj6aQYArkFDcPXui3HVCiw/TaX65ttbMuuNQsrJgZoapIICTLfeUvu7r3sPAAzvvI3p0YeRXAEj0Nu9BzXf/gAaDeaH/4Ph++/Q5Ae0aqpuvIWK/RMjhNYZyqYvPyfsjluQZBluv5mq9z/CdfmVLXODKioqtaj2QNPh9XpZuXIlAK079mi6hGW/YjDkRKS8qpiI0BiGdD2bIUPOxy+f+B2b45HYOdPpet+NtccFV1xP9qPP1I7ypL3zEmkfvM7mVz6k/OxzG5V2yKL5ZFxaF2fPb39h2ryR+McfQONy4TeZqR4zDl9sHJTWKOKGbt1In8vHo/EoJw8q+wxgw5c/N/IuG4ffbKF0zHgi//wD06oVmFatIOqxh6i64mqqr7wBb2xcs15f5cjQVlbQ7pJzMG/bXPtb6UWXkfPMq8DJ79bnWKDaA03Lvx4lWnfqccRpePRmPj/zhYANUOFsOMJRUlpdSHRoPLIso5E0aE5w2+NkwX72OeQMHU5o2QZErAABAABJREFUadFJ40rriJAkfLfdhu+WW5CWL0c7bRraqT8g5eRgGD8O55q1OPdmIxUV1UYxPP4ohhdfwHvnnXheefUYZl5F5fjgiEZ9hw0bdlIaBTNmzGDWrFkMGTLkWGflhGfmzMBgeJtOPY/6XdH4vS3qJqNjXA86xvVoseudrEhOB6EL5gHg6j8Q1/DTCPn0I+zjggYdJInyl19HW1CAc/TYY5TTw0NOT8e9cRPaDz5A98zTSGVlAPiGDAXA8PVkJJcL2WjE/r8v8ZxzLlJlJaHnjUf/d6AcZI0GT/sO+OLiD3gN00/TApMi+zH+OFWdGFFROQao9kDTsWDBAux2OyHWcBJSj95Pe9t9y+m//ic2Jg9mTasDTMqfIKzbtYjv573NnRe8SlxkMoA62NJMRC+cpziO/eFrsh95uvY48fvJVPQZSNTCuY2eGLHO+UNxHDp3NuaVy9DsXyRR/MQz1JxZ377RVtnocv9NtZMilV17IlssGPPz2P2furxJXi+ytulXVdo7d2PnW5+iLy4k/fepWCd/gT47i4h33iDs4w/YMeUn7L1ObV294xHJ7VZMigBE/fgduY88AzSvvsKpimoPNB2VlZUsXrwYgLadex1VWhrZT0stJZi25lNiQhNoE9WJrolqvXg8IYeF442JQlNYgGw0IUdEHOssHTs0GuQBA/AOGID36afRPfgA+HzIXbqA04nu3XfxDxiAv//A2kkSzV9zj3GmVVSOD45otPnvv/9u4mwcH6Smpp6w21KPN/59R/oMOzpfhiHOCq6a/R/WZY5kUdyYFpkg2Va8Aa/fQ+f4ozPYTnVks4W8F98g+e5bMC5bQsk3P1B5xz3IwkSZp3tPPN3rjvVbNmGZ+j2Vjz7Zshk+HAwGfHfcgevSSeim/oCckor7jICfW8dLrxAy7ixksxlf585odu8i5ILz0O7YgRwSgv25F3BfehnV2oOv6Kt+4r8Yli5GstvxZmRS/cbbLXVnKioqQaj2QNPx7bffAtB7yJloRD8MR4DVXkqibQ8a2cua1FEnnN99r8/DjGVfsmDjdAD2Fm6tnRhRaR523P8kJaeNJmTnVjQuF7aJl0DQZMOab37HkrWLyp59aezbVPifx7H3H4R19u84O3Wh4pob0BfkkXLNJEzbNhP/0L0Ydmyn+L8vKOKlfvEBluw9OBOTWfHNTDyRURj02oCfjqB3OuPtF4heOA/PVVdTc+FF+GNiAyf8/oAYu6XOPVfYxrVUteuIbDj8nQOe2Hgq77yPytvvwTxnJhFvvIwmLw9Hl+4NR1ZpcXxhYRTccjc+swVJp0Nrq6D8vIvwq+1Vs6HaA03HL7/8gsvlIrFVJklpbY4qrX7bfqNt7grmtLmMvIjmFQbvktSHn9d9wd7SHerEyHFK6KsvE/LR+1Q98jiOBx861tk59phMeN98C/a7/9SsXo3u3Xfg3XcIdizmefLJuoPGKyyoqJw0qH6Cgnj11Vd54IEH+OCDD0hPTz/W2TmhmTVrFgsXLmRz5dEZkv23/EKIq5L0wvUsiD+7iXJ3cDYWrGTymrcJMVjJiGqPRR/ScCSVg1J5wSWYrSF4MzORQ0KRdQf3CQ6A30/UbTdhWLsaf2go7gcebJmMNpaoKLw37HfLsd/Hp2/oMOyTv8bXpi3+tu0wfPoJ2h078KekUv3Dj/i6dQuEF/w+43Kh27Aeb+8+eHv0pGhnNprqKvzWMLSh6vunonIsUO2BpsHj8TBt2jQA+p/WNG345rShDF/7NfFVOSTYsigIz2g40nFCUcU+vvvnHfYWbgNgRI8J9Go34thm6hTAF2qlZMSZlIwILGQIFfRJXMmpuJJTAWjs3gzZZMY2djy2seMD8TUSnlbp7P1lFsl33kTorBlEfvYh3qRk8i6u02bce+PdaOx2Cseciycyqi7BoEkRbXUVSVO/Rl9VCY8+SMRTj+Lu3hNNSTEpeblUnn0u+978sDZ8n6vOxZmUwpr3vsaf2ciBQo0Gx+izcJw5luo9e5H/9Tkuy2jLSvFFRR86vkqLIBtN5N33CACaE2xS+ERFtQeaju+++w6A/qeNOyqPEqGOMvpv+QWDz0W4o7jZJ0Z6pA7itw1fk2/LJrcyi+Tw9Ga9nkrj0a9cDoA3IxPjzz9ieeM13CNOo+Y/j8AhNEZOejQakGXkqCi8t9+BZslipLVrkbxePJMuw39uYJestHo1+nvvwf3xZ/hbpR3jTKuotDxHJL5+shIZGYndbsfr9WKxWOqJq5Xtd53TEpwM4moA736zRnFs/3mbMkCwgJUgYmrdk8V1/zyIzu/lu34PsMulXFGpCRa8FISg/FVKf6P1xNgjlMLmmtjAsdfn5Y2ZD1BUmcuAdmdwwYAbkAWxUI0glqYQX49ViqEhCpMKQqSyWzlIrgkSHdQKAoSi0JpZKK+UaOUgenWQ+JwoXpgYpbx/UaSs2lEXN1oQrrcJQprieYdLFK2sG2YIF4TXqh2iYLgW8wfvYX3g3sC1PvkfrosvrT0fLBZpbkLBLrEaPBpjPVhYzPjOW0iTLoWEhKBrKcPr77sX3Ztv4L33PtzPK1eUis9NWrQI/c034T/rbLwvKMM2Fr8gRngwgcuWJlh460QREmuMuHhT3tPRipo3Rpz+SAXTG7pOY9JqyXZRtQeahpkzZzJ27Fji4uJ45NXpaLV17Zr9J6U9IDuUgqkKgdRyh+LcuK2f0LlgKWuSRzC745X4K5XnD4UkiAFLgni2JAyay0F1uiiAikmZliZMuVJf9gTe/V1Fm5m76Sd2FG4IRDOEcMlZ99Cl7cC6wILgM2nhikNtcNrCJyWJovBCPvVC2+sPupZoW/iFfOgEIdeQIDumShBu1+gP3S5HCPkIboVEUW+fILYuinSKYtHB4uzBdgdAlV35bkUKdlywYGyEVfkM9UL95BHqM9FcCBYm9Xp8RHw/hYoLL0Hy+yl3y2icDvymQJnHhgtlL4v3rENTUU7IT1MxfvUloeuVNrVj4GAKfpm5Px8SaSnRSC4Xvtg4Nn/8DfZOXYH6ouaiHVLtUNp1If+Gl2XiX3yaiGnfseWrn3ClZxIRoiwf0a6rL5iuTDspus7+rBa+eVHkVRTuLrHVfeehZvEZKuOW2pT9AFFsPPi8KHJuEK4rpp1dpBSGDv4mxE61YGrVszeDbWrxOqJgfGWNsixFgXVdkMhyqBC3QngO4nucEqt0w7WvuO4eI0OVz1z8VsV3IFisvkroM4j2dZTwvdmEbzX4Ow/OR0uKr6v2QNNQWlpKQkICXq+XR1+eRkJy3aKGQ40PQP0xgjGzXqNL7iL2Rbbly9RbFRWxRmzTrcp+qiwIrivCCt9N8PjClA0fsL5wOYNan8l5Pa/ef7Gg68Yo+9ZEC2MCYjcrSnneFFfXjxfbdI1Qf4l1uCloLCJMsGHECdQYwU7xCZVUsDi7KOTuFsZExPpebHsPFbehid2ooOcm1iNmow5tbi7m6b+gzc3Bkp+L9tdfkLxe/O3ao9le9z45nn4W5z331UUWrtuU4wlHg/gcxLEZkUP1Lb2C/aTTCmnZ7UjbtyN36YJXCuxUNQ8eiHbVSuSoKDyTv8I/+ui8voh5PFA+TwZOhntsyj5/Y2js+MDBwh9z8fWTkddff/2k1E5pSfx+PyUlJcTFHb1o4/Ct36Hze8mK7sTemM6QW3H0GWwAnVbHBQNu4P1ZT7B0+xx6ZgwhI7pDs19XpQ7HTbegzcnG8vabWG++AX9CAp7hpx3rbB0RrtvuqDeYo8DrRffmGwDoXn0F79ix+IcNP2BQackSDKePQvJ40GzejG/cOGTV37GKSrOg2gNNw7+i6xMnTlRMihwt65OG0rlgKZ0KljC/zfnYG73Ov2UpqcpnR+EGJElDp/S+jB96LTHxqcc6WyrNjUZDxSWXAyB7vbR94CbifpvGljc/xdZvEAgTIwfCHxFJ1TX/x64Jl2HevgXzjm244xOwtmuNNyFREXbfyk3EX3Iehk0b6Xj5eWyZ/BP2zt2OPPs11YTN+QNDYT4dLzuXjb/OgxDV7ZvKqYVqDzQNTqeT6667jp07dyomRRpLQvFOuuQuAmBup8ugumWeTZ+kIawvXM6a7EWc3W0Seu0pvAvhWOP3E3vRuei3bql3SrN9G7LBgPuaa9Fu2YL71tuOQQaPcywW5B490HwzBU2Xbsg6Pc4p32K69GK0q1ehH3c23vffx3f9/x3rnKqotBjqxEgQV1999UHPORyHvxrxVGbZsmWMGTOG5557jltvvfWI0wmtKaV9/goA5nWa1GI+xH1+H9vz1tce7y3eoU6MHAOqn34OTe4+TD9OI2zSxVT+PB1v337HOltNT00Nsl6P5AmskNNs2HDQiRHNggW14QA0a9fiUydGVFSaBdUeaBoeffRRrrrqKmRZ5rdFpU2WbnZkB+z6UCyeauKqcsjSpjdZ2s1Bz7TBrNg9D3NIGGMHXUFMeGLDkVROKjQOO9GzZwDQ8c7rkCUJd8fOOPoNRFNeRsE7H9e6vIh+/UUcffrjP/0MRRqOdh1xtOsIgPkAkyq+hAQKfplJ3GUTMS1bQqtXnmbr/36onxmfD+PunWhLS5CNRvxo8RtNuBKTkE116frNFux9+mPasQ1DUSGmPTuhlToxonJqodoDTUNycjIffPABUN+jRGPouTlQj25KHkRBRCZUlzdJ/hqiTVQntBodDk8NlY4yYkITGo6k0jxoNBT+/ieR/7kPf3Q0lmVL0K5eBYBv5Ejsb7yFv227Os0uceueCgDab75Bv/h2pIoKfD16IlVVASDJMpo//lAnRlROKZpnX8wJyh133HHA32tqajjrrLNaODcnJlOnTsVms7FkyZKjSqfTrvlIyOREtac4rFUT5a5hvlr4Gn9tCPhD79vmNIZ0GNNi11YJQqPB9sEnuAcPQWOzETlyGIaZfxzrXDU94eF4ps/A/edfeF54sU635AD4brsN35jA++jv2RPfFVe0VC5VVE45VHug6UhNTaVVqyZuxyUJWQqYsA59aAOBjz0GnQmzIZRt2at55evb+OTXp9ixd209tzoqJy9+axjrv/udonMuxJ7RBkmWMW7eSMTnHxP2yzTMywN2c9gP3xD76gukXHsZxqWLG3+d8AhK3v0YWaslfNE/hC+cV3su/MfvyBg3ik4dUmg7agCZF42j9bln0O3ckfQYM4jYX+omUTTVVaRdfzlR33wJQM69j1Ddu/9RloKKyomHag8cP+g9DtrtXQbA6rTTW/TaHp8bnz/gvi7UeGK5MTsZkcMjKHv/EyqeeRHPffcjx8XhueJKnH/MCkyKQGBSxOtF/8P3mJ5/FjyeQyd6iuF5/wN8PXsBoF27Bs2unciRkXgfehjPx58c49ypqLQs6o6RIGbMmEFkZCRPPfVU7W81NTWMGaMOjh8OsiwzdepUAC688MKjSqvTzr8B2Jjcsivi+7U+nd1FWzi////RI2MwQD2NEZUWwmTC9s0PhN57J/plS3GPOO2krLD8o0YF/hkx4tArWiwWPD/9jMflgtDjfyBQReVERrUHjh6n04nJZGo44JEgy2xOGECoq4IqYySpRTvoV/AXDl0ov2dc3jzXPEpGdBiP3mxi057lbN27iq17V5Ec34bT+l1A9/bD6rkfVzn5sLfvxI4X3wFAX1xEyuZVmFcuxxcVjadVOgC28y4k7LefCJ07h/hLL6Dgpxm4e/Rq1HW8aemUnnUuMb/9qPhdU1WFZd1qILAbxJOUjOR2gcOB5PVROvbc2rCJ/32UsL9m4Tea2PXyO5SPPeewrq0pLiLijlvwdu6C7ZEnGpVvFZXjEdUeOHoWLVqEJEkMGDAAjebI1+W23bsMvddFWUg8+c0suC4i42dE+/HUuKow6hp2g6jScvguvBC7Yuxpf3/a5QK9npCbb0ByOHBPvKhu0kQFkpNx/j4T3f8+Q05IQJOVhXzdtRAS0nBcFZWTjCYRXy8pKeHtt99m6dKlpKWlcccdd7B69WpGjBjR9KsEm5Fdu3YxdOhQHnjgAe666y6qqqoYPXo0Op2OP/74g5AWrCRORHG1FStW0K9fPwx6E0/d+g16vRGpTZQijH9ZruJYtgUJoAUJ7EVU5dNpw18sTz0Tty4gZiaJop1BooO+kiplZkQRU0G8R7Nf0Msv+yl3lRKbnF57zmn0YDbUPWtNvPDcBUE0woNEzETB0ySr4lgUORVFTT1B4oii8JpOEGM3CgJn0YKYWrBgml5Iy+VWlo9JEIm3BAlJiuKPHq8yriiAWSmI2gV7QTMLgnhWQYze7lIKSf4bWaqqQrZacXt84PUSd80kfFdfg3t8XUddJxjah9T2EBBrwePVlbBHmKQLfq7y9h3oX3wBOTwMz/0PoklUt3g3JYcSHmuMSFlLirK1lIB6Y0XZjjQfLdkuqvbA0eF0OomOjCM1oR2Txt1PiDkMQpT1v3+b0rWWXC2s5Atux0VL1RxoO8Jrihix6Rva5wVcb2bFdub7wQ+BI9CW9Mj+iyxTa8rMdfWhJkw5WePNElx8CW2tFNQ+aoT2DqGd0UQIE0GCQLhk1FFiK2DB5ums2DkXjzfQ5nfNHMhV5z2qjCvaGlFBaYsCp6KgfANi7JZgkVehwTMItpZPsKeMQTaBXRBfjxDEZEXx0JB6bX5d2pHCdY1C2ToF+0AUKg+2VSzCdYorlO5uIgQxaUdQ2nGCneYU7CWxHRbLzxj0LETB04ZsjX8FwiWHg8TLLsSyeAHeiEh2/ziTlCG9FWErBZFqUbjbvnMPkf99DNutd1HdsUsg/Zy9mNauxt25K570DNAG8iqKvrq9ftqMH4U+P5esj7+iqlvdxEyYRXg//HXlITkcJF84npA1AW2hvW9+hPX6qxTh88vstf+L4vNO4V2zCO+AJejb1DQgTCtSXKkUYw8WCa4SylJ8b8XqRxQjdwflWxS6FxFF4aPDjnzyWOzCVwSJs4vvZYTwfYnlIb6rweK9Trfy2xP7BeJ7HHxefEw6ob0X7f56QtAHKc+WFF9X7YGjZ+TIkcybN4/zRt3EkF7nNG58AGrbUo3fS0b+OqTSarbHBurEeuMDwvcsC/1W2Rl0XrBHpRDlty3phLY1VHktTWTd9ysJNg6iPSC0S+K1dRmRtf9HpUdwKHyCuLY/6LuRhXStVuU9ie2wRRgDOJTod5hQ1hbRXgqKqikvQ9q5E01lJTVDR2A0Cc9JFgXClXWDNug4VMizyyP2SZRp6XUapJISInt0wX3W2ZimfA2A+9ff8I4Zqwjb2LakMZwMwtwiDQq7qxw2J8P70ZzC7YebVlO1i0e9ADsrK4vBgwdTUFAAQP/+/amoqODqq6/mvvvu46WXXjraS7QYrVu3ZubMmZx22mloNBq++eYbjEYjM2bMaFGj50Rl2rSAC6qOmX3R640NhD40FdZEFmac1wS5OjS/7P6G5YULuC3kKVIjMgEUkyIqxweytW6CyfrVF4TM+gNm/YHzqqupfuvd2s79qYi0bRtyairYKtF98TkA2nl/416xAnQn4x4bFZXmR7UHjo45c+Zgd1ZRULoXs6l5drh13LeYsas/Quf34kdic+pgNrYaWns+qjqPM7Z8BcDa+CHMzry01v3WsSQmLIEJA65n9MBJLNrwO/PW/kSXDNVFkUodstlM/pffkjjxXCxrVpJ+9cXIr76Kb/z4gA7JYeBLTqHkw/8FDvYP3HtT06hOTWt48YcsU3jXgzi6dscbF19vAO9gmDasw7xpA7JGg+T3k/z4A1SddzZyTMz/s3fWYVaUbRy+Z+bkdlJLdzcIioiAiB2IDSgYqKBi8JlgNwYGCoqiYCKhiJSEdKt0d8f2nj018/1xYHfmXdhld8/ZgLmvi4udM288k+8zbzw/Q7pq9/fBtmsHnsGPkt333nMq28SktDD9geJx9OhRFixYAEDjOsVr61TZwo6kNqhyRjBMMwkykstFxUcfJHLa1JzfMtt3xNW6LTji8skZfGzTpyGnpOQMigBIGzaAMDBiYmJiAkHQGBk6dCiHDh0iKSkpZ+S3U6dOREVFMXv27GIbWNI0b96cadOm8dxzzxEWFlbiM0HKM1OnBhrBZvUvLmVLzg1N09iRuhmATxYOZ2/y9lK2yORcyLj9LlIGD0GTZRzjviH8ySF5p2FeIEh//429SWMcUZE4O+R+bEgbN0ByyYgRmpicr5j+QNGZMmUKAM3qXYwcosGISzf+gkX1sSehMd9c/gbT2wxkb2KT3ASSxPbElkhotDqykMv2TA6JHUUl3BFFj3a38+ydo2hd77LSNsekjKFFRLL382/wR0Vh27sb6/+eNk7H9fnOnrm4SBLp3XoEBkUKgat9B3b8OJX9b7wPgCU1BXnXzjzpVIcDx5ZNhH32SVDMNTEJNaY/UHSmTZuGqqokVaxLXHTh3illib/3ziQ563hpm1GmkVNTCJ9l1AQ92f9B1KjoErfFc+31pPw1n+x+9+T+WFZDQpiYmJQ6xZ5OPGfOHBISEti0aRORulndNWrUYPfu3cUtPuS0atUqz3JjALvdzsGDB7nkkktyfluzZk1Jmlau2L59O5s3b0aWFRrUalussqxeF623zqTavnX83PwxCFGniiRJ3N1gIOO3fMGJ7KN8vvg1bmx2Dxc17RGS+kyCg+ZwkPziK8jt2hLZ726cX47G17Yt/r73lLZpJY507Ci+Bx/E8sUXOb9psoz3gw8hMbH0DDMxKYeY/kBwUFWVP/74Ayj+7NCzEZl1nJisYwD80eZBMpzxedKcDK/M5NaP0XDn31y/bSwdDs7mUGQttkWVrckbUeFx+PxeNB9YLbaCM5hcMPgqJ7F9+t/EjR9LdMM6uZ06WVlUrFcTT9t2ZN/cG9ftd5auoTqyWrejwqiPAEjvdBn+tu3ypEnv3pOYKRPRiqE1YGISSkx/IHhMmzYNgCZB8AdqHVxLmy0z+Cf+4pxQWiXB9uRNTN/xM3N2/8az3T8kzIwucUb8lSpzYNJ0Kg3sj3X/XgDCli4i7ZobCsgZXOwTviP8maFkvvk2GZ9+Dh99hPTff2gdOpSoHSYmJuWHYg+MuFwu6tWrl2fWREZGBm63+yy5yg433nhjaZtwXmCz2XjyySdZOGsdTnvxnAVNkrlo41TsPhfVUrayL7ZhkKzMS6XwJAY1f5ZJ+75n3aGV/PrfVxz3HuWqlneGbJarSXDw3NyLrB3bCX95OOH/e5r0blegJSWVtlklitrrFtQbb8L35ltoaemQmRkIO1apUvGXA5qYXGCY/kBwWL16NUeOHMFuc1K7WtOQ1JHujGNHxZb4FCsZBYRn2JjYnsSsA3Q8MJNuu35hd7XWeC0hEoUvIis2zWHSwi9oXr8Tfa99trTNMSlDeKvX4MhzLxNeKXfymbxkMXLySRyzZ+KYPRPnzz+Q9flo1KSqpWjpKTSN9Eu7ELZ2FQeGv0GFM3Quq6cn0lnz1+MwMSktTH8gOLjdbmbNmgVA4zrti11e0rEt1Dr8L6pHLbGBEVVT+XP7LwC0qdbJHBQpgOw27di9ch3WrVuIHvUxJ+5/JHenz4eclRnyFSTy0aPIycmEP/s/PN2vgJrV0S4+NSlGvTCjTJiYmORPsQdG6tSpw4YNGxg/PhDH2e128/HHH7Nr1y6aN29ebANDzfDhw0vbhPOC6tWr89577zHi+ZmG37VDgii6IGKpFybV0gKigV4kNle+iBb75tM8ZTkH6gccH+/Wo4asekE0JdbopBiE1QBNEA7UdGJ/dqzcWf8B/rJXYc7uqSzY9DtOzcHlda8D8gp8SoIAmKQTDyXeKCTpyzbW6xbF5IQPRktY7keiRRBTtVqMaRVhpp1HECLLJLduUXzdKQi3RoeffZZqWpbHsC2KToqaZeI3sFV3ndzCdbALdol2iqJu2R7jfteQJ7FN+x3r6lVEDBmMd8pUikJ5WVkrnh8goK8SFYV0SmyqnBxKuaMw4uPBFE8rTtmhFHHT21WQOFowhdhCiekPBIfTs0Mb1G6DxaFrL4T2X3MZ2wNJECrXdILGmqrRds8sap1Yx9YKbdlUoR0Tmz4a2JnhRY4ytkuqTiBbjgtjaXRvGiWvISbrGB03TmJ+zZtz6xXEpBHvT72oqRi20WX0NVShMZEE8WjVkysCbmmYu8ol2xf43aZZ0VICoshSnDB4czxXtDqPiKsg8qoJIrCOGKNv4snIbddV4bqk70s1bIdXjjRs60+Bphqf7XRBjD1c8C1OCD6QXvT0UHKWYZ8oxOoQfKLKcWGGbb2vIgqkewWxULcg8q2vKyXD6POI/pEo1B0rCNvqfcY0Ia3Yhkc6jWUfOG6Mm18hJvcYtx3UXZdG7dCmziNuzp8kjR6Jfd5fKG1bsWf4W5y4vhdIEkkJudo+GcJ9KvqAoq8ldhvpZ86L5xYg8alHsRzYx5EvviEiMR4GD+bo/fcT6XBwJDn3npfcbmo+ci/OxYsCZSFxJCX3usvC82MTBjAP6oTbMwU/v0HVGMN2snAd7cL9oxccjnDkP0CjFzUHsAiOr00nEC7eW2K9+Ymt+4S2Ui2gA88mlK1/Rs602kFPYrTRjvwEdcX3XkFl689XmPAOzPQa3/uiGH1SgvF7Tv9c698X4vUPNqY/EBwWLFhAZmYmVapUIalq/ZwPrsL0D0BuH8H6ChfTceMUap1cT1SEmwxnXJ7+AcR3lNhu654TWXgH5xFjj7Dz34ElHMjYg11xcEXLW5F07wu9nyJJQlniYxJtbCusQrtt1X1fZwvvr0jhea0UYyxLL4qenJH/xGSh2cYmnOsEXV3iqRPfZ+IbyqZv45o1IWvUF5x+oi1zZhM3dAiW/ftI79cfZfgwqJgbWk20W//6c7mN7w2xLVVko12uRx7FNulXrGvXEDnoEbInTc6598T3pub1Yhn2IqgqvjffQhL6V4ojNl4exbQLwhRbLxz5fS+X1v1R2O/0/Ows6BgKc4xivSXdn1Ds0u6//340TaNfv35IksQ///zD448/jiRJ9O/fPxg2mlyArKsWEFBtsH85Nm9WAamLjyRJdK95Hbc3up9qMXW4uGb3kNdpEgQsFjJGjcbXrDm+Z8xZtiYmJialzemBkUZ1gxdGq2Labrpu/ZHaJ9bTc9M3DFo4hJb7551zfp9i468md+OVrbgsZWu2Z1rmSXYd2giAwxpWQGoTE0CSyGrQmP2PPMl/k+eQ3qwllvQ06jz1MLWffAj8/oLLCBK2df8SPf4bwuf9ReLTj+XucOQdAJDT0wifMR05PQ0AzWKuGDExOZ85rTd7zTXXFDigdi4kh1diX2x9ZDSa7P672OUVRLbXxcxtvwLQpc61RDiiQl7n+UjUK8Oo2PsGrLt2Inm9RH35BdYxo0NXodVKxhdfotls2GZMx/rdt2dP+sADWN99F+uIEUgbN4bOJhMTkzJNsQdGHn30UQYOHAgEZpScnlVy//338+ijjxa3+JATFxfH8ePnLqRVvXp19uzZE0KLyh/r1q1j9uzZuFyughOfIwdj6nIyohJWv4caRzcErdyCaJbYlgc7Povd4iw4sUmZwN+4MSlLlptxQ01MTIqF6Q8UH03TuOeee7jmmmtoWCevtkBRSczYj6Sbm2hVPdRI3qSvmIs3/UqPNWO4dMOPtNszgyaHFlP95CZiMo8gqz52VGzF6K4jWF71yqDZVVzmrprI69/cx6bdqwBIjK5SyhaZlDdcteux7oc/2P/oUDRJQrPZAytJSwglNXcli33j+nzTajYbqjPXv/ZUrR4yu0xMioPpDwSHt956iyVLlvDYY48VnPgc2VA1oO9S92BotV38mp/v//2MZNdxoh1xdKppapAWFfu8vwBQnU6OfzYGV/ceeB97PKR1+hs1Juv5YQA4nn4Sae/eM6aTly3N3fB4zpjGxMTk/KfYobQWLlzIAw88wNChQ1m1KvBh16ZNG6pUqUJWVhZhYWV79ltKSgp//vkn0dHnFuvwxIkT+EtwJlZ5YNSoUYwaNYrBgwdTI/Ka4BQqSeyu1Jy47YepcWQd25KC18FyNvyqn582fYlP9nNXm0FY5GI/HiYlhW4WkvztOKSUVPyDB5efGFkmJialjukPFB9Jkhg8eDCDBw/OE1qzOGyt0IZDUbW4dc0IIjyprEm6nEW1b9JXzJGYWly09Xcsat4QKxoS01vcx4Zql0JW6FehngtHTu7jz2Xj0TSVmpUb0anBVTSvVbaE4U3KCRYLBwc/RVqHTmQ1bJLzs3zyBGpYOKEMsunq1Jk9i1ZjOXwQd6Om2PNJq0ZFc/CPv5Dc2Vi3beVoz+tCZpeJSXEw/YHgoCgKHTt2BGAG+4NS5q7EZgBUOrkdmzeLUAVVW310CVuO/YdVttGn1WBsSn5vN5P8SP50NAk3XYNy9CgRE77lyNQ/SYgMvdab67EhgZDbK5fjfPB+sv74EzBOHHDP+Qtl/nz8t9wCVqsZktrE5AKl2D2/Xbp0oWPHjixevJiaNWvm/N6xY0dWrlyJz+c7e+YyQr9+/UrbhHKLy+Vi4sSJAPTo0YMtSwvIUAj2VGhK6+2zqHEk/xlowcCv+vhx05esO7YKRVI4kLqLGrH1Ql6vSZDZtw/roEFIWVnIs2biHfs1VKhQ2laZmJiUE0x/oGzisTg5EZHEH03vJ8sWxfGwvCsrdlVsztzmdxOXfghnZgrhnjQis08SlX0Sq+ohy162QmDsP7odRVZoWKM991zzHFpmaGPmm5z/ZLTTrZzVNGIfuBfrxg3I9w/m5F390JyhmazmrVsPb91z85k9TQOdmu427fLoAZqYlCVMf6B4+P1+lBCsXkt3JnAyojJxGYeofnQjmwjNyrO2FS7huP8ENWLrUi2mdkjquFDwNW7C4akziBs6BNcVPXOETiyffgKahu+RQaGpWFFIH/0VsZ0uwt+kKfh8YBdCOFapgv/OO0NTv4mJSbkhKFPi84hRApmZmWf8vayhigpUJoViwKNvcuzYMWITKrEztRJEGYUjOSGE1xIEC7VU3UeRIP61N6IeLms4+2PrI6dnYakSY9jv14lU+pMzDfuUBKNYqJxw9pjiPtXHD/+OYv2xVSiyhT4dH6dmlca6vMKHpCCwrhdTswjiaBZBIDWiotEuUfAsXCeAqQjiVgn5CDaeCb2YaITTaIfXJwopGvPGRzmQkpPRoqPx5hFpMzq5HkFosnpihGE7W1eAzSKDy4V04ABa3bqkCoKWkU4x3rTRsHCd4J33TGJOVavie/sdLE8/hTJjBnLLFnjHT0Dt2jVv2vKIpiHPno3aqBFUq1ba1picoiBhscIIlRe27MKQX12FrUefvrDiZ/mdg9IUajf9geKxceNGnnllFJ2630J4RDQIguja1pOGbTnCKFSqJhtFeCXdfumU+OX+iBaBvHYFSVXp8s93rKnfk5MHsvEDa2ztIB5I1AkHe3w4fRl4vXb8h9LyiK0ricZ2WfRTDNsWQVxdaA/FxlQS2l50otetsztS+4b6qKofLSUbSRA5J0oQctX7Hh7hOalg9HFkQZjUl22cpKT3TexCmy0iCqyH6UReo8KM9brcoqi58XyIgql6sW2/IDRtF9KmC8dwIt14v9gtuefW4xPsEK6pR3BssnV+TJggTJ7HZqGsE6lGO6pVyD2folB7pHA/HDxu9F3jo5zCdq7fd1gQpxfF552CgHrKus0kbtyIcugQlV95jgqjPiRr0KNk3fcgSrixHlFQ3Sq8d/XaAOK3nd1q9Nu8wrmvJNh5VCe2HhNufEfEC0L2R4VzG6V7dkUR4OOCiLd47mOFsvX3W7bgx4qi56IofJYgBKwXXBd95AzhvrULfr9e+N0inPcMj/EYIvL4yEYU3b0p2iE+X6Lv7hbugRjdcy6KD1st+c+p1j+7oh3ZXuMxifexeH/pBeX1ZshyaH0D0x8oHm63m6o16tG4xcVcd9sjOMMijT5BYfoHIE8fwa6EpmTaosjSHHn6BzThmVPTzh7qWy+kDiDp3hMycF3lPvnaKVfQ3b+VjG2pHGd8z9qEd5BTuPfturZHfNbDbMbnqKrQbsfohNtrCn0NGcIAtNhOO4U2T/8tLrZ3EcL5yizg/aZ/dzjatYB5cwnTNMIkCem//7APeRwA5cABEt56KzSRHpo1wr11G1SsiO0MuwvSvjHFxk2KQ2kJrOdHYQXTi9N/UBgh98KWHWyK7FV07dqVrqc6Gzdu3Jiz3bVrVy666CLWr19/zstPTconmqYxd/p4ALr0vBNFCW7oKbc1nM+6jWRG8wH4ldAINGqaxo9rR7H+wEoU2ULfjkNoXKVNSOoqT9h+/IHYqpWIbtcKKS0teAUnJxNWoxphjRtiGf1F8Mo9jSThf+ghPMuWozZtinT0KNabb0Jatiz4dZUClmHDsF19FY5aNWF/cJakm5iYmASD999/n99/+oSfx75ZIvV1XTuOtlv/5NZ5r6GcIXxWDpKEyxqJTz7TJ3HpEhMeT1ykuarRJPh4q9dg69+r2f/m+/iq10A5dpTI4S+Q0KIxzjdeQzpyuLRNNDExOU/5/vvvOX5kH/+tmo/NFvyQSXMb3ckPHZ/nQFyDoJab6Unnz00/4fWbWhMh49RAhPJtriC6ZcR7KB99FLo6K1bM/TstDeu990AhNIRMTEzOf4o8MDJ//nwWLFiAJEmkpaUxf/78nH8rV64EoHv37kEz1KTs8c8//3Dk4C5sdgcXX35TwRmKQKgGRE6zfO881h0KDIrcc/GTNKrcKqT1lReU9evQwsKQTpxESk4OWrnS/v1IKSkAyCtWBK1cEa1pUzxLl6Fe2hkpIwNb18tRxn0TsvpKCmnVyty/d+8uPUNMTExMdHg8Hn755RcALr2id8jri0s7QKttswCY37IPfjm0vkIw8as+UjNPlotV1SblG81uJ/muezi+Zh2pn43GV6s2yvFjhL/xGrYF80vbPBMTk/OU77//Hgj4A4ol+O2zJgc/RBfAsYxDzN8+jZF/DwtJ+SY6koVVxP/+UyLVWgc9gvLdd9i6d4PU1BKp08TEpOxT5Cn+p+Nujhs3jsTERK6++uqcfWFhYTRs2JD+/fsX30KTMsvvv/8OQMNmHXCG5R+KoSjEp++nxvGN7EpsRnJE5aCX7/a5mLH5ZwCubnYHDSq1CHod5RXXK6/hevZ5lC2bUWvUCFq5WrNmuGbMRG3bDinUArhOJ57ffsN6Tz+UqVNhX/lfYeH98it8aWmQnIx2sSnSa2JiUjZYuHAhaWlpREbFUbtB6CcYdNwwGQmNbUlt2FatPew8WXCmMsKB47v4eOr/qBRTnSeve6+0zTG5ELBacd3VB9ett+OYOhnnpF9w33hz7n5NC00IExMTkwuOtLQ0FixYAEDLi0IzSbb9jj9IDqvA7sTmeIO4GjQhvBIAxzIO4vFlY7eGRpfJBHxvvY16xRUokyejdroU/4ABJVPvs88hz5uHvH49yief4H/++RKp18TEpGxT5IGRr7/+GoB58+bRpk2bnG2TC4d169YB0LR155CU3+DQSjptm8zmyu35rXXwRbnsFif3XTSU5Xvnc0ndK4NefrlGliE8HH/rNuALbnw/tWs3ALSoKMgM8VLlyEi8v0zE/8vPqL1vDW1dJUFSElpSUmlbYWJiYmJg2rRpADRpdWnIY7/Hph+i4d7FACxpcktI6woFB47vBCAqLLaULTG54LBayb7lVny33Zb7W0YGcb17kTH0WTyXhsafNzExuXCYNWsWXq+XCpVrULFy8CbXncbmzaLzll+QNZXPLx+B15EQtLIj7FFE2KPJcKeyP3U3dZyNC85kUjQSE1FvvwP19jsC2z4fluHD0eLi8PftC7Gh8ZG0Ro3wvvsutrvvxvLJx/ifeAKczoIzmpiYnNcUWxRitxnO5YLll19+4ZlHxxERHkP21hMAqOuOGtLIVYwCYJIgRi7rhMvVFKNwYq0T6wHYXak5kl3Bt9s4I1TTC/IIooKay9jhrqYYVycolaIAqBpdm6rNaiPrxVgFETIEgUIEIUFFJ3gmCqspghimKLYuCoLqBcUjncayfIIAUYIg9O4WxETDdedaFNJ0CJNrRGFJvRCZzSJjmfsXjg/fR61eHblFC7SmTVFbtoSYGJyCIJwo4qnfLwpaxgnnqyD0+W2Wc+x8k2XU227P3c7ORhk7Fv/AgYEBIBOTQlJYIbH89hdWWCw/ofKCKI6IWX7HXFjhtfzsKkmxdZPgoGlazgrSBpVa5vgD/rVGDQOlqtEfUAVxZLmyUchbPZCR87fed+i4ZQqyprEttjmHMuMgMzVvWCqdIKgmCI9qgji06D+Ibb6kE4hWagraeUK7K0UUEDIkwsaBtN0AVKveEEkv1ipOQhDtyso9JjnS2IhnnxB8HMH3CBPE2Q15U43CtGGCICyKsY2P0F2LCMGnCxfqFUXO3cK51wubR4Ybz53o88RFCMcsXCeHztewCGFYRWFyEb1Yu3griQsposMFOzxGO06mu3NtFnycMEG4NiXDbdg+KQiI68+BKL6elGC8pqJwt16M/oAg8q73RSu+9Rr2hQuwLV3Msbc/IO2ufnn8K0VXdphwLjMysnEsmAeqSnb3HnnOtSjGnhid2wEl+q2iqHmlWGNnlV7kXFZ9OD98H9sf0/BcfQ3HbroNf+UqOfvFcy8ek/7eswr7RLHiKEEIOUWY1KMXKBbvF9H/dgv3C7r7TRRIFwWYxfMjXgu90LlLSCveH6LgcEz42WfdK3L+q4nEZyC/5018V6e7jOdavE76c6BP6y+DgrYmAXIiStRsl+MPgLGPoDD9A2DsI6h+ZAOypnIyohLpsZXw59c/AHnaVjlS9/0s9h+kZlM3uiH/HF3Oln1rqFOzeb52oi861fg+V4U2zSuIeIt9Bpaw3PRuoX0TBcAPnjC+0zN0z4bYPxAutDuigLroaii6b+OChMfDxfMhYMkn4pn4LlCmTMby+muBfC88j/+OO/A/9DBaq+CvQlZv6Y32/PNIe/agfDsO/4MDg15HSVIcgWuT84NQ3gPFKSuYYutnO8ZgHWtQeiA8Hg/z5s1jwoQJfPvtt4Z/5YmuXbvy8ssv5/k9OTk5R2jexEhiQlWczuCH0bJ5XVRO3gHAnopNg1q2y5fF0YyD7DyxGY/PXXAGE7SwMNSKlbB/PRbr449h694Ne+VKWJ59FtRy1PhqGtYbb8D66GAsw8z4sSYmJmfG9AfOnS1btrBjxw5sNhv16rQJaV3RmUdptC+wWmRR9WtDWleo2H90OwCVE2uWriEmJsDRx58m/aZbkHw+Kjw5mIRnn0Q5cG6hR6VDh6h8SVsq3HojFW6/mciR74fY2lOoKlE3XY9z5IdYV64g/OXh1GjdmNh3Xi+Z+k0uKEx/4Nzx+/1Mnz4dgMYNOoSkjprHNgCwp0Jw+wdO0zCuGQDrj6/G5Qlx2OfzHPnbcdgaNkBatqzgtIsWAYE+B8nlwjJ2LPZ2bbE89mjeGQvFxWLBN+QJAJT33we/v4AMJiYm5zvFXjGybds2unfvzv79eZ1oSZLo27dvcasoMebPn8+6detYu3YtEyZMIDw8MBvL4/HkxMo0CaBpWp7ZRsEkMX0fsqaS6ownLSwxqGW7/FmMXPQGieGVcfuyuaX5AOrGtQxqHecb/g4dcUsSatWq2DZtQP7vP6Q9e7C8+w4cPYLvi9FgKfbrJPRIEv677kKZMwflnbfx9+6N1sLUljExMTFi+gPnzn///YfVaqVz58447KGNx+3wZHI0pgYzqt/BkYjgh+goCWQpMIVy7rJfaFCzDU5H8CeXmJicK5rDyZHPvsJXsTKxn39MzNdjiP7uazJ73Ur6w4/ibSJ0Pvr9SMnJYLEgHzuGdfu2nF32tavxUQKoKt6LLyG7/304vhuHbdZMJFXFsXJFSdRucoFh+gPnjsvlon///ixbtoxa1UMzcFEhbQ8A+xIahqT8+rFNcShOjruO8sms5xnU43WcNlNrpCho9erje/11pORkChrakFJSUOvVw/fqq2iVKmP5fBTyzz+DwxkSHSz/vfdieeVl5B07kCdPQr2ld1DLNzExKV8Ue8XIM888w759+9A07Yz/yhtz5szh8OHDdOjQwQwTdhZUVaVhw4bceOONpKWHRvA0OusYACkRFYNedpw9gXvaPkGmJ50TWUf4YtkbTFkxFo83u+DMFzD+izqQPfxlfO+8i3vHTjxjx6IpCpZx45B//KG0zTtn1D598d9yC5KqYn00BLNQTExMzgtMf+DcuPXWW0lOTmbMmDEhr+tIbC0mXPYyhyNrAhDjOkZC1sFy9R6/85qniAyL4eCxnXz163DcHtP3MCllJIkTw1/j4A+TyLr4UiSfj4ifvse+cnlOEseUSVSuWYW4qDBiayQRUyMJKT2NY99MwN2yNalDniLl2RdLxl6LBdezz+Nr3x7r34GO6eyWrTj66eiSqd/kgsP0B86NiIgI3n77bRYsWICihGbCXMzpPoLw4PcRAIRZw7mv+ZNE22KpW7GpOShSDLQOHVBv7oV61VUFpvV+NRbPps2BMFedOuEdPwHP+g343n47NKGvw8Px/e8ZfEP/h9rp0uCXb2JiUq4o9ltm4cKFWCwWZs+eDUCrVq344YcfSEhIyPmtPFG5cmUWLFhAs2bNaNeuHfPnzy9tk8ocGzZsYOvWrcyePZswZ2TBGYpAtOs4AKlBXi1ymroJjRnS+Q3aVbsMgMVbZjBi2lPsPb49JPWdF6gqzmeGYmvaBHnePNS+/fD+9BO+QYNQ77o7N11ycunZWBCnwn55330PLSwMefEiLA8+AFnmUmkTExMjpj9w7oSHh1OzZs0SqUuVcztb2h2aw31rX2bQv89zza7vqJKxq0RsKA6JsUnc3/s1nPYIoiLjUZR8gnCbmOSHpoHXi+TKQkpNQT5xvOjhTSWJrMu7c3DSHxyeNZ+MO+7G00IX291qQU5NyU3u8xH2zFBcV1/HkdkLSH3+JXz1QzOD+2yoSVXJemoo7quv4eCk6fgr6DpKVRXn6FE4xn9rhkkxKTamP1A2sPg9RLhTgND1EQBUjazB4NYvcn2bfiGr44JAkowrPY4eRVq16sxpz+ALafXr5254PHDkSFDN8z/5JL433oBKlYJaromJSfmj2EP5KSkpNGrUiG7duiFJElarldtuu43XX3+dN954o1zF3jwdGsput/P999/z2muv0bNnT/73v/8Vqpw333yTSZMmsXnzZpxOJxdffDFvv/02DRo0CIXZJc6cOXMAuPTSS7FoskGoVBYFPgsQ7UIv3K1rOHNWjKhR+A+n59kPIDt1QoGicpiAJAqNJWdhB26udgdNI1sweecETmYcZdTM4fTp8DiNKrXMTSwIfrLduErGrzv+LEGw0RplFEDzpBs1TeKrGYVcs3WCsU6b8fHMFIQUM13G7WjBTlHoXE9kmPF8OARBeX3eHDFIDRzHjyP5/VjuvIPMJcvRrrke24035aSVNmwgok1r1O7d8b04DO2iiwzlFmoVrKoiz5iBMvEX/DfeiHr9DQaBy8KifD4Ky7PP4h9wH7533sH33ntYHnkEy9ixyMuW4Z0yFa127SKXb3LhEExBs8IIk4vbxRUqD6YgWnHqze84CiPyHkxMf+DcOHnyJFFRUVhOh1LUtYdK4wRjYqHNkmON7aOWaWw/9ULn6hGj0OjpNl2RNLyylUhvKs2PL6Pp8RX8XfMGllXpAdKZ7ytxNbOaIgyMC+K/lvhcv0Y9aRQql0SR4SyhjbIJgseewD1cJboGj971PvExlZBlJdDBLdSLIE6P8+wuuyPeOKPVL4ghuwRx9ogqUTl/KzZj+28XtsXz5dKVLYZUdViNx2AXjl8RfEK7zvcQ/RJRLFoV7BBFrX3+3P0eQfBbFLKNEM6lVRcKVBSqFUWsbYK/JIrE64VrPaLor1BWFUFA3arIhpAhepF00f9RV6+l7nOPEb5pveH3zX/Mx9W4KbLu2ogi3aKIt9tj9E2PVm8Ew0cENo5nEhVmQ27VkZN/LSM7Khr8Php364BlzWqUX34h7YZeOXl9gu/pE85BlE7kOy3LWK8oCrzjUJphWy8CnnM+7h0M/VQqx0UZ0mYcP0n0t+NwrPsX29dfoY0Zjdq4Sc7+5IxcAXW/MJgUG2EURRYXpOUnVC4KkVvFZ0A+u6C6KLYuYhfuvZPCN4VecF4UQBfv42xB+N5hO/sAbZ57T7jGoni9HvFeE98ZcZFnP5cAXt39oxdmz6/OYBMsfwDOb5/A7XYzf/58OnXqFAg3Jrx3DX0EhekfgJx3YlR24BvcLdvJPKmBlI4kfC9LBXwranq7hO92SSfMHmGNQUr2ouHFp3r54b8vaFP3MpoktT1zwVkew6bkNz4n/ijjvZ4m+ERa9Zicv61Ce5gh+ANxUcZ3lFv3PGd7jOVGCGWJ/QuRYUa79Pm9wjHYLPm3y1FhZ3+e7du3Yut6OdLRo/ieeBLfW2+deSWI1xsYzHbofMTDh7H17g3ZLjwL/oYwYRXPwYNYn3oSLakqvtdfB1v+75VCoWlIO3ag1agB1vzf0aWFKbZ+4VEcsfVQCrUXVFdxOFv/gSdIdRS7lMjISNRTDmVERASbN29m+fLl7N27l6VLlxbbwJJE/Ph74YUXmDBhAiNGjChUOQsWLOCRRx5h2bJlzJ49G6/XS48ePcjMzCw4cxnH4/Hw0UcfAXDVOSyLLCoLGt3Gt82GsiHxooITF5P6MY15vOOrNExogcPipHJUtZDXWS6RJNI/+Bh/8+bIx44RduN1WP6YBu7cDzN53jwknw9lxgxsV/VE+vffotWVloatbRts11+H8u232G6+GeWDD4psujx1CtZBg5DS07F8+AGWF1/E/8CDeGfMRKtUCbKz0RISCi7IxMTkgsD0B86NgQMH0rx5c5adg7BmKJjZqB8fdf6EH5o+zqaEtsiodNk9mau2jy8VewpDYlxSYFDExOQU1rWrqdCiERHvvZVvurCVy2h261V5BkUym7fE1Tg3rr9j0wYkt1vMXiTUyCjc9RrgS0jEV7EyRx4YDEDCR++Wbig7STrzTOOISI6//i4AzlUrcLZvhzJrVklbZ3IeECx/AM5vn+Dzzz+nZ8+eNGvWLGTh1JPDK/JFtxH82OTxoGtO5MfSvXNZf2QV45d+yO7jW0us3lAgZWdTtd9tJL7yQslVmpmJreeVSEePAmB5fwSWp57Mk8wydCj2xASUL74w7nC7kbZtRV67FsvgQcY258gR7O3aovz8M5YP3sd6912FNk+eOxfrlT2Qf/89zz7l7bexN2yArVlTOA+eUxMTkzNT7BUj1apVY+fOnfj9fpo1a8bSpUu5+OKLAahVq1axDSxJdu3aRWKicVlmr169aNiwIavOtuzvDMyYMcOw/c0331ChQgVWr15N586dg2JrafHbb7+xZ88eKlasyP3338+oNxeFpB6XPYrMyJKbve+wOOnb8lFSsk8QExZfYvWWO8LCyPrxZyIu6YiyYQNht9yMFh2N/6ab8H3+Bf5Bg1CvuALrvfcir1iO7coeeOb8hda0kAJ86elIGzcafpLXrqGowRCkrduE7S0AqN264V6zNuCoRUWdKauJickFiOkPFMz+/fv59ddfUVU1R4y2NPArVvbENmZPTCOc6zKombqZxKwDpWZPYTl0bDfzV/7KpW1vomqluqVtjkkpouzdy7EFS4gc8U6+6ey7diB7A7OTd7w6guNX34Q9woGmm81q37qZur2vRnWEkXrbXaTc0RdvzeB9lx277yHif/2RIy+8mtNBad23B6vqRfJ48daoiRYREbT6ikJ2y9Yc+vp7Kt97J5LXi7xxA/4ePUrVJpPyR7D8ATh/fQJVVRk5ciQA//vf//KsDAoWmiSTGlaB5MiS9Tkurt6dZfvmcTzrMIdS9lAzoX7BmcoocmYGh9/+EOvunUUPvVhIpNRUOHTI+NuGDXnSaQkJSBkZWF54HrVDh9zIEzVq4J3wPdaremIZNw4qV8H32muBco4cQdKF2JLWrSu0ffKkX1H++gv577/xTpiAenPuKkh5y2a0KlWQ9uwBlwtK0d81MTEJHcVeMdKvXz+6devGtm3beP7557FarWiahizLvPTSS0EwseSoUaPGGRvyJk2a0K9f0WNMpqamAhAXF1fkMsoKX331FQD9+/cnTFzGGCy00lkOKEsycc7QxSs9X9Bq1SZzwULcjwxGrVwFKTUVefMWOBWKQmvQAM/06aht2yIdP47tiu55BjkKJCkJ7zffoOmeR99TTxfZZv/jj+Pr3x/fc8/j79kT7xenBDqTk5G2bi38wI2Jicl5jekPFMw333yDqqp07tyZZs2albY5IEn83rA/u2IaMaPO3QWnLyPMW/ELqzfOZf6KX0rbFJNSJvv6G9GiY0h78eV80yXfcgcH+z1IyiVdOHbDrajh4Wg2m2EGtfXwIVRnONbjR0n49APqdmpFjV5XUfHFoVT4+nNs+/cWy1Y1LJxNMxeS2fWKnN9qXtOVape0perlHanRvD5xw5/DcmB/seopKhETf6Ru9QQq33snAL6u3fA+/Eip2GJSvgmVPwDnj0+wYMECdu7cSWRkJHffHZr2V1L9pbY6za/6SD6lf1qnQpMCUpdt/PEJ+CpVxnXRxaERNT8DWpUq+D75BADfM8/iu+8+vGO/zmvbkCH4r7wSyeXCduMNSDt25OxTu3XD99lnAFjeejMnkoTWvDn+3r1zyzgV4k7asQN8xrBiZ8P3/gf4b7kFyevFevvtKOO+ydnn/fgT3Bs34Vm/AczoEiYm5y3FXjEyZMgQhgwZAkDDhg3ZtGkTa9eupUmTJjkhti5kVFXl8ccf55JLLqFpPp2vbrcbt265e1pa2lnTlhb79u1j5syZQGBgJBRIqp97FzzPnoTG/F2hJ25LyY/Kn8g8ysJtfyJJcEMLU3TtTKj16uN+bwTud97FvnwpkihsGROD588Z2K7sgbxmDbaeV+Letr1QMT/V2+/Al52NVq066qWXgs2GtHgxls8+Re14Mf577oFznY1oteIbPUaoQMXatw/yrFn4vvgC/z33nrNtJiYmJoXlfPIHVFVl7NixAAwYMKCUrckl0xbDT82GFKg7Vpbo0v4W1myaz79bFtEz+SAJsVVK2yST0uK0UK3dnn86WWbPs68geTyBAZEzkNH5cjYu+Zfov2aQ8ON4whf8RdjypYQtX0oc4KrfCE/V6sUyV3M4Ddv+6BgkVQVNQ0lNIWbUx0SPGUX69Tdz/Jlh+KqWXKja8L9yw2ZlN2+J7+df8vqgqoptwTxcnbuUaFgeExM4N5+gPPgDkDtx8o477gjZCtLWu2fTdN8iFje4ia3WhiGp42zsSN6EX/MRG55IYmTlEq07ZJTwO89//wOobduhtWp19kRWK96ffkbqejnymjVYr7kaz6LFOQMS/vvuhxMnsT7/HNann0KLj0Pt2w/v+x/g79MXsl2oN9yI8vrrWIcPQ72oA55Zswpe5WGz4Z3wPVpUFJaxY7EOGADZ2fgfHJjT11DaKyBNTExCS7EHRpKTk4mKikI5Fd+1Vq1anDx5kueee47ffvsNr9dbQAnnN4888gjr169n0aL8Q069+eabvPxy/jPESpvo6GhGjhzJ9+NnM/XX/cB+NFEQVRAA15Kz8y1T04sUevzUPbKKhIwDOD1pzKt+M5Kce4tqgogbenE1sRNEEOERBVK1DGPMZb34aqY9lSU7Z2GVbfSodwtOi1iWEMv4pO4YBeFEr88oeOqoFGnYPr43xbCtF2PPEAThosLyF/wShRX1/k5itPHjNVk4/vB4o8NwNCVXYDYx2iiQ6xKEJdUOlwT+OPW7w50FkZEQG4tnxkxsPa5AbdUK7HYK64LpByvk+fOxXn8dUlYW8tSp+O81DmSI8WwLWsatvPceyp9/ojkcqM1bFNIyE5PgUFjBM72IWUEi5gWVXRhBtFCKuuUnKK/fDpa4WmlxPvkD8+fPZ9euXTjs4RzYU4ERb88HMPgEUqJxVWkeAXWhLdWyBSHS9FwhUzVDEDXViVI7PWlUOraFHXG5q1YkS27ZmnDfyIKAsegviIKx/uMZueUK7YokCI1Kgg8gC+dAU3OPQ4oLtK1VEmvRsFZbNu9axYIlv9DrsocCCWKEzvE03flIM56P7ErGD3ZRUN0aLgi5HkrP+dshtPFu4fyEOYz+k158VRbOh1sQ2hbPl9hOp7ty/RyvkFcUl80S7g9RnD1WJzxtEYR9RQHodEHIVi8ubbMYj18Ul00TBHajw4126tN7hHsp3JH/Z1dqpues+6rEG++lwDGc+k3TqPj2K/hat8Fzw02n6jp1zQf0QbqvD+49e1BmzkDauQtp106qd24LVWMB8I3/Hq1CBXyXdQEgRbAjXnduRdFur+79fXzNOjJcHlBVwuf/ReznHxO+6G+iJv1MWGYa2b/9DjpPMFzwzTOEa1w10Xhf6+89UfQ+Qji3ya+8ievKq7Fu3UJa/weICosAjy8QIz4qCrfXT8SEb4l//GGyul7BybdG4KsVCOEriot7hMk/ohi5/j7PT8T8TDjzSe8X7MjMFv186az7RTtswnMtirMXBvH48yOsGPWAUWTdo3tHhCpUU0lyLj5BefAHUlJS+PXXXwFwWFue0R8AYx9BofoHANxeWu+aQ2zWEcIzk5Eq5N5Xaqbxm1ZS8r/nNF16VXhHW4TvZe3UPbf1aCA8U/24ppDh5fSTKekE1aUqxm980oX3udAOIwibu9Nyz4kovu4Q+x4EHDqfSCnAVxafffE9Y9XldwjVimljwo0+kPjuzOMD6AdFNA3ltddAUfA/+2xux0VEBJ7ffsd+ycXI27djvW8A3slTcvb7hw5FOnYMy4cfYH3hBdy9boHKlVErBwaslA8/xDp8WKD+df/BiRPnFv5KUfB9MRqiogN6pE8/jf+W3hCfT4h1jwfL888jbdyAd/QYSEoquJ4QUJJi2iYlR37f/MWhJO+P/OoKZb9FUShy6bt376Z58+YkJCRQoUIFfvvtN44fP85NN91E+/btmTJlygW/YmTQoEFMmzaNefPmUbVq1XzTPvvss6Smpub827dvXwlZee5ERUUxaNAget00JGR1tNo3D4CUsIr4pWKP2xWJqjG1qRBRBa/qYfX+haViQ3lEOnaMsH53Y+vYATJOdSTFxeGZNRvfa6/nptu8GeWbvMtn8y1769acQRH14kvwD3nC4OTIE8YH4n6eK9nZWN4NxPBWb70VrUoVw/Jsef58bHXrYO3Xt1B2mpiYmJyJ880fOL1apGXLrthsjgJSh5Yum3+i9+ZP6bj/z1K1ozhc3v4WAFZu/otMV9mcEWxSdgn/9WfC3n+PyHv7Yll9Fs2DGjXwP/AgvrfewvvTz3D6PbR/P+GDHyby6itxPjMUgiHWLstkdr2C/T//RtbiJXgGPkT2d+OLX24h8FesRObNvUl55gXUChXA5yPimp5E3HwDeAIdlnJqCprNRtjc2VTp3J7wST+XqI0mFy7n6hOUB3/ghx9+IDs7m0oVa1GtamhWctQ4sZHYrICOxM6E5iGpIz+2nQzoYdRLKN9htMoS8oIFWF9+CeuwF1FGjTLurFQJz5SpaFYryrRpyNOn5+6TJHzvvIPvqafxzPnL2B/wxx9YT4m6+2+4Aff2HVC9ECsjJQnfu++itmyJlJWF8uvEfJNb7+mH5YP3UWbOxHb1VSWm2WJiYhJ8ijwwMnToUNavX4+maSQnJzNgwAB69erF1KlT0TQNq9VapsIrlCSapjFo0CAmT57M3Llzz0mE3m63ExUVZfh3IWLxBz7IklK2c9/KF2m9fy42X/6zSoKNJEm0SroYgL3J20u07nKN1Yrl77+RN2/GevddcHqGXVwcVKwY+NvlwvLcs1ieegqSk8+97EOHkLICq2+8H32E79VXc3YpX3yOrV8/7N27wdGj51ae253zYax8+y2OqklYr7s2d//+fci7dyPPmXPuNpqYmJgInI/+gNfr5ffffwegbesrS9kaiDvVWZKtOAtIWXbxq75T//txl7DPY1L+ybzpFjxXXoXk9WL/blzhMkdF4b79DgAcH39EVMd2OJbmv6qtMKht2+H5aCRERxecOJRIEsqG9ViXLCb83r6gaaQ9/CgHFizDdellyNnZJD7Ynyqd22N/Zijy8mWla6/JeUlhfYKy7g8A/PvvvwC0bXNlyFbyWHWrLe9b9AxXbf6GCunF00kqDA5LGJ2r96RWbIMSq/O858jhnD+lnTvz7NaaNcMzfwGe777Lu+JDlvG99RZa/fq5vx0+jLQ3957QGjUuVAjvXGMkfM89h/+66/Dfm3/oeL0GinTwYHAmFpiYmJQKRR4YWbhwIZIk0adPH/r06cOJEydYtGgRdrudJ554gl27djF69Ohg2lpueOSRRxg/fjzff/89kZGRHD58mMOHD+MqzIz2MsbUqVP58ssvOXToUEjr+a3FI6yp1g2P4iA+6zBXbP+eW9Z9VOJia1HOQHiBLE9mASlNTqPFxJD500Q0hwNl2jQsjz+W97rZbEg7dyKlpGA5JZp2TmV37oz/6qsBsD72mGFGhtqoMVpcHPKKFdgvufjchN6jo/FOmYq/aze06tXRJAlNN2NLXroUAP8115yzjSYmJiYi56M/APDdd9/x+OOPU71aycb5PhO74wMzOGulbiplS4qGqvqZ/NfnAFzS9GriIiuUskUm5QXrti1YN20ERcE14H4AbH9Oz52Yci5EReH68GMyxv+AWqEiypYtVL7hKhKGPIKcfLL4RrrdUBZ0ERSFzC+/RpNlbJMnEfVxwAf11a3PkYm/kzbgQTRJwrZpI7YPP8Dy+2+lbLDJ+cj56BN8/vnn7N+/n/ZtrwpZHdsrtGZas/s5Elkdq+ql+eFF3LP6VSqm7w5ZnXoebvs8V9e7lQh72RuYKq+oV/bEO/JjfI8+im/o0DOm0S66CPWOO1G7dMm3LHnOHOz16oLDju+++4CAQLu9WlU4eRJp0SKs3boFQncdPFiwbTf3wjvxV7CeCml2SjtLxPPrJHwDBuD99FM8E38FZ/mdoGNicqFT5IGR48ePU69ePcaNG8e4ceOoV68eEOhAf++996hc+TwRpioCo0aNIjU1lS5dulC5cuWcfz/99FNpm1ZkPvzwQ+6//34mTZoU0noyHLHMadyHz7p8wOy6d7I1oRVTmgwscYGwMGsgrrHLm1FAShM9/vbt8X4dCJNlGTUKy5NPGh0JRcE3fHjgz49Hwslz/OiWJLyffIoWEYG0bCnS6tU5u7TOnfEsWoxaty7y7t3Y27fDOngw7NmTb5Hq5ZfjnTUL985duDOz8L319qmD8KNMnhxI0+uWczxyExMTk7ycj/6A1Wrl+uuv54MPPkCWCxdPPxRsq9gagFopG7H6y99sPVlW6N1jMPWqtuDK9neWtjkm5QTLrp1U6daJpC4diPr0I7yXd0WNjUM5eADr3L8KXZ73pptJW/Mv7v6B1f6RE74lqVsnpIzi+cG2114lvFYNrG+cCqmqaUg7dyL/sxZ56RKUuXMDqzN8vvwLCgK+K3vievd9AOJeHUbYtKmBHbLMybdGsG/zbo6O/gZPv3vwXXtdTj55+zYsi4O3isbkwuV89AkAkpKSCAsL7aDBxiqXMK7jy4xv/zybEtsyucnDHImsGdI6T3M+aNqUOWJi8D/8ML73P4AKFZB278Z6xRVY+9yNPHduocJSydOnI7lcWB55BN+zzwUGWwYMQO3UCTIysPXtg7JgPtaXhmOvVRNrr5uRVq7Mv9BT+sloGpZHB+ft0wCoWhXfF6PxPzgQ7bLLCnkCTExMyhJFFnHw+/3ExcXlbJ/+u0ePHsW3qpwjikuWd9LT03OE4Xr27MmUCbtz9mmZRgFLUXxdcgq3mCA0pukFMXU+h8fqZG2jq1jLVTm7FEFYUXPnzojTFEEQ/KRxpYcozGZJijXaqRMl1LK8ONWA0KTLnWkUeSfvMRqGF1OFEBiiqKmw3y6Ii6YdzxVrt0UY99kEEXhRIDRbEBPVC6RluowfnE5BxE0Ubs9PPFLcZxcEHdXet+JNS8P64INYRn4EFgu+t9/OGdxSb7gRtXlz5P/+Q/ngfXyv5IbF8gn3h150kerV8b7/AVpiImrbdgYhd61+fTyLFmO9+y6UOXOwfD4K5csx+D78EP/Ah856LDnYbDnLbeWFC5GOHkWLjUXt2rXgvCZ5CJVY2IVIfsJkxRUtK4wgWn77xXKKc80LEpQvb5xv/kAe3Ma2V9OJpEsNjIKVcoowaGEzXlst1bhf04miykK7qz+vR+21SbHHE+M+Qa3UjWyNb43m8+sTn7VcAC3NOFNXcgp+jCNXBDWP2HqY0S8RxdcRhEjxnfnZqF21KQ/e/dYZ9+Wgb7fFcgVRZlXwF/yCkK1FX5bwiIniqcnHz75y1hFp9HFE38JegN8S7ji7mLZbuE4xgk/kFdJn6ITcxbRiWVHCdRSFqfVECvvEDjK/0Hljt+beE1mC/yiKwIsi1pGC4G6k7n5yC6LnFV99ATk74FPGv/wCaaoP1623E/7FZ9jGfU3GFbnfY6KPZxWui3LajqhoPB9+gvW2O4h85CHcN95MWEKMwZ+UJQ37Lz9hmzoVFAXNYcd9Uy+8VwVW9cZH5goQK1+OwfpOYNKJO6ka3h27iBr00BkHbvxx8Rybvwx/Yu6KKVG4W3/qrULbcDTV+BxXijWK1bs8gXOQ9eBApK1bcH4xioSH7mN/lapYL2oXSFQxEf+tt7LnuoCAPclZoGlUefxxwufNIe3WOzn25ghiK8UZyrbrhI89wjN+Is3o9ydEGZ8Z/bXIFp5TsS9WPB8WxZhAf58rwr0llq0UUiQ+VGRkG79dEF5tEbpnQP8dJH4TlRfON59AVVVk+dS1EP2BfPoICtU/ALl9BJLEwbh6HKzYMOdnsX9ATRd8CY9Qlu59Jrbp/oMphm2lUm4IQFVT2Zm2Bbcvm2ZJ7QO/Hc9978hC8y5ViTD+IArOxxvfUR6dD5QtPOua0J8gCy+HFJ3vFRtpbP/Ed0FaplEUPtxhPeu2+I4R278Ml7Esh81ot1P3nvH4RH9At33yJGFXX4WydWvA5h9+AEBt1gzv6DFo7dqRH74RI5D+/RdlwXwsr76Cb8yXOS9QywsvIO3di1a1KlqNmsiLF6FMnYr/xhtzyz15MuArnkFoXVq6FMvngVW92O343nijxCfsFoT5rX1+kt91PR+ueXGP4XT+YJ2LYnkVa9eupXbt2tSuXZt//vkHIGe7du3a1KlTJxg2mpQykyZNwufzUbdu3VK9po0PLqHVnpLRfHBawrErTmwWe8GJTfLgH3Af3s8+A0AZ9RnSdp1WiyzjGzYMAMvHHxv3FVTuvf1RdbP4DCQk4P1zBp45f+Hv2g3J50Nt177QtstTTq0Wueyy3CW0JiYmJiZs27aNF154gcWLF5e2KblIElvjWwLQ/sBsFNWbf/oyxsRZH/Ppj0P54ff3mPH3t+zav6G0TTIp41gXL8Q27Xc0RcH1+BP4k6riuv1Osvr0A8Dxx+/I+4su0uzteAnJfy8h89nnc35T/vmHsEcfIebii4jsfw/2qZOxT5qI4/sJWDbpQphqGuzfj/zD91geeQSAzKHP4GvbntiO7VA2bkSzWlErV8FXqzbeRk1QY+NQ4+MDeUtAvDbz7XfJ7HoFcraLmK++yD+x14uvWiDkatTP31P1mm7Iu3eF3EYTk7KOx+OhYcOG9OzZkx06rYWSJtJ1guv/+RSbL7ThyNYfXcWXi99m6r/fkuUxI0oEE+eAeyE8HLVqNTwD7kM7paUjr1uH5ZOPCy5AkgIDFgS0Q6UVKwK/p6YGIlQA3pEj8SxYgPvf//ANHox6ajAfQPn6a+z16iKtXZunaO3ii/F+8gkAlnffQfnoo+IcqomJSRmlyCtGINAg7t692/Cbfttcdlj+0TSND05pQfTr16/U7Eg6sYVr/xuNX1I4GFOXI9E1Q1pfxYgkXu7yaUjrON/xP/AgaBpa/QZop0LtnUa9/gbUdu2RV67A3r0b2UuWQpUqhSpf2rEDy+uv4f30s9yYnpKE2qULapcu+DZuRGvcODfDyZMBIfiCsJ6aPaRpgX/me8zExMQECITV/Oyzz1i9ejV//vlnaZuTw7oKF9Pm0Hxsfg+y5scvFcu9LVH2HtrCwWO7cgZE5i+fyLMDvyY6OqGULTMpq0inNDskvx9lw3pS1vyHanegJlXFfcml+OvUQa2SVKw6tIjc2c7SkSOEPTYIy6pA6BHNYsE1+DHUKklIHjfeiy/JSauMGIHllZeRsgIroLPvvJusF4ajbN9Oysy/cCxfhu/yy1Hr1iPz1Kxwy7atRD/zFDXbNeXwqLFkXn2WCTDBwmLhyIefUb17J5Lvf4jTc8aV3bvRwpwQqfMVbTaOvfMh6Tf1ptID/bBv3oi18yVkTPgR36WdQ2uniUkZZuLEiWzbto20tDQqVaoE7C55IzSNG9d+QuW0XfhkG9Ob3x+yqholtCTaEUtqdjKjF77JA5c+h9MSVnBGkwLxt2qN5847kdxu1MZNyH77XRy/TUZesgT/E0+eUxnaRRfhv/VWlJ9/xnb9dXjmzUdr3BjPH9NRvh2Het31gXRNmuD74ENDXnnNaqS0NKx334Vnxco8Yu/+gQ+BKxvr009hGT4M/223wQUsG2Bicj5S5C/Hzp07mwMfFwCLFi3i33//xel08vDDD5eaHQfi6rO1QmvqH13DDf98wvgOw8gkvOCMQSI58xjh9ihzBUkh8T848Mw7ZBnPlCnYruiO2roNVKwIgLRjO7YP3sd39TX4r85H+Nzvx3rtNcjbtqHFxOJ7//08SfSDIvLcuVhv6YX3yy9Rb+6Vr82+N95Ai43F/8gj5qCIiYmJySlSU1MZN24cAE8//XQpW2PkWHhVfm48mBRHIl7FcUaRzLLKrVc+xrGUgySnH2PV+jkcPbGPRaunck3XAaVtmkkZxdPzarIfGIhj9OfYZs9CPnIYqtcEl4vkbyegxcRikYMXakjesxstIoLsBx7E0/ESvJ07o1WslDeh348yfXrOoIjvqadJf/FlkCT8pybIeJo3z0luWb+OyA/ewznlV6RTK0XCFswN/cAI4E+swJ5Fq1Ajo3IGRiJfGYZz0kTiqlYnu3Ub3I2b4quchD8pCV/lKuz/cx6V+t+N47+1RF57FdmPP4HrxeGQTyg2E5PzlY8/Dszkf+SRRwgPL7lvcgOSxNxGd3DH8jdpenAxuxKasiGydUiqsio27uv0DJ8vfJ2DqbsZu/htBlz8PxxWc3CkuHiGDUfTtNxIelYrat9+qH2FSbmaBi4XhJ35nHtHj0HatRt55QpsV/XEvWYtWqdO+C65BPbuherVz/ht7x35MfKiRchbtmB56kl8oz7Pk8b/+OMoEyciL1+GZfgwfKPHFPOoTUxMyhJF9prnz5/PvHnzCvxnUr4ZOTKw/PDuu+82aMqUOJLEjKb9SQ6rQIzrODet+QiL31NwviBwPP0wn80ZzriF7+Hzh14c8nxFWrsWy0MDwX8qBm3Firjnzcf75Zc5AmfKhg3YvhxD2M034rinL6SknLkwRQmItQGWkR8hT5uWb93yxF8CM0HuvDMQazS/8F1WK/7nnoPo3LiynDhxrodpYmJicl7y9ddfk5mZSZMmTbj88stL25w87IlpRKojd5VF+wOzuXLHBOql/IvdH9oQG8WhaqV6tGp4GV073srVl90LwNK108l2n13bw+QCR5LIfPd9UlasJf3Lr8FuR96/n4p1qhHz8INwelDE6yXszdeQTxwvVnX+9heR8ccMXB+MxNP71jMPigAoCp4ZM/C+/Q6eX3/F99ZbubbosE6ZRPgN11Hx0osIm/QLkqqS3b0H+yb/ybG3P8g9zIwMIj54F/uC0HxPqpFGsWgpLRVNkrDu30vkb5NJeOtVKj02kKRbrqPGJW2IGv81B6b8ifuW3kg+H9a/F4Cl/KxOMzEJFitXrmTZsmXYbDYeeOCBUrXlQGx9ltYJrAbosfFborOL977Lj4pRVXmg07OE2SLYm7yDr5e9h8eXXXBGk3PD48Hx6CDCevfK7S84hfzdt9hrVMfy/HNnzx8RgWfaNNQmTfA9ODAnUoRlyOM46tTGeted4HbnzRcfj/frb9AkCcuYMchTp+RNI0l4330XCITeklavLupRmpiYlEEk7XxTATtPSEtLIzo6mtTUVKKiogrOEAJUVaVPnz78+ONPDHl0DJUr1w7sSNZ1MHiEWMCCACiCaJdemBVAFYXIdIgrkjSvn7iMQ9y1+BWc3kw2V27Pb60fBknOUy6iKJ8olnkg2bhbJxbmT8ky7DsQfpyxmz7Go7ppmdCe2y96xGCbHJMriCbFCCtKEoUZNIJAHFFG0TdFJ0wqW43H4EwwlpVUKZL80ItBinMjLIJopSgAatPlFQUskzOMDkWEIDYrCsLZLDJSRgaVWjRCTj5JxgvDyRr6DAAOYZadb916nGO+wPHVGCRVRU2qimvMl/gv75rHbrfXj/OpIThGfYYWFUXq34tR69XP2W8QqfT7sfa/F2XChJyf1Es64e9/L/67++QMzOTB58PyzDMoP/6Ae/kKSCpeaAoTk4IorKB6ccrKT0C9sGXnR2HKzs/mtLQ0KsbFlmq7WBqUFX+gfv367Nixg143PUHHDoFOCIM/AEafQBBXF4VZ89SxJ9X4g64dF4XZEdpHSWhbK+9ax12r30I6Nf9QRWZfTD3m1rmNo3G1BLsE4XJBTBS9cLdwf0qiOLQgLi4nGNtPLStX/0SKc+Y5BlVTeW/SYxxLPchtXR+jXcOuuQkSdOlFH0cUshXaZYsg6q33iUQRZkes0S5xv17I3eEURVuNdogi3w7Rr9GdP9EvEUXgHYKwuyJ0uOvrFoWmo8ONvpYo3K3qPoWOC2LZosizKFRrF/yYFJ2PVFC9WYKdogC93p8S3LQ85yt6/Nc4Hgms7HbNmoPU9XKs996D8t13eLtfQebk33J8Hbv4/Ah+m3juRR8RwPLSS0iLF6NecQXqFVegtWhxxkEQjh7F+vRTqM1b4H/wQZRXX8E6YgQAmiTh790b39ND0Vq2NNghbd6McsstWDZvQpMkMt77gKz7HszZLwoKi76oiCiKrr+uhn2pqTj+WYO0YgXytq1w4AAcOIjn1dfwnQrFkpXtxT7tN9SoaLyXdQm8ZbKzCR/1CYf6PYBmz/0WcNrzt8uus0P0r532swsZA0QJwtHBxKs7J+JzHKxyi1O26Q+U7nH37duX7777jjate3DHbac6qvPzB8DYR1CM/gEwvrM0rx9J9XPH0jeomryN/XH1+KHTC2hy4HnRThrt0nd9aZmCUHuW0Q7NZ3xHS6ee5wOufYzd/RnZajZ14xvTv82TWOKEb37h/S7XiDbujzEKqhNvbHv1RFQxXusIwX/w6cTrw4S2UmyjbML73yK8S+N1Qu8Oq/EdJLbxYv+K2Hbo2xqxxzFS7D+QJaSNG3F2vAjJ5cL3zLP4Xnstd/+UydhuuQW1QQM8GzaSLy5XbphtQBk1CuvgQQD4L+uC99dfISYmTzbL//6HZcR7aLGxeFauQqtZM08a6513IM+ejWfyFLROnfK3oxwSzO/Q88GO8kpxzl9B3/jB6psIVt9DsNrF4Hk6JucdsiwzYcIEhj3/a+6gSClzMqIyU9o+hl9SaHhoBd3XfxfyOmtE1uGu+g8gI/PP8RUs2PFHyOs839AiIkh9NSCKFv7Gq1hWLD9jOn+jxmS8/xEps+biq1MH+cB+wq/uie0swmuuN97G1/FipLQ0Im/vjXS2lR2Kgvfrb/D8+CP+nj3RZBl58SKsAwZgeSSfEHHZ2chzZiMdPozt9tvLVXgWExMTk2AxY8YMduzYgdMZQevWV5S2OQVyMLoOE1s8xuqq3TjhrIiMSo2ULfRZ8waVUsuucLIsydzY4T4euvpV2jYoe6tyTMou8pYtOX9b3w8MPPieeBLN6cQ6Zza2zz8Lan2W115FmTcX63PPYm/XFlvLFuDJu5Lb8u67KBMmYP3fUOy1aqJefjmeCd/ju+de3Os34J3wPVrLlsZM+/dj63wpeL1oYWFImkbkk4/j+OmHoB7DGYmORu3WDf+zz+Id+zXembPI+ue/nEGR07ivuwHvZV1ytqOeeZrIl16k8oP3hN5GE5NS5OjRo/z0008AXHLxzaVsTQBNVpjWaiBui5OqJ7dx+frvQ/rNluSsRr8aD2JXHDRMbIEim+H0goHWuDHuz0cDYHnrTZQvx2B5+CEsTwxBbdUaTVGQt2xBWrQo/4KcxoEj/0MP4fnhB7TISJQF87HdcMMZ7w/fq6+itmqFlJyMZfiwU5n9kJmZ01/g/fQzPEuWnpeDIiYmFzLmwIhJgURExJS2CQb2xTfkzxb3AZAcnruc3+lJJ8yTFpI668c05vpatwEwb/s0XN6sAnKYiGTd2Yfs3rchqSoRr72cb1rfRR1IXrQcb+9bAXA8/STWsV/lTWizkfHd96iVq6Bs3kzkDdcipabmTQcgy6i39MY77Q/cu3bjHTYcLTER9dbbzm5IRATeSZPRwsORly5Bnj37XA/XxMTE5Lzhxx9/BKBN6yux284+q7GsoEkyOxOaM6fBXXx50euMb/U/ACyaL2R+QrCon9SC2pUamzp+JoVCq1Ytd+PUigUtLi5HRFY+eTKo9al16xq2z+p7WXWzgv1+tIaN8N96K94xY9Dq1z9jFikjA9877+B66BHS33g753f56JFi211clD+mEXPTdUgnT03E0TTk/fuwLVwAgKUM2GhiEkomT56Mx+OhalJ9qldrWNrm5JAWlsjMZoFwlBVTd6Oo3gJyFI/qYTV5uvNbXFrzypzfDqXsMUNrFRP/HXfgHTIEAOvAgVhGj8YyciTKrJmo1wT0R209r0SePKlwBXs8YDu1yu7E8TMPnNlseL8bjxYfj3Zq5rm8cCG2q65CmTgxkCY2Fu2UZpaJicn5gxkY1eSMHDlyBJfLRc0zLCEsC2ysegknIpM4ElUj57eWhxZw8e5pTG0ykO2Vgi+81q5CJ5YcnsdR12GW7fmLy+uGXhzyfCNj+MvYp0zCNn8e9imToHfvsyeOiMD1zbeo1atj/eknfNdex5nm42iVK5P++3Qie3ZHczjOkOIMJCXhHzYM/xNPQEREvkm12rXx9++P5eOPsTz8EN7vf0Br3/7c6jExMTE5D6hZsybVq1enebPLStuUIuFWwjgSUQ2fbGNnQrPSNsfEJOh4H3oY7wMPosyZg79HDyweD7bbbkM6fhxf8xZkPzU0uPVN/xOysgIDH1YrWsWKuZ1OOnyvvorv8ceRtmxBa9YMLTr6DKUZ0Ro2xN+wIa4sD5GPPgJA9q23k/Xw4KAeQ6HJzsYx+BHkgwepUKsq3hatkA8eQDl2FAA1PoFDn5iCvCbnN7169cJqtbJg3v7SNiUPm5M6oFos7K7QFL8SeB9VSdtBjOsYWxLb4JfzD21XWCLtMTl/u73ZjF3wNpIkc33rfjRJbGVOcCginjffRj52DGX8eNR69fB98CFqz57477gT7rgd5c8/sd56K75338P/+OMFlqe89RbWF54HQG3TBs/EX88c+pFA++M+cBDUQJgfafFi5CWL8d95pzGh243y/QSkFSvOKNZuYmJSvjBXjJickc8//5xatWrx+Dk0NqXFkeiahtiWiRn7sWg+rts4mgppe4JenyzJXFalJwALd87A4z+DeJdJvqjVa+AaGFiKGnXfvSjz5uafQZZxv/YGGavWoFWokPu7MMtDbdSItJlzSJ867Zw+unPQDYpImzcjbdhwxmS+p4ei1qyJvHs3ts6Xorz7bo7DZGJiYnK+88orr7B7925q1SyfgwrHI5IY1+ZFJjUN6JKVdQ4n7+WnuSOZ9Lf5sW1yjlit4HDgv/ZasNlQvvwSedlStOhosr7/MU9oEWXUKKwDB8LZVnoUgFa7NlrTpmgNGqDVrp2zMiUPigIVKqBdeukZY7oXRPqHH5P28WekfT7m7HpwJYXDgeu3afhqBnSKrP+uRTl2FE1R8LZszcmJU/DWrlO6NpqYhJiEhAT69+9fZidKbE1qj8eaq+/Vfv8srtvyFf3WvEaM62jI6j2ZeRRZkknJOs63i0bw9ZL3OJFhriArErKM9+tvcK9ajeeff1F7BvpfiIjAO3kKvgcfRNI0rE89ifTPPwWXp2l4P/wI/9134/ljOtZn/oc8a1ZOf4K1z91Ynngi99veYskZ6Jd3bAdAbdjIWOaRI1gGDsQyZgzSmjXBOGoTE5NSxFwxYnJGJk+eDEDLli05sTqfj6Y84uLCR4sgFCgJ4qtKhdz8qiigLgj0yeHGWR6STkxUPZbF9IsH41z6LjWPrqfXPx/xbfNnyTg1k0Mvrn6mbTkht4NcjhIEzY7kHn9TpRHzbIlUd9bEteMQsiUCS53E3HJFwUq/sEyzZoxx+4RREM7eICHn76zjmYZ9UYLgWWa2cYlwjCDyadEJ23m8xnOpasbrkLePP7euw8nGsGFhgpCkTRCbzfYYhWz1Qm2yLJH16usoe/Zg/20K8rRpuC7tkrNfFCbNOX1R0aCB2+XB8fVX2KdOJmvy74aPZFvjxoaRXrdXPMbcayEKWvoWLib8xuvQnGF47r8fqXdvtMaNc+2oVBnXilXYHxqI5deJKB9+gLvfPRAfn0cA1cSkOOQnkC7uL0hYrSBRs/z2F0a0rbjiafr8prhe2UWSJKT9BYSh0guCCu0OiYIQ+a4UY/lxxhV/2snccBSSKEoqiJpqLmO7g/4+OvXu15DIskShnsgwphXabUkQNNZ0ZcmRgo1COyOKs+exSy+KKuzTdD6POy2DlZv/wmmP4MaO9yFLMmTo2nxBuFasF5vxmHzpRv9KL1avCQ5AdrKxKIvge0i6upUI47nKEPwSURzaJVw3h84X8wvXwS+8CzJdwnUSTkGmK7dusY3fd9R4zZMSjStF9QLYMeF2wz6X23idRHFZcX9CdO69Kgq3i+iPH03Dv2YNljlz8Ldogb9bd8OMVo9wr4ni46IvIk2ZAoD7meegTh2Df6RNnoLt0VOrLzZuJP23PwwDG5ow+STMfvbrJAsXoqAJ0gbR5AIkAHLun4cepLgy4/ldi4Kuk96fpkVzvMuW4Tt+HHnBAtSWLTlRq0HOwJMi3A8Voo3vjKMpRr/fphNGFsWIRUF5tRCSCT7h+Smsr6oXRc/O89wWfYBKPASxbPH+EYWjTcoQ+woYVM2vj6AQ/QOQfx+B2D+AIC5+pEYjqmbsIDHrIH3/e5Mp9R9gb2ygk1u8H+UYo58i9hf4U43fxL4DKTl/V66XxJPd32bult9YsHUam4/8w/Y5G+jW+EYub3hjHp9HFsTXJV0bhvBOyhCO313J2IYpund0lpDXGWv0n8KENl1s0xRdu6NqxkmgsZF2IpYuRElPJ7XH1WRlG993stAu6Z9fsR6RyDDjdfSrGlSsDSfdRIcLNr71PhHxFfDVrUd23Ua4k43vVVEk3jn0f7k2ff0Vyk8/Ia1ahWfTZpJTMqk0aRKS201Gk+bIffsY8lq3nxoYqV0HVdXwnL73KiUh9b4V+48/IL37LlnjxudplwtqW8oiZeU7rKzYcT5S3P6D4lCYvoeSpti1q6rKV199xZ133km3bt3o2rVrzr9u3boFw0aTEmb58uX8+++/KIrCddeVn3BRqmzht3aPcjyyClGeFK7f+mXQ61AkhcG1n6ZX0h2EW/IPwWRyFiwW0r8eR/onn5H51ruFyiodP0b48BewzZuL8/33zpxm/37sr7yEvH7dOZer1quHmpiIfPgQjldfwd68GdZu3WDfvtxEMTG4v/8B9+df4B77DcTHF8p2ExMTk/JGamoqH3zwAWo5XSFXPXkTF++ZRmJG2Qv5kR9JsbWwWx243BkcPF52xeJNgof1wQeI6NAexwvPEX7dNTh73VSs8lzfjsc19hu8twghS9PTcQx8AABNkrAsXULYqXBVJudIfDxagwb4H3ggEFrVWfZ1l0xMgsGgQYP44IMPOHo0dCsvgs2KFjfz7Y3vcSihHk53Bret+5CqKVtDUpfN4qBnk1sZ0v0t6lVsik/1MnP9L0xd+01I6itplJRk6t91E3UG9iV85bLSM0SSyBj6LNk331LorMqXgf4h/333ByYfKAqZ/e8HIPLlF5H2G/1FeccOALQKiYi4HzulhTLpV+Tdpq9mYlKeKfbAyBNPPMEDDzzATz/9xLx585g/fz4LFixg/vz5zJ8/PwgmmpQ0I0eOBOD2228nvpx1/rpt4Uzu8CQA1dO2YQ1BuCuLbC60KjZ2O+57+hc8tVBAq1CRjDffASDstZex/pVXDN3x2CDsb75BeK+bkQ4dOrdy4+PJWLKcrNFf4r3qajSbDWXBfGyXdwG37h6SJHz9B+Dv3l2XuRBT+ExMTEzKERMmTOCJJ57gvvvuK21TioRF9XLpnqn0X/MydY//U9rmnDOKrNCgaisAJsx9nx0H15eyRSahRjpy2LAtC9uFRUtIwHvnXWjVqmH5bSrSsWOBHV4vvl63kPnXvJzQIGcVTjcxMTE5xT///MOnn37K//73P7KysgrOUIbIDIvjx6tfIS08HhmVmOzjIa2vQmQV7uv8HC2rX4JFsZLqOhnS+koMTcNVvyHehApIfl/B6UsI5eAB4oY+bvxmPxunwqkqkyZBejrIMunDXsZXpy7KwYOEX3kFkm5ipFYlCQDbU08h7d5tKMrfoiXebt2R/H7sn30arMMxMTEpBYo9MPLDDz+gaRqVK1fmkksu4bLLLqNz5845/5uUL06cOMHEiRMBGDJkSClbUzRSIiqRrQSWwka5T4SsnuPuY3y790sOp5evmahlDfngAcIfH4y8c8c5pXff3RdXn35IqkrkvX3z5Mv+4kv8desi791DeK8bISPjzAWJREbi7dOXrElT8Kxbj1alCvLu3SjjvjlzelXF8t232Dp2hMzMM6cxMTExKadomsYXX3wBBMJqlkd2xjdndZXLAbh+82j6rnmN27d9wg07x9Lp0HRs/uwCSig9era7C6c9gmOpBxk17UW++e01jicfLG2zTEKE59vx+Dpfhr9OXfz1G5D1w89BKVfavx9nn7uIaFgP+3PPgMNB9sefoqxdg7JpI2p8PFkfjgxKXSYmJucvY8aMAeCmm26iZs2apWtMEbB5XURmBgYodsc2LiB18ZEkiTs7DGL49aO5vmXfkNdXEvhj49g0YxHrF64ho0On0jYngN9PpV7XEvX1l8S98mKByb3ffYcWF4e8cgW2jh2wbNkMTicnJ0/DV6Mm8s4dgcGRvXsB8Hz0EVpUFCSfREtIyFNe9qOPA2D/ZmyRNbtMTExKn2IPjPj9fqpWrcqOHTtYuHAh8+bNM/wzKV+MGzcOj8dD69atadOmTWmbU2QORNVmX1RdFEFLI5jMPjqdLRkbmbpuXJ54zCbnTviQx3B+NYbwl4efWwZJIuP9j/C2bY+cnEzUHbciHc0Vt9MSEsia+jtqQgLK2rWE9bsb/IW7D7Q6dfA9PTQg+G45ywohjwfbq68ir1qJ5e23C1W+iYmJSVlnxYoV/PfffzgcDu6+++7SNqfI/FXnNnbGNsWqeqmcsYda6VtonLKWFseXolG4VYslSYWYJIbe+jEdG/dEkmTWb1/KnkObS9ssk1ARHU3W73+Q+d96Mtf8g1ajRlCKlU6eQG3aFCkrC/sH7+O883bwevE89Aju517A9c13aFWrBaUuExOT85PMzEzGjx8PwAMPPFDK1hQNuzeL7dXbsS+qbo4GaYnUa3UQF1GhxOorCTS7o+BEJYWicPLlNwCIGv0ZUZ/lP9Cv1a2L54/paElJyJs3E9+tM5aNG/BXr86JaTNRa9VG3rWTsGuvArcbtUNHsv9bj+f7HyAibxh1X/cr8DdqhJSRge2bsSE5RBMTk9AjacXs0R00aBA//fQTu3btIuIMLwuTopGWlkZ0dDSpqalERUWVWL2XXnopixYtotfVj9KxzbWBH9OFZYm1YnP+VJcfMOySGwiht1KE2ZiiGLleqFsUqEoQhFp3GBVBtezczm5NsFEVbRaEflSXUcRM0wmGSkJ4Jzkx0rAtnRIbP+k6zgcrXsSreri1wQBaVbgIWRBZlKKMIp5yzWijXeLTpxNTswh5RYHUMEE81BlplKasqBMAzRDEIL2CsH28kFcvvGYRRF5FUVOrcN3ChP1GoU3jAUeG2bCsX0d8p4uQNI3jc+bjbdues6EXcZMOHCD60ouRjxzGX606yav/NcR5tq5aQdRVPZCys3E9+TTuV1/P2VeQcKTPr0J2diBMltOZR7TytICsdeoUIu64Fc1uD6wyqV0733LPdA7E+83ERE9hRNBLy46CxNKCZXNaWhoV42JLvF0sbUrLHxgwYABjx46lTbPu3HHj0MCP+fgDYPQJCusPaGnGsqVKOjHoE0ZhzTzC5YJwq94n0Nx+0FQqpe8hzJuOPT2FcG8aJ5yV2BHTFEmRQVOpkHWAo+HV8vgHesVjSRQCFgWvxf1CWyvphL0lu5BW9IF04vWHMw6w6uQSrm3bNyDELuSVKgoitwKWOnGGbVUn5K0IbbZNEFS3CALQNsfZw4mKwtyqcPzhgriqXqg0IcroPyVnGq+D6Kf4hftHL2ItNquinyIJA2KKzs8RBeNFAWxRLFoUV9X7KSfTjfd8dLix7DC7sewswVeL0p0vUbjeWsB7V++7pWd5sE37nagB/ZBcLnx33oV77Nc54u6iYGyKcO7DdfeI6LOI51osKz/SsryG7Sjh/gimv+QSzq3oyxaGwtglCg5neYx2OPIRJ7YJ7xPxi93tNd4TesF1UQRZ9M0LQn8vFjZvSWD6AyV73GPHjmXAgAHEx1bhf4+MDbRDhfAHQPAJCtM/APn2EYj9A/5DxkgBkig2fjLrrKGctUzjMWnCMyb2J6B/N1pyn1dN09gnH6RGdN2c94NSxdifoAnto5yk219An4gstIdhOrF6TTiXYhueGG8sKzPb+B42fGsL50lshyOF9lL8Xnbr2i3xnSS+R2MijP0e+rZEOUN7Fz5uLNZdO0h5dhhuSSF25AgS3nwFgJMjRpJxz4Bcu3RlnW7TpaNHcfa5C9XhIO2XSTntoW/nHuJ7XU/6M8/juqmX4XwA2DLTsX05BunIYQ4PDwzIRIwfR9hvk3E//T+8nS7NSeu0Ge89j89/1n1i+y+eH4eQXn86xXNrYlIeKKiP41z7QILlDxTb04mIiCAtLY2WLVty/fXXExMTY9g/bNiw4lZhUoLMmTOH++58hYZ125W2KWWeOGcCl9e4hlm7JvPnrom0TDx7h77J2fE1bYbrzrsJm/AdUUOf5MQfs85JyFKtkkTaHzOI6HMn7r798uTxt7+IzM++IKJ/P5wj3kVt0xbvjYUQM3UIs2Fcrjx1eK+/AX+3bih//YVl6NN4J/567uWbmJiYlFFSU1P58ccfAejQ+upStiYISDKHo2oBoNrzhs9qdmwZPXb9yJiWL5FC2ZvkUykiievr3FPaZpiUVyQJz3XXk/bt90TdfguW7yeg1q+P97nnS9syExOTcsDpsJoXtboqMChSnimBCWk70rcwdtsnVI+uw0NtnzMnwQUZx+wZxD8xOGf7yHMvk/zok8jp6cR98gGxTz2GGh1N1k1nF2fXKlQg648/8aZn5AyKoGn4q1bl6OIVZ40YIe/ZjeOF59AUBdu1N+Fp046Mu/qScXe/MjmIbGJicm4Uu2V755138Pl87Ny5k48++oiXX37Z8M+kfGG322nZpAsOe/6zD8sLUdmh0xgBaFahLQBZ3gz8WtkRIStvZDw/DDU6Gtua1cTeczd4vQVnAvwNG5H69xKyBz12xv2e227H9dgQ/DVrosXFnTHNuSB/Ow5byxZIS5aAfuWOJOH74EM0WUaZMgV5wvgi12FiYmJSVvjmm2/IysqiYkINalZrUtrmhJz2h+Zg1bxUytxb2qbky98bpzF99XhSM0Pr25icn3h6XkXGhx8DYH1/BKSklK5BJiYmZZ5Vq1axYsUKFNlCuxY9StucYhGXfoAKmfsKTlgMNE1j7qEZAFSNqmkOioQAWaftKWXk/n3iueGk3Hs/kqYR//D92Jctyb8giwUt8tRKHZ+PqN43E/7VaMOgiHT8OMq6/3K21RYt8V57HZLfT8Ve12Nfscw42Kaq2H/6oXgHaGJiUuIUe2CkevXqVK9enRo1auT8rf9nUj7IysrCX0gdhrKMrPq595/XeHj1c0RnHw9ZPbtStgJQLbIWFtlaQGqTs6EmVSX5x4loDgeOmX8S/eSZBzrOiNOZ65BkZgZWduhwDX+Z1BVr8HW+rGjGeTxY3n4beccO7J0vxZ5UhbD77sU68Wfw+dAaN8Z///0A2Pr1w2KukjMxMSnnrFy5EoBL2l1/QXzUuyyBVSKSVjqh6s4Fr8/N3PWTmbdhKrsObyptc0zKKdl978HfuTPex4eAkn9YURMTE5OwsDBuu+02WjXrSmREbMEZyigtd//FfQuepcvuSSGtZ2f6VnZnbEeRLFxW46qQ1nWhknXdjRz79keOTP2T1Kefyd0hSRx79W2yrrked6s2aDb72QsRsP/yE7YZfxLz9BCiXnwWVBXr2jXEtmtF1B29ISM3RJvrm2/xXdoZOSOdCr1vxL50cc6+sNdeJuq+e7H/8lNQjtXExKRkKPbAyO7du9m1a9dZ/5mUD9544w3q1q3LL7/8UtqmBAVVVnArgbBHdU/+V0DqorMzZQsAtaMbhKyO8x3nl6OJeONVvB0uJnncBDRZxrZgPlJqaqHKCXvhOeJrVcU+WQhnZbdDuG4FVIYx9myB2Gx4/pqL/7bb0CIjkY4dw/79BCL63k34rbeAx4Nv5Mf4nn0OTZJQWzQvXPkmJiYmZYzx48ezatUq2jTvXtqmlAjaqcEfWSu7E0QWbppOZnYaMeEJNKvVsbTNMSmvyDLZs//C+8KLEBmJ/M8/WAYPQnnzTaRVq0rbOhMTkzJG48aN+fHHH7ntuidL25RisTuxKQC1UjaFbNKkpmn8dWg6AO2TLiPaUfRoBSb5oCi4rrkOd6fOqBUr5dl3/KtvOfrHbDyt25xzke7b7yRz2EsARH46ktgH7sVXpw5amBNlzx4inng0V+gpIoKsqb/j6twFOTODCrfdhGX3qX7PU6tNIp54DGn//uIeqYmJSQlhBsIz4fVRM3n/w5G4MtOZtWwvDWOERlwQAHvy0Uty/h7x0SJj2mwhnFS0MFIvCqjqyxZFyXYaxdTyjQkqCqbHOtletQ3VN26lXvp61jY0xkjXBKExOTb8rPs0QTxT0omx14lvRLbfRf2KzZDsFiRBtDQPyUJZLSoatvUiqKIAqmwVxEMFoS1RTNSlE4yLEGJeOqOMswRVQeArSydkGyYb02YJ1zhasNOqyDj/mo2naXP8lSph19l9QhDXjZszO2d1iK9aDY71uh3X97/i6nAJms2OQxCQsyq6beF28DscSC4XtvHf4a5WA81hB4cTX4OGYLFgtyrYvvkax/AXODF9Nv76uYNZUU5RENZ4rrWKFfGMnwAeD/LSJUjT/8T62afYZkzH/dLLuF95Fc/wl5F734rctKlBrFcURLsQZl+bBI+SElsvSOAsPztKSxDeJPh89su/ui0L9nAhrGY+/gAIPkFB/oAgviqJwss6f0FsW/OIHzuM7ZScmCsuqiYLfschQfTd40OVAvllSUMSBS51gun+5EzDvjzvc1GM3Sn4BIK4cn5Icbk6V+v2LWfG2kBohq4NbkDxSwYRWG1vmjGvINTq25NiLDwx97pKinEwSPUan2fVatx2peVeN6twfH5BqFb1GbedsUadLr1YdLrL6HuFieL0AmGCoK5emFQU2rZZjGWJguqpOrHxgsTVRX/JJ1xTRXdMYj2iHeIxx4Sf3Yd02pRAp8yJE0gZGZCVBZmZaLVrQ3x8HsH0CN35EQVxM3Xnx7F6Dc5RowDQ3nyDzI1biKla5ax2FIRfPB/5iMKKYusikiSBxxPoaJJlvDqxYqsoTlyAHcURWz+jXeeI6ANGOPI5ZuGW9wrizOIx24XvAoft7M9MYYXsQxUr3yU8X858bAbjO0K8j01Cz6c//5Nzr0jitSqMPwBGn6Aw/QOQfx+BcC8r1Yziu+rhQLud4qjArvgm1DqxgZbpy1lY7Va0VON3qSq08ZogAi+26Yqu/wBFZvvJTezO2IFFtnBZlR5ounetlm58R8tthA593XE46xn7YkShdluUUQczUdfmRwrtjtjOhAtta/2kaMO2vo2zCs+cvYDn1SK87/TvkWzBP/AIx6SqZ39HicfkF747IgR/QHjdGd7DYptu2B72Ip56dbD270/YpInYKibi//Ir5Kt64vjheyy1auF7JSDwTlQE/DEN9corkZcspuInI8j+Ygza88/jnz0TZdUqHPcPwDtjRo6GiUU5+3s13GF2y5pcWBTUf1DS/QtB8TAWLlzI5ZdfTmRkJJGRkXTt2pWFCxcGo2iTEmDCF6/gykynRp0mNG/XpbTNCRo7KrQCoNqJzdi9mQWkLhrtkjpzT8vHqBlTPyTll0ecs/6k4h03kzDo/ryeiR5VJXpIrnBa5CvDwOsl67KuaPZzX/p6muzrbwTAvnABCVdfQXzXzsRf3I64LpcEVp/4/di+/Qb52DFi7749f9vOhs2GelkX3G+8hevnifgu7Yz7idwZVGrjU7H4NQ2OHkVau6bwdZiYmJiUEqsWz+DE0QOlbUaJo54Skw33FG6lYkmQmnWSH5Z8goZG25qXcVHtbgCkZSWzcts8/GrZXeViElwsDw3E1ukS7HXrYG/eDHvHDthr14IDRX9mfU2a4n7mOdR69ZGysrC98VoQLS4e0rp1WG++CWvfPqVtionJBcf8+fP59I2HSU0JXUjqkubfapcD0Hz3fBye9KCX//fePwGIdSQQbS+/YcfOF6SUFMKGPY/zxefOOY96x514v/0WTZKwjBqF/Ndf+D77DADLG68jz5iRm9jpxPvOO2g1aqBdfHHgN6uV7LHfoDmdKHP/wvLii0XrczAxMSlRij0wsmjRIrp3787ff/9NZmYmmZmZzJ8/n+7du7NkSQGCRyalzu7du9n07xIkSeKeR99AyWcku7yRHFGJo5HVUDQ/TQ4sLjhDMRBnYl3IaA4nJ196HcmVbRQqPwOSN3f2jOQJ/G3bspmwv2YVul5f4yZkPDQIb5Nm+OrVx39K40iLiQnYoSi4H38iUFdKSv4rkM4Bf48rcc2aAzExefZZ3nsXZ93aWH77rVh1mJiYmJQUmqYx9fuPeHPobRw5uLu0zSlRDkbWBqDz3t+Iyz5SytbkRdat3NQI+Buq5ufnxZ8yb93k0jLLpIRRL74Y/1NPGX/0eIrV6eJr2QrPSy+T/Umg48c6ZjTS8uXFMTN4KAren3/Bf801pW2JickFx5gxY9j071JmTvqqtE0JGtsrtiI5vALhnjRuWv4hFr+n4EyFIMwagU2xc3uTB4NarknRsCxZhPP993CMeA/756POOZ/a+1Z8Iz8GQPn0E6RNm3U7jX0bWocOuLdsxd9/QO5vDRrgfm9EwIa338LyxBBzcMTEpIxT7IGRV155Ba/XS/Xq1XnooYd46KGHqFGjBl6vl1dOLzUzKbP8/PPPANRr3JYKlWuUsjXB558aXQFotXduyBqkA2l7GLn8JQ6m7w1J+eWN7MsuJ+2Rxzj824z8hT1lmYwhT+dspr35Lsgyic88QdLdvYkZNbJwFUsS6W++w/HFyzm28h+Or9vC8TXrSZ70O1psYNaO5Y9pARuvu6HQx3W2OgHQNKyff4aj/z3Is2ehzJ6FlJ2NWqt2cOoxMTExCTHLli3j5LFDqKpKbEKlgjOcRyyp2pOtcS1YWvUqTtorlLY5BqLD4nj0ytepElMDlycT+dTqlnRXCgBz/5tEcsaxUrTQpKRQ+/bDf3cf3OvW4547D8/PP+NZvgKqVi122f7LLsN7511Imob1oYHg9RacKcRojRuD04l6x52lbYqJyQVFVlYWU6dOBaDdpVcXkLr8oMoWJrcfgtvipNqJLfTc8k1Qy+/daAAPtnmGpKjcPpVdqVvNCZSlhPfqa8l68SUAnE8NwfLn9HPO63/oIbyffor3l4nIc2YHyhv+EurVZ3geLLqJxacmevruux/vJ5+gSRLKF18gbd6cN5+JiUmZQdKK+aaOiYnBarWyY8cOoqICMR1TU1OpU6cOPp+PlJSUYNh5wZGWlkZ0dDSpqak55zUUtG7dmrVr19Kr68N0bH4VAEoTY6eAf80hY6aaMbl/izGgjwohq3yFuL3EYToh9iRpxlkdql6vQzHO/lePZwFg87l4eOET2P1ufujwLPsSGgGguYXQE7q4l3k0RoT4omKM8O/3f8P642tIiqjBIxe9mNNpAaBUjjDmFeJHSsJ+pUZunE8x/q8jzhibWxXObUS8cb8+VrUYlzjMlv/KIH0sTjEus02IaRwuxEsWYwDr4weHC2VlpWXi+Porsvv0A5uNmIfvx/Ljj2hhYbjXrUdKScHy4gv477sP9fobDGNbhV7w4fHgCAucI/dfc9Euu6yQBZwdZdw3WAcMyPO7e958sFiwjPwItU3bvDM9TUzKKAVpjhQ1bXHsKKl2saxRUsf92GOPMXLkSFo37MKdPQMhAgvlD4DRJyikP6DuN+pkyHV0YSjCBf2R7ScN21JlIf74IV2IjGxje6+J9+cpTQ1JU9EkGU5rW2kaSBKaLi66Jug45PEXRJdaiKkt6fRKELUXBLuUSsZj8lk1DqXspVp8HdA0NE3j879eYdexTTSv1ZE+3XLblwL1zvT+hNPYLiuCr2EXYpnLumcyXNAMiRQ0IzzC8dusRp9RrwMh6iXYRW0P4bJFhYt15SZwCL6peFlE7Q99/HJRm0K8a92CRoKodaL3gUR9DfGSh9mNdniFe8Bq8G2NmTOEe0/UrrDo8orHJF6X03ulY8eIbtMC+cQJPN98g3p3H/B6kWf8ibxwEb5HHoEa598kKpOyg0/QFvTodIrsuvdHWloaVRLiTH8gRPz888/cdtttxEVV5Nl7xyBJUvH8ATD6BIXpH4D8+wiE/gFN1LoS9D3xqVQ7vonr1o5iSqvBHIytm5tXaONF3TARQx+B8P6Wwu1sO7GBr/4ZQZPENvSq24cwq06TRPgmVmrkXk9JaFtlQXNEFey0V8jtT4gW9FjsQrsrfqf7BLv12k+K8LEttndiGxcv+Av6vgxRT0jUMcoQdOn0fRGi1omI3mb514l4L7oYrXLlwA+ahmPQQ1i+/BItJgbX8pVotWqd9RjOyIkTKN9/j3/QIORfJ2J5bwTeTz9Fa6MTd9c05B9/wPrMM3hmzUZrENAyVb74HK1BQ9QuXQqux8TEpNCkpaVRMS622O1isVeMZGdnExcXZzAiOjqauLg43G53PjlNSpsdO3awdu1aZEmmeb2LS9uckOCxOJlf71YmtnuC/fENCs5QBG6oexcOxcmBjD2sOLAgJHWct9jtZA98GBSFyD53BgZFrFY834yD9HRsV/ZAmT4da79+cOhQweWdDU3D1i0Ql12TJLROnYJ0AAH8ffvhXrgI30MPocXHB+qRZaxPP4390k4ov/yC9Zn/IX8/Iaj1mpiYmAQDv9+fs4K0ZYPOpWxN6aDpJjVYfG7uWPgqdQ+uKkWLjFgUa2BQ5BSSJHFDm3uQJIn/di1l+8F1pWidSZkhJQV50UKUz0dBWlrB6XVoiYlkvf8R3jFjUO+6G2nnTuzVq2G76SYs74/Adu01kJERIsNNTEzKCj/++CMQ8AfEiXrnA/sSGjG663uGQZFQkOI+iSIpbDi2mpFrXmVP2o6Q1nehI+3YgbVPH8KaNsL69puQnQ2ShG/kx6jtL0JKScF+x+1Q2D7K+Hj8gwfD0aNYH3wQedVKbLf2huRkQzJl3DikAwew3p+rs+p/cKBxUMRv6sKZmJRFij0wUqdOHbZv386TTz7JqlWrWLVqFU888QTbt2+nTp06BRdgUmrUrl2bf//9l1u6DyLcGV1whnLKP1UvZ2fFloZOj2ASaYviipqB0Eyzdkwyl8sWgfBnnsb+x+9odjueX39FvfZabNdfh3Q8IPgnpadjee3VolcgSaiXXAKAf+j/8g/xVcTytY4d8X38Ce59+/FM+wPPgr/RatVEUxTU9hcBYB04EI6ZIU9MTEzKFvPmzePw4cOEOSKpX71laZtT6rTZMYOqJ7Zw0/IPqHtkTWmbc1aqxNagY90rAJi2/NtStsaktFHmzCa8amXCul2OddAgpHWFHyzz3NIb/739A35NzZpo4eFoFSuiJSQgb9qE5blnQ2C5iYlJWeHkyZNMnx4IOdTqPJ4o4VNyV1ZWP76Btrtm5JO6aLSrcikPtX2OeGcFUtwn+OKfdziUsT/o9VzQqCrWvn1Q3nkHafEitJatkDIysA97EUfvXuDzgc2G58cf0eLjUdasxvb4Y0WqyvL2W0ipqQBIe/ZgGfZi7k5Jwjt6DFp4OPKSxShfjsmTX9qwAVuL5mZYLROTMkixe4r79++Ppml8+OGHXHTRRVx00UV89NFHSJJE//79g2GjSYiQJInmzZvTvskVpW1Kuaf6KeFWr9+LXzNnAhSa07OREhJQ27UHWQZZDnyMn46dLRfvdeV76y3cmzbje/nlYhpbADYbas+egYGSN9/CM2t2rnCo319s0XcTExOTYPPee+8BgdmhFsVaQOrznzV1rsSjBMJe2XzZBaQuXTo3vBaAgyd3mxMzLnQ0DemUNojasKEx7nlRkGW8M2bi3rMXf99+AEhmiGQTk/OaTz/9FLfbTcuWLakUf/6HzrN5XVz37+d03fwDLQ79HfTyq0bVYnD74VSNqIGKys7ULUGv44JG05D+/Rfrc89iHTIEz+TJZH/1NZrDgWXWTGxPnwozWr063m+/Q4uOxn/jjUWryxlm3HYYQ55RvTq+pwL6qZaHH0b+zjhhxTJ8GPLmzdiu7IH0779Fs8HExCQkFHtgZMiQITkDINqpmMcQGDAZMmRIcYs3CREul6u0TShRah/5l86bfqb68Y0hKf+fYysAaJzYCotczA/RC5Csl1/DX6cuWnwCUkYGKAqembNwr1iJFhmJ5nDg+98zxa5Hq1cPLBbkXycibdsGgDxnDvKPPxS77DPWV706lldfxTp8GAD+Rx+DhISQ1GViYmJSFI4cOcLSpUtRFIXLWt9Y2uaUCRocWI7N7ybdEcuWSu1K25x8iXAEQtlqmorXZ4awvZDxX9ED74D7AZBOnMidWFIMtLp1A37T/HmBOnr0KHaZJiYmZZcqVaqQlJTE0KFDz8swWiIeq5N1VS8F4Mpt42l4dGXQ63BYnFSOqA5Atu/C6oMJOYqCZ/4C1BYtkFJTsQ59Gt/dfcge9x0Ats8+CYSWBNQrryRr63b8V/YsUlW+4cPxPT4E74j38Q0YgO/NN/Ok8T//PL6BA5E0DWv//obBEe9HI1EbN0Y6cABbl8uQZ80qkh0mJibBp9ji66fZuXMnq1evBqBNmzbUrl07GMVesIRSXO3Vd/7kvdf7ULd+G66/eTARVqNIlyhihiDimdguKefvvpcbY3OOeFF4wWcJwuVhlrPuT7y2vmHXsWlbjWmj7cbt5FzHQt0rxFEW7uruy76g1aG/WVz9WhbVvCGPmJqampWbVRC0lJzG49d8gphqjJM3lz5NuieVe9o/QaOKrXL3CSJlsijGLgrT1Y7J+VOxGPc5442zFCyCyKmoLhobkzuLITbceAxVEoxleQSh+2ydOH20kFcWRMpEYXdRIE0v1m4XjkmfV9q1C1+FiuDMtVuRJfD5kP75B61tW8Ns2CI763v3Ym/aBHw+PG+9g+3JIeBw4FmxEq1Ro6KVeTYyMrD2uRt5wQLUrl3xfjUWIiORli9Ha9UKHI6CyzAxKSLBFEUPpcD6uRIscbXyRqjFVkd8shhXVjo7tv9D0/odhcrP3R8Ao09QoD9QXTiWnSnGbV37IDeMN+xSs4zttLrsgGFby9TtF8W0hbxim66lZXH/5jdJcB9hbpUbWNWq11nzSmI7LNSVR/Vb/xwJYuOS0LZqQlmSTrhUL66uaRoH03fjsIUTF1kBWVZA8D3yrFSM0l3HSKNvJUcKPo9wCHbdfmuEMa9NOB+JMcY2zia8R/SisKKJipBWFHbPEoRaw3Xi4zZRuF04CFHkXC8+KwuGRIUZz0eW21hvpCDkrhdyFcXmxWPUC8afaX9+iL6X7bR/lZ1N+GWdUE7NRvU8PRT1zTfB4wmsIDmH1bdewSe0ul3YGzVEOniQjD370SpWzNnnE+5TUWA3OcP4DonR+ZQXQJ+rSSERv0f0z7JbJ6qdlpZG9YoJpj8QZEZ8shgAn9eDrCjIHt3zXQx/AASfoBD9A1BAH4HYP5BqnCCg6UXfAVW3P6dN1zR6bPmOVgfm45dkfm38CDvjmiE5jO939YRRY0kv9C4L/QUI7+jpR6aycMefdK57Ndc0uSOv/6BrD+REYWVCDSHkudC26Nv8iCRjv05iReO2KLauCu9wfZtnEfyScKfxOonf4k6hX0Nflpg2XBBfF599ff+D2O6KfQ2yBMqa1URe1glJVcn440/8Xbthf/dtHMNeRFMUXEuXo7ZoaWijpe3bkY4cLp726OHDSIcPo7VsmfubqmJ5dDCWzz9HkyQ8y5bnCrWnpGDt1QtlwXw0iwXvqM/x33PPBTEIaXLhURL9B8HqHyjS1PZXXnmFqlWr0r9/f1555ZU8+zdt2pTz97Bhw4psnElomDFtDGlpJziwfyvOsEjwFpynvJNmD3SqRLlPhKT8Wxrcy4bja6iX2Cwk5V8IaLVqGTuV/H6QLWCxoLVtG7R6rE8+gZSVhb9TJ7wDH0KZ9juWuX9hvetOPEuWBnewIiIC76TJkJ4OUVHgdmO9606UX35BvagDnrlzwW4vuBwTExOTEOIMi6Rp80tB6Gy+EGl5YikJ7iNky07Wxl9c2uYUiCRJVE0MrYCsSTnC4SDr+5+IbNIQANu77+A/eAB52jQ8f0xH69Ch8GWGh+PesxdpyxbDoIiJicn5icV6ulP6AvEJJIlZDe7G5smiybEV3LTpcyY2HsTeys2DVkXb6pdSJ6ERCRGVglZmeUc6eRI5+ST+OsX3Yfyt2+B+8CEcoz7F+ehgMlauxv3UUOStW6FmTdTmLYx1b9iAvdvl4PfjWbioaJMjvV5sl3dB3rYNz7Q/UHueWokiy/hGfhz4OyISrXXr3DwxMXinT0e77z4sP3yP7f778Pj9qPfdV7QDNzExCQpFGhh56aWX6NixI/379+ell17Kd4TTHBgpW/z3338sXTQFgJtufQJFsYD3/Hd6Uh2nBkayTwa9bFmSaRDflAbxTZHMMFrFJzMT64j3kNesxvfb70EtWlqxAmXyZADcL70CioL7409RmjdB/u8/lJEj8Q8dGtQ6kaTAoAhgefIJlF9+AUBevgzLm2/ie+ml4NZnYmJicg5kZWUxffp0NK2SOVPtFHZfFhcfCcxqXVLxCjyKE6WAPGUJTdPMa2mCVqcOrpmzcPS+BSktDWXCBACU6dPxFWVgBAJi7A0agN/UsTExOR8ZMGAA2f6qtGpzxYXZjkgyf9S/B5vfTb2T/3LLxk/4Iu4dMu0xQSm+UlQ1KkVVC0pZ5wUuFxVqBVYZZTw/DM8T/yt+kcNewjZ1CsqO7djffRv3sJdwjf4SRcnryWl16qDWb4CydAnWm27Es35DoXW55Im/IJ8KzW15/DE8m3X6MbKM7+NPAn+Lz5PdjnfcOLTKlbC+/z6Wr77Ec889xdcFMzExKTJF0hipXr06lSpVyvk7v38mZYs333wTTdNo3rILdeu1LjjDeUKGLQaACE9qyOpQNRWv31NwQpN8sUz8BdtrryLtP1Bw4sJySq8EwDGgP9Y3XsN5VQ8k/6ml0Anx+WQOAmIIC1Mo18TEpJQYO3YsvXv35qcJeWMkX6i4LWGMajyM7+o+xvIK3UrbnHMmNfMkExd8xo9zR5a2KSZlBPWyLqi16+Rs+6+8Ev/VVxerTMvQodhefsn0XUxMzjPWrFnD2LFj+eHb10hOPlLa5pQaqmxhasP7WV+hA27FicYFOEBUUsgyqZ9+gSZJqJGRBac/F6KiyHp3RKD4AwcCbZV+UOJUiGtp9+5AGO1Jk9Hi45G3b0eeP7/w9cXp+g0SK+RtGyUpt/6sLCxPPQUnTuTs8731Np5Rn+P+a645KGJiUsoU6QncvXv3Gf82Kdvs2LGDn3/+GYBuV/YrZWtKlixbYMZ+eIgGRo5mHuKXzV+TFFeTm5rfG5I6LhSkTRsBUC+6KOhla40a4Vm0GGvv3si7dmJ/+aVAXbVq4fv0M9QQi4r6hr+EMno0ks+HZrXiGzgwpPWZmJiYnAmv18t7770HQLXqDUvZmrKFJinsj6hTcMIyREZWCss2Bla6VIqrTpcOt1yYM35NcpFlsv+ai+2JIVjHfYMycybKzJn4+vXD9+VXhRb4kJYtw/LB+1gAed9esj/7HGw2pP37kI8fx9+yVYFlmJiYlE3efvttAFq26UZc3IUd6smn2JjWoD+y6kOzOwvOcI4cST/A3pM7iAtPpE5CkDUtyyN2O9l39yW7922BsNK+4GgPeG+4kfTlK/OEzgKwPzkEy48/oCyYj3vadLTmzfH36oVl9GjkX35G7d69UHWpV16Je/sO8PvREhLybVet/fqiTJ6MtH4d3ml/gKKAJOEXQ2iJgzkmJiYlgjk0eYEwauJ/fD/6VVRVpVGzjlSv3zhnX3xTY7zgozO3GzMLIp7H1uXOJPlMEDQThdjykI/Y2rEV+8+6D8gjrqbtTsn5WwoXxNGSsw3bGeFxADj8LiyKH58wKi+F55Ytx4Ub6xXCBmievKHH0j2p7Evfyb70nTSNa03duMD51VyCUGu08fxICOdL5xNIiiDEKsxCEIVaI8LOfu7TBDssOuF6AKcggKbfznQb8zqsxrR+VRBxs5w98EhBkwxVTcO+dBkA3vbtkYT0fp0GiaWg83MWp0Jr2RLPypVYnnoSrWkzpAMHAuGswsPPmD6oxMfjTs+AjAzkpUuhcuXA76p6ToKoJiaFIZgCZ2JZejG14tYTzLJMCmbUxP9Y/vc09uzZQ2R0HB263oBiC7ShxfEHQPAJCvIHthpDWzo71zBsu7YcP3teQahdEuyS68fl/K1uTzamjRLExU/5CzafC69ix49RZ8q7/WjO30p8hDGvS1glKrTLkk3wNfR+jNggCmllUUBdLxgq7Euy16ZLy5uY/89k/lg2juMpB7m50wMop8N7itdC3wHhNYrPqy7f2dMC2bptWbA5TfAtLILooigYbtcJ0IcJZUWFG9NahDayUpxRnDY5PVdQNzPb6Lf4BXFZUbjVrhMMF8XDRRH4MMFfcgvnTy+4rgj1iiK3inC/5LctHoMoZJ8t+KYWRQZHGO7PviDiqp5Y77sPrVVrtBo10cBw/4li6yIutw9atcX3yWeEPTYY6/jvUNauQUpNRdq/H7VtWzzLluekt15/HVrTZvhef53Ygt4DIcIn+O6iz1geEK+5eH8UhzwCzHleR6HxSQsSYs2vXrvu2bKL4tMmRWLUxP84emgPv/wyEYDu1/ZD0YmC632CYvkDkL9PUIAYe759BKL4+gljOySKoOfXAS8pck6ntIaClmkUchfF2CWd4Lq4T1xssuPAeqZuGk+zSu2oE1kf8ZPY4C9ECseUaWzTlJrG9k9Wzv15Fdu4SKfQh6J7GcRH56+7mRBtHDhKzzL6RHofQKzXerq/wBqWJy0Y3amYcMFvE06eKvygtGltTHzqmvpffhll5UrkDeuxX34Zns8+R+19K4wejTJpEr73RkAhV69oNWueUzrfi8OQZ85EmTMHbumFd8yXkJioOwgVyyuvwNEj+D4bVSgbTEzKKqH8rj/tT3gK8f7Lj2KXkpqayt69e3G5Ao3Qr7/+ymOPPcZXX31VbONMgofX4+a/lfMB6HbVhbVaBMBtceKVA41quDsl6OXXiW1IhyqXAzBx09e4fa4CcpicEY8HZc1qAPztg79iJIeYGHxffoX/8cfxvftuyQyKnMZqhdhY1KuvDiyrffAB7HGxKF99WXI2mJiYXLCoqsqsKWMBuPyau7HZ8v/wvVDotG0SD81/giZHl5W2KUXimg59ueGSAUhILN88my//fA2XO7PgjCbnPeotvXHv2Ytn3jz8xdB+9Nw7AO/kKWjh4cgbNiDt34+mKCArcDokqaYhL1iA5Z23sTz7bJCOwMTEJFTM+W0cmqbStPWlVKlWr7TNKTXC3Kn0Xf0qtU6sD0n5qhboIJTM8FznhHTgANbXX0PatavohRw6hK1LF+Q//ghsJyWRPXce/k6dkNLSsN99J8oXn6PFxCAlJ2N59pngGH8GtObNA7oiVivKtGnYW7bItQuQVq1Cef01LKNHo3z6acjsMDExOTPFHhh58MEHqVWrFhs3buT333+nd+/efPLJJzzwwAO88847wbDRJAhYbXZeGvkbfQe9Ru36LUvbnJJHkpjQ9llGXfIOaY7Q6EhcVbsXsY4EUrJP8PW/H3HCdbTgTCYGLHNmI7lPzc5Rz/+Z49YH7sfy1VdIGRlYH3wQafXq0jbJxMTkPGfFwj84tG8HDmc4nXv0Lm1zygz1j6wmwp2C1e8uOHEZRJIkLm1+Hfdc9Sw2i4NtB/5l9PSXUFV/wZlNzn+io4NSjHr11XgWL8H77nt45vyF+2QyniVLAmFBADQN37DhAFjeexflgw+CUq+JiUnwObR/J0vnTQWgx439S9ma0qXjnj+onL6HK7eMAy3436DaqTUi/x1ewbK9c3H7sgvIcWHj7HEF9ldeJqxj0SdKWj7+GHnxIqx9++QOsMTG4p45G+8LL6IpCsrEiUgpKQBoTZoGwfKzo950M55ly1GbNEE6cgTbDddjeekl0DS09u3xvRHQ/LMMeRxp48aQ2mJiYmKk2AMjq1evJiYmhjZt2vDrr78iSRI9evRA0zTGjRsXDBtNgoTDGU6Hy667YONOH4mqQZozAU1WiMw+QbTrWFDLt1sc9G48AKtsY3fKVj5cNoyFe2bmzBAxKRgtITEw+xCwTvq1lK0JPVqEMSwLzuDFsjUxMTERycjIYMr4DwHocdMAwsKjStegMkSKMxDSoOvOX6h1MjQzRkuCJjXb88j1r+OwhXHo5B4OnCjGbEsTkzOgNW2Kf8gQ1C5d8q64lWX8Tz6J91QHj/Xpp5C/n1DyRpqYmBTIpG9H4Pf7aNr6Uuo2al1whvOYdHssANHuk1y/cTSR2ScLyFE4asbWw6YEVuhO3vgtb8x8jN/XjTcHSM6CVqUymtOJWqtWkcvwvfQS6kUdkFJTsfbtC75TIdusVrzDhuNeuAitalW0ypXxzJyF/6GHgmT92dFatMCzfAW+Rx8FQP7he8jKAsA/cCCaxYKkqhfEBFETk7JEsTVGDh48SP369QFYt24drVq14s8//6RRo0bs3bu32AaaFA9N05g5cyaqWgnZ1DAIoKlcs/5LKqXtZlrT+9leIXiOYO3YBjx20ctM2jyOncmb2Zm8hU7VQyvofT7hb9+ejMVLsX/wPu6HB4kKLOcdvhHvI23bDjHRaE2aojVuXHAmExMTkyJy6NAhoqLjsduddLu2T2mbU6aY1OZxblj7CbVObOCWjZ+wpvLlbItvwW6tIppUvuLZJyXU5q6uT1AxthpxkRVK2xyTCxD/008jHTmC5aMPsfbvjzcqGvXaa0vbLBMTEx09e91PtiuTW+55urRNKXVWVO+JT7LSbfuPNDq6knrH1vJvxUtYltQzZ9CkOFSLrs1zXUaw6sAilu6dy4msIxxK24tNsRec+QLE9cefYLOB31/0DkubDe/48djatEZeugTLww/h+XRUzgpHtW07PL/9jlajRtBWVZ4TDge+9z9Aa9IEtVnznAkG8h/TkHw+1Pr10Zo0KTl7TExMkDRRsbiQxMbGEhMTw+bNm0lMTOTGG2/k22+/pUWLFuzevZvU1NRg2XpBkZaWRnR0NKmpqURFFX5G56iJ/wHw78p5fPHO49Su2YKB/d8LDI4IImUVRLHV/4ziac7KxlntrmUHcjeEspwNEgzbnnRjSAp/llE8DJ0ouLOm0enII7wqiqnF586u17YZZ3VogkiZFJErLGZ3Z3DTwveoemgjbquTcbd+SMqJszsl6sksY9mi+PoZBAA1TWPV8SU0SGhO9Clnyuv3YAlzIku5A1SSIAgnxebGepeF806SUQzMmmicpWdxGt0GRSeCrojCtIJIUZxwHR22s3cCyUJs1Mgwo2hbqiC8FqcTkPN4jbMfxLyxEUY7fKqGcmA/Ud99Q8qjT2CLyj0novCiT1COdAj79aKVouikKK7qchuvsShOrxeHLLY4pk4UzsTkQkAUX9WTn0hbWloaFeNii9wulleC5Q+cJmPTEVJSjxEXWynwg+79Xyx/QChL9AfytOkxRm0TRWgP/HtScjfSBJHzisIs9QPpxm2b7h5zG0NJ+XelGNPac9sKWfX9n737Do+iatsAfs/23bRNbySBJCQQepdeBayADREVELsiChawYXtfy2cBsesroqDYABEQRXrvoRMgpEJ6L9v3fH8sbGZOSAKkbJJ9ftcVZXfamdlynpnZmRs37PsSnbIdOSMWmQoLR38Gq9xxmj604AwMSk+U6ALBBBkYF+LKuP6v2nd7LSW3oOD6Xa7fEUT9ssBtK3DB0uKaBwBglS5X8BNdnajhlsvPmw+BFddAOunPF7T+0kBYBTcvL+41F4ex8n0634dr1dLHaq5O0XtUtZPvh/n6gA9BFweqlxnM3DDpOvD1gScXXFspGs6H2npwtVhxhXRZ/NtDvItWV23h4yF9ncRh43UFkfM1ER+CK65z+G2nVMgg+3MVZAcPwTZqFNh111XdVstuh3LK/ZD/9BOYSgVT0mkgIqLW9SDNj9l65QHpTYXqgYapByr5frmWYwT1qQcAaU1wNccHgDqOEdRyfOCyRPWCvZS7dabZhtDCMxhy7GdE5p8EAKSEdsPvI19ytDOHy+0Sfd8z7nuUcX0JxN+jzI6zxjMI1AbDT+O4WtVkMaDCWg4/dUC1YwvyCOlBe1kIVwNFiYZzP4TVBktfJ12AtJ9WKaXji/utMu514PfTef7e0uGVRlF/yNULfJ/PuDh6T1GYfV19uoyrtXy42sP+y6/wm34/BLsdptvvRNnX/3OcdAGg4vo7QRAAgwHQaABBqHanFXFb+BLPwn1X8tOKV0N2mT5dc7EOtM6ZC+ucOZB/9x1YTAzsN9xQbVxCiEND1QP1rmwuXRkSHByMiooK9OvnuA9gZmYm2rRpU9/Zt1hbt27FLbfcgrCwMAiCgJUrVzZ5G6wWC5Z//yEAoF1UJ7pi5CKT2hO/3PIGzgd3gNpiwJjNnzT4vUQFQUCfwIHOkyIA8Me5H/G/Qx+gpIEvzW3VGEPo7TfD98N34bn8F1e3pkaynTug+PQTwHgNl0PTSRFCWrXmUA+IyWTyqpMiRMIuU2B1pwexousTOBo6AKeC+zhPigDAzUe+xMPbXsBT/z6OWxI/Q8fsPVBZDbXMsXlIzU1CYRnlnpFGYDJBOWkSFG++AfXQIVCHhUI5dQqExERAJoPlf9/Cdv/9sL77Hp0UIW6vudQDFou57pHcVJZfe/w85GUsG/wSMoISsKfzBOcwD1MJQkrqf3tKmSBDvG9n50kRAFiXsRLzj76FIwWUN3k52r/WwH/6/ZBnXbjqaQ3jJqDwG0fwufr3X+Hx0twax5Xt3gXP6Chox44GLJYax2twFy6AXTomUFYKdYd4KJ+eCeWtt0C27KemawchbqreR8pffvllKBQKlJaWol27drjvvvuwe/duFBUV4brrrmuINrZIFRUV6NatGz799FOXtWHjmh+Ql50Ob30Ahg+Z5LJ2NEdMJse64TNgUagQdf4oeqf+06jLKzIW4Ej+ASQXncQn+95Eubm0UZfXaggCyqZMBwDoF3wIWUF+HRM0PdnmTdAOGwr1M09D+eYbrm4OIaSZaQ71wNmTB/HX71/BbKJ7WddJkOF0UC+s7fQg1naaXvU0s8Ok0MEiU0JtM6Jj9l7ceuxLTN/1CuS2Jtx5vkqbDq/Ep2tfwsI1L2Lnqb9hbcZtJS2PcPIkhIs/CmF6PYSCAsiXLIFqzMXbyKpUjpMjM2ZUTWS1XmZOhLR+zaEeKCspwLwZN2PVT5/QCZJaZAQm4OfRryEzuOo2x73T/8aUvW9g2OmfG/RHlTa7DbmGbFjsZvyU/D/syd7aYPNuDWRFhQi8byI8/lgO3xev7bZvhvG3IX/pL7AmdIJh1uzLj8QYtFOnQCgqgmLLZij/93U9Wn2VwsJgWfc3zMuWQUhPh5CdDebjA4ExKKdMgXD2bNO1hRA3VO+MkRtvvBHnz59Heno6OnXqBLVajU6dOuHMmTPw9/dviDa2SDfccANucOFlb5lpp7H6l88BAOMnz4RGratjCvdTrA/DluumYtT2rzD09K/I0kfjvG9coyzLV+OPGd1fxg+nPkNeZTbWnvkFd3V6sFGW1dqUTr4fPl9+CmVaCvzvmoD8FWvAmtNl8z56AADz9wdz4+88QsjluboeMFSW44dPX0VeTgaMhgqM6UPZIteCCTJ8P+A1CMyOkJIUtM85iB7pG+BtKkSbkjNI82ueGVEJkb2x9egqlBuLsWL319h4ZDlGXHcX+nUeA4VCWfcMCKkFa9MGtrFjYf3gQ7CYGAg7dkA9coTjNiSXiK+MTU+H6q67YB8xAtbXXweU9B4k7sPV9QBjDD9++SaKC3Jw9MAWDO92p8va0hIpbY5bb/VLWweduRTrYu6DXVbvw2mQy+SY3uEp/Jn2K3bnbsHK5KWwMzv6hw6r97xbA6asunJXVlR0zfMxjRqN4jGjq273eLllBQcBqY6rglhg02a02UeOdCy3cxfYh48A69wZqtHXO57TaGqblBBST9f0Tf7GG2+gTZs2eOCBB/DGG1W/kF69erVkPEEQ8Morr9SvhW7CZDLBZKq6z2Vp6bVfUVBaWopvPpgNq8WMzj0Ho9/QW2A4XdAQzWx1Dncai/Dsk+h4dhuuP/EDvhvwOiA0zi3HArXBuDNhOj7f/18czN6JaN8O6BM5pFGW1Zowbx9k/bISYePGQnXoIPzvuRP5v64ElJ51TtsU7D16oCInD/D1BRhDy4roJYQ0Nw1ZDzDGsOSzecjLyYBfQCjGTngQLNNU94SkRkyQIUsfgyx9DDyMReiStRNtC4432xMjwb5tMPf2T7H37EZsOroSJZUFWLHxc2zc+ysmjnkacfG9Xd1E0pIFBMCyeo3zIRs6FOZFi8AGDLzs6PJff4Vs/z7H36ZNsPzwA1hsbFO1lpAWpSHrAQDYuGYJDu/bBLlcgfufeANyM+21XI1/O9yHLO9o3HjiW3TJ2gmtqRx/dHwY1gYIUJcJMtwadReUMiW2Zf+LVed+AmN2DAgb0QAtb9mYpyeyNu+CLTTUeYXiNROdFNG+81/I9XqYH3/CcQJfEGBY8hOE/DwIJaWwDR0KV9zwmnXoAFuHDlD16gkAsE2dCrhxRAEhTeGawtdlMhn69++PHTt2QCaTVQsWErPZbDUOcxeCIGDFihUYP358jeO89tpreP3116s9fy0hMvfffz9++OEH+HgFYNYDn8JD5wP4VZ1lDuodLhm/LE8aJGbIKZfOkL9StETUIanrOLfGBU3yAany9n7Of9sKuft0Z5RIH3OhXRAHXPFBoxyWyQWzmqvel0qrESP3fYvtPSeh3MMfrER60IjxgXBc6CATzYsPXrXlSgtYQS7Dhvy/sTH/HygEBR7pMxcRPtFVw8WBXr7SXwbIYqXBc/CVhsspA2q+KkjJhZCpuDBVJRdi6i0a34N7jS1ciCf/8ZfzIWWikE8lF3DGB76puCA28ay0xw6j/T3jIS8rQ9FtE1HyxTeSEfgMs9rC0vgwdT54lA9P44MmxYFp/LefkgvQrTBK3z86btnikFN+W/Khd/y04rA5iiohrV1rCFtt6npg/vz5eOaZZyCXKfD4ve8jKryDpB4ApDVBveoBoNaaQBull877mDTIFYFcmKgotBN84KlOuhyvvtIdxrK1p6seqLg21VX2ct/39lRRLcL1WVGpB9Cm8DTOhPRCjk87SbgqADDuO5xZaq6JZVyoqbi2qNYubjl8GLvAhyNf7B8sNjP2pW7GpjN/oqSyEL6eQXjhgS+hkIum54K5q4Wxi+sFrpYQuJqPDxfV+EnrFpmoz1fxYancOnpyw/mA8BBRTcQHxPJB7WbudRCHwFYYpbd54sNk+eVWcmHs4trDi9se/DuPfysWlEo/T+KwWr5O8ee2fXaxtIYW1252bkF8Xcdtami47SXeVaxtnw+oHk6v5N6LCrkMst9+hfLRRyEUF4N5esLy8cew3z+l1vk2NPEmqat+4l+n5lpvlYr2V7z5z20D4g8d1PWeqA+N6PNmFH0GqB64+vXesWMHhgwZCrvdhgmjH8fAXrfWWg8A0pqgIeuBqzk+ANRxjIA7PhA4VnqiNW9bGtfOmn8cwnK5WoP/LrwY1h5z4QBu2f0xlHYLMgPisXzgszCauD6MC5hnZq6v4Pd5PRzf6Ywx/HXwB2wt3AQAuCloHAbFSq8ykodJX3tZkKh+4uojhHtJp+X6R+9IvbSdos8340POue9zL+57Rs71j0pRPVHKHU8J4Y5j8Pu4dsagzMuFJSAQOi23HC43l/9O4vfjxX2g98X3i+bAPrS91XE1Rt6905D56n8BpRJeWun7ie/DxMcyFFy9xB8j4V0mb/2y8wUAz8pSaIKDwHQ6mI4eQ5E/nw1YNTNP/vPE4WsA6XENbh2s0vqIf03rOt5CSFO5VB+UlpbCx8fHNeHrkZGRCAkJcf67tj9yZebOnYuSkhLnX0ZGxjXPa86cOQgNaof7J7zkOClCamVRaLBu8JMo96i6DdKYg1+hz5k18K7Ma/DlDfe/Hh09O8HKrFh65DNY7XSv5Sth6NwNqV8tAZPJoE4+A6GivO6JXETx049Qzv8IsDfc/WcJIe6hoeqBnTt34rnnHPdivmXkw46TIqRBpQZ2xfb4OxwnRVoApVyFATGj8cLtn+C6+OsxdeTz0pMihDQ0xiA7fkwSYmu/406YDiXCPmQohPJyqB54APL//MeFjSSkeWqoeiA3NxcTJ06E3W5D945DMaDnLQ3cUveSHNYLvw6ZC6NShzb5Sbhj23t1/+jiCgmCgNGBN2Go/0jIIYefKqBB5tvShCz9Fn2HdEXCQ5Mgq8eVUqoLmQj8aTHCP3oH6tRzzueNPXsj95U3wQQBgUsWIeahe5tX/pWPD4xZ2TCVlAJRUVCcPAGfRx6E+t/GzcUlxF1d0620UlNTL/tvcu3UajXU6vpfhgkACQkJeOaBTyFrpFtCtXZhBWfQNW0LAGDI8WVY2vclZOljGmz+MkGGO0LvwZLz3+L6hDuhaIB7k7qLigGDkfL9r6joOwBenl51T+ACsr17oJl6PwCAeXkBk5v2V5CEkJatIeqB0tJS3H333bBarejecSgG9qKDII3By5APT2Mxsnxb1q2AlAoVbh/wCABH6KtcRrdTIY1D8cP3kG/ZDCiVMH3xVdWAiAiY16+H4s03oXjrTSjnvQqEh8E2dZrL2kpIc9MQ9QBjDNOmTcP58+cR5B+BO26YSb/ybgDnAzpg2bBXMWHH+9jR6bYGvZRMEARcH3ADenj3QqA6uMHm22LY7Yha8A4AwHfHZgjPPoGUr34AAPj/9D2UxUXIe+IZAIB+5W+o6Nkb5oioarPRnD6FhPGjIDM7rt4J/HUJUvYcBVOrAUFA4aMzUN4mCu2eeADeWzbAd9VyWCff20QrWQeFAggMdPy7qAj+o4dDVlYG7e+/IOd0Cpife54wI6Sx0JHzVqKyshLHjx93PqaTItcuyzcaf3efDgCQMTtCS87VMcXV08g1mB7xGKJ94xt83q1d+eDhjoLmonrfa7SBMV8/MA8PMI0GLDy87gkIIaSBHTx4EEVFRYiOjqaDII2BMXQ5txEPbH0R4w8uhMpS6eoWXZMKYxneXfQwthxYAZutGf1SkrQa9nbRMH3wEWzDhlcfKJfD+tprsL7yKuyDBsM+mHL3CGlojDGMHj0a/v7+uG/CS9Coa771Mrk6efoo/G/sB0gN6d7g8xYEQXJS5Bruft+iVUa3d/7b2N5xvMTnrz8R8fKzCPm/t6A5dQL+i75C5MyH0fah+yCrrKg2D5uXN6x6vfOxXecBppLeKqtk9I2o6NoDACBvrnej0GohK3Pcbk6wWgGlqo4JCCFX65rD16/Uq6++ei2LaPHKy8tx9uxZ5+OUlBQkJibCz8+vwW8xZjQaMWHCBGzcuBFvvvkm5syZ06DzdzdMJseRdiPgX3YBvZP/gpexsFGWQweq6sluh/4/r0O7dROyV/0N6LR1T9MEWPv2qCgodlxSLZMBXMYIIcS9NGU9cMmwYcNw4sQJ5ObmYvPv+Y2yDHflWVmIsfu/RLvsIwCAfM82UFsrYVa2vINN6xN/QWFpDg6c3IjBPW51dXNIK2QfPBgAYL17Uo3jWF9+GXj5ZUkoLiGtkSvqAZlMhpkzZ+Khhx7C529ta5RluDObvOogtdpSAYtcDXsD3g2CMYZNmX/hQO4uPNjpaejVfnVP1NLJZDi2+HfILBYoigohbx8Djz070fbpRyDY7SiYdD+M8R1h8/FB0CcfQHvqONo8PxPpC7+WXLljCQ3DsX/3wH/ZDygeOQZMoYCGP/5is0Fz1pFLV9Gj17UdHG1sGg2Kvv8RssxM2MPCHHekIIQ0qGsOX7/Sg7ruGr6+efNmDB9e/ddRU6ZMwXfffVfn9HWFyHz+m2OH3Ga14Kv3Z+PogS1QqbR4+MmP0Da6C2Y/MUAy/gef7HD+e/aTA2td9me/HpY8NhzMko4gDsvK4sLSOgVJHvMh34a04poXzIerRnH5KMZafs1YIQ09R5H0KgJ7ARfaxgeklldNzyocB7L7pP+NEcm/4ERwX/zZ+dGq4QbpsgRx2HZdYfRc4Oe+5I3INWbjuoAh0Kt8oQjTV81XL912Mi6kDAHc40DpQRmVvuYTBTou5JYPU/MQhXhpueA5PrRTwz0u5MLm/Lyu/BJwPnhNEADl+Uwos85DXlIMVWkJYLej5Jbb4GEoRcSIAZAXFKDszruR+eHnkmJIz4XL2UR5H/y3npoL1OUyTiXB7QBQJnoPeHOhf2Yu8I3ffvxwjSh8jw885UNglVzIm/h7mA+H48Nl+WD72vCht3yALiGu0FLDVhu7HgCqaoLiwlyoLNK+oLZ6AKi9JriqegCQ1AR11QNmrq+wccGcknnFcEGsXO3BxAHpAIS2VfUDO8P9uIELkuRyJ8G4YFZ7adVjVXYuppz+AH7mPFgFBbaE3Yx9wSPALl6ly4epVgtJ96oKuuUD06uFnnN9hXh8Zqr96g6ZP3eShg99FwTkFGfgwz+fhZ3Z8chNryM2rItjEF97+airTVsTlV4a5CvjtrWd7/9E43twIef8foYP19dauI5a3E+ruOWquD6+gtt+4iBzTy541cgF5mr5Gojrt/nQVzG+XuB3wGoLUC3hPh9qrs/nt5e4rqk08fti0iXzoa/89lGJ6lwVt9xqu5H854kb7KW9gkybnBwg2A1vH9OAmjIg3RXh9FQP1F0PJB3dg8CQSGjsVQdRXVUPANKa4KqODwC1HyPgjw/w36N8KLz4u5T/PsuUtlnQSL/fbeelVxQw0bx6ZazH4OSV2BR3Fw6HDwX4IO66+nhR3yJ4SfuKL1a/gnPGZIzQX4/h+pFQxUuDuGWiYwBCkHQfHwautgr1lDxUREj7fKXoO1rpyV2ZwH3YZVzNo9VyAeqiVfTkhpks0vX38eDC60WDVQoBvabdBt9De5E7Yiyyvv7eeSLdY+8uRN8zHjKrFRnPvozsR2ZW+w4Sh4+L+zMAUKedQ9wtIwEAxw6dgVxV+9UY4r5Vyc2LP17A7z8bRH2rgut3+Wn5YxN84HylaF5aNVd7cm89T67fre3wL38MhA+Yrz5+1bz4dWgu+LqMP2ZCWraGqgeu6aRoZGQk/dq9DsOGDWv0Sx5tNisWffwijh7YAoVShWmPvIu20V0adZnupEzjOBDj3UhXjADAjrwtyDaeRzvPWOhVvo22nJbKc9smxNx3R7Xndfv2oGjBJ8j++nuE3XkrvH5dBt9uvVA09SEXtJIQQmrWFPUAAPz752Ks/fVLPPDIe4iO7d7oy3M3ArNjXNp38DPnoVjph59jHkOhR6irm3XNVh/4AXZmR6eovs6TIoS4lNkMxZwXIP/yS1g//ZTyRkir01T1QNKxvfjs7Rnw0vvj8ac+hd43qO6JSL0IYFDbDBhw7k8cCx0AWwNee9DDszfOGZNxsHw/hvgMa7D5thTyinL4HD0IADg9+1V4ia4urOjbH+kv/wdtX3sBEe+/BXlFBS7MmnvFZ2jNbaNx7NAZRzC7olleL0IIaQLXdLosNTUVKSkpV/RHGs+mtUtxcNc/kMsVmPrQ22gf38vVTWpVytSOExWpfgmNtgxflePkS1LpSbe7d+iV8F35m/Pfho6dUT5wKADAb9n3UKQkwzhwMApefRMAEPzaXKhPHr/sfAghpDVLOX0Ey7//EEZDBVLPHXV1c1qlzlk7EF12CgDwe/RDKNS03F+0ny9IwanzhwAA/RPGurg1hFykUEDIyYFgMkH54INQPPYoUNky83sIcRWjoQJf/d8sWCwmhEe2h6cX/fCuKSSGD4NJroW3qRC9MjY06LwTdJ2gk+lQbC3C/rK9DTrvlsDn8AHIrI4rJCz66rcSy7tnGs7PeA4AEPb5Rwhd+P7VLUChgCk2rt7tJIS0XHQdUQuWkuS4VPbGOx9Fh4TrXNya1ifHMwKHQwdjR7txjbaMBJ+uAIA9Bdvwc9piGC2GOqZwL4aELjCHOQLMBZMReTNmI/+BR2FqFwPh4rWeJY88gYqxN0GwWhH82tzq1/QTQkgrd+604xYXnXoMwvDr73Vxa1qnQl0w0j1i8GWHl5CrdfRL4eXnoLa1vH7bS6uHh8ZxufmSDe8jpyjTxS0iBIBMBssPS2B5dR6YIEDx9ddQ9b8Osk2bAGvtt48jhDhkZ56DobIMXj5+eHDW/0GhuILb15F6s8pVKNYGAqh+m8T6UslUGKG/HgCwqfhfGK0tr+6oD0NkW1i1OjBBAJNVXS0iKy+DYDIBgoALTz2P1Nfeg12hgGCv+ZaWNfH7ZSm0hw82ZLMJIS0Iha+3YAX5jnt7hkXGurglrZNVrsa6DlOdl2KqrJUYnbQEm9qMR7lK3yDL6OHbB0ZbJf668AeOlhxC1s55uLfHkwj1bpwAvpYmf/qjsPr7I+zNl6E5dxbKrPPIfu1tZM/7L7SX7iErCMh/8x1oN/0Ljx1b4fn3GpSPvdm1DSeEkCZUmOeoB0IjYulWp43kvD4OS2NnABfzRJQ2EyYnzYcAhiyPKJz07YWTQX1QofKpY06u563zxdM3vYclWz+CRq1DoD7M1U0ixEEmg+3VV8EGDIByyv2QHT8O1fWjwPR6mP9cDda/v6tbSEizVnjx+EBgSCSUKjUssNQxBWkQjMHL5Lj9doY+vsFn39urL3aV7kCBNR9bUtZiTPvbG3wZzZWhTRQOfbYEoWtXwK51ZNnIykoRPXUirL5+OLPgf2AqFfLumYrSwcNhjmp7VfP3+3ExIl6cBXNYOJJXb4ItILAR1oIQ0pxR+HozVVe42gez1uB8bjL2Hf8Xg3rcisgb+0qGV+ZIw8FwXhQmxoVboUJaMM3+7xjpsj6WBrPVRhvsWetwQyIX1CYOQ+KCN2e/MlLy+P8m/Sx5LBOHj/OBb/ncpfcB0iBSliYNahUHpDKz9D3LLgav3pr4KTpk70ORNgjLejyLUm2AY9LiqmUxq3TaOj8nF0PL0stT8FPy/1BiLoJarsWzfd6Cl0r6usvCvaSP23DvCz5sLrgqfE3GhYMq+NBXjlw0voe/NMSNXyU+aIsPIhV/w/Dh6nx4Kh/wdSlsVV5aguAVy1D44GM13jO0zYf/ReAP/0PmvP+i6PZJ1ZYlDkC7miDyy7GIXmcPjXRb8rlj/HugjAvBE4fZ8+PauF+8qJU1b1s+5J3L/K3Wrmoh8KLp6wrStPEz5zTX8DXSsrXUsNX6qqseYIwh2D8SeUWZuHvMMxjy4FTJ8FrrAUBaEzRlPbAlVfpEQC2B4aHS/o/tuyB5LPSRHtivbdkGfntkcPUA/116pqhqOaJt5VeciQnr34ZvRU5VuyAgPSgBh6NHIqlNP9gucCHxxqrty7j+j1WaJY8VoXppu8Tfq3xfUCYNl5X5SGsiPsj1UpC7zW6FyWCAVqW7+NgGu8UKpbxqfMGHn1b02JsLKeVrCw/pcAVX54lrDS0XGG/jajFfP+k6Wbl+SNwH6vnlciGnXlw7rbaaw0P5cfO5IN9qYeyi14bvO/mgVr7m4cNVK0TvF36d6goPlYkWfrVBo3wfX58+na95xKHxMm597VzxoSrIg+KlFyFftQooKUFx+gUwvd4xH7kAiKanuqNlsHPvLT6cuLbxxeNSPVDzevftfD32Hf8X13UZiztGPQndgAjnsKuqBwBJTVCfegCoo1+u7fgAUOsxAv74gHJkO8ljWzrXx4trjTMFkkHMxB234gPSfaTtsKeVOv/tWZiNx7bMhl2Q4aNRX8BSxs2Le68zC3e8wVx1VZxMzQWRlzv6nROlR7E0cxFUMjXm9vgvNPKLJwlE++ryCO59wQdz82HaXPi6SnT8QMHt4yq4Yw2M+zwruP7QQ9R/8occ+e/s2vbN+e8NX08VvBP3oduDEyE3GVE0YgzOfOw4OQJU9b2hn8+HJTAYJR06w9AuBqr8XOizM6FOSwVTKFB4xyQIchlkpaVoP34UNOeSUd5/EFKWLnfmjfD7xOJag//+4vfjZdxjcV9caZT2jXUdM+IHi48JFJaZJMM8NDXXJYC0JlJx9QG/h8+/Tnx9IB7KT8vPm6/Fqh+Grpobv758gHptQffims6x3Nq3LT++eN4W7thetXXg5tWQtUhN/R+RovB1gvCgGIQHxbi6GW5jS9xdCClJha8hF5MPvINlPZ9Dka5h7jEe6dkOTybMwcrMn9E3ZHC1kyLuzubtgwtTHoHm4veOvLgIoV8sQPaDj8Ma4AgUzH38aeQ98Chs/gGubCohhDSpPXv2IK8oE0qFGp1j6dfUTaVQ3wbfjPkQnpUFaJ+1Hx0zdiG88Ayico8jKvc4tnS5G7u8hrm6mbWSyxTOkyKMMSzf9zVySy5g6sBn4aH2qmNqQhpZcDCs3/wPVpsNwokTzpMisNmgufUW2EaOgmXWbMkJEkLcWXl5OQ6f3g4A6NVxuItb416CS9MAAPme4bDJVQAa/nZXHb06Y4j/CPQIHeA8KeKuSrv3wbGPF6HzU9Pgu/FvtH9quvTkiMmINgvehVDDj7QNHTqhbPAwWMPCYff2RupXP6D9uOvhuWs7Qt5+DdmvvNWUqwMAEIxGCIZK2H2r56gQQhrXNZ0YSU1NbeBmkGths9vw7crXUVZZBNMSEwyV5bBZq84+jxh9P0aOud+FLWxdSnSB+LHfXEzc+x78K7Mxef/bWNnlcaQLbRpk/h5KT9yX8JjkOTuzQybQDh8v9pF74XVgL2QV5Uh/0xGwZvfwBDxEv0ZirMarSwghpLVYvnw5AKBz7HXQXDzI/frT41Gcn101kiBA7xuMTp0HIiGkJ6LCO9IPXBpIuc4fh2LG4FDMGPgY89E5dQu6pGzG0XbDgXzHr718DTkwKDxhgKqOublOUUUejmXsg8FSgffXzcaA2NHoFN4bYd7t6b1CXEsuB+vSBTA5flGtXPUH5Bs2QL7BEXBsefY5V7aOkGbjn3/+gZfOFx3a9ULbsASUVhThjYemwmSsrPrpuyBAq/VCfMd+6B7VH+3b9nBto1uJHO8o/J0wBTbZNR1euyKCIGBM8M2Q6TSNtoyWpGjAUBz7+Ft0eeoB+G78G20WvIuM514BAMiMRmRPeQgex49Cd/wIFOVlsCtVMEdEwhwegbSF38Dmo3deo2CKjUfGB5+i7aNTEfj1ZzB27IziO+5u0vXxXvIdFOczUTjreTAv+pEsIU2pQY64btu2DcOHD4eXlxe8vLwwYsQIbNu2rSFmTWpx7OwuJKUdxIW8FBTkXUBlRSlMJoPzz2aruiQztyAD7345Hb+vW4iDhzeguDjXhS1vuco1fvix5wvI8wiHh6UUkw69h37Z6wF29SFfdck35ODjg2/ifFlag8+7pRMuhnBaAoMhKytD+HtvoP3tY4GLvwrx2vwvokb0hyLrQm2zIYSQFm/gwIHo2+l63D36GedzdptNUg+YjJXIyUrBxvVL8MvajyQHugsKs2C/hqBKUl2JRxB2dLoTX924AAZ11U7t2OSlePzAXIxO/wW+xuZZf/l5BuGx619DgGcoKsxlWH/id8xfPxdv/fQwftn6KS4UpLq6iYQAACzjJ8A87zUAgGLpUtc2hpBmpHPnzhjT/x7cOuRBCIIAlVKN0uJ8mIyVknqguCgHe3auwv6jG5zT2mxWpKYfh9VKmSTXokzrj8ORw3GszWAAwA3JP2BI+h8ILk9rlOMEAJBSegYVlvK6R2zFigYMQ8rr7wEAAv74BYLF8f61+eiRMfcNnFqyAnv2JGHPjmPYdSgFpzbswbnvf4PNR181k4vHD0rG3oLcGbMBAOFzZ0Fz8niTrkv5LeNROWIUmFZX98iEkAZV71Pa27dvx8iRI2Gz2Zz3idu8eTNGjRqFTZs2YcCAAfVuJLm8NkGxuO+mOdCotND3joZG6wGlSg3GGAz5FdDpqnbKj5/ZjbzC88grPI9dh9YAAPx9Q9G963D0jh+BQP+GuerBHVSqffBD75cwJul7dMreje75O3EwcAgscnXdE1+Fv1NWILsiE/87Oh/TujyFKHRt0Pm3ZGX9BsLz8EGoLmSCaTQI/GUJFMVF8Ny3C+V9ByBk/rtQJ51E0PMzceH7X+jKEUJIqzVu3Dic2SyXnOx44sVPnY8N+RVgdjsyM5Jw/Oh2hHiEO8ezWEx4b8FUqNU6dOk4CL07jkDbNp3oCoF6sot+MaqyGaGxGaCym9Erfxt65W/DBV0kTnt3wRnvzsjThDabPirEJwKzx/wfEjN24kjGbpzNPY7SykLsO70R3aIHAGgLAEjNOgmb3YYY754ubS9xU4IAy2OPQ/nWm5AdPwYhJQWIiXZ1qwhxubi4OPQU3UJLrdRi7ns/Q63RQRAEGPIrAAAFeedx/Oh2dAqr+g4/n5OMTxbPhEKhQnxsb/TuMRodI3pBIa89l5JU52EqRpe8XZCBYcCFdTAoPJDmE49Unw44p++EUo1/vZexJ3cb/khdhjifBEwNftat7zBRcPMERHzwFlS5OfBfvRwFt010DvPatQ1WyFDap7/jqimLBVBefE/bbAj58L9QnzuLtM8WATIZcmbPheb4EXht+hcee3bC0KFTk62HLTgEhuCQJlseIaTKNYWvi40ePRr//vsvoqKicOONNwIA1q5di7S0NIwePRrr1q1rkIa6m7rC1T7/7YjkcbUwNc5D93XGhg0bsG3bNvy+6m9kpiTBbq+65+LDT3yEuA59AACaIA/JQRHDzgzpzNr5Ov+pDa0jXDWr9pDT2f93o/Pf1ULcuIBLnjh47YPn1koHGq3Sx1ywWLWwVU/R7S244DV7ToXksXAp/IgxdD27ARd8opGnjwIAhKUdw5DTvyHTtz0ORY5EmUK6XHsRFwrPEQezmpRWfHv6E2RWpkEhKHFn+ynoGtDbOZwPV5WE0QMQROFpkvUDqoXLVgtMFYVlCVxgFx+QyodB8cHugmh4tcBTLsCLDwfjw9k9L4bABezchL5P3Q9Dm0js/3sP2r/8DEJWLEPmpGk4++J/oEs+jd53jobMYsbx1z9E1ri74KmtWravl/QkVqVJ+n5RyqXtKDdIQ3HFAXF8IJxGJT3fzAd+8aFdRlHALB9SxgecqbnXTRzqZrJI18FbJ33N+XbyIXfinsDKbXd+Hfhge37e4oN8fPAc3+XUFgpbPQyNX8y1hXZeidoCQvle01xHMBuFwjYMCluteb3FNUFd9cDsJ6p+sHL48GH07XcdzKaq/tY/IBw9+4xGdEw3tO/dG1pdVT9fWz0A1F4T1FUPaPuGoybVpuXrA+47CeVV39nySGk/bEsulI7L1wtBHtLHqaJ2coGW9nxpny7wfeul7xHGEJFzHL0TVyI69wgEUVzj2aDuWN7rmerBrJXSX+0y0feMwPUzjAvxBPcdzs9b5i26DQf3fSVeB4vNjHO5J5GUewQj24+HTuUBmY8aaw8txdaTq3HHgMfQO3ZY1bSeXC2h5273ESJ9fyhFfbGN64c9agnqBQBfrhYxWarW2VMr3T4qPvScr1tEfZyGey8pue3D98NeWj7Ivaod1UJKua6AD1vXcvM2i8JG+TBVvh/ScNOK+0e+DzJzIab8OvJ9rcF8+Xu0A9IAWKB6/cAPr21cvu+shjGguBjQ6wFBgHLkSMi3bIb1qZmwfvhh7dO2AEZuO/Ovkzdfq7sxqgeurB4Aaq8JxPXAH3/8gXvvm4bysiLnczqdN7r3GoW4Dn3QeeDgJqsHxMcHgKs7RqDtIM2aNGzl7rwg7uMtXF/JBaLz+8cspVjyWBD1YUwUgK2wmhBzdg/iM3YjKvso1FZp3sj++Buwue80yXM28TbhPvusUrofasnIR7YlG1/lfwUrrBgTfDOGBDiOi8iDpO8LWYi0phG4vkTw5bJKwqpeNwW/z6/kgqe5/TQZt0+nC6xatqlUGhCu8qj9+8xLtG35vsHEvU4+OhXa/fAFvJOOI3nqE7B0THC0p7IS190+HNoLmci+6TZ4njqO3PETkTnNcety3dkk9Lx4vCBj1ovIeuxpGE02KIoK4HnqOIr7D6m2j+eXchreB/cg57ZJELTSbaflgu5t3PbxE9Ve/H4m3x+WG6R1nZzbF9d7VG0fvv/P4z4ffJ0iricsXBur1wPS5dq54kO8n28wS+s4/ngBP2/+GIC4D+Rfc/5YBB/GLm4XX3fwxx5MFr5OkS5LfPyBP37Abw9+3nzdV2dd0wzw68AfX+HrzWbyWy4nl4avi+3duxf+/v44fPiwsyElJSWIiYnB7t276zt70kC8vb0xYcIETJgwAbH9D8NorMSJQ9uxZ8ufSDl9FNEx3Zzj/vK/t5Fy5gh8fIMgCAJsRQYwxmC32yAIMjz4zHznuOv/WITMtNNQKtUXP1QMzG6HXKGEWqPFmJEPQaFwfBlnZ6fAlluEAH0Y1KpWEBgmCDjSfhSY6Es8vOg0IoqSEFGUhN6p/2Bv1BjsiboBFsXV3wtUI9figbgn8fO575BUehw/nf4GuYZsjGxzk9v/mreoe1/YFQpoM9OhvpCB/OtvQsiKZQjc8BfOznkTlTFxSH58NtoveBtxH7yO/CGjAG2wq5tNCCHNSrdu3fD+om1ITkrEni2rcWjXPyjIP4/1fy0CAEx6+GUMGnUHAOB44g5sXrXYWQ/Y7FZYFQw2mxUKpQpjb3wInUMHAQDOnjqEXRtXgNntEGQyqDU6yK1KqNVaaHVeaB/XG4Fwn4NZEARkhHRGWp8YeBiLEZN7CLHZh9C24DgSI0a4unU1UspViAvsgrjALs7nGGOw2Cyw2W34efsnKCzPxfXd7nT7uoQ0DmHPHsjWr4dsz27I9u2DkJ8Pe+8+sL7yCmzPPw/5ls2Qf/oJbFOmgHXrVvcMCSGXNW7cOLzzzUZcyDiLfdvWYu/W1SgpysPObcuxc9tyvBDzEyKjOwIAtqxbhmObNwIA7HY7bDYLrCrAajVDLlPgvqlvOE+M7Nu+FqeO7Aaz2wFBgEqtgdymhFqtg0bjge49R8GrYe7u3mxYFWqcihqAU1EDILNbEVKYjKic42ibfQRh+UnOH1QCgFdFPrqe+RcnPHog37PmH4jwQpQhuNHnRqwqWYX1OWsRpWuHKJ37XjmXct+jzn9fOmXQ7usF0F7IhDE0HKVdeyJkzXIol3yD8/c+CKZUojI2HmmvvYN2L81Cm4/eRlnf/jB27g2rrz+K+w+RzF9VkIfoT/8P4St+gsAYtOmpSJv7RqOuk0fiAVj8/GGObNuoyyGENMCJEaPRiODgYMnZGR8fH/j5+SEjI6OWKYkraTQ69Ow/Gj37j0ZJRj4UyqpflycnJeJ82mlkpJyqNp1cLn3LnD6+HycSd1Qb75Ibrq/qpP79+zskHnTcy1QuU0ClVGP+Ml/4+flh1KhR8AkYCQ8Pn5pm1SKcCumLSpU3umZuRZviMxiY8ific/fjt24zUaILuur5aeRa3Bf7CNZlrsT23I3YkLEafuoA9Ay6rhFa33LYdB4o79wd3on70ff6vqiIiQMAqHOzEfvOKzj74n+Qft8jCPnrD3idPoEO/5mDlE++bX6nuAkhxMXkCiXiOvVBXKc+uOXmJ3Hs8BacOLYTGeknERXT2TleYe4FnDi3t8b5mExVV0/kZ2dg9+ZVNY57z32vIjC4HwDgcNJ2/PL3fGg8PKHW6BAd3w3d+o5Ah67XQaVqfQGjFRo9jkQOx5E2w6CwmWAV3YazV8o6hBan4GTYdUjRxcPWDG9hIggCbul1P5RyFTYdX4n1ib9ApVBjWOdxrm4aaWWE/fuhHlj9lsyy/fugGncrzGvWwnbHHZD/9htku3fBRidGCKkXQRAQHtke4ZNn4tZJT+LI1s04cmgzzmeeRlhkrHO88+lnaq0HxCfK084eq7UeiO/QF17QAwD+2rYY2w6uwnvfe8PT0xOdO3fG+PHjUVEeBA9Pfb3XzxXsMgUuBMTjQlAH7OpyO7TGUljlVcdd4tJ2o//R5eiP5UgMH4KtMbfDIPOoZY5Veml7IdWUiiPGI1hx4Rc8HTunsVajRRHMJngfP4LI778AAJyZ8yYKBg5Hu0/egzrnAnx3bELhsNEAgLy77oXX/t0IWPEL2s19GgXLN4KJjotpM1Ix8JZB1ZYRsmwx0l54DZA1zkk9bdIJRD/1IGw+epxc/g8gV9U9ESHkmtX7xEhMTAxOnTqF2bNnY9KkSQCAH3/8EWfPnkVCQkK9G0gaH3/g4ZHn5yM9+QQMlWUAAPPZQgAMcpmy2n1Gh4yZiI5dr4PFYr5YBAkQBEeAm9VigUzUWajVOui03qg0lMJmt8JgsiIzswKZmZk4c+YMXnmj6rLZc8mHobNrEBQQIZlHc1eqC8QxXSCOhQ9CXM5+jDy5FAEVWbhv33/wXb/XUIqrzyGRCTLcGHEbzlWcxYWK9EZodct0/t4H4XnsMGRWCzySTzufb/PTIuTeMA6FXXvj5CvvoPe02xH871qYP/8I5x+f5cIWE0JI86ZWa9Gr71j06jsWAKAV3c6ofUIv3DlqBgAGmSCHQq6EPFQPuUIBq9WCNhHxznEjojti3D0zIQiOX5OaTQZUFJTAZKxEZWUpgoIjneOazAbnHwDkZqVh9+ZVUKm1SOg2ADff/Tj08tZ5xZ/4pIjSasKAM39Aa6lAwoVdMMk1SPbvCiYICKi4gAzv9vg35m7n+APP/YFCXQiSgnqh5hsdNQ6ZIMONPe6Bp84Hf+5bjL8PLoOvRyC6dh7s1vc5Jw2LhYfDdu+9kC9ZAgAw//YbmH8A1MOHgalUYBERsHw0H9DpYHvo4aoJzWZARQeRCKkPmUyO+I79EN/R8SOGS3eAAIC+Q25GGMIAOE6CXKoHFHIl7HYbdKIfOnbuOQTe+kAIguOWLGazARX5JTCZKmEwlMHbJwDIc9yCx2Q2wGwxIjfXiNzcXJw7dw6rVq2CIMgQHdMN9z/wVov/EaVB4/gx8aVTR/n6SJxt0xuxmfvR/fxWdMzeh11RN+JA+EjJCZTLEQQBY7zH4IjxCPJMObDaraj55oXuQWY0oNvzD8Nv1xYIjCFvyCjkDx8L393boCwrBZPJYIhoK5km7eX/wGfrRmhTkhG6bDEu3PeQc1j7j95y/rukSw+kz5wLr+OHod+5pfo9hhqQJSAQp35eA01qMpii3odsCSF1qPen7IEHHsBzzz2H+fPnY/78+c7nBUHAAw88UN/ZExfwDwyDf2CY87FBU/OVP116DalxGCC9h+idd7+AOwc+CqOpEkZzJcxmA+58vBdSUlJw4cIFWIWqEzS/LnsXebnp0Kh1CAlqB71PIHx8AqH3CUJocDvEtut+7SvYFAQBp0P64LxXNO46+CECK86jR+YmbPEfe82zvK/Do0gvO4e23u0bsKEtV/4N41DWtSe0qcmQV5RDXlKM+NeeAwCoc7IBAKVdeuLUi/9BwhvPQ5mb4yhg6KoRQgi5aiFtouHTmbuCgbun+CXhke0RHintq2q6p3i3+EFo1yYBQpw3ykoKcfzQNhzeuwlFBdlI3LsBt0x60jnJrh0rcerkHvjq/OHjE4hA/zaIbNMB3uqWf+LEolDj177PIeH8TsRn74OXsQgJuVW/yDXLqk6iqC0VGJTyBwCgICUEG6LuwDm/LtXm2dgGJ9yMMxeO4NT5Q1iy5UMMK03BzQOnNnk7SCsVGgrLgo/BIiIBmQz28RMAAKYzZyEcPQJ28Qd4lm8XVU1TUQFV926w334HrC+8APhe/juKEHLtYjv0QHihNMujpnqgQ9fr0KGr9E4H1eoBOOqBMYPuw+Be43D3jD4oLi7Gpk2bsGLFChw+fBiZGUnQaqt+rLF2/f9wITsZep8g6L0D4OcXioiweLSx+7WoH1WmhXVFWlhXhJ44iFFJPyK4PB3Dzv2Onuc3YXP07Th58eramnjKPCEX5LAxG8qspVDDr4la3jxp8nPgdeoYBMZgU2tw+oU3IVgsaP/uKwCAC3dPheHinSYusXn7IPOZuWj38mxEff4hcm+9A1Yfx/v5xLz/Q3n7jiju1guF/YdCo1aiZMAQZD4046rzK6+G1T8QAGAJDatjTEJIQ6h3+LrdbsfDDz+MRYsWOYNbLp0U+eqrr+iew9foSsLVGstnvx6WPH78ziu/NJ2flncl87JYLBg9ejR27totCYS9JKJdB8x5d5lzXitWrMCBFDtCwqOdhZCBC5rTciGehoNZksez3646YfHBU39KF8iHh3IBTcgWhbNzAWdQyBB0/jSCspJxrOcYIF8avmbZnSl5LGiqDjpZzxdJhjGjNHhNEeEveSzzkrZT8K/KcRG4MDDxMADVAmXhI7qyhQvlAheWpvaTBrOpuGBzqygUVqGRTqvhQuH5wKragru9PaTTdvn8XbT//nOcH3ULDvznE1SIglwDD+9DUY++zse+3HK16tpDTfkQL3FYmMFkhc+2TdBv34Tzjz0Do5f0l0wetQSzAtJQLn65NjsXkFpLUDk/Lb/t+Gn5dRKHwPGvAx80xs+LD2ITh6tZ+QB5blo5F0ombkdd/Ue17VNLwBlfvFZyQb986C2fXSzGh7Tx+FA3cSgelx1XLfSObye/vcTbulqwL9cO/qPLE4/Pb2r+/cSH3tUWJlfX++daUdiq+9QDjDHMfW8ZTh3Zg1G3TsGTE3sAAKZOnYrFixdXGz88PBx9+/bFJ598grCwMHzwzGrnMO2ACMm45jJpAKiNCznniesHw97z0oGBXJ9fLu2n+SBXllt1uzEh3Es6LE0UPsvsCCs7h3bpB2FVqpHvG4n8oLYo9XacANIW5qPf4eXokLwdHkbHdOdCumFTt/tQ6B0Oe5G01hD4z6voO8yWUyYZJPPkap7agtztDCabEVsz/sbOCxvx+KB5CPJy7MQzxiBw3xsC1x/KAkX1Ax/EytUS8iBuW3Or5Bla9dmQc9/n/Hc213VIwtp1XLA9f3yN7//4cFVxPeHJBffyYav8dyX/vesjqnOq91HSkauHnorqSe415PtdD64G4r/vxe3ih/F9qYYPW+c6F/Ejvj5Q1FFr1LbcSyGv8kXfQvmQ49e+zNcX1nffhe2B6TXOh7RMVA+0rHrgctNfzbzOnTuHxMRE3Hbbbc55vT7zVuRmVb+Tglbtiag2HTH9jtchCIJkH59vB3+8oBpRn31Z4v3J1GLpMB/uLhFcnwauFmEXygFmR8K5bRh06Cd4VxbgSPuR+GfgY9XC2E27UyWPv0j7GHbYcbv+dgTrIyXDlHHSH44IXtxVKCZpnSLpl/njGlyfxq+jgutLxN//Sq7/V3J9vtVo5YZXtVPHjWvm9rPsXD8ckZuCLp++jbQbbkfm9beg0zcfocO3H8Ok98Pm3zfD4q13juvcX7bZMGjyWOgy05D4/lfIHzDM0S5bzfs0/L4Tvx/qy73m4tBzA7fdyyql9aOOO2bC7/PWdvyAD2Pn5y0XFTZ8P+vBHRPScDURv08nrkWq7XbWEept4WoTcZ3D10t8O/nXRSUabrbWvK0AQMPVhHmlfFh91XuP34Xlay8VV/Pwe7ziY1f8Pr+OOz7HH7up7cTb1Qaii9tR1/GV6mcHan4d6wpurw3/Gtd1orGmdW424esymQzffPMNXnzxRRw4cAAA0KtXL0RHu2/4E6kfpVKJTZs2YeGyA7iQcRZ5WekoKshBUX42CvOzEBZRdY9To9GIu+++G2azGToPb0THd0NEu44I8o1CdGz3ZnG5bW54HHLD4+oesRY2ZmtlsXQNz++I4/snt99gwCYtNvK69XF+2QlWCxQlFc5fgtSXfsu/iH9iCmRWKzxOHMXRr34Co1s4EELINRMEAZHRCYiMlt6S9ZFHHkHfvn3xx/oDKMzPQlZGMi6kn8X58+exZs0a/Pjjj85xtx1ahaLSXLS19kFMhx4ICLryUFOXE2TICumArJAOVc+JdvoqdXps6v8AdvSaiP6HfkPPY2sQnX0YUTnHsL3zXdgdNBJooltaqeUaXN92HIZF3ACVV9UOycqji2GHHTd2mgit8srul05IfdmmTgMLDILipRchO34cikcegT0mFmzo0NonvHABsgP7Yb/hRoBuW0JIsxIdHS05tsQYw53T5qAoP8txjKAgBznnU5CRegoGUznKK4olB+imTZsGrVaLnj174kKpr+RYQrMiyHAiZihOt+uPnifWIqldVcaSf3Em9GXZSI7oXW2yhwMervacOyuNiceOD78D4NjvDzi4GwBwbMaLkpMiEnI5Dr/5Max+vjAFhlx2lOAt/0BdXorsUTfBptUhaONf8DqbhOSHn274leAoCgsQ+uUCFI8Yg7J+Axt9eYS4m2uu/FJTU7F161bEx8ejX79+kg5r165d2L59O4YMGYK2bds2VFuJm5HLFYho2wERbTvUOE5+fj4GDRqE7Tt2orKiFMcObsOxg9sAOO6N6qMPRHRsd/iHhcHXPxg+voHw1gdAVWyHl6cvlIqmPYCtNpYjLOskUtr1qXNcG7Mhx5SFY+VHkVRxAl20XdBV1w2+CrotwOV4nz0FAAhf/yfiv/0Y675cDpNeelWNsqwU/V95AjIPHQ4vWHS52VwVwWxG+9mPQmZ1/MrFZ99OhPy2FFn3TKv3vAkhhEj1798f/fv3BwKrfvFpNFaiT1sr0tLSoNFUXe2w7/i/uJCfgq2HHLec8vTyRXyXfvDy9IPeLwjePgHw9PKFRuEBD089vL39W9xVzmaVB7b0m4LE8GEYkfg9YrIT0f/EciTr4pHnFVn3DBqQUnQv9LSis9idtgEAYLRUYnKfJ2uajJCGJQiw33wzzDfcAMXDD0GxeDFU90yC+a91YF271jiZumMHCBUVsL70Mqyvv96EDSaEXC1BEJDQfUC1521WC1L+2Q2TpeoX4BUVFViyZAms1qorErQ6T3TtPQxeWn/ofYPgow+Cl7cfPD194emph0Lp2h+4WRVq7O06QfLcwMPLEJexF9/cugA5AOzMjjRjCpIqTmKUZgTle9WAKZTYNX8xQjf/jcyx42s9+FnWvqP0KlGbDeLLU6OXfgX/Q3uhy0iFqrgQkb8vARME5F83BCVdezbWKgAAIt55DYErfkbot19gf+I5wI2ulCOkKVzziZF33nkHX3/9NbZs2VJtWGVlJaZNm4aHHnoIX3zxRb0aSEht2rRpgw0bNmDhT/uRmZqElDNHHf8/dQT5eZkoKc7Dgb3rLjtteHAMnpn2ifPxLbfcgqKiIuRnVEKl1ECl0DjC5HQa+PoEYfiAu5zj7tq3GmazEUqlCspKAUqFCoIgQCjQQKP2QFxsL+e4aeknYLGa4WsxYdbv78O3ogifjn4ap7wCYS3NRbR31dUkOzM3IrcyCxfK03ChLB1WVlXE2exW9PKo/isR4pDf8zqEbv0HQXsdJ8Zi//gJx6dID8ZoCnIRdGAnBMbgcTYJFbHxl5vVFWNKJYyRbeF54qjzOUO7mHrNkxBCyJXTaHQYPLgbBg8eLHl+SM/xyMw9gwuGDKScPgqr1YIDOy9fDwDA2x9sgFLluO3Bnys+wYljOyGXK6DUqKFQKKFQqSCrYFAqVJh042yoVY5bUu7dtxZpacchVyihsMsglyuhUCihVKigEBTo122sc9z03NPIK70AQICsUAdBcNQPnp6+8CpTwMcjAHLZ1UenFnuFYvmg59EldTPyfCKRJzT+PalNViPUotyT3Rc2I/1cKgRBhpPZh5zPt/OvXz9LyDWRy2GdvwCyQ4cgO3IEquHDYP53A1iPHpcd3TZ5MhAYBBYW2rTtJIQ0GLlCifAQ6dUgMpkMS5cuxf79+3HgwAFs3boNNpsNe7aurmEuwCNPLkD7eMe+/NFT27Fl9++QyxSQy+WQyRRQyB19vFyjxtDBdyE01PHj4LTsJBxO3gFBkEGuVUGQySAT5JDL5ZBrNeicMBCBAY7be+YWZOB0ykHIZHLI5UrIS62QyxRQyFVQKlUI9Y2Ct87xY0izxYDgvCQAwIVjK/BrbiHSDWkotTlupRnnH4u2qrYNui1bE5tGi8yx4y8+sAHyuuus4H/XIOZ/C7F74RKYfR0/tCyJ7wz/Q3sR+7+PAcBxUqT/UNi02tpm1SAqunaHNuUsBKMRdq2O7iRCSAO75hMjmzZtgre3NwYNGlRt2MiRI6HX67Fhw4Z6NY6QKyVXKBEV2xlRsZ0BOO4ZWlKSj+TTB1FcnIsKczGKC3NRWpSPkuI8lBbmOw9UXLJnzx7k5eVddv7hIbGSEyObt/+MgqKsy44b6N8GL8z8zvn4t5UfIiv7HACgO4C7AIz/+0N0AyBTB+C5Hm86xz2QvQPny9OcjzUyDSI0Uejj0w/x8vb0a5BaJL78HrK3Xg//Q3tR0KMvkkaOqzZOWdtYnB86Bm02r0Pkkq9w8rUP6rdQQUDy2x8jYPVy+K9bhYqErijuP6R+8ySEEFJvvRNGoHfCCGgHRKCkKA8X0s/gQkYyCrOzUFKUi9KSApSXF6O8tAhGY4XkF6IF+ReQl1v93uWXiK8sOZdyGPsP/F3juD0Shjvrjf1nN2PXqZrHfW7cfAT5OG75tXbPEuw6vs7xAw25EkqFEgq5CiqFGkq5CncOfhx+XkEAgD3nNiIxfQcEQYBacRBqpoJarkV/SznC7Bb4h/aBzSsSBR5hSCk+jZSSM7AzO/w9ghBk9kOAJhgKWfVdAqvdAovVBJvditzKbJwvT8X58nRklqWi2FiA1wZ+DIXMcR/s1JIzSMyrCosP9Y7A7d0fRIQv3VqXuIiXF8wbNkI1bhxgNoPF1nz7HOtnnzdhwwghTUWr1eKuu+7CXXc59uPfX7QNacnHkJFyCrnp6SguzkVJUa6jHigrgt1ug0pddfVpQVEWUjOO1zj/nj1GIRSOfi6rMBVbj6yqcdzAgDbOEyOZ2Wew8t+af0B89+Cn0CvGsU95OvsodhlLMBZA8rnNOHZxHLWgRmevrvAQ6HaVNWIMvscSIVitMAYGY+DT9yO/z0B4Jx1HaVwCjr/0brVJZCYjOnz0FrRZmbjuiXuw67NlsOh9kfTYcwjZuh66Cxkwe/vgyH8WIm7hOxhw78049H9fonj46EZbjdx7pyP3XsrLIqSxXHP4uoeHB2JjY3H48OWDtLp3747Tp0+jsrKO0CpyWa4MV3MHjDEYDAbodFUBYxs2bEBJSQnKy8tRXl6OyspKmEwmGI1GBAcH48knq64+eP7553HhwgVUVlbCYDDAYDDAbreDMYbIyEgsXbrUOe5tt92GU6dOwWg0QlFZib/y8hBjt2OdpydmerTDg8Nfco67Zd9ylJtLEeLZBmG2IPipAqpOhvABqHxgkV4agi7zEYWvc6FljJ/WT3qSSPATha9yAVbw5sLjuBB0mS8XAi8Xh5RxoVJ8ADi3LDW3LLsobI0PbeND3VQKAe3WLUdR+wQUx3aESuFYlt+xQxjxyG2wKZVY8dNmGPyDnMOc8+ICvlTcY3F4e+nF4F6Z0QC50YhCtadkXD6IjQ8uFS+LD301W201jgsAFcaq4XouUN5k5kJ/6wjHEreLD3yrMEjDifm7zfDBY+KQMxUXcMa3iw9E8xa9n/g2W7j3Bx+8xgfTicPlGBccxgec8fP25N5P4mBbPshWo5S+bvw6F4sCmesKk+OD+oxcoK5atCw+9J6/CRA/nF/nClHQIR/Ux4fr1VYo8AHx/Lh8UB1PHLir5t5LpaL3XllZKbrHhLtdv0j1QOOz2+2Qib4vTp06hby8PJjNZlgsFphMJmc9YDQa8eCDDzrHX7NmDRITE2E2m2E2m53jGgwGGI1GfP311/DwcBy0WLhwIVavXg3GGOx2O+x2OyorK5GTk4Ps7GxkZWVBr9cDAGbOnImPP/64xjbP+3gVgkIct8ta/dtn+OuXryTD+wBYDSBI9Ny5tr0xIygGa/f+LBlXLsjhrfGFxW7GE91ehK/G8evIdSnLsTnjrxrb8GTHFxCmcxzkSSo5jlxDFuzMBi+lD7r59a52OxLBh/tVpeg7qlodwvVp/GPouBM54sBQbly5j7QukXHf0YLoO4wPf1RwYbN8uKyOq4HE3/F11RK1hZg6xq/6PuQD5Plp+WWJv/75ddKqa+6z66KrFtQunbaSC9D14rafuN38+vKP+TpFKQmblY7ryQXGVoiDbSsrITcZwPwc72tZRjo85r2Mynvug2nYCHh5SPvdcq7m4V+3Ci74Xdwubz6cmMNvL/Fq8DUfH0zrqal93u6Ewtfda72bCmMMxcXF8PDwgOpiXuTp06dx7NgxWCyWajWByWTC3XffjaioKPyw+SySTyRi//b1sNtt6BDmDavVCqvVCovFAovFgpkzZ6LHxavWtm/fjoULF8JqtUrqh0t1xrvvvosxY8YAAH7+/XcIEyfiLpsN/+vaFcv9eyMiNA5twztCqVSj4vMdznWQabm+Uyf9flN2kOZnsApuH89bFDwdKD22IPhyfbhe2rfCIv0Ok4Sz88cTuP0sOR/cLqKqI+SdP34gF+3TdPjrFwz+7HXkdOoJu0KJ0MN7nMNKouOwZtFaybSX9kM805Ix5MlJ0BbkoTi+M3Z8+iOsXj7Qnk1C5LoVSBl/D3Tp5zD0mSmwaHVY89s2Zx9zCd8vi/s4P65OqWsfV8Z100JqKtqs/R3p4yehwi9IMozfp9Nyj03mqmXx85VzT/D7tPy+pE7U9/L9W/X9VOm0Jgt/TKBqOD8t367aDmH7e2tqHAYARu5YRG130eWP4/DB7gZuP53fzxc3k38/8O3gXwtvXdV7RMkdq7Jx9QFfP3jUUi/wu+V8Pcm/F/mQeHG7K7iaT8fVYvy8xe8fvjbl3w98DcjP69LGLSstRce2oa4LX1coFEhLS6u2MwkANpsNqampUCqpgCPNkyAIkpMigONKpyv13nvvXfG4y5cvlz6xbx8wYADGlpdjQcf+OCoaNDii6pcGtoLyK14GqS4ocQ/6v/MCAODX1QcAXz8AQGHnHsjt3AtBxw4gfsUSJD44q0GWZ9doYddoAYMFPsmnoKisQEGXXnVPSAghxKX4OrZDhw7o0KHmfDOxm266CTfddNMVjTtjxgzMmDHjssP4nbyXX34Zjz/+uOSkjMFgQGVlJVZuPAEffaBz3N6DxiI8Kg6M2WE0VCDAE+h0YA9Opp5DZnkZwswKBJRkITp1P94ylqIweihsggy5JeeRXZyOCKsR3Q35WA7AZKu6N7v4KlVvtS/aeLVFmCwU4Zo2aKONhIdO7xwe79MJ8d4JV7QdCGlwVitU//cu5AcPwrhgIeAfXDVMpwPzqKr5tT8the73X6H7/VeYe/eF+aOPYO/T1wWNJoQ0J4IgwNdXmuUZFxeHuLi4GqaQiknojpiE7gCA+4bVHvA+aNCgy9555XLGjZ8AxcMPA59/jim33IpidmXTESCjt+M2q8HHDwIArBotts//AcMevQPeqWchNxpg01S/FVZ5VAy2fbwUQ5+cBH3SMVw36wHsXLgUZe3a4/hjzwMAur/3MgAg5aa7YPbxRVMd+VSUlqDPk5PhkZmGsPWrseXr32H1pBOlhNTHNZ8Y6dixI/bt24eXXnoJb7/9tmTYK6+8gtLSUvTtS0UmIdX06QO89RYwZw6GJ/6A4+2GwH6ZW1iQ+vE/ecT575i1v+Hc5Iedj09MnI6gYwfQ8ddvkTryZlS279hgy1VUVmDAi49BWVGODV/+BnNkuwabNyGEkNaJ/2VUYGAgAgMDLzvuBYu0X4mI7oCI6KoTOX06BUuGL124GxHph3HbinnokX0aX8S0wT99HwbA0PPonxh2fBnkzI7vEyYiXVv1y8ORkTdjRLtbIRNkzpMkttzS+qwmIY1C+d0iaN5whKYLZWUo/6PmK51MN9wEZGdDt2wpVPv3Qjl8KCo3bIKt33VN1VxCCLk6F3/gJxxOBLoMrP1n7sSpIjAUeR26IvCU47jAscdfQGG33jDp/aAuLoRP6lkUduhy2WnL2rXHzoVLMejRu+B/ZD/6zH0Uu/77OewqNTR5OQjd48haTruUX9JEor7/Eh6Zjluve6WcQdz3n+PE4y80aRsIaW2uObDgrrvuAmMM7733Hnr27ImZM2fi6aefRu/evfHuu+9CEARMnDixIdtKSOvxxBMAALXFALndWsfI5Frkd+qBpNunoDIgGHldpaH1mf1HIKdrbyjMJsStXNKgy7VqtNj5n8+w5vdtMOn9GnTehBBCyLXIiOyGP295EXZBBibIITCGG3d9hpHHfoScOS6bD5croZRV/eZRLlNAIVNQvhlp9my9e8Me1RYAYB17Q63jWrt0Rcn/fYScfYdhHHk9BKsVmukPAHT7Z0JIM2UbNw5MLod89WqEZJ12dXNalMR7n0BpeBROjL8P526/H/LKCijLHMH1Ru72V7zS9h2x5/1vYFVrELJzE6LW/AYAMOl9UdamLQCg0//mA9ztnBtTSZcekscF3HEOQsjVu+afqT/xxBNYsmQJEhMTcfjwYUnWCGMMPXr0wBMXD/4SQjgyGfDQQzi2PglWGd1yrjHkdeuDvG59cPDxOWAKJdRWC9ps+gtZ/YeBqXTYPetN+CYnIX3I6Ia99FUmQ0nsxStQ1Jomu6yWEEIIuSxmR3TKfmSFxGPJvQuQY3NcFXI0ZhhiM/dBbXXcPsuopABX0jLZu/dA+anTjntOCwJgstU9TUgoCr9ehJDB/SA/ewaal+bC+NGCJmgtIYRcHdarF6zvfwDWti2y99WeoUCkMq8bjszrhgMAfGQy+B1PhMxmQ2VIOCqDwuqcvqBHP+z58FsEb9+AlHGTAABMqcKuNz/ByEduQ9iuzejw41dInvJ4o67HJflDr8eh1+ejvG0MPNPOIWfQld8OnhByedd8YkStVmPjxo144okn8Ouvv8JqdfzqXaFQ4K677sLChQudoVWEEI5OB3z1Ff7+eAcEVIUms7VnnaMowvWSSSync6Tz4AKI7BUm6XBRiLFMK/2oy/gQUz6ou7jqHuPVgtYs3C8iuPAne4lR8lguClTl76Eu48NCuTQoS6U0EE4pCrW0c+2wQDquqVw83IquK75E58WfIKvPYGx5fxEM0XEwRMdBgepXIyu5gHQ+ML3CUHWVjx8Xls0HgOaVSl8XPrhUK3rMh5zzIWZ8SLygqfkyaj7gy4N7D5Rz21YtCmbj28iHgfFsXECceHo+DIxfJ37bF5VVba9ALjCXD14r4d7zfNCYOIzdbpcuyJsLzOUDv/iAL5Wianw+tMxcR1iYXvR544Pb+ew4PpxezQW7iz9D/OvE498dfJCrePtauZXiw+P4gDRJeFodV/Nzb9tqxAFyfPiuXvQ6yWxUUxACAI/f2a3W4f8ePi95fN3pPzBwzTfIC4vB0me/guyCo58+H3Ydvo5ZhDtWvoKQ3LMwhwVBppTmr9nLpN+ziugA57+tqQXSBddRl/DhqvI2VffEtudKf60vcIGwcq5vRbG01oA4bJP7DrZx36t2LuhdPL7Glwtq5/tdrh8q49ohDoXlv8/4fteDC5/l+0NxAKbZKl1utbB1bnOI+zB+vlYr169A2k6NSjpcHL5axtcOSun2qTBydRvXzpyiqteZ77M9ue1RZjBLHgf5VL1uXNmBAu59quLaxdcPztorOBBFn3wB/wm3wGKxoqLSBK2m9lBcb5kdUFfVfnJRXcO/5vLKSsj37YU9LBwsPr5acKs42J0PteXrg0J+HbltKw7c5afl61g+9FXLfTbLRa+jRll7rcHPmxB3VFemSEOwXcwoaxOQJnn+zHf7qh5w/TDjvnPs+RWSxzJ/6Q8iJGHsXtwJZj5cndtvBbdPDFHIN3TS7xElN66dPxYh+hLj9/nBLaZabcF9/4vD2Q0mK3wOOgLYczr3qva9y4eeXyoB8nsPRH7vgY7teXEUY0IXHJ39Btp/9wmKrhsCHr8vJX5cW18AAHI5tx/GtTP/1jscbejaA14yAWAMgsUMpuI2DqoHd/P9thjfd/Ah6Px+bG3jmrnXLUgvrb3E9QAAeIj6Xr6N1YPcpcQh4Pw+Pb/+eu44GP86VYp+WMEft+D7Tl9P6fbmw9rF/bYHV8f6cMciKrkgc3EtpuA+11buMV9r8eskrgn5NioV0nnx29bEvY7i2q36e0s6bwO3vcTvc75e8uZqQBv3mvO12KVlm2t5P1+Nel0br9frsXTpUuTn52Pv3r3Ys2cP8vPzsWTJkmrBVYQQ4ioKYyXar3DcMit03zaEb/9XMlywWiEzmy43KSGEENJieR89hP5/LQIABF5IxqDVX0uGmzSe0BjLAAAGLYV3EvdjHj4SZS+9ivI5Lzl/CSJLT4N8/37I9++HYt9eKLdvhe6d/8Cvf2/oZlz5HRFkhxOhHTsaum6doXpuNt2uixDSIHQ55xH7+/eubkaLZPQNQEFcZ+R2u7Y8ZLmhEn3enIWINb8hfdzd2PzTepR0vHxOSVPpNOcJDBnaBd5HDri0HYS0VA2S+Ozt7Y3evenedoRcFbsdvTYtw8le16PSu/b7W5L6idq/FerSYufjhB8+w/nB1wMA2v31Gzr/bz7O3ToJJ6c+6aIWEkIIIQ0vduE7ONNtCPyzUxGQlYLeG5fhQPsbUO5VdeXHovu+gMZUBpPKE/ozKQgvSEJqcFdUaOhHTsQ9lD83R/JY9/ijUG7ccNlxZbm5gM0GyOUQiosBrcZxJTgA5bf/AwQBlmkPAHDc4sse1RaytFSoPl4AWWIiKletBjR0KxxCyLVRlRZj9LSboSovxfkho13dnBbnzLh7cGbcPQCA9qt/QcCxg8gcfD0uDLyyW1K1XfsbotatQJuNa2EMCEZev8HOYb7HE1ES0wH2JvyO90g+jZB1fwAA2n/wJg4sXtlkyyaktaA0RUJcZdYsDFv5CW76/nUI9rrvhUyuXUHbONjlVeeB87r2cf7bLlfCIzcLCd8thM/Zk65oHiGEENIozsx8Eaunvg6jznE1SGFgG1TqfCTj2OUKVOp8YVMoEZt1EDce/ArT1z+L4KIUVzSZEJcSCgshGAywt4mALTIKtqgo2Nq2g2nsjSj9/GuUHjriOCmSdQGeo0dCO3kSYDZDPe9V6J54DNoZT0B2ONExMw8PVJ4+C8PKVWBeXlBs3QLt/fcCVmutbSCEkJqYvfWwabQQGIM2L6fuCUiNQvZuRfTaXzFk7sMI3bXpiqZJnnAvzg8ZDbnZhL7PTUfA3u0AgPB/V2PwY3ehz7wZkBua7upAQ2gbFHfvg7yh1yNvGJ0oI+Ra0IkRQlzl0UdhVmkReeYg+q/7ztWtadWK20Tj2AMzsWfuu/hl/QkcfvQ557C062/F+cHXQ261oO9bz0KwWmqZEyGEENJylHXqBhmzIyciDhalGn9Ofwt2ubLG8SvV3sj3CofaasTtu96DvjK3CVtLiOsxPz+UbdiMktPJKD11BgVHk1Bw5CRKflkO4+T7wC7eLlqWkQH5uWQo/1oLzy6doH73bQCA6YU5sHcV5QAVFcHW7zoYf1sOplJBueoP6MaOhuzoEVesHiGkFbDoPAE4bhdNrt25myciY8gYAEDfd+dCVVxY90QyGXa/sRDZg0dBbjKh77PT4X3mJIz+gQCAsK3rMWz6OHimnGnMpjvZdTocWLwSRxYsQvq0pgmAJ6S1ERifhkyahdLSUvj4+KCkpATe3nTP51brxx+ByZMBhQJITMT785Ocg+w50kLHdqFE+rigXPJYppMGOAmiwCaZXhqmKvCBn15cqLEoGElQ1x5oJPCBqFxwKURhkPDgDsaYuNDqAGk7GR/yJg6p5IKj+CB3JResJR5frlbAKzsDkXs24/T1EyCrqMCdT02AtqwYu6fMwpHbHpBMy4e6SZajkm4fPoy9nAum4wOsxKGVfOA3/+XMD69tGB/wZTDxQWRcgKyonR7c+vLBYzw+nF3cq1QLLdXVfEAOkIbL8WGgfJA7H0bPB4RXisJDqwd28SF30sd8sLk4IIzf1gaT9JeffDvE3WwFF6zGh+mpuNAyHfc6Vhiqptdw7z0+bNZoli7LS3vl4eUGblo+bE+8/fhgVj70jg/Q49st3l58m8Xbp7ysFD3jItyuX6R6gFyt1fszJI9v7h3h+Ed6OhAZifen/e4c9uyi2yXjGm12oLQUqhHDIUtMRHFwBH5//TsYvR0HgytXiuqUPGmdwriwbMZ9bzAujB2i7wa5j7T/5wNk+QRxvvYQRPWFwPX/Qh39DvSifpvv77RcqGugNKjWzq2juNZQcjUPX0vwe2AqvkbiU9NFdHWsk7if4vszPiy7lAtU13Df2RbROmq5YHZP7nXg+wo+YF78nV5pki6X7/MFLgJU3A4+PJQPkOdDTEP9pe+vgtKq96IXty35esHPS1rX2uxVw3Xr1yFkyiQINhuYQoGiDz9GxeQpjoF2Ozy++gz6N+fB7u2DrK27Id+xA6GPTIVgtSJlx0FYo2Oc8+L7Sr7WsHJBpXydJ95edQWx8sP5EFTxm9PI9en8uPz7Rdzu6tNKF8OHvvL1p1DDZ6C0tBTBfr5u1y9SPeCejJcJvFZd1w+y/fth/mMVFq6rGl756yHJeAJX+wsabv+YO0YgD/B0/ptxwcmyQOm4Mm8u6JvfXRTvE/PHC3j8cJVoZmZu/bljE5pw6WfByu9rib7vFFyfZDdbITcbcddLk8eEVsAAAQAASURBVOF3PgUp/Udh/Zz5zv5Xw9UT4n0YS0Ulhr/0CML270BRdDxWffI7Ak8dxrD/PANdQS4sai12PPUakkfcCgDQivoai1X6Parj1onfL+XD2cX7nnzfwAd18wHYelHoN7/fyR+n4EuxanWLaHr++1vN7e8ZuWMRgVwYe3ZhVU3JT8v3BHwYu7j/5IPt+ZqHry34GsBqq5q3xVb7XV34deL32+WigyR8fcTvL/M1kLgW4bvCusLp+ddJ/H7x5D4D1Y4ncMdX+OMv4mMZ1ULe5fzxKOmyJO3mGllcId2H4F83PujddPF9XV5Wir4dI+vdL9IVI4S40j33ALfe6rik/rHHqn+LkUahrCjDTS9Ow4Cv38boN56A2cMLu6fOBgD0WvY5PPKyXNxCQgghpIFFRl7ZeN7eMP+5Gva2baHPycDN/zcTCqOhcdtGSAtUef1YZH7yDSr69kfadz87T4rIz59H4O23wO+lFyAzGqHIzYEi5RzKb7gFqVv3Iefdj2BpV3VSxGfx/6BIotu5EkKukO7iSfrKCte2oxWwqTRY//hbsMkVaLfrX7TftOqKprOr1Ngx930Y9X7wPZeEnos+Qk7XPvjji5W40KM/lCYDhv3fC+j13fzGXQFCSL3RiRFCXO3jjx2hjdu2oUvSv65ujVvotOZHeOVeAACEHduHDut/x+nhtyInriuUJgO6/vG9i1tICCGEuFBoKCxr1sLo6YPg5GPotu5HV7eIkGap9ObxSP19LSqGjnA+5/v049Bs3QwAsMS2R8bZDJj79HM8bhuNkvuqrkz2XPEbgubMQtAd4yAryG/SthNCWibm5biyQ3aYbsnXEPLbdcT+CQ8BAK5b9P4V/1jV6BeAXc/+F+XBYcjsN9TxnG8A/nnnWxy8x3Fbq+4/fwmf9OTGaTghpEHQiRFCXC0qCnjzTQDA4H1LobQYXdyg1q8wqr3kcX5MAiCTIb3XYFhUGhRFRLuoZYQQQkjzwOLjsWb2R7CoNUjrPtD5fFT2EXRI3+HClhHSvBlunQC7h+MX3cqzZ6A8VfPVIJVDR8Ac0x6KrAvwn0FXjxNC6ma7804AgPz7xVDQsYMGcWTs3UgeOAbpvYdCsFe/fVlNMgeOxKrFfyO7+3XO55hcjkP3zcDR26biwP1PweLh1RhNJoQ0kDpu9kcIaRIzZwKnTuHX/A6wKDV1j0/qJb3vcGQn9ETIiYNIGjUeOR26AwAOTnwUJ26YCKtGV/sMCCGEkBZKbjUjMvsY0sK61jludnx3LPnwD1TqA5zPJaRtR+e0bQhtMwqbYu6EXUa7E4SIVdw3FYabboHH119AlXgIpn79axzX7ueHrC8XIfKmkdD+8xe8vvgUZY89yY1kh/LkCah37YQ1NhbGIcMbeQ0IIc2ZffK9sGRlw3bvvbD+d7+rm9MqmHVe2PDCh9c0rU2tAS5mU4Qe2AFtcQHODrkJex96wTmOtqaJCSEuR+HrzRSFq7mnD7/a4/y3dfUZyTDGhWNaknMlj2VcuJEgCmOX+UrDQmX+XNfMJWvJgqrGZ6XSsFQhzFPyGFxIFx9UCnGQlDcXAMcHNqrkVb+UEwTI+JBmcRAZ99XFh5oKXGCTXBQYqhSPyxiEy4Saa/OyYVepYPLxqxaAKQ4j5wOrzJbaQ7j4wC9xEBcfnFVX+JU49JQPXuN5cu8P/qtfHIBt4kLaPLlQMj5ojB8uDvjig8n1ntKgPr4HEoeL8WFofIA8v734MFFxOCsfcl5ulH6evLggMn64ePvVFo4GVA9YF4fC8iFl/Drw7w8+XE28jvz7sq5wej7EVDI5n+pW2wsD6fuWD/nj34rVAmS58DnxOvKvoVhZaSliwoPcrl+keoDU1/aTOVUPGMOgFx8F/vgDeOABfBA2UTLu7DdH1zqvX7efQ8fFn6LzN46DBxkRXbB6wouo9PSFZVu6dOQ6+iXxlxD//cT3UQJf4/DBnF5V9YXAf49ouHFl3HBxbcIFrVYLhOUC0pVe0j5NENcp3Neqgg9B5+Yt477vFaLHVrO11nH5YFZx31KtH+FCXfmgUjUXxiruP/muQhxSClQPcuX7NHHAbF39oUbFB3FX/bukQtpH+3Cvi41rl4YLthVvE76vNHDbmq/r+FBYcX3Ah43zrwtjF/9zmVBx70VfI+zl58DkchjjOsDSqzfyP/wEACDPyUZUl6qrnfPmzoNh1rOS+Yj7Wv415UNeddx7sdaw9tpqB8cIkkfitxdfD4lDfy/XTv49IG6Hj2ja0tJShAf6u12/SPUAAaqHsf+5O83579NTf5MMY9xnrNq+t790v17wEPVp3He04CPt7+Qh0uML8OOOL4i/DPi+lDsmwAesK0TzYtzVG0qddFobt6+p8ZW2w2qoGq7k+ni+H+b7R564j+PHtdrs8MhMxfXTboHSUIEjT72M5EkPOodbRK+bhu/D6whB5/sSX9F68PvHJm5/kL/4RfyVzu/u6bntU8ntD/O1mjggm+93q/WV3L42v/+sUtZcH8i4jofvQsV1Ch/azQfd17YfCkiP7fDL5Y8n8PveZu518xC9v/h+WM6/f7jtIe6X+eVUcu95b+4zUdv7mO+X+deJn1bL1U/iuo8vB/h15JclLr+DfKSfU36Pga8H5Ny2t10cXlZaiuiw+h8foFtpEdIMhSYfQUjxOVc3o8mpy0vwwHO3YsIHM6AwNc1lwYLNiiFvzETovm0AAEVlOfrNn4c7Jw7GzY+Mh8JQ2STtIIQQQhpb8K9LHCdFAODbb9H+5Larm4Eg4OTUJ7Hjv1/ApNIhIuMo7l00A/rC8w3fWEJaGdWZJMT2iEfozEcBq/SAQeF901E84S4INhu0J49DmXzWOcwWHAJjl24wdu0OAAh8+3X4zXwcMJubsvmEkGaqzYY1iPrrd1c3o8UTbDYoDBUQbLa6R76MirBIpNxyFwCg68dvodNn78AjMw1t//gJfscONWRTCSENiE6MENLM9Fn3Pe56/zEMO7HM1U1pcm2SDsKrMAeRJ/ai487VTbLMtlvXoe3mtRg27wmoykrQbfEniF/lCJn1yM1C2L6tTdIOQgghpFExhrYL3gbatHH8ARi0adE1zerCkNH4ceoCFPqFw6ssH+N/fQ1epqKGbC0hrY7f5x9DkZcLn9+WwXPjeulAQUDm/C9wZv0OpH7/K4qef0kyOH3dFqSv24Lct/4PTCaD548/IPiWMVCkuN8PqQghVYJ3b0H/eTPQ7dO3Xd2UFm/83UNw943d0OX7hdeW9yST4fCMl3HkkecAAHE/fIHRdw5Fj3fmIvLfPxu4tYSQhkInRghpThhDh71/Q263Idc70tWtaXJ5EXHYducMZHTohYyEvk2yzMKYjrDLZFAaDfA9exKZ/YfDpqi61LMszP1eB0IIIa2QIODcC28AGzcCJsdtMtPbdr/m2RUGROC3Sf9FmVcA/AsycMPpxQ3UUEJap7KbxqFw+qOo7NUXht6XqXMFAab4BJQPGwXjwMHVhgFA8QMP4/z3v8Duo4f6wD7HlSOEELdV1NGRF6YuLoSMWesYm9Tm7M2O24t2/f4TjHh+GjyyM69+JoKApPseQ+KzbzqfKomOR8aomxuqmYSQBkZpiYQ0I+2O7UTg+WRYlGrsiXW/zrM0KBwHb7gPB2+4D0DTnLktiYrF6VsmocMfS9Hn0/9gzZcrsXzpRvifOY7sHv1h1eogr3s2hBBCSLOXd+sdiA/zBMaOBQ4fxpbrH4G2ohgBuanIaNvtqudX5hOMn+7/AGPWfIR1gRPrnoAQN1YxcjQqRtae43MlKkdcj6xNO+A3+ymUzpztfF4oLQWYHfCg/AlC3IXFoyonRGU3wyinQ3zX6uj9M2BTa9Ht248Qtn87bp52Iw49/CxOj7tXGpBwBVJuvw8FXXvB4uUDQ0i4JGOEENK8UPh6M0Xham7IYAC6dAGSk4HnnoPx7Xdc3SL3UVAAdXwchOJimJcvh/3Wca5uEbkCGi4cjA8jdHfNdftca7tKS0sR7Ofrdv0i1QOkUTAGlJbCaDRB3bsXhMxMWN55F7Znn5WMxn9er1hWFkp9AyRPncosljw+nlb1+K4h0ZJhicn5ksc6LiC1kgt09BIFT/JhofmlJsljPjzTJkom5YM2Vdz6F1VIMx2MZul9yL11VVecyqunVEvIuYMs/DEX8bL5wFMDt1w+pFISRMq1Q84Fk/Ihnp580L1odBsXiMqHjau5gFgfD2lYb7mh6rXhg1i1XCA4H5AqDh/lg1n5oPaySunrxL+u4lBTBfca84GwPD70VRzcym8fk7n24PZAUfioeNsAgJVLzPXhA4e5ZcnlMvi89Ro8f/we2a+/i7Kbxzkby29bPsiXfx+LtzUf6spvn8Iy6ecrKqjqIC3fxvxSaX4gfxSCD5gN868Kdxa/5mWlpWgfEex2/SLVA6RGGg1gMsF4LgWIpLsd1Jdw+jSUDz8M2XZHDpvt9tthWbIUUCrrmJJcK3G92Vz2WRtSc9kvby7tuFo1tbuhjg/QrbQa0aeffoq2bdtCo9GgX79+2Lt3r6ubRJqzt95ynBQJDwdefhkAIPtzFRSzZwMXLri4ca0AY0B2NoSkJAgHD0LYtg2yjRsBmw3w94dt+oMAAPlXX7m4oYSQ1obqAdLsCALg5QXl/fdByHTcKkLx0osQtl1lGPvl/P47EB0Nxc+1ZKVZrQg+vBcKQ2X9l0eIm5Cnp0FxLtlRu/JsNnj8tATynByEPzoVMb06Qp6T3fSNJHWimoA0OE/HCUmhrMzFDWl5hJQUCIcPA6KT0SwuDuaNG2FZ+AmYSgXZtm3OWokQ0vrQiZFG8vPPP2PWrFmYN28eDh48iG7dumHMmDHIzc11ddNIc2SxAO+/7/j3448DhYVQThgP1YQJUCyYD3XXLpAv/u7aQsCaK6MRsn//dRQiNRCOH4fihRcg//oroLS0+gh2O1BZ+0EV+ddfQXnH7VBHtIGmTTjUnRKg7tsH6uHDoBwz2vlrOtv06QAA2d9/O14PQghpAFQPkObMPmAgmKcn7L16QbDZoLz4w4x6WbECMBqhnTYF8g3/Op8WLBb4bP4X7eY+jR4DOuPG2ffCN+V0/ZdHSAsjLy2B+txZqHbvhGbdWqi3b4X61AnIc3MgmERXYDAG7eGDCH7vLYQM7I3wnp0Q1rcb2rQNQdj1Q6B/9z9V88y6AEV2lvOxMicbQW80wOeZNCiqCUij8PEBAMj27nFxQ5oP2d9/Q7ZyxeVPJIvH27gB6l49oY6KhOKxRyH780/I/lgJxbx5kP25CpbFi2H+dwNYu3ZN1HJCSFOjGxA2kg8//BAPPfQQpk2bBgD44osvsGbNGnz77beYM2eOi1tHmh2lEhg1CvDyAoxGICEBcoPBOVgoLoZy+nQwtRr2uye5sKH1VFAA+YrlkK1aBdnmzRAqK2F98EFYv/jSMZwxR/FSXAzF669B/tVXEC4WM0LSaVgvnjySLfsJ8p9+gmznTghFRWABAWBt24FFtwMEwXGp68UTHrK//oJ81SrH7GUywNsb8PAA8/AAfP2c965gcXGwvPkWhKIiQEFfjYSQhkH1AGm2ZDLYXn4Z9sGDobrFkWtmG13//AMsXgwoFBAWL4Z22hQYvvkWig0b0O3HpVDl5zlHM3rroTBV1TryNath79IVjG4DQpoSY4DVCpnJCJnRCIve3znIM3E/YLPBrtFCXl4GVU6W4y8/F+aAIGQ/PMM5rv+SRZDn5kBmqIRw8Qc2NjsDEwRY/ANx4eGnnON2vGEwVFnSq8GDLv7fFB2Lc1v3AwAEkwnt7h4PeUW5o6kKBSCXQ2YwQH34ECwxsc7pbWHhsF+sb2V5ebCGhaP0jrsbdFOR+qOagDSKKVOAefMgW7cOtmkPuLo1dWOs+n0JLxJOn4bsl18g27QJ8PSA/cYbYXvk0aoRbDZAziWAlpdD/uWXsD3+OKDVAoxBMXcOZEeOwB4bC9uDDwEGA2RJpyCcPg3b9OnOedom3AbF009DyMqC4uuvga+/lsza9vwLYAkJDbr6hJDmhY7+NQKz2YwDBw5g7ty5zudkMhlGjRqFXbt2XXYak8kEk+gXQiUlJQAc90wjbuLbbx33B338ccBggH3AQFjefx8sNhbyTz6B/K+/YB49purKiVoKistizHElhEpV97iZmZAdPw4WHAwWFwfodNVGkW3dCpjNYDExYBERtZ5MkK1Y7jiRsWmT80QHALDgYNg8PGG9uE6ydeugePklCAUFMF/8DNhGjoSQng7LHXeAXRxPsWcvFGvWVC0gP9/xt38fAMA490Xn/VVld94JoWcv2Hv3Buvevfq6iD9jTzzh+D9dhtwimFvoPTKbSnPdPtfarrKLn9WWFI1G9QBp7ow2OwS5HMqLPzCwPP64pF/kP69X7N13YTtwAPJjx4Bxt+BSz1/m64ei629E0aix2B8QByZXABXlKDt6BNrJ9ziuAlUq0QkCmCDA6uuHkt7XoezmW1E+cJhz9gYuF0OwKWscVll+7RkjFm79K7nsCj5DQsFEGSN11Gh8xojAbWpLLRkjfCZEbRkjzqwTxiAzGaE2lENRUQ6Z0QiAQWGywuLlDUNYhGNZViVUudmwa7WwaXSAqmqdbDa742rdiwelTJcyRux2KMpKoCovgbK4EMriQqiKi6AIDUXxsOud03v9XPXDFZVStMKCABYagoohIy4uyI6wWY9DmZsNJpfB5qWH1csLNk8vCBYzjGGRyJ72iHPysBdmQF5WCsFqhWA0ILiyAnKDAUyuQEWHBJx9Z6Fz3IQH7oLmQgYUJSUQrBaIt2x51x449d1vzsftZj8GTUYaLis2DuWTpsJycT3CvvoE6vTUy45qDI9AxT3TYLmYR1Ko94W6tBT2gAAwbx8IFRUQigogLyqC2WZDeVmpM2MkY8yNkJWXw3bDTTAMHwHm6QlFWirkSadg8/OHqaz04ussw8kjSYBMDoNJdOVzWSmsZi5jhO+HuawYiyjrQ7ByGSNcn13OZYyUaqqG81kw5WVXlzFSprx8rkzZxTq9JdUDwNXXBFQPkCs2YwYQHAzjHXde/i4LLiAkJkJITQHUGkCnA/PwgJCWCvkff0AoKIRZtC+vmPMCUFYG2bFjkB09KpmPNSTEeawAFRVQd4gHS+gEFhYK4UIWhKwLQFYWBJsNFqMRthkzAJMJilHXQ56eDuHsWWDOC5J52hmDedI9FxeuAM6lQLZ9O2Tr/nKckFGrYe/RA6xHD9hCQ5vNNm3NzK08Y6S57Jc3l3ZcrZra3WDHBxhpcOfPn2cA2M6dOyXPP/fcc6xv376XnWbevHkMAP3RH/3RH/3RH/3V8peRkdEUXXmDoHqA/uiP/uiP/uivcf5aUj3A2NXXBFQP0B/90R/90R/91f1X33qArhhpJubOnYtZs2Y5H9vtdhQWFkKpVCIyMhIZGRnw9vZ2YQubXmlpKSIiImjdad3dBq07rTute80YYygrK0NYWFgTtc41qB6ojj4jtO607u6D1p3WneoBB6oHqqPPCK07rbv7cOd1B9x7/a903RuqHqATI40gICAAcrkcOTk5kudzcnIQEhJy2WnUajXUarXkOb1e77xU1tvb2+0+DJfQutO6uxtad1p3d3Ol6+5zMVyypaB6oGHRutO6uxtad1p3d9Na6wHg6msCqgdqRutO6+5uaN3dc90B917/K1n3hqgHrvHGwaQ2KpUKvXr1woYNG5zP2e12bNiwAf3793dhywghhBDSVKgeIIQQQghANQEhhBDSHNEVI41k1qxZmDJlCnr37o2+ffti/vz5qKiowLRp01zdNEIIIYQ0EaoHCCGEEAJQTUAIIYQ0N3RipJFMnDgReXl5ePXVV5GdnY3u3btj3bp1CA4Ovqr5qNVqzJs3r9pltO6A1p3W3d3QutO6uxt3WHeqB+qP1p3W3d3QutO6uxt3WfeGqAncZVtdDq07rbu7oXV3z3UH3Hv9m3rdBcYYa5IlEUIIIYQQQgghhBBCCCGEuBhljBBCCCGEEEIIIYQQQgghxG3QiRFCCCGEEEIIIYQQQgghhLgNOjFCCCGEEEIIIYQQQgghhBC3QSdGCCGEEEIIIYQQQgghhBDiNujESDP26aefom3bttBoNOjXrx/27t3r6ibV22uvvQZBECR/HTp0cA43Go144okn4O/vD09PT9x+++3IycmRzCM9PR033XQTdDodgoKC8Nxzz8FqtTb1qtRp69atuOWWWxAWFgZBELBy5UrJcMYYXn31VYSGhkKr1WLUqFE4c+aMZJzCwkJMnjwZ3t7e0Ov1mD59OsrLyyXjHDlyBIMHD4ZGo0FERATee++9xl61OtW17lOnTq32Phg7dqxknJa47m+//Tb69OkDLy8vBAUFYfz48UhKSpKM01Dv8c2bN6Nnz55Qq9WIjY3Fd99919irV6crWf9hw4ZVe+0fffRRyTgtcf0///xzdO3aFd7e3vD29kb//v3x119/OYe35te9rnVvra95U6J6gOqBltgnAu5bDwDuXRNQPUD1ANUDjae11QRUD1SheoDqgdbWN1A9QPVAi6gHGGmWli1bxlQqFfv222/Z8ePH2UMPPcT0ej3LyclxddPqZd68eaxTp04sKyvL+ZeXl+cc/uijj7KIiAi2YcMGtn//fnbdddexAQMGOIdbrVbWuXNnNmrUKHbo0CG2du1aFhAQwObOneuK1anV2rVr2UsvvcSWL1/OALAVK1ZIhr/zzjvMx8eHrVy5kh0+fJjdeuutrF27dsxgMDjHGTt2LOvWrRvbvXs327ZtG4uNjWWTJk1yDi8pKWHBwcFs8uTJ7NixY+ynn35iWq2Wffnll021mpdV17pPmTKFjR07VvI+KCwslIzTEtd9zJgxbNGiRezYsWMsMTGR3XjjjSwyMpKVl5c7x2mI9/i5c+eYTqdjs2bNYidOnGALFy5kcrmcrVu3rknXl3cl6z906FD20EMPSV77kpIS5/CWuv6rVq1ia9asYadPn2ZJSUnsxRdfZEqlkh07dowx1rpf97rWvbW+5k2F6gGqBxhrmX0iY+5bDzDm3jUB1QNUD1A90DhaY01A9UAVqgeoHmhtfQPVA1QPtIR6gE6MNFN9+/ZlTzzxhPOxzWZjYWFh7O2333Zhq+pv3rx5rFu3bpcdVlxczJRKJfv111+dz508eZIBYLt27WKMOTpUmUzGsrOzneN8/vnnzNvbm5lMpkZte33wnb/dbmchISHs//7v/5zPFRcXM7VazX766SfGGGMnTpxgANi+ffuc4/z1119MEAR2/vx5xhhjn332GfP19ZWs+wsvvMDi4+MbeY2uXE2Fz7hx42qcprWse25uLgPAtmzZwhhruPf4888/zzp16iRZ1sSJE9mYMWMae5WuCr/+jDk6wZkzZ9Y4TWtaf19fX/bNN9+43evOWNW6M+Zer3ljoHrAgeqBlt8nunM9wJh71wRUD1A9wJh7veaNpTXWBFQPOFA9QPWAO/QNVA9QPcBY83vN6VZazZDZbMaBAwcwatQo53MymQyjRo3Crl27XNiyhnHmzBmEhYUhOjoakydPRnp6OgDgwIEDsFgskvXu0KEDIiMjneu9a9cudOnSBcHBwc5xxowZg9LSUhw/frxpV6QeUlJSkJ2dLVlXHx8f9OvXT7Kuer0evXv3do4zatQoyGQy7NmzxznOkCFDoFKpnOOMGTMGSUlJKCoqaqK1uTabN29GUFAQ4uPj8dhjj6GgoMA5rLWse0lJCQDAz88PQMO9x3ft2iWZx6Vxmtv3A7/+lyxduhQBAQHo3Lkz5s6di8rKSuew1rD+NpsNy5YtQ0VFBfr37+9Wrzu/7pe09te8sVA9QPUA0Hr6xJq4Qz0AuHdNQPUA1QOXtPbXvDG15pqA6gGqBwCqB9yhb6B6gOqBS5rTa6646ilIo8vPz4fNZpO8CQAgODgYp06dclGrGka/fv3w3XffIT4+HllZWXj99dcxePBgHDt2DNnZ2VCpVNDr9ZJpgoODkZ2dDQDIzs6+7Ha5NKyluNTWy62LeF2DgoIkwxUKBfz8/CTjtGvXrto8Lg3z9fVtlPbX19ixY3HbbbehXbt2SE5OxosvvogbbrgBu3btglwubxXrbrfb8fTTT2PgwIHo3Lmzs10N8R6vaZzS0lIYDAZotdrGWKWrcrn1B4B77rkHUVFRCAsLw5EjR/DCCy8gKSkJy5cvB9Cy1//o0aPo378/jEYjPD09sWLFCiQkJCAxMbHVv+41rTvQul/zxkb1gF4yDdUDVVpan1gTd6gHAPeuCageoHqA6oGG0VprAqoHHKgeoHqgNfcNANUDVA8033qAToyQJnXDDTc4/921a1f069cPUVFR+OWXX1z+RU2azt133+38d5cuXdC1a1fExMRg8+bNGDlypAtb1nCeeOIJHDt2DNu3b3d1U1yipvV/+OGHnf/u0qULQkNDMXLkSCQnJyMmJqapm9mg4uPjkZiYiJKSEvz222+YMmUKtmzZ4upmNYma1j0hIaFVv+bk2lE9QAD3qAcA964JqB6geoDqAVIbqgcIQPWAO6B6gOqB5loP0K20mqGAgADI5XLk5ORIns/JyUFISIiLWtU49Ho94uLicPbsWYSEhMBsNqO4uFgyjni9Q0JCLrtdLg1rKS61tbbXOCQkBLm5uZLhVqsVhYWFrW57REdHIyAgAGfPngXQ8tf9ySefxOrVq7Fp0ya0adPG+XxDvcdrGsfb27tZ7EDUtP6X069fPwCQvPYtdf1VKhViY2PRq1cvvP322+jWrRsWLFjgFq97Tet+Oa3pNW9sVA8US8aheqBKS+oTr0ZrqwcA964JqB6geoDqgYbjLjUB1QNUDwBUDwCtq2+geoDqgeZcD9CJkWZIpVKhV69e2LBhg/M5u92ODRs2SO7J1hqUl5cjOTkZoaGh6NWrF5RKpWS9k5KSkJ6e7lzv/v374+jRo5JOcf369fD29nZeltUStGvXDiEhIZJ1LS0txZ49eyTrWlxcjAMHDjjH2bhxI+x2u/OLo3///ti6dSssFotznPXr1yM+Pr5ZXCp6pTIzM1FQUIDQ0FAALXfdGWN48sknsWLFCmzcuLHapbwN9R7v37+/ZB6XxnH190Nd6385iYmJACB57Vvq+vPsdjtMJlOrf90v59K6X05rfs0bGtUDVA8ALbdPvBatpR4A3LsmoHpAiuoBqgcagrvUBFQPUD0AUD3QWvoGqgekqB5opvXAVce1kyaxbNkyplar2XfffcdOnDjBHn74YabX61l2drarm1Yvs2fPZps3b2YpKSlsx44dbNSoUSwgIIDl5uYyxhh79NFHWWRkJNu4cSPbv38/69+/P+vfv79zeqvVyjp37sxGjx7NEhMT2bp161hgYCCbO3euq1apRmVlZezQoUPs0KFDDAD78MMP2aFDh1haWhpjjLF33nmH6fV69scff7AjR46wcePGsXbt2jGDweCcx9ixY1mPHj3Ynj172Pbt21n79u3ZpEmTnMOLi4tZcHAwu++++9ixY8fYsmXLmE6nY19++WWTr69YbeteVlbGnn32WbZr1y6WkpLC/v33X9azZ0/Wvn17ZjQanfNoiev+2GOPMR8fH7Z582aWlZXl/KusrHSO0xDv8XPnzjGdTseee+45dvLkSfbpp58yuVzO1q1b16Try6tr/c+ePcveeOMNtn//fpaSksL++OMPFh0dzYYMGeKcR0td/zlz5rAtW7awlJQUduTIETZnzhwmCAL7559/GGOt+3Wvbd1b82veVKgeoHqAsZbZJzLmvvUAY+5dE1A9QPUA1QONozXWBFQPUD1A9UDr7RuoHqB6oCXUA3RipBlbuHAhi4yMZCqVivXt25ft3r3b1U2qt4kTJ7LQ0FCmUqlYeHg4mzhxIjt79qxzuMFgYI8//jjz9fVlOp2OTZgwgWVlZUnmkZqaym644Qam1WpZQEAAmz17NrNYLE29KnXatGkTA1Dtb8qUKYwxxux2O3vllVdYcHAwU6vVbOTIkSwpKUkyj4KCAjZp0iTm6enJvL292bRp01hZWZlknMOHD7NBgwYxtVrNwsPD2TvvvNNUq1ij2ta9srKSjR49mgUGBjKlUsmioqLYQw89VK2gb4nrfrl1BsAWLVrkHKeh3uObNm1i3bt3ZyqVikVHR0uW4Sp1rX96ejobMmQI8/PzY2q1msXGxrLnnnuOlZSUSObTEtf/gQceYFFRUUylUrHAwEA2cuRIZ9HDWOt+3Wtb99b8mjclqgeoHmiJfSJj7lsPMObeNQHVA1QPUD3QeFpbTUD1ANUDVA+03r6B6gGqB1pCPSAwxtjVX2dCCCGEEEIIIYQQQgghhBDS8lDGCCGEEEIIIYQQQgghhBBC3AadGCGEEEIIIYQQQgghhBBCiNugEyOEEEIIIYQQQgghhBBCCHEbdGKEEEIIIYQQQgghhBBCCCFug06MEEIIIYQQQgghhBBCCCHEbdCJEUIIIYQQQgghhBBCCCGEuA06MUIIIYQQQgghhBBCCCGEELdBJ0YIIYQQQgghhBBCCCGEEOI26MQIIaRV2bx5MwRBQHFxcZMvWxAECIIAvV5/ReNfaqsgCBg/fnyjto0QQghxJ1QPEEIIIYTqAUJIbejECCGkxRo2bBiefvppyXMDBgxAVlYWfHx8XNKmRYsW4fTp01c07qW23nXXXY3cKkIIIaT1onqAEEIIIVQPEEKuFp0YIYS0KiqVCiEhIRAEwSXL1+v1CAoKuqJxL7VVq9U2cqsIIYQQ90L1ACGEEEKoHiCE1IZOjBBCWqSpU6diy5YtWLBggfNy09TU1GqXyn733XfQ6/VYvXo14uPjodPpcMcdd6CyshKLFy9G27Zt4evri6eeego2m805f5PJhGeffRbh4eHw8PBAv379sHnz5qtu5+HDhzF8+HB4eXnB29sbvXr1wv79+xtoKxBCCCHujeoBQgghhFA9QAi5FgpXN4AQQq7FggULcPr0aXTu3BlvvPEGACAwMBCpqanVxq2srMTHH3+MZcuWoaysDLfddhsmTJgAvV6PtWvX4ty5c7j99tsxcOBATJw4EQDw5JNP4sSJE1i2bBnCwsKwYsUKjB07FkePHkX79u2vuJ2TJ09Gjx498Pnnn0MulyMxMRFKpbJBtgEhhBDi7qgeIIQQQgjVA4SQa0EnRgghLZKPjw9UKhV0Oh1CQkJqHddiseDzzz9HTEwMAOCOO+7ADz/8gJycHHh6eiIhIQHDhw/Hpk2bMHHiRKSnp2PRokVIT09HWFgYAODZZ5/FunXrsGjRIvz3v/+94namp6fjueeeQ4cOHQDgqoomQgghhNSO6gFCCCGEUD1ACLkWdGKEENLq6XQ6Z9EDAMHBwWjbti08PT0lz+Xm5gIAjh49CpvNhri4OMl8TCYT/P39r2rZs2bNwoMPPogffvgBo0aNwp133ilpCyGEEEKaBtUDhBBCCKF6gBByCZ0YIYS0evylqYIgXPY5u90OACgvL4dcLseBAwcgl8sl44mLpSvx2muv4Z577sGaNWvw119/Yd68eVi2bBkmTJhwDWtCCCGEkGtF9QAhhBBCqB4ghFxCJ0YIIS2WSqWSBKI1lB49esBmsyE3NxeDBw+u9/zi4uIQFxeHZ555BpMmTcKiRYuo8CGEEEIaCNUDhBBCCKF6gBBytWSubgAhhFyrtm3bYs+ePUhNTUV+fr7zFx31FRcXh8mTJ+P+++/H8uXLkZKSgr179+Ltt9/GmjVrrng+BoMBTz75JDZv3oy0tDTs2LED+/btQ8eOHRuknYQQQgiheoAQQgghVA8QQq4enRghhLRYzz77LORyORISEhAYGIj09PQGm/eiRYtw//33Y/bs2YiPj8f48eOxb98+REZGXvE85HI5CgoKcP/99yMuLg533XUXbrjhBrz++usN1k5CCCHE3VE9QAghhBCqBwghV0tgjDFXN4IQQloDQRCwYsUKjB8//qqmmzp1KoqLi7Fy5cpGaRchhBBCmg7VA4QQQgiheoCQ5o+uGCGEkAY0adIktGnT5orG3bZtGzw9PbF06dJGbhUhhBBCmhLVA4QQQgiheoCQ5o2uGCGEkAZy9uxZAI5LZNu1a1fn+AaDAefPnwcAeHp6IiQkpFHbRwghhJDGR/UAIYQQQqgeIKT5oxMjhBBCCCGEEEIIIYQQQghxG3QrLUIIIYQQQgghhBBCCCGEuA06MUIIIYQQQgghhBBCCCGEELdBJ0YIIYQQQgghhBBCCCGEEOI26MQIIYQQQgghhBBCCCGEEELcBp0YIYQQQgghhBBCCCGEEEKI26ATI4QQQgghhBBCCCGEEEIIcRt0YoQQQgghhBBCCCGEEEIIIW6DTowQQgghhBBCCCGEEEIIIcRt0IkRQgghhBBCCCGEEEIIIYS4DToxQgghhBBCCCGEEEIIIYQQt0EnRgghhBBCCCGEEEIIIYQQ4jboxAghhBBCCCGEEEIIIYQQQtwGnRghhBBCCCGEEEIIIYQQQojboBMjhBBCCCGEEEIIIYQQQghxG3RihBBCCCGEEEIIIYQQQgghboNOjBBCSAs1YcIE+Pr64o477nB1UwA0v/YQQggh7qC59b/NrT2EEEKIO2hu/W9zaw8hl0MnRgghpIWaOXMmvv/+e1c3w6m5tYcQQghxB82t/21u7SGEEELcQXPrf5tbewi5HDoxQkgrN2zYMDz99NOubobbGzZsGARBgCAISExMbLB5enl5XfG4jf0+qKk9U6dOda77ypUrG7UNhBBCLo/qgeaB6gGqBwghxJWoHmgeqB6geoA0D3RihBBCatDQxcJDDz2ErKwsdO7cucHm2RIsWLAAWVlZrm4GIYQQck2oHmgYVA8QQghpyageaBhUD5DmROHqBhBCSFMzm81QqVRNvlydToeQkJArHr979+6wWq3Vnv/nn38QFhbWkE1r1Pb4+PjAx8enMZtGCCGEXDWqB64N1QOEEEJaE6oHrg3VA6Q1oCtGCHExu92O9957D7GxsVCr1YiMjMR//vMfAIDJZMJTTz2FoKAgaDQaDBo0CPv27ZNMv27dOgwaNAh6vR7+/v64+eabkZycXOvy3n77bbRr1w5arRbdunXDb7/9Jhnnt99+Q5cuXaDVauHv749Ro0ahoqKizvZeybyHDRuGp556Cs8//zz8/PwQEhKC11577Yq3yZUsgzds2DA8+eSTePrppxEQEIAxY8bUue2mTp2KLVu2YMGCBc7LPFNTU6+5DZdT23YGgMTERBw7dqzaX0MUPWvWrIGPjw+WLl0KACgrK8PkyZPh4eGB0NBQfPTRR9V+EdOY7SGEEHdH9QDVA1QPEEIIoXqA6gGqBwhpOnRihBAXmzt3Lt555x288sorOHHiBH788UcEBwcDAJ5//nn8/vvvWLx4MQ4ePIjY2FiMGTMGhYWFzukrKiowa9Ys7N+/Hxs2bIBMJsOECRNgt9svu7y3334b33//Pb744gscP34czzzzDO69915s2bIFAJCVlYVJkybhgQcewMmTJ7F582bcdtttYIzV2d665n3J4sWL4eHhgT179uC9997DG2+8gfXr11/RNrnSZfAWL14MlUqFHTt24Isvvqhz2y1YsAD9+/d3Xt6alZWFiIiIerVBrK7t3Jh+/PFHTJo0CUuXLsXkyZMBALNmzcKOHTuwatUqrF+/Htu2bcPBgwcbvS2EEEIcqB6geoDqAUIIIVQPUD1A9QAhTYgRQlymtLSUqdVq9vXXX1cbVl5ezpRKJVu6dKnzObPZzMLCwth7771X4zzz8vIYAHb06FHGGGNDhw5lM2fOZIwxZjQamU6nYzt37pRMM336dDZp0iTGGGMHDhxgAFhqaupVtfdK5n2pPYMGDZKM06dPH/bCCy802DJ4Q4cOZT169Khx+CW1bbuGaIN4XrVt5ys1cuRIFhAQwLRaLQsPD6/Wpsst/5NPPmE+Pj5s8+bNzmGlpaVMqVSyX3/91flccXEx0+l01da/Pu0BwFasWHHF8yOEEHdB9YAD1QPXhuoBQghpHagecKB64NpQPUDI1aOMEUJc6OTJkzCZTBg5cmS1YcnJybBYLBg4cKDzOaVSib59++LkyZPO586cOYNXX30Ve/bsQX5+vvOXIOnp6dVCvM6ePYvKykpcf/31kufNZjN69OgBAOjWrRtGjhyJLl26YMyYMRg9ejTuuOMO+Pr61treK5n3JV27dpU8Dg0NRW5ubp3b5GqWwevVq1e1565m2zVEG8Rq285X6t9//73icQHHpbm5ubnYsWMH+vTp43z+3LlzsFgs6Nu3r/M5Hx8fxMfHX9X8r7Y9hBBCHKgecKB6gOoBQghxZ1QPOFA9QPUAIU2FTowQ4kJarbbe87jlllsQFRWFr7/+GmFhYbDb7ejcuTPMZnO1ccvLywE47h8ZHh4uGaZWqwEAcrkc69evx86dO/HPP/9g4cKFeOmll7Bnz55a23sl875EqVRKHguC4Cw6GmoZPA8Pj2rPXc22a4g2iNW2ndu1a3fF87kaPXr0wMGDB/Htt9+id+/eEAShUZZDCCHk6lA94ED1ANUDhBDizqgecKB6gOoBQpoKZYwQ4kLt27eHVqvFhg0bqg2LiYlx3vPyEovFgn379iEhIQEAUFBQgKSkJLz88ssYOXIkOnbsiKKiohqXl5CQALVajfT0dMTGxkr+Lt0fE3AUIgMHDsTrr7+OQ4cOQaVSYcWKFbW290rnXZ9t0lDLAK5s26lUKthstkZrQ03bubHExMRg06ZN+OOPPzBjxgzn89HR0VAqlZLgvpKSEpw+fbrR2kIIIaQK1QNXt02oHqgfqgcIIaR5onrg6rYJ1QP1Q/UAIXTFCCEupdFo8MILL+D555+HSqXCwIEDkZeXh+PHj2P69Ol47LHH8Nxzz8HPzw+RkZF47733UFlZienTpwMAfH194e/vj6+++gqhoaFIT0/HnDlzalyel5cXnn32WTzzzDOw2+0YNGgQSkpKsGPHDnh7e2PKlCnYs2cPNmzYgNGjRyMoKAh79uxBXl4eOnbsWGd765p3Q2yThljGlW67tm3bYs+ePUhNTYWnpyf8/PyuaBteidq2c2OKi4vDpk2bMGzYMCgUCsyfPx9eXl6YMmWK870WFBSEefPmQSaT0a9GCCGkCVA9cPXbhOqB+qF6gBBCmh+qB65+m1A9UD9UDxC35+qQE0Lcnc1mY2+99RaLiopiSqWSRUZGsv/+97+MMcYMBgObMWMGCwgIYGq1mg0cOJDt3btXMv369etZx44dmVqtZl27dmWbN2+WhFjxoV52u53Nnz+fxcfHM6VSyQIDA9mYMWPYli1bGGOMnThxgo0ZM4YFBgYytVrN4uLi2MKFC6+ovXXN+3LtYYyxcePGsSlTpjTYMniXW+aVbLukpCR23XXXMa1WywCwlJSUBmtDXdu5oV1u+UFBQWzWrFmMMUfA2j333MN0Oh0LCQlhH374Ievbty+bM2dOg7UBFK5GCCE1onqA6gGqBwghhFA9QPUA1QOENB2BMcZcc0qGEELcx7Bhw9C9e3fMnz/f1U25IhUVFQgPD8cHH3zg/AVSfQmCgBUrVmD8+PENMj9CCCGkpaF6gOoBQgghhOoBqgdI80AZI4QQ0kQ+++wzeHp64ujRo65uSjWHDh3CTz/9hOTkZBw8eBCTJ08GAIwbN67e83700Ufh6elZ7/kQQgghrQHVA4QQQgiheoAQ16MrRgghpAmcP38eBoMBABAZGQmVSuXiFkkdOnQIDz74IJKSkqBSqdCrVy98+OGH6NKlS73nnZubi9LSUgBAaGgoPDw86j1PQgghpCWieoDqAUIIIYTqAaoHSPNAJ0YIIYQQQgghhBBCCCGEEOI26FZahBBCCCGEEEIIIYQQQghxG3RihBBCCCGEEEIIIYQQQgghboNOjBBCCCGEEEIIIYQQQgghxG3QiRFCCCGEEEIIIYQQQgghhLgNOjFC3F5GRgaGDRuGhIQEdO3aFb/++qurm+QSxcXF6N27N7p3747OnTvj66+/dnWTXKayshJRUVF49tlnXd0Ul2nbti26du2K7t27Y/jw4a5ujsukpKRg+PDhSEhIQJcuXVBRUeHqJhFCGgnVAw5UD0i5e01A9YAD1QOEuA+qBxyoHpBy93oAoJoAoHqgNRIYY8zVjSDElbKyspCTk4Pu3bsjOzsbvXr1wunTp+Hh4eHqpjUpm80Gk8kEnU6HiooKdO7cGfv374e/v7+rm9bkXnrpJZw9exYRERF4//33Xd0cl2jbtu3/s3ffcXLU9ePHX7N9926v95679N5DQgokEDqINAFpAiIogqCiP/1KsYAFpEVFERWkKFJFWightJAG6T255C53l+v9ts/vj73b3flcSbvkQu795HFkZ2d25rOf3Z3Pe+Yz83mzfv164uPjB7ooA2revHn84he/YM6cOdTX15OQkIDFYhnoYgkhjgCJB8IkHjAa7DGBxANhEg8IMXhIPBAm8YDRYI8HQGICkHjgeCR3jIhBLzs7m4kTJwKQlZVFWloa9fX1A1uoAWA2m3G5XAB4vV50XWcw9ptu27aNzZs3c8YZZwx0UcQA27BhA1arlTlz5gCQkpIiQY8QxzGJB8IkHoiSmECAxANCDDYSD4RJPBAl8YAAiQeOV9IxIr70li5dyjnnnENOTg6apvHyyy93W2bRokUUFRXhcDiYMWMGy5cv73Fdq1atIhgMkp+ff4RL3f/6ox4aGxuZMGECeXl5/OAHPyAtLe0olb5/9EcdfP/73+fee+89SiU+MvqjHjRNY968eUybNo2nn376KJW8fx1uPWzbto34+HjOOeccJk+ezK9+9aujWHohxMGSeCBM4oEwiQkkHugi8YAQg4vEA2ESD4RJPBAmMYHEA6Jn0jEivvTa2tqYMGECixYt6nH+v/71L2677TbuvPNOVq9ezYQJEzjttNOorq42LFdfX8+VV17Jn//856NR7H7XH/WQlJTEmjVr2LVrF8888wz79u07WsXvF4dbB6+88grDhw9n+PDhR7PY/a4/vgsfffQRq1at4tVXX+VXv/oVa9euPVrF7zeHWw+BQIAPP/yQP/zhD3z66acsXryYxYsXH823IIQ4CBIPhEk8ECYxgcQDXSQeEGJwkXggTOKBMIkHwiQmkHhA9EIX4jgC6C+99JLhuenTp+vf/va3I9PBYFDPycnR77333shzHo9HnzNnjv7kk08eraIeUYdaD7FuvPFG/fnnnz+SxTyiDqUOfvSjH+l5eXl6YWGhnpqaqickJOh333330Sx2v+uP78L3v/99/W9/+9sRLOWRdyj18Mknn+gLFy6MzP/Nb36j/+Y3vzkq5RVCHB6JB8IkHgiTmEDigS4SDwgxuEg8ECbxQJjEA2ESE0g8IKLkjhFxXPP5fKxatYpTTjkl8pzJZOKUU07h008/BUDXda6++mrmz5/PFVdcMVBFPaIOpB727dtHS0sLAE1NTSxdupQRI0YMSHmPhAOpg3vvvZeysjJKS0v53e9+x/XXX8/PfvazgSryEXEg9dDW1hb5LrS2tvLee+8xZsyYASnvkXIg9TBt2jSqq6tpaGggFAqxdOlSRo0aNVBFFkIcBokHwiQeCJOYQOKBLhIPCDG4SDwQJvFAmMQDYRITSDwwmEmWGHFcq62tJRgMkpmZaXg+MzOTzZs3A/Dxxx/zr3/9i/Hjx0fGGHzqqacYN27c0S7uEXMg9bB7926++c1vRpKq3XzzzYOuDgaDA6mHffv2cf755wMQDAa5/vrrmTZt2lEv65F0IPVgsVj41a9+xdy5c9F1nYULF3L22WcPRHGFEIdJ4oEwiQfCJCaQeKCLxANCDC4SD4RJPBAm8UCYxAQSDwxm0jEiBr3Zs2cTCoUGuhgDbvr06XzxxRcDXYxjxtVXXz3QRRgwxcXFrFmzZqCLcUw444wzOOOMMwa6GEKIo0DigTCJB7obrDGBxANREg8IMXhIPBAm8UB3gzUeAIkJukg8cPyRobTEcS0tLQ2z2dwtSdi+ffvIysoaoFIdfVIPUgddpB7CpB6EGFzkNx8m9RAm9SB10EXqQYjBRX7zYVIPYVIPYVIPUgeDmXSMiOOazWZjypQpvPvuu5HnQqEQ7777LjNnzhzAkh1dUg9SB12kHsKkHoQYXOQ3Hyb1ECb1IHXQRepBiMFFfvNhUg9hUg9hUg9SB4OZDKUlvvRaW1vZvn17ZHrXrl188cUXpKSkUFBQwG233cZVV13F1KlTmT59Og8++CBtbW1cc801A1jq/if1IHXQReohTOpBiMFFfvNhUg9hUg9SB12kHoQYXOQ3Hyb1ECb1ECb1IHUgeqEL8SX3/vvv60C3v6uuuiqyzCOPPKIXFBToNptNnz59ur5s2bKBK/ARIvUgddBF6iFM6kGIwUV+82FSD2FSD1IHXaQehBhc5DcfJvUQJvUQJvUgdSB6pum6rh9in4oQQgghhBBCCCGEEEIIIcSXiuQYEUIIIYQQQgghhBBCCCHEoCEdI0IIIYQQQgghhBBCCCGEGDSkY0QIIYQQQgghhBBCCCGEEIOGdIwIIYQQQgghhBBCCCGEEGLQkI4RIYQQQgghhBBCCCGEEEIMGtIxIoQQQgghhBBCCCGEEEKIQUM6RoQQQgghhBBCCCGEEEIIMWhIx4gQQgghhBBCCCGEEEIIIQYN6RgRg4LX6+Wuu+7C6/UOdFEGlNRDmNRDmNRDmNSDEIOL/OalDrpIPYRJPYRJPQgxuMhvPkzqQeqgi9RDmNTD4KLpuq4PdCGEONKam5tJTEykqamJhISEgS7OgJF6CJN6CJN6CJN6EGJwkd+81EEXqYcwqYcwqQchBhf5zYdJPUgddJF6CJN6GFzkjhEhDtGiRYv6dfne5h/o831NH2xZD8ZA1sOBPHcs1sOBLNuf9bC/70p/6s966Gv+wX72BzIthBCH4mi1g73Nk3ig5+cHYz1IXHTgzx2tehBCDC5yLCRx0aGuW+KiA1v+y1oP4himCzEINDU16YDe1NTUb+scNWpUvy7f2/wDfb6v6a7Hx1s9HMhzx2I9HMiy/VkPvdXJsV4Pfc0/2M++r+kjUQ9CiGNXf//mj1Y72Ns8iQd6fn4w1oPERQf+3NGqByHEsetY3/d9WY+FJC7qvWyHs7zERX3PP9brQRy7LAPQFyPEUdfe3g7AjTfeiNVq7Zd1VlRUcPXVV/fb8r3NP9Dn+5rueuz3+4Hjpx4O5LljsR4OZNn+rIfe6uRYr4e+5h/sZ9/X9Dv/WAyALiNLCjEo/P73vwf6b993tNrB3uZJPNDz84OxHiQuOvDn+qqHQCBwQOUWQny5vfrqq8Cxu+87WsdC/d0GSFy0/3IfyvISF/U9/0jUQ2NjowylNQhIx4gYFLZu3YrNZqOouASzxQw6qKdAo+dE9fA8ZRm968nO/087YRZZeYXoXc/qMa9VXq8DU6bPJDU7X1m3Hl6vDpOmnkBiRq6hLLoOE6bMID4tx/Ac6IybPB1ncnZkfWMnTcOelBVZbszEaVgTMtGB0ROmYXZnoAcDTJw2C3NCJprJHClbZN1d5TG8p853Fft+Yp4vGTOZDmuKoWyG96hHa0XXoXDkJJq0JAjphteghx8XDJ9Ag9/dOS+60fySCdR54qKF0yGveDy1ba7oskBu0Thqmh2RbecWjqW60Y6uQ07+WPbV2wgGzZQMm0xNgx2TyaxWQvhx7Afb6+Poa3LSR1C1K2T80NV1di2bPIyqzf5uz+sxj7PdJVSu9XQrT3ZcMZWr2g0fRrZzCJXL2wz1kG0fQsWnLeHHtiIqPm6OrttSSMWHTYRCQYoTR7Dvo2Y0zaRsK+YL1zmtQ/hzM9SFblg205dN2ct7Y39QxnV2fUd0yPCns+e50s7vjN65iB6ZSg2msP2Zregx/3V9n5JCiWx8en3kNaDjDrlZ+88vIuuI1+NY/dSqyHyX7mTlkys6v+c6Dux89o9l2LBhwkRxUjGvffIaM2fORAhx/LrnnnuYccIJvcYERyseiFnUEBNMmnYCiRl5kemubeqEY4K41BxDOforHugqT18xwdGNBybSEHBHNtYVE+QPnUCdJz664s715hWPo7bNdQTjAQzb7DEmOMh4AF0nJ2kYVZv8BxcPANlxJVSubjeUL9tZ3Gc8gA7Z1sJwTNCf8YChvsLTmb5syl6p6BYnHEo8QGdMsO2ZLQcUDyTobtb9c02kve8tJljx5HJDPBAggBUr+an5/PXZv3LxxRdjMsnI00Icr/70pz8xcuSofosH0MMxQWZnTIA6X1nHQMUDXds7nHME/R0PNGtJ0bYltm77iAcg5hxBv8UDjuh+v8+Y4OjEA5H3C2S7h4bjAaU8PcUDsecI+j0ewPhct5jgMOIBdJ2MQDp7ntt1QPFA5NulQ1IokU1PbzC8Dg7sHIEaDwQJ4sTJ0MKhDKWElW2rcLlciOOTJF8Xg8KyZcu44MIL2V66h66drnHfrsfsk3VlHx07rRv29d3XdYDr0WN28nrMvzEBgq5DKOZ5dbmuZbo/F1um/bzOsAyEYucbArAe1qmuv9f31st2OxtPvXOGrnc9F20U9XChIuvqKlDs88SUgQNcR9dzMW+878ddDX1Pj8Mfew/zDmL9yvuJPk/nOo3vLfq8sl0OZR3h1+uR9XT+28Nzesy83l4XXn8opm56fq0e+xp0Qnqo8/sX/jekh9AJhX8Dnf+GCKF3/ht5PrKs8TU9LQv0uj4/fnawk53sIo1U3l6zmPHjxx/srkYI8SVgNpvZuG07BQWFHHI73g/xAF3PdWs3u7fZRyMewLBczzHBUY0HuupK7/o32lb29BwxZTgi8UDXB9ZXTNDj4wNcf8zj/bXlROotdp5x20c1HoD9xwS9vPZIxAPh4vQdE/S6PkKUUc5WtmHDxjOvPcOZZ56JpmkHv7MRQhzT5s6dyze++U0u+dplHEo73tWu7S8eoNfXKtPd2s0jEw9Ab8v13HYf6XgAYpY5xHME/RYPRCvn8M4R9Pj4INYdU57DPUfQn/FApDyHc46gl9cdSjwAHPY5gt7iAR2dWmrZxBY8eHhg0QNcd9112Gy2Q9rfiGOXXAIjhBBi0LNiZSQjWMDJuHAxacIk8rRctm/fPtBFE0IIIcRRYsJEIQXM5yTyyeOrZ3+VVFMqS5cuHeiiCSGEEOIo0dBIJ505nMg4xnLHt+8g2Z7EU089RTAYHOjiiX4kHSNCCCFEJzt2xjKGkzkJEyZGDBtBoVbI3r17B7poQgghhDhKzJgpZggLOJkM0lkwbwEZWgarVq0a6KIJIYQQ4ijR0Mgmi5OYy3CGc8OVN5BsSeLll1+O3IElvtykY0QIIYRQuHAykQnMZQ5+/BTkFVCiFVNbWzvQRRNCCCHEUWLBwnCGsYCTScDN9KnTydGy2bx580AXTQghhBBHiYZGPnmczDwKKeRr53+NFFMy77zzzkAXTRwm6RgRQggheuEmnqlM5kRm0Uor2enZjNCG09zcPNBFE0IIIcRRYsPGaEaxgJOxYWPMqDEUaPns3r17oIsmhBBCiKPEjJkhFDGfk8giizNPPYN0LY1ly5YNdNHEIZKOESGEEGI/kkhkBtOZzjSq2EdaYprcPSKEEEIMMg4cjGccJzEXPwGKi4p57733BrpYQgghhDiKLFgYxlAWMJ8kkpg5cyajtVEDXSxxCKRjRAghhDgAXrxUUUUrraSThtPpHOgiCSGEEOIoCxJkH9XUU08iCeTl5Q10kYQQQghxlOno1FHHPqpx4uSBN34/0EUSh8Ay0AUQQgghjmV+/OxkFzvYSSoprPp8FRMnThzoYgkhhBDiKAoRopy9bGUbFiz859X/cPbZZ6Np2kAXTQghhBBHUS21bGILHXTwu0d+x/XXX4/dbh/oYolDIB0jQgghRA+CBCmllG3swI2bJR8uYfbs2QNdLCGEEEIcRTo6lVSxhS2E0Hn86cf52te+hskkgy8IIYQQg0kDjWxmM000UUIJK1tXERcXN9DFEodBOkaEEEKIGCFC7KGMbWzDhp1X33iV0047Ta4IFUIIIQYRHZ0aatnMZrx4efBPD/GNb3wDq9U60EUTQgghxFHUTAtb2EINtQyhiK3120hOTh7oYol+IB0jQgghBOETIHupYAtb0dB48t9PccEFF8gVoUIIIcQgU089m9hCCy0Mo4SV7aslt5gQQggxyLTRzla2UkElBeRTXllOVlbWQBdL9CPpGBFCCDGo6ejso5rNbMGPn0V/XcSVV16JxSJNpBBCCDGYNNHMZrZQRx0lFLOraRcJCQkDXSwhhBBCHEUePGxjO3soI4ccduzaQVFR0UAXSxwBmq7r+kAXQogj7fPPP2f69OmMGz+hlyX0mP8bnur+vPrK3l7UNdXDi7u/RO9xG91/nTHL9VY+PfYf40I9bsOwWM/l2P9rdeNzPZZFfZ3ew5MHNj/yVE+7L92wQK+fadf83rehvOn9vbbbtpUnDmbbvbxW38/87tM9fAB9vVbv6fnoOvT9LdfbunratmEVeszTuvF5w2b0mM0cwP97/G0Zl9KBAAH8+BnGUFZ5VkvSNCGOcy6Xi+KSEmy2nn7rRzce6Hlb3dvioxEPdC9nDzHBUY4HDniZoxkPHOzrj0A8YHjYZ7uuPDiS8YC6bF8xwRGOB3p8tttvq3s8oKPTSitFFLKs+jPS09MRQhy/Tj31VLZt305KSmoPc49MPBB5Zj/N1lGJBzon+27Xey5Hf8cD0Zf13iYelXhgv9tQ27eDeO3hxAN9vP7oxwPG9fQYExy1eCC6jd5igkOJBwBaaSWDdN7Z8C6jR49GHL+kY0QMGu+99x7Nzc0DXQwhxDHGZDIxf/584uPjB7ooQoij4IsvvqC0tHSgiyGEOAZNmTKF/Pz8gS6GEOIoKCsrY9WqVQNdDCHEMWjIkCFMmDBhoIshjgLpGBFCCCGEEEIIIYQQQgghxKAhGWWFEEIIIYQQQgghhBBCCDFoSMeIEEIIIYQQQgghhBBCCCEGDekYEUIIIYQQQgghhBBCCCHEoCEdI0IIIYQQQgghhBBCCCGEGDSkY0QIIYQQQgghhBBCCCGEEIOGdIwIIYQQQgghhBBCCCGEEGLQkI4RIYQQQgghhBBCCCGEEEIMGtIxcgTcddddaJpm+Bs5cuRAF0sIIYQQR5nEBEIIIYSQeEAIIYQ49lgGugDHqzFjxvDOO+9Epi0WqWohhBBiMJKYQAghhBASDwghhBDHFmmJjxCLxUJWVtZAF0MIIYQQA0xiAiGEEEJIPCCEEEIcW2QorSNk27Zt5OTkUFxczOWXX86ePXsGukhCCCGEGAASEwghhBBC4gEhhBDi2KLpuq4PdCGON2+88Qatra2MGDGCyspK7r77bvbu3cv69etxu909vsbr9eL1eiPToVCI+vp6UlNT0TTtaBVdCCGEOCbpuk5LSws5OTmYTF+e6zoONiaQeEAIIYToncQDEg8IIYQQ/RYP6OKIa2ho0BMSEvTHH3+812XuvPNOHZA/+ZM/+ZM/+ZO/Pv7KysqOYgve//YXE0g8IH/yJ3/yJ3/yt/8/iQfkT/7kT/7kT/7k73DjAblj5CiZNm0ap5xyCvfee2+P89UrQpqamigoKKCsrIyEhISjVUwhhBDimNTc3Ex+fj6NjY0kJiYOdHEOS18xgcQDQgghRO8kHpB4QAghhOiveECSrx8Fra2t7NixgyuuuKLXZex2O3a7vdvzCQkJEvgIIYQQnb7sw0fsLyaQeEAIIYTYP4kHhBBCCHG48cCXZ1DOL5Hvf//7fPDBB5SWlvLJJ59w/vnnYzabufTSSwe6aEIIIYQ4iiQmEEIIIYTEA0IIIcSxR+4YOQLKy8u59NJLqaurIz09ndmzZ7Ns2TLS09MHumhCCCGEOIokJhBCCCGExANCCCHEsUc6Ro6A5557bqCLIIQQQohjgMQEQgghhJB4QAghhDj2yFBaQgghhBBCCCGEEEIIIYQYNKRjRAghhBBCCCGEEEIIIYQQg4Z0jAghhBBCCCGEEEIIIYQQYtCQjhEhhBBCCCGEEEIIIYQQQgwa0jEihBBCCCGEEEIIIYQQQohBQzpGhBBCCCGEEEIIIYQQQggxaEjHiBBCCCGEEEIIIYQQQgghBg3pGBFCCCGEEEIIIYQQQgghxKBhOZQX7dmz56BfU1BQcCibEkIIIYQQQgghhBBCCCGE6DeH1DFSVFSEpmkHvLymaQQCgUPZlBBCCCGEEEIIIYQQQgghRL85pI4RAF3X+7McQgghhBBCCCGEEEIIIYQQR9whd4xMmjSJF198cb/LnX/++axZs+ZQNyOEEEIIIYQQQgghhBBCCNFvDrljxG63U1hYuN/lbDab3F0ihBBCCCGEEEIIIYQQQohjwiF1jIRCoQNedtmyZYeyCSGEEEIIIYQQQgghhBBCiH5n6q8VffbZZ/21KiGEEEIIIYQQQgghhBBCiCOi3zpGLrroov5alRBCCCGEEEIIIYQQQgghxBFxUENpXXzxxT0+r+s69fX1/VIgIYQQQgghhBBCCCGEEEKII+WgOkbeeecdnnrqKeLj4w3P67rO0qVL+7VgQgghhBBCCCGEEEIIIYQQ/e2gOkZOOukk3G43c+fO7TZv/Pjx/VYoIYQQQgghhBBCCCGEEEKII+GgOkZefPHFXuctXrz4sAsjhBBCCCGEEEIIIYQQQghxJPVb8nUhhBBCCCGEEEIIIYQQQohj3WF1jFRVVfVXOYQQQgghhBBCCCGEEEIIIY64w+oYWbhwYX+VQwghhBBCCCGEEEIIIYQQ4og7rI4RXdf7qxxCCCGEEEIIIYQQQgghhBBH3GF1jGia1l/lEEIIIYQQQgghhBBCCCGEOOIk+boQQgghhBBCCCGEEEIIIQYN6RgRQgghhBBCCCGEEEIIIcSgcVgdI2azub/KIYQQQgghhBBCCCGEEEIIccQdVsfI559/3l/lEEIIIYQQQgghhBBCCCGEOOJkKC0hhBBCCCGEEEIIIYQQQgwalsNdwfz583ud53Q6mThxIjfffDNZWVmHuykhhBBCCCGEEEIIIYQQQojDctgdI0uWLEHTtB7n6brOm2++yd///neWLVtGfn7+4W5OCCGEEEIIIYQQQgghhBDikB32UFpz587F5XJhNpuZNGkSkyZNwmw243K5mDp1Kna7naqqKu65557+KK8QQgghhBBCCCGEEEIIIcQhO+yOka997Wtomsa6detYuXIlK1euZO3atQBcffXVrF+/HpfLxdtvv33YhRVCCCGEEEIIIYQQQgghhDgch90xcu+995KXl8eIESMiz40cOZL8/Hx+/etfU1xczIknnkhVVdXhbkoIIYQQQgghhBBCCCGEEOKwHHaOkdraWsrLy/nRj37ERRddBMBLL73E5s2bcblckeViHwshhBBCCCGEEEIIIYQQQgyEw+4YOfvss3n++ef57W9/y29/+9tu87xeL6tWrWLkyJGHuykhhBBCCCGEEEIIIYQQQojDctgdI4899hiBQICXXnrJ8PxXv/pV/vSnP1FTU8NPf/pTxo0bd7ibEkIIIYQQQgghhBBCCCGEOCyH3TGSlJTECy+8wM6dO9mwYQMAY8eOZciQIdTW1pKXl8ctt9xy2AUVQgghhBBCCCGEEEIIIYQ4XIedfP3GG28EoLi4mHPOOYdzzjmHIUOGsGfPHmbPnn3YBTwe3HfffWiaxq233jrQRRFCCCHEAJF4QAghhBASDwghhBDHhsPuGHnssce4+eabDc9t3ryZE088kW3bth3u6r/0VqxYwWOPPcb48eMHuihCCCGEGCASDwghhBBC4gEhhBDi2HHYHSMul4s//OEPfPe73wVg+fLlzJkzh71791JYWHjYBfwya21t5fLLL+cvf/kLycnJA10cIYQQQgwAiQeEEEIIIfGAEEIIcWw57I6RxYsX43a7WbRoERdddBGnnnoqdXV1TJgwgU8++aQ/yvil9e1vf5uzzjqLU045Zb/Ler1empubDX9CCCGE+PKTeEAIIYQQEg8IIYQQx5bDTr4+c+ZMlixZwsKFC3nxxRfRdZ0FCxbw0ksvER8f3x9l/FJ67rnnWL16NStWrDig5e+9917uvvvuI1wqcSDuv3+pYfr22+cOUEkOz6PPfB55/J3LJg1gScTxLva7BvJ9E30bbN8XiQeObQfzfdzfsn971ziE7DULhh2Vcg1GR6t+5HMQR9KxGqsfq+X6spN4QHyZSXsohNGx8ps4VsrxZXZIHSP33HNPt+fmz5/Pv//9b9xuNzNmzOCBBx4A4Gc/+9nhlfBLqKysjFtuuYXFixfjcDgO6DU//vGPue222yLTzc3N5OfnH6kiCiGEEOIIk3hACCGEEBIPCCGEEMemQ+oYueuuu9A0rdvzmqbR2trKvffeG3luMHaMrFq1iurqaiZPnhx5LhgMsnTpUh599FG8Xi9ms9nwGrvdjt1uP9pFFUIIIcQRIvGAEEIIISQeEEIIIY5Nh9QxUlBQ0GPHiAhbsGAB69atMzx3zTXXMHLkSO64445uQY8QQgghjj8SDwghhBBC4gEhhBDi2HRIHSOlpaX9XIzji9vtZuzYsYbn4uLiSE1N7fa8EEIIIY5PEg8IIYQQQuIBIYQQ4th02MnXhTgW3P+zxcYncuL7XP72b800vj4m4frBJlu//5fvRSdSnYZ5Nrfx9mdfVathOmVitmG6/ovK6IQnYJh3+0/mG7f7p0+NBWnzGybt2e7IYzUhrKr+g1JjueYVHdA8OLzksir1Pamf04NPLI88TixM7nNdarlik1LFZRq/H3pIN0x/49ThhulHnl5tmPa1eCOPU4al9bnd2O8WdP9+xX42+6vLvhL7qvPqt9UaptVy9kUtx/6+P6rY5VOV38Ce7XWG6b6Sg6nbVdd17vSCPssR+3259RvTDfPuf+BDw/Ttt80xTPdnErOD+YyP5rpiPfbSesO0LaHvoRtit/3AY8sM82674QTDtPo5enc1HEoRheiV+nuNtb/frjpfXZe3siXyWN1/H04y9v21DQejr/ffU7kOR+x7atvX2seSh7fd/cUDsZ8L9F0Hapuvio291M9hv9+PZo9hOrat7SsO6Wnd6vcltn6vu2SCYZ7DbDrgdav7aF03xjxq3fZlf++hP9vOg1nXwdZtX5/5/tz/8MeG6du/e+JBvT5WX99NTzBkmFY/c9XhxJPqbzm2/tS6PdjvYm/r7akcarlj6+DZJTsijzva+t73iMFrf/sCte2NFXvs3NNr+9rW4baz9//4zcjj2+893ThPPebvgz2h7/w1atu5v7jG8FqlvVOp52MM5xOWlRkXVs6ZqO1QX3V7sPFTX+s6kkmr+1r3/uI2ldpWHMwxYF/72f29/4Nph9TtXHpSSZ/lit2nq+VSt6suqzqcY+L9tUN9caXHGab7OoZQz/upup1Divndq+dxfM1ew3TB0NQ+1x17nH/D+caOeMO5TLqfczwcD/1thWH6lmumRR4fbL0f6QTz0jFylCxZsmSgiyCEEEKIASbxgBBCCCEkHhBCCCEGXt+XngghhBBCCCGEEEIIIYQQQhxH5I4RcdxoaWtgR+laWtsaaNHaaG2pp6OjjYDfx4WX30FCYvgWs08+eJF/PXELoVAIs9mMxWKhqqoNk8mMyWTm3HOfZtiw8K1cL7/8Ms8++yxmsxmbzYbD4Yj8WSwWrrvuusj2y/duZfvqDZjNZkxmC2azBXucA7PFislkZujIyTgI395aX19FZeUOEr1pmExmNJMJk8lEy44GTCYTmZmFxJnDt0z6/V483nZqa2vRNA2TyYTFYsHn82DSTJjMFkwm6eMUQgghAHw+D1s3rKCpoZqGHa9xzTXXkJeXB8B///tfHnnkEfx+P4FAgGAwSDAYBMBkMjHj1OsYOnIyAFvWf8bbLzyByRSOFZYvz8Fms2G1WtE0jeTCeRQNHQdAVcUu7rzzZeLi4rDb7VitVlbsaMBssWA2WykeNQEIxxYNDQ3s2rUWi8WG2WxF02D9+pRI+56ZmRl5L6FQCDAOfSSEEEKI/dN1nc8++4wdO3ZQU1PDkiXbOOmkSyLz33zzr1RUbCcUCoJVi2lzNd54Oo3//e9/kWXvvfdeVq1aFTl/sL2sGZPJhNlsYfMn2Tz44INYLOHTay+88AIbN27EYrEY/qxWK1arla9//evY7eFha1etWsW6LR93noswsXixObKcyWQiEPBjsVgBaG1pwOfzYLXaw+cQNK3zz4RmMmEN2eS8gBBCHCTpGBHHhXc/epbFS/9JIOjvcb6n46ZIx0hTYw0rVqzocTmAtra2yOMNGzbw73//u9dlzzjjjMjjnbvX8drrf+h12ZvuWERxenhMv61bV/Cf//yu12WvuurnjBs2C4C1G5by7H/u4+77el720qt/xpQZp3eW92P++c97wgGSKRwkmcxmLFYrZouFi7/5Q2acfHa4DOtW8o/f/xRNMxFs92PSTOHlTSZsz7tYeMHVTD/5LACqa/fw+nt/w2qxEbc8BavNjtlqRUNj/espnHnmmSxYsACAsrIyfv/733crZ1enzoIFCzj99HB5Gxoa+Mtf/hI50bTskz2YzBYsFisWi4116+IZNy580snr9bJz25rOE0c22kjDarNjsdqwWK3Y7E7sDme37QohhBgcqqv28NE7/+Gzpa/S3tYceX7mzJmRjpGKigoWL17c2yoYf2L0hEljQw1bt0bjhfXGVDxc/Z1h0Y6R8p389aF7el3v1bf/Eq4It5PLly9n0aKbDfPvvz/6+KGHHsKUFs57tHPrFzz08+u47Wozdrsds9kcaU9NJhN33XUXWupsAPbu2cpfHrg90v5rmgbAI3fb0TSNG264ge9973sAlJeXc9dddxnK0LVeTdM49dRTueCCCwBobm5m0aJFOBwOVu9qwmqz44yLB68ZhzOOlLRsEpPTAQiFgtTXVgE6O3YkAGA2myMXlTidzsjJICGEEOJI8Hk7WPHxGzx275Wsj2m8nc54Q8fI7t0b2LZtVY/r2L3d2FZ9/PHHho4Sw7z3wm13l+eff55//etfvZbvoosuirSFixYt4h8v/S0y76/PG5f92X3/jZzHeOeNv/PR+8oCMe78/aukZYTjnVeee5h3X3sy3K6bTGhonUuFO1O++90/AuH8HL/+9a+577778AdA0+j8X9SNP3iEzLRiAJZ/8hrvv/VPnngkHqvVGun02be3BZPJzHkLbyQ3eygAqz56m7eef4JAizeS30rTTJjsFjTNxBnn3UBRcTiOevfdd3nsscdIT09nZ6WfuPgkLFYrjvZVWCwWTjrpJIqKigBoaamnomI7AG+91QFAcnIyRUVFpKenR+IfIYQ4EP3WMfLZZ58xY8aM/lqdEN10S2a0OZpcOsGWSCDoJzttCOkpucw5dQIZGRkkJyfjdDqp13Owx4Xv1jhhwbmMnT0LTdMI6TqhYIATRqQSCAQIBYMUFEQTOp922mkkJCQQDAbx+Xx4vV4+WlWK3+clFAyyeEU9d/3kHADGvOmjxreXYDBAMBD+y06yRa5KvebC6SzbagYgKT+boqHjSEuyh7cbChEKhahv8RAMBskcV8Ttt4cTHz311F6e/U/v9WKq9sC2BuxTsjGVW/H7e0+M1rS3juY9jZjtFpoq66jcs7PnBSuhZk9FOBmj3UyLr4X1WzqTTW4wLroY2N2ksYdwvW37fHWPHSNdvlheyYbl4ate6iz13PuTO3pdtrxyExd/Izy/vraKR+77Zq/LnnDCOVx40Q8A6OhowX7mhM6razRAD//XGZBNmnwKF1z8fQD8Pi+/vCd88sdsseJwxvHn/EwSEhJIT09nzpw5WDPCiTVDoRBbN6zA1+QLdyDZndR8sRGbzYnVYsNisXL/miogfIWS19tOwbRsggE/mmbCYrVy7+/exdx5RxGAxW2LvAc1QZXZbtxFxyZ9B3glJhm5mmw9LqPvZLNqwvnmssbI41eX7zHM8zYZv1MBT8Aw3VciOzVhukpN+p2dmxB5nKK8Vo1x1YSyyUriMWeyq8cyAViSjckJ//TiOsO0+p5i60RN+n4wiY/3l+RcTTymfhax8/eXtOyJxVsN02mJxvdcF/N9UhOxqUnvHv/XGnqjJlv/7wpjmdPU96gkdXvwieWRx7d+Y3qv2xGiN5eeVsBVV11lOGGRlJhBbmYJ8cmpvPFmGWvWfghATWsyl179M8xmC5rJxFfPHIPZHG6bdV1n1SZTJMFofs4oLr3wRwSDQUKhAAE7BIJ+goEA6Drf/ebZjBo9GoDVQwPY/TfR1taG1+vF7/ezaVNlOCYIBrA22yMJDrfvXE9aRj4Bv49g0I+uh9snPRQiFAry0cd7mVG8D4CO0moAgsEg7e3t3d77e8t2Mnv0GADay+uoq9nbbZnqzjzTS9fsJnHxVjSTRvnOLfz1r3/ttU637mpjd20u1ngbtdXl3PP//l+vy974ne9w+4MP8YfHl9PcVMvdd4Tjoru/133ZKSUn8bU53wEgMDWFO28/q7OTJ3z3rNlswelyE+dOZMykWZx18Y0A/PYPH/GvJ38JdJ5UMYc7cGx2Jw6Hi4zMIUyadmp4I2XNNLfWEedMxGy24C1rMhaizXgRTdzErMhjdb/avKfRMK22y+q6Yt3/wIeG6fghyYZptQ1T2fpoP9VyWp1Ww3RsW2OyGq8eVk8Yqe2fOj+2XVYTwKpJgdUEoWo5Y+OJnLxEwzy1bd1fMtFYanz02kpjol81jvn2rbMjj9V2Vi2H+h6GnZBvmI5tLx970niCNTbRKHSPAWLb3v2VQ6Wuqy/qutX4qq+kp33FQ2CMJaD7d7Ev+0u2+taq8h6XbW5u5tsHvBVxPFNj8G9fOpFf//rX/Pa3v6W+vh4Am81JQcEo4uOTmDNnDLfdNgdN07j/gQ+ZM/diJk5cgGYycdaZo8IjP5hM6LrO60+v4f7bX4+s+6abbuLMM8+M3Gn67rtbCQYDhEJBZszIi8QSAKFQASeccC6hUPg4H7tGMBBeNhjw89eXNmG1ho8Ba9pcDBk2AT0UjMQMwWD4vISu6ziTXNjd4RjeYrdgtdnx+4y/uy6aFt3fh18fIhgMQbD7snqLN7J/+2RDOY2Njb3Ws6/VAw0NALSVVlJTvYea6p6X7Qi1g91M0+4GqrbtZvuG1b2ut6O9JfxZ3L+UFSve4fnnu3f6/OuJ8L9XffNXjJ98MvZsNxt2f8rf/vIjAP7yF+PyVqudC8/9HlMmhWOC0j0beG/ps7jjU/j4/WGkpGXiTkxC13Wa27wUj55IWmYuAL9c9Da7d2zovNvXQnZBCharFXdiMknJaVR8UR9pI83KsaTFEd736Z3nl7ylTYb48nf3L422ry4LwWAAPRT+YFKGZ0TuCgLC52D68MjT0Tq9/msTDfMW3f2uceE0l2Hy0T7WvehZ4+9JV25YVmOA1qpocvGbL59smKcm9bbkuA3TjiTjBa2vxLQtZdvr+txuXyqV9v6F/23qc11qkvjYcmxfbYyp7QnGz1xt79R195UgXI0tVLd/a2bksXpc/pySjL5yb7Nhen/rjpU8Pc8wrW7r7Zh2GKBsR/SzcSnnm9RYa8iYTMN07LrVelfLrM73lvf8Hjva+v6tHKh+6xi56KKL2LNnz/4XFKIftDQ3UF+zm6z0QgAmjTiJ9OQ8inJGAXD7/Wcalo8NmrJyhhCXOc4w/4KYH57DHA0opk6dytSpU3tdV6zTTz+dSqvxB6wG/Mu2hl87YerJTJh6credZU87sSuuuIIrrriC+//0Kboe7kDRQ0GCW+sIhYJYLdGDm1HjZnHn7/8LnZ0AXQ2zv8NLMBggOSV68F9YMpbv/vQvoOucN78k0jkTCAR45b2tZOdF30taag5fPecWAkE/1mwnAb+PgN8X2UZ4iJCwhKQ0Tjv/G5Gz2JOGh68i1XWdzz7axZDC6EGg3e5k2olnEQz4CQYDmOwmgoEAAb8Pv89LRnb0oFDTNNIy8gmFgpGTSYGAD7/PRygUxGSO7s78fh8+Xwc+X0ePn5XPF91p6+i0tjRGppsaathXURqZDgaDnHTxiZ2PAzx01/U9rhNg7PBZXH1D9Naen/7kjF6XHTZ8Kjd8+8HI9N//+P9A17E7XNgdcTgcLpxuNw5HHCnp2YyecGKv6xJCiMFs2bJlvPXWW2iaxhlnnEFWwkxGlkzFZDJDkvEgJj0jn/SM6InNr3xlpmH+toroid7U9FxSJ6ZEZ6YaD+K6OkUAJk+ZwqzpxpOg6olxOsIn0YcWT+LH9xjvRtXVE+w14btXS/LHcfct/yJg1wkEAui6jjXP3dmJEsKdmAyd/eKZ6YXcfMMj6E5r5GBbB9yFSeh6iNSMnMjqE5LTuOAbt9Fe2XVQq4cPgG0mdD3EkJJou26zOThh3nn4/V5y0p10eDpobWmlva2F5uZmEtzRE+e6rmO12jsP/jU0jc6TSOEOIKs5ehAZDAbwebu3082N4TcUGwPooRCrPnuz27Jdxk6YG+kY0XWdX/3hGgIBH2ZT+CSSzebEpJkIBv0MHzKFS7/yw8hrb7vyRELBIMmpmWQVDCEjp4D07Hxc7kRcWhJDho7vdbtCCCGOLc3NzdTX11NUVMS48WcxffqZOJ3hk7K33zbHsOzo0dEY4MorjfMqVyUZps8803h+IRhcGnl8++1zDfNmzDibGTPOjkzbs40nhWOddt61nHbetX28o6gLrvgBV37/7ujFFHqI+jWVkWPyuNRozHLmBTcw/8yvE+zsIAHw7aiPXCiYmBDtyD7lK1cwY/7Z6KFQZH7XhQG6rpOangul4YszJo88icLskZxz3WT8fj/BYJBAMMBrz68lFAqSmVEUWe/IcTO55qb7CLUH0NDQ0UHX0W0mQnqI3PzhkWWLisZx3nk309bWhM/spa2lMRwndIQvSHUnRjvL7Q4XuQXDw7GGpoEePp5vaqjG7/ficMZFlm1sqmbj5nBs99nK7nV6/Y9/F+kYKd2xnsd/f3uv9X/eeTczZ86FAGzfvIqn/3o36Dp+v49gwI/fHz7nAnD+Od/lxBnnhde7ez1/+Ov3MJuthELB8NBtMS66/geccUn4HENV+S4e+OG1xLmTSEhMJSk1k8zCAlLSs0lMTSe/eCRgRgjRfw6qY+Tiiy/u8Xld1yM98kIcaZ6ONh773S3sK9/FNZfcTUnheCwWa6RT5HgVHj80nAcFrFhs3YeNsjuc2B253Z4PegPdnouLT2TYqCkAzJ9v7KDZ2ZhtmE5MSGPWjHMBSFGulFMlp2Zy/hXRy0Rjr4a7/x7jFQxJKZlcfu2dkemEgiTDfF9z9GqY5NRMw4mk2DsiQqEQLTujvddxcYn8+P89h9/vA3Q0TcOS6OyKm7AGoydmLBYb/+/X/wF0An4fHk87C6Zl0NTUxL59+xg2bBiVXbGLrpOdX0LIHyQYCuL3efB2tOP1daDrIcNVOuEhScyEQkE0TYsEmV1sNuPJuvWfLyUQ8NGT4uETDR0jj/7uW5hMZgqHlZCelYPVZqe+Mnz7cnJqFhMmR6/I/+DNfxEMBrC5bGiaqXMIFDdOVzwJyWnkDRne0yaFEOJL46yzzuL1118nJSWFKVOmcP/Peh8q68vGbLYQ50yA+OjdhfYs450H3trwVZx2u5PC/NGgXA2ePCq923oTklM567JvUf9FpeF5LWY7kWWT0rjs+p8BcNlXom16nKP7YURiUjr3PbIEAL012qbpuk5grXFbTlc8P7n3hXD7adE6L87w09Hegj/gITE5etJGM5k454KbIyd/NHP4ali/z4PH005WVnFkWY+3PXLSIRgKEPQE8Hiiw6S2e6JXOAL4vR4CAT9Ve3dRtXeXYd7o8SfyzVujd8E+/ee7SEzOIK9oBIXFY3DqLhmyQwghjhGapvGrX/2Kr3zlK0yZMoUHH/pkoIt0RGiahmY2Y8KMxRJtt2Pzi9gdLmx24/kCX133Nh4gPjGZ+ERjbOEKGK/a1wl3jCS600h0p3HSfOMd4Ls3JKBKS88lLT2XYKPxDhctrvudZenpeaSnhzsd4oujHTxt1d2vCB8zcTZjJs7u9nwg4GffF1uJj0+KPJefO4ILz7uNltZ6tMQAdTVVtDU3oZlMBEPgToxuy+VyU1QylmDnnT0ms47f56OlqZH2thbDen0+D431+7qVoUsoGD3/Eui8OKS3Y/1YzQ211FaXU1td3uP8hRdczdnnh4dj3VdRyg9uexKLJZxzNhQKsfqTUnQ9hB4KMW7UHErSwnf219VV8MH7z+FMiMNqc+CMcxMXl4grPoF4dzJZuUNwxfXegSfE8eygOkbeeecdnnrqKeLjjbfM6LrO0qVLe3mVEP3H5/Pw5/u/x+4d63E53cS7kga6SOIY0JX4rovZbCE1NcewTOzQSYEWn+G12XnFhmXPPdfYUdQ1zITVZudnD75Ee030BIu+pwld1wmGunc+/fJXbzJ8bglmszm8TDDAlo93hYOimI4SXde56Mof4fW04fW04/G04/W04/W14+loI7cgeudRMBhg9871hEJBdmztfmvy8FHTDB0jrzz9MB3tLd2WAxgyYjw/fSR6y/Ivf3wBDXVVkat5TCYz7qRkXHFJ5A0ZwdU3/zKy7IfvPI+3ow2T2UKo9kOsVisJCQkkJyezZ1cDBUNG97RJIYToF7qu09LSQkJC+ED81FNPHeASib5omobFbDwRYjKZI2Ohq0NU2VzGkzdms4WTTr0sOm0zXi0ZiLkAxOmI4747/ovH04bP78FnD+H3eQmGglgsVpy68cKEux55lWAgQF1NJQ2NFeyr2E1d1V7a21rIyx0RWa69rZllH7xqeK3bnUJu7nBsNgcjR87g9IkHdtWvEEKI/rNt40oKS8ZEpqdPl6FZByOLxUqacg4gNSWH1JTwc8NOHWqYpw4FOGz0VG6/58nIdOyQjj6vhx2fREfIGTJ0At/7v7+jARarHUecM5z71GLDbLGgV0RHqBhSOI6f3fkSgYAfs9mMxe2MDOmqoZE2IjrkUH7xKL73sydobWmkubGWhvoqWtrqaKipor6mkqFjokNW1ddW8MeHo7ltVKnJOZQQ7hhpaqzhkw9f7HXZU8+5hvMuDXe4tLU28cXyd8nILiIrdwjx7uReXyfE8eCgOkZOOukk3G43c+fO7TZv/Hi5zVwcWcFggL89fAfbNq3E4Yjj+svuJTO97/F3hTgaejrhA+ExTrvGFtU0DYvFit3uxK5cvaNpGjNmn93t9d3GMu9c9qbbFlFfV4Vmb6V2XyWBgJ+m2lb0UIjM7CGG5SfNPAWfpyNyNa7f66G9rYX21hYycwsNy7Z23rLcJRQK0VBbTUNtdbfE9otf/RsNdeF8Ki89bSxjVs4QfvLbFyLTP7/tGtpamsktLCYuPpvMnCIczng87a24EuIZOT6ao2LbxjWRji5d0yJX4gYDfqxWK4Ul0ZNUu3eux+fz4HDGkZiUTmIwCZNZbi0WYjC4//77WbRoEW+++SYjRozY/wvEoGLSTLicblxONyh5jtS8IKkZ4TttM3IKsSu5mGJzjGiaiQuv/CF792ylbNcmKsq209JSz+bN4VwhsVeSNjfU8cc/3MJpp3+D4uLwsGRtrU2U7dpMa1MDU2efHlm2ump3eOgPRxx2ZxxxcYlyF4oQQhygTWs/4bHf3Urh0LF886IPu13EK0R/sNkdhrtznK54CoqiI5Z05Rjp4rVEh8uyWKwkOKO5PtQ7ZizWmPXGxVM8YqJhfmzuCl3XIzlIUtNz+cEdPyIQCBAMBjGbzXzxaRka4Ttt83OiI0MkJqVzysKrCFlC+HweOtpaaG9roq21meaGGrLzo8Ool5du5tnHfxGZHjJsPNfe8tuDyvUhxJeJpqvju4hjQnNzM4mJiTQ1NUWuhhzsfvnLX/LTn/4Uh8PBW2+9xYpXordVqjlFVGryJ7uSADM214eaDFNNLKwO0ZEyryjyuEFJFKXXGhOlqsNQ1X9QaixoXcxY2wk93+oaYd3PCWB/tDG2jckwzIpXxjlVE3wZGl8lSXfD2irjdpT3+O1fLDRML7pvSeRxt/evJAxXTwRccskEw3RsIu9FD31sLIffOFbn0JONd4FsXxaTiLNSuYOi0JgAND7TWD/+DuNJlNjvi5pzRk3CpSbX7quu6zcYs9jFJmbvSdAXfc+68v7tKcZEa94q5TbkmLteAEiPo7ExvH3NF0JDIxgK0NbWRJu5HbPFxtDhnVeoNHl59bVFtLe3EAoFiUt34vf76GhrpbWliThHGlde0xlM2Uzc86NzaW4yftZdhgwfzx33RXtWfvyNU2lorOpx2Zy8Ydz+0+hVPL++62tUV+2OTJtMZtzuFFyuBNIy8rnqW7+KzHv/vceorizHZDKRkJyKHnAQ707G6QoPKzZp5inRqtlXRu6QVOLcCdjtDixWG+U7eh8u0pUeZ5j2txpvk/Y0Rn/XjhRjB1PsZwhgVa6SDinzTTFXSavz1ATqahL0CiVpWXtt9DsQn2NsZ9TkaYXDjElwz5kW7ZRWk7T949WNhmm3kpehTkmEHJus769vbTHMK4lJ+tvW2sLZM0cMunZR4oHuvn/Pkzxw19Xous6FV/6QmbPON8yPbXtv/4lxqAd1n+3drOybcowHfbHJpPeXKHh/ybT1rTH7kRTjCXgqlH20GgM0x+xXCpTvgcWYXBt1iIoy42+f1pg2rUS5CnBHQ9/rjpnU6437Ccx9n8zvNkyXPSaO8Sh3XbqU9+BRMseq9RM7fJiy/6JDWXei0lESjIlzlPdrzjDu34Pt0brz+7xUNZayd88WQqEQuQXDKUwbCcBLLz7Ixx+Hr8wsKhlPc1Mt9bUV4U1YbTz45GeRu17+eN93WbtiSfStJaVSMnISuRnDKRoyloKCUTizjHGKI1ltS4zvsW1fdP8+dKJxeNSgEtdVKzFRbJsFcMOVUyKP//xP452qaoL47nfyGD83Z0zOn45G4+cUUuKYgPKdsMQM3WZRLxxRvqZWp/H70bDRONzJsFnRC0O2f15hmKe2h+lKG7+vwvh7iq0v9YKWouHGZPS1zcark9NiYsTYdrUnj71iTLauxgsZMd+JeuUq6NOmGJOrJsYZXxubXxG6t+uxnn7HmA8xVcnjFBvLn7efBPKvrSwzTJdkG+v+o8+jiW+vPzt6J/JgbRcH6/vuS1VVFaNHj6ahoYFLLrmEp59+2pAEvc+hNZuUBOZK26rmDektbxh0jzXUvKHqMa/hmB/jMXL9MuPvolt8oLRT9hnRYbTVE9fdzk1sNR7PpJxpjGtik2n71HhAbcOVfbi5yNhOxe4LAiuNQ2mqsZahHQaI3QepZyuVYTyHnWLM8bpNrb9Yyr5RHXqU3cZjFG14imHaZDUOmx0r0GCsD7XzQ49tD5X2jnrj98Ey1LhdNVF5Vszx0Xbl/Q5VzrdUlhvfU6y2mGNDXddxdLZ3O7Z8ztuvPMG+yl3U14Rz2KSk53DbvY+TXRBT37GfjRICpijnQHYqQ7fGZXQfhahLdl4ipds2sWvbJkLBAPW1reHcLMFwrlndrDPrlPNISg3fabPy7bdZs+p9bHYHDkdc+M8Vh9udQkJqGlm5xThd4e15643nrmzJ3Yen75I/NLXXeUC38wMXnGUc2v/V97ZHHqcr598alFg10G483xR7XN81ekmX7Dzjb01t4//y3BeG6dhzE7HfYej+PS4ea0yYPm6IsQ7Wxgxfr95xZVLWlaTsMxpilm+KufAIun/H1W6K3Hzjez51cvg9Nzc3k5mSfNjt4mElX6+qqiIrK2v/CwpxmDZu3Mg999wDwGOPPcbcuXNZ8crrA1wqIY4vSUmdHWgxJyOSkzK7n8ADzj3725HHw+cbO6G2fmoM0K7+1n3U1eylZt8eqndsp7quDH/Ai8MeR06+8ZbmBHdyZ5LeEJijuVnMFitxMVfjAqRn5WMym+lob6G5sY5QKEhTUw1NTTXh4cBirF35CWW7jAcpXVLTcw0dI39/9P+xZ+cGwzIWixWbw0VGVgG33fX3SBCxa9saMoMFpGUZAxIhxJHh8/l45i8/R9d1pp54BnMXXtKtM1KIo8FqszNk6HhDcvZA58mNUxdeTcgUYtlHr1K6Y21kflpGHpk5RYb1OOPcJCan4+loxevpoLmxjs+XvcPnvIPVaueX90WTzq9e9jbVlXuwxtkwaSayC0oYP23ekX2jQghxjPrOd75DQ0MDkyZN4sknnzR0igghDlzsCfKSEZO48YePYHFYqKkq59Ff3Eh15W7u/d5lfPeePxqG8zoY69d8SEX5VjwdbQQ1H572NlpbGmltbqC1uYFb7348EiN9/O7/eP5vj/S6rhHjpkU6RirLd/DpBy/1uuxNdzzKqPGzAFj3xQcsefcZXPGJuFwJOBPcmE1m0DR0PcRJp18WGeZ1zfKPePe1f2O2WIiLS8BkNmEymcO5fDSNoiHTu93dI76cDqtjZOHChaxdu3b/CwpxmB566CF8Ph9nnHEGV1xxxUAXRwhxEAqKRlNQ1Hml385Gw7z4mcarWm6+4dHI4zglYXC7cpfLDd+PjqkaDAao311Jc1MtHR3hRPSxLr/hNtrbWgkE/DQ31LN72x5amuvxetpxJxivyrFYrNjsDnze6JUcgYCfQGsTba1NhsDx+X/8hvLdW5g653RO/epVDBkhw0oKcST94he/oLJ8O/EJyVx4xQ9kyCFxTIqPT+LCy+/gxJMuZNf2NWRkFTJk9Dhc8d2vZuvK36VpGn6fl907NrBj0+ds+Xw5oVDI0J69+dLjVJZvN7w+NSOH2adeyImnnk9CkvEOBSGEOF7961//4oUXXsBsNvPXv/4Vm20/oy0IIQ5aelYe3//lP/jDvd+hdNt6nv/Lb/jR7589pPh784ZP+XRp7x0Ye3ZuinSMFJaMICEpBU9Hu+GYXNM0nHEJNNbXRJ7LHzKKnLyheDxttLc14+kwnjPYvnl1pGOktHQ9u0uNF0DG+nzZYn75h8Wd5dnCh2+/2uuyVtvfeeBvn/T+hsWXxmF1jMgoXOJoefTRR8nNzeWaa66RkyBCiG7MZguJiWkkJvZ8UujEBWcZpnes63m4LoDv3fkE+UNT8fu8+Hxe/D4fu7dW4elow+sx3n7rTkhBD4VY8cHrrPjgddyJKYyeOIsxk2YzbPQUktPkrkoh+svHH3/ML38ZPol80VV3EOdOGtgCCbEf2bklZOeGh52wx3e/+1JltdkZOmoyQ0dN5sQpXzXM03WdYaOnUDx8PCarCY+nnQ2rPqauuoJXnn6YNcvf50e/fQYI5wjbvXMd8e5k0uqtxLkTsFrlpKEQ4vhQXl7Ot771LQB+/OMfM2nSpP28QghxqNyJKdx61+N8vORF5p97+SGfjxs6fHKfHSNb169g2uwzABgxfgrNjd2HstZ1nfbWJjas+ogps8NDuGdmF1GhXDQSK7YTZer0M/jg3Wd7XTY1MzoKxMjxU3t/M0B6powYcbw4rI4ROUEtjhar1crPfvazgS6GEGIQsdrsWG3h8VFb0npu72784SPUNZfx5vOP88Wy92hpquezD17jsw9eY94ZX+PS638CQFNDDa8+/zCuBDd2Zxx2hxOb3YHZZMNms5M3ZCSFJWMACPh9+P2+yFioQghoamri61//OqFQiGmzz2LyCQv3/yIhjiOapnHRVXcA0RwjPq+HlR++yZLXnmXWgq9Elm2or+LR395geL3d4SQpJY2klHROOvMCTjv/cgA62lv57IP/Ep+QTFJKBk5LAglJaVitytjrQghxjPjOd75DY2Mj06ZNk3MEQhwFdoeL0y+6NjIdDAa4/45rmDb3DOaccREWq7WPV4eNHDOTb9z0G5qb6vAEWmhqqIkMo9Xa3EhiSnS0CJNmIjktg7j4BKxWF844NyaTCb/PSyDoIzM3mivMarVRPGwCJrMFk8mM2WzBbLbgiksgPjGZoqHRfB1Z2UP4zvf+iN0Rh93hwp2Zgt3hIhgI4PN2hIfJ6jR01HgefvYdzGYzce4E4twJWCzR99lXDlLx5XJYydfHjx8vQ2kdIZJcDTo6Onj44Yf53ve+1+OtsbFJTrslSP/Tp4Zpe4LxKj2fkihITR4ZS03MquUaEyfpsWObK4nIdSVZmpZmTIitJvTS18ck387r+3NXk6dpdmVM1djEZGpSUyXZOEpyTEMyOoeyXiVpJwElQaNal20xiaTU7aoJwNUkr0qyaGKTVqnvt82YsKpbXozY+UqiSDVZZlBJjhlXlGSY7qiLfs4OJcm5yqokkG3aZkyCVzg1mjDPprz/bSvKjStTErXZYhKCpioJqWqUhlpN+u1X6yuG+vtQE7vjUz5zZb6jIFoWT4UxqatbSeLdssuY2M8W8xs5ae4Qw7zFrxsTcycWJhmmk5WkXbve2xl5bFc+Q/U9aiZjx4dVSUxqjUmg16p8hvbORK3BgJ+d29aybdty1q/8iHlnXszJ51xGW3Ur5bu38JufXEZv5p9+JWedfxNWl5WafWX87mdfZ+G513LmlddFOmfAmJzWZDX+BnTlt9mqJNQ1Kd+vUMxvNyHXuL/xK/uM0SXGfdUe9bcbo6HKuN3cQmNy5z1bjftUW0xdxyaEB5g2uyjyuK21hdOnDxt07aLEA2HV1dVcccUVbNu2jRv/3z8MHYfeKqWtjfm9qmFubDL1g9UtIarTuH/vlmhTiQkMyyrxgF7aaFxA3c/Gxh51SqxRZfzdaGpSU2V/r8e08ZrSHqptq6781rXYhM9Kk41ywZSuJLbt9p6ro+vW4pUDajW2UBJgd4sXYqn1riRq7ZZ8PTaxvZLEvNt21Xw2SkxoKLeSSNOSZfxcArsaja9Vvj+WmMTvalJXbMb3nzw8vXPYrfDzX7z1Pv/8+120tzd3u9MRYOHZ13Ha2eETHJbENm659JRuy1htdux2FxdffT1X3nArAGs/NyZPVROmO1ONn3FWlrF+9sQkAk5QEpG27DP+juOVxKwtMW2LVfntZSltWJ2SFDg92fg9r475DYWUpL9zJuUYpteXGuOUueOMd4J+vCGa2N2kxBItynfgwjnGuOapN6NxTVaG8btWqezX4pREtiOU5Kv2mMT363YZY8CQ8nNqV2KgTCVh85CYz218gbENVxOzq4nbX/5sd+Sxmog1WUnE6ld+580dxvpKiokPrDG/+bbWFk6bJvHAYLZz506+9a1v8eijjzJ8+PDI8/f/8j3DcilKImpDO67sR9hijO8ZYTxmUdv4WDddN90wvei+JcYF1GNtta3dHN22lq204U19H5dpMcfeIeW4y6TsV7q9Vk2oHhv/K202TqUtbVQSmffRLDsnZhumO5Sk8N3a9JjpZGWf27C5xrissj8zK/UXjI2REpT3q7atymkOTWm39ZidqUU5fxBQE6grx96xx20upW4bV1XQJ5/y/YnZZ5ttxu9SUIkRqVfeYyzlO61lKt8XJeYxx7SlKz55nWf+ejcABUNHc/HX/x95BdHfYkBpw4YuKDFMb39nh2E6foxxCO1YbfuMsejwycZ2OjbWDwT7Pr1dqowaMWS88fsV2/7tVuKSKcoxxFvKuZpkpZ2ePjIj8ri8xriuZR+VGqZThxiPtRvKmyKP3Uq8pMYtqgblPRbOLIg8rlJiGpPShoeUNr6gjwT0XmV/Mmec8Xf+/KsbDdN6zLrHKrFWvfJda2o2fm/NynmPrpiwo72VO745b2CTrwtxJP32t7/lzjvv5NNPP+Xll18e6OIIIQYxXddpbqjFGefudRmzxcqwUVOYMHcuF177fcO8hMRUvnLZ9/C0t+HztOP1doSH6vJ68Pk8ZOVEE9i3tzXT0d7KK889xMdLXuCi63/AtHlnHLH3JsSXQUZGBm+88QaVlZW89EH1/l8gxCATe5Vj4ZCx/OTu/wAQ0kORcbdbWxpoaa0nPTN6kGyx2phx0uk0N9RRX7uPun1VBAI+/D4vfp+XoD96strv9+HpaMOdYDxZLoQQR1NxcTFvv/32QBdDiEFr0vRT0Zw6L//jYfZs38jv7vo6J8w5l4uu+BFmi5xmFl8uh/WNNZvN+19IiENQV1fHfffdB8Cll146wKUR4stN13WCAT9+vw+rzY7Z/OUPVjyeNmo37SIYCOBwxZOakUNSoqPHIR4DAT8d9dVYrbbO4bF6H+c9FAri83mwuKyEggG2b/mctSvfZ92qJTTU7ePa237NqOwZAGzZsoKXXn6Q+MRkXO4kEhJTSE7NJqu4iJT0bAqHjibOHb6i0+fzYLHayM7JxJ2QgtPlxufz0NEWzluSXzQqUgaTyUy8O5nWlgZqq8r5489vISU9m5LRE/u3EoX4kjGZTOTm5gLSMSLEgTKZzLhcCbhcCaSl56EpV+Zm5Rbww3v/FJnes6k6nLzU04a3o53ps0fg9Xp49L472btnH4GAj+tuvf9ovw0hhKC9vR2Xq++79YUQB8/r7cBB9I6RN//7F2or9hAMBgiFAgQCAUKmEMGAH7vDxfW3PMD8cy9nyuyF3Pa12QAs+/BVcgtGMGfBRQP1NoQ4JId1duzzzz/vr3IIYfDEE0/Q0dHBpEmTuPjiiwe6OEIcFcFgkE1rVlC2axtWq4268lYsFhtFxeNI6EwqvnXLSt5/7xn8Pg9+3Y/f6yEQ9KPrQQJ+H5d+6w7mnXkhANs2reQvD92G3+9D18O3LppMZpJSM0hOyWLuwksi4/Q31lez6tM30TQTQW8ATdMwm63ExScS50wkPbMgktjc622ntqackB5C10Po/iChUDB8hanfR551NBnZ4atR/X4v+/btxuFw4XS6cQUTe+2Y8Xja2LV+Pa0tDQT8PmrLEwn4/TQ21LN5wzoKi+cxdsIcAPZV7OLh31xveL3TFU9qZjaejnYuuuZmSuLDt7VX7dvFg3d+K7KcyWzB6YzH4YxD13XmL/w6s04KJ7ndV1nKb+++vPP9WwgEjMM62BzR26KbW+qord1Lbe3eHt/PzXf/gYkzFwCwe/t6/vOPX/f62V/5zV8xYcp8AGr27aG1JXybq9lsYfj4aaRn5/f6WiGOZ2vWrOHpp5/mpptuoqioaKCLI8SXWjAYoK2lkabGGtpam/B429m+20ZqeiaTZp4EhC8Q+Nfff4nJZMZqs7NlQxob165i26b1AFx89Y8H8B0IIQar5uZmiouLWbhwIX/6058G/XBiYvDQdZ1AwIfP7yUYCpAQM5TWvspdeDra0HU9fDFkU3hIr0DAj66HGJ4aza+xtXQ1za316Og0tdRS31ZDXUMltXXl2G0u7vjFvyLLbl7/KWW7N/VYHpcr+ttLTEln/IyTWPvZEvKLRjFk2IT+fvtCHHFf/suGxXEnGAzyhz/8AQgnVuvpCnAhjgW6ruP1tNPW0oTP5yE+IZl4dxIQPvnQ3tqE3hoi4PehmUxYrXY62towm62YO084AJTt2sZrzz3Oyo/eobmxexKvS6/8GVOmn9a5Xj/btq7stUyxJ/JDoRA+n3F8xlAoSH1NJfU1lUw9MTo8U3Xlbl5+5sFe13vmOTcwf+EVAOzdu40/LLq512XP/drNLDz3GgBqasp58EFjB4bd4cJsseD3+VhwyhWcsvDK8LLVZSx64MZe1zvvlIRIx4jN7iA9Kx+T2Ux7azMtTfV0tLdSvmtbeF1VFZQM7ayToB+T2UIoGB43NxQM0NbaSFtrIwCNDdGrzz2e8Bim4QDUT7w7ibGT5zF59qmMHD8Dq81O2/bwZzR61AncdOPD+B3h9TU11FJfW0lTczUNNZWGMTrdiSlMmDaf5oZaWprr6WhvwWZ3Yre7sNmdOJzRK3Qys4o484JvUTx8ImNOnIndYRyjVojB5OGHH+aJJ56grKyMZ599dqCLI8QRV1u7l5bWerwVfoIBP0Ul44ij52Ecu+KLUDCIZjJF7g5ta2vCbLJE2paW5np+/+traGmuj1woEWvanFMiHSNms4WNaz4mEDCO95yQmMxl37yH0eNn9e8bFkKIA/DUU09RV1fH6tWrcbt7H9pWfMmFQmghHd10cKPTdHUetDd5Cek6iUnRfBClezaArqO57ZhMZkyaCU3T0Fr92KwOUlOi+Q6+WL+E9vZmOjyteMw+PJ5wp4OmaSSnZDL/tCsjy/75we/R2tKA1ebAqlmxWh1YLBY0zURyZjbnXPSdyLLPPfFLGuqq0PUQJosJvTOhiclkxhmK42sX/DCy7JPP3UPVvl14vR14fe34vB2EOtvuxIQ0/u/eV6Pr/ccvKd2xrsc6cTrd/Pzmf0emlyz/D1tLe7643WQy4/N5sHWOrDBn/sW01tViMlkiycxtia7IBYaxvnvPn2jd29zTaoX4UjjsjpGmpiaamppIT0/H6XTywgsvsHTpUiZMmMA3vvGN/iijGGRef/11SktLccUn0mgaxaPPhHfe+0uCbpindKZ857JJhun7f/ym8QXjMiMPvZ8pV38riQF1JaFjbNIqXUkMpaUqJzSVBEX6mn3G+TGJlPT1xsRiulIOTUnqjZKEKVTejN3fjtfq6pZIzKQmSFezMhqShyrzlCTW1mQlqfc65T3Fbmu7ctJfTYCqJpJSkixRF5PUTE2+XqBcNaQUO25UNKGX+v3wtUUP/oMBP62WZuprKtA0jbTMPKgK7ypbWxpY+8UStm9ZyZ7SjeE7G2JOHCw891ouuO42ACp2buUXt15Ib0458xpOP+d6dn9YSunurbz3WjhocbkSKCoaG77iwxS+C8QW78DqtuNv6CCvYBSXff3/sNoc2OKcWKx2rFY76UPTsVisJKVlEuxMwj1k6Hh+et9LWG12isbkYrXZaG9tobqyjO0bt1FYMjaSsC0+MZnpc85CD+mY7WZ0Xcfv99LW3EhzYz15Y4eTMiqcQCwhYxhpz2dhNpvRTCZMJhOaZsJmt2O32UnKyMCWEA6qbBlOEpPT8bS34vWGP7/YRLDWZAvpnUnPzNk6WbnFxMcnYbU7SEqJx2yx4nS6GDJ8NCMnzqB4eDhwLZmUQ1ZW9KoWn89DSr5GbXUlTlccWbkFBMzhoC19Zj6vXHcewUAAr6eDttYWdm4tp72tBc1kIi0jj/jOBOpjs0/k0emr8Xrb8Hk9pGRkYzZbDN8Zb1r4RFNiWhyJhbkkFSQZPluL2fj90rLcTM5awOQFC7rNa60zJupLy4ona8gMppwUHq6rpqKZjvZofdnio7+ZIUqy1K1KIvvkAmNi1mnDjUntlm+J7mMKlATDu5Rkcx4l6V9LzH7QbFWGZclPMkzHK4mPHUqyZ2fMezr7pGLDvNc/Lo087mg3lkkc3x595nNaWxp48ql/ApAz8rRIPNCNkiBcjxkKIGWCMalim/Ld9n6w2zBNijLUXmwyQKW9U5OF6qXGcqgJU2MTvep7jAeQupJ0WE2Krq+PGT7Mr8Qlapyyw7gvUIdOik22qiZX75aoXGlL9Zjkolq+0u4q17FoSuJ7NempZol5gZKwkt1Nxmn1GhmlvgyJbQuN+75usYRSX7HJaUNKsmxznLHMQWUfbktUvi8xs4MdxkTuJiVBavwkY5LKUGfb/dzjN1O6fb1hXl7RCMZMmc34aSdRMnIivpbw9/In15+G16N8hp2mzD6Nm/7vYTxNHTjSXQSD4atHTSYziSnpuBNTcDjjsNmcZOWMoGp3IwAJ+Ylccevd+Dzt+Lwe2hpbMJnMnHDSuaRlG5NlepRkswX5xrrfW20sW2yST/XrYVET+yqGxsRxu3YY48lq5XusKUnQG5Sknr626Oc8dpSxbdxabvzu1VQakxlvVfYDiTHx+HCl/dumrGtHpfF3nxOT2Lc4y/h7SlFidbW+slKMwwmt3RmtE4uSTNXhMH73xg0x5ohJSzS+p082RBO3rtioxPVKDF2oJCfOiqmfiSXGRLWqpjbj57Jss3GYxBNGRY/PYt9/c7OyvxDHPV3XWbRoEQDjTjiPRc9+AXQ/P2AfafzOGZKtg6GtsCu/A6/arqjH7WobH9OWLrrpVfpUnNRrOQA0d0xbox4ftynxgZoEPuY3aRpqfE/6XuP+q1uSczV+iJ1W9n3dyqwmr49pH81BP+nlW8ms20lSazWJz+zj81GnsydnPADZ5Zs478P70dAxhYKY9BCmUABTKIhZD/Le9Ct4Lq2YhpZqGp+upam1jvSkHE6e+FW0kWnous59915KIOAnGAwQDPrx+TwEOy+CGzFyOtff+AAAjiFJPP6LH+Hp6LmtHDNxKg/94xUA1q+u4OXfLYrcua8qGTWea+/4ERDef1VX76a2qrzHZXOLhnFl0f9FpnfvWsve0u09LpuSloMWcyzW0LiP6po9PS4bQseZHt3/5xTm0d7RiEnT0DSt87hcw2Kx4E5IxDYumgC8cNNEzIkOdF0nKTmDxIQMUtNySU3PJTunhMTsaALw2Wd+Fb+yjzYrCed9MYnvu479u7jzlHhgt7FOkyYbY6D22ujxbkj57TmUWKtC+W7GNkuXnzbCMG/VNuM5NefUXMN0XbMxVv9kZfRcoEU53/S6GjMr1ON8S0wssrPKWOYZJxYapts8xpjRFnN8nRJvjEXz0o3trnodeeGCoYbpJWsrIo9Hjc00zCvJMX5OQeW8YGVdu2G6JWY/qaaAb1X2oVnKPjYvzXi+IZZZib+Lc5Xvj1KOkWPC76OttX+GVjzsjpEbbriB559/nuXLl1NRUcFFF10UOYFUW1vLD3/4w/2sQQijrqBn5rxzIz3WYv9svnbGb3qb9LpdpDaWk9y4F1vAS3naCJ496c6BLt5B81aXMmvJ8wyv202Hw80XeeO5edM7+AM+XI4E3O5k4l1JxDkTsFnt5LVOYOToEwBoaqzhlRceormpDo+njYDfRyAUHuYpGPAzc/5XuOTacFDj83r4yXdOx253Egz6aayvMVxNOfXEM/jaZeGgpqG+ihef+223sprNFuwOFw5HdGdvsYYbMIvFhsViRddD+P0+QqFg53ajO/eC/FGcNO9rjBg5g+Li8ZGhpqzp3RsPtzuZyVPDw1/Fdg5lDE3vtqzN7iAtI9z4xyeEGxe7w0lyWgZJycYGM7dgGFfe9AsA4pTtqo3eiDETeOG96AlKtTHeHHOCvqBkNPf++R0g3OnU3tZCe1szoVAIq9VGekE0KEpJz+bHv4x2dgwfbzyh6fV3v8o18l5tDvKK8sgrKok8pwY6ZosFV7wbV7wbj6fnuzA0TcNmd+CIk/GLhRhon7z/MgG/j/whoygaOn6giyPEfrW2NFBWuhmXK4H0lHzsjnBb4vV20FhbRV1NJa3N9fi8HQR1Px1tLWzf9Dm33fNXNFO47U/NyKOttZn4xESCwSBlOzZRXrqF8tIt7Ny8htt/+bfI9nq6+6NL2Y7oEBiapnHbz/+OM85NSmYmppg8kX6l0wBgzukXRB571AuChBDiKHv//ffZtGkT8fHxTJ999kAXR/QgoXkfk9e9Rva+rWTU7MASMp7orcgYHukYMYUCxHsae13X0tXP85dAuO2ZAfwZeD0pnylmK64dPlytDbjrq/hYD/FfIPaSl3DngPE0Z2Z2EW1tTYRCIfRQiFAoiK7rmEwQ7zaegB059gR8Pg9Ol5vE9FQccfGYNI2QrpOdYzyZf9X3fo7f58Xv80LQh9fTTiAQQA8GsccZO7svuf42PO1taJqJ5thOgFAQM8YT318592b8AR8Ouys8ukCSG7vN2WOu0B//+jHDdILSYbXm8+hJ8XMu/g6WmAtgOpSTzUIMVofdMbJq1SqSkpKYMmUKjzzyCJqmsXDhQt566y3+8Y9/SMeIOCjBYBCXy4XJZGL2KZK06UClNezh3Pd+Q0pTZbd5za7UyGNND7Fw1eOsibuA6syh3ZY9Vnyx/n3Of+E+TgpFrxYoKV3Ba8DfAZoqQbmAbSYtkY4Rk8nM2i+W9Lr+2DsWvJ52WprqiO3Dt1htJKdmRe8Y6ZSbP5xRY2dRUDiakmGTSErJIiEtFbvD1e0ulKy8Yv70ynpalav4Q9bwcFcWSzRoMZlMnH3GDd2v4jnOmC3W8HBjCdGrB1zxvV85IIQYvPw+Lx++He4onbfwazKspjjmdHS0sq90b7hzY8vnbFr7CXt2bkDvvLT9m7c8yKixMwF49/V/sPj1v/W6rs8/e5fJM8NDZl57228AsHfeRdPSWM+aT5ewftWHeNqNVyv+/JE30UM6mklHD4UwmS3hq0Qzkw2dHwBZuUMAuj0vhBDHuvvvvx+AK6+8Eqcrfj9LiyPB1dHEKcv/QlbdTjy2OLyOOHblT2HFxHCeRqvfw5S1/40s325PoDJ9KA2JuTS6MyjPHB2Zty+lmL+f8Wt0zURIM0O8A58e4q/v/I7S+lJaAx4SXMnkppVwd+NeJjZXMrGxDJZF29FxwA3Aw5f8hL15w7HZnDgccdgS3JhMxmPqH/ziKaD7nXfq1fMAX//mPZHH7hxj50aScnfrmCknRutHuZvCq9z1MGPe6dH3X2o8P+BX7goqLBxjLJRLMiAIcSQd9i+soqKC4cOHA7Bu3TomTZrEG2+8wahRo9izp+fbv4Tojdls5sUXX2Tr1q28vbLvW9VEJ13n9KWPktJUSXNcGmtGn0Z9cj41pnRanSlYgtErASfuWMz40iWM3b2U1VPOY8WMi9A1DbPfhykYoDkxAzRTZL3dbgU4gry+DnbuXsfqte/y+br3CABfjZ1vc5E751puSsql3dNMi6+ZlrYG2j0t+AM+hhRHryaOi0/ivK/eQmJiOk5nPBarDXduClZr+O4NV3w0yHHFubnjF8/i9bajmcykpmWTkJJmCKi6hoowmcxce+PvDFGVxWm8wqNLbyfxTCYzNpuclBBCiL589O5/aGyoJjk1i8knLBzo4gjRzdZtK3nqmbu7PZ+emY/P5yUpOXrCJSUtG1d8IimpWSSmZGC3O3G4XFjtDgqLRzN+6rxet+NOSmHGvLOZMa/7VdJd43yblOEbpPNDCHG8+OSTT3j99dcxm83ceuutvLVChlY92rJqtnPu4t+Q0F4HQEJbeAizhsTo8IoNSTmsHnc2VeklVGaNpMGaFj2XoBwW+60OapKLItOmeBuhUJDUISewub2eC2ddx/jimZhNFrZ6WnBueov8yo147PG052TSHp+Mo6OFuOY6/JNOIaNzOwteegCLHmDn6FnUZxTgdcWjuTPw251H9byGEOLL5bA7Rmw2G42NjXi9XrZt28ZXvvKVyPNqT60QB2r48OG8vbKXscQHkdzqTSQ3V7I7ezzN9hTDPFMoQMhkAU3jjbk3M/vzZ1k89yY6HOGT/qHOoQ/8Vgd0jlu9NW8GuXVbGVX2KVNXvsTUlS8Z1vn7771CqHNc4jPfvp8hu1bS7kqkw5VIa1wK1RklVPoms69gJL6YYaO0UBBdMx1SwLF244d8vPxVSss2EAyGr5bQNI2aOZfy4IizcQa82L1t1KUWkKxpRO416CPHiMlkYs484x1HcXnR+bGdFmaLldzC4YZlZd8lhBADJxgMsuTNZwA47SvXYrXJePJi4AWDAaqr95CRUQCEOyUSk8OdHDn5Qxk14URGjZ9JUkp4PO/YHCMzZp/LiQsvMKzP5jJeWNGVY0QIIUTUI488AsDVV1/NsGHDeGuFnCM4mkZvW8LCj/6EJeinLiGH96aF8wg7NA8tcdGcLiGzlfdnXxd9oZJna39MJjMLp1zCnHFn47RFzzN47fEsn3gByyeG21BNySPTlSfFFPAz6vN3sHvbGfvZ64ZFgmYL5WOm8d87FkWem/DG02StDHeYBNwJdOQW4G5y0JqSedCJ34UQX26arqs3lB2cWbNm8dlnn+F2u2lpaeHhhx/m29/+NqmpqWRlZbFhw4b+Kuug0tzcTGJiIk1NTSQkJOz/BceBN954g3HjxpGXl9fj/AceW2aYTh4aHSKq/vVthnl6rXG8RC1HueU2zZg/ILQqOgSVmpi8209ETXJeE92WKV1Zr5KU0uQ2HgTHJjhzt9Uyfuf7fDL2QnSTCc2sMW/Vk0zb+BoAezNGsGXILAJmG6N3LKXVlcxrJ98eW1DDuh0hD8W7V7CteCYBuzFXS2HlGuYveYyUxvCYk0HNTNBs5eGr/hnu3AjonPv+bxm++zN6oqPxh2ufxONMAKeVC//1Y7Irt9CYnENDRgH1aXnsGjGDyvzR0Oihpa2RxpYamrQWmpprGD92Hm53CtjNfPThC7z84kMAJKdmM3LMDKbNPIshQ8djUpI6xyaQ9ZUbE1hGPhddx9XWQHLHPlL27SatchepFTt5+cK7CHTmrMmq3Y67YR97hk7B63KjJfb9mZstxuAofVj0u6feNhtSXtvYZByb26wkgfXFJJpyKIm1PMq43xZlW/6O6PyuRKxd7EqSMjWJWUhN3huTaMuhJBZVy6yKV8YyDcac3Jk2Qkn4rSTWNCsJUudPjCZEe/eLvYZ5Z08vMK5ri3FdrUrSsth+upR442dcUW/cR/iV5INji4wdkbHJyVduNSZxsyt3AO2qMl7JFps8TU2sVqjkcylVXpus3LLtiynnUOX27kBQSZa2n/cYew5ucsz+FKCs2liOcmUM2tExCec3lTUa5qlJX9XP2K18X2LrJF35LWYkRfeprS3NTB9VMKjaRRic8UBLSwvnXvwt1q9eyo9//W9uu3qmYf7f3jW2+d0Sqn8RTRys1xnb4W6UfnC92bgvNcUkQVfbBk1NVK4kJlWFYvbpply3cbtKObUsZZhBT8y6lbsDusU8SoyjJm416CvZPEC7cZ+lt/tIayzD5WnE1t5OY1wGNUnhBJKmTGW7PmWfo6zblBrT1ijtX9d71EJBzEE/gYRofSXW7aUpxZgEPDZpqa6+B7VNTza+52BMPipHlvFzCcQkkvzvfxaxdPFzXHLtT5gxJ3z3hprkO+jr/TtgVmMa5SKMrMIkw3RDTPwQUJJS+pUEly4loWVsfGC2Gb+nNuV7qyb59ijvIbZNV94uTiUuUXN7Dcs17rPKa6N3g/uUOCQ7xRh7FCmfRWPM56q2b/HKe1KTiavX7bS0R9e1bludYV6cEqurcZ66rfKY358aD6ltWqVyXBDbXs4clWGYt6PCGOeald99cbZxXPw2T/Q70dJh/A0kxhnLEVTiBbXc2TH1t3y7MeZJcRt/P+prk+Ki9betwph8Xu38U78D1U3G+rHG/EbmjIvmnWtubiYrNWVQtYswOOMBgIaGBv72t79xxhlnMGrUKMM89fyAvrXeON1sPA7TYjuklZg81GLcf+mtxv2sOU9pt2OOvXR136/sLE1Ku6OrxywxbaCu7N815bhMb+jofX6Scvy33nispCn7M00dxSB2/9ZZxlHblnDm+w+xvWg6byy4FZ/N1X1ZAKXcekz8oKnJ5zvnVdeV8+r7j/G1ed8l3hmzT4vdd6oXQ3ZriMLl0EJB8nauoXjzMgq3riCupQF7ewvmzqG5SyecyAvfjOYK/c7tp2D3dM+xETRb2DVqBq9cey/mzuOw7O1rqc0bijkrtdvyXdR22a4kI4/N7dGuJPHOV47D0pTjPzXxdGtMTKAr+/OA0iFlcRn30bHxRJzy3fIp32OX0/gZq8d4GTHnGyqV72VynHJeQzkX0azENbHralbqcriayL3WWH+xx8D1yjkRq8X4fVFzlqoxkC+mnDmpxri2RSlXqtIeqsOnxcYqicrFMKnKuRo16XliTP1t2N1omJeufD8yk43l3LrX2PaePTU/8viFT0sN81qUz2FCifEcSIdybJMQ8z5ylfpJVt7jtipjHBOIOY+aoHw/1O9LQ5vxc1TjFkdnbNvS3MzQvIzDbhcP+46Rn/70p3z1q1+lubmZkpISrrjiCpYtW0ZDQ0Pk7hEh9qetrY1LL72U1tZWli9fzuTJkwe6SEeNy9PEieueZ9zO9zGHgtQn5LCpaDYAe9NHkpu2heza7eRWbyG3ekvkdX6LHavfE74jpAenffAIw0o/o3T7B7x05k8JxSTq2l00mb9d9SfMQT9BswW9rfsVHW/NuomPJl2Gy9yOq72JxJZ9ZFVtJWtf+ISUxxne8ei6jkczYfN7yKjeSUb1TgBmLvknG+OTeVjX+HNbvSGBt9ls5YTp4ZMKY8eG3+uIkdPJLCo55HHkk2v2MPetv5C36wscnu7DsKXU7qE6J3xnyIRlrzJ25RuETCa2j57NqjOvoLJ47CFtVwghRP9yu91ccMX3Of/y2+QOvmNITtVm5n3yBDm10Y6pFcPPZEnSFeEJPURKYwX1yeELXCx+D0NLP8Ma8LI7byKNWtIBbSe1ppThWz4if/casiq28uncy1mx4OtAuK3/xoNXU5dewLbRc9g46VQa0vL3s8bDt3Htx7z7+j8AsMkdTEIIcdQkJydz2223DXQxBgVXWwOzPnuaDkcCH0++DIBNw06i3ZHI7sKJ0SG3D1Ig4CP0/C/JrSvjqdxRBOwJaJrGx6v/i8/v4VXLE1x2yvcOq+y6yUzZ0MmUjZwa86SOy23G2dqIKWg837Fp6mk4ND9aKISjrYmE6r249+3FEvRjCkZPBlu8HZz30G1oeogt87/C2rOvoDXDeHGGEOLL7bA7Rs4880zKy8vZs2cPY8aMwW63M2bMGLZt20Zqau89qkLEeu6552hqamLo0KFMnDhxoItzVJ370YPk12wCYHfmWBrio1dEbS+YzvaC6cS11zN87wqGl36KNeBly5BZbCqe02unSHxbHcNKw3d7FJV/wbCdn7Jl2BzjQppG0NJzfgwArz0Orz2Ohs4eaV3XaWipprJmJw37tlH61u+oaaygtrGCu/0dfHXCmXylZBrJ7VXEbVvJ+B2rGN3awLeBP6ORGJ9CQnI6ie40LObolQtJyZnMntN5a+xhjP153tN3klqzO1xWTaMpNZv6jELqs4uoySmhJTF6JV5jag61GUWkVZcyfP1Sijcv40+/fR2fUxKBCyHEsUI6RY4dFr+Hi177Pyyh8ImFmqQCfGYHLc5wrD9694cUr1nPkN2rWHTd06BpzP3sSSZtfAOAVmcyf/zKH7tfuq/raHoIvXMbeXvW85X/3IU5FD2BkVZdGnmcUbmdoNlCas0eUj94mikfP8/b53+fLaec2+/vuamhhl2b1rJz+xo+fOffAMw59WImzTi137clhBBikNFDaHp0xINjIQfGGW8/QFHZFwDkl61jV/5kyrNHU5E58oA7RYKhIOU122msr2Z8YfiO35TmWq7f8gkADbVl3BqzfEnBBM6eeVU/vosYmkbA4aTF0XlnRMxdje9e+gMcyp2K3opG4ptq0fTo1emJNRV0uJNI3lfG+P89zch3X2LL/K+w48TTqBo+ASRWFeJL75A6Rh5++GGys7O56KLwGP5paWmkpUXH+nO73bjd4VsNn3/+eSorK/nud7/bD8UVx6snn3wSgOuuu27QnAixBLxM2vgG+TWbCGkm/n3yTyjL6vmuhTZXCp+PPpPPR595QOtucyaxo2AaoBPX3kBF1sj9vkbXdRrbaqluLGdfXRk1zZUUZ45i8sRTANhbs4MHn+v5Sg6fZqLancbOkhmQaMcz7Wyu/sO3+K7NCVmjuWf213Ha47DF61z50HWUxiexL+CjLr+E2uxiQ76SQ/X+WTfREZeEFgpSm1lMMF25lS7mltXP5l/BZ/Ov4IznfsnozxfTlJaNz+5ECCHEwHrppZdISUkhFIofNPHAl0HAYmdn4TSG7/oUAHPQT3nmROoScjhh00vMWR/uOFg3+pTIyZ09ueMjHSObhs3tdtJn3kdPMGbTuyyddRXbxs/jG3++DquvA3MowJ7C8WweczJ7C8bSkBIdYnHL+PmUDpvOkC3LGL/iNfJL13LW878is3E3H371poMaFzwYDFC6Yx0bV37Izh1rmDLtNE7+avjOlA1ffMQff32zYfnR40/k/MvlqmUhhDga/ve//3Hfffdx0003cemllw50cfZLC4VIaK/BFvBgDfmoSB0a6UyYsuYViso+x9nRjMPbit3bisMXHWbnkW8+i88ePh6esu6/FO1dQ3NcKg2JOTTkDqE+NY+mxKwjnvti08iTIh0jufs2k7tvMwAh4Nrpl7M3GOC06ZeSXrsTzWbmg5qdbK3Zhc/vwetpp93Twu59W/H6O3Da4hibPx2TyUxLYiYf5YxgS1wSlU43c20JeH3t5GQUM3PimZja+x6K9GjRTWZakjMNz9XllfCPX/ybwo3Lmfm/v5K1dS3jXn+Gca8/Q2tqJu/eci+VY6b2skYhxJfBIXWM3HrrrcycOTPSMdKXBx54gOXLl0vHiOhVaWkpS5cuRdM0Lr/88oEuTo9SG8qw+dqpTSnAb+r5Lo2DkdhSxWVv/h9xnvD4fxuLZlOWOeaw19slgM7TJ30HT0cL7f52Opoq8FRvo93bSlpiNkOLJwLQ0tbAX166k7b2Jtq8LQSCyjjkus5kwh0jmSn5WMw20pNyyEkrIiu1kPSkXNKzCkhNzMZiid4F4rC7+Mb3nqQVoNFDV5dD8eZPSWyoYsLy1wybaUzJprJoDBtOPp/yzttfrZ524hoa0UIhrD4PFm8HtoAXq7cDs8/LnoQSWpKigcvuYdMw+32MX/Ffhq9fSryngbjmOnSTCa8jHh82qnJHsHZqeAiv5Jo9jP58MQDvX3Jb5GoPs99HSuVO0su3YwoGaEtIxZOcTltiKn67E79dGUNdCCFEvwiFQtxyyy2UlZVx3a2/Y8K0+QNdpMOihYLEtTfQ5kr+8ify1DReW3A7M5c9Q8G+9eTWbGXGlleZseXVyCIrJp3P0llXRqa3DzmBB677D05PC+2upG75SzQ9hNPTQmp9GWz9GFd7OCbaWTKNly76P5o6WqmpK2df6Rr2NZRRXbOHltYGXE43377+QbaMO4lZ7/6dEz54hqmLn8a9bw+PnHoZW9YuY9vWlTQ0VDF23Fy+ev6tAHg87bz++p/x6R7aWpso3bGOjvaWSHmGDY+e2MgrHIGmaWTlFJM/ZDTDR01j8oyFWK3KnbZdV/t2dvqYfd7OYUqtBC1WuZJUCCEO0ZNPPslHH33ElClTjumOEYe3lbFb3mHS9rdJbK+NPP/gBX+PjO6QVlca6XDoiRYz6HRm7Q6GlHdPMN/mSmLd+NNYMewsvPZDu6gwGApS11JFa0cTXn8HPnz4gz6mDQ/HWxtHLeD++nL82z9hUlsdswJeZgFW4O/Ln0ZDY8GUC5n92dMU71nFFUAlsBXYBmwGngUa7fGUZI7B42/HZXejm8189s1HAUgHzm1Xh/E+NjpGemUysXvsCVTPnEv+Fx9T8vGbDFn+PnH11TRnRYfzTN67C58rnrbk9D5WJoQ41hzyUFplZWXcc889+12uvLz8UDchBoFFz37Omy89DsDQ/PH866G1wFoAUk8fZlhWTUxaX1sWM1NJkK4IbjYmVqRjn2EyNvl2YGeDYV5KexXXfPL/wptBoy4+m32JRZSnjGB75iQ68mLGmFSSCpqHJhu325m8qDmxgLa4ZPw2B8umXcLGkSdjMpkhJrm4FgwwZfUr5Jev5YM536C+cIRxXZ2JyDyeNry+DhIt4aRUjc01/OLB3juYpk89k6GnLQDA5nFSUbsrMs9kNpOeWUBGZiEZmYUMGToBbXT4bjAb8KuH3+1+RYeSqBYlgZUlJvHm9uLTeSk9lfzNK0mt2El6xU7iG6pJqq8kqb6SyhNPorbzltbhSxYz/5Gf9vo+3vnB79g5KnyHjbW9lUTNR0dqNvPvWtTraxIcfvbM+BZBX5DgsGSCFgu7p8+nfsEpxHcuM2Lxi8x75P96Xcf73/k52/O+Gp7QdXxm0GM6hdQkZW6lPpKUpFQl46L1s2lPo2GepiTWalWSqeXmRxORdXiN89KTjHfAqIm51WHLCjPiI4/LlYRmu6paDNM2JYGsmoi0MSbR704l8aaaiHuokpi1LiZJ4sxRxit2dirlGDfEOFxjnFKOvXW9J3lNUpKxN7cbv8fFStLXzeWNkcfTRxoTpKqJ6KYMMwbDtTHvKU1JxPfFjlrD9NwJ2YZpp5IUMTYR28Y9xn2Vmoy2IOYzBWOyNDC+50blhGW8kqjvhHTjex6eHf3c1ET1n283vqeSHGPCvARl3Z9u3Nfrsiu2RJO+trcZP39x/FmyZAllZWUkJSXxyL3fxuEI/17u//GbxgWV/ape2micHwj1/BjQ1ekGY2JW9a6GUMw+S02WalKSNGMxMaR8NeO2vENqUwVJLZWYQ0E8VhdlGaPZUziRrUUn0BaXgl7XwWkfLmLErk9ocyXR4kql1ZXC3syRrBs2H92jXIQRu20lYbpWlGRcVk2IalHeY2wiU3XojhHKMLgxJy90YPX8n7Klvpq89cvJ2biS3I0riW+o5qPLvsfK6ecZXur3eLBa7bQT3pdvXPch9XWV6HoIk8lMJo1MAZrqNvH7vAwabl1Ext7trJt1Lg/+/luU79lCT1xxiaBp6GYLHy+8jsdXv8VDLXXcvfZDnl37YbgKAD8QNAWxdiajD3bofPLJS4Z1xbmTGDVhJqMnzGLI8PGR5xOT0/ndEx+RWmDc93lbvaRt30D+6o/I2LqO9K3r+M/Pn6QlPRwLTl72CjP/+pvI8iGTiaDNjic+kWByCmu+/3Pqx08BwLxsGUWfvEPZ1DlUTZhBk5JoMjkmMadNSXCpJkhvUpIGu2Jeq7ZRbiVZdqrye6ppMn5fYpN+q8lSuyVqV35fpfuM++3kmLZXV77i6rrX7jQmUc6LSTCfpCTpHJ6XZJhuV2KifQ3G9jE2QepkJem5Gqc0KHWrJkgdXRjddqOS9FWj91gLwBSzrTplO2rc1uIx1nV5TatxfkybPqrQePzhVz6XpjYlSbJyGLWtPBq7BZVjm9Z242c6VKn7Vdui7fZ4JU7bEhNLARRmGutj2tA0w/SemDguNm49nKF3xbFv0bOf09HewosvvQyAVjeE+3/wemR+7DkC9fyAXmv8ratJ0UM10fma1Rhja93aTuO+M7TPeHyU1riHyTsXM7rsI6zB8O8vYLLitbnwm+2Y/T78pvA+b33aTMpcQ2mzJ+KxxeHRXHisLkKaGV3T8NWFQAv/pldPPo89hRNJbKkmuXEvKfV7SW7aS1x7I5NWvcryGRej2V3U1+3hgsV/INHTRLynlUp3KtszctialMmmxFTGnXwx5gnh9vedd59i3cYP2bdvN4GAcuwOzLj6ciwWK0FvgKYVbaxsqmAp8BBgtTkozsxlSlExmTmFJJ1TgrY9i47mFJyN9WQD2cC8znXd44zj2Udepc0SPZZSE5Nj3CUZYxx6iK9i2OKN81zKftWjJAH3x7QtFuU4XV2Xc4zx2FNNkL1vXyvlJ5xM+Qkn85klRNrmtQSKC7EDrmQn83//e3JWfUxj4VCqppxI1eSZNOcPwRefQLvFTcgW3t7kKbmG9arHcGo7lK0kSW+yR9+HxWxcdpxyXJasHPNu2dsYeaweH3vV34vSOKjLF8UcL5fkGo/h1NhCbePUdil2+UYlHlKT0VcpyeiHFUTbvC92GM/7zRtvPLb+ZKPxPGBSnDEm8vmj+4WiTOP5ALVcJqUtUuOD2ON+9f36lETtahJ0c8yFNWOVNl09xldjrWHK+ZVNMcnYc1KM8aQz2/ibaO2W+D7JMO2O+Q2tLzWeiximfAeSle9AbDzV2tF3XarfH/Vcl7PrNxAwfn6H6pA7Rvbu3cvdd9+93+V0XZfgRfRK13WWf/Q/ACaPHvgrQ5Na91Gy+1PsgQ4+KvkKAPVx2VS5C3F76onzt5DWWkFaawVj9n7Caev+xupRZ/DejGuBcG6P4aWfoptMtLpS8HSk0eFMwOL3MmrzEj6cfkU4r4dm4pWzf0JrXKohKXqX+JZaznrjt+Tt3QBAduUWHjjp63zgaaOhqRqvtw2Pv532jhaqqnYxZdJCLj7zVgAcMVeQ2GwOnE43Tkc8Tmc8Dkc8Odkl0fl2J9d/+wESMzOIi08kKTkds8WKr9XYcHUxmy3oh3FFR8hipXTcLErHzQqvz2bG3tZMRukmsravo2LMtMiyQasNv92JbjIRsDnw250EHM7wvzY73vjojnf2Y7+gcMUHLLv9F2w/40L8rniaXMm0J6eDrmNrb8Hpbzdc0aFrGjtmn8FnV92GrbUJX+f66oaMwOtOpKFkJAGnC0d9LY6afTib6jEHA4bPq+SD/zHh5b+z5Ef301QQrVchhBAHr2tYzUsuuSTSKXLM0nUKK9YyZucSVo84g6r08Ikau6+d4XuWRxdDw+FvZ9jelQzbu5KGhCza4sIHrc3x6dgCHmzNVSQ3VwEweueHTNnwP5aefC07imccE2OOq9pSMtgy92w2nXgWHe0tbFq5hH11ldQ9cx+NDftobKimqakGp9PNT+/8T+R1S957htJd6yPTKcCVgLdsK0uqyzn1jGvYO2wSAEnJGVSUbyclNZuM7CIyMgvJzCwiMTkDlyvmZIvfx+ohExi77TNKO9pwxSUyYvQ0vh8KcsquTfx11tmRZe0OFwvP+QZJ2ek4XXHkFY+geMR4PE3RmEcP6oblY2kBP9P/8QATX3zC8HzGjg2RjhFzwHhAaQqFMHk6sHo6oLbKcAY6fes6xj//OKNfeYqX/vAyrUUSRwghBMDnn71LwO8jK3cIuZlDB7o4QHgISQ2dgDl8cjuzaTcTSt8DoDqpkFUjzmBzwSwCFhsEjCeU96SPNq7Mr16wFj0JutpkZoevnQZfO43BIA0mM60WB6cGA3xz+mWR0Qte//hpfrRnDV0tYmZzLRP3hi8o8AHvA+tPuBCA+oYq9u7dBoTPDyQmZ2C3u3C44rA7nPi8nsjoD3NOuYQpJ5xOZnEhSSnpuOIT0TQNZ0xnxUf/9yDBoI6ttRn33t0klJfi2r6NolUfUDViIr6kNOjlfMLxImizs2989NyFye/D7POiaxpJu7eTtHs7I1/8R2R+3dDR/PdPL0emk997k5aJUwmkGDuEhRBH3yF1jMydO1c6O0S/aKyvpqWpHqvNwbjhs4769k2hADmNOygpXU9J5WrSmvcC4DPZWFZ0ZiTweXLGz9A1E3HeJjI9ZWQ37qS4eg05jTtpSIj2Qie2VjN/xd973V4AKx91DjPRnJDZ63IL3v9TpFPEY4vD6W3ljLf+RG/3T9TW7Y08ttuc3P39/+BIScLcdRK/lztqNE1jxOgTsCm98EeTNy6BsjEzKBszA1tMz/COE09n69RTDMtqMT3nXVd8WDraSajYg62thbn33ML20y9k7dW30Og37t7UK0Qwmfj4hp8w/4EfEV9TwX9/9Xd88YnUlozm36+sMJyMam/wgK5jCgbQNRManXf0PPMoiZVlnHHHVbzw+Jv444y990IIIQ5MXV0d//lP+CT6lVdeuZ+lB1ZyaxUL1j5JcXX4Dtea5KJIx0hZ1hjenfEN6hNzqLdn0upMJqNhN4X71lFQt4m9WdGTI5+POoMtQ2bh6mgivq2OpJYqJm16k5TmCk576yH+ct0T+G3hqwSdHc10ONzHVEdJMODnd3deSU3Vnh7n+31eQqFQJFfMsOFTSUrKwGQyEwoFcTfXwI51nAmsdLio+PBl1s0+DzSNS6/5GXaHKxLHBJWrGGkM39Vgtdq4/JKfEnKaaGysISkpA2uig3O+fw7uhmq+/fidLL7+TvaOnIKmaZx1wY0k5EUvrHBVV+LTnYTUIbIUWsDPvF/cSuGHbwNQOmM+FWOnUVEwitqiaB63NV/9BuvPvQJTIABeL+aAH7PPg6OliUyzl5bi6JXOdSWjqCseSerOzYz/9+N88sN7D6zihRDiOKbrOh+/9yIA02afNeDnnRLaaphQ+i7jdn/AshHnsXro6QDszJzI+vw5rCuaR3numH5pn30BLw+/+AOCIXWoKXgemDBiPl2XjbjjUviRKxGPxUqLxcpoPcSkgI+J3nYKfV6cbc2R186achpjh08jc/Q4UlJzIu2yNa771dYFRaMAcKXv/7jWF59A3Yhx1I0YR8cUD6svuB4t5qp5LRRE59iJW46kkNXGWw89i625kawvlpG9+lMy13yGs74WW2szvviYq/h1naE/vgWA+gWnYxk3g+qpJ+JNlSG4hBgIh9QxsmTJkn4uhhisklMzufuh19i59Qsc+lHM3aDrLNz4D0ZWfYYjEL3dMqiZKUsazrb0SYaxPvXOqzja7InsSkhhV8YEPhl+PvGeBoLp0QPsdkcim4bMxhzyE9fegDPQhtPTgo5GZfYItg49cb9FCwT8vJGQwQ2aCZseYl/WMD488UqqP/orU1PzSE/NxemIxxEfj90eR0ZGAelpedB5+52macS5EqCHO1GORwGni1fv/QcnvPQXxj79R4a++R+yV33Ekm/dRfmknuvb5PeTvWEFs/5yH8nlOwlYbaRvW8/eSSeGg9qeAltNI9R5JY0G6GYL//31U5zzo6tIrNjNxGcWseL6O47gOxVCiOPXn//8Z9ra2pg4cSIzZ848KtvMrt1G4r69uHxNmPQQAZOVoNlKwGSj3eZmd2q0EyOrbgc5VZvIqd/OsMqVWEIBAiYL64YtYFfOxMhyba5kPh99JgB65/CHVaklVKWWsNx9sWH7Hocbj8NNfVJe5AKG1aPPYvq6l2hPzYh0iti87dz0tyvw2OMImG3onUMjhUwWPE43W8aexIo5X4uuWNcN7Zjd00p69U72ZQ7t1zxZZouV2QsuYsmb/2TEmBNIiE8jOSWLpKR0EhPTSXCnRU6+AJx2xrWG1zvMfrY/cQ/FXyxlbFMtSSveYt2crwDgijMOA7A/JpOZlJSsyPT/bvwV5zz6AxLqKrngvm+x8cSz2DP2BBxtzZRefX20TD+8Gvfe3bSlhi9WsXg7sPg8gMbuCbP4+Fd/BGD2r39I4YdvE7RYee+2X7PrxIWAcYiOzoIQtNkJ2uxY/H4mvPQEQ5a9S/Xw8az93WORxWbccT3tZjsWbzgGbSyUu0WEEAJgx+bV7N6xHqvNwcyTzoMd3Yd+OpIsAS/ZtdvJ2buBgtpNFNRsjJwXGFq5OtIx0mF388bUb4Vf1E+dN1azjZLcsWwt+wK3K5kFUy8i2ZVKUnwa8c4kbNbo3bTnLbgBFtxgGF5ze7yN7brOmM9ep2zopMjzpzTVsODlByndNpOd405k19hZeA+ynT0QoZjhpeMaajj18buIr6/m87kXsHHG6ficveRG0fVIfq5j6QKQQ+FLSGLP3NMpn3dG9MlQCL0jes7J1NZGIDkVZ+kOMl98jswXnwOgZsI0PvvFIkgtPNrFFmJQGxxnTsUxzRXnZuykOXhWVx69jWoaDXGZOAIdtFvj2ZUzkZ3Zk9iVNZ6O1gNPkNrqSMYUc5KhITGH/827NbqZNON4kF05RlQ+v5dtZV+wcfcK1u9YRltHM48D/00rYvGCb9OUmAXXPcTXYl9kP/ByHu90i5U1195GxbQ5zPr1Hbgr9nDWz7/FpgVf5dNrfoDfFb7iZejil8lf8QF5qz7C1h4ex7U1NZO3/9/D1A4L5ytJ3bmJ9Pq92JsaMPs8aKEQ/nY/mh7C74xj67xzCCaGA8mO5HQ+u/EnLPy/bzLmxb8zZMnrhJxOtp93OVsvvmZgKkMIIb5kdF3niSfCwxN997vf7derQ7VQkKFlKyjeuxpbwMOrs26NzJv3xTPk12zq8XUhNO4/7a+R6dOX/5H0pmjevJ0Z43hv5nU0JmT39PJD5rO5+GjK5Wgx40knNlWGh+TytgHGMc4Tm/ZRXhTNjWHztHLV729g1/Dp6CaN3NJ1pFWVoqFTn5LLixf/gqasvIMvWCiEt6WBz5c9R1HxaLInhO/ynbfwEk48+Xxsdie+RuO43gR7vlu1i98Rx2s3/RpXYy0jPn6dhozocJdWTxsT3v8Pa06+EL/j4JPMVpWM48lf/JsTX/wj4z54idEf/4/RH/8PrzOOPZddFR7nOxTC3tyASQ/hru0eg1p9nsgJmqoJMyj88G0W3/EAe6ad1PfGQyGGvfcK0//+AK6mcJ6M1rRop43Z00H2R+9GrqoNmS1sXxCTn0Xp2LK0NmO2WQnZ7OgWOXQTQhzfPv3gVQCmzjqdhMRUPByZcwRxnkbG7XqftOZyXptxc/hJXee6V75LfIdx7PzSjLF8MeQUtmdPPiJl6aJpGl8/7ftU1JYyNG9c+MmAmpBjvythwwlnhR935hAs2L4ah6eVkSsWM3LFYgIWG9smn8ymU85n78gpYDL1scJDk7Plc7K3rcXq87DgX/cz5+U/UDZ8MhafB2dbMx+dcwO7xoZjiZINH/GVv/0Er91FU2oOTZm5NGbks372uTRmFvR72Y46k4mgIxrXheLj+eK/H5Dw2cckLfsQ14dLSNq6gfQ1K5h782Vse/ol/GkZva9PCNGvNF3fT9ZqMSCam5tJTEykqamJhIT+780/FtTV1fHc29HhF9RvoneLMYFvaLsxQNFc0YNDTWnMYxOrAVja2ymp/pxWRzLlKSPAomEKBchsLKUquThyRwiApiR0VIMRU5bxtlK9MSZJpZIoS1eSBJkSjUNWbW/bxgfLXmDbrs8NidASEtKYMf0sZs08F3dCZ+JCNSayGd+zVUmkFIhJnGS2KwfSSmVblEScsYnIQkryR6vTWD8Bj/FqSZtSf6GYpI0WJYldm5I4y6W8BzXJd2zSKquyrq4k1eaOdkb/6bcU//vv+NIyWP3KEgKJSeg6zJw1CmtzIwC+1DTqTz6NPTf/EGtBNAFa4a3fIuWV/9CbFR+uI2V4+CoOraWZdouT/BuvIfGNVyPLVN76Q6pu+WG4XDXVZN95Bw2XXknrvAXEqXUdk/jPqyThUpNO2ZUkgdsrordItymfQ0mOcb8R7zBut0EZ9zU2Mds+5eSWmuS0SklimuI25gLYHZMATE2mrZZTTdwaH1M/6vuNTcze02tVsedWXcpvYIhye7gn2PdBh/rZxFLL6TAf+sFFh7K/cSrf81ZfdJ8Sb7P0Oq8nscnoAbKTo783j/L+qpTEhbFJb8H4WSTGGb+n6rrUMMOmvKfsxOiBwj7lM4793Jqbm8nLSD2u28WeDIZ4oKKignnz5lFZWUlVVRXx8fHc/6v3owsoCRu7DvS7hKqM32291YfL28z48iVM3P0+Cb5w/BBC4/4FfyZkCn+vTt7yHFmBCtpdSQRNFixBHyaPB1vAC7rOv+f/H3S2YfPWPE1q814qUodRlj6KvWkjMKUqFz8o322yjUkbiY0X1M4fJfEoyvAWltZ2EpuqMIUCaG4r6OHxzh0dLbQkZ1DbmT9sxJr3OPtfv0Dlt9rQdJ3/fPv31M+cHXk+0BmnBPw+LFZbJHYo272Z9rYm0v1t/OjvvyK+w1jH5cMnsOyCb1MxMnqSyGK3kLp7C67GOsomzCIY6HsfnRSTHDKgdKKMePi3zHr1L7QkZ/Dcjx7Hk2NMVGp1GevHFLMfNimfQ/rmNUx/4nc4mhrYPXMB6y66Njqkha4T39ZEfFUZusmMPclN0OHE2tqMFgpROWRUZD2u6grIN56gccZcpJKwaR2p/3uZtC+Wk7rxCwDahwyl9Laf0jZyNFss4dwyJr+PrNWfkrJ9A0k7tlA1ZRY7zr6Ekvf+y4RF9+JzJ/LWP9+KJN8+/frzSNkaHl61IymFrWdeTOlFV+OJOWmixkTJMe328DxjO1xea/ws1USbapvWGtNuq4lX1cSsakLQRuW3G7u02v2pJmZ1K59xoiv6ntQ2Kl5JmhxQEoarCedjE9tOUhJ+r9hSbZhOUmKxVCXmiY2n1FhBTbaqJheN/dw27jEe5yQqsVduqrEdVhORxm7b7TK+tq7J2LaW5PbdlsTFxIxVSlJgNblqjbLuxpj6iE0ID92TuHYocVylEqdkxRwXZMc8bm5uJjMl+bhuF3syGOIBgBtu/z0fvvM8Z15wA0OGje/zHIF6foAOpS1V9o2aGXJrNjNx29sML1uOWQ/Saktg0byH0Drb3fOX/Z6sxp2Up41gb+oIdmWOpzE+C2zGfaMpJRoD6GqcoiZ2T1Pu1nQpx+a9XDwJdIt5ulVI7LaUcw10XmShhYJk797I0O3LKV79AakVOyOLNGbk8cL/PU57UjrO1Gg51bbUp7zH4iHGJN8dyv7P7bBgaf7/7J13eBVFF4ffvf2m94TQQ+8dRDqISBFQQUVFxF6xo352xS52sTfsAhaKSpPee++EEhJI77ff/f64kOxOICHkpgD7Pg8P2buzM2fbzNkp55dD3OwZxP02lZDEfar9W554lcNX3+gzc+Viej08DhGP0cT+cfewf9y9eM2+urdA8Jcswn3JFq6Xsi0JFdoVl+B7FDpKz9uiuNbi94xIlmCHsp0yC/nWiwnGcGA/0SOHINlsLP7gR3IbF/sfjYU626r4BswV6lmx7TAa1GVlKr613ML3b0y4+jn1Cm2pWFaEon0U/TjRLxHbAzF94/gz12lH0/JV203i1GlL+44Xv8u3Cm2t2LYqxexF/ygypHT9Q/H6KD2dEOHZE7+PDx5XC6g3qlV8jilCOyz2gTSMU39viH0mBsU1EJ8P0fcyCtdLtFvp8yj7jwAOpOSqtpXnAOrzKOG3CnllCnbVFfoJU076Hnm5uTSrF1vhdlGbdqRRLciyzCWXXILdpeeW+18lrnZDv+UdmptCQPpxrM48wvOP0zB1K7Uz9mDwuskIrMU3vV/BixGvzkBKRNWKuaXnpBAWFIVB76tgbLZ8du1bA0B4aCwtW/egZatLady4I3rJ/zM3zpaIxD10+OUTArIzWH3zw5xo3r7abCkvHmsA2x5+nvyhw9E5nbhDw4r2ZXXvjb1+Q7L6DyK/Tfui2TGnqntdQT625i0pOH4pnvAIvAEBoNNxqu3RFRYU5afLyCD+2hEUtG7H0Y++5MThRHSFhXgL8nHVii8qM+TvmYT+M4vQf2aR36MP2a+/jatZcTxyDQ0NjYud+Ph49u7dy4EDBwgKqphWU9OktbQ8uISEtK3oZV/lXWAMZltsd04E1lOFyVzU7HoMjcNVx3uz1B8Tp1jS7sYK2VVR3EYzGVEnQyuEFX88yLLMrgPr2Lj4J4wmM1HBkeTdMolm+zfh1ek51rANyU3bIcleYpL2caxxezKP7GPfxiUcTznKsZTDpKYcxuNx8frH/1Fn70aMDhtfLf2DndtWAPAgIN6VOnu3MOq1O9l0+RiW3fgoOreLzrO+pPOMz9HJXmY9NYVDrbqd8/lmxCeQE1mL0IwUhnz+DH8+87kqREd5SGvejjlvfl+0reqbliTsEVHYT4qfip3xKDpJCmPiUX6WGQry0GEp6qwJPHyAZj99DvjCfB6991GSx96BbDr5EXrC92HvNZpI7taHlEv6+Exwu+jy7nM0/eunk/uFQR9n8cehNTuTdj99Sptfv+RYr4EkDr6GJjOmove4MNhtJPe+nL0331u+C1RDCTh8kIbffYI1OYnkoVdTcO0N532IFQ0NjbJp27kvbTv39WuejY+tp+3BhdTJ2IPZVTywmhTWhC21e6vSzu58Dy69GakCE538gSzLJCbtoDArk9YJl1QsL52e5IZtSOvQhVWj7iUmcSetlv5Fs1VzKQyLpDDU1wZKHjfxW9bgsgbgDQjEbbFgD41Q62OUA3dIKEk33MqOETcRuWUdIQf24AoOwR0aRl6j4u/htI6XMPPfzVgy0wlMPkJQylHiViwkdvVSmn35Ppntu5LetWcpJZ3/uBs1Ju2vf5AKC8g1+Xc1soaGRuloAyMa1cLKlSvZv38/ZksA4ZFxZR9wGmLTD9B1yx/oPW7+uuJ/Rb8P+e894lP3lkifbY1iT60u6GRvicUXlYXX6+V4zhF2JW9i65HVpGQf5vLO13N55+sAaNSgLUMH3E6zRp2pFdNQFToDb1VZWZLLXnuI0BTfap4RT93M1G8WYQ+LrDZ7zoXcTiUdyN2TffG99fqSH9YBG9fR+JZrSb9uLMfe/xRX7eKQHjkFJWPbWjasxbRzO+btW7G3aUfmWF/sdJdHPYKf37sf6bfdQ8T3XxG0YgnWEYNIWroOb4y2PFZDQ0PjFJIk0bhxxScrhOen0CR1EwDJoQlsiOvL7qhOeHQnNaJ059a5XlM5dGQ7X0/9n+q37O7DueaaR4t/OLmqITE0Co/HzbsvjGd8YT7fAduAzYAbuPnhoQRlp+E0BzCtfW+y6zTBK3u40ukgsF5TOvW9igZtuxKQm0XnP7+ixeI/ONqqKwBDP3iMhltWFBU59PX7Ody+B9v7X83hdj2QdT4bJI8b+Sw00PZ37EdanSbcOGkctQ9sZdRL45l/18tk+XEiTUVp8uMXWG15HBs2ityWbclr3Jy919+GPSKaI5ePIKzp2dlab8ncokGRnTffx77R6lmz/3w9B3ehHYPDTuzWtbSa/g2xOzZSd/E/1F38jyptxI7NHB46CgLPIVxaDaP9E/cQsncnAFFrl7M7KoKsAYPLOEpDQ+OiRpZpdmwNjY9vZEXzq8kO801WCylMo9HxzQDYjQHsqd+djVG9SQ0uGabJZSh9VnhlIssy6VnJJB7dzm9/vwtAXGT9Cg+MqJAkUhNakZrQiuU3PII1P7to0Dkw/QSDn7ldldyr05HUpQ/b+1/N0Q49kfXnEM5bksho35WM9j6fQS9G2TCacBlNuEJCyWvQCL1OInHUzcQv+oeoLeuKBkUsJ5Jp9s0UbFFx5NeqQ3bTVrgaJlRKKLDqwJ3QCLxewv+cT1bryg3bpqGhUYw2MKJRLUyf7gtV1LZzX8wWaxmpS9Jm/0IuW/81Bq8bl96kisecGxyDtSAHmymIAks4R6JbcDC8NVmBcVUy08wre5m/eRqHU/dwOG0vTnfx7FOdpCMp7QAerwe9Tk+ANYR+l15bSm7Vw64h19F40WyiDu5i65Vjz3mWyPlExB+/oc/LI/bLKcR88xm5Q0eQcdvd2Dp0Pm36wssHk/H8JKKe/x8xb04iZ+hIPBElB4+cjZty/PlXyRh/F/VvvwHL7p1ETXyI1G9+1GY+amhoXPSkpaURGhqKyWQqO/FZsKbZcPKkEE6E1Cc9uA7e0wxsX0jExzUmoWE7DiZuKfqtU6dBZ0xfWJCLrTCf1oAV6HryHwAnB0X2dehLz1EP0DkoDIMQokg26imIjGXJbf9j7dBbyI/wiZbv6HMVsYd2sXHEbdTftJS629bQcNMyau3dwtcf/oPnZNiIWx4aRlZ8Q5bf8DDu2qdvX0+RE1OH2Xe9ytAvniU2cRfXP3sjWy6/npXXTyjfRaokchOa0PzZB4hdMIcls1eS37g5xx94ptz5ZDRvg9tkxuB0UFCrDo7wkzN33W6Cko9gystByvGFJzjS83KO9BpEnf3baPX1+1gzUgk7sLsorz033YUjLJKA05Z0fnF01E00+PFLAg8fJLdZK/I6dKlukzQ0NCqRlJQUfvjhBwqMzYiOrVv2AQJmZz6D1n5Gs+S1AByOblU0MHKwVgckWeZorZakhTVA1ulKhN6uTtZtnceOfas5lLST/MLsot9NRgs92w6rtHLdFit5ir4Yg72QzAZNMdhtGJx2DHYbpsJ86q1ZRL01i9g0cjxrxj5cafaokCSS+w/hxGVDi34KOnyQpr9/r0rmCggip1lLspu3Jeny4WTXPY8jM8gyYc8+SZ/PprDlsZdIvHpsdVukoXFR4JeBkfT0dD788ENWr15N/fr1mTBhAhs3bqRv377Uq3cBiCVp+BVZlvn9998BaN9lQLmONbidDFj/NW0P+mKP76/Xma3NLsMXtdjXyTxnwKMlHB25DC2C8uJyOzmReYRjaQdJTtqHXm/gys6+GX46Sce6fQvJKfQJbpoNVhrGNKd1nS60admDQEvNH2TYNvIWto0YB5JUQmPkFKb8XBot/Ius6Drk1qpHXkz8Wc0CrakkvfgGuf0vJ+bLKQSvXEbozN8Jnfk79ibNOD7yOlKU4TBOknP73QT+8iPWXTuIe+0FUh98HG9AIJ5T4btcLvTZWXjCI3DVq0/Se5/SaFh/Av+eReSTj5LxxjtVf6IaGhoaNYiHH36Y2bNnM2XKFG644YZyHx+Se4Keq79mXqfbcRoDfKKjtXtUgqU1E7PZyr13vIvDaUP2erFYAkvEQVdSUJANwMSgUEJenkr4/l1EH9mDyVbA4TaXkpjQHo/RfMbjleQrVvwe7NiH5I49cFusbB1yI6HJh2mxYBpOayAeU/HsW8nrpe6OtVz/zA3sH3Itm297GHv4mVekHmnVjanP/8CgH16l/rbV1Nm5VrW/7sZlnGjaDnd4+BlyqDyS+16BPSYOS+pxas2bRfKwUeeUT37t+my5/RE6TXmNLm88ReT2jQScSCZyxyaMtmJ/1qvTMfPTv8hOaEZGqw4snfxt0T6z24k5NwtbzIUTfuPoqLEcHTUWyeVENppUGiMaGhoXHr///jsTJ06kYZO2PPrit+U6Nj5tD8NWfEBoYToeSc+GxldwPDyhaH92UBwbmg4BY9WtLHC6HaTnpJCWm0zGvnTSspLJzU8nryCLvMJsJt73FQEBvn6Bw8d2sX3vSgD0eiP1ajWlcf329Oh8JUHeqhvqzq7fhN+n/AUUa4yEHD1I879/o9G8P9jfa0iV2XI67DFx7LzpHqxpxwk+mkjY/l0YC/OJ2rSWqE1ryW3UFE4OjFiyMojcu428Xn2RzzEUZ1UT/NF7BH/6MQCuwOAyUmtoaPiLCouvHzp0iB49enD8+HEAunXrxptvvknv3r157LHHePPNN/1i6MXGhSyutn79erp06UJgYCDPjPkKo+HkB3iMWvhIPqoW77E68rhm7svEZRzEK+lYWm84q2sPAklXIgaoLAg8lxBAE7Z1irKlQCP5thyyCtKoG9UY6aQQ+Xd/v8aRE/sodOThcgkCkYHhPP/4b0UCb4uX/4bJaKFBm07E1WqI7mQICb1F6KwQxhyUQqU64ZwCY9URvj3CYI8kLEkNUYi8WQWRZp2QVhTWUoqaBVnVx54SsAzdvI7O40YW22OxkteyLYUdO5PfriP5Hbviio7Fo8hbXB9hEM5RFHC0CWLSyvOwCI6tKOAVIMxyzVGIYcVHqh3M7DxBpG3Pdup8/yXR82ait9spbJDA2pnLilZ41FIcH7NtPeGDLisu5613KLzjbgCMmzYQ1a8XssFAwTXXkvHexwS88zbRb71C9nU3cvydj4kNs4LbTdDoq8kffhWFo6+Hk/HFRUE4EeVtFAXSTcIzni3MmhbTK8XmRKFykfKIi4tiaKIoWYjQ0aEU4rSW0rkHJUVNRcE8UVxMiXgOop1OIe8QxTUR05aVV2nC7aGW0h31LOF6SYpVRgXC+dYOU6++K+vaxygEZMs6J5sgoiyVstqprOshCsYqn1Vxab0yrwu5XSyNC/m8HQ4H0dHR5OXlcf/4d2lQt9XpEwri6p5kn0Bhw9StDNv0CVZXAVtr9eSflrf6EiieI9EfkIT2UCqjnpEUbaAk6k+Ioq5RwgrYoFI6cgUxaFFsnRxByFWZlyA8LQki77IgFqmksDCPvTvX4PV66NhxYAn/SB+ktsMo1NHBCl/EI/gO9mx1G64zqN9nSZIITTpI558+ptGKuQA4AoLYNvgGtg8dgz20eIAkSBBZNOol6i76G53LxeFBI3G5vQQeT+LKcYNwWwLYeOvD7Bs8GlmvxyPUuRFC3SiGx/Qo6nvRtzII7aFB8D06/Po5bT57i4JadVjw9WyO5RTvM4dZiNqzjYjEPRzsO4SQWLVQrbKdkTweLp9wPWFbN6jSuK0BOMMjkUNC8ASHkHHFlZy46bYSIuh5wnPuUfgPohC5iChGK4rNFqp8QnVa0Y8rEOywC/dC+cyIX6AGIcypOBCiLEsUfRebJFG0U0Qp5B0Vqn4+RAHwvEL1OYULYuxKX0T0PaOFvHcezjxjXqIdIk7hWoo+j1JgXhRf3y2IzYrCvxGCoLxRcS9E0dd6Mer6Jlm4XnaF724R6ttc4d1r1UD9TojPS3pOcV2XmVt8Twvy87jy0mYXZLtYGheyPwDQv39/Fi1axLDut9C33YjiHaX1EUgSHXb+Tb8136CTvWRZovir6R0cD27g211KH4EUqH6XJeH91cWqy1X6A26Pi5z8DHILMrA5C7DjxOYooEPzPgRYgiHMzK9/vMW6TXPPeL6PP/4dsbE+O/ce2EBy8gEaNGhFQoeOGI3F77BHfNdrh6q2C9OL30Gv8P3iFvwBndCGeezqdy4wrriNtwptpwU3XoVdFr2kCmEVJFw/s8K/EL9ZIoR6VKzfwhV1UmqWug5S1v+Sy0XdrGMEbN2Edetm0m+/B0OzpgCEfvoRUc//D1dEFFlDhnP8jvuRGjZQ5XU8Q513fJT6novfJco+ErEbVRTqrhOt7rsxrFxBxNefkTdwMN4xY0ARkiwpLZ+Y6T/S6JlHAEh/8VVy7r6/aL9JEFB3Kb6txHZX7PcRUX57B5gFYXah7QwUvlNFwXmlEHc9QcRc/P5TpoWSPmSUQthcbHeiQ0sPb5dnK74vOQXqcupEqe+D+F0eKDy3ym/P0kTdxbQAueI3h8I5EcXGy/peVlKir66U9v90KPvYxGuZLgi1R5UhMO9W2CmKwIvvi0d4R6IUdW55+1PEOiLk5LPpr3axwtO7J06cSEpKCnXq1CEpKQmAnj17EhISwvz58yua/XnJJ598wieffMKhQ4cAaNWqFc899xyDB2txcQFmzJgBwJAhQ4oHRcpClhmy5H3iMg5SaAlhdp+HOJhf22822V021hxcSGLablJyj5KVn0qINZxnr/+iKE2+LYec/PSibasliNqxjakd35jatRrj9XrR4Xuh+/Y8GR4rvPxhws4XvCYzqf0HE3D0ENajiejtNsI2riFso09M/uAr75I22idWG7B7BwkvPkFBq7bkdexK5sChyMaaO3Mjv3lrdr/yHvuefImYubPwWKxFX906uw3JrkO2+BoNV/ceFN5+FwFffoZsMiE5ij/6pEzfB7DkdhP060+g05H05gfY23XAG1jsPBhnTMc4by7h8+YSfv/d2Pv2x92sOaSmok89QeHQ4eTdcU8VXgENDQ1/ofkEZ2b+/Pnk5eURHx9PvTotynXsJftm0mvPDCRkkkMasjxhRNkHaRAQEEz79v2rrfycOgksnDiZ7TtvpPsXrxNzcCedZ3xO+1nfMfPFr0ht2vb0B0oSR/sPVf1kysshP74eYYf2cel7z9F0zq8sfu4DcqLiq+BMfBy4+iYazvqFoOSjdJn0CCl3v17UcXTpRy/SYvbPAHT48WO2P/YiKb0vP20+sl7P1rc+xZSZQf3vPiG7Q1fS23Yhr1Ez0OmICNZWS2honO9o/sCZSUtLY8mSJQC0aXj2ehoJRzfQf/XXSMjsTOjFv9HX4DRU3vf3vPW/smrHv+QXZiNTctC5Ye2WvoERIC6mIQHWYKIj6xAVX5+o6DqER8QRHBJBsDmUyMjitqppsy40beYLF2j1eOjz1fM02LwMR2AIdmsQjoBgCkIjyY+I5dDom8iPq3odqaJBEa+XFr98QZ3Vi1nx3lS85mrUZDEacTRviaN5S7Ku9fU7FHVwShKeyCiMGenE/PA1kdN/Ju2BR0i7e0LRJMSqIuzj94l89QUkj4eQ2X/i+vhdsl57C0ff/uhST9Ds/nuJWPgvAMnj78GmGBTR0NCofCo8MLJgwQKioqLYtWsXwcHFM0jq169f1OhfbNSpU4fXX3+dJk2aIMsy3333HSNGjGDTpk20anWG2ZAXCbIsM23aNACuvvpqji05ywMliTXtriY8N4U/L3uS9PB6sCe97OPOkvk7prNs79/FxSFhNlpxe1wY8TkBI3vfidfrISAiAqslCKslyDcKbD4HAbLzGMnlJHLZf2R37Mq2d79EJ0ng9RJw6AAh2zYSsWMTgdu34IgvHrgK3rKBkE3rCNm0jlo/fIW9bn0yBw4lr3d/8jp3Q65Gh6o0PMEhpIy6UfVbva8/pvasaaRPfJrCS3pAQj3y33mP/NfeAJMJ5SIP54CBHE7Jwjr3b6JvHUvQzz8QJ+k4/vq7qlki7ssG4m7XHsOWzQBYFv8Hi/8DwBsYRMZ7Uyr9XDU0NCoHzSc4M7/99hvg8wd00tmvRAspTKP3nulF23+2uZc8y5nDMWn42LljJZKko0XTrmUnrmROtOzIjNd/ImHNAtr/9S0B2emkJxQPjrX85Qskt4vUdt3IaN4GTiOGm9WkFfPf/YFhtw7FmpVO1L4dtJr+DSvvfrrKzsMdFMLqSVPod/c1xK/4jxt3D2fGy1MpjIjheOvONP13Oo7gMILSUrjkiTtZM+ljkgcMPW1ejphaOGJqsf21k2E0ylg1qqGhcX6h+QNn5o8//sDr9dKhQwciQ2LP+riMsDqkhdfjWFwLFl5yO+69GZVoJZiNFvIKfSuwDHojoYGRBJiDsFgDsZgCVZM+e3W/ij49ToZYjBAGa+zqGd9KWiydSYtlswCw5mWr9rmNZhruXcesD2dU/GTOEWtmGi1/+ARTfh4Dr+vPwWvGktalJ+42bVXft9VNzl33kXPbXXjmzqfWJ+8RvG4VcW+9QvB/8zj68Ve44hWDS7KM5XgyQdsOYzqUSGHX7thbtfGLHcZ9e4l6+VkAbG3bYzqciLtuXaJuHM2xxBRC33iFoJODIkn3PMzRByYS45eSNTQ0zpYKD4zYbDaaNGlCYKB66VR+fj4OR+nLmC9UrrzyStX2K6+8wieffMLq1asveqdHlmXef/99fvrpJ4YNG8ZnSxac9bFJca346poPkXX+b3Db17tUNTBy9+AXSYhrqUpTO/pknNLSQmNcBLS/bywRa5az58lJJI0Z7/tRp6MwoQmFCU3Ive7GEsdk9bmMvW9+TPD2zUTN/h3L0cPEfz0Fvp6Cx2Jl169zsLX0OR/6wgI8ZkuNcqyK8HiI+ecvjElHqTXh7qKfveERuJs3J+/dD/A0Vz83GI3Yho0g48NPiXzgbsJ+moouN5fkj77wzVbxegnp2gnd8ZTTFuls1x53/QaVeFIaGhqVieYTnJ6CgoIivbExY8awam5BGUcUk28J52hEM+pm7gHg1jXPMaXHZFyn6TzXgNQTh5kz61N2bF9OaFgMEx//DrO5Bshz63Qc7H45By8ZSGBOOt5TMcBlmWYzviUw/QTgE4dNb9OJtHZdMeVmk9W0NfsHDPdl4XJhzSqeKGMrRa/kFBH7dtJyxje4AoPYP/AqUhu1KhmLqRxkN2vN6pc+pOPbz1EQHkNheDQAiT0vJ6VNF5yBwXT/9FWa/TuNzi89wrK42mS1al8yI1nGknIMe2ytmukDaWhoVAjNHzgz33/vE9QeM2YMHDz743KCY/l52Kt49IYK1eNlIcsyWw+sJCQgnIdGvU1YUDSB5uDiUDmn0UDSnWOfxeF2l3K8UWviDmwHIL12AhsG30xwxnFcZivuxg3P+Tz8gS0qluUvfcwlrz9BwIlkWk95A3gDV3AoWZ0u4eh1t5B5Sa9qtbEIg4Hc3v3J7dWPiL+mU/+lJwncsI7AVSvIvuY6AKKWzKfN0w9gKMgvOkw2GEh+433yri/Zr1FeXA0aYm/XAcuWTRiPJZE4exHBBdlI9z8EJhP2Xn0wzZlF0j2PcOKG8RUuT0NDo/xUeGCkUaNG7Nixgx9++AHwxYv+8MMPSUxMpG3bMyyHv4jweDxMmzaNgoICunfvfsZ0DodDNZCUm5t7xrTnMzqdjqFDhzJ06Olny4kkHFlPblAU6RENACplUASgbkQjnhr6Ad+vfA+v5KVuVKNKKedCIL3PQCLWLCdu1vTigZEycMbFkz58FBnDR3HkwacIXzyPsOWLCVuxCH1eHvZGTYvStnj3Jer++TOukFAcoeE4QiMoqFOf3IZNsDdtQUbXnnhNZxmCzd/o9az/bS4tfv+O0J+mYkxJRnK50GVlYlq1ktCbxpC2ZuNpOzQKrrsB2WIh6u7bMB1OLA6urdPhjY4GnY78m8ZReNM4vEGBBH06hYBvvyLt8+8q1dHX0NCoOs7GJ7hY/IFff/2VgoICGjVqRPfu3Vk19+wnSnh1Bn7u/j8apW6m+76ZpAbU0QZFTkNGRjLz//2GDevnIctedDo9HToOoKTiVzUjSUWDCQCS18POMXcRs2UNsVvWYsnJIm7dcuLWLQcgpWvvooERZ3Ao+4eMxmENxBYRzZ6h15daVN2/Z9Bp0mNIJ9vgFn/9SFa9xuwbeBV7L7+aQuu5xSdO6XU5/3TtQ8H2A0VttmwwYov0zftc8cALhOZmELfyP7o9dTf//rXKd6AsE7ZvJ3UX/U2DJX8TcPQwqX0uZ8vkL4CqEwnW0NCoWjR/oJjdu3ezfPlydDodN9xwA79MWldqeqPLRu3UPRyq3R4Al7Hy2/9Ve+bxx+oviAqN57Hr3segN5YUSvITubF1mf7id9Tdtprg9BRS4xI40ah10X5RY6Q6ONG5B/N/XUT9v6cRu2oJUZvWYMzLIWbxXFL7Dapu80oiSWSOHI2z2yXUu/92PGHhRbuMOVkYCvLxGgw4ExrjDQgkYPMGaj96H+lHEkl//OmKfYsbjST/+ie1rh1B7rCrcDVMwKnQhLCNuJoDnXrjtfhWFdV97zViZ01HZ7dRMPAK0t7+AAzaZAkNjcqkwuLr77//Pg8//PBphVjfffddJkyYUJHsz1u2bdtG9+7dsdvtBAUF8dNPPzFkyJAzpn/hhRd48cUXS/x+oYqrnY7J7yxTbUf+vYIbFz+PV9LxU58XOGEPV+3XKYSBJCH2sueQWmRQEkQFxT6BU8Jsbq+LQtlGiCUMOCmqZTWgUwiLSSHqsqQwRd5laYoIxxoEcWilgLpFyEsUVzcIIkui2JFSSEonvJ9mQWzVKAhehijsEsWeXMnH6Xl5J3RuN4l3PkTOxP+pBgJEQUylAJgoOiV7vRiSjuKuWw/wiWWHD+iDcd1aTocsSWzafgTZYqV2VCAUFkKAb9ZrUlq+Kq0o+Ki8Pm6vWszJoFPbJYpnFgrLnYuO93oJLMjDcDyZyEnPk/nks7g6dFTbLFyPoP8WEPHMExxbsR70eqJCLEh79yInJJBWoBbsCtSjioFq3rAW62uv4G3SFNtjE3FFFnckidddFMATBVJLQxSyFwVRRSoixl6a0FZ5RMlOh/LZ1enK59BW5JxElGLjotCcuC0KxosttPJVruj1USLmdbQM0TulXVZD6XaU51qKKPPKzc0lNiL8vGwXy+MTXCz+wCWXXMKaNWt44403mDhxYon9b9/xe9Hf3qQ81T5JuXJTltG7nXj0inYrTy3wqzpWDH8p1HdKcVVf/oq/RbF1i5CXuF9oa1U+gOg3C3U2gkAqIcUTAown/Y6C/Bz27VrPrs2raN6qO63b+mZouvUuvnz/ERL3bcXj8dU/rdv1ZvCIu4mt1UAlKC4L5y8KsxrFOkmR3iBeK+GcoqIFIU6nui0NUNiRlq6uc4JOna/XS8jh/YSvWUnsjg24rYEc7dqH5L7qjpcwhZ1yoY3Gv35F9IZVeExmHPF12D7xZQDM6an0HdWXtB79kfV64v77G/3JjkeP2cKy7+eQ37BJUV4mWwEhe7YjG01kt+6ATRA9DxLE2R3uYnFIsf62Z2bR/9Fx5NZNYPX/3qJuVCBhq5fR5rZrEdl9870cnPBU0XYd4VrmCCKmVsGOYwpB2WZ11J1oor+UlqvOKzJIPflEeU4xghivKKZdL1YtcnpcaEuU7pfot9aPU4t65wh5ZytEYUXhUb3w7NkEkU7RJ2rTsHhlkSjUqhQp9dmsvpGicGuY4nqJfm6AcF/E+6T0D0TxVFH0NqdQfT08QlubK4jEK4kS2nDRIyrpexSf8zFBnNgliDuLgrqN45XtlLokl1t97USRePF50Sv8T4uiPs3LzaVFg1rnZbuo+QMlmTZtGuPHj2fAgAH89ddfJfar+ghkmSvfeYwmyeuZ3/4WNgaq9Uh0Qv0l9hF4s4vfb9lx5nBWADrFe2N32Xhr8UTyHTkMaXk9fZoMRadolyUxokSk0CcgiI0TIHynKt53o5CXKKBuFN4bZVtsDTEjedzoHXbcAUElhLhdQr1hE75xZUV9Jwt1X7BwDso6XHK7qX9sHxErl3Bk/L0+7Q+3h7i5MymsWx93+06qY1vWV/frBAn1X4aivhdFl51CPRIbVvoK2FxF3Wk06HyNs9MJZjO5hU706WnoMzNwNkgAkwm8XqLefIXIDyZjv2wgWb/MAIMBKTOD5ORsvFYrXqMRY4A6wkWk0N9UIFzbzPQc5JOTO5vXC1Pty1Kcb/QzEwn76rOi7bzrbyT1vSkqH0spoC62UXrhu91iFPo1FM+9WfD5xD6islCKb1tMpR9bVq+zshkv8b0sPLfifrFtLY8dduH5spZyHmV901bkW7wyUd4nmyCYXqsMYfuKnFO24McpfXXRZwkJKF3350zXvsaIr0+YMIE9e/bw2WefFTlRkiRxxx13XLSDIgDNmjVj8+bN5OTkMH36dMaNG8eSJUto2bLladM/9dRTPPLII0Xbubm51K1bt6rMrRKmTp3Kzp07ueuuu2jYsPQloEZ7IcPXvI/R4yQxpi0ZIbXBrnaWG6VuptfeaaxtOIRdzfr6ZVa9QWckxFjc6C/aP4sjeQe5qfuDGPWmUo68eHBFRnH4lnto+OWHNPz8PfK3rOP4/Y9Q2LEL3oDAsjNQIklFgyKnyJq7ECkzA11mJpacLKQTJ9Dt3YN+504KMrKRLcWOZvi1V6NLT8PVsRPRjVqSNXQk7sgof5zm2aHT4Y2MxBkZScrPvk68U1W2PiUZT1ytEofYLrucY5epxVflpqdWzAgftYpBEd2xJEIG9kdyu2HeXMzffUPBhIcpfPxJLeSGhkYNpzw+wcXgDwD88MMPfPHFF9xyyy0Vy0iSigZFamfsoW3iIv5pcjNeXYVd3BpF8rH9zJg2mcLCXJwuO06HDbstv8j3djptRQMjOdlp7N+9EYBmrboxaNgd1Gtwev+zxqPTkduwKcdjG7JreHFIizN9PsUuW0C3x25T/ZZfv3gVsCMqhiW/L8V5cmLBjicmEbdgDvWnf4/kcZPfoDEAluPH6PbAWIIOHyhaXZLaoz/rn3wde9S5Rf92BwQx/6PfMBQWh43L6dgNR0wceW07cqDXFRjshXR67UmaT52CrVlLUgaNOKeyNDQ0aiaaP1CS0aNHc8UVV5CZmVlm2o7LptE0eR0eSU9qWP0Sn06VhcVoZUjL6/ht0+cs2jeLrg36EUg1RTAQ8Xpp+e9vNJ83DcloJPTQPjbf/ii7Ro9HbyskZv0KHOFRZLbuUGkmyAYDea3bk9e6fdFvkstF0w9fx1CYz7Yvf6OgeeszZ1CVSBKYi++dJyoaT1TxZEN0OtKffBZ767boB18BBp8/GfzaJDp+8ZkqK1mS8ISGYWvVhrz3PsLdMOGMxcpnGfEi6457KLh2DMYD+4m+/06Cf/kRV+06ZE2sOv00DY2LjQp/NUqSxJQpU5g4cSLr168HoFOnTmV2fF/omEwmGjf2fVx16tSJdevW8f777/PZZ5+dNr3ZbMZsriGNayXx0UcfsW7dOmrXrs0DDzxQatrmmxcSkX8ct87InC73IAuirKH2dK7Z8C4Aw7Z+TkF4NEdi/dvYZtnSWbjvL9xeF6v2L6B3szOv+LnYOPjAkxQ0akbzl58gaM0KGq9ZweG3PybrmtJDWJwVBgNyTCyemFg8wqyFA8nFS8ilnBxMa1YhOZ0Yd+2kPlDnzZfIuPo6Um+6DVpXn/Nl3rCOWtdcia1HT9JfecsvGiHe2nVw3HEXusOHMM6bi5SfT9CrL+Np2QrH8JEVzl9DQ6PyKI9PcDH4AwCNGzfmjTfe8Ft+DY9vZtTKtwDYFt2dIxEtyjii5uNyOTCenKwRGVWbtNQjFBaqQ6nExjekadPOtGxTHM87KDic6275H7XqNKJhk3a4Cs+8guZCQud00OWJu0r8bjmRTJtXn8QVHErSkKspbNy8aJ87KISkkWNIGnE9pqwMYpYtIOGnLwnbsRmD3QaALbYWlrQTxKz4j2bffMiWx18+ZxtlvR5XcPGMNtlkYu38dWAwkHpypULQkUQsGak0+ewdbWBEQ+MCQ/MHTk9wcDDBwcGlJ5Jlus/7FoA1Ta8kJaIJnMgv/Rg/0qFuD+bs+JkCZx67jm+ic2T/Kiu7NBqs+Y+en01S/db0zx+I27SKWhtWonc68BhN/LFod5XapXO7cEZEEpB8lI7XDuLEiOs4fO8jOGrVKfvgGkD+sBGqlRl4PMiSVDRZAkCSZQzZWQSvWEpOWJhfynXXb4is1+Ho0AmpsIDoxx4kYvIb6NPTSZ/0hm9Vi4aGhl+p8MDI0qVLCQkJoX379jRo0KDod4fDgcfjISCgBog71gC8Xu9FK0YPkJ6eXjRwNmrUqDLTH2nSCafejMnjoMXRlWxsfIVqf645gg31L6PT4QXsj2lPcmSTM+R07oRbo7ii+Whm7/yJ7cfWagMjAieGXEVuy7Y0//oDJK+XrKuvK97pdhfNrqgs5NBQUncfwLRyBcbt25BmzyZw+xZifvqWmJ++Jf2O+zj+7KSyM6oEzBvWIbmcBM6fi3XZErIeepzseyeoZqecC4VvTSbwlrG+VSOAs28/nL37+sFiDQ2NquRi9wn8gcHtoG7aThqc2EaDE1uJyksGIDmiMcmhZ56xV9ORZZm9BzewbN2fZOWk8th9XyBJEmazlVvveB2P10NgZCgmk5XAoFCCQsJx5asHPoKCw7i039XVdAbVh9doYs8dD9Hi07d92wYjOrcLg91G/T9+AiCzY7eigZGolYto+NOX5DVujjMskjqzfiPo8AEA0rr1Yu/tD2Kvn0DAsSN0u30UEl6O96yEjjDBX9p+9+PoPG5q7d7i/7I0NDRqFBe7P5CTk0No6FlqZkgSB1r1oNX6uTQ/tpq1za7EU/ZRfuNg+i4KnHnoJT0NI5tVYcmlk9ymKyktO1Jr58ai30KSjxCSfKRoe/vdJUOWVjYeawAbPphK65cfJ3bRXOL++JnYv34lt10nDCNHYL/9TuTzKCRc7jsfsP2JV5CcDiSXGzNuJLcL44njWA7sQxce4Uvo9RJ5xzgMvQeQc91NFSoz7+Zb0eXmEvHyc5i3bELyepEBKTeX4Dtvo2DSa3gTNG1cDY2KUuGey759+9K9e3dWrFhR4vd169bhdpceu7G62bp1a7mPadmyJYZSOn2feuopBg8eTL169cjLy+Onn35i8eLFzJ07tyKmntcsXLgQWZZp3bo1tWqVDC8kkhMZz5LWYxi45Vt6b/+FQ7FtSUMxw07SsbDlWBa2HAuAZKickfM2tbowe+dPHE7fS749hyBL9Yud1SRsDRpx5D31DCddbi7NR17G8XsfJnPUmEotX46MwnHlCBxXjiDptgcJXr2CmB++JGzBvxR27FKc0OMBSV9lIua5d96Lrd8Aop54BOvypUS+/jIBC+eR/PscsFRAIFCScI4ajS4lBfvDj2AbOFgTZtfQ8BOV4Q+A5hOIJCUl8b///Y/BgwczZsy5tREWZz5jFz5DWEFq0W9eJLbX782C9rfgLizl4BqKy+Vg3db5LF/zB6kZR4t+Tz6+n9q1fJM/GjRsAxRrjGgISBL7xj/AnhvvJnLLWqypx7GmpqCXQPJ4MGdlkNu4eCVR+LZNRK9eSvTqpUW/uQKDOXL1DRwZeQMF9Rqi10noHXYkr4f9t03gRPd+lWO710vTHz/jwNVj8VgD8Or1ZHa+tHLK0tDQKBXNH6gaZFmmXbt2mM1m/vzzT1q0KHul56IRE6i3fS0R+cfpvf0X5tUqe8Klv1iw5w8AujboR3hAFYZuLgNnUAizXpuKzuWkwYHN1Fn1H/nx9dA77KT1GUhuQjPF92LlCMafCVdYOJsmf0nszs00/OB1wtauIHTTOuQ9O7Dde39xQo/n/AgNLUnIZguyGTwn9Tnc0bHYWrfjlHJVwJ8zCPzrDwL/+oOA1Ss4/srbyOUNN64g5/6HcDZrjqNla+ST/Qj6A/sxz5kFskz2z9MqelYaGhc9fpnSfTr99oKCgtP+XtNo3749kiSdta06nY69e/eSkHDm2YipqancfPPNpKSkEBoaStu2bZk7dy4DBw70l9nnHfPnzwfg8svV2gqTH/+76G/vwWzVvk1xfWictJ6GGdvpsW0as3o9rM5UIQTkPpCh2iUJgoWSKOYjCAfqahWLRcoKEcpwSyy1QxtyLCeRHYfX0bVeXxDEIiWloGOWTV2OKN4kiD/KAernzqIQtTQJQoiuUsTRoKQYolsVhkqd1i2IKEUKYmrG9Wtp/tQEbA0SsA0eRu6AQbhjYn12CeGt8gVBuPifpmI5dJD6T0zALhkIGD+2aJ8oQiYKhovaTnlC3kpBeVForE5MMAy/AsfwK0g7lkRI7XhCTmp0mN9/F+OsmdjffAtvh46cyCzwKW/p9aDTYRaE6cTrY9BLGBMP4K5VG9liIS682LmxC0KsGbknRf3qNiLnxz+pv3AWgQ9PwLpuDfFvvITr7cmq9EoBOfHaiiKeVpMeRl2DZ9Q1GDlzjHUoW+CsNDyiOH0ZjmppYtv+FCErt4h3Bfzr8thdpl0KQbjyiraV0GeuwLUtz/WrG6Fe7SmWJQqul1ZOWWLsyv2pguhtPYUdzgqIuJ8NleEPgOYTiMyfP5/vv/+evXv3qgZGJj8/X5WuhHC5AlsObIzrS/fDc9gT05kDpsYcCWqC3RAAh/OQlHW6IMgo56mfMV2oWiBVFsQAVf6DvoyBaPG9EIXela+CwZeXzZ7Pys1zWLbhT/ILsn2HmQLo0ukKenQfSXTUyZATijbeJQqxCm24Tmw7wtXvs1shvGkUBGDF598tiNOaFGElxH0eQdAxXchLJ9xTZVMTKAjk1o1SdyKI7dLRNPXol1I8U5J0HG9fLMgrvtEF2T5fzd79clKDIqh17ADWlCTSO3Xn6Ijr8QSe9AllmZwCF7rjaWx84Bn2XzWW2oJIpShMrRQfFf0UUYhbKeKdMOVtEj5/j0bL57H/z3k+bRWFaKVFuHay4COKvlhLhbCrKCxaO0otkN4oXj3pp8iPOYnSFxHFskXBXJdbfc5RwvtlULxDep3o45T+WRqneI5FP61QeBYbx6pD8izdcfyM6UVfNDigdBH09By1rx+naKc2H0gv+ltntxESHgy6M1+/HIVweY5QjihOLwqopwv3qXGt4glkoj8p+tOi0LtImuJbqI7wLop5xYSp77HSVxfb9CDhO6jALoivCs91iMJO5fl6KrmPQfMHqoZ9+/Zx+PBhTCYT9evXL/pd2T8A6j4CG/B369u4bv3bdDw4nx0Ne3M8onFxWuFb3HNQ3UdAKb6kThTxVtRXXtlL27qXkGPPpF+LESV9FHHbIzw7os/uVG+boovbcZ0giG0JV79jAUId5Shqe02c6NabE916F+2zmg0oczMJ4cmDgo0EH9yL12yhML4OloDieqbQoW47RMHrUNEOQRQ9SFGnubp1Y++Pf2BKOUbYf/MwZGWRku3ilEhMy+uH4qxdl/Q778fWpp2qXhHr4HCD2ucRRb+z8tUrsMQ6SklYoDqvPJt6Ba7RoM5bWd/bRB/o5PXJG341usREwt+YRNi0nwlev5r89z/C0KVnUVqn0H8gVjWiALh38BDVt7/hpE9k/ns25p3b8bRpq7BDnbfYlig3xf6j8oqvlyW4XhriN67SJxLt0OvU22V9a5an3NLE1kXKKkf0+3SKi10Rm8tLiW9+RdMq3rN8p/o5Noh2Cr690icUny2RsMAzT14vS2xd7DcU+1GL7PPTdTzngZH+/YuXku/cuVO1XVBQwPbt2wnzU5y9ymbNmjVER0eXme7Uioey+Oqrr/xh1gWDLMvMmzcPKDkwUiqSxD9tbqNL4r8sb1J9ISFaxnXkWE4iO49v9A2MXOh4vTSZ9D8CDh8k4PBBWLIAWZIo7NiFIx9+iSs2vtTDk8fdhSXpMPE/fUPTpx4gIy4C2+ChVWS8D2/tOsUOqsuF+YP30aUkE9TTN/vy1KejJySUtJdewzl23Jkzk2WinnuK8C+m4Kpbj+Rvf4ZLOp+dIZKE89rrkQMDCbluFNaPPsA78io8PXuWfayGhkaV429/ADSfQOSc/AEBWadnXb1BrKs7ECQd3qyCsg+qoRxK3sU/S78FICw0ht7drqZr+0FYwi6+Faohhw/Q8N8Z7Bh7HxBUZvqKklOvETn1GpGuGFg63TdeVrPWZDWrPN2yqKULSPj8PQDSb7mjqCM95s9fafTyk+icTtDpkCUJd614Trz5PrZumh9RE9EXFtDsk7eo/fcfGHOz2TRnGbaGvk7b2F+nEnrsMMcf+x+y5cwddRo1A80fqHxO+QM9e/YsV/j1w1GtWd1wCDnWaI6HV00YIZ2ko0fjQXRvNBCdVLkTdSodWabOgtnU+W8O0RtXYcrzaZct+m0hnqaVGyLMWas2qTeOR0LRYbxvN4Eb1hK4YS1hs34nY+xteF5/HTnw3FdZVCs6HTkPP46ud0+CbxuPPjGR0OFDkUaPIe2l1/CGhVe4CE/XrjhHjcY0fRrWt94gf+qPfjBcQ+Pi5ZwHRhYvXowkSUiSRG5uLosXLy6R5rLLLquIbVVCnz59aNy48VkP4vTu3RurVXNmy8PWrVs5evQoZrOZXr16lX2AgnxLOIta+GaUVlfAoJaxHZi/Zwb703Ygy3K12VFVBCTuJ3inbwn50fH3ELlxDbLRiHXbZiKnfknh48+VnoEkcfB/r2DIzSVm9gyix15H3m13kvPE0xBQDR09RiN5S5Zjfel5jD/+oBJM0+fmEDr1a9LG3HhGTRTz5o2EfzHFl9XRI0RNeh7n7DnlMsE19EpsDz2CHBqG51ItNIaGRk1E8wcqH4fDUdQRUtEZspLsRT7fOyeA5g070755b1o0u4T2rfqi11euPldNpuPHr+IMDKbFr1+SM/Hp6janymjw5YcAFHS5hGyFXpvkdKK3nZz97PEgAabDh4h77AEyl22qBks1yqL+tKk0/Pnrou221w8l6fb7Cd6ykciF/wDgjK9Nxq13V5eJGmeB5g9UDbNmzQLOzR9Y2uxaACQtpHC5CT60n27PTyja9hhN6F1OrClJRC2dR1q/QRQ0alpl9tibNGff7P+I/vwjwmb+TtTUL3Hu3UHWb38gn63+TA3E3bM32es2EfDS81g+/5SQaT9jOJ7Msd9m+iV/++NPYJo+DfPv03FePQrnyKv8kq+GxsXIOX99jRvnm2H93XffER0dzZAhxcLUAQEBNG/enFtvvbXiFlYyixYtKlf6v//+u+xEGioSExOJjo6md+/e5ZoNAoAs0yB9O4eiWlWOcWdBVGAcTaPbYDEG4JE9nP/dMKVT2KARqYOuxNawEYfun0hWsAV9ZgaNRg0h97Irzi4TnY59r7yHJzCQWr9OJfirzwn64TsO/f4v9nYdKvcEToNcpw72L7/G/t4HSA4HqTk2kCH0p+/IGXMzxlJiAjtbtMLeph2WbT4R1NwxN3Eu0d0LJ70GgPHkTFApMRHJVgjNyo6nq6GhUflo/kDlM2vWLDIzM6lduzaXnuMgscWZz6X7/qBu9l6+6/zceT84IkkSQ/veRnh02fprFzrbx96LMzgEj8lcFKv7YiD56jGEbd1A4LrVRH05hfTb7wXgxOibMGWkkXrlNURGhhB/241YNm/E1rlbNVuscSZSLr+SyA2riFm5GABDbg4N3nmlaH9Bh87kDB1RTdZpnC2aP1D5HD16tCjU9ujRo8t9fGhhGnmWcGTMZSf2Ax6vhyW7ZnIgbSe393rqvF41klcvgYNX3UjDv35G8nrRu3zhoy550Ne/1+jjN9n72PPsGTW+ymyytWnPkQ+/JPPaG6l3762YVq8iYvgQsqb9DrFxVWaHv5FDQih4+10c116P9Z67SH/25aJ9lpl/EjzpBRyDhuC+fCj2jp1VoRfLwtumLY5778c85SOC7hhPTv36eDp0rIzT0NC44DnngZFvvvkG8DkOnTp1KtrW0BAZOXIkQ4YMISsrq9zHNkrbzDUb3+doeDN+GfAcVIMTYjKYue2SiVVebrWh17Pr7U/RORSxfCMi2btwtS8ooyIWpT47i9DNmwnct4vCxs3IvrRP0T7ZaOTA82+iu2404S88iy49DXurNlV6KiUICkIOCsKr88UEz7pfrVsT8vYbmHZsw+v1Iskytl59yb31Do79/AcYDehPnMDVpGmpAyOS3U7ApvV4AoOwt21/+kQuFwE334hu2zakN9/Gcevtmoi6hobGBc/XX/tmUo8bNw79OYpsenV6Wh1fjdVdQPPUdeyKPX87id0eFzP/+4J12+Yx4bYPqBXTsLpNqlbS23Qq+vuiGhgZeT2mtFQaf/wm8S8/Q16fATia+MRyj97zCADuMCtpTz1P0MJ55Iwu1uaR7DYCtmwiv22Xot8C9u7CFGTC2aKV5ltUMbZadVj3wVSCEvcRdHAfUUkHCTiwF1dEJMevuxlD22r2gzU0aghTp05FlmX69OlDo0blC4cleT1cvfE99F43M3s8TFpY/bIPqiC59iwW7ZmF021n2b5/6NO0asNE+xW9nk2PT2LfdbfS6tsPMWVnEb1mKba42tgaNKIgoQknBg2vFtPye/Xj4C8zaTz2GoybNxLy4P3k/jK9WmzxJ+6u3TiyaJVq4MO4cQPGfXsx7ttL0Efv4Y6NI2fMWDIefYrSlUSLsb3+JtK+vZjmz8M0fx629r4JqPq9e9AnJuIcdJaTWjU0LnIk2Q8K6Q6Hg5UrV5KcnIzHoxZnufnmmyuafZUhyzLTp09n0aJFpKam4hWEi37//fcqsyU3N5fQ0FBycnIICQkp+4DzhMnvLVP/cKB4sMSTmKPaZTB5uWX+k0TkH2dNsytZXE+tMyIpxUVN6gETb7paDBNBeFJEUghv6WLV8SwlQQCthJiqQlxNChIEhgKFRk0QSJUiBVFKhaiQRRA/tgh5i8LcoriRUsBKFEsT04qilYEKgdAS5QSZiPngbcJ/+R7TsaSi37NfepW8+x4sIYiZlJYPsowxPQ19bZ8+iWS3UW/SM9j+9zSeWsWaJYGCMKlgNhbFvRBt1gtCUZ5ShDnrRqtjl2fkOQiY+g3hD96HiHPuPFK79FD9phM6GvRHjmD5cwbmJYswr1qBdDL0hX3ESLJeedOneXKSyGAzZGdjvGEM+pMhZTxXXYXr2++QA9TPnniOBkH4t7wCaarzEt4JUaizqhCfzbJEvJSUW4xdQVlCXZUlkFYRYXJ/l10eO8pDec/pbAXlc3NziY0Ir5J2UfMH/M/u3btp2bIlsiyzd+9eZs5RiyHLW1PV29kK8UyhHbpk/a/0SvyTjIBaTO30NK5AdZ3uVYhW6wTBYlkU8xNEBUWRCV34mcOjyLZShNop2cZLSv/BasQre/ly+nPsPbSRmIg6PHjDe5hNJ48RRNFR2lFCpVPwNYT9ZuEc9Iq2VhaebYPQDuuF7SCF/yCKVtts6mtbQpxd2LYq7HIJ9yUsTH3fQpWi1R4PEUvmU2vBbDK69CDpymsJVtjlENo3USDcLYji5hQWPy/ipbUIPmCAIALrEsRmlWK1ok9jNuoIWb0cna2Q7H6Xk688Z1mm8eSXqP/95ySNuok9z76hCt1aP04tJn54fwrNX3+G2Hkz0TscrFmyBVd0LABNH7+XmDm/44yJJWPoVZzUHbt1AAEAAElEQVQYfRP2Rk2Kjg0XfFGrWRD9FpphZTOdJgiPi9dLFNNMSlPr/7RJiCj6WxSfPZ6l9t1jw9V+sPK+FgrPi3iPxc9bUUxU6T9l5qkFwgOE+5aZpxbyzRREz4NKERAVfehQQeg3V1FXOd0e8HqLOs4KbG4MOVm4g0NBpytx38S8nYpnMSFO3VbkC9crUsjrSGq+ajtA8T0i+mkWwV90COK9yscnWqh/bUJ9Kwr/libGqvy+yM3NpXZ0pOYPnKe4XC4SEhJISkri22+/JT1LEK0/oJ5MKfYRdDy2kMs2f4fNFMTnl76G3VjsA0hC21miT0CBLIgOi2G5pFB127kubTkzNn+FSW/mscveItRUrBWhE9v7cGEanSgcbBW2Fc++IUKdV6BQ/wcEnrlNE7/xxY4+UTDd5vQguVxIXg9es4UAhZ8SIuSVX6j2ecRvb/Ebrl5M8X05mqauY8Q6OViow0OPHCTsntvJfn8KctuTwuIuFxhL1hGhgp15gm+mrLNKE4g/HWK/htJup1B/mYQ6OUNoO5TX3qDXQWYmuv8Wov/zT3Rz5iDl5QFgm/QqBQ8+oj4Hkx7d8uXo169Dd+AAHDiAlJWJ/Z33oWULrP374nzzbTwDBlDocGOZ+i0h99+D7dbbcb/7HpiL63yx7VCVU8Y3W2ni4qI/UFPmZVSl6Hl5yBeeU9GPUVKR7/KyqK7rIfpp5xoW0V/9AxW+wvv27aNp06Zcdtll3HzzzYwfP77o3/kQSkvJQw89xNixY0lMTCQoKIjQ0FDVP43y4fF4mDVrVgkH8my5dOfvROQfJ98SxurmI0hI38pdyx7nsQW3c9PaSYQXHC87Ez9hd9nweN24Pa6yE1/g1Hrxf8ROfq1oUMTdoCEF14wm754HfB90p0OScEXHFG3Wf34iMb9OpdaoK9Glp1WF2WXi7Nad7Dcmk/3mO7g+/AjPVb44nYZ77kYqPLNTDRB+21hCn38ay38LkGw2PLFxyHo9lr/+JGrk0JLXJSwM1+w5uN58C9loRP/HHxhee62yTk1DQ6OcaP6A/8nPz6dTp04MHz6cJk2alH1AKWyoPYBCYxCRhSlcs/UDDB5n2QfVQHSSjjFDHiMkKJLUzCR+Xziluk2q2cgy9X74gsu71KfzY7dT+98/afvy44Rt21jdlpVJ1LzZtBnWhxbjrqHZ3WNpOWYY1iOJxQkkif2PPsfan/5m/yPPnj4TjwccDsybNtD59lHEz5qG3uHAHlsLy9HDRclkgx6PxYop9QS1vvmU9kN60vKmkYQuK194II2qQXLYiX/lObo2iaH2h28V/a6z2+jVqxV9O9aj/hcfnNnH1qhUNH/A/xiNRn755Rduuukmrr/++nIdG2xLp/f2XwFY3mo0HsnA8K2fcPuKp4jOO1oZ5hbRpX5f6kc0welx8PeOXyq1rKpENhrxmk8fDyHkv3nUf/geLHt3V6lN7qbNSF+wFHfr4lV2Qc8+Rdi1V6NPTCzlyPOIiAi8o0bj+uFHco8mY3vtDQAsLzyHfsvm4nROJ6bnniVgQD/MT0zE+PlnGBcuAJ0eOSgQQkOxrViFp1vxCmrZYkGWJKxff0nAZf2QUlKq+OQ0NM4vKqzw+OSTT3L0aOU2QlXF999/z++//67SS9E4dxYvXszw4cPp2bMnS5cuLd8ooCzTcf9cAFa0HIXTGMCQHV8R6MwFoHbOAS7f8R2/dn2iMkwvIteWxcKNf7Bqr29m//U97qdTi36VWmZNxpR6nKivPyvaPvTtr+iHDAa9HsPePUTeNZ7019/B0blrqfkkP/A4oSuXYtq3l4hJz5P+XvV3BrmbNcfdrDkAlmAznhtvRLduHbqDBwme/Aa5z754xmPzH3iYwC8+xT70StwDBuBp1hz9ju2EPPQAeXfff/p4oTodnkceAYcD47PPoFswH16eVFmnp6GhUQ40f8D/dO7cmbVr15J3ckZcRXAYA/ij9X3cuOkN6uXsJSFtC3vjupR9YA0kODCMG4dN5JNfnmDDrv+4ss/tBAVonW2nI3TrRpq/o26Ljw6/jux2nQk+wzE1AX1BPi0fuQMAWadD8noJ3riOhE8ms+O1j4oTShJ5rdqdMZ+I114m/MN3irad4ZFsffMTsjp1x6qY9brvtQ85PGkyoSuWEDPtR8IWzSNk3SqCN6xh1zfTYOAA/5+kxjkTMeMXYr78GIDaH00mZOVSbI2aYjzk6/yTvF4SPnydA506kdenf3WaelGi+QOVQ48ePejRo0fZCQXaJC3H5LaTGVSLzQkDaLNzHi1OrAWge+IsZsVOKCOHc0eSJDrX683hzH1sTlrJNW1uxWSoGo2T6qL+Q3djyMvFnHiA9J/mVG3hir4jKTOTgO++QSosxLRkEQWPTvStqjBfINffbMb54EMY1qzGsHBBUbQJw/JlhNxwHbqsTAA83brh6dsPT614XIOHINerhx7Aoh7Yclx7PTlh4YTcPh79unWYH5qA/ddpVXxSGhrnDxVeMbJs2TIMBkOReFaHDh34+eefiYqKKvrtfCE0NJSEhISyE2qcFStXrgSgXr165V8aJUkcivMtm2x43Cd6vSJhBIciWhYlWdG48sQLbc4C/t7yE2/MfrBoUKR57Q60rNO50so8H3BGx5J+yx1F2w1uuY74lglE3DWe2Mt6Ydq6hYhnnii5llLMp049DrzrG2AJmvFbjVk1oiIkBNfX3+AZMYI8YTmriP3KEWTM+peCu+/D07wFSBKeZs3JmvcftpFXn/E4ads2DJ99CoC388X9bGlo1CQ0f6BykCTJb+E/Wh1fBUC+KYSjEc38kmd1ERzoC8dh0BuxmALKSH3xkte8FYk33120nTRsFNuee7saLTo7PIFBJN10O+Dr5D5xw3h2fTONlCvPXnBYl55OyFSfRo/XGsDxQSNY8/0ssjpfetp4FbLZQnb/Qez9ZCqbFm0gv3V7JK8XvKWHltWoerKvuJK8Hr2LtoM3riNm2o+Er1tZ9Fta38vJv+TS6jDvokfzB2oWiVG+FQRh+ceJyEvhQFR7joU2YkfcJeyoVbnvSHr+cf7e8TMAHer0uOAHRQASP/2Ww6+/R8rDlTsZtSzkiAgylqzE0acfkt1O0CsvEdm9M8alS6rVLr8iSRR+8hmFX3yFHBUFgKdFS6T8PLzx8ThenoRtyTKcL72M8667kevVKzrU+Nab6DapV886Lx9E9px/ATDM/AvpwIGqOxcNjfOMCq8Yyc7OpkWLFgwYMABJkjAajVx33XW88sorvPrqq/Tvf/7MbHnhhRd48cUX+frrr7FazxxTWuPsWL16NQCXXHLJOR2/vNVoGh9bT9PkddRO382muv3ZVKcfOtmDV2dQa4z4keyCdD5fPIn0PF+orvrRTRnc4QYaxbYs48iLAEki5aU3yBh3OzEfvE3Iwnno09MJnP4bAPaevUn95OuzCiqZ36kbjnYdMG/ZRMgP35L90OOVbX258fbvj7d/f+RT8aSdTjD54phKBQVYf/oeV7sOuLqoV8hIubmEDR2E/aabcd1+t5htMcHB4HTibd4c9/+erqzT0NDQKCeaP+BfEhMTCQ0NJSIiouzEZ4PsJd8chlNvZnaLO7CZzt9Y6wCHju0EoG5cUwyGsxPcvBjxmi3se+gZ9j30DIbkJHTumh/eVHLYMWZncfCJl3DXb0Ctr6aQfNcEnLVql4gvXRreqCiOLlqJeed2bD16cyDbXfZBJ3HGxbPr61+JnDuL3Ev7cCoqvnH/PlwNGoJZe+aqE09EJAd++ANXQQGhK5aiz8nCdDwFu96E12TGVj+BrG49CT9DqBuNykXzB/zL5s2b+eWXXxgwYAADBw4s9/Ep4Y3YV6sTTVI2MGDzd/za9hF+6PpM0f7KlDXItWejk/TUC2/MNR1uq8SSag75lxYP2lJYvW2up2kzsv+ag3nGNIL/9wSGA/uJuPIK3LfeivuNNyE8vOxMajphYbhHjIST+iVyZCTZi5Zh7Nge9KfXA9XPmI75maeRX3wBz2UD8Q4fiWPwUOSICNxt2uIedAWGuf8SMHwYBTt2Vd25aGicR1RYfD0yMpL4+Hi2bdtGaGgokiQxd+5cBg0ahMvloqCgoOxMagg2m42rrrqKFStW0KBBA4yCuNPGjVUXw/h8F1eTZZmoqCgyMzN57uMZJDT3rf5I/3efOt3xYiEub65aoEoyGbh8/RfUyjzAvE63c0yOVx9bUJxeFkSDJEFISxcifEyIAuonxTILXQV8sOI5smzphFkiGdHyJlp37ate8SIIgqq2BWFRBGFJQgRxdkFQXW8qtssaqZ41GiAIGIriai5BTNSqyCtAOF9ReFQU+VYKkYnCiErxR8nlInzTakIWzsMVV4u02+7BYFJf+7gFcwj+4B3s/QaQe9tdeONqFe0L/PUnIu+9A3dcLVI27iixHNYsiJ7aFaKNgcI9FsUhRfHMHMXzIoqWiwKyJoN6v+XktTSOHuWz4+VXkNJSCejXF298bfIOnIx1Ksvoly7F8twzGNauwRsbR+6GzcgKR60gIwdcTuQw32+Be3bgrVsPOSzMJ2hms6FLT8Nbt14JEbvSRLnEeyie/8VAecTVyhIxq4gQWU0VeasI5RFuL+vYcxV6r8p2UfMH/MuIESOYOXMm4x99lT5DfLPk06fvUKXxHM1VH6QMoSAIjcpZvsFqk9uG02AtIYLutSnE161Cu1vW8yaKASrbaUGVWicIGEtxgeq8CgWf4Awu95/Lv2T5ttn0734tQ/qe1OcThVkVbbpoh0kQZtUJE0e8QjtuVAiAOgTfyyqIvooC6kZFOyQKs+vKaLNcwrtvVNwLg3BOQpNewhcJFZ8JRXpRHFqWZQy52UguF67I6BJi2Q6Fb1HWOYjC7gHCoEKR3+L1EjztZ6Jefxmv2UzSzHkc1QehKyzAGxB4KkmR8TqnA7PLAV4P7oioIrtPUT9WfY8LBDHt5Az195bSz7EK98nt8WI6nkzbwT3wBIVQOHYceTfdgudk6I4Cu/p9Ul5bpyBcGyWIE4udkuLgjzJv0Y8Tr7UoepuVX/ys1opQ+8iivyQ+L2JZymdR9B9FQd1A4foFCiLKyvskrpBPy7GfMS2onyex3Ea11PX9ziMnBalPPjg6oZNM6Z/bBVFpvRDStaQYvXpbpzgPsdYSfWhR6Fh5K0q8i0Je4jyqAFPpdcop/CW2ejZo/oB/eeONN3jyySfp3GsQ97/gCyVYWv8AlOwjCHemc8vciRyKa8fsFnfgUqzc8BYKmmPC+y0pnjFvvvr91Av1rGQSnl+XlxybL6RRqDUCfRPFZA+xfRe3awkBH4U2zKjwNSTh/ZSE98ASrq53Q0KKz18UExffbbGeFd9BSVGLi2nFyNDK73Io/l4+RabivoUFqf0lk2CXeLmU9X+k0I+TZ3Mh5eYQMekFQr/9Em9ICGmrN+CNrw2UbA9CAgQ/sJRyy5rbqUxfneLiynZLn5eL8eax6OcUhzqTDQa8w4fj+uBDpF07MQ8ciLdNWxwbN3Lq0kqpqehrxarytQk+n154FkWB+fJQ1vOicWYqs9+ipnCu/Sf+8gcq3HNWt25dDh48iMfjoU2bNqxatYpLL/UtY2zYsGFFs69Sxo0bx4YNG7jpppuIjY0tf/gnjSL2799PZmYmBqOJeo2an3M+i9qPxa03IUs6SC9dANsfWA0BtI3ryvYTG7izy0TCrJHac1AKstFIfo8+5Pfoc9r9kZ99ROQkn4ioadNGgj96n7xb7yD7lTcBKBx5DWEvPovheArBX3xC3v0PVZXp5UY6eBDdX38heb0EzJqF5PY5Dp72vnjg+lWrsDz+KIYN6wGQAwMpmP4Hcng4hgXzMU37DcPGDYTt3kXuIxPJfcp3XTxt2haVYdiwnrBxN6A/ehTnpT0omPweHoXonIaGRtWg+QP+Q5blohWktes39mveTsP5PXtXlmUkSWJEj9vo1XMUep32kVgZBO7bRbdRlxVt7/10KtkDrijaDl29nMavPMWutz/D3qJVufI2HE+mwc2jsezeSV7fAaR9+BmG5GPEPPoAlu1b8YSGkjb5IzwxsZBRPCgCYMjOpMOtowg8sAdJ0duSPnAou9//qgJnXDaBWzbiNVsxnUjB9PbrhL7zJrbLBpF7170UdOlRvT0+GmdEstuIm/IetT6aXPTboQ+/JHvYVdVo1YWN5g/4l1P+QKOW7c85j+ygOL4d9CbZQXHIwqBJZeCVvegkX6ddqNVPK181KoQcEkrGm++Sf821BKSfKBoUuSgJDcX151+4d+5E9/vv6H+fgW7bNvS//45u+XIcC//DMWsWUm6xxp9+1iws42/G9eGHeG8aW43Ga2jUDCo8MDJu3DiWLl3Kvn37ePrpp7nqqqtwOp3o9XpeeOEFP5hYdcyZM4e5c+fSs2fP6jblvGfx4sUANGjSCoPxzKP0ZeEyVO2ycUmSGNx0NP0ShmI1BpZ9gMYZkWyFxL72AgCOTl1Ar8e8djUoZ1qZzWS/9CqmDevIH3tLtdh5tsgJCTg3bcbw5BPo//mn6HdPx04AWCfch377dmSjEef423A89DDe+g2wvPk61hefV+VlOHTwtGUEvfgc+qNHATCtXIH0+CPk/HN+aTVpaFwIaP6A/9i1axepqanoDUbqNal4SMrQ/FRa75tPUngzDkW19oOF1UNm7gm+n/82tw5+muCAMCLD4qrbpAuWet9+otpucu8trNuRBAbfZ1DLCeMxFORT98uP2Df5k9NlcUZi3nsTy25fKLTgxQtxffEJ1lUrsGzfCkDOuNuxXXqaesTrpflzjxC0f3eJXRmXVb7Ic9agYWT3G0j4/H+oM/17rCuWETDvHwLm/UNIxy4kv/UBjqbnPrFJo3Iw5GSrBkUAGjxwO9t69oVgrQ6pDDR/wH+43W6WL18OQKMW7SuUV3ZQ1T3vP6x5n451exJhiaFWSN0qK1ejbBzduqPTVh6AJCG3aoWnVSs8zz6LtHkzxvG3QGAQcuPGyE2bovvnb0hPh4goDLP+QsrLw/Dmmzi1gRENjYoPjDz88MM8/PDDADRv3pxdu3axadMmWrVqRbNm55cYZt26dc/bZak1jV9//RWA9t0rpjGj97gYvO4TNjW6nKNSvbIP8AOFrnwKXQXawEgFka0BZF1/ExE/fod5wzqOHTiKfu9e3PXqq9IVjrqOwlHXFW1L2VmYNm3A0e8yMctqR27VCtes2Tjnzcf42ad469TBedc9ADhvvgXrxMfA7cZx9z1442oRcNstmH7xifQ5hw7Dect4clq2U4UTU2IfcyPmJYuKtgsfnVj5J6WhoVECzR/wH6f8gdademAyVVyotP3++XQ9OIsD0UfO24GRnYfX8/PC97A58jmQvJ32jbUOt8rk6Ng7cYVHEvvvTEzpJ0ic9E7RoAjA/hfeQl+QT267TuXOO/2O+5CcTsKn/4yjQQI5N96MrUs3at0xDp3dRshPU8m7+lqczdSDDHW++4zoxfPwGk1se+8rcjp0RR8YgCE7E1dUTFG66Dl/ELRjC/rbb8VVztUsZSGbzGQOHYnxphsw7N9LyJefEfTjd1h2bscdGeXXsjT8gycwiMKWbTBkpmM8cRxJlkl68Q08oWHVbdoFi+YP+I///vuP9PR0gkPDSWjRrkJ5NT62jviM/ayqM7jSV49GB8Uzdc17NI9pz/huj1ZqWRrnRtBbr2P+928K7r4P13XXV7c51Y7cvj3OVashOxsMBqSdOzGPHAmAt0lTpNQTAHhGX1t9Rmpo1CD8HoS+YcOGRSG0du3aRYsWLfxdRKUxefJkJk6cyKeffkqDBg2q25zzmnfffZdffvmF8JYV69xum/gfLY6uok7abj7r9hoeXeUKRB7I2MUPmz4k3BrF/d2fL1o2q3FupLwyGZNBj6t9R+SQUJxdLynzmPD/TSTg92mk/fYnDKjYwFpl4RkwAM+AAQDIJ2N8Ou9/AN3Ro7jbtMHbvAXm117B9MvPyHo9he+8h/P2OwHw2k8jmCrLIEnYx9yIJyEB3B684eHQ+vzs9NPQON/R/AH/IMty0cBIt37D/JLn1oR+dN09i4ZpWwmyZ5JvOX/CWni8Huat+5mFG6cDUDemCfVjz69JROcj+c1bs795a/Y/5lu9KWqMpA0ZWfR3eb0+Z6MmHHtnCsfemQL44rm76zUgaeZcat1yA8bkJOr37cbx9z+FAcOLjksfOJSYOX9w7LpxZPby+RM6gw5XdHG8b11hIQ3fehFz2gn47jMcHTph738Zuox0Io4cxdauA+mPPlWUvnfvVqT2H8ye/70CRrUGR1m4Gzcl8/XJ5Dw8Ee/aNXiUAyMnfRSN6scbFMzu2b4JNDrtnlQJmj/gP075A517X4HBcO7f9AaPk36bvyesMA2H18jqhCv9ZeJp6dygD4v2zmRP6hZybJlaOK0aiGnFckwb1mPLzUF3LAnrV1/i7NsPV+/Th/u+KLBYIC4OZBkpMwNvixbodu1Ct28vAJ527fE8+aQvbUYG+k8/hYceVU0c0dC4WKiw+HpWVhYhISHoFQJwGzZs4JVXXmHWrFm4XK5Sjq5ZhIeHU1hYiNvtJiAgoIS4WmZmZpXZciGIqwF8/PMm1Xbhn3vUCZQCVsGCEPmxDO5Y/DhBjhzmtR7Hen1H1X6dUvBSFBrNU4uplRBjD1N/MOqifdt5tmzemv0wdlchI7rcSs8Wg5EFMUSdIJiuEl+PFmasCCKCkijYKIgj6hQCj6KoqSi0ZhWuV51I9QqXfIXApSheWJZopVIsUxQ8yxVE7cT9NodaWMtq1vs+qr1eQkPU55BvEwTDjRIht9yE5c8/8IaEkD3vPzytigcHlGKRVj8umxWrwYrEDy4SFrPbCbz+WuRHH8F7chDFV5Y6veGbrzA8/jiuL7/EPUIdI7qE6GR6OoZXX8Xbrx/eKyv2EeAVxAjPJHBZ1SiFt84XIbHyiIv785wqKmpeHnH6cxVML6uc8uRVle2i5g/4h82bN9OhQwcsFgvv/rYSa2Cx+Gjqp+tVaUUBdUkh2uvNsqn2jdn8JvWy97IsYSQrE4bjzVHvVwqXysLzJwliwJIgzi4JneYIYtulpS0hEn/Sfyh05LPu4CJWHVxAZq5vlt6lHYYxvO8dxZ1DHqFxqKsWajWEFbefslfwS0ShVmHbKNjpdRUfbw5Tt+ElhNoFvyVYkVe2ENtdX4YoZ2igcK0VzY7DpS5XFN4WRTpFAWhlmyYKPucLYqIhgrB9iMIui+C3GYVrKQrIi53TRkPxti41ldjnniRr3G24a9chLVwd+iXCrANTcdmyIE1t1UtY588l8KepWOb9i86tPg9b3/6kTp/pO1aG+nGhSB4Ptl592PH+13iCfM9QCQFdweY8m9qvUwqVBy2aT8i3X7H//c+RLVbCAtWrvsR7WlIwXZ13fGSx/ykKs4v31CRspyve83jB5xXF1o9nqXUJRbHxjNzi7wRR5FwsVxSbPZGtrm8MujMLlQuuFqKrpRSUF8sRBYMz89TvW6Ew0cagePbE+5QuiMCL96luTJBq+3hm8fUThesdQp2oFH0H9X0ssJfeDxAuCDKLQu7Ka6JMW5Xi65o/4B8cDgdxcXFkZ2fz4LNf0KRF8Qq90voHoGQfQdcVP9N7z3RyLRF81vhJXPriZ0PVPwBIweo2Ti44syaJ2F+g7F/4dP1rHMrex+DW19Ov+clBbsULrYsSBqMjhT4B8TMrQr3fElNcp0lCXSC28eK3pFXRjgcL7b34jR8pvK8eoZIKVtQ7wULb4XSX3k5bzWf+NhePNQhK7l7hpJT9C3lC34PFZACvF8P+feiPHSU0LQXTxMeR8vJw3zQW/Z9/IOXnA2B77wPsd9xVfLDQ/vmzP6EiiPdBvG8ipX1bugV/0qBX5JWZiW71aqQdO/Bcfz2e2nVAljEPH4Zh7ly8vXrj/Pln34BKBTlXMe3ziQvhHMvzTe9Pyts/cKb01S6+fujQIYYPH86OHTsICwvjm2++4dJLL+WOO+5g5syZ52xQdfLuu+9qgmp+4JSYaEXpdmAOQY4csgJi2Fq3DyTnlX1QBQm2hjGk4438vuYL/t38My3rdiLcooUTqDCSBPqzcDx0OnI//xpdaiqmlSsIvWYE2QuX4K1dp/Jt9DcWCwV/zizRmaNCljE8+CCSzYZp9Gg8u/ciJyScPu2xY5j690N34ADy55/h2LET6tc/fVoNDY0KofkD/uGXX34BYOjQoapBkYqypXYf6mXvpW3yMlY3GEJN/wxZvvcfFmyfAUCAJZir+txFh7Y1c0Wkhv/wRMeQ/MnXRdtRP3xPnQ/eZNtf/+EJDlENipwWvR7bFUOwXTGE9P2HifprOtZ9e3DGxmFp1BBXU/Vqo/QpXxD5yASsy5bQYuxV7P7qV9wRkedsvy4/j9oP3o0hK5Omd93E3s9/gsCKh8PT0Dif0PwB/3Do0CHCw8MJCAigUbP255xPYGEWl+yfBcDS5tfikqumTuoc35ND2ftYd2gxfZtdqT0T1YnXS/TVw7AsW1Jil+GH7wHwNG6MLi0N1+DK1+w6r4iIwDtkCAwZgrRzJ+TmgsWCe/xt6FeuRLdsKebOnXD+/gdy167Vba2GRpVxzgMjEydOZPv27YBv1chtt91Gy5YtWbZsGQAmk4mbb77ZP1ZWEbfccssZ99lstjPu0yjmwIED3Hrrrbz//vu0b9/+nPMxumx0TvwXgCXNr8Orq7olfdEhPv0Hh8vGhgNLuKzVNVVWtgZgsZDz02+EX94fw949hI66iux/FyCHhla3Zf4nKwtJUbfop0/DPfGJ0ybVf/MNugMHAJDsdvQzZuB55JEqMVND42JD8wf8wxNPPEGzZs1o1KgRiaeJIniu7I3phGvXd4TaM4jPOcARXdVokJ0r3RoNYPmef2hYuxU3XfE4ZlPlxkPXqHnosrNp/MQDAHTp3IT8Nu1x9uiFrdul6LMyyb3+pqK01hVLcTVsBA2KJz+4I6M5fus9Rdux4SVDZRVcfS2uRk2Ivf4qAndspe47r5I4aXKJdGeLNyiYzFvvJmbyq4SuXEbwhjUwcOA556ehcT6i+QP+oVmzZhw4cIBjx47x17K0c86n047ZmDwOksMasTO+OxzL9p+RpdAmpgt/7JpKev5xMgtSiQyKLfsgjcpBpyP3sScx7tmFNyIS4+5dRbvkiAhsr7yG6+ZxSOnpyDExJZfuaQBgmDABg60QKSsb56uv4enZE8M//yAdP47h+edw/fNvdZuooVFlnPO6mWXLliFJEmPHjmXs2LFkZGSwfPlyzGYzjzzyCImJiXz++ef+tLXSmTBhwml/LygoYMgQbbT5bJgxYwZLly7l8ccfr1A+TQ6vweRxkBUQy964zn6yrmzmbZ3G5/NfBiA6JJ7OjfpWWdkaxcgREWTP+AtPbByG7dsI794Zw5rV1W2W/4mIwP30M7gnPoFnwADc4245Y1LvjTciK5a1VjSUloaGxpnR/AH/EB4ezvjx4+ndu7df83XrTdiNvrATbl0Zs+5rAKEBEbSrfym7Dq3j7R/vZ+mmP7E7C8s+UOOCwRsaSuJzrxdtB23bTMSnH1J7/BjiHrkP0z5fKJmAxQupc+Mo6l47At1JcdTy4GzXgdQvfTNmY377HlPSkaJ91k3riXlzEnXGXUfjLq1o3jCaps3r0uGSlrTr05HIv6YVZyTLRHz1KdHv+mzOubQ3eZ26ncupa2ic12j+gP+QJIk6dc49CoDk9dDiwFIA1iQMqVLtI73OgEf2hZEzG7XJDdWNo2dvknclcnzFehxffwuAt3ETbFu347plPOh0vkERQMrIQL9mdckYZBc5nqefRrdvH7q9e7CMuhrDP/8A4O3cGffzL1SvcRoaVcw5T8NPT0+nSZMmfPfddwCsXr2a/fv389dff3H55Zf7zcCqZM6cOYSHh/Piiy8W/VZQUMAVV1xRjVadX0yf7hMUHTVqVIXyabVvMQDb6/SoYqdHh4xM18b9GdFlPCajpYTGiEbV4K1fn9wZfxJy7TXo0tPx1q9/7iO5NRj3iy8WC5uWMqNFbtgQx8pVSHl5yNHRcNLZ09DQ8D+aP1DDkWVsxkAMHicF5lDMBTZaZazFpTexLap7dVt3WsKsEQRYgsnKS2Xmsq+Yt/YXurcbQs9OwwkNOvdwRxrnCZLEiRvHc+LG8ZiSkwhZu4rozWuwrF+LJyIS3cl46M7GTfFEx2A6uJ+Y0SNI/fNvvOHlE/p1XNqTvA6dCd60nuBN63A0aQRA4KrlRH+oXkGid7nQ5/tC1eZ36FL0e/S7bxDz7hsApF43lsPPv45sPAuxZLebwK+/wN2kKY5+A8pOr6FRw9H8gYqTmppKWFgYprLCB5ZBvZRtBBdmYjMGcjCmvX+MO0scbhvxYQ0ocOQSYAoq+wCNKsMzZAi2dRuQGzWCoCBQahG4XIQ2rIvk8ZC9PxE5vnb1GVrD8Pbrh23TFkwPPYjcoD7S3n14Hn0UuVevKu1/09CoCZzzwIjH4yEiothRP/X3+TooAjBv3jx69epFeHg4Dz30EHl5eQwaNAiDwcA/J0dQNc7M4cOHWbduHRISKVuDmTzxH6TG6o85SRAulxXCnUrh1T21u2LML2BHeBfkAp/glqFOuPpYheigJ13QHxHEeWRB/E8pvOaVvUWi6H3rDaVuZGOa1mrnS+f2ootVCzyKQu+EKM5JEA81RqvjnooC6gZB1MylEKkUhdcMghi7KJ7pcKvFECMU4mpGIa8CQdxQFBsNUwgcivtEMbAAQeROFMBUCrMVCsLsoYJAXKEgkOpq1ZbC9VsxbdyAMyoW50mRyuCvPqPwmqvwKpwbUcStVG2PEviv8S+r3NP6GSd/LEsA3RWvmGXl9qruqzc1Df3ChcihIXgHXo7OWHr1XlPE1kVqqmhZacJkFREmrwjlvVb+tFOZV1n5nI/CdJo/UDFkWaZty140qNeK7p2GYTaXnF0pCSKdsiAkLCsEfiWh/ZMCjHw38A0k2UvbQ4vosWs6gY5cUsIS2NVhMHKBr42LyT3MCWM0slRclk5oh93704S8BYFwhRirZBDqd3EsW3wXjMXbA9pcQ5/2I9h4cBlLts8kLSeZRWunsWzDnwzsfD0Deo9RH5uqXlHidireG+HaeUShVqEd8gjXNkAh8irOoDQL7bJLbJfdxXl7BRHmEMHHE30PsX1U+gQxoZZS04qCzyUFY4vtFv2SE4IQtygWrRSxDgtUlysKxjoFO8Q485LiWRP9peiwk89eWBNo2YQU902q/SaDHho0IGXGLOKHX4Fpx3YiRo3k0M9/0rpxvCptvuDXikLdOS+9QsC4GwhuUAfvyefScWkvcm64GWerNjhat8Vduw6Sy4lktyO5XAS2ak4gYHO6sWzfiixJHH/mJU6MvwfjyfM0CPc0VxDFDX/yMcK++wLZYGDfzIXE97lEtT9FIeodHap+F+3CtRWvX93oM3dG6oXnpUGsWtMoTRAfbxRfLNCZV6i+lgan2g5RFFgUDFc+i2UJ+SrF1gGaxJ99mFixXBGlcLnoa9aKUIdeS89VXw+94EMrQ7XZneo6IDRQfd/EdyBAUV8HWdR1t0GoI8X3K0Co60Xx5+pA8wcqzoMPPshff8zmmsvvo33zPuXqH4DiPoIcQzgbmwzC7jDgtsuAs2T/gPA+y8LzKyt9UNEfNarfX+WzHagP4sFevqgSOGVkPOjCFe2WuBpBnFgpvAtkqsOwuRVtYESt0jXZvELWyjoqW6jrgoX2Ls8m+AOCP1GoaFvE/oKQQPV9Et9Xsd5xu73gcoHJVCKtV2jDTcJ3q7I/QSnEDiXrjRx9EDRpcfIEnD7fw+kk+OYbcV51tU9I/NgxAg4dxNug6kKvluf7pyyxdZHS8lKJrZeBrnY87mnTiidplkGpwu7lsPFCoSLnWFO+jyvzHErrIyir/+Bs83L6qd+lQsINmzZtIuGkUHBKSgpA0Tb4GpMDJ2Pinw80atSIf//9l379+qHT6fj5558xm83MmTOHwMDAsjO4yPn9998BaFi3NcGB4WWkLp0tTQayKajyZ31uSF3FkmP/MqHvK5gMZnSSrmhQRKOGYLXi7NGzeHPBXKKeegzvG5PIf/cDnKOvrUbjagBeL+h06BIPYh57IwDum8fh/vrrMg7U0NA4E5o/UDHWrVvH9t0r2HdwIz26DK+UMqJyjjBs/RSic48CkGuNZFe9S4v2W5z53LD2NQqMwSyufxV7ojpVih3lwWgw063pZXRp0p/dJzazaNMfHDq+C4cWVktDgTuhMSnTZlJr5GACtmykzoQ74YepEBFR9sEncVzak2P7TobROjm4Ze/UBXunLmVPjJBlHA0TyPjuV/L7Xgaesws/Yl22mKjvvgBAcrup+8g92FauBrO6Yy76vTfR5eaiu+lG3B06nvU5aWhUB5o/UDFsNhuzZ8/G5sgnIjSu7ANKISsknoWdx+NNyfeTdRp+xesl5MfviPjwHbwhoRgOH8IbGMjBhashunwrHyuKac5szLNnYZ49q+g3aedO6Nu3Su04b9BWiGhc5FRoYMTpdHLo0CHVb8ptcQbJ+UDbtm2ZPXs2AwcOpFu3bsyePRurVYsjeTacGhhp27RHNVtydsiyzLwjf5HrzObZf27nhSs+w2osKWapUbNw16uPo0MnzJs2EHzrOPLg4h0cSU3FEl8Lb4MGYC6eTWOY+h3uV1/1zZDR0NA4JzR/4Nw55Q+0aNINo7H0Wc7nysDN3xCdexSbMZCVLa5mc8JleHXFbm1U/jHcOgPh9jSu2vM5v0t3sTeyZnTC6iQdrRp2o2WDrmw7uIrm9ap/0EajZuFq0ZIjn08lYfQwQhb8i9yuDbbEw2Co0Kfb2SFJHH/m5XIfZuvZh5SnXsB4PJmobz7HunsnrvXrcCsmtwCYd+8kdM5fuDauJWvRMn9ZraFRaWj+wLmzYMEC8vPzCQuOpm5c0+o255xJyj1E7cDG6KQLMbCzfzAkHSF24kOq345+Pw1vWFiV2+Lu1o2Cp5/FMvVb9Ed9E2ik1NQqt0NDQ+P84Jy96969e5+XAx8iHTp0OO15mM1mkpOT6dGjuJN/48aNVWnaeUVGRgYrV64EoGWjCoozyjKxWYnUPbKJtfUG+cG60yNJEoPqjWTa/m8B+HDps4zt8hDxwY0qrUyNiuNq2pzkOQuIe+4JrF9+TvCdt5GTkABdula3aVWO/osv8F7aA93KFarf3ddepw2KaGiUE80f8B+zZ88GoFXzyln5GWjPok7mXgB+6fUM6WElQyMkRTTjs95v02/7D7Q/sZwr937Nd21jyQxvXCk2nQuSJNG20aVlJ9S4KCns1oMjH31F9JR3MfTqWTwo4vUSMu5GXF0vwTFsON769avX0FNIEml3TyDujZcAcNRrgLtT5xLJCjt3I3TOX0h2W4l9Gho1Ac0f8B+n/IGWjbtVuO8owJ5Dy0PLOaRrSGpw1YVEyrCl8cnGV4kNrsMd3Z8iwKStFDod7rr1SX/6BaJeeaHot4jPP+ZYl0vOfFAloN+7l8DHHqbw2eexTXySkJXL0K1cifvOO6vUDg0NjfOHcx4YWbx4sR/NqD5GjhxZ3SZcECQlJdGqVSvSj+cTERpbobwC7DncNO9pdLLMvqh2ZAVUXgdvx5hLiLbG8fP+L8koTOWTFS9xU8+HaRbfvtLK1PADBgMF77yHLjUV88w/CbrrDvJXrS0RruFCx/P003ivuw5py2bkvHykggLksHA811xzQQrVa2hUJpo/4B8SExPZsWMHOklHs8Zdyj7gHLAbgyg8KX6aEXxmIU2XwcLcRjcQ4sgkIXsngw78yM+1n6txIQO2HVjF0h2zaNagI5d1H1P2ARoXDbnDryZ3+NUkhBfHdtdt2ojlj9+x/PE7Qc8/Q8Gzz8PEx0FfHm21SkKWMR1OBCDluVcIsVhKJHE2auJLWhWrXzQ0zgHNH/APsiwXT5So6MRJoPfmn2iTuIQttXrxb7NxFc7vbJl7cAYe2UOgKVgbFCkNSSLr/ofJvvVOQn7+gbDPPiLr1ruq3Azre5Mx/bcQ3YkTZC9biXfgQLwDB1a5HRoaGucPkiyLSlEaNYHc3FxCQ0PJyckhJCSk7ANqCK8+/idmk2JpsSBCKO/PUm8rRHXk3GIBx2vWTqZR2hZWNx/Osja+TgLXXvXyR6UIqi5Y/eFVQmxdEF4TO0VsFjc/7viEg9l7kJC4tv2ddKzjmw0kBYtCrILQmFLULFIQJBSE242CaJlZEBtVikcaBAE4o0FtsyiUKAo+WhTHiwKoVkFoLSK45IfrKUQxTFH80STknV2gFswzKu6TRxBREsVCxb4qUajNrhTElEDKyCC8cwd0aam4n3wK96RJZzwPDY3KojLF06oy79IoTQCtLHE0f4m+n6/tYkU53877o48+4oEHHiChXhvuvemtM6bz7ExXbUuC7oGsqO9lh4f47APUztnPnphO5FqjsLjykdHhMAagi1K3vXKeQhBaLxFsy+C2hRMxeZzMbjqe7bHFK1lEf0ESn0+FQKhSiP10SKJQsFHISyEYqm8aWfT34o2/M3v5N3Rs3IcxfSf48govJUyLVehQFnwJKVBthzVSHSbUq7DDLQizewSx9cAYteC1QSFyLqY1CNcnSLDDLdQFOkWjL36MGPWl+y1x4epzyi0ovueiiKko3B4o3CdlaotQjtWkvtYZgmi1KCDucBeX5RBEvEVfTPSBktLUcfOLxNpRn4Mh9TiB06cRseBvQjauBSCvczcS3/gIR70GANSJLvY/MwQh4wDBjzUL/qb4aaic5S36cU63l6A/p2M4fpzsO+8lwOo7J+P6tbg6dSFf+Xy53UT8+C2W1SsI+ut3Ctt34uDMBcXnJYi4hgn+Zr5CCLhQePaa1laLmGflq0XhxWdCKQpeluZKToE6L1EQXHm8+KyJ17Y0xPdD/WSCWDWJs+/twvOmxFKGKHxpgrqlPQ+nI1txvYKEOsElnGNatnrVUO0o9XeT8j4ri83LzSUhPua8aRf9xfnmD2zatImOHTsSGBjIM/f9jNFwss4rR/8AFPcR1M3YzZjVr+IwWPnkyim4DJYS/QMlRM/Fri7FO6mzqutg8SXThVg4mn2Aj1a9hITEg4NeIz68QXECxTOpE9vsMGGyXozQJxCmbreNivrOILRDIWHqvCOFvolgRVuSI9R9XqF1FYXbQ4V2WtmmeYVrZxHaQ3G/2Ceg83h8A/aShCc1lbBXXsS4dze59z1E4LVXq17q7Hx1O6WskkR9b7EtFftESE0lvGtHdOlpFD7+BO6XikNDmk7T3un+WwguF95BV5So38ojNq6hIVLa93J1Ud7v9Kqy+1zF2P3VLmqTijX8impQpAJsq9sLgFaHliHJlf8yBhqDuLXtw3SK64HZYKV2aINKL1Oj4siRkeS/9wGy0YgcHFzd5mhoaGhc9Mya5RO6bNm44rNDTxHoyOHaTZPpv/cX7ln+ONevf4PwwlQcZ6kLlmeNZGWzqwBonLnFb3b5A1mWycnPAMDiJx9K48LGHRNH8q33sP3Hmeyf9A6egECC16+h1ZV9iPz9lyq1RZ+STNzdtxL1wv8I//Cdot9dnbuWmO2iy8sl6qlHCfrLp0GkrRjR0LiwObVaZODAgcWDIhXgaEQzsgJiMLttNE1aW+H8ykKWZebs/hWADrUvVQ+KaJSNwQCShPnv2cR370jw1G+wrF5FzNjrME4qv47V2SJHR5P/3gcAWN95G9369WdMq//sM8yDBmEeNgySkyvNJg0NjZrNRT8wEhERQXp6etkJT1KvXj0OHz5ciRadf2RnZ2O328tOWA4OxHTAZgoi2J5F7fTdfs37TBh0BkY1u4UHe79MbCmhOTRqFs4RI8naugPPE09UtykaGhrnMZo/UHFkWSYoKIiAgABaNPaf7lPjtE2Y3cUzi+tn7ab3/hnKgqmTupOmR1ZT98QOonKPEmjPBsXEivWNruDPLg/wZ/OqD+twJg4kbeO9Xx5m2eaZAARZQss4QkNDgSSROupGNs9cRF7nbugLC4n58WvwnHnlgL+xbNpQ9HfI1K9LTSsJdnm1CS0aNRTNH/APV199NS+88AK33nqrfzKUJLbX8U2ebHZ0lX/yLIWFB2aSmLUHg87IoCbXVHp5FyohLz+PPjMTr9VK7p334A0JxX3jTZVapnPEVThGjUbyeLDePh5sp9e0Ug7Q6A4eqFSbNDQ0ai4X/VSd7Oxs/vnnH0JDz+5jNCMjA08VfnCcD0yePJm3336b5557DhMd/ZKnR28kMbYtLY+upP6JHSRFt/RLvmWxNmUpLoOHXglXVEl5Gv7BW7dYgE/auBF0OuT27avPIA0NjfMOzR+oOJIkMWPGDJxOJx+88J/f8k2MbM3yhBH0PPgXAGmBtVncZLQqTeOkDXTZM0f1m0fSk2uNJDcgkjVNrmRvfFfIrBmCz4X2fL6Z/Qp2ZwEGvYmOjXpxacvB1W2WxnmIo059dv/wF/EfTyZz2NXFWiOyXOl6OgWXDeLEOx9hOJ6CvVMXSivNExVN+muTQZKwrF3N8XsfrlTbNDTOFc0f8A+tWrWiVatWAExePdcvee6P7UCvvTOom7YLnddd9gHnyPaMjczf51vdNrzFjYRZI8s4QuNM5D8ykbC7b0NnsyHZ7SRt3UNkfFTll/v2exiXLUO/Zw/m55/D8WbJ8K7Ozz9H/9PPuJ98Erlx41LbMA0NjQuXi35gBGDcuKoT77rQkGWZP/74A7vdTlxcHJn7/Zf34djWvoGR1G2sYHTZB1SQVccW8de+HwGoHdqAhMjmlV6mhp/Jy8N4wxikI0dwv/oangkTQIw7qqGhoXEGNH/AP5hMpjLj0JeHXGsUKxqNxGmw4pH0bKrTD1mniBMtSSxtN4ZAezYxWYew2nOxOvPRyx7CC1MJL0xlY8PL/WaPP1i7cz52ZwFxkfW55+pXCJC1MFoaFUCvJ3nCRNVPwS89j/7IYfLvfghHs0qaYGQykXfDzUWbZQW3y7vtTt//t96Bw155nZoaGhVF8wdqJmnBdSg0BRPgzKNW5n4OEVEp5dQPbkSd0IY0DG9Gt3r9KqWMiwXb6OtwA1H33QkGA3KQT7tMt3kzsl6P3KZNpZQrR0aS99EnhI6+CsOyJTgcDhBCsHoHD8E7eEillK+hoXH+4JeBkfT0dD788ENWr15N/fr1mTBhAhs3bqRv377Uq1ev7AyqEa+oQKVRLh54+jN27NiByWwl3dMIXYhwPTOEmZmiuGqOQvRUECk9HOwbmAiw5aDLK8QQH6ba70kvFqn0ZBWo9umj1MvzdYKYn8jKpIVFgyK9mw4loXbrok4dXZTwmScIrBOqEEsTBFANgsBlUKzaLpNwzoEKsXG9IO4VFXJmgfTTYVAIGAUJQq0utyikqD42UlGWSxCxE0XLnILQZL1otVCr3VV8vCjKVpagpSg8GagQcRQFHAFwu5FbtEC3fz/Gxx5FN/dfXN98C3FxJdOerxQWgtVa6bNANc6eskTJyiNUXt68y0NpZZW3HGX68oqpV0TIvTLR/IGKkZGRwRuf/kv9Rr7ZoYSohUflA2pxVZ2w35ujDskpBRXHI5eMvnZmQ6srfdsWPRKQcGwjh+Pa4EzMwgPMrHUT1AJ0EpLsIdiZQ0hhOiGOTI65YvGm5JUQUNcJ7XIJFXBDcV1bQpi9hBqysBmkjqkuKdrAXrZBhEjBBFlCCXCYkeIEXyNEOFYhpi0LHcrWWup2t4R4aCki6cGCMLt4/qLwcoBCfD1U8K1sTqEc4fqIQszKeQseryDiKhybL5xzWo7av7QqxHxFEWuxuRT9Frti2+1R+0viOeiEzEQ7akcV34v8QrVvGhygPv+jqWqx9QjBz1P6fcmZhUI56msfYBZE4jfvJO6Dd5E8HprMmIZj+EgKJz6Ju137MsXpjQa1n6e8BgXCsxQiiCiLAuBxgiBxSlbxeYQGqp/xyGB1nZAq1AlKsXpRTDxb8CdzCtRCvqKQu/Jpcwp+rvh8iO+TKPyuvH4l7kOe2g6z8czvhPisieWIeYso76soTizqT4v33C5shynujSg+bDSU7n+aFWWLQsXKbwKAWhHq+kesb5TvtUthh66SJz1p/kDFkGWZXgNH06p9T1p37O27X8o2vzz9AyD0Eeg4HNmSxic2EpyViiE+QX2s0FZ4c8+8SlT0ByRFHRRKAPfEP4deZ0CSdKe1UxerqIdj1XWyXmhbjYI/EBCtTq+sG8S2MkAQY68Xo/ZbVHVprGoXNqFOdrhKb6eDFYL04msm2iXWUeJ3vlfRrptuvRnHyGEYvV5iQ8yQegJz757g8eCaNp3IYcOoFK4ajnP6dLxDhmIyldS5KWsSjya2rlERaorgupKybCrPt3h5+kDOJv25pvUHFfYqDh06RLt27Zg0aRILFixg+/btZGdnc8stt/DRRx/5w0aNGszCOVMBuLTfSAKCQvyad25AFD92f4Yv+76JRy92mPuPFYnz+GvzdwD0aTqMoW1v9OtM1/MR/cYNhIcHY33uGfDnx4HHg/mWcQTUiUe3coX/8j1FeDiu3//A9fHHyBYL+vnzMQ3oD9nZ/i+rGtD9+QeWkGBM3bv7Bkg0NDQ0aghTpkzhrWdu4tevX6uS8lomLuWapW9y9ZI30XtdJfbLkp5ccwRJwY3ZGdWVfFNYldh1tugkHR0a9qRJrcqZKalxceOq34D9s/8jZ7BvMNE880/Ce15CyJhrMaxZXbKnXENDQ8NPLFq0iBULZ/DtR09hK8zze/7Lmo1iymUfsKt2d7/m6/a4OJC+s2jbqDehk6pugs4FT0QEREWBTof+xx+R7HYklwvjtaPR/ee/8Ksi3pFXwalBEVlG99OP/u3f0NDQOO+pcE0/ceJEUlJSqF27dtEsj549exISEsL8+fMrbKBGzeXo0aPs3roKSZLoe8UNlVLGsYimyJXokBzK3MusHb6VIv2bj2BImzEX/aAIgHnqt0hOJ5aPPkC/e5ff8tWtX4fhpx+RUlMxfvyx3/JVIUl47rob59p1yPHx6PbswdT9EqRd/juP6sIw+R3Adx11y5ZVszUaGhoaPmRZ5quvvgIgoVn7Si/P7MznsvXfAJAeVgePpEWG1dAQsbdqw5HPviNz7Ubso69FliTMs2cS0r8P5u++qW7zNDQ0LlC+/PJLALr1Hk5g0NnptJSH7MBYHMbSo0GcC8dyDvH5qteYvuUrv+etoUa3elXR35LTif6jD6ukXP2kSZhuvhnDHbdrgyMaGhpFVLjHecGCBURFRbFL6HSsX78+hw4dqmj2GjWY2bNnA9CwSVuiYuv4PX+rM4+I/ORKm9XmdDv4bfPnyMh0qt+LQa2u1QZFTmJ7/Aly5y7A9twLeFr4Ly61t1NnXA89hP2Hn3Ddd5/f8j0dcsuWOGfNRq5XD92+fRgmvVyp5VUF7hdewPXhR7ifeRZvPy3erYaGRs1g27ZtHD58GKPRTLvOfSu9vM57/sHstpEWWpdFHcaeV6EFU7OP8da0CcxY/Xl1m6JxkeBp0ZK8r6eStXYTtptuxhsWhnPY8Oo2S0ND4wLE5XLxzz//ANC5x+BKKSM+cx9mV0HZCctJsMU3iLMxaTker6eM1BoVwf34RDw33IAcFYVnyBDcr7xaJeXKjRKQ9XoM332H7uefqqRMDQ2Nmk+Fp9jZbDaaNGlCYKB61D4/P98ncKRxwXJqYKR1x96Vkn/z5NUM3PE9u2p1Y1ZH/3eiG/RGutXvz9ojixjefpw2KKJArl0Hd+06uHv2ArcfZ1MYDDjffLt4W4gJ7W/kdu1wrF6D4X9P4T652uJ8xjtgAAwYUN1maGhoaKg45Q80a9MNk7lyRcTNzgI67vF1uqxsfQ2cZ2EuktIPcCLrKBaDJrauUbV4mjcn/5PPsb33gU+rDECWCXz3bd+ASXRM9RqooaFx3rNy5Uqys7MJDAqjYRP/h4rUed2MXvcWRreDr3u/SmZgvN/yDrNGYdKbcXocpOYnE2+u77e8NdTIXbvimvo95OZCiC8cu7R0KURFIbf036RMEe8NN+I+mIjxhecxvP02zhtuPK8m12hoaFQOFR4YadSoETt27OCHH34AwOFw8OGHH5KYmEjbtm0rbKBGzeXjjz/m4fsm0zymM/a9GQB4t6Wq0uji1eJgkiBGrlMIl3uz1SKLDTN2AJAa0RDJrMd9KFO1X1YK8giinbJN3eHuzVbrMejjQtCho0/CEHo0uBxTiEK4VBA4QxAkRBAf1ysEHU2CcKReEEoUxdYNgoibUlA82KrOSxQTjRKE3h2CoGGg4lobBeEji6A9JoqJKgeJTAYdUtJRTDOm461XH2OHdsiNG4Pedx2sggCmKNau3O8V7lOEcL3KQiXiZjjLzrCYGNxfqpdES7t2IbdoUa6yNTROUV4hsdL2l1dYrDSh8rKoiIhZaedcXuG10uyqSrF1Df8xa9YsAJrFdyzyBzybjqvS6Ouo/QFvnrqd1sWoJ9h4U4qFqSVFO9Lp4L9YXIWkBsSzS24GR3LU/gCAs3hbFsRBJUEgXCc8c6L/ICnaeF0DISSIQxBpDiop7Kki0EhSziEA6tRthhSn8D3KCOkg5xfbpReE620Zah/HIPgeVkGoW9nkOwSB6wBBDFkkRCEgHiKIiQcJPp7TLYi+Cv6BXjGoFSJcO5dwbIRRvd/hVOdlUgiGGy2CwLVVbacoPp5vL9aoERcpewTh6fAy/Bal6HekIKZuEe5LWLD6HDJz1fdCeZ+OC/dY9NtEAV2LwldNSs8vmfakMHzU5x8RMek5rF9/yfGpv+Js2Qqz4OfqFPdN9PnybS6k/HzwuJFDwwgUxHmdwrsZE1b8fIlC7aJIsCjc7lH4gDonGNavw/TP3ziHDiOrWRvVBQsXxNZFn1H5DIjPg+irliX0blJcL4/wAIn+t0M4R6UKvEcoV3xuyxJjVwqu24S0RoPwbSOgFFsXEa+PSAm/vxSReL0kirELdaiQXnkNbM7i99RTAwVtNXyc8geaN+qMc3920e/KPoLy9A+Auo+gVuY+zG47haYgsiLr4DmcrUpbwh8Qnk9dsKJeFt45KddJg5DG7M3awd6jm4iv3ahUO1G2D7nqCcGeQEEfVXBv3Xb1OQaYi+1yCO+FXhAAT0pT1+m5hcXvb1Sout4U6y9RyF1s84yKsnRlvPtiHVSC0qsdH6cGRVaswNzfFw3B26s37nvv8WmDGP2vM+u57z4Mb72Jbts2dHPn4r3iCr+XUZVUROBa48KgMp+BiuTlT7H1M52jv861wj0Qd9xxB7IsM26cb8b95s2beeihh5AkiVtvvdUfNlYZ/fv358UXXyzxe1ZWFv37968Gi2o2DRo0oGe3kURF1vZ73jqvm7onxc8OxbT2a95urxu3102uPQsAg06LTV4WxkWLMH/+KUE3jcHcqiXm0BBMffqgmzevuk0rH7KM4cUXMbVri+6vP6vbGg0NjRqK5g+cPampqaxZswaAls0uqdSyTK5COu3/F4CVdYeed6tFAJJO7AegdmzjarZEQwPy+l+Os2ECxqNHiB9xBQH//n32IWztdsInPkzdBnHUbtsMy+LKE88Vsb71BqH9+xDwxmuE9e5BfL9LsS6YW2Xla1w8aP5A+Tg1MNKymX+F0U/RIM03cfJwTOtK8QGaRfhWuezK2FKkn6txbkgbN2K4/z5ITi4zrV7Rp6BbthTTmDGYExqi+32G/w0LD8dz+x2+ct9+u4zEGhoaFwMVbk0mTJjA3XffDfjEN081IHfccQcTJkyoaPZVyuLFi/noo48YOXIkBQXFcSudTidLliypRssuPqLykjC77diMgaSG+XcZa7ojlfeXPcPMHT/w25bPKayEGKUXGs6xN1P40Se427VHDghAstvRrViO8cph6H78obrNKx/HkpC8Xoy33w7p6dVtjYaGRg1E8wfOnnnz5iHLMh06dCA0JKpSy4rNTgRgcf2R7I7sWKllVRa5+b4VNQePbsMra7P6NKoXR+OmHPvnP2xduqHPzaHWuOuJ6X0J1mm/IBWU7h8b1q8j+OsvANAVFBD8SdWI5+J0Ypo/j8LnX8Td3Lf617xzO+FvvVY15WtcVGj+wNmTk5NDQEAAJpOJZo06V0oZtbP2AXAkulWl5N88og0SEok5e/lt9Se4PJUb9vlCRrd6NZ5770M/Z3aZaaV9ewFwT3gQ99PPIMfGIqWkYHj/g0oRSXc/9BCywYB+8SKkdev8nr+Ghsb5RYUHRiRJYsqUKRw4cIDffvuN3377jf379/Ppp5/6w74qZ8GCBRw/fpxLLrlEE48vhfvvv58pU6Zgt1fOoEJYYRoAWcG1/D4bJNZSi9Zxndl+fD0bkpbzzpKn2Hl0vV/LuBBx9+tP3so1ODIycezajeeGG5A8HkzjxqH74/fqNu/skCTcUz7B264dUlYWhmeerm6LNDQ0aiiaP3B2jBgxgjlz5vDSSy9VellJkc35se+LrK4zGCQdeq/r7Ge31xCG9bkVSdKxfvsCZi/6UpuRqlHteMMjSPl5Btl33483MAjTju1E3nUbgd99XZTGtHIF4beOJXjYYEIu7UbwgL5469Ujb/ztALhj48gfV0WRAkwmcuYuwHnlCPD4QkZ5g0PIfO7lqilf46JD8wfOjtDQUDZt2kRaWhoWS2DZB5xLGSf7CDKC/actoiTSGsPwxmPQoSMtNxmpRIA3jbPFc+edkJuL59bbykzrfuZZHPsP4J48GfeLL+JIPITr449xzp0LukpYHVy3Lt4xY/B27AhObfBLQ+Nip8K1zNatW5k5cyYmk4lRo0YxatQoTCYTM2fOZOvWrf6wsUqpVasWS5YsoU2bNnTp0oXFixdXt0k1jqSkJD7++GMeeOCBSvugDy30zeTPDoj2e96SJDGo2Sju7v4MUYFx5Dmy+Wbxm/y8/ENsTm31SGkY5v6LqX07ZKsV17ff4b7/frydOuHtfx4JghsMuN7/AAD9V1+hm/ZbNRukoaFRE9H8gbMjODiYIUOGMGzYsEovS9bpyVR0hnRP+pf71j/J0MTvaZmxHpPHXsrRNYPWTbpz7SDfiuqd+9dgd2h+h0b1IweHkPHiqxzeuIOcp5/HXSsed6PicG+61BNY/5iBcdF/GLZsxrh6FdbnniXrrfc4tm0fydv3YRtyZdUZLEl4EhLwNmiIp25dkmfPx96jlyqJfvcudIcPV51NGhcsmj9QPkJO6kb4G0n2EmLzrbrMqYQ+glN0j+/HrW0e4ubej2LQ+1/j4qLBYEC+5JIiXVJkGTye0yaVW7ZEbtCgWCvKZMJz191gUWjC+LnfyfXxFJxr1iL36OHXfDU0NM4/KiyucMcdd7B161aSkpKKfrNarVx33XW0b9+eVatWVbSIKuOU4LTZbOann35i0qRJXHHFFTzxxBPVbFnNYtGiRQB06tQJq8GqEicXxVPRlzHLQikIphDkC7X5ZoNky6F4jueV2A+gsyqEAr2lN5SSIAbpzSqknlSbCa3/x4Kjs1iWvICNics4mrqf8T0eIyoorjixKKa6Xy0C71Gcf6FCwBPAKAhvOvPUwmyRddVCrnZ7sVii1aR+PQsEIcUCm3o7VLBTFI9UEiwIploEoU3lsUVikF4vQS+9gG7PHgyjR1M4fyHONydjctoh6KSAbGoqgVdfjWf0aDy33AKh6vOTyjvpJjsb3T9/4+3dB2rXLlMErjSkjRsxvPYqnlvG4x06FPctt2D49ltMY8bgXrQI9+R3wGotOyONix5/CpqVR5hc3K6oULk/BdEqUm5p51EekXd/ovkD54iiPdS3FMJqCW2WLlzdPsqi2GjDsKK/lULsANJJQd66+fsJdmbTNn01bdNXk2OOYGaruzlmPXMITlGY1ZMp5C08jzpzsV/jTbep04pCrHb1OSIIPksni+7SciA6nZ4m9dtjNQX4wkQIaSlU+xMoBFMlIW1QpFow3WVTHyuKswfXLu600gntv9lYer1SoDhHUQBcFOY2CYLPemHWp1IUNlAQmjYb1cK0bk/potZK4WpRuLZAuC9BVvV9CzQXlx0o3FNRENwkXK9cQYhbeY6isLRIqCB4HRum9kGUgupeoUOoMCOLOh+/Q+DWjUhuN3q3C8nt5vDkj7E3b6nyIS1G8ZzU1yNXGSrGFEjK2Hth7L2+TqjUfEIDTRibtMLxwms4QkKRPB7qTZyAedqveMffTWG7DnDyOokC4iJKMe3cQrVPHCT46vuTc1TbKsH0k98Xunc+Q1dYQFSzRiqd38LUdOoNvgxdbi5ZDzyM8YXnVB1suYr3y+lW3ydRuF3siytNqFz0vcWrodedWVBdFFsXMQvPXqbwTRERXGy3KIBeltC9KNCspCzf21DKt574LrqE9zgkoPRzVgq7mxT1nlGsLysRzR84O2RZxm63Yz31LSXce1UfQXn6B6DoAzLIloVe9uCR9OTmGJBz85CE72WpjOdV5WsI3+2SQpi9cUxrpEIdcqGv3V99dBFNG3QgMij29BkXqtsCya1+1j2CoHyu4BNRP6zoT6NQF+QLbVi48M1vdyl8ZeHdFusV8V0PCVDnpayTxPfVJLx3Yrsk5qU61mHDOOoadJs24frmW7yDB58xbQk8HgzPPw/HU3B/8WXJDgWPB/3U75BrxZdPSD0goOw05wGa2PrFR0XE1svb91ARKtpXoeRM/QdOP5VR4Vx27dpFkyZNiIyMLPotIiKCJk2asGPHjopmX6WIqx+eeeYZfvzxRyZPnlyufF577TW6dOlCcHAwMTExjBw5kj179vjT1GpDlmW++uorAAYMqLxVAnvjOrOs7jAOhbWotDIAjHoTgxtcwz1dnibUHE5G4QmyCjXdidOi05Hz3Y/I4eEY1q3Fcu/dkJtbPCgC6KdPR7d6FcZHH8HUpzfk5JSSYSm43RgeewxzvbqYxo7F3L4dupMDcueCtG0bpoGXof/jD4xXjUQ3fRruTz7FPfEJZElC/8MPSEeOnHP+GhoaFxaaP3B2vPDCCzzwwAOkpaVVS/nT2j/MLx0eZU3dK8gxRxDqyOSGTW/Q5sSKarGnPHRq2Z+QwIjqNkOjBqFLSSZ07BjMf5cej92YnESbqy8n/suPCF27kpCNawncuglDdib2Js2K0kn2Cq6gUnQ+ueo3IPO2u8m66loyR435P3vnHR5F1cXhd2a2ZNMbhBZ67x0pKkURBBQRQVBBBSygKNh7RVDkQ0VBxYKCSlFUpIggvQpI770HCJCebJv5/lhMdm5IQsgmm8C8z8NDZueWM/WeueX8uHhnbwBKv/2KX8PZqcEhuEqXyf57aBjn3xiF5HIROX4sgS2aIx044AcLDUo6vvIH4Nr2CebPn094eDjdunUrtIgSDpONhQ0eYkXFO9AKQXg9J/45sZxfd33HF8veJSHtfJHVWyhoGtFjRxH20/dFV6eqYr67F8qiRUjx8Vhy0CiVf5jm+U6fN0/3u7R5M8oH72OaMgXlyy/0mRwOzD26Yx4yBEv3bigffZR/+5KSUD78EOnQoew2LVhAgEnBNPTxEhe61cDA4MopcIvicrmIi4vD5fIaXXY6iYuLw53DUrniyuHDhylVSr8s8+6772b9+vV88803OeTKzvLlyxk2bBjr1q1j0aJFOJ1OOnfurBNsK6msW7eO5cuXExAQwNChQwutnmOl6rE6tjvHwmrlndgHVAyvxrBWr9OvwePUKF2/SOosiahVqpL+7XdokoTlxx8IqVgec6+7kKf/BG437rvvxvnRx2iRkcg7dmDp1g2Sk/Ndj3TkCKaPxiOleWa5Shcvonzy8VXbrcyciXRpkEZSVZQvJ4PZjOu993DOX4Dzyy/RahXNvWZgYFD8MfyBvElJSWHcuHF8+umnrF7tn4EIt2LmaFQ9llW/h29avk18YDkUzU2rk3/5xZ6rwe12sWnXEpJSLuSd2OCaxvrXQtIHPoR1/rxc04XO/wPbYU8nf9x9D7N3wjcc/OoHDk2elhmyRE5OolL3jpR77CECV6/weYfOqWdeRrVYSbuh7VUsBy4akvv25+xYj+8o79uL+acf/WyRQUnEV/4AXNs+wZgxY3A4HNSrVy9zlY2vsVuC2Fq5I+vL31Yo5edE7VKNCLWGk5AWz/YT64u0bl9jijtNWqs2qMGhhSJqfjmkw4dRFi/W2/HZxGzp5H/+QfnjD0zPjIT4rImqWvPmuEa958n31FO6gRNpwwaUv7J8PtOHY/Ntn3nAA5hffAFz51uRDh7U7ftvIMb05ZfgFSHHwMDg2qLAobRq167N1q1b6devHyNHjgTgo48+Ij4+niZNmhTYwKKkUqXLh16oV68e9erVu+Jy/vzzT932lClTKF26NJs2beKmm24qkI3+5r/VIn369CE2NhbY7V+DfEioNZwGMc39bUaxx3VbFzK+/gbLB++j7NmDMmcO0o4dOPreCzExuJ94ArVtWyydb0VetxZL9+445s3TrSzJC61aNVyPPorpi6xZIe4BA67e5qFDkef8jnTiBFgsuN5917NDVVGbN4eIiKsu28DA4NrD8AfyZtasWaSkpFC9enXuvPNOf5uDw2RjSfW+9Nj1Besq5COUgp/5Yd5Ytu1bRYcb7qFb+yISrzYolqTf0xdsNtyVq+SaLqH3vYT+Ogtz/DlOPjocZ0xZrEJ4lJC5vxGwexcBu3cR+sevOCpXJeGeftjrNUArG4u9YmU0qzWHGvLGWSGWfbPmQrMsv7lSt46Yz50FhwNH/YYkPfYE6e07+mXgxHTsKFGvv4Rlzy4A1AoVcD5kPF8G+cdX/gBcuz7B3r17WbVqFbIs89RTT/nbHJ8TbAnF6faE3YqNrJ5H6uKNq2w5XNGlkFNSCkfU/DJoVavifuABlKlTUevXR0pKwvXOO9lte+lllLlzkQ8cwNKzJ45FizLDXLufeQZ5x3aUH37A3LcPjj8XorVrh9ayJWrDhsiXtI3dD+S/v8D5yQSkPXs89d58k6fs+p6Jsq53R+F+7HE4EwexsQU4CwYGBsWZAg+MDB48mCeeeILZs2cze/bszN8lSWLIkCEFLf6aIPHSTPXIyJxDJtjtduz2rFixSUlJhW5XfklJSWHGjBkADBo0qNDq6bhjGkej63LAVKNIl8n+h1t1sffMNjKcaTSt2K7I6y8JOPvdh/Pe/sg7dxAw+xe00qV1H75akyY4/lzoGRxZvQpLjx44/vwTLDnHHtUhSbgmfIqUnIxavQZqjx5ojRvD+fMof8xBbd0mfys8ypbFsWo1BAV5wntdGghRRo3C9O03OGbOQmtuDIoZGBgULteKPwBZEyUefvjhQpsdml8OR9Vncqv3SKPk6EU1q9uBbftWsXbzPDre0BdbQFDemQyuTS7FO3dXr5FrMnd4BLu+n4353FmcMWUvmyax3wAy6jckfNp3hP72M5Yjhyg9dlTm/oOTp5HYqWADiOkNm2DzevZNp09hOhPn+XvpYgKXLsZRpx6Jjz9Jyt19wFx0Isalhw3B9s86ANxh4dj/mItWoUK2dFJSEgQaz5yBf8jLJygp/sB/K2e6du1K+fLlC6WOqme2EHt+D5srdyKBotWGOJF4mHRXKgHmQGIjqxVp3YWC2YxalJMCJQnn51+g1quPe/hwT5/B5dqDMmVwzJ2H5aYbPaG5H7gf54yZnpWQsozzq6/h4kWU+fOx3HkHjqXL0Bo2xDlxEqZxH0JAAK4XXkBesgTTY4+i9unrGYDJy0etWBHHsuVYunZB3r4dS4f2OObNR2vZEq1ePbR8DoAaGBiUPCTNB0Egn3zySSZOnJgZT1KSJJ544gk+/vjqQ99cK6iqyh133EFCQgKrVq3KMd2bb77JW2+9le33xMREQkNDL5Oj6Dl69ChPPvkk69dv47kR3yJJEtrBi7o0kiAGpl3MPb6x5iUQpp1Pp0zCIQasfxuXZGJS6w9Is2Qdu5qqFxmUvEUIXcJSUEF0UBK2tRR9Wd5irHs5wHcbxhNiDeelWz7CFKSfUSdZ9bPypAivDpjyIXo7LILQaBn9flUQEfIWYzcJQkKiQKGMvpG3CIKpgV4CoqXC9J1EF4XjLxel/yi86CXoWCpML5ArCmuKYpDeom7Shg1YbuuM1qAhjmXL8j9rUFWzZrPExWG5pRPynj1okoT9xEmIyRLAE19leXXUyQsWYL6jB5Km4fz6a9wDH8yfbQYGfsBbxCwvEfO8xNPyI4hWEFE3XwnCJSUlERYWVqzaxfxwLfkDe/bsoU6dOkiSzKsvzSAs1CO07u0TSKX0HRfqEb3mlNiWaqmC2LhXW6Ol6EVN8bpPZNWF9dw5Ui1Z7ae3GGs230EQakUUahUFs3MRcpWs+nZZChLa6Wih88arnZaiPO2yqqmM+/pxzsQfo1ubgXRo2suTIFzf9uraT9GksvoVmSZBxNoknGu3l+9lFeqxhQrblpzbeFEAWfQPAsw5CzoDOL3eDWLaiBC975UmiM+KdYd7CWaL/kCyIEYv+ldur3Ai4UGi6Lv+/SUKqofY9H6v9+3iLWILEJKLMC1kF3L3vuSiHyceU8SqpbgrVUat4RlUCfK6B6TUFJRZM5EXLEA6fBjp4EEcK1dldvbYt2xDK1MW7VLnbILgI0Z53ROisK/3+TFv3kSa3YWkaoT89jNhP3yHnOYJEeTs0xf71B90xyRep1ThGrtEf9Prmouiv4GCn5+ybBVhY8dgOniA859+jrXDzbr9yWkOLP+so3TfXiQ8/zJJgx8Dk6eMGOGZEI9ZvH+8ya8ouPc5yMtvFe8nu1N/b9pyeTZFlDwEqosj3kLsSUlJVCgdVazaxfxyJT5BSfAHnE4nsbGxnDlzhoH3v02D+jcC5NpHkJ/+AfD0EfTd8D6VLuxmTdUerKyYtUo1zzZeQL2YFbZME97npsrRQmLP87n40O8sPvw7Dcq04P4mT2Tulstntb1SBeF6JAl+S6zQRyCs1rB6+QtBMfo2XRRMF993oV4C62Jam5A2UmjjxTeB97tD3Ce+d0MEYXfhla1rDy/33pRWrQJFQWvdWv/7ypVYbuuM5HDgeuVVXN7PQFoali5dkNesRitfHvuu3Z6Jj//lXb0aS5fbkNLTAbDv2IlWu3a2ui/LhQtYundH/mc9Wmws9n378xzQlxcuRNq9G/ewYUU6+O9NQb67DIovvvzmL474qt/CV/0DPpmOP2HCBA4dOsTMmTOZOXMmhw4dMgZFLjFs2DB27NjB9OnTc0330ksvkZiYmPnv+PHjRWThlVOpUiXmzJnDyOGTC212aNPjfwNwqFRD3aBIUVKzdEOCLCEk2xPYc2azX2wokagqlu+mYBr0cGYsa61FCxx/LsQ5blzWF/7Fi0ibNl1Zmf85jQkJWYMi4eFoN96kGxSRjhzJt62mZ59B0jRcjz6abVBE2rUL02OPokz5Nn/lGhgYGOTAteQP/Dc7tHatVpmDIv6i1cF5DN7yNjXPl8z2WpZk2rfyCFmv2DIHp8uRRw4DAz22xX8Res9dhN15O1Lc6ewJgoNxP/QwzpmzcGzYiP38BbS6dT37MjII7teH0KaNMP21sEB2OJs0w96oKRlNmnHurdEc2rgT+1tvo9ashfPJ4QUqO784mrXg3PRfOP3PFhytPJ1uAWPeI2BUVviW4B+mIicnEfnai5S75UbM+68NEWyDksGV+AQlwR+YP38+Z86cITg4grp1Wued4SqISjlJpQue8N1bK7QvlDpyY9+FHQDUjDZ0SH2FtHcvlg7tsbS/GXnpUt0+7cYbcX71FQDK+2OQtm/P2hkYiGPOHNRmzXCOHasfFNm1C0uP7pmDIo4Ff175oAhAZCSOhQvRYmKQjh9HnpG7v6589BGWbrdjfvYZzIOMUI0GBiUZn8UpqlSpEr1796Z37945xuK83njiiSeYO3cuS5cupcJllm97Y7VaCQ0N1f0rrphMhTcaXjbRI3hV8+y/dNr/E5FpcYVWV06YZBNNKrQFYJcxMHLFyEcOY3tyKKbvvkN5//3M37WWLbPCVGkapvffxzzgAXC5cijpMmWvXIG8Zw8Ajr8WeWKOXkJavx5L/XqYXnj+ykXkzp9H3uv5ADZ98QWWJo0xvfxyVpnbtmL66itMI0ZcsY0GBgYGOXEt+QOapmWG1WzZvKufrYHqZzZjc6USZj/vb1Oumkrl6gCQnHaR84lF7/cYlGzsjRrjrlwF5fhxbJO/yDuDJGVOVpFOnQJFQT57hpCePQgc/gRyYoJP7FLDI3C++DJpW7ejtmzlkzLzzX+TchwOAkaPwjbqHawTPJP3LoyfwPn/TcAdHoFl53bK3HEbEa+/hLzoL7jUsWZgUBhcqU9Q3P0BINMfaNbkVhSlwFHaL0u5hCxB7O7bvqD22X+Q1Sv/jiwo59POUjY4lioR+QjjbJAr8rq1SJqG5HYjT/8p2361/3043xuN2r8/0hahPyY8HMeatah9+mb9pmnIv//uCY8I2JcsRb3llvwbFhKC68nhqFWqoLbvkGtSZVKWgLw8YwakpuaS2sDAoDhT4IERVVX5+uuv6d+/P506daJjx46Z/zp16uQLG0scmqbxxBNP8Ouvv7JkyRKqVMldRLEksGfPHo4ePVro9SyqM4ALgWUAaH7yb4b88yrddn+duQKhqCgdXA6AVEdykdZbklGrViP9w/EAmF99BXnmjOyJ0tNRfvwBee9elB+mXXnZt3ZGrVkTAGXyl55Yo5eQ169HysjA/L//Ybm3L6Sl5V1gqVI433ob7VLYBHn7dqSTJ7LK3OMZNFFLsBCigYGB/7kW/YGMjAx69OhB3bp1qVWzhb/NIS6sMgBR6SVzQEHTNOYs+RKAGhUaEhNpiHsaXCFOJ6gqaqnSpD/zHACWhX/mkUmPVrUqSWs3YB/k0YW0fvUl5ds2J+j32b7zvYtI4DdXLBYynnsBANsrL2FdsQxkmdQBD3Fy9UYc9RqgxMcTNmkC1ttvxzxypH/tNbgmuRZ9gnHjxjFlyhRaFOJEiV1lb2Bn2da4JYXYhH3cuetLHlv3IqVSimYFzRMtXmN4yzcpFXx5TSeD/KPeeFNm6Ef3I49eNo37+edxfvMt6uUE1b36AjhxAku7dmg33IDaqBEA1o4dMHe5zTNpMi4OZcwYpPXrr6hdc48YgWPpMshjIpPr40/QypVDbd0G17ujdKtXDAwMShYF9lRHjhzJI488wowZM1i6dCnLli3T/bseGTZsGNOmTePHH38kJCSEuLg44uLiSC/Bs49effVVKleuzCeffFKo9RyLqstX7d5jZrNn2R/VmHRTEDtiWudfm6KABJo9sT3THcbIf35wPPIoruFPAWAeMAB5zu/6BIGBmfuVUaM8H/VXQkAAzkmfA2CaPBlp48bMXe7hw3FMnYpmsaD8+ivWtm2Rf/89z9Uj7ldewZ6YhH3nLhx/zMU1zCtm7K+zPWl6974y+wwMDAwuw7XoD9hsNj799FN27tyJxRKQd4ZCZn+ZZgDUuLAVSSt5MXY1TSW2TA2sZht33fxosRGyNyjeSCnJlOvUlgpN62LZtAHHbV3RzGZMW7eg7NiedwHeWK2kTfiM5IWLcdesiensGUoPGUjpB/sjFXAGrPLrbAK6dEaZP+/yCTStyCY/ZbzyGo4+fZFcLko9dD+m/fsAUEvHcHrBEs5O/o7k/gPQypfH7T3TODkZEhNzKNXA4Mq5Fn2CsmXLMnDgQMrEVC60OtyKhXkNH+WLmz5kdbU7STGHsi+6CecDi2agIsIWbbTNPkarWhXH7j1kOF1ozZpBRgbK++8jf/9dvldemJ9/Dnn9OswDB+D4fQ5qi5bApcmTBw9i6dcP86uvYG3bBkvzZiifT4JLK0sui9WqGxSRZ81E/v23bMnULl2wHzyEY8UK3M89ly+bDQwMihcFFl+PiYnh3LlzlCtXjipVqmAy6ZdQLhViBl4P5NRwfvvttzz44INXVEZxEpl1Op1ER0eTlJTEunXrWLUwJXOfulcfukKOEUbKBSFF3PrbTfUS+c4mxGZWMLkduJRLYm2CQJpm9xJud+n3qRf0DaoozGYqH6Gvy0sdTLKYOHhhN5M3j6V0YFmevWO8PmmE0BHkLWoqCKQjCJdLYXpRT2uoflvxEkizBOv3RQp5LSa9uJooEBrkJb4uC/ekTRBijYkQBGK9EIXVREFHUXwdtxvzgwNRfvoJzWzGOXMWao8eWftTU7FWr4Z07hyOyV/h9nomXML9IdZlevxxCAzE+f4HSMLxS6tWYbm7F9J5zz2pNmiA6/0PUDt3zvHYLoe0ezfWBvXRzGbsp+MgPDxf+Q1yFwszyB+5CZMVVLQst/R5pS2qa+xdT3FqF6+Ua80fEBn39t+6be3Ahcy/pUYx+sRHhY5FRX9u1GP6j1Rv8VUpQAjP4dVWyKqLYXMfI8CdzrRGz3MyrIbOJxDFVUV1UC1DP0AvCQLZkpeItRwk7BPaR2x6OyXhGL1F40Vx+nTs2AK8fCjxufKuW3Tdg/V2KYKdsiDGavbyVWSz0KYLvodbOH8uLwHo4HC9ILjYZpcSRF5NiuiLZJ0vUeBa9C2ChXPtymXygyigniD4gKJwrbc/JX4UmQSRavGZdgt2eNudLhyTU/BVRcRj9va/vIWnAYLefA3buLEem61WEr78hoBfZmGb8xupjw3DMe5/mWlFoXaxHt0x2e0EjfuAwHEf4OjQicRZszF7nR+3piEfPYL578WeGbtWK66GjXFf0iwJ9hZ937QJS8cOSKmpZDw1gvR3RmH75CMs33wNSYmQno6Uno4WFITj1s6cfHssalRUZn7xOnmL1zuEc5koCNeXj9J/j6T895xnZBDWrQvm9etwVK7CiflLCI3Vd64mpNg9k2suzUiOfuMlgn+ZSfzbo0np1UcnRg960XOHcJ3OJ+m/baKFvN7PjPgMiM2HIqy8EZ8nu9ezKl5jsWxRoNlf2J3iM6I/f+Jz/x9JSUnEREYUy3YxNwrqE5QkfyDXPoJ89A9A9j4CRVZxyybPQyLcQ9nyOvR1acleZQnvGIT7TykTptt2BKokZVykdIgnsoTm5U/Ikfr2UCqnF1BHaEuIEr69vd4FgaX17y+r0J8QKPhEdmeW3eGiPyDUGyL4KcE2fXrv967YpouI7Z9NEL73fs+I4usW77JVFet9/THP/gUALSQEtUMH1B49cD8wAEx5hGhLSMDSojny4cM43x2VJYSekYE8fx6WAQPQrB6/QLJ77g/nB2Nx/7cyUNNynIQrrV+P5aYbQZZx/jIb9fbbc7fFwMAgE1+KxOdUlq/8gQKvGHG73VSoUIGDBw+ycuVKli5dqvt3PaJp2mX/XWknSHFj5cqVJCUlERkZSfP/tCKKiMxBESAy5TTlLh4oknptZo9Dku66grBMBnoUBee3U3D36YPkdGLu2wdp//6s/UFBuJ71zKowvTcqX3GcnZ9MwPnhOP3y2Uto7dph37ET1wsvooWEIG/fDsm5zAbJAfkXj1Om3nKLMShiYGBQIK41fyAxMZEVK1bgvNLVfkWAKps4GNUQgIZxq/1sTf5Zu2U+i9b8yK59azl8bAd2R8mdOWxQNMiHDhJwSSfD1bgJuN2o4RGkPzAQANuMnzyrHK4Gq5XUl1/l4pIVJE36IkuLJCEB05/zCXz1ZSJaNCVk+BOEDHuckMEPY5k/V1+GpiHt24fljh5Iqak4O3QkY+SzhHTuRMCrLyMfOogcH4+cmoqkqsjJyViWL0cNC7uMQT4mIICkn2bijK2E5chhot59I3saScryMx0ObMuXYoo/R5mhgyn1/AhwOLLnMTC4Aq4ln0DTNIYOHcq4ceOIj48v0rrdijnz3SSrLhoeX17oK8/2xm/j3fnD+GnDRNQSuDq1OGN5/TVMfy9GM5tRK1dBSk5GmTMH85AhmO/tm3cB4eG43noLANPYDyAjAwICQFEwP/88AK5XX8N+/ATOcf9DrV0btXv3zOzytKmYb70VzmfXqtOaN0ft3dvTp3FP72xC8QYGBtcGBR4Yuffee0lPTy9WH8kGvuWjjz4C4K677kK5TId0URCTcIT7173NnVs+xVYEuh/RgTEMbf4KjzZ7sdDruiYxmXB+PxX33XfjevkVtEsxRP/D/dhjaKVLIx8+jOXuXlc+OOI9Y8TpRP7xB70jXKoUrlGjsB86jPN/41Hv6pVv0+UDnkEcKSGxyLVtDAwMDIozn3/+OTfffDM33nijv03RsbuUR+uk5vnNBDhT8khdvNi4YzELV0/jp98/4LPvRvLh54/gdNrzzmhw3WJeuwbpUud8+vARJC38G8fN7bF3vAVXhVjcFSoguQomTOxq1BitVGnPhtuNbeTThNx9F4Ef/Q8pLQ1X4yY4ut6Oo2Mn3FWqZuaTly7F0ro1lrZtkM6cwVW/ASk/zkDZuwdHz7uwPzWC9M8mkbJpM/FbdxG/7xAXFi/D0aEjsd1vwbp9a4HsvhK00qWJm/wdmiyTdsttXjsu4/NZLBz/awUXRr6AJkmEff81wd27IhVxR7CBQXFj9erVTJo0iZdffhmHvwYLNY27Nk+gy85vaXZ0UaFWVS6kEm7NzcmEw/y6+VsKGHTFwAt50ybSpv1I+uSvSdm5m9Q//8Ldrx9apUq4H3zoispQ7+2H2qgRUmIiljvugJQUz2TMocNQa9f2rA6JjMT91FM4tu9Au6RdCqD88QfK0iWYhwzO3g4oCs4p3+Hu2RPJbsc0ZLBn4MXAwOCaIo91aXkTHBxMUlISjRs35o477iBcmGH9+uuvF7QKAz9y6NAh5s71zAR7zo+xEy8ElyHVGk5U6mm6bfuSX5o+nS3cgS+xKFYqhlXL3HarbhS5eCw7LzGYTDh/mn550c2gIBwzZmLp3g3p1ClPLFGbDSk+HmXVStxt2qKVLp1z2W43lg4dkNetxeFyoQ4YqN8fEYF7+PCs7dOnMQ8ciOuzz7IN0og433kX6egxnBMmFLm2jYGBgUFxxeVyMXHiRAAee+wxP1uj52BkQ9ZU7MaJ0OpkmIMhj5BFxYnGdW6idFQsF1LOcuLUPi4mnmHjtkW0bmyEazC4PPZevQn45ivM/6wn5OEBnD99qZNeUUj4/gfcFSthiYjIvZB8YF64AMvM6birVcPZpi2ODp1w9L4nu3/ndmMaNhR53yXtjpatSJk+C0JDcbVth6ttOxR7Btg8IWfU1HQCZk4ncPy4TL2P8M8/5cxnk31me07YGzfl5C/zyGjVmvBLvwU98zTmtWswN25GRtPmOOrWx1WuPO7oUlx4/hUymjSjzOODMK9aSciNbUj7YjKuG28qdFsNDIojEyZMAGDAgAGUK1cO2F30RkgSh6IbUO3cVm7eO5PjkbWIk8oUSlUh1jDuafoIMzZOYv2RJZgUMz3q329oj/iAjD/mokpy5ne3++b2OG/plL9CZBnntB+wtL8ZecM/mHv1wvnHH7hffhn3U095dEP+Q7hmrmefQ547F2XOHNTJX2YXgzebcX73PXKd2shHjqB8+inuZ5+9mkM1MDAophR4xcgHH3yAy+Xi0KFDfPzxx7z11lu6fwYlm88++wxN07jtttuoVauW3+xwmgKY0+hxnLKFqvHb6bTnxyKbze90Ofh2xQcs3vFLkdR3TeH90ZySgvzzrMxN7cYbcSz4E/tfiyA62pN887/Y7u1DUP06mKZNzfkaKwruS0tgzU89hXQg9xBr5iefQFnyN5ZbOiEvW5b7vRMbi2PJErT69a/oEA0MDAyuB+bMmcOxY8eIjo7m3nvv9bc5eiSJlZV7cjgy671dIWk/Nc9vxuoq3qGpbmzWk75dR/D4A2Pp0v5BAJav+xlVLTmDOwZFjM1G8oxfSPn4UzIGPoRy8ABSaioRve/EsmolanSpzKTK2jXgLti95Ly9OwkXk0natouUSV/i6NP38pNeFAXn3Hm4b7kF12OPeXypGEFryGaDtDTMEz8jqnE9Qoc+imn/PtTwcM4//Rzxb43WJTdv2Yx8IXt4E1+Q0bqt7jjM69Zi2rGdsGlTiBn5BLFd2lOlYQ2qVSpFpeb1sezZzfF5f+OuWg3l6BGCBj9c4HNrYFASOXHiBL9cCj385JNP+tWWzRU7sb90E0yai+5bv8DkLrzVK00rtuWeZo8AsPrgQhbsnG6sHPEFJlPmYIXpt1+xjP0gWxJp1SpMgx5G+eyzHIvR6tTB8cdctOBgkIBLEW3keXOx1K2D8s3Xl8/XsiWuUe956n/mGaQ9e7InCgrC9c47njSj34Nz5/JzhAYGBsWcAouvV65cOdeR8sOHDxek+OuW4iCupqoqdevWZe/evQx6aAx1at/g2XHRq5PBIcTYFMXUBGFALUXvrKii4LoX4n2lOd3UOL2Bnps+RULj77r3sanqbZctF1EsTBTLPHlRv9tLLMydoNcV2W0+wI/7vwKgZ5X+tK7XRbdfDs8SRJPC9YKflBLE6EUB2VBBIM1L4FIURLVF68sqXyaE3LB65RefUFEATRaE2SxeecsIwuwXU/QhPkRhRFHo3WKSkVJSKNXpJsz795Lw8284OnuuW4AgDqkuWkTwMyMyZw467+xJxqcT0S4NnHjbbc9wENzlVsxrVuOuW4/EpSsgOEvoTifaefasZ1Bk1y5PPVWr4h4wEPcDD0ClSuSGPH8+yueTcP78C1gsuaY1MCgoRSFSdrn9+a1HLDs38lN2bjaXVLHVglIc/AGADh06sGzZMjp1uJ+uXQZ7frwoDDp4+wTBgmhucu6dFepxQRPKS7RTSxRCS4mC2EH6usKOHeaBf97F5kpFlWROhVblYHRDNlW4BVeAvk3TBFFiLV1vp+Z1D2bzdwXhVsmkb9PkKL0Yq5ae5SPJkXoxVQJM2J3pjPrpUdLtKQzo8gINq7fJ2h/tZbfo44i+hXA+TKKdXs+ZIvoagmi1ItTl9BJftwXq68kmai6ULbb53uLrZuHZF0VdAwRRV0XwLwNzEXIPF8ToRR/ISz+XC8l6v1S0KyhAPEb9MXmLgIcG6usVhWwzBFFgpyBA7H2EooCuKLwd+tvPBAx4AIDUXXtQatZAGT0a82uvkvHCi9jffDvLZsEO8b5WVb0doo8IIP88C+nQYdRbb0Vr1OjyAyUAbjfyTz+iNWiI1qgR0qxZWPtlDaxqZcrgevppXEMeQfLWGMnIgCeeJGDKN6ilY0j89XecDRpl1S/YnJNI93+Iouje5+A/wW/p1CmUDf9g3rgBef16pP37IC4OSdOwj3oP5+AhEB6OI+4cgW+/gbt2HTIeH4Zb1UDTMG3dwoWa9fT1iEL3gl3eIukXU/T3Xm5CxpD9/rqeMPwB/x73q6++yqhRo6hatRFDH/XoHeXqD4C+j6AA/QOgf2dpTjc2exIPrXiFYHsim6t0YlGjrPBL2gW9Xd5dX1qqINSeJrT/wupTyep5z/xzYQ2/n/ZM9utU7U4617gLKVxo04V3jlxR0FAS+wwE8XZvgsvpr3WI4Fs4XVnHFGjVvyeswjtIbIfFV3d0WFbZYt4g4T0rvs9UoVtRbGu8CQ4Q+g9kCXnLFmwtPXq2jl9+Qb2zZ+Z+5avJmB97DLV1GxwrV+ZYLoC0ZQtanTqZq0TMD9yP8tNPALheex3X669njwqhqphv74qyeDFqkyY4Vq/J/t2vqlhatkDesgXH1Kmo/frnakdJxJffodeCHSWVgpy/vL7xfdU34au+B1+1iwVeMXLkyBEOHz6c4z+Dkossy2zdupX7+79BrZot/W0OAPvLtmBZHY8IV8ddP1Lr1PpCr7NBVDM6le8GwO+Hf2Lv2W2FXue1hhYcjP3m9gCEPjII+dTJy6ZzdujExX/+JfX1N9FMJsy//0ZQ8ybIGzdmT6wopH4/DTWmDMqunQQ9/gioObxgS5fGsfhvXIMGoQUHIx86hPnNN7DWrIHy3ZScDU9MxDxwAMr8+ZieGZm/gzYwMDC4Rti+fTvLli1DlmVa33CHv83JE4diZWfZ1pwPjEHWVCokHuDmg7MZuOEdguwJ/jYvR6xmGx0b9aJTk95UKVfX3+YYlCBkrxmulg89s221KpUBCHh/DKa/Fvq0Psu992J++SWsLZoTYDFjGjnisj6Y8sknWB58EGuzppjv6OHRHendG7VyZRyffkbG/gO4nnkWvD9m09Kw3HwTll88HY/y2TOE3XYLpk2X8QV9iFauHK47e+IaPRrHkiXYj5/AnpZO6oFDuPreC5fCRWtRUaR+/CkZjw/LzBswdQqRN7UmfML4QrXRwMDfZGRk8MUXXwBwY9u7/WyNh3RrKPMae8IfNTn8NzVP/lOo9bWMbEO3Mj0BOJV0FLexwtMnqI0b43zCswLJ/OCDSDt3Iv86G3n+fNy3dgZA+mc9nD2bazla48a60FnO76eiNmkCgOmdtzE980z2TLKM85tv0aKikDdv9rRpmQVqyLN/8aT56msc06Zdk4MiBgbXMwUeGDG4trFarTRu1AE5p5lgfmBD1a5sqdgBCY0acZuydhTiUtZOFbrRrFRrNDTm7JyKqhmj1vkl8e33cDZqjHzhPEFj3ss5oclE2nMvkrB0JWqVqshnzhDUtTPKkr+zJdXKliPlh5/QTCass38hcORTOd8HpUvj+uJL7CdP4ZgyBbVNWyS3G44ey9mWsDCcU77zmDVp0uWX1hoYGBhc43z3nec9WL/ejYSH56L/VExItYbzd63+fNVmNJPafMDimv0AiEo7TaXzu/xsXe60b9STLs37ExIY7m9TDEoSl0KGAMjbtwOg3tULrWJFAEzz5xdq9crEiZcVpJV27shKM38+aps2OKd8h33XbtyPPgoBAdnzbNmC2rAh9n73kTrKE1pLTknBOndO4R1ATpjNaLGxaLGxHtsOHCDgo3F6X1PTsH35OQBhU78tehsNDIqQBQsWEB8fT1hYKerWaZN3hiLiaKn6/FO1KwAdd/yAUoghtQDaRN3MgCZPcn+TJzJ1SJ0uP4nQX0M43v8A9403IiUnY2l9A5Z77sFyRw+UP/5AbdAAye3G0rEDUn4mYEsSjnnzUatUAUD58YfLT6YsVw7n5EsaV2bPihZp925Mr72GecAAwDPoot7br0DHaGBgUPzwSW93fHw8b7zxBrfddhuPPPIIO3bs4Pvvv+fYsVw6HA2KNW63u/jGzJQkFtUfwLLaffmz0aDMnxudXskDm94jPO1MIVQp0aNyH2xKIPGpZ9h+unBnolyTBASQ8sGHnj+nfY+yb2+uyV2Nm5C6cjWuFi3B4UALufzSOHfrNqR++TWaJGH5dTbyyRO52xEUhHr/AziWL8e+bDnu11/PNbnarRvuHj0APKtGkpJyTW9gYGBwrbHrUhjCxo06+tmS/JNki+ZMcEVUSSbZGs7+0k39bZKBgc9xDnuC1K3bcQwdRsaU7wEwPfcs0rFjqBER2EeMyKOE/OGYORPn2A9xjv0Q14sv4Vi6DAIDs6VzvfMu9pWrcA0ejGPefLQmTTwzec05h77SWrfGNXESqe+PxbxiuaecWrVJ81qh4RcyMgi4pzdBr75M2A3Nsb0/muDBDxHZojHmbVvRJIn4N0f510YDg0KmbNmy9O3blxbNu6IoprwzFCErat/Dlsod+fmGZ3ErnjBIwfaEQlspWi+mGSbZcw5UTWXyslH8uHYCSekX88hpkCNmMxkzf0atVw8pLQ1NUXA9PQL3oEE4v5+KVqEC8p49WNq2QfrnyvpjpFWrCChXFvnwYbSQEJzffJtj+Ef1jjuxr16De+CDAMgLF2IaMxq1ffvs5R4+jPzTj1d7pAYGBsWIArdmR44coW3btsTFxQHQqlUrEhISePDBB3n22Wf54IPs4kkGxZ/Jkyczfvx4Ro4cCdT2tznZ0GSFf6p30/1WPX4L5ZIP0Xv7J0xt+Sp2c1AOua8OqxJAm7Id+PvEPJbu/4OGZVvlqq9jkB1n67bYO96CdcliwnvdQdqS5Wjly+eYXouKIm3R3ygbNqC2aJHjSK6z772kut24mjRFrRB7ZcZIElq7dlnb6engckFIdu0W10svIy9YgLJwIVLzZjh/+BGtRYsrq8fAwMCghDN//nz27NnDrz8f9bcpV8WJiFp82Xo0oRkXcJqyz1AvbqRmJLP/6DbcqovmtUveYJRB0aOVLQtly+IY/xHg0UczTZwIQPo3U9AqVdall7ZuRTpwALVXr+yx1q8AtdcVhtApWxatbFlcrVtfMvQKJl1JkmfgxA3Jn08meOTTpHw4Dq1UTN55C5OAAJzDhiE//RSmnTswea2G0RSF5A8/IvX2Hn400MCg8LnhhhuYPn064z5Y7m9TsqHKJv5q/LDut1bHF9D01DK2lL2Jv6v1xS0pOeQuGMfPH+To+X0cid/LnlP/0rlub1pX65y5msQgH0RF4Vj8N8qUKai3345Wz6PdpDVogH31Gix33oG8ZQuWWzrhWLMWrX79XIszjRmNWq0aSBLOX2Yjb/jHM9HxUghH5dNP0apUQe3m6VvSWrXKzCsd2O/5rYl+Uo104ACWunXAZMLevgOULeuzwzcwMCh6Cjww8vzzz3P69GkqVKjAiROemdrt2rUjNDSURYsWFdhAA//w66+/sm/fPhITE1GOJ+acMJu4uND4C0KBkl0fg1MpnZVfFQXURdEyQUxU8hL9VM+lsbTZg5ReNYqo9DP03PIpM+s+hXrJGZEEAUNxW47OEu2WQ/WCZq4zWcffKqAVK+XFpGekcH7fAcLNEZiqlcoqVxSsFIQ0qRyu3z6vF4Sz1orO/DstPlW3L1QQ/EzNcOq2s4uLZn3oOpz6c6lq+uuQfTVpVl1xF/Vi9IFW/XWwCGKzopiot1CpLEukTP4aU+eOKAcPYnnheZKnTM3cn018VQMsVtxt24EGdrsLZc9uLAvm4x6hjw+q3H8/MlnL4OxO8RizroVNEIh1HD1OYJ/eEBJCxptvY2pzg24miat5C9S/l2Ad8ADyoUNYOnUkdd8BKFUqm4irgUFByE0gXdyfl7BaXqJmue3Pj2hbQcXTvPMb4nrFl9q1a2M5sw/wEisV2lKd4LrQ7lBJLzyq7Tyn25YEIVItMcsnkMIEkVKhbFG4Vec/XHr3J5oiSQyORI1P0acV7jkpJCDH/VJeYseioGy6vj2UvAXlhX3ex3T89B5+WD6OyJAYmldv7/nR+xjFmY6iOLYgkOpK0/sLii3ruqmiuKwgoKsIfp3s9fyKotxpdv0xmRS9HemCKLq3mLQotu4W/CnR5xHb3jQvYV9RMPaE4E+Vj9b7rt5+jOhLiXaIbl26cMzRoVn3jyi2Lg4/2Cz6+9pldyDv2I5atZpecwPIEHwak3APiOdDmurxrRyPPY52++14nxF1124Cb7oRKS0Nx9MjcIz5QDc44hDuCW9he/F8iKLweaETTc5jjCQ4wAyx5dBmzaSgU51yEwEWr5OI9zFqjzyCo25dOHMG04zpqI0bk1q3Ec4mTdBKx4Ag3lw6TP8+SRKeRe+6RTFiUVBezcdCfpfwXiuIr1qYZYn3k4j4LBsUI3LrH4Dc+wjy0T8AufcRiP0DmPX3Z7iShIxK09PLKK2e4dcqg0mzeN6v4t0nh+tXvYn9BWqSvn10nUzI/LtSjao82f4dft3yDccvHmLO1qlsOLKcu5oNonJ0TdyH9KtIZEGsXfJ+NwjvpBTh+O1lgnXbitc7Ok3Ia4vQ92sECv0JarZ3elZ+MXpIeIgV5eIFJJcTV6mYbO2f2B6YvdpWsR6RkED9dXSrVrjfoxsTluQVpjEkCtMfC4l4oB/uihVJLF8Zu+C3BAnHaPv1d08bl5KCZd1azIMHY3rzTewHD3ExzUnpMaNR4uKIX7wMS7u2+mM4cMBjT9WqqKqG4797r2IVlFY3YFq7Bu3jj8l4e1S248+t3SmuFJfvsOJix7VIQfsPCkJ++h6KmgLXvnjxYqKjo9m9e7fu90qVKnHkyJGCFm/gB06ePMmSJUsAuOuuu/xszZWTEBzD7NbP4jAFUDlxL50Oz/R5HYFKIIMrDWVk9ZcJN0f4vPzrAS0mhsQ587D37EXK+E/ylVc6E0fEja0Jfv0VzIv+yqECDWX1akhIyEe5Z1B27cS0bCnB7W/EWqUyypgx4M5y1NXWbUjfsAlXr7txvPIalCqVS4kGBgYGJR+3282WLVv8bcZVE5EWR7mkg5jd9rwTFyMqRddElmQuJJ/hYvK5vDMYlHiUb74mKCSIwFYtCS4VhfnDDwtUnrPvvTj734fzgQH6HS4XAQPuR0rzTHqxfDQe8/j/Faiu6w21XTvUu+/GMXMWrpdfwXFbF8+giIHBNc4vv/zCzp07i2+47cvw260v8cutr5BhCaTCmd0M2DyK0Iz4QqmrQkQVhrV/i15NBhFoCeZ04jEmLX2TjYeL3+qaq0Gy22lwQz3qt2uM5Wg+ND58jBYSwoUZv5D48We5hmXMRJY9AyMhISifTwLA3asXKAo4HLhjPVpcoS+/oNPrApAOHvTUWblytmIznh4JgHXyl5CcXIAjMjAw8DcFHhhJT0+nTJkyBAXpR/ZTUlKw20vWh6iBh08++QSXy0Xr1q2pUaOGv83JF+fCKjK3uScGcZO4FciqO48c+ae8LRalkJbhXi+olSqTPO1HtIj8DS5pMWVIf8ijKxMy+CHko0eypbH160vQLR0IHHB/NucmR3uaNCH1z0U4+vRFCw5GOnkS86uvYO51l35KY3g49p+m4xw5Ml92GxgYGJRE5s2bR4sWLfjoo4/8bcpVUT7xIA9sGcNj/7xIRFqcv825YgLMNiqWrgnAH2u/Jd2emkcOg5KO8uWXSF6rZsyfTyxQee7uPcj4Zgpqs+ZIp05l+jJSXBxSWjr2N9/GfSn8iOm32QWqy8DA4Nrn9OnT3HvvvdSvX58NGzb425x8cTi2KT/0GENaQChh9gtUvbAj70xXiSzJ3FClI891HYdJMaNpGhuOLCu0+ooS0/l4ZKcT2ekkcMdW/xpjtWatdHS7CZz/xxVlk3bu9PyRluZpF61WLn73A2pgIJZ/1mMT+w9cnlUxpqlTPXm8cHbrjrtmTeTERKzffVvgQzIwMPAfBR4YqVatGjt37mTatGkA2O12JkyYwOHDh6lZs2aBDTQoWhwOB99+63mxv/DCC3625uo4WKYJTtmMjEqIo/DEz9yam7UXVpLmMDosCoSmYZnzO9IVzrRIfetdnI2bIF84T2j/vtmcFPuzz6PZbJgX/YXtqSevLJ414G7ZkvTvppJ0/BTOyZPRrFaUefOQxZCAkpQZxkQ6fBjTa69dcR0GBgYGJYkvv/wSl8vFqVOn/G3KVbG7dEtOhlYj0JnCPTs+4abDs2kVt5iG8Wson3LI3+blSqemvQHYdmgtY34aypot83EXwmQPg+KBc+Ik3bb904INjGSSloatVQtsnTqg/P03WoUKpG7eilq+PMqOHWiyjOOtd3xTl4GBwTXLlClTcLlctGnThpYtW/rbnHyTHBSN2ekJyXQirHqh1xdkDWVUr+8YcvPLdKx9Z6HXVxQ4y5Vny9bD7J63jIQuxURPye0m5p47KD2wH0E/z8gzuet/49EkCdNXX2EaPAjS01HLlSdhyjQ0iwXzr7Ox3dcPHJ7wZc6XXgZAmTkDKU6YYCPLZDz5NADWzz7VRZowMDAoWRR4YGTIkCFomsbAgQORJIktW7bw9NNPI0kSDz/8cN4FGBQrfvvtN86dO0fZsmXp1q1b3hmKI5JEkjUSgFD7hUKrZubJacyN+5W/9s4qtDquB4IHDST0vr7YPr7CUA42G0k/zkCNLoVp21aCn3xcJ5KiNm9O+vfT0GQZy7ffYB37fv4MCgjA/dDDuB/1xDWVFy++fLq0NALbtsY0+j3k6T/lrw4DAwODYs6xY8dYsGABAIMHD/azNVeHWzEzu+5QkqyRRGSco/XxBXQ8+Rvdjv5Iv30TCHQm+dvEHKlTqRmDur5KqfDypGYkMXvxZ6z6d46/zTIoJLSmTUndvZeUk6dJ3bodd5cuPilX+ecfpIQElNWrsd3eBfP7Y8Bkwt3pFlyt2+B4823cHTr6pC4DA4NrE1VVmTx5MgCPPPKIn625OiIST6HKJpIt4cQHli+SOiVJokZMA2qVbVwk9RUFakgI6XXqe8JQFQcUhYw27QCIeuZJrOvW5Jpc7dED1ycT0GQZ03ffEX1bR+QTJ7B37sLFH2eiWa2Y5/zuWTmiqrgHD8E+6xecYz9Eq1o1W3mO/vehRkWhHD2Cac7vhXKIBgYGhY+kFTBIpKZpDBs2jC+++CIz3qQkSQwZMoTPP//cJ0ZejyQlJREWFkZiYiKhggBjYXLLLbfw999/c0u7/nTp8KDnx2QhJFqVrPBH6vqTul1yrSh92oQM/baoWukt1C0KVEXrBdC0g/rVH1pG1qi8JtgYFH+adFMwLuWSiKYg9KOm60XMNC9RT29hSAC5VIhuW7okJHbw4h4mbxmLhMSwxi9TPqQSsiCyKIXqhTXlynrx2Wyqb15iaiYhryYIkwaW0guv2UL0gqExYVliaymCOJpTELaPEvJ6C6+ZBDFZUbhcFK0MFPbrhTb1BxwSaMH6x+9E3H8vamAg5zZtQy1bjpzwFmFUVqwgtHsXJLcbR+fbSJo2HWxZx2yb/DlBI58GIHn6TNx39MzcF2DJ3ZlzuVWk06eRjh1FbXVDNqHJ/wRkAz4Yg+3N19HKlcO+azcEB1+uOB3iORDvNwMDb/Ijgu4vO/ISS/OVzUlJScRERhR5u+hv/OUPvPHGG7z99ttUq9yIxx8Y6/kxF38AQNuYtbJEqh6pTyv6A8K7T7ugF8+U6kVnbRzVi7xqSUIbLoh6a+lZbbqW4iQk4wL1T68m0JlMQHoyQc4kjodUZ02F2zOFyxXViVs2owniyd7vbMkkCMaK977Q/mUTdg/Katcl0eexCNsO9VIRLtYdW8r608t5stt7WM02JEEQndK5S1Obq+mvhbfguiKIy5oFAVRLiN4XMZtzft7FLwqXU3/8QULZ3v5FuUi9z3daEFMVRaxzE4QWm1WLcN1MJuHe87I7TBBfDxIEsTOEe00Uhw7wOj/xSfp7PkI4lwFm/bkXxetDvc5XNuH6PESpvc9B6sEjBI59H9tXXwLgmPQ57sFDPOFCFCXbfZyQqn8Ggrzua9FnER+B/Pg0ohB5qHB/iPdTQdwlh+D3FkQUNz92iWlT7fpj9r6OojixRbjGYll2p/6ecHl9JyhS7r57Xnjfi6JfXxww/IGiPe6//vqL2267jQBrEK+P+AmLOSBPfyDXPoL89A9Arn0EYv+A+3SKblvyEuKWVRchcSe4aLu8JpCWqj8mTXjGxDbdu80X/QM1zIxJznqnKeX0/Qma8E6Sy3vtF4+3tL59lIV2KtDLB9CEc2my6d+rpaL0ZaVmCO8kS87Pu9hfEBKo3xb7BDLsWedPlsV2V2+n2D7KXu8wRWhoJMC0ZzdK3Gns7TuSkZZBuQf7EfT3X7hDQjn723ycjZtkpjd51R186XwoS5ZgG3AfWkgIiSvWZob31v78k6j+95DW7z4Sxn6ENVBvl8WkIG/+F/ngQc51uQOAsNFvE/rl56S+M4qMQUMy09qEc+nw8r3EfWL7L54f8bp4n07x3BoYlATy6uO40j4QX/kDBV4xIkkSEydO5ODBg8ycOZOZM2dy4MABY1CkhPLee+/RsnEXWjbxzUw1f5FsjcwaFCkkqkXUpnFMKzQ0fj/4Y6HWdS1j734HjlY3IKelEfLWG1ecz3XjTaR8+TVaQABaWDgE6DtN7I8+TsZjjwMQPOgh5F0782WXVrYsaqsbck2TMfxp1KpVkU6dwvTee/kq38DAwKC44nK5+PrrrwG4ocntfram4CQHRLK2Sg/+rtmfudUfZEad4Z5BkUuUTzrAoC3vYHFn5FKKf1BkE20r38rIO8dhNdvyzmBgIKCWK0/K+E9IffZ5AMzDhiLPm+sRrZUL/CloYGBwjfPll55B1WYNb/EMipRQVNmU46CILzmXcYZRK0Yyb9+MEiVUX1Iw7dlNmZtvoPTdPQj8aRqYTJye/D1prduhJCdR+p47Me3ZnWsZ7o4dSV37D8kzZus0T+2dbuXsinUkjP/0ssLuysqVBLduhe2JocgXzgOQNOwpTmzbqxsUMTAwKFkU2Bvetm0bc+bMwWKx0Lt3b3r37o3FYmHOnDls27bNFzYaFCEtW7akT4+RRIaX8bcpJYKOlboDcDz5MC71yoS+DQQkieR3RwMQOP0Hgq40pBbg6NuPxOVrSP3408tO2UsbMxbnze0hIwPT6tVXb+K2bZgGPQwZQqdZQACuceMAUD75GGnv3quuw8DAwKC48Mcff3Dy5EmCAsNoULutv80pdDoe+YXIjLPEJu7ztyk5Iksy+09t48Dp7UZHi8FVkfb6W6QPeBBJVTGPHJEpKmtgYGCQEydPnuS3334DSv5ECUlTsbrS805YQFbELSLdlUp82hkjMkAhYF2zCulS+2VbtBAAzWbj1PfTSW/aHOXCeUrf2wv5TFxuxaDFxuKuWzdzO+CzCZi3b8VVq3ZWv4Km6XRQ3W3b4q5ZCykhgZi7eyCfj0cLDUMLyVrxIx876qtDNTAwKCJ8ojHSt29frNasZWY2m42+ffvy6KUY/QYGRY2suul4eBZDNr2O1VV44uhn004DUDqwrG65rEH+cLa8gaR3PCsuQt94Fdv3U644r7tePbScls2ZzaR8PYWk5atwDLnKmLgOB+Zed2H67jusFWMx338flh+nIZ09C4DavQdqm7ZIGRlY2rRGvhST38DAwKCk8sUXXwDQqklXTKbCXX1ZHFBlTwgMk1Z8O4o1TWPOhil8sfAt1u9e5G9zDEoikkTKB+PQoqPRypSFS36MgYGBQU7s3buXqKgoqlZsQNmYKv4256qpHvcvjyx5lo6HC1cb9HzGOTaf/weADlVKqF5rMSetdx9S+91PSv8HSB72VObvWnAIp6bOwlmtOvKF8wSsWnHFZVp+/42gF54l+vZbsf71JwDyyROE9rqTkP59s2IZyjLp02egxsRg2b6NmJ63I5/LakstC+YT2awRynZjgriBQUmiwAMju3fvpkaNGkRFZcWNjIyMpEaNGuzcmb/QNQb+47vvvmPw4MHs2LHD36b4BFVWqHJxJ1EZZ6h6sfDuw4MX9wBQNaxWodVxrWPavg3zmlWkDR9BytPPABD60nNIiYl55NRjmTWD0Du7YV6iF0vXypbF3aTp1RtoseD6cjJa6dJIFy6gTJ9O0OCHCataEesnH4Ek4Zg5E7V1G6TEROSlS6++LgMDA4NiwNSpUxk9ejStm3X3tylFgnrJHZY0/2j4XAl7Tm4m7uIxLKYAGlZr429zDEoqQUFkbPwXx7LlUK4cnDqFPOd3pI0bIb3wZ1IbGBiULDp27MixY8fo1/MFf5tSIDLMQYSlx1MnfgOWQlw1sjTuT1RUakU1oGJYtUKr53pGCw3jwqdfcHHC5ziaNdftUyMjOfvLH5zauJ20u/tccZnOm9vjaN8BOSWFqH69Cfz+W6SMDMwrV2BZuoSAL7/IqqNuPdL+WowrpgyW3buIubNr5qoS6/QfkTIyCB1ymUgTBgYGxZYCq6m5XC7i4uJwuVyYTJ7inE4ncXFxuN3uPHIbFAc+/uEfRr/8JmdOHSHBGU7r6l31CQQhrWeGZ4XVGPfxKn3aDGG2ZZhesIrzgiPiXbYoSnZIL6aWq7qhKJgeYeNguWaUOjiXGik72VvtJn3ZgtCYHBGU4z4tWd+oSV5i7JoEFsVKtei6SFYTUnAeM2svCmU10sc5VbxE3CxCWbIgeCoJQlsS+u10L8G4YEE40RYqCMQJYTnSvMTSAmV92jThGocFi8JrClJqKlpgIEgSVi+7zyfpRe3CDh8msnMH5LQ04hcu4fTzrxHlcpPcqw8OSyABgoCcWfHaFm4HZdVKLEv+xlUhlrSbOyKr+gRWs4K8aycBb73Bxc+/RvMSSg8VhOkUIea2u0MH3EePIa9bh7zwT+QFC1C2biXwxedJDwrCOeQRHAsXYfnyc9Shw8BLQFMURDOWVBvkh6ISW89L4Cw3O/wlCG/geybO2pr5d2i1rpid8foEufgDIPgEefkDifr2QIoQ4pafzApdgCg0LQiVywGCOxuZpcWhCiLeqjhJ3q2iKZ7yFQUkUeDSSzBdTUwjN8T3uxSiPyZRbFVvmFCW1/k4m3SK6X9/AkDLKu2xSYFoDq8Mx5L0eUvpxVWdRxL0hXsJuUpCe6cKz7NbEAR1pWe1bxZBANYlCIS7BQHdwAhRQD2rLFGoXPRbRGHqQOGaewuTpgl+nNWiv39CBcHYC15+Xro9d3F1MYyZW9WfL+9DDhZ8C4vwnk1O19sZkYsPabPkLrYuCqYHe4nGi0LjyZGl4NI5sv69hLCHBwKgVq9B6qbNhAddvZaNW7hOSi6isKLYuojoLjm9nh9R5Fckm5B5AcTW87IrP2m9r0s2cr/E2cqyCt8FAVLOBYj3bV6+aGEJrmcI74iAPO5rl9f7yKQYejhFjbdPEBEthNnOjz8Aep8gP/0DkHsfgXAvK7H6KAJqnCdyxImwGsQHlSM69RT1M7awpcotaIIfol7UR5nQhDZMsunf0YpX/wGKTHzaGbZc2ABAp9juaF7tp5asf0fLzYTz6XUcthqRejsE38ESqm9LS5fKsiNYaBvFdibIqn/malUI09fl9aqwCO8Ys/AMikE9TcL7PjA6632XIZxLh3BM4jvb+x0lfqe7BD8lSPQBQ6vmWJbYFmRul4lGnT8f19DHMU2ZQvjTT+CcNg3Xu6MwP/sMQc8/g6VGNdTbL4WTq1cX97JlKJ06Ytm3l7JTv8L+wou4P/4YdeVyTDt3EPDWG7g++CCzLpOS83s12zEYGFzj5NV/UNT9CwX2MGrXrs358+fp168fa9euZe3atdx///3Ex8dTu3ZtX9hoUMj8/uMnnDl1hODQCG7ocKe/zfEZB2KaAFD17DZktXDCY/Ss8wBv3DyBOqUaF0r5JRHLtq1UqhxDqcED8kwbNnwocpqnoyn0xWcBOP/KWzjq1Mt3vRl39AQg8PsplImJoFTFMkTXrELwKy94vDy3m6B778HyxxzChl5FWC2TCbVdO1zvvEva+o3YX3wZLTISd/NLM1UsFhxPDIdLA8RoGiQl5VyegYGBQTHj9ImDuN3FN5xUYfHfihGlkHyFguBwZfD10vdIc6QQG1mNLg36AuB02UlIPe9n6wyKEuWbr7G0bk2AScn8Z+nYsUArPTSbDXeLFmiBgcgH9mOe/EXemYqKM2cwP3A/yvjx/rbEwOC649ChQyz+43tU9RqZ/CJJbI1tD0Djw38XygrRZUfmoWoq0YExxIaU3LBj1xKmZUsxz593ZYktFlyTv8I1bBiSpmF+8EG0WrVwP/AAktuN+d6+SLt2ZSbXatTA+f77AEiXdEW00qWxT/K0o8r4/xkhtg0MSggFHhgZPHgwmqYxe/Zs2rVrR7t27fj555+RJIkhQ4b4wkaDQiQxMZGVf80E4IGhbxEYlINWQwnkdEQ1UqxhBLjSqHZ2S6HVo8gmTLIxyv8f5j27SO3RE9Oxo5DbqjG3G8s/67Lybd+GlJGBnJiAEn8u3/U62t2Es65nQEWy25ETE1HOxGGb/hPy8WOgKGS88RaAJ3ZoAcVrHW+8SerGzaiXCdMlL5iP9aZ2mD8cW6A6DAwMDIqSaZPeZPwbD5N4Mf/v4JJMcoBndmabo3MJcuQvjGNhczE1noupnutRMbI6JsUzY/VC8lnem/EoO49t8Kd5BkWI9O+/uJ5+SvebvGI50v79V12mo1sP0lauwf7BhwBY33kbTp8ukJ2+Qt69G+cXX2Z2OBkYGBQdn332Gb9O/R+///ixv03xGTvLt8WhWCmddJybd073efnn0z1LUm8o39HnZRvkH8usmYR260LQA/1R/vnnyjJJEq7xH+Hu0wfJ6cR8dy/cnTp5dqWlIa9bq0uu9umLfes2XJ9nTSpw9+iB8+GHPYMrd/dC/nW2z47JwMCgcCjwwMjQoUMZNmwY4Fmm+99S3WHDhvHYY48VtHiDQub333/H5XJSpnxV6jW50d/m+BRNktke6wmh1eTYkkKrx+7KYP7+maQ5UwqtjpJEaq97OPfV95z7/BtPXJKcUBTSHhyUuZk28GE0m42o996i0o3NCZ77W/4qNpmIX7mOM/sOc2b7XuI3bSPpw/FcWLwctWIlT5VbtwBgv/W2/MVCuByShFauXOamvGUz5h+mQUoKpi+/RFm/Hq1ChYLVYWBgYFBEHDp0iCP7t3Nk/w4k6foKWbKyck8uBpQiISAap2LNO0MREhNWgXtaPYZZsZLuTEW+dG3cqhsNjd/WfoXDZc+jFINrAdenn6FViMXdqxfuLl1wd+yE86OP0Ro0KHDZzocext2sGVJiIuaRI3xgbcFR27eHlBRc/zNWjBgYFCWqqjJjxgwAqtZq7F9jfEiGJZiFjT3fni0PzKfFsYU+Lb9P3cHcWfM+2lW8NfM3u9vQmfAXjrt64bitC1J6OsG9eyIfOnhlGWUZ55TvcPfqhevlVzC/+ioA7ltvxX3/A/q0ioJWL3ukC/tHn+C++24khwNz//5Iu3cX9HAMDAwKEZ9Mc58wYQLPPvssGzZ4Zq21aNGCSpUq+aJog0Jm+nTPbImmbTpfk9oHWyt24IYDc6l8fieRKae5EFzW53X8tOML9sRvJcmeQP+yT/u8/BLHpVBSrmrV80yaMuJZlMOHSHnmeZwtbyD0q8mETf0WSdNwRZVCSkoi6KeppHfphrtS5bzrVhTU0pd0WySJ9Oo1svZpGpYffgAg466783tUuWKaPw/b/f2R0tLQnhyWOeiiVq4MqakoM6aj1qmL1rq1T+s1MDAw8BX/dYLUqt+C0PAoP1tTtKRaw/ip8XOkmUNw2Qu2mrAwaFGtA5UianDw7M7M36LDyhIeFE1CajxLt//GbU36+tFCg6JCa9sWZ9u2eSfML4pCxsTPCWxzA8qsWbjvux+1e3fPvosXkTdsQO3QAcy564L4nNKli7Y+AwMDVq1axcmTJ7EFBlO3cSG8b/zI7tg2hKSfp/2uGUjZVDIKRoQtmtaxnTK3L2TEM3Hze9xa+U5aR3W9Jvtaihvy0SOeCZGSBCYTKd//QGiXWzFt/pegfn1wrVkLtivQ0bJYcE6fAbKM2qkTptHv4fxpOtLBgyg//IBrxAiI0vvK0uHDWN5+E/vHEyA0FOePP8F9/VHrN0AzJAYMDIo1kiaqseWTxMREEhMTKVWqFDabjV9++YUVK1bQqFEjHn74YV/Zed2RlJREWFgYiYmJhIYWTnir8+fPU6ZMGVwuF88PmEjpyFgAlHr6jxD3v8KS+srhWX8LAl6c1YuW4crH7SVOUBVFSpP0omWqt5C5onc01PgsgdRuOyaTERDChmpdSbZ5GjBNENfES6g8m/i6IBaGIA52Uopj4ubRaGg80uwFqkbUyjKrbLA+ryCsJQn7lUpZAmii8xQQqW/EVeHcBkfp94d7iaKKIpWBltzHRL0Fw22CAKMoxBYkCEmK4ojegqFBQllpXqJ0AZ9NIPjF5wBwPfUUzjffwnr77chr16DWqIFjy1Y0S9ZM3vz6lsrbb2N+2xNKKyMxCYKC8siRD86dQ5k0CeXHH5APHMj82TV0KMrPPyOdPYsWEIBj9Rq0Ro18V6+BQSGRlxj71aYtiB1F0S4WR4rquBs1asS2bdu455YnaVW/M3AZf2CnoFxeJUK3aYvJatPSj1zUp72Q+6xJ7VSybltqHJO1IfgD2oEL+rRl9cKsJGTVpaXq2/RsZQliwDjcoGm03vMbOyrdRJIS7lWW3g8R/QUR0X+QgwNySAmaS2+HUk5/raXLCHNuO7qOqSv/h0kx81zvT4gM9ZwzKRcRbwC8/QVB1NQk+BqWEP0KGtmU1fgGh+vTimLjTlEwVvBFvIW6RRFms5J7Ix8qCL/bva6j6LeowqdOiCCg6y16Knqt4leS3am/pjar/pi9xWlFP0UWfhBFcp3Cu1ORZa+/9WWJgro6UW9VRTl6BK1iRTCbs4na2p05hzm1vfwi5tMncf5vPKgq5mdGIs+Zg2S34+7dG+dP0wu+4tbAIAfEbol0r+faWxA+KSmJmMgIwx8oJIYOHcqkSZNoUfcW+nb2hO/LV/8A5N5HkJ/+Aci9j0DoH9CE95uuv+C/vJpGmcTDxAk6IGIbn+3FK6Br44X3txRkZeHB2Sw9MheABtHN6FVzADZToCeB0E4plbKupxShb1tlQYxdFey0ls7yvcIEoXqrWWxb9ccktjuhgVltiSK86wOFNksRxNajBFF4XX+C0PcgttMpQpvmnVe0WWyCQv7zPZKTsdapjVqlCvYP/4favAUApjOnsTZvhnT2LK4HH8Lx5eTL1pMnDgeWpk2Q9+zBfcstOOcvgP/aaU3D0qwp8rZtuIYMwTXpc8/vqpqVxsAvFOZ3anHlejpmX/kDBX5KH330UapUqcKuXbv4448/6NOnD59++ilDhgzhgw8+KGjxBoWIoiiMHj2aprXbZw6KXIvMqz+EJfXvzxwU8TWxIVVoWdYTsuv3PdMKpY5rnYCvvswcFHGOHIlz7IdY+tyDvHYNAPL+/SiffHL1FWgayl9/AeC+5x7fDooAlCqF+/XXcezeg331GlxPPY1z1HvI69d7BkUsFqSMDMx9+0CGsaTawMCgeLFr1y62bduGIptoUL2Nv83xO40OL6Hd7p8ZsORlopOO+9ucHGlQsRXVYurhcjuZ+893/jbHwM9Ie/dibX8TtshwrLVq6kRir5T0d9/zzHItUwbCw5EXLkSye0K1KT//jDJxoq/NNjAwKEY4nU5mzZoFQJNaN/nZmkJCkogLr5q5GZoeT7mLV6/VlBO3Vu3J7dX7IEsK2+M38cmmt0l1Jued0eDK0TTkqd8jbduGvGwpJCWhrF1LYNvWmN8f7UlTrhzOaT+gyTKmKd+ifPP1VVWlTJyIvGeP5+/Fi1E+9tLfkaTMsI/KV18hbdzo+d17UCQ1FdPwJyEp6arqNzAwKDwKPDCyadMmwsPDadasGb/88gsAnTt3RtM0vvvO+EgrzoSHh/Pss8/Sv8sz/jalxNO6XHsAzqaewqXmPoPUIDvmxYsAUKtXx/XeaHA4kFevBkAL9MyskTdtvPoKJAnH/Pk4J3zqmQVZWEgSWqtWuMaNw/3CC7jGvI/zkwk4f/GIrskHDiCdOlV49RsYGBhcBRMmTACgduVmBAYE55H62udITAMcipVARwoVzxffuNCSJNGt6f0A7D62yc/WGPgbef06lDVrPGE9rVak41cxqOfdiRMYiHPSJOwbNuIaPtyz+5K/ZmBgcG0yY8YM4uPjiYmJoVpsQ3+bU+jIqos7Nk/kno3jiEk+6tuyJZmbKnXh8WYvEWoJ56L9PNvPGW21T3G7MQ8fjrVpE0xvvol9+w6c/foDYH39NUwzPWFi1Y4dcb3piRwhHz58VVXJ27bqtzdu0G2r7dvj7t0bSdOw9OiOtGOHbr/5oQcxTZzomSiZbAyQGRgUJwo8MHLq1CkqVqwIwPbt22nSpAkLFiygVq1aHDt2rMAGGhj4guD0C1SM30VY6tm8E18Fey94Gr4qEbUwyUUcf/kaIO3Nt9GCgpBOnULavh2sVhzffY999Rpwe5ZEu556umCVhIbifvxxKFsW6cABcF4awDp3Lpvj4ivUDh2QDh7E0sMTp9vdsyda1ap55DIwMDAoOs6ePcs333wDwE1Ne/rXmGJCaNo5LG47TtnMnnI3+NucXIkO8WinudxOXG5jYsb1jPvefrhbeEKHaA0aonbuXOAy1b73ojVpkikcq97cvsBlGhgYFF/++ecfAJ566ikUWckjdclH1lTcsgmrK50+Oz4iMu103pnySWxYVWpE1AUg3ZWWR2qDfGEy4Zi/AC0qCnnrVpQZM7BP+R7H0yMAsA5+GGn9egDcL75Ixrz5ON9596qqcr7zLmqDBqi1aqE2aIBz7IfZ00z6HLVpU6Rz57Dceouuj8H15HA0mw1l0SIsHTuAMVnSwKDYUOCBEYvFQkJCAna7nf3791O3bt3M32Ujnl6xxO12c++99zJ16lSczuvjI/rGvT9z77ox1Dm1rlDK33zW0+A2LtOqUMq/1nHXrkPSt1Oxr1mL1rgxAGrPnmitWuHYshXnh+N8J1yeloblts5YWjRH/nkW1iaNMfe6q3CWtSYlofzsWY6uKYpnNQx44o0aGBgYFANKlSrFH3/8wfDhw6lavp6/zSkWtNrriQm+o/LNpFmLd/x6qzmAri3u4662Q/xtioG/sVhw/DgdLSICeeMGAgJtyHN+L3i5aWnIK1YAoN52W8HLMzAwKLZ88skn/PvvvwwdOtTfphQJLsXCL81GEBdamUBnCvdu+x+hGfE+ryfA5NENsbuNkMq+RmvdGue4cQCY3nkb6dAhHO+NwdW9B5LdjqXXXXDsmEdI/VavCQN2O5zNx6TZ8uVxbPoXx7btOJavgHLlLhngpZkTEYFj4V/6wZG9ez3JbrwRx99L0EqXRt68GWu7tkg7dxb08A0MDHxA7grMV0CdOnVYv349MTExpKam0qqVp2P4xIkTVKhQocAGGviee/o9x6+zZjBnzjwOnYgguLxepMt9LFGfQRBTK9WifObfAzpU1+0b99pf+ryCmCiBwi2XliVaVqp7Td2uc3P36dMKdspeZanH9J3asiAWmiSHAxCSdBYtyZ5NTE1NSs/8WxRTlQSRTk3Td2q7cFMtojYZrnQaVLwByZK1YkTL0B+/LIipka4X8XR7iQwqJmGWjtCXbhHEVR0Z+rKcXkKcwQH6smIEcVWHIJCa4SVOHyKIqYoiZaLwmknY9hZIcwsCoDqh1l53evZ7JVEk0GrUwP3005d+8c5/deKfpjFjkI4eRYuNxdmyNSarFfnQIcxDH8c5dZpvRUVDQ7H/u9lTX926EBCA8vVXmJ57Dvcjj+IaM8Z3dRkYCBREeE1Mm1tZhSnoVlT1XM/877M1QBAVa/QBoR3J5g8IIuelGsTotr19guz+gHD9Kgri4kLdnErJ/FOurdcIU+vrRWDVdSd125q3iKcg8qql5T4hpOzJnVQ5uw0ViXW2tvqmRmgf5GhBr0rUkxXaPLwExSVBEBWzMJnIKYjEe93/UlBW2ymj0KlFH33ebKrfgl1uLcd9mnCd7BfTddveYuxpyXbdPpdbf7ylw/VCrKKgusXLzxF9C7Mg1B4aqPd5RKHW6LAsv8YinEuX8O5wCvfExZSs45CEcxcerPcns81rEMSiVa8EFuEai5clKT33e1GWsnwx0X+yCD6i67/9sRXRvplC4F13AmAeOBAmTECZPRvXh+PQqlbNJnorIp4vk82GY9165BUr0GrX1u3LcOj93ACL3q6LKXqR4AjBdzUw8EZ8/rwF1+1eotp2QWDbwDeM+3R15t9LVu/QfXvnp38A8ugjyEf/AOTRRyD0D0iJ+nZJFtpS1Wv/f+LpdizMbDSC/hvHEJ1+mnu3/Y8fGj5Halgpfd7zKbptb6F3WewvSNe/+6qVbwBWhUql6iBF2pBs+mPWErzaIaHtUC/o22GE/fakrMGWtCD9d3tQjP78iGLrqtC2eDdpoksjIro4qYIfF+Il5J4hPLNi/4GId/9Dml1frkX4Jkm3u6D3vUjfTsG8fBmW4U+Q9vsfpH77HcEdb4bwcFwBgeDWsuo9fx5L77uRUpJxLF0GIfrzlCP/Tfy+JPJs7tsHedUqHMtXoFW/dM9fGhyx3NYZbIFo/w2gAFrLljhWrcbcvRvyvn1YbroR+8K/oHnzK6vfIN9cj9+PxeWYS5IIfIGXdLz66quYzWaSkpKoWrUqDzzwAOvWrePixYvccEPxDj9wPXLu3DkWzJ0MQNcejxIcEuFni4qGJGskAGEZF3xetkk20aP6vbxwwxgCLUZsdl8gr16FedTVLXPNDenIEZQPxwJgHzsOrXx5Mr6fhibLKNOnI19a3eFToqLQmjb1DIp88TnmRx9FSkrC9OFY5Ok/+b4+AwMDgytA0zROGcv4dVhcafQ87AkrtjOyOQnWaD9bZGCQf1xdb8c5ciQAUnIylgcfRJkzB/nXX6+uQElCa9AA97Bhvp08YmBgUGz4/vvvuXAhzt9m+I10SwjTGzxNQkA0ERnn6Ld9HCa3Pe+MV0i9cs25o+EA6pZt6rMySzRuNxGdbiImzIZlwbyClydJpH08Ac1qxbzoL8yzZkJwMKl/zCd9/kKI0k+wkZKSkPftRd6yBfOAB66uyuXLUX75BenMGUziCqtLgyOOuXOzDbpoVatiX7ESd5s2SImJWB64H1zC5CADA4MipcADI7fffjsnTpxg48aN7Nixg9DQUOrVq8f+/fsZd2lJm0HxYfz48WSkp1C+Qk1uaHuHv80pMv4bGAmxXyy0OsRZTgZXh/L779g6tMc0Y4bPy5aOHEFyeGbwmGbNRDpwAPOnE5AuzfCUdxTuclZ58WL99sqVhVqfgYGBQU7Mnz+fmjVrsmr5z/42pdjgUGz8XO0RVpe5jb9i7/G3OVeMpmlsO7iGtTv/9LcpBsUE53tj0CIjM7fdt96KeuutBSpTnvM78pIlBTXNwMCgmHH69GmGDBnC2Hfvu64HR1KsEfxUfwRuSSYq/QwhGYXXb3C9I6WloVaqjLtsWax/LfRJmWqNmmQ89wIAlomfgaahxcSA5dJqHk1D+f47cDjQqlTB/tscNLMZ5Y8/rkpvVD54IOvvfXuzrSAlIkI3KCIvXJipnUpUFI4/5uK++24cv8wGU4ED+RgYGBQAn4iAREdH07RpU6xWz3LzkJAQqlWrRnh4uC+KN/ARiYmJfPbZZwDc2vUh5OtAUO0/0iyeRinQWQg6EoBLdbLw0GzWHzU+GAuKvMszOKE2aODzstWbb8b50cdoZjPmX34mqF5tzLNmoskyrpHP4HrxRZ/X6Y3r1dd02+5Bgwu1PgMDA4OcGDNmDKmpqSRczEd85WsdSeJMYCwrynXHodjyTl9M2Ht8M98vfJ+5a77laNxef5tjUByQZTLmL0Ct4QlBoyxahLVpE+Sp32fvvLkCpC1bMPfvj7nb7cg/TNPvvE70Cg0MrlU+/vhjHA4H5SvUJCIiJu8M1zCJtlKMbfc53zZ5hYtBZXxWrt2VQWL6BdIcqT4rsySjhYSQ+OU3pLz2Fsljxvqs3IwRz5A++n1S5/+ZbYWjecx7WAY9jOWO7pCcjNaiBWrXrgAoM2fmuy73gIE4v/4ax88/4/j5l1xXVJpeeAFLt9sxvfFG1o+hoTimz0CrUyffdRsYGPgWnwyMxMfH88Ybb3DbbbfxyCOPsGPHDr7//nuOHTvmi+INfMTnn39OUlISpctUpm79tv42p0hJsYQDEOhMQdJ8H5d2y5l/WHpsPnN3/siFtHM+L/96Ql6/DgB3YYTikyTcTzxB+t9LUStXwd22Le7GTXCsXYfrgw/AVrgdYVqjRtg3b8Hxx1xczz3vCbFlYGBgUMSsWrWKVatWYbFYuLFDn7wzGBRrasY2pkrZutidGUz6/VW27DVWIxqA1rQZGf9swDVoUOZvyqyrCxmq1a6N2qMHktOJZeBATMOfxDR4ECFNGhDU605dWmXMGORFiwpku4GBQdGQmJjIpEmTAOhw631GBIRLnAmu5NPyNh1bwXsLhzN7y9c+LbdEYzKRcd8DYLXmnfZKCQjA8fQICAzMtktt3gItKAjl77+x3tIJ6cgR3H08PrA8c0b+Jw2YTLgHPoja8y60PDRC1EYNPVnGjEb55JPL1iUtX4784w/5s8HAwMAnFHjN1pEjR2jbti1xcZ5ll61atSIhIYEHH3yQZ599lg8++KDARhoUnE9+2sh7oz2j8Z1uH4DZS0wyqr5+ZsjZhQd02wTob5Nz289k/j3xrDDrIS9RRUFMzVts7dw/J3LcB0CYvtHUjiRk/i0JQmPqxQzddlpQGKokI2sqQVoqKaZI3X4pKKtsOVIQUxXERP8TavOmaZnWbIxbxZHE/fz872QGN3kWSZL0ArCAFKY/PxLC+fLSI5IEkVJNaEAlQbQsODDncy8KfJoEMVVRiNN7O9Wuzxtg1qd1C0qkqiga70Ve/oaqqtjWrwfA2aIVipDeW3zUlNf5ycWxl9u0xrFrl8cgRSnS5atagwZoDRpkzlCRf56FMn06rldfQ2vcuMjsMLj28aXAWW5i7AWtx5dlGeTNpJ+3MXHMKwC0uLEHkWXLZu4riD8Agk+Qlz9wTL+C09YmVredvjc+57yHEnSbooipXDOrjVcP6ENhSKGCQGqSJ7xikyOLKJtwiE3RN3I6tGrmftehLDvkKL2OmBavF1dFEBmUAvS+iRSs39bn1bdZUqDQUeAlKC5ZBVFvFQZ3f50fFo1j15ENTJs3hvPxJ+jYtLenLRT9Ke/nzKF/5tyCyKnoA6V7iW3LZv35SLygF+cVxVVFYW6TklVXkOCHmBTh3AlNeukI/USGpLSsa5GcpL8ubuEYrIId3kLvAaJgur7abP6SQxCrt3iVJQtGOwTBYZN4vwh1KV77ZXfO9QCkC75pZtmWAOQvvkTt0xf15pshPd0jqOvlM7lEP1fwp9JdLpBMpH/zPSGxFTH9bxymiROzbDt1igAFjz8FmCZ8AufO4fzlFyJ6+Cdsr3hMos9YEhBFkeU8xIrzg0sUYBb8bfH+8hUFEWK1ej2bVvP1E/WgMJn08zYW/vo1SUlJlI2tRv0WNyPLWdfI2ycokD8AufsEufQPQB59BEL/AOcFoXLxXnZd/p6TVRftjv7GhtjOpF+KNKGl6jVGsrXpXoLr4j7xha5d8Lz/JRXIcGX/brXmckxp+m9xpZK+019Wrvx5tQntn7fIOei/1aPCAoR9epujw/TtcHKavu31buPEes0m0R/QH4OsqsgbN6A2a054kOC3Ce8r0a7Md6XbjfLee6j9+6NVqwZdbsO+aDHWO3og/7sJa9PGuN55Fy0oCPnAAZTJX+J+5FEKA7X/fbg2b8E0/n+YR45AXvgnzq++hks+uLR+PZbOt4Ki4KhSFa1160Kxw8CgKCnM7/r//AlHPt5/uVHgUp5//nlOnz5N+fLlM19K7dq1IzQ0lEXGbKFig8lk5qGnx9Dixttp1uo2f5tT9Egyy6r35s86A3GYfDgr4RKyJNO71oOYZQsHL+7mz4M/41Z9vzLlWkfZtAn5/HkA3PXqFW5lFotnhoofY3oqY8diufdelN9+w3JbZzh50m+2GBgYXB8c2b+dHZtWIEkSt9450N/mFBsaHl9O/ZOriUk97m9Trgqr2caDXV7ixoY9AFiwfhq/rZrsZ6sMigtqp04ef0cQgc0Xsozrgw9wfv457s6dcb3wIo7ffse+/0DmoAiqitq4MZKqYu7XD8nQUjMwKLakpSSxZJ4nNF7nOx/SDYpcbzQ78Tetj83nvs3vg+b7zjz10uzHbXH/EJ96Jo/UBtZBDxF4UzsCel794LrplVcwv/Um5t53Q1oa4Fk1krFqjUf4PDkZ89NPIaV6BvHkVat8YntOuN5/H+f4j9CsVpSFC7E2bpSp26W1aOFZlelwYOl1F5w1wtwaGBQlBW79Fi9eTHR0NLt379b9XqlSJY4cOVLQ4g18hCRJ1KrfkoeGj0a5TsWdNlTqwtbyN+MwBaKoTmQ1+8qPghAdGEOX6r0BWH50AZ9tfIeTSUd9Wse1jnQya0ZQwNtv+dGSokFemqVJI50/j7zXiA1vYGBQeKiqysxvxgDQ4sZulC7r21ARJZkAp+ejuemppYTYS6bgqiwr3NluMHfd9CgSEqu3z+PYmf3+NsvgGsM9eAjO+QtwjRqF2r07REdn7ZRlnL/Pwd2tG1JGBpa7el6VqK2BgUHhM//nL0hOvEBMuco0b9vF3+b4lYg0z2BFWMY5GsStviotptwID8hayfrhyhf5dt2H7DmzFbUQBmGuBUyXBNmVxVc/0dr15JNoMTHI27djev65zN+1qlWx/70Ux3uj0cyeFTOuF17E+d33BTM6L2QZ95NP4vhng2cCwfnzmPv2gZQUT9v59TdoJhPSuXNI+/YVri0GBgY6Cjwwkp6eTpkyZQgK0ocfSklJwW6355DLoChJTEzMO9F1xs37f+a+De8Rnubb0fg2FTpxT91B2ExBnEo+xsydXxkOTz5w3XEn6e+PRS1TBsfga1+Y3PXRx5l/u9t3QO3QwY/WGBgYXOts27aNE0f3YQ0I5K77R/jbnGLF7OZPk2INp3TaKe7fOoaqF7ajqCVTVLpt/du5pXkf+nUaQYXS1fxtjsH1hsmE86fpqG3aIiUkYLm9Kxw1JgoZGBQ3gsMisVgDuOfhF1BMuYR6vA5YVv0e9kc3xqS6uH3PFAZufJsaF7b4bICkQZkWPNxsJLWiG6KhsefMVn7d+i1OtyPvzNchaUuWk5KYQtqO3Xknzony5XFO+Q4A0+efI0+bmrVPUXA9+xzOyZOxL1+Ba9SoXMXTfYlWrx6OVatx33OPR+M02BOWVN60CcnlQouMRGvVqkhsMTAw8FDggZFq1aqxc+dOpk3zLMO02+1MmDCBw4cPU7NmzQIbaFAwduzYQYUKFZjz06eoqtFBDxDgSKH+6dWUSzpM783jMfnQIZEkiWZl2zLyhndpULo5d9V5AFm6fpcl5xtJwjH8KZL3HUStXsPzm6Yhr1oJ1+D9q9WsScbxE2S43DjnzCkyh8zAwOD6pHHjxrw+/lcGPjmKsIjovDNcR5wLrci0Nq9x3hZDmP0ifXZOYPi6ZzCrWZN8JK3khMi8rWV/mtVqb/ggBoXPsWNIa9aA02sgMTAQx2+/odarh3TqFNabboQTJ3Iuw8DAoMjpctcg3p34J3UbtfG3KX7HYbIxu/4wllW9G7tipUzKMe7e8zk9937pszpqlWrIw81H8tyNY2hX9TbubjwIq8mj46FqqhGG2wutdm0ICECrXr1A5ai33opr5DMAmB96COUrfYhR9f4H0Nq2LVAdV0VAAM4ff8L94EOZP5meGQmAu2dPMJuR9u41QmoZGBQRkiaqFeWTjz/+mBEjRlxW6Hj8+PEMHz68IMWXWFasWMHYsWPZtGkTp0+f5tdff6Vnz55XnD8pKYmwsDASExMJDQ3Nd/2Tft6Gpml8Oupxdm9dS4N6NzKw35uenYKgV2lRbHWbPu6lraxeXDN9nZcOglCWrZa+o8WRrF815BbEw/ASBbdVjtDvEoVXRTG1qCzBL23/Bd0uLVUQPRcET0O1RPrPfp7gtItsbNiDJeXuJifUC2n6skXx9VwEACVLVtiytaeXYZfs3Fzp9syOCkkQhJMiskTOZOG8U14fF9pcSr9KyySIzypeomaKIJAnirRFCtdRFEjV5RXU5EIC9ec2URBeiwzJKtvh1A9uiHkjgvV2uNwq5Xp0JuCfdZye8Rvqrbdm7hOFF12CcqQooOotAiuKTirC+UgXxGdFsVVvUUq3qkFKCtLJk2i1amUTmzUwMNAjiq96k5tIW1JSEjGREVfdLvqL4uAPeJMmtq1e7/8C+QNCWaI/ILbpefoLRxOyNgQxbWL07R9xKfptb6Flu76jwX0iOee0QEBiAjft/5nqZzeTZIti2k1ZYR0HLn8VqzONs6EVORjTmP0RDUm3ZF0TLUPwcURF41yQRNFvod3xqFvnsE/0JYL0bas9Iw1JkrFc0liTIr0EVQX/AEGINZtgrtckBSlQvy8gQi/UahLEaMMEwXSrl6C86HdYBWFWmyA4H2DR2x3h5WuI3yRu4b0iXpVgr3OQkKK/1wKF8yP6B0HCMXqLoIcK50cUmE9I1delaqIIetbf2YS3hbThgv+k93lyFyIXfSJRBNf7U1F8RZskDWu1qkjHj6OFhKB27Yq7WzfUO3t6ZsGeOIGlaxe0+vVx/vAjXMcaBiUVhyBWXVjC7PnB8AcK3x8AvU9QEH8A9G1+fvoHII8+glz6By7LySwfQE0Sops4PP5CgD2Z5gcW0OzgQv5u8TA7q7X37D+d4LFXvvTe92oPNLGdSRf8FsEfEMXa18etYMPZ1dxb/WGiQ8rq9imxYbptuYzgA1Xy2i+8Y20x+usUGK0XbrfmIsaeJHzTi9/pIlGh+v1pGVnnJ0RoD8XveE1omYO9zo8iSyjHjhKwYhmpffrhElY3yUKbHyb0L6SmOwh/bgTB334FQMr7Y8kY9iQAFlH0/exZAoY+hrvVDTiefyGbP+Hdtordn07hXSnm9W7Gs7XpFy8SUMrzjDg//gR5+TKU2bPRoqJwLF2GVrcuBgYG2fGVP1Bgz2b48OE89thjgMdx/s95HjJkyHU7KAKQmppKo0aN+Oyzz/xmw45/V7B761pMJjPdb3vEb3YUR5KDo/nr5mEANNs2l4rnC7BM8wq4mHGe+YdnsfDgbL7dMh63j/VNrlkkCXvjpgCEfzq+WK4akfbtIzCmFIEN6mH6/jt/m2NgYFDMKA7+wMXzZzi8b1veCQ3IsATzV70Hmdh+PL80fTrzd0lTiUo5RXj6OWqe2UTXbV/zxPKnuWPbRJ/HIvcl2w+v44Ofn+S7vz/gXOIpf5tjcI0hHTiAdPy45+/kZJSZM7EMHIilU0dPggoVcKxchfObb41BEYPrnuLgD7hdTr795CX279rkNxuKOxnWEFbV68Pknp+yq8qNmb83OLmSR1c+T9V43/pTbtXNslMLOZl2jM93fcjJlGM+Lb/EY7cTc0cXop4eRtj7o/KfX5ZJ+PAjkp4aiWa14m7QMMekAQ8/iGneXKyvv4ry54ICGJ1PAgJwPfc8rsGDUb7+CmX2bMCjQWrpchtcuJBHAQYGBgWhwB6qJElMnDiRgwcPMnPmTGbOnMmBAwf4/PPPfWFfiaVr1668++673HXXXX6pPy0liZ8mexqODt3uIyqynF/sKM4crtSM7bVvQUKj+9ZJBGcUnthquDWSntXuw6JY2X9hJ6uPLy60uq41Egc9imY2Y1u5nLDnRhS7Dij5wH6kS+Ej5M2b/WyNgYFBccPf/oCqqvzw+VuMfeUB/vz1a7/YUCKRZP1qEElmUsfx/HTDS6ys2Yu40MrIaNQ5s4FSKcf9aGjuyLJMUvpF9p3cwtjZT/HT8o85e8EIaWTgIxQFLTwc58efYF+1GtfzLwAg7dqVlSY8HGyXZnG7XJhefhl5seEHG1x/+NsfAFj42zdsWDmfL8eOwG5PzzvDdUx6QCianLWyofaZDYQ4Erh7y8fUO7XaZ/UossLjdZ+lfGBFUl0pfLVjPCeSj/is/JKOnJiA6YTHzwpcMPfqCpEkkt54h4v//Ivzppsvn0bTkHftzKp3z56rq+tqsNlwjR6N6/MvcL07CnfXrjimejRRpFOnkIxQlAYGhYop7yTZefvtt3Pdv8vLGX799devpgqDAqBpGt9/9hoJ589QqkxFut3zGK4jqf42q1iypO0gypzdR6kLx+ixdRI/tXwRCiEetyRJNItpA2aZn3d/y1+HfqVaRB0qRFbxeV3XGq4qVTn72WRKP/oQwd9+hRYWRtLrub+DihJ319vJmPMH7ptuBrudnIOQGRgYGBQ9i//4jl1bVmMyW2jcsiOk5J3H4PKkW0M5bg3leFQd1tboSa/146gev5Uq53dyLqSiv827LPUqtWRot1Es3Tab3cc38e/BFWw+tIomtW+ie/tBhAaU9reJBiUYrVo17IcOw6XwBa4bbkA6dRJ3t26XTW966y1MH7yPNvYD3M8+h+utt8BiuWxaAwMD37Jv5wbmzfRMXr3n4RewWvMIO2WgY2bTZ+i661vqn15D951fEVg1kQ0VOvuk7FBLOIPrPMWUvZ9xNOUQX+/8iIfrPUVsiNFXoJaO4cLosUh2B44mTQtWVrVqmX+blyxGjopGbXqpTEki46tvUTZugORknI8+hj8CZKu33456++2YHnsUAHf7DmgNc17lYmBgUHCuamDkzTffvKymyOUwBkauDLvdjt2eFecyKSnpqsv68MMP2bZxGSaTmUFPv4/FasOFMTByOVzmAOZ0foHev73OhipdC2VQxJtmZdux4+wm9pzfxtTtn/Jk6zcItpSc2Lj+IrXn3cQnJ1HqmeGEfDQOd7nyuB4f6m+zPEgS7i5dPX8HBuae1sDAwCAPfOkPLF++nDk/TgCgz0MvUKZ8lewxxQ2umsNR9Ql0JJNmCck7sR+pElObKre+zIn4gyzaMotdxzbw7+5lHDu9j2cf+wKTyeiYNigAQkxn55Scw4q6XnwRzp7B9PXXmMZ+gLzkb5xTp6HVrFnYVhoYlDh86Q+cPn2ab8a/gKaptLq5By3a3U76vvO+MPO6QZVNzKs3iDRzCC2PLaTjoVnYnCmsqOybFUABio2Haj3BlP0TOZJ0gK93fsRDdYdTlYINBlwLpAx5PGsjH/ptOaHs3k3Iff2Q3G7Sv/4WV0/PNXR36oS7U6cCl19gXC5MX3k0UVxvvOFnYwwMrn2uamCkYsWKVzwwYnBljB49mrfeeivvhFdAZGQkJsXMnbc8RnRiBGn/ngYvoU1RXDX5nDBoIowNpJ8WppeGewlrCUKS6d5iqZBd1POkXvRUqRGZc17RLkG0i8QsR1GqGq7bJd6dmiC2qqVkibpdNJXi63s+RVXMyICWaKfe0RWcDa/MubCKyBFCZ7cgOqg5soRdNUGkzH1W78BKikzvyD5MSjrF+Yx4pm35jMFNn0WRL52nixmZaUU1DVkQU3WKz6AgpuYiS8fELAjCWUL04mhJouidF6JYqFMQ8RTFQxXBrmSvss15iJy7RWE6r6ISe/XHdeYcZT94h+DR73Lynn5owVmdUaKGmSiA5i2WJoqp252COK9gh0PY7y1UKt5rZpOCdPgwUnISasNGpApivIFC3d4ip+IlTU7PPa+32JzxSjYoKeQmsG7gO38gLi6Oe++9F1V106x+J5pEtsnmD4DeJxD9gWziqrn5A6DzCdLP6NOWurGSbvvckkP6vKWCct/WGaJ/N4bcWk23nTx/X9aGINKtVNaLmGZ7eQptvHo4IWvDrN+3uVpnNle/zVMMIIn+QfqVi7FLgui5t28BIDmy7FRT9eFPxLxkCDpml9q/8pYKPNhyBCcbn+DH5R/RscHdmBwyeAmGZ8srtH94+SKaQ582w8uHAVDMev9AE3TCZK/2zxqk9/HEdjg4IOe2EyDNy58QBWAtgpC706U/pjR71rkVhaZDBF2MiJCcxWUBAq1Z50e00Sm8+0Tx2QvJ+vMXbMs6J6Iwe6Rgx9lEfV6b130vnssgqyh6q8eUbemrlMs+PaJfJ/pbBAXh+uJL1C5dMD/yCPKmTVhaNMf52++oHTrkXrifECO4Fld/K8XL3wwWhJ0Lgj/F1gO8nqHr0XfwlT/gcrno168fSYnnKVOqMnc0H0T65rhc/QEQfIL89A9A7n0E+egfyJYX9H0EQv9ANl9j5VF93uCs9HKwPq92Vuh7EITJ5UuC8stbDCA9NIKbd0yn9fEFBJky+LPmAN3LQbxbxfZS/HCVQjzXIgAbA8o8zPfOrziSfoi9pzZTKaSqPq/QTskOr22hvyBdeIGJwvehFcN122le3+2a0HZk2PVtZ4ggcp4u+C1mJesYT55P0+0rE6FfrSR+47J8BVXffZmzPfty/tGhunOrCO2yJhxjfKLeRzIdO4Il7jSpDZsQEuHpO5BDojA3b0Xw0sUE9uvLyRff4OyjTxJi098TZuH9591ui6LvYhsvIvZV6OoR/IXgtCTsfy+B2Fi0qlW5eC4B25zfsN94E2q58ni3yyE2/bkT2yzRf9C/04VjEPwjRRSnF47B6BM28Bf/+QcOxTc+ylUNjBw5csQnlRtk8dJLLzFy5MjM7aSkJGJjY6+qrEGDBnFwk4nIsJi8ExsAoCpZDXto6jk6b/kGk+okPqQ8s5qMJNkW5bO6bIqN+ys8zOdHP6FaRG2kQl6lci1xbujTKCnJXLinPwHBxXOGrnTkCEG1awCQ/udf0PrGPHIYGBgYZOELf0BVVfr3709cXBwx0ZXodduTxsdLISChYXWkkFHMV4yIVIiuxsie/8Ok+K7z1MDgcsjLlmF64w3cd9+Ne/jwzN/Vu3phb9ESy4AByCuWY76jB44lS9FatPCjtQYGxQtf9Q+8+eabLF++HKvFxoC7XsFqCcg7k0HOSBL/1L6DdGsInTd9RUpAuE9HTK2ylYGxg9mS+C8twm/wWbklBk2j+mvPYDtykCrvv0FccgKnn3sFANv2LViSk0hp1x4Ay5FDOGLKoAVkDwtnPhtHjYfvJXCPRzckqWUbTv0yF2QZNSSUE1OmE/n6S5T+bjLlx7xFWsPG0LEYrBYBiIpCu/mSFordTnSXTpi3bsFVqTLn1m0CmxGlwsDAlxg9ssUEq9VKaGio7l9+0DQNhyNrZl5UeBmjE+Qq0SSJg2WaABCdfJKq8dt8XkdpawzPVH2JW6r1RDYGRq4cSSLuhddxVK3ub0tyRDqZJY4m7d3rR0sMDAxKIgX1BwDmz5/P0qVLCQoKYmCvV41OkEIgIukU/de8y12bPgGt5M1kNilm3KqLWX99wqlzh/LOYGBwNRw7imPOHKRjx7Lvq1ABx/z5uDt3BosF6fSporfPwKAY4wt/QFVVtm/fDsA9XZ+mdNTVTbw0yM72qh2ZessoVte7x+dlW2QrLSNaX5/9OW43SlJC5qbt0sCG9dABqj10LxWHPoz5+DFCli6iRvcOVHhpRPZlEoDpwnls+3Znbgft3Aour5U7JhMn3xxNWt0Gnnp2bi+c4ykoaWmYt24BwHT0CHJSon/tMTC4BrmqFSMiDoeD1atXc+rUKdxu/fKrAQMG+KKKEkdKSgoHDhzI3D58+DBbtmwhMjKSihV9L9D57rvvMnXqVL744gs6FNOl6CWF5MBo5rR6its3TqLe8VWEZFwolHqCTMF5JzLIlYBlS7AtWcTFt94rNrEN1LbtSD10FFQVrUwZcOedx8DA4NqlqP0BgG7dujFjxgxSUlK4eKB8odRxvSKpKs32z6fdjpmY3U7sJhtRKac4H1LB36blm3V7/mL9joXsOrSeVwZPwWQyVpAY+Bb1gQGQno5r7NjLJwgIwPnDj5CaChVK3jNkYJAf/OEPyLLMb7/9xurVq1k/39Ac9TVnIwpXHF3TNI4nH+bfc+voUukurMp1MNHFZGLHlF9Akgj9dwOpve/BdOY01Qbcg/l8PGn1G+EOD0cNsCGnpRH56yzS6zcmftBjumLSa9djz/S5VPjgLc70fwg1KBgs2TXVTAmevp70eg38IraeJxERpA55lMAp35B+dx/UmDL+tsjA4JqjwAMj+/fv55ZbbuHEiRPZ9kmSdN0OjGzcuFE3QPHfMtiBAwcyZcoUn9b14YcfZorcb9myxRgY8RHnQ8oBEJJxsdDquJB+jvNpZ4kNrUKA2VgSmRuSw4EpOQlUN66YsiinThJzX28khwNX5SqkDnrE3yZmopX36oh056zfYmBgcO1TlP6ApmlIkoQkSfTp0weAcS8v9Gkd1zWayh1rP6LmyQ0AHI6uz58NB/k03GZRkWZP4a/NMwC4tXV/Y1DEoHCQJAjMw7+NiPD8+w9NKzaTXQwMfElR+gNxcXFERkZisViQJIl27dqxfr7hDxQW5S7up92BX1lXtTvHour6tOxZB6ZwLv0M5YIq0iKmrU/LLq6k16jt+b96LQIDTFR8bjjWk8fJqFyFw9/NRA0JJbV1O069+g7l33qZcu+9TnqdeqS20YewTm3agt0//ZG5La65shw5hOXUSTSTibQGjclF3c6vJH3wP5LGjve3GQYG1ywFHhh58cUXOX78uC9suaZo3759NiEoXzLpZ094p+V/TmfG16MB6NL9EVRLK8Z9toZn3rtNl37cp6sz/36gfe5hiCbO2qrbTv/3tD6Bt1jWaUEsrV5p3bYo8p0uiFS6L3iJY50RZrHUEDoaREFQbwQBcAQBUE3MK4iJaQlZ6bVUT0d2kuaJGR6ScQHNS+RME8QxJS8lSkkQgDNVjtbXK4iYfrP2ZeLtZxlU7QmqBtfAVC7cq2B9Vi7o6xXVr5wWfUguS3jWdXIJxy9el2xi417Hq8h6m0Ux9gBh+4Ig6hYZKIjxeSHq0IoiZtbDB6gy5H7Mp06ipGeJtp0cNY6MwUM4/9LrRL/1KpGvPE9yrXqkN2+VmSY8WDzGrGNKEQRxrYKgrrhsWbQzMSXrGEOFa56Wpr8XbYJwX6ogTBrgJeIWIIr8CXa4BVE31Wu/KA4nCsZbzHkopnqXKxywnJtanIGBQa4Utj/wH6tXr+b555/n1h4vExKS1cko+gP/+Q//kZtPIPoDYpuPIJ7Jxaw2XammF09NEURNlUrhum13mjCI7FWXWJZbsCPptz26bclLYF07lECumPTvNy1REAz3sqvt1p+oGbcBl2Tir9h72Fq6LSRLkOyxRxLfs8I73NtHkAL1backCo8K50PyFhQXfB5JFMeM1ndEX84HWrx5Fmn2FGIiYmlVpSOkXCqzkiBOH6pv4yRLzp8OFkHIVhbscqQI7WNklp1iGybO6QwWBOadgvjsRa92OVVo48Wy0wQB2ciQrNrCgvS+w6nz+vtWbKdFu5LS7F5/63ZlK1v0vUqHZ4+R/h+i35IsbNuE6+JtZ6pw/VOF4w8QfCBRyN1bqFUU4s7LXxDtFs+XiDx3LqZ338X5zTdodX3buXi1lJQxGm/BdbHNKanheK41wfWi8Acm/byNhAtnGf/GIMqUr0L/+9/AbPa8e3LrH4D8+QO59g9Arn0E+eofgNz7CIS857af0acVb33v72XhfSZuS8K3tSq8O739gzon11H5/C5MLgc/NK+Vra2UxHef0IZJXu9Oc/2yun2NzzZhUfqfbDyxgibuesgh+lUjmpeYvehbsPe8btNdXq+Jliwcs9nLTrPQprsFcfUk4f1vE0TA07wOMVjYF5+k7y8ICxK+cb02M1IzaLD8bwC2vf0RAdGlMvedf+hRrNu2EP3rTCo/8gAHP/0WZ7ubdWVJXjdBhnAMUsXK7P/lTwIO7IWQ0Gz7xW2HOWvbbNL7A4rQ/ontoXdbbBL8I5dbfy7FvgeLWTi3Xv0JGcI3P0Jesd3Vv4PENlxvl3hMIt5+TF5p/YXoL4o+oUHJ5D//wFd+QoHvipUrV2IymVi0aBEATZo04aeffiI6OjrzN4PCYdvGZZmDIp06D+CWLgP9bNG1RbLV07HkUHLu2C8oERZPZ09c+slCq6MkEz3tWwIO7tcNigCUffc15Ph4Eh9/kpQ7eiG5XJR/dCDKhfM5lGRgYGBw7XL06FG6du3KmjVr+Gv+1/4255qk4vndtI3zzLZdULEfW6PblJweU4GLKedYs+dPALq1GoAiX/nAuYFBoWG3Y3ruWeSNG7C0bYM8+xd/W2RgUOJwu118Omoo5+KOcerYftJSk/xt0nXBuiq345JMVEg8QM2zm3xaduOgpsjIHLMf5VD6gbwzXGOE7NqKKTUFgOS6jfQ7JYkjb39IUss2mFKSqTH4XsL+zsfKKEUhrVkLLvS934cWGxgYlDQKPDCSkJBAnTp16NSpE5IkYTab6du3L2XKlOG9997zhY0GObBpjeelf0P7O+jSo/iEEbpWiA8qxwVbDHPrFd65rRBYCYCFp+ey8fzaIplVXJKQHFmzSS52v4vd/+7DEVsJOT0N08njIEmc/ehTHDVrYT4TR/S40X601sDAwMA/LFiwgOTkZBo2bEiPu57wtznXJCEZF0g1BbMgti87oloCIKslU0TK7kxHvWT73//OIjG1cLTUDAzyhdWKY+Uq1JtuRkpOxtKnD6ZhQyE9Pe+8BgYGAMSdOMypY/uxWm089cZkwsJL5Z3JoMCkWCNICPSc69Ipvo2mEmoKpUWIJyrCgovzULVrayVVfjB5ibL/hxZgY983Mznf7S5kl4tSM6bmu1zrgb0o5+N9YKGBgUFJpMADIyEhIaiX1roFBwezZ88e1q9fz7Fjx1i7dm2BDTTImYvxcQDUbdymxC6RLs6kWcL4psVbOP9bMaJp1Du9GknzXUfITaU6USukLi7Nya8npjNz+2QcLnveGa8TTr3yNucGPQ5AxNxfifruK/at3sLe1Vtx1GsAgBYUzLkx//OkmfoN1t07/WavgYGBgT84evQoADfddBMWy3UgzOkHdpZrw3e1nmVLqXYASJrKk1tf4oHd47jx5Fyi0k/nUULxoUxERR7s9AI2SxDJ6YmYTdnFSA0M/EJ0NI6FC3E9/wIApi++wFquLOY+9yDt3u1n4wwMij8X4k8BULpcJaJjKvjZmusLk+oJrXU8vKbPy+4QfgtWyUqc4zSbT11ffWxJDZux/6mXSa1cDWfkpTDlmkbZd18jevJnnk2rlcPvf8Lh98ZzYNJ3+So/ZOliatx5K5WeHAyuXEK3GxgYXLMUeGAkNjaWo0eP4na7adCgAcnJybRp04bk5GTKli2bdwEGV03T1p2JKV+FUmUq+tuUaxa3khWTsf2BWXTf9TV37v0KWfVNo2lRrNxfZQidy3RHQuLfk6v5dO1bJNsTfVJ+SUezBXLqtXc5MH0OSTd1JP6xJwFwxlYEU1aszYy2N5LUtQeSqhI691d/mWtgYGDgF9atWwdA9eq5a4gZFABJItGaFde8VPopAl2pVEg5RLtTC3hkx7s8tOVdWp1YSLAjwX92XiF1Y5vzdI8PeLDziwRag/1tjoFBFmYzrvfewzF/AVpsLFJyMsrs2WDLWYPFwMDAw+F92wGM/oEixupMJTzds+IgLrSyz8sPUoK4KbwDAAsP/ILT7cgjx7XF0YeGsvbXZZnbwSuWUGryZ5R79zVivpkEgGYNIP6e+0HxhAcN3rgOc9xp8I7I4XZjOXEMy4ljmT85ylcADULWrCTm/beK5HgMDAyKF5JWwNg948ePZ8WKFYwePZrDhw/Ts2dPnE4niqLw7bffcv/9Rry+qyEpKYmwsDASExMJDQ3Ntn/cyHlAlnhSUFu985N2JkWf4aSXAFqQIP6VqhdGzCbM9olemC03bDG5f1ynbxFmVHqLIYXqtTyeea2Tbntsvxm6bTna6wNJFHyLFxQvRSHSo8LAg5dwlCaIbGmXxMGqn/mXO7ZMxKS5OBDVkN8aDMOtmFETsurSXIKgV14rebyEWg8l7WfG4W9pFtOG2yrflS2vLIilyRWE+yJAEFuLCcpKK4iFmgJzF79UvNIHRQXp9omHJApticKk3m+YQEFc1imIJZkUfVlhgrB5ZtmaRuiqZSS3aotm8aQJPHWcgP17SepwK0hStrq8BdDyI0R+OZxe1zkoQH8uRd0x8TqKgqneYvZiWm/BeACrOedzK4q8Zxe21287BCEy7+smtgriNRcFY0WKq/iaQckmKSmJmMiIHNvFa5W8/IEjR45QpUoVJCReHvQ15bs00+3P5g8k6IWVdeTTHxDb/HSvup4Z3la3b+IMQbh1+RF93UI7nW3bC21znG5balImV7tyshGA44I/IL5LDydk1ePdrmgaoWdOEBu/mxonN1IlbivKpRWlLtnMX80Hsc3cRG93hlOXX1dPqn61qClGEEH3EuqURBuT9ddUFGaVBP9K8vIDvX2ejYeWcTbhJF0a9EWWPPVJYTnnRRDQzeZfCvvNwn5vX8Mm+Bpuh34CSmSU/n4QxTRtXtcmXKhHFDkNDdL7Fi4vX0QRhEdDBT/kzEW9fyn6AN5tqSi8aspDmNUs2Jnidb+ECTaLacVW17ts8fjzQmzjC9Kmiz5PgDnn8yPWazHJoKpImzYhr1tHyiOPZ+4L+mgc7g4dUJu3KLCNBsUX724Kbx/Z8Acuf9xut5uo8DIkpsRz/+0v0LjWjQS2ic3cn2v/AOTaR1CQ/gHIo13OrX8Acu0jEPsHzJ2q6Lbdx4Q23tu32K/XptQEcfVsAulCe6gezdJviT2xjXs3vE+CLZovb/4QNUEIASi8ozRBMFvzavNkq/46qCmeNt6pOvjyyKc0Ld2aVqVvxCR72j3Zq/1UKgn3hfjNK3xrE6v3Naxlsq6TInxLm4S+Bk14Z5uE9EFe/Q1il6P4zs7t21wV6okItoCmUXnih1T+fDwAR198i7iHPW2EJAFuN82aVkNJS8MRFU16lepYzp3Feuo4stOJOzCIPX+twVXBs6oqbN7vVB72MADHPv2KxDt6XbJbb4stlzY+W9+NsO0t+p2WoW8b8+ozEnd79wlcSNb7j0HCdQoQzq23T2ARhMjFL3zxOonttPdeMa9YtuiLZO+GzipNPF7R58tN6D6/PowofO+d3in07YnC7WKXiC99Ee/7XrzXDLLwlT9gyjtJ7owYMYIRI0YAULt2bfbs2cPmzZupV68etWrVKmjxBnmw4t/fSE69iGuHRHpaCi6X5yWr2t00ataJxk075VGCwZVyIKYps5s+xV2bJ1D9/Dbu2TKe3xoOJa3gC68AqBpag2ebv4vVZIRByYuKrz9H6Z++4/jL73Dm4ccAcMRWwhFbyc+WGRgYGBQtP/74IwBlS1UhIrS057cv3yE50aMbodrdIElERMRQt0FbqkTVQlEK7P4ZSBKJwTEkBsewo3J7Ahwp1Dy9gfqHllH+/H7ORlSBS31QsupClYv3Ob+Qcpaf13+Jqrk5nXCUW+r2IjaqOoYsu4FfkWW0Fi1wt2gBdk/HoWnxIiyvvIxmMmGf9TPubt39bKSBQfFg+fLl2B1pVCpbi3rVWpGWkcKsT1/FnpGGpmmZ/oDNFkytujdQK6wuAdacJyEYXDlOxczemGakWsMLrQ6zbGFolREoIcbqOSSJI0Of9QyQfPERlca8gSsyiviefQAwXTyPvUIlbAf2Yjkfj8VLP0STZQ7MmoezfIXMrvjEbndydtuTlP5iAhWeG469ek0y6tYv0kMKnfotln17iH/9XTDnPonVwMDAt/jkK23lypW8/vrrbNy4EYDmzZvz9ttvGwMjhcyxuL38seLrHPeXLZ8VUiMlLYFFq36keqVGVKnVmOCg8CKw8NrjSKkGzGo8gt5bxlMpYQ8P/vMWv1Z+iNNBlX1SvvegiNPtYOGR3+hUqTs2k+G0ehPyjye2qvXIQXC5CNmwlrCN64h7+lJM6nNnKfXVp8S/9Aaa1ZpbUQYGBgYlGpPJRKWytRnY45XM33ZtWcOFc6eypV2xdAalomN5/qlvDW0yH5NhCWZbtU5sq9qR0glHORdRCVI8M1W7HpxGWEY860t14EBYfZB8M6HCl0QGl6Z3q0f4ef2X7I3byt64rQRbQ6lVsRm1Y5tQs0JjI+SWQbHA3aw5ru49MM39A/PHHxkDIwYGl1AUhRsaduWmJndiNllwuhysX/7HZdP+s3Yudaq3YtA9ntBBmqahqW5k2RgOvxpOh1fn9yZPZm43PLuGiwHRnAipjubDNt/bd0tzpWJVAnw0RbMEIkkcGfYcVns6Zad8QZlvJhF/5z0gSbiiS7Nj3nLk9DTMu3ZhO3YYR+kYpOo1cJYpmxluy5vTz72Kbdd2QlYuo9Kg/uxfsAJ3WHiRHU7y3X2x7NmFZM9AMwZGDAyKlAIPjKxatYpOnTrhdrszl0MtX76cW265haVLl9KmTZsCG2lweTLsabSqfxtWi43Q6mUJCAzGZLaABo5kO7EVa2em3X3gH1ZvmsPqTXMAKF2qIlUrN6Rxgw5ULV0nM2SCQd4cj6jFtOYv03P7RCLTz9J3/2dMbPA2DsW3szd+3jeFrec2cCzpIA83eIpAQvLOdJ2Q0qwltoP7UG2BKOlp1Hi4L7LTycVud2KvVpNq99+Fbd8eVKuV8y+94W9zDQwMDAqNZ599ltQDZQkNisj8rXvfoTgy0kECR5IdTVU5cXwvu3aspnLFepkf1qqqMu7TIZSNqUyDejdRN7a5IcRdUCSJsxGVMzctrgxqxf+LRbVTMWk/F6yl2B3RlP1hDTgdGFusBkmaV21PxfDqLNn9GztPbiTFnsSm/UvZtH8p93d8hkbVPOHRLiadxWK2EhRS2s8WG1yPaBEROMZ++H/27js+ijL/A/hntqdteofQe++igCgodsGO2M/eUATrKaj3E+8Uxa7nnXgqir2cCqcgTaR3pENCKCmEkJ7d7O48vz+W7M48qUCSTbKf9704szPPzD7Ps7vzfHeenfnC9ON/YVi+HDh+HIiNCXS1iALu7LPPxoVnFcJ4YnLDZgnB+BsegtUWCgUKnEXeWzIdyzuM7Vt/R49OQ33b5h0/gtdmP4j2ab3Qo+sw9O97DsLAH+adCpPHibEZX8CiOlFmCscBezdkRHdHRmR3FNriG+Q5Mor34bO9/8bg+OEYF3ddg+yzRVIUHLn7ISR++iHCdv6JiHWrUDJ0uG+1qeA4yjt0Qkm/gQCq3v4y/PclsO3djbxb7gRMJmS+PQedLzkX1gPpiH//LWRPfQpNRYSGwjlwcJM9HxH5nfbEyHPPPQe324127drhoosuAgD8/PPPOHDgAJ577jksWLDgtCtJ1evabgC6tvPev1p7/1Cg6j1EE+PaYfiAi7H/4Dbk5B1A7tFM5B7NxKq1PyI6MhE3XP4E2qV2B9XP0Yg0/GfoM7ho+xzsCuvlmxSJdh5Fj4KNOBTWAZlhnQDl1H91c07aRdhzfDsyi/fj7U0v4taYxxAbkVT3hkGg+IwRiP/iE0SsXoFDTzyLorPORtSShYia/yNyHpyK7ClPoMPdNyPmrdkoufASOPsPqnunREQtkMFggD1cf1LwjLMv9f2tjQdU1QNHTr7vcXZuOnJyM5CTm4FNW5cgxBaOfj1GYVDvMWib3LXR6x4MKkw2/HPgsxiUtQT9s5cixnkUZ2X/D2dl/w/F5khsiT0Dy1Kazy/eE+wpuG7YvXB73Mg4tgu78rdi58ENSEvo4iuzYedSrNq2ALdf/wIS45ngl5qe6NQJas9eMGz/E6YvPoe45566NyIKAkaDNgeCEedffqvvsTYeuHTC/RCH/Pk30g/9CYejFDt3r8HO3Wvww/x30KPTUAzucx46t+vXNJVvJSxuB3bGDkSX/M0IdZegR/569MhfDwA4ZkvE2pQx2Bh7Vh17qV1BRT6KXAVYfGQBOqb2QZe4Xg1R9RbJHROLo1dci+jffoHpuD/GhRDoOO1+2PbtxoGHn0TYzu1wjBiFovO95yxtO/5Ex5uuBgA4OnZByahzoEZGIvOtfyPy5x+Q89CjVZ5LcTphOnwIro6dmqRtRNQ0Tjv5elRUFMxmM/bt2+dLdlJYWIhOnTrB7XajoKCgIeoZdOpKrvbOV1t0j6skU5M8cp//yp1/fLAU+3dtwtZ1S7Fh5a9wVTjwzN++Q1h4FABg/dYFyMs5jKiYBEBR4Np/HICAR/UmHzr7Sn+AlZ6zBYUFR2Gx2LxXDAkBVagwGk2w2kLRIbGv75JcIQSUQ/4kZQDwyEsX+f6uksStsJYEsdAnXps17Wf9Soc+aaecWKxKstVwzS9kpcRrak6p7rGiTX4kBITLnwyq37b5OH/7RwCArMgOWNTlWhyO8p9cUqWknTJtYlbFZsaRskP4aO+7KHIVIMQUhhu63YWOkd79GSL1V6joktEDUDTJ13XtA6okl4WcjF2TWEqREnaFSAlQqyQXlfal7a8IaZ1bylglJweTk7OHn/iVhzUvB2MuGAxhMGDliu2IW/gzuj49BSXdemLdVwsBAN0evRfJ879DSeduWP3ZAoTZ/fWOlhLCljn17xezdHltSXmF7rE2QZycEM5mkRLVSUnu5MRjDk3iWzlJmZw8zCq9btqkbk6Xvg1ywli5nnKSO+1I4Jb6XW6DnNhe3rc2Y5qceE4ecuQkZlpVk6HJT1P7rYBOJ2mZ3Cbt9vKoWSElZpNfYyaFbRhMtlpzu7UxwcnEAw6HA4+/+Al2bF6Jtct/xvFj/qTmRpMZk+6ejmGjvCftj2TuxZ8//gpAQFU9cHvccNtN8HhcMJss6Nv/XLTr3xMAkJd7GBm7t0AVKgyKAVZbKKwhobDaQhEaZkdUTALcm/J09QoZmlpjncuzam9TFXn+sdaYph//PVlSslmXlOQ1RPrN0BFNeSkxt5AT2cufdTkBZM5xdMlej845G9Dx6FZYPA4s7jERazteWDUxqxzHaBO1ysdvKYlnlWyQEoN2DLTq9yWP+XKCWMVuxdxlr2LzgZUIsYTh5nOnoVOy9z7cihxrREs506TkuxZNIluPNA6HJejLysddORm7diy1h9aefN1qrvkYba0lSSmgT/IOVE1yqh23q4yNEnlcksdWp6bvw0OkZLxVYg99vbVtksdhOfaSxyj5cbn2tZH2Jcdt8ngo96euHlVijWriAacTyqZNMKxeDcOa1VD27oV63vlwP/QQjHPnwjzlYYiYGDi37wDi4mp8rpZA+x4GAFV608vvj2DGeKB+8QBQe0ygjQfcbjf+Ousr7P5zLdb9/jMOpu/0rVMUBY88/x906NoXALB721ocWOa9hboQKtweFzx2E9xuFwwGI0aMugqxnVMAAJn7dyD3SAZUoUJRFFgsNihlBlisIQgJCUdMbApMWfrvx9rzA8DJnSMI6a4/DpQvO6AvkKD5fiyP/9J4J38/FukFuseKZiwVUgJsUe6GQXUj+dhetMvZhnY525CctwdG4cHS/tdjbZ/xAACzqxwJ+RnI9KT6ryCVEk2LMv33UNdBb/z0Q+EPWFe2DmHGcNzfaSrs5kgYE/TvC0NSmO6xIo1ZSrR0x4sU/9hrkr/zS2OnkL6nGaTvdKHx/ud2Fun7xxJW+62i7Jq+NUpjQ4X0OtlDLTAVFUC1hUC1WGE7Uc/EH79Gr6cehMdmQ+55lyL5v1+iqO9AbJr7o3csEwLdn5uGhC/nwh0Vja0/LkVxlP6KHt+YJgQSfv0JXV/7P9gOH8Se519B3tWTdGVtUjzlkfonxu6PieQxXB4PS8pdUBzlEBYrYDDAKH0Xjwrz9488/h+VPh8RUvygjVtcUh3NdXyHlcclbXxRXqGP4+QxS963fA5AOwbK8YB8LkJOxq6tlxx3yPGj0yXHKfrn0p5/kOM0uT/k8xryuZtq45pmRm6DfH5F7r/mdifmZpN83eFwIDExUVeJyMhIxMTE4ODBg6e7e2oE4RFR6Dt4NPoOHo2rb3sMu9eu802KAMDa5fOxd8f6arc1GS26iZGlC+Zh24ZlNT7X319Z4vv7809fwI6tfyAuOhmhtghYzDZsz/8aMTExGDt2LDweW8tLCCsdGQpCE7AjaRg6Hd2M5MJ03LDuRWxOGYlfut94SolXU0Lb4N7uU/HJvvdxqOwA/r19Nm7v+TA6RHape+NWzBmXiLIOnRCavg/dnpyMiphYAED4ru2IWbYQ+aPGYvdjzyN21TKE792Fdh+9h7z7Hw5wrYmImhebzYauvYaga68huPS6+7Ht92VYt3o+tm9bgfLyEsTE+a9S3LdzI75b8l6N+0pO6Yx28E6M7Nm+Dp+8XfNtDG+491n0D/XeLiD98HYsW/cdQtfGwBYShg5d+6L3wJEICW19t490mWzY3uYsbG9zFoweF9rm70BmbE/f+rSjfyLCkY89SYPhRPO8v7SiKJgw7HYUlB3DgaO78f4vf8Nt5z2Jril9A101amWUjAxYhg2FcuyYbrlh3ToY33wDFYuXQO3bF4YtW2CcMweeadMCVFOils9kMiGtYw+kdeyBsZfehMOZe7Di56+xeeNiFBbkIqlNR1/ZdX8swIolX9e4r6FnXOz7e/XSH7Bk/mc1lp3y6IdIgfdk9NptC/HnvlXYlP0ZwsPD0bt3b1x++eUN0LrAUA0mHI7vjsPx3fFH36thcZWh4+GNOBzvz8Pb+eA6XLziDRRZY/Bb1+uwK6H+dzm40H4hDlYcRI47B98e+Rw3t7uzMZrRIrjtUbrHpqICdJn1HAAg486HkTXhOiT87wfYt2xAxNaNKO47EFAUHJg+E2E7tiFs22a0f3oqtr7xH91+FFcF+k2+FbacbITv2+VbnvbGP5B31fWNdpbYnJONnpedC2ebttj55fxqc6IQUcM57bPQnTp1ws6dO/HII49g4sSJAIBPP/0Ue/fuRc+ePevYmgLNYrGhU+f+umVnjpmAxNT2KC/1/krSk1cGAQGT0Vzl3uNpnXpCVT1wuZxQoACKAkVR4HG74XG7dBMdRUXHUFpeiNJy/9Uam3ctBwDMmjULzzz3PSLs3tuBOBxlaImpxDLieiMjrjfCnAU4a8936HtoKfodWY6o8qP4sv/DUOveRRV2SxTu6DYZb+78O46W5yC77HDQT4wAQN75lyLtvdmIXfw/3fK+992Elb+sQWlCCvZMfgq9ZjyCTm/9A65+/VE48pwA1ZaIqHkzGAzo0m0wunQbDCEEjuUdRlLnDr71cUlt0K/LCAgIGA1GGI1mmKLCYDSa4XZXICY2xVc2KjoeXXsPhaIoUFUPKhzlcDrK4XCUorS4EPaoOODEDyCPFWRh654VwB7v46UL5sFoNKFr76HoN+Qc9D9jDExofXlPPEYzMuL9kwmK6sHYbR8hruQI3IYPkBHTC7sTBkEoCuJKjiDfloAtySN95dsc34VjYckotzT9r6XDbHbcdd4z+HTFG9h2YDW+WP4WHrz0RUSGJzZ5XagVKy6G6NkLynLvD7Dcd90FRMfA9OJMKMXFUPLy4Hr7HZhvuhGeu+4KcGWJWpfUtC64dML9uHTC/SgpPo6QUP+VBGkde6CkywgA3slyXzxgMkP1eHQ/bEhIbueLB4QQcDkdKCsuRkVFOcrLihFhjwUKvGWPHN2PbXtWYtuelb7t77//frRN64HefUfhrJFXwmZruXlPKsyh2NneewutytPptooSOMyhsDvzMX7r2zgQ3R2LO16FnIj2de7PrJhxRdQVeCfvHewt2eW9a0fjVb/FaPfvN5D6xUew5OehtENnHLz5LlhzsnzrjaX+q6iE1YZ9/3gTvS8/F9GLf0H077/h+Ihzfet7P/EA4v5YCgDw2GzIuWIi7OvXICQzHfB4AFPj/KjXWFKM/a++C1vGfigeT5UrhYmoYZ32J/m2227DtGnTMHv2bMyePdu3XFEU3Hbbbae7ewqAYaMu8d06AwDK/6j5yp+Lr7671n1pb39xw00zkL9jD44VZMNZUQany4FhY9shPT0dx44d802KAMA/334IhcdzkdamB5ITOyAqMh5R9gRERcYjJjoZJlPz/CVlpVJrFH7pfQt2xw/E5VveQbvjOzE0cwFWRI2pe+NqmA0WjGl7CfYW7EQHOydFAODAvY+gPK0DzAX5CMnYByGAlK8+AQDE//ITSm+4A1mXX4OoTWuQ+t3nSH3vNRSOGN38rv8jImpmFEVBXHwbmC3+S/V79B2O9iVt9AU7RKM6PfqdiR79zqx2XeUl2461RwAAaUldMWHMPVATLSguysefG39HzuF07Nj8B3Zs/gNtOnRHUrh3gmbvng3Iyc5AdHQioqITEBuXCqu15Z4k0TIID7a3OQu9Dq1AbMkRdM7bjM55m33r90f38k2MGD0uXLf+JShCxeY2o7Es9RKUW5r2ChuzyYqJox7EK989gmPF2Xjxq/twyYhbcVbfi+vemKgeRJ8+cP3tbzA/8ghEchLcb70NAFAHDoBhxR9Qx4wBFAUVm7cAISduB6OqMN11J9TrJnrXE9FpC4/Qj/Ujxl6FQaHD9IVqiAfOvuA6nH2BPjl4ldtjFnh/NNm/2yjER7fB8HHtUVhYiMWLF+OPP/7AwcwdOHxoN0adfY1vk81/LkNRUR6iIuMRaY9HbHQywsKkW2e3ABu7X4gtXcZg6MrPMezAfLQ7vhO3rP8b/kwYhmUdr0CRLbbW7RNMCVCgQIWKUncJohDVNBVvpsL37kTHN/8BRfX+HHX3E/8HYbag80szYKxw4vgZI1FwxkjdNo4u3ZBz41+Q/MG76PjSs1h/xijfhEfGbffBmpuNwn6DcOCmu2BI9d721Vhc1GiTIgDg6NQFjk5dUHzmqEZ7DiLyO+1P88MPP4wdO3Zgzpw5vi+7lZMiDz/MW9eQX2iYHaGJndEmsbNv2SNPVM0x4vG4kZW1H64KB7ZuX46t25fr9pMQn4ZHH/jA9zg3N9ebv6QZnvBOj+2N//W4CV2ObsS25DOB8lPfV7+4IegXN6ThKtfSmUzIHe8PkFP/+ToAoCImDoduvgvwqICiYOeTL8CZkIS8uyc32qSIKS8XoX9uRRGvSCEiqpU8VifEtkVCbFtfjpErb3oE2YfTsXnNb9i5dTXatO8Gd5738pJNGxZi1R8/aPZlQEJiO6S164G2aT0xYNBYhIToc1O0FB6jBau6XIZVXS5DbPFhdM1chU55W+AyWpAXnorD4f7bmIRXFOB4aCLiSo9gwKHF6JG1CivaXYL1yeec0m07T5XFZMUtYx7FlyveRebR3YixJ9W9EdFJEGedhYqVK4Eif45C9YoroV5xpb9QiP8e+Yavv4Jpzhxgzhx4zj8f7pdehugVvEmJiVqSdind0S6lOx6Z6j8/kJ2djQceegW5OZm6H2ssXj4Ph47s1m0fHZWI9t37on3n3hhz6U3N8txAdTxGC37vNAFbUkZi1L5v0Ct7FXrlrkaoqwRf9Kv9fJpRMSLcFIFidxGK3IWIQptay7d2JZ27Y8dzr6Db3x5H1uXX4fiwEYhb+iviF/8PqsmEfU88X+35gCP3PYK4b79A2L7diFs0H3njLgUAFPfsi3Uffe8rV5klxBNh59U5RK3IaSdfr7R//36sX+/NSzFo0CB07Nixji2oNvVJrtZY3v5ys+7xvVf3O+VtZfXdV2lpKf768ufI2LMFuVmZOH4sB8ePZeN4XjZ6DxyF2x56Efde3Q+qqiIuLg4qTOjUfQA6duuPth17IDYkVXepbYiU8LN8Q5bu8SMzL/D9PevB/+orEyUlD5USNCFbk5xdSnAGObF0rj6Ru2vVId1jxea/EsZ9+LhunXDoE6+Z2up/QWKI0NdTifV/UVTk5KqxUqI1KREbNAlRISXlgpQszRqj/7WuRUps7tYkhTXZ9NvapEStcsKq2hJ328P025756O1IWr4Q2x56Gvsn3o5SKZGrSZMsKzrMrAuK5GSq8lFRTuKlTRam7tuP3tdfCktuNg7/5T7sn/JXXdkwKeFZbclG5ef1qPqytSUql7eV+07eVm6TNgmc/DrIicbkfcmJ2LTJ1eQkr1ZpWzmhnrYedX2hqdI/tSQ4k5OnlUnvjxApcZ2nlvveyUnaZE4pmaM2KZ6UO65K0ju5nnJ/aftafp3k3pI/ujJtebmr5feTnPSutmRydb1/ThWTrQZXPKDdvrLsu+++iwULFmDDlt04npeNkmL9OHns2DHExMRg1sM/Yu/BrXB7KtDpopGwR/nHywopQaqnTEpcLtHGD+VrDutXxktjfol+nJYTuYpcf4JZJVV/hYc4VKR7LCdI1cYTotxb5zZZf+KcVXOQeCwdAHDMnoKfh92HLIOUyF7+CGqO/+pR/S93lTD9GF7rwfDEcUAIgYyCPeiY1tt33F6fuRxWkw29kgf7j+U2/XHWoO0/ORFrhH6MNyZKCWQN+mNQeJL/dTJK45vVUvN4B+gTm4fJ8ZJ0cLRIx2S3dKAN0WwfEVp7jCPXQ0D/2K7ZXk5yLu9LTtwdqnn/yDng5beDnEDeVMsx2yD1u0NKtmqzyPGUnNTT/7c8/snjnTweapXLY3hlHHf0KEwv/B+M774LxeWCiIyEc9NmoG3bGvd1oqJAaSkQ3jInVoMN44GWFQ9Ut/3p7OutLzbh+09fR17OQRw/loOCYzkoyM/1rY+LTsHjd/0bgPc7/gcffICYmBgMHDgQ/12V7zuul9eSmB4AkFtW+3rt99iMAv26SGkslb4fQ07WfsRfl8T8/Th73cf4o//VOJTUC3CrsDpLYPK4UBoaDeeqDN22RwsPI8QQghAlBMYI/fdyc1f9LS4VaWyFUz92GOI128vnNaRk9HIbTdL3ae0B3yx9HzZLY77b4ZbW++sZKpWtkL5nqdJYEmW3wuB0QLXaoLhdOP/acxF25CD2TrwdO6c8oyur/b6csuBbCKsVOede6Ku7dowPy9gLhIXDkZgMALAdzUL4vt04Nvxsb52l70bR0muuHWvLpX4vLtPHj6HSOROP243IFUtQ2qsf3DGxtZ4/kJOxy/s2asZx+Tu9HA/IY7r8nU4bi1T52llHUm+XFF9qv4vL8ZFcTzn20sZmFe6az7UAgE36Hn+0SE5W73/vSSEPPPLzSrGZHLVomyzXSz73IJ+7qS0GOtmE6NpYrK7zK1VnB2p+HetK3F4b+TWurb3V1avyqQKefD0jIwPLli1Dt27dMGzYMHTs2NE3GbJy5Ur8/vvvGDVqFNq3b3/KlaPgFRYWhi49B6FLT30CMiEEnA5/kJKRkYGSkhK4XC5sWPkLNqz8xbcurX1PtE3rgbT2PZHQPg1RsQmIjE6A1SZNCjQlIRBWmo/S8Novi/UXF0gv348dpdvQz9oHSeZkGBX+PqE60ds2AQCE0Yh+//coVj70LIR8yzUh0P3jtxHudmDfg0+c/pN6POh+9w2w5GYDAFL//RYKBgxF/jnnn/6+iYhI5+6778bdd9/tO8FSePwoDuz7E/GWPGRlZSEmxn9Lzl9Xf4Z9h7YC3wHxSW3RqftAdO4xAGG2aETFJMAeGdfiE7wfSu6FTy7/O3ptXYiRWz5HbNERXL/wGXx8xjPItbdrsnooioIO0V19X4gKy/Px+fp3AQDndrscF/S8prbNiRpOfDzcr86G5/4HYL5+Igzr18MyaRIqfvoJiKj5826+7FIY/vc/uD77DOqVVzVhhYnoZCmKgvGTJuuWlZcVI3P/DuxdthImo//7n8fjwcMPP4yiE1edRZ7Igdaz35kINUYiOjoRkVHxuryogZYT1wlfXDBDt2zo9u/Rd88i/Pvy11E5peJSXchwpKOTKa3J69jcqVbvD0aFyYyVr8xB14/ewfZ7ptWawfbIBROqnAjX6vHW35G47Fdse2ImXJFR6PPcVADA718tgjMhuQFrX1XKW7PQ5vWX4LZHYuOq7YDRWvdGRFRvpzwCvPjii3j//fexdOnSKuvKyspw66234o477sC77757WhUk0lIUBbYQ/68XOnbsiIKCAjz10mfYt3Mj0ndvxaGMnSjIz0VmxnZkZmzHimVf6/ZhtYUiIiQa7VN74LpLHvEtf+mll1BeXo51Gw/AYrbBYrLCZDTDZA9DaKgdHdr6L8XPzs2AEAJmsxWWUg/MJgsUxQA4FRgUAywW6SoTAGZnOc5b8DLaHtqGj6+fjbKwaLhVN0ya214cLj6AAmc+jhRn4uDRPTjkPIgyj/cqkzVYiTsS70KqJbXKvglwxMbDejwPfWbNAAAc7dgDe664UVcmZvtm9PnnLHisVmTecCdcMfWboKqREDAfy9MtMufn1VCYiIgaUmR0PPoOHl3tr01jI5NQVJqPvIIjOJp9EEezD2LVku91ZQwGI8LCIhEWHoUHp/7TN3avXT0fhzJ3wmg0wRYZBqPJBLPZCmSVw2SyYEjv82A2eX9RdiBzOwoKcmE0mmByKTAaTTCbLDCZLDDBiPjoVN8Jl/KKUrg9LihQYChToSgKTCYLLOaqMUN9CYMRWzudiz1thmLs+n/jSGyXJp0UqZRRsBsFBYVQFANWpi/0LS92FDZ5XYhEp05wffwJLEOHwPDHCljOG4uK//4IxMdXW96wYgXE4CEwLFvGiRGiFigkNALdeg9FWoX+6rDi4mJcffXVWLduHf78808UHj+Ktct/wtrlP+nKhYbaER4RjfCIaFx+xYNIbdsVAHDwyG7s2LsGRoMRRqMJRoMJRpPZO86HhaBTx/6w273fJwtKjiI7/yAMigGGAhsUxQCjwQiD0QhjcShiYpIQYvNelVbuKEVx6XEYDAaYjGYYyp0wGkwwG80wma36X14LgT57f0NIRQksGSuwrrAABxwZ2F76J5yqA5PjJyPWdJrfaVuxkvadseGZWQBQ68SIVmhmOtp+/Qn+vO8JwHjiR6keDxRVRed/vYaQHG+evNK0DjCVlMCZ0AgV16g832AqKgRUTx2liehknfLEyOLFi2G32zFixIgq68aMGYOoqCgsWrTotCpHVB+hoaHo0nMwuvQc7FuWvTsD+/duwu6da3A8PwdFxXkoyM9FhbMcTkcZnI4yhEsJ2l599VVkZWXJuwcApCR2xJQ7/ZN8cz59Bsfyj1RbNj62DR6b/KHv8azXb0dO7gFEGs04z12BcKGix79vwzgAdksMHun/rK/sV7s+RFaJPtm9WTFjgH0Qzgg5A/Hm6r/QEbDp6ZfQ5cO3ELNlHfIGDkfWsKrJyvJ79kN+t96I2bUNbb78COl3nWYeJJMJ6U+/gPYv/BWWvKMo69IduZddfXr7JCKi03bNeQ8CAJQBMdiybglyjxxAxt5tKMjLQeHxoygrK4KqelBcnI/i4nyYTP5L53dsW4Etm5bUuO9BPc/1/b1y1Q9Yt35BjWWfuX8u7OHeK1nmr/sUK3dWLWu1hCDCGom/nP9XxJ3I07F252/Ymbne+wMNoxkmswUmowUWkxVmmDGk6zkID/HGMftytyMzbw/mR7eHzWCC9cgfsJpC0NZdBpjDYYvuArPZe3uMYmcBCksL4REq4sISEVLlwv/qqUJFbmkWDpdk4FBRBnLKjuD2gdNgULynGVYfXoqN2St95U0GM87rfgVGdbmopl0SNSrRtSsqfl0Iy6WXQNm/H0peHkQNEyPO/OPe+zRUVFS7nohapqioKPzrX/8CADgcDkx+5l0c3L8D+3ZuxLGcIygoyIXH7UJZWRHKyoqQm3MAFS7/rXXSD27DL0s/qnH/d/zlJd/EyM7MDfhq6Ts1lr35+hno08v7/XTHvtX49L8v1Vj2upEPYlAnb9nd2Vuxzu3EKABL1v4b32nKRZqiUOAp4MRILRS3G+biQnhsIejzxv8h65wLEbNxDRwJiTh01U1VyhucDgy553qEZB2CsbAQW576O2AwYMdDTyN+ze++SZH0G+9C6KEM9H/8Hmx5bjYcvfo2WhsyH5+BA9NfhKngOIT11H9MQ0TVO+WJkUOHDqFz5841rm/bti12795d43qixhQZGYcBg8ZiwKCxALz3CK+8DVfh8TwcXbOryj3wbrvtNuTl5WHtkp1wVjjgcjvh9rjgghvxsfpEZuGhkXA4y+ByOeByVUAIzT0Dpf2qqgeq6sFx1YMrAKwDMFp142EAb3n02dgTQpNhgILEsFSkqIloY2uLREsyzAZzlRwjpFfYvQ/WvfgujGWl8ISGodTpRmj2YTgjo+EJOXG/VEXB7ol34IwZk9F23oc4cPPdUE/z1mrHLhqPYxeNR+jOP6F4PBBmc90bERFRk7CFhGHoyIt9jytzjLhcTpSWFKL4aB7Kyop1uRP69DsbCYnt4Pa4YLAa4HZVwO12wZF1HC63SzeJkpCQho4d+sHjccFdUQG3xwWPxwWXuwJuV4XvypLaOCvK4awoh83sH4+O5O3H5n0ratymV7shvomR3VmbsXiH/mqYKAD/BTACgAoFpdZIrOlwIV5wleC3ff5cahHmSCSGpiDaGguXWoFLelyPcIv3Hr2rDi3GuiPL4VE9yCvPgUvVxyF5ZTlICPPePiIxLBVdEnpDVVXYQ6JxXvcrEBfOZOwUWGLIEFQsWQoUFUH06OFdWFwM4zdfw3PlhQUHcwABAABJREFUVfqcIooCWHl7EqLWymazod+Qc9BvyDkAvDlGVFVFaWkhSkuOo6S4ACXFx5GQ4L81VWJcGs4YeDFU1Q2PxwOP6obb7YLbUwG38CA8LMpXNtQagdS4jlCFClURvnMAHtUDVXhgsfjHeKPRjBBrOFThORE3yLkxNfkoKkqR6/GOv4kGMzpa26GNtS06h3ZF+5AOQBnPEdQkZckCDHjxCeQNGg5HXALafTMX7b6ZCwDI7zOo2okR1WrDzoeeQv8n7kPaD59DNZux7bH/Q2laB2x95iV0+Pif2H/rfSjp3A0jrzwHQlEgjI17q3Nx4nyFO/rELWPdboRt2YjSfgMBA2+zTnS6Tjn5emRkJBRFQX5+fpVEfB6PB7GxsRBCoLCQl9CfikAmV6OTI4SAy+WCqqq+BEQhIf7A59ixYygvL4fD4YDD4UDY55+jw9/+BmEy4YORjyM/sbevrJrtT7zmOSYlhJMToMoJi6L0ydYMkZrk61LSMiFvG6OfHFBiNL9EkBJFwS59aZSSoBuipSTwmqTN8mSUQU4ALj2XVXouVZNsTU7aJid1izuSjotuvRjHu/TEL29/CbPVW0/F7ca4a85GeM4RrJryPPZceh0sppqTqwNVk61Ga5LtFUmJe4vLXVDcbhjcLnhsIVUSsclJrLXPFSolOKtwe2osCwClDv/6KCmRvVNKxFpXcixtveSEb6Xl+jbKebXkxGPaJGcWKcGZXC85IZpd836S6+yS3h9y4jU5Gbs2uZyc1FZOcCbvO1x6P5VrEsy6pc+izax/3eQ2F2gSMteVTE5O1CcntrWatQl1a0++Lq+X21yqSXQoJ+qTk+vVFijICXPlsnKSYJk20a9Vei8Vad57xcVF6N8pNejGRcYDrY8QwvevtLQUOTk5yM7OxllnneWLqZcvX45NmzbB6XTC6XTC4XCgvLwcZWVl2PDnQVxx0yMIt0cDALZuWoota5ZACAFHeSnMihM37dmFK4/lIc7j0f0K6oNOw/FI9h4AQEGp99YMBgDRAI4BmDLked9kx//2f4vFmf7bjViMVqTY2iDV1gZtQtuhW1xf2Ew1/7hAkZNSyondNQyxUhwSbpYeSxNM0jEaIZpWyonbpVjCKI21iuYYpEjHPov0vAbpeGeXjtnaZKLy+CYf3+TjrDy2aMvLcYgcS8hxjPb4Lx/7Q21yMlX9vmvLnSmPFWbpecud+nghTIontDGR3F5pSIech1Pbn/JYGm4zwbBuHQyZB+AePwFl7prHP9vHH8J+391Qw8NRdu8DwOOPAWH+2/TKcZ3c5hIpJtKO49qkrV76esjvCS05MascA4bb+MObSky+Hlztbgk+XrJX9/jG0TX/gLg6Qgi43W7fWB8REeE7n3AoJxfK7X9B6o8/omL6DLzhOkO3bek7/h9RGKRjkBKqH6PM3fU/WBCl0nc8uybxdLz+3IISLY33UdKVCy7pFk/a5Ozy+QRpDDfKids1LHUkeZfPHxg1x+y4vX9iwsP6PGebpsxA/1dmwG214cv5m3WTGtpxt+0v32PIsw9DEQJ7r78df05+Wjdu9f/7k+j0/Wc4PGIsVrz4zyrf+eXveNrvQzFSbFHXd1zdMK2q6PPgrUj8fREOn38Z1j77mm7glscsOcm3s8L/XHJOFTkekL/T1hZPyONb1e+p+m2dLvmcgH+9vK1cr9pOYcfaa7+ixiGdi6gt5pFfU3mcLpe+p8uxibaa8vtBrof8WthD/e8ROdbyeGqPF+TYS1dHqevkWFR+L4Za9c+trbf2XAJQXXwpnfvTdLacbF1+P8jnquR9VXZucVERerRPDlzy9R49emDt2rV46qmnMHPmTN26p59+GkVFRRg6dOgpV4yopVAUBRZLzb8IjY2VLm3t1QvYvRvKF19g/LoP8MFFs2o/ItMpSV67HAaPG7E7t6Ddbz/iyIVXAACEyYQdV92CIW+9gN5z38GBsy8ATjfXiIahwokLbhgHS1EB5n+2CGocb39GRER+iqL4An673Q673Y4uXbroyowcORIjR46sdvvK5POVBp55HgaeeZ7v8ZBeiQCAbADZHg9WvvQL+m3+GWeu+hS37VuJ5BH34c8u58DhKodp+++YuP0LtHEU4LGOYxFi9v+CfkDiGUiL7gSDYkSUNQbxYckQR/0/2lBMPFFLzYPpfwsQOv4yAEDFzbeg7PWab2cjrDa4O3aCaf8+hP9jJtTPP0P5suUQSbzCiYgCQ1EUmM1mmM1mRERE6NbFxcXB1L0H8OOPMGQdAeICVMkWKK9TTxQntUFE9iEAQPpl12H/lTeh17svwVxWioiD+1HUvku12x48/3KYPG4MfH4qOn/6L1RExWLHDXcDAEwlRWg3/xsAwO5rbm2axpyQ+vVcJP7uTVmQ+ssPONpvCDKuvLGOrYioNvXNP1TFNddcAyEE/vGPf2DgwIGYPHkyHnroIQwePBh///vfoSgKrr322oasK1HroCjAG28AAGKLj8DsdtSxAZ0Kpz3K97eQfqGw96KrURabgPCcI+j96XsN/txb7pqGpbM/gsHFS5uJiCiAjEaUhUVj5fDrsWaIN6n0gJ0LoKgejNz5C6Zt/BfaOY7DCIFLQuMRbvGfkEkIS0aPuP7oFtsHieGpvnwiRM1Ouf/WtEpJSS0FAec11yFvw1Yc//gzeNq2heFABqz33K3/aScRUTOiDvHmUjXOmYP4nH0Brk0LoijYfaE3/+fx9l2x9YEnoagqlBPHe6WO4/7BS67GtgeeBAD0fPvvSPv5a+92qvBdaZKwcXVj1b5axrJS3WNTeVmTPj9Ra3TKV4zcd999+OSTT7Bp0yZs3rwZmzf7f70mhMCAAQNw3333NUgliVqdkBCgfXuUZBfAY+AvLhtDxnmXI+P88YjctwuFnbrBAsBSkI+KyGi4Q8Ox6pG/IW35L9h//vgGfV7VYsWhMf772fPVJSKiQDO7HPj9rJtQFhqFzW3PhjAY4TGYYBT+S9cd5rBa9kDUfLnHT0Dxnv2AEBDJyYBaxwaKAudl43G8cxfEnn0mTD//BNOHc+C+9bYmqS8R0clQr7gSniuugEhNRX5I20BXp0XZcv3d2D/mUpTGJcIeHoaonVthKi9DRXgECtvVfcuzfTfcBaPDgeRlvyBrhDd/rcseifVT/4Yznp+Cnh++gby+g5B/xtmN3RQAwMFJtyNk9044Y+NgOZ6PvRNvb5LnJWrNTvmnX1arFb/99hsmTpwIo9Hou1ey0WjE9ddfj4ULF9Z6eyGioBYRAaSn453x70I1nvL8JNXmxG1KCjt1AwC0WfgjLrt4EHr982UAwOHh52DlozNR0LFbwKpIRETU2DrsX4v73r4O5//yGtYPHA/XiSTvG3peiK+GT8PhGO9tJDgxQi2ZaNMGom1bwFT/uNrdsxcqnn0eAGD67jtArWtG5RS43bwahYhOj6LA9dk8uF+dDY+J59hOiqKgJKkNxInbf8ZuXgsAyO87uGpihxrsvn0ylr//NVz2SN+yzHHjse/S6yAMRoQdPtjw9a6BMJmwecYr2PnAk9jyzMtAIyd+JwoGp3VGNioqCnPnzsU777yD3bt3QwiBbt26MRkYUT0ZhrfRPRY/+xO3mVKjdOtcu3OkjfW3h1JLnfr1muRhhhD9R90gJzGVE3UX+G/vVSXRmkv60iglf1IL9bcGM2oSu8uJsuQkpnJSeJeUANMc6r/+QpXq4YK+rLNEs15V0eOD1wAA3ea+h/Qxl6KoQ1ffajnFi1lKaionOS0t9yeaipESr4ZLSaeOFulfl1ApYVyI5rGc5FxOYiYnV1VsNeemkRN8hUnvgRKpb62axGxyHeuKGT1Sgjjt9nIyMLlNct8fL/b3V3ykPnmanHitUHrPy4nGtMnYVVX/RNok70DVhF9ygi+L5kuInLSsoo5kYVGaz5ucbFY+VyInp7dKid21nyH5dZLJ7w6X9Nza/nVLjZKTx8kJ0nTJ0+pIkWSqI17XJpCTE7VHaV4ng4dfBIkA4N6r+9W6fuHmw76/LceO4oKFs2FU3ei9fREyB5+JHQn+xK0H7KNw7o5PAQDONgkwCP2Yr5bobwlp7uzPm+Xan6dbJx/75LjEIB3/jW39JxjUXP2tIZQSKYFje+l4VyDdhlTUnNjd45QSwsbqE8pqj6s2KeaR4xSDlEC94Hi57rE2sbvZoj+eldWRpFJOaupR/eUr3HI8oH9cXK7ftzZukZOHysdZmRw/aJOvymNYmJTjtMypr4dNSnSfmVuk2Va/LlxKxltUpn/vJUT6Xxu5CfnS+9QqJYxVpIEqVPM65t95L2Lmz0fRX2fA7fR44zKXCzB76+Nyq4CqwrRuLWzff4uQlGRUPPSwb3vt6+aRJlbMK/9AyAXnQ6Skwvn6G3CdP06/XtPXNeQV9Tleov88ya+rNuGuvK0cezmkhLEhUjxR4vDHiHLSdzkpsBwjEwWjk022fkpOnABvc2FXKG43ovbtwPFufbDnw7X+MtKBREiJlNU8/VhriNX/IEKXjD1CGjvl5OrS91ZI34mhSfKNUP0xxiyVVeVzEZqDmPydH9LTyInbjdI4rU3OXu50w3rwAAAgu9fAKuNu1eObZj9Wm68/0/73Lco7dcWOac/i8BXXo6BnvyoDk/xdSvtYTuItj+lGo/Q9TKqn9hgfYjEi9YuPELt8EXZOfwkVIQm6snLibu24LJ+bkccOOQm6HAPUVrZCet0SovTxVc5x/S3Awmz+73lW+TWskshdT5sEXP5OL7c/SjoPJr9OZZqYserYqd93dLj+zSiPy/ma8xpyzBMpnYuQY0Tt62SSPtdu6bEct8lt0p7XkOtoNun3Jfet0yXHff6YQO5bOfYql/pL+z6XY1G7FAN6pNdcTgpf+dwV5oaZGGyQmwXb7XYMHjwYQ4YM4aQI0UlIOLgLBo+77oJ0WlK3rkbkAe+kk8HjQb/3Xvati9q7A0P+bxpSlv0SqOoRERE1ii6znoPLYoPT5j35MeaLV2Bx6k+MLDrnHvx83sM4FpsGi6sMYeXHA1FVosAwGpH/zQ9w9+7jWxQy7RFEpiQgMiUBcW0SEJ8Ug5ixZyP0jdmw/PM9/9kjIXRnkgzbtsKwYYPvsdq1G5SKChgy0hFy2SWwPDujqVpFRK2UubgIox+ahNGTJ8FUWhzo6rQ46x94Gl99twZ7LrkOcVvWoe2iH2HNz6t7wxM6fPcphj43BYMfvxuWguPeSZETjGWlTX6FoCU3G93/7wnEL1uIrn9/ukmfm6i1YBZFokB5+21c/8qdGPnfdwNdk6CjqP7Z67ZL5qPD/K8xaNbTsBQVBK5SREREDayw70B88ugHSO/pvUpEUVUYpF+1Z7bthx09zkV5SCS6Hl6Dexfcj+uXzoCtovYk1kSthub2W0p+PqyffARDQYH3X1ERFIcDakQEHFdfC8fMF70nvtxuhNx7Nywv/QMAYFy0COFjzkHYFZdDOZDh3Vl8PEq3bkfFAw8CAKwz/w/m12c3ceOIqDVxhYUjcv9uWEpLEHEoI9DVaZGcUTGoiIxGpx8/x1nPTsbFN4xF+MH0em176NyLUZLaDmFZh3DmfRNhy80GAIQf2Idzb7oQnT99vzGrXoU2gbww8LZaRKeCyQ2IAiUlBUbVg8GL5+Fwx77Y23dUoGvUah3uewaOnDEarvAI7L18EopT03zrtt94L9ouXQD7gX0Y8OoMrJ4+O3AVJSIiakCHrrsVFYv3IPqo9/7Xv058FI6QiBrLR5bnQYWC1Pw9mLByFj7v/wjcRt7GjoKHiIlB4d4MKDnZgMEAtweAQYEntQ1gtfpuFWH6+SdYPpwDADDs3QPTp3OhuN3w9OsPobkPvejaFRUvvwKRkADr03+F7dFpUIpL4LrrbiApoboqEBHVzGCAMyoG1uJCmMrL6y5PNSpK64iSlDSEH8nEGS9Mw29vfg5RR54qlz0Sy17/BGffPxHhB9Nx5r3XYfm/v0PC6mUIP5yJPm++gPCD6fhzygyoNlut+2oIzsRkLPl9BxTVA9Xa+M9H1BrxihGiQBk/HutGXwsAOO/zf8BWWlTHBnTKFAW//987WPnMbBztNwSOuEQobjfsGXvhsdqw5smXoBoMaPfrD0j+47dA15aIiKjBqCYz5j30Dn66eTp2Dj6v1rIrelyF/4yZCYc5FG3yd+PSre9BEY2QkJqoGRNRUVC7dYfapSs8nTvD07ETYNXfS9x9yaVwTJ0GADB/9B8objcqrrkWpf/9CYiOBgAYtmxGyJjRsE24HK6HH0HFg5MBANbnn4Vh586mbRQRtRoemzdXltFRVkdJqs2OG+7Bb6/NRUVYOOL+3Igec+t3J4+ypDb44+15KEtKRfjBdPT9x1+x/+pbsP3ORyAUBR2+/wwjb5+AsMz6XYVyujwRdrgjo6HaQuouTERVKELOuEPNQlFRESIjI1FYWMi8La1ZRQXQvz+wYwdw11142XO+b5Waow90PEcK9Y+P6W9xYQjV/6JT0SRsMkTpE40qUnIjJUL6NagmMZJirf2STEVKJIVo6ZcKmmSQCNM/L6SEqEqclBBVTvKmTVIpJY6SE6SapcRa2vJGswEXzLgbbTf8jk1X3Y7VN0zGGR/OQr/vPkRRQiq+fPM7eKz+wEJO6qZ7Hou+f+Rk7CVSYjo5gZU2aaWc8Fs+OMvra1snJ/gqd8qJyOTErf56hkntlROPyeTk7NpRRU6UZQ+V3gPyvjTJ5eRkoHIidzkZvZwgvEyTPLRqwi45yZ3+sZzYXJsgTO7rcinZrFwP7TBbKiVWk5PpWaSkZXJy3lJNgl2b9N6zSMnH5OSqESH1/9V3ubStnGxP2382KUG8nPROTqAn11vbX3Kdtf1TUlyEgV3bBt24yHiATtaP6w7qHl8yuK3u8cu3fu37e+qcK3XrHCc+68qyZbBcMA5KRQW2nnc1lt3yOKAoKPtht6+smqPPVSLK9QmwqyQilZKxK5pjgxynQDo2ygllFWksUUI0t0KSYg35cRVRmrhFTuIoHZNNSeG6xx5pTDdqjm8m6fhtkmMJaew0SUmudcnspe4Ik+I4OTGpNlGnPJZapPGusExOXK7vA7fmdQyVYkI5Mbc81spjmDaekI/3cqJ2+Suqdt/yGC5/my1z6mOv5Bh9gmFtIvMwuQ0e/RgWG6GPa7X9ASEQPfUhRM39EPn3Tkb5jOe8QZHHg4g3XoV95t+guLx1yZn3DYpHnYuIeZ8gbNEvyH7/I18AZdm6GUrXrhBh/nrKsYZb+jzJcZ5RE4xViSelDpKTr8r71r5/nNJrKieflcd07bZyLCHn7ZUTtcqxV02KioqQGBMddOMi44Hg5Kgm4bXl7LNhWPE7Kr74Am8s9sf3ZV9u1JVTpNhfsUnfj6Wx1xjnH+OE9Fk3xOvLGuxSFnT566L2O7F8vkAmr7dodlYhHzik7xWp+s+CW/6upRkvTPLYeeIY1XX5jzjvnWegGk347h9zkdelt3ff0vkE7fHO6fIgdsdmXHD/tTCoHix9Yhb2j7kUKetXYNTMRxBSkI+KkDAsefxlHBw6GiGauMXl1h9z5bFV/l4qJ2fXfves7fgNVE2AHaVJ+i1/75TPU8inHuSxVru9fP7AKo0NDulcRLyUjD0733/uS95WPgMixzzauEVObK891+Ldl/5xhBRPuj3+fcvxgExukxzzaMdl+bu0/H1ZjtW0MY8cEteVnF5+nbTvl3DpM1DlfIJ0fkU+/6I9l1ElybtRPh+lfy5dvaVKFpTqY1H5dZMTvTtPvK9LioswtEfaaY+LvGKEKJAsFuCdd7x///OfSM7ZFdj6BImuC79F2w2/AwD6f/UvdFi5EOuuvQclsYmw5x5Gn/9+EuAaEhERBY4YNQqujz+GUBT0+fVL9Fr4VaCrRNT8KApyXnwFu3cdxNEnpvsmOqKmPIjI56b7JkVyP/oMjrHnAwYDiq+/Cdn//sRX1rppA1KvuBjxN1wD1HEShogIAESYd5JCyckNcE1ah90jLsbeoWNh8Lgx6s1n6r3dsR79sOWm+6AaDAjLPQIAODLoLHz/7vfI7j0IlvJSjH7xEdgK8hur6kTUADgxQhRoZ58N3HILIAQuXPYmTG5nnZvQ6TG69DPSBlcF3CGhyOo5sNr1REREwUa98ir8fsMjAICixDa+5dFFRxBVnB2oahE1OyJUf0WK9lJaYbVCjYuveWOPG4qqwrZ8KSJffrGRakhErYkYMhQAYPrb8zC5HAGuTSugKPhj0kNwhkXAVlQAxeOue5sTtt1wD+a//TW2TrzLt6w8LhE/z5yDYx2741inngg5ntcYtSaiBsLk60TNwSuvAL//jo1xo+A21nHLBzptu8eMx4h3ngcAFCanYd+ICwAAix+aiX0jLsDRrn0DWT0iIqJGZXRXwGOq+/Z6Wy6YiJLYRBzuMci3rN++ReizfzF+7H479sX1a8xqErVIBbNeg+OCixD+6sswHToIZ/+BNZZ1DhqK3JdmI+ne22Gf9Xc4zhoJ54hRVQsKAVNGOtToaKhR0Y1YeyJq7txPPAFl1Up4Hp4C90+uujegOhXHp+A/n6066e2E0YT8br2BE7dgCj2aDXN5KY4nt8f3r38JYfSecmX2D6LmizlGmineQzQIuVx4Zc4G30P3j3t0q0WZPuhx7dNfOmuQ702tyTliiNb/ks0QKw3N0g0kDQn+8qJIuid4iv7+2pDuRYkQab5Ve79Eu3SfU+n+iEY594D8WHu/TenQJecBUaT7Eho19642W02wFh6HKyQU1uJCOOISUBv5Xs3ae2TL92WscNV+r0n5vpba+03K94es6x6P4Zp9y/cXlcn3AZcP/do8D07pXqTh0r035ftpyuu197GU829EhevvRyuPQNp7aMr3/JTzpMj9Jd9zXHsPbTmXR4lD/3mKkO63Ka/X9l9t9wAFquYREZpsMfK9OOU2yO8P+R6i2jbK78u6crAoUh/oNpdvXlrbCwP9+1a+l638Vqxyn3TpHqvaNsqvoVZxURE6pSYE3bjIeIBO1+87cnSPR/z3P8ATTwDvvotZme106x55/nzU5svf9+OMp+9H2yXzAQB/jJiElSMnAYoB7t/1uU2EfF90OU+IqeZ7DcvbKnKMI42thkjN2CLfjFoeh6X4QHcfdDnnmpzzQMpXYpbyiimaNipy7CDfe9oix0DSes3xUB6z5RFfztWgLV4lr5Mijx36vg6pJQ+UrLb8U9U9l/Ye5EJqhfa+3kDVemsVS/nb7FKePXcduU60ObnkviuT4pYKV81jFqDP9SH3pdmgwJh3FJ54b5xZZczXdE/iw/cj6vNP4E5IROGEa6D26I7i628CABhzspE6diRMOdnwxMYi6z/zoA4/U7cv7Vgsvy5ym0Klz5Occ0Rbz6ovf83vB0A/5pdKsZQcA8oxs0yb302bo66oqAip8bFBNy4yHiCgas6R/6464Pt79y36214K6ZhU5bt3rP57vRKm+YxKAb0Sqf/8GpOkK+VipPML2uOKnENEOicg5xExafYlVOm4Kh3vPdLxzRatr4dbk59RzkEqj8vysVCmzalRJVeTR4W5qADn3HstbPlHsfKVOTjea4BvvUvzutmk16GuXB9yjpFoTTvk78dO6fug1H26cUf+uhcl9U+ZdAyXv0tq80B4pDFczhMi57aQvz9rx2X5+7Ich1RNQ+dfIOemkPO51PY9FNDHHvLzVo2f9H0txwva+EDOKSLnkZHjFm08JT+PPKbLMVBt72P5PIX8Osnbhkj5b7SxmhwNyG2skltVs+uESP3nVI5r5XjJKPW958T64qIidEw5/fMDvJUWUXNh9g8W1tIihDiLA1iZwDC43Tj3PzMxaP5HVUfqBuaMjIZqsaI8NgGdf/4SIXknThwJgTYrFuHS2y/B6KfvrRpNEBERtVARm9cDTz7pHdsefBAxRw/UvZGWomD19Fex94obAQBn/j4X4798FuaK8kaoLVELpyi+SREAMBQVIvGJR2D/5osqRbOf/zucXbrBlJuD2PfeQMTHc3zrPAmJUNzeEwzGY8eQcuUlCP266j6IKDiFZh1C1K5tga5G0FNUFZ6QEFiLCjDi/uuRsHIJAMBSkA9bHvPBEDVXnBghamba7lqPSS/cirHb/hPoqjS5ttvXoM/SbzHiyzfRcePSJnnOpI0rcebLT+LCB66FuaQI3b/5D859+m5E79+FtBW/InnDH01SDyIiokYlBDr/9WFvgmebDXA4cN7Pr538bswWbJzyLOZf8ghcJgs67V2NcT/OgkGt/z25iYJR7JuvIvqjfyPlgTth27RBt06EhuHAN/ORM/3/cOyOe1F62RX+lYqCw9/+jPQd6Si94GIYnE7E3XkrIp99GnDzc0cUzGK2bcB5t16MIS9MC3RVWryR0+/DuHuvRPKaZae0fUVUDJa8NhfZQ0fC5CjHWVNuwYTh7XHxhQPR9YsPGri2RNRQODFC1Myc+f27iMo7DIMIvisVHGF2uCzey3Q9ZmsdpRuGcuKKkNC8HFiLCyFMUo4X3m2QiIhaiZI+A4CVK4H27QEAquHU0w1u73sevr9qOjwGI7rt/B0X75pT90ZEQUwNj/D9LcxVcwp6omOQf8d9yJ3+AgrveUC3ztWtO9SYWGR/8AkK7n0QABD5+iuIn3R141aaiJo1R1wiLCXFiNq3C4qo/fZ0VLf4HZtx9tP3oMfn/zqpJOyVPKFh+P3v7+PQmIt1y4vad26oKhJRA2PydaJmJCYrHcn7/wQArOp8aYBr0/RyOvXG2+8uh624AI6IqCaZuc0aeCayBgxH8saVGPTe37F0xpsoi01A/PaNODJ4JLL7D0PNd7kmIiJqIRQFe154DYlhTu9VI1FR+N8lU7xJnd1OuM22k97lgY6D8MOVz+CiH/6ObYnDG6HSRK3HsQemIP+u+6GUl0ONiqojW0cNjEYcm/43uAYPQezDD6Dsksv96/hjHqKg44iO8/1tUSvgNDLN96laNe1FmMtKkbLudwx690W0W/IzVj76Igo7dD2p/QizBeufeQXHe/SDK8KOnDNGozi29pymRBQ4TL7eTDG5WhASArjwQuB//wPGj4fjq68DXaOgoWzdCsuggVBUFc41ayEGDgx0lagebFJyMDkZYbBrrv1zqvUqKipCYkx00I2LjAeoURQVATt2wDFgIMxXXgHD0qVwffU11DFjdMXkz2uNjh8HoqP9j4VAuZSIc2vGMd3j7QcKfH9fe3ZH3boNe/N0j+Xk2XKCS+36MinZY16RQ/fYbNC3qUJzDJITa1pM+sfHSyp0j+UEqRGaBNFyAlCZ/FxyYknt9nICUIeU4NIjJSrVtlFqbpXkqXJSVznhpe55pNfUUSVBrH7fcVJyzYISp+9vORGrnDy0vEL/OmoTtcrtlRO1F5XqXye5/ywmf3k5YbycEFZO8ioLsWqTr+tfF7eU9NUk94/d3z8lUkJ5+f1js+g/A6oQMBQchxoWDpjNUBQFYZ9+jJCf/osjz/0d7tQ2vrKhVv22crJZOWl8mdNfF/l1kfsnv9ipe9wuwZ/MWX6d5M+iTK5Hckyo72/t56W4qAgdUuKDblxkPEDVEgKwWAC3G44DmUBqaqBr1LIJAeOHc2CaOhVKYSGE2Qz37Nnw3HV3oGvWqmnjzebynbUhNZfv5c2lHierpno31PkB3kqrEb311lto3749bDYbhg0bhjVr1gS6StSczZvnnRSxWoG//927LDsbhgULvL/spEYj+vSBerX3VgTGf74X4NoQUWvDeICaHbsdGDYMphkzYPzxRyjFxTDfeANw5Mip7U87KbJ7N3DGGVB27651E0NFBRTGN0SnTI2KBipvySUE7LNnIXTBT+g4ehhi3nmd3x+aKcYE1KAUBQj3TkgqJSUBrkwroCjw3HobnFu3wXPZZVBcLpgefBDKnj2BrhkRNRJOjDSSzz//HFOmTMH06dOxYcMG9OvXD+PGjUNubm6gq0bNkccDTJni/fv++4FOnWB85x1Ye/WE5ZKLYTnvPCh79wa2jo3B4fD+yrQmFRUwLFwIJT39lJ9C2bYNxvfehfnWW2AZ0B/Wjh1gTUyANTwMVqvFl7TSc8edAADjZ58xkSURNRjGA9Rsud1QVq4EAIjkZCi5uTA/+EAdG9XDffcBa9bAevZIKBkZulWGkhLE/PQdOk2+AxOvHIbIA60wtiE6GU5n7bfAcrsR8sfviHrqUSQN7Yfkgb0QN+lqRD0/HSELfvYVM2ZlwbzPe+LOUFaKhL89g4Tnn27s2tNJYkxAjaJyYuTgwQBXpPlQ9u8Hjh6ts5zxlVdgTUmG+dZbYPjma6C4GCguhrJ3L9SRo+B+eApcc+ZAdOnSBLUmokBgjpFG8sorr+COO+7ArbfeCgB499138dNPP+GDDz7A448/HuDaUbMUHg7ExgK9ewPDhsG8fr1vlWHZUlgG9Ifr8y+gXnRRACt5+pSMDBj++18Y/rcAhqVL4XlwMtz/93/6QkLA8ON/YZo2DYYTE0KuGc/C89e/evexYwcMixbB8PtyKEeyINLaQnToCNGhve9XHpVMkyfDuHRJtXUR4eGAyXsYVM8+G56rroKyb1/V+04QEZ0ixgPUbJlMcC1YAM/n82B6/nlvvoPQ0Lq2qtsnnwDjxkHZvBmWidfB+dtiGJYvQ6e330f0rz/DUOG/9U7koXQUdOwGAFAyMyFSUwEjM3tRMyGE/15aQsCUfwzmnCyYj+ZCDQ9HyaBhvqLWXTtgLiiAoawMist7Ky+PCkBRoFptKD5jhK9sp1uuhW3PLpiOH4OhvNx7q5aYWHiiY+Ds0RtH3vgnAEApL0f7YX1hOqo/aW46kIGQBT+j7IKLUX6B93uBJzYWQlGgaCZZ3HHxjdErdBoYE1CjGDECmDcPpv/7P1SMHRvo2pweIaCsWQPD4sVAeDjUAQMgzjqrzs2UzZsh+vb1HbNNUx6GYeFCeG6+GZ477wLKy2HYtRPKrt1QzzsP6jnnAADU8eOhPDoNxo8/hvHjjyHMZu8PR04cS51r10EMGNB47SWigOPESCOoqKjA+vXr8cQTT/iWGQwGjB07FitP/DJP5nQ64XT6vygWFhYC8N4zjYLEZ58BSUnAlVcC69dD2O1w//VpqOeeC9OUKTBs2wpn9+7e+4I3hYoK7+X5Nd1c+dgxICLCe0/Tuhw+DOP338P47TcwaCZ8AMCzdg1cJ9qk7N4N43vvQtm3H8ZlSwEAwm4Hiorg6tUL6olyppf+AdNHH/l38of+6RznjvHd1sM4YgQMEBCDh0AdNAgiIQEIDYUIDfXetkzbny+9BIRHALwMuUWoaKH3yGwqzbV/TrVexSc+qy0pNRrjAWruHB4VBrMF5vR0oE0bOJ97Xjcuyp/XegkJAT75BGLkSCjr1gJ27y9ZzQBKADjS2uP4mHHY1PMs5HfpBZSWoCgrC9Yx5wIhoRBt2yC13A0oCtxRMSgccgYcZ43UneSV8xyoLv9kSrlTf/ugshJ9XgOT9OMHVy05RlxSTogyKXeFnOvEqJ56jhH58cnkGFGlXA6mk8gx4jqNHCNyjhWXSfHen91RDnNBPioibKhI8ee6UHftgWoyAYqCCk3eCwEFZVHhUGNiK58Its8/gzk7CzAa4bHbgXA71PAIKBUVEOERuokG+1efwOAoh+J2w+Aoh7WwBAZHOYTRCEebdsi58S++sm3eehkhebkwFhZCcbtgUFXA44GhwglnmzSk/+1VX9meV54HS9YRqDYbjCUlMLj9uTfKO3ZG9te/wFPhfe8l3nItLIeq/7V2ecfOyPrqF1+OkfLDh4AjhzQd5wJysoGcbFQ4HCgpLvK9/nntO8LqqoBjzPlwnDcOamQkTLt2wbR7J1y9+6Ck+EQMDQX7PvsKamQUSkPtUKOiIawWoLgIngopR4+p9hwj5RX+dipuKceINGaXSDlGimz+9fL7sqT45HKMFJv8V3DrcowUFwNoWfEAcPIxAeMBqrcXXgBUFY5nn2u6cwV18Xi836ltNu/5AkUB8vJg/O8PULKy4X7ySV9Rw5dfAIoCw9ZtMHz/HQyZmb517htugLtPnxMP3DDffBPUvv2ApEQoWdnAkcMw7N0Hw6qVqPjkE6gXXQw4HLAcyYLB4QDee8/7T1u1zZvgGjTI+yA6Goavv4Fh4ULvDzf37wcAiJQUqP37w11SAtFc+rQVq2jlOUaay/fy5lKPk1VTvRvs/ICgBnf48GEBQPzxxx+65dOmTRNDhw6tdpvp06cLAPzHf/zHf/zHf/xXy7+DBw82xVDeIBgP8B//8R//8R//Nc6/lhQPCHHyMQHjAf7jP/7jP/7jv7r/nW48wCtGmoknnngCUypzTABQVRX5+fkwm81IS0vDwYMHYbfbA1jDpldUVIS2bduy7Wx70GDb2Xa2vWZCCBQXFyMlJaWJahcYjAeq4meEbWfbgwfbzrYzHvBiPFAVPyNsO9sePIK57UBwt7++bW+oeIATI40gLi4ORqMROTk5uuU5OTlISkqqdhur1Qqr1apbFhUV5btU1m63B92HoRLbzrYHG7adbQ829W17ZGRkE9Sm4TAeaFhsO9sebNh2tj3YtNZ4ADj5mIDxQM3YdrY92LDtwdl2ILjbX5+2N0Q8wAzDjcBisWDQoEFYtGiRb5mqqli0aBGGDx8ewJoRERFRU2E8QERERABjAiIiouaIV4w0kilTpuDmm2/G4MGDMXToUMyePRulpaW49dZbA101IiIiaiKMB4iIiAhgTEBERNTccGKkkVx77bU4evQonnnmGWRnZ6N///5YsGABEhMTT2o/VqsV06dPr3IZbTBg29n2YMO2s+3BJhjaznjg9LHtbHuwYdvZ9mATLG1viJggWPqqOmw72x5s2PbgbDsQ3O1v6rYrQgjRJM9EREREREREREREREQUYMwxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODHSjL311lto3749bDYbhg0bhjVr1gS6SqdtxowZUBRF96979+6+9Q6HA/fddx9iY2MRHh6OK6+8Ejk5Obp9ZGZm4uKLL0ZoaCgSEhIwbdo0uN3upm5KnZYtW4ZLL70UKSkpUBQF3333nW69EALPPPMMkpOTERISgrFjx2LPnj26Mvn5+Zg0aRLsdjuioqLwl7/8BSUlJboyW7ZswciRI2Gz2dC2bVv84x//aOym1amutt9yyy1V3gcXXHCBrkxLbPvMmTMxZMgQREREICEhAePHj8euXbt0ZRrqPb5kyRIMHDgQVqsVnTt3xocfftjYzatTfdo/evToKq/93XffrSvTEtv/zjvvoG/fvrDb7bDb7Rg+fDjmz5/vW9+aX/e62t5aX/OmxHiA8UBLHBOB4I0HgOCOCRgPMB5gPNB4WltMwHjAj/EA44HWNjYwHmA80CLiAUHN0rx584TFYhEffPCB+PPPP8Udd9whoqKiRE5OTqCrdlqmT58uevXqJbKysnz/jh496lt/9913i7Zt24pFixaJdevWiTPOOEOceeaZvvVut1v07t1bjB07VmzcuFH8/PPPIi4uTjzxxBOBaE6tfv75Z/HUU0+Jb775RgAQ3377rW79iy++KCIjI8V3330nNm/eLC677DLRoUMHUV5e7itzwQUXiH79+olVq1aJ5cuXi86dO4uJEyf61hcWForExEQxadIksW3bNvHZZ5+JkJAQ8d577zVVM6tVV9tvvvlmccEFF+jeB/n5+boyLbHt48aNE3PmzBHbtm0TmzZtEhdddJFIS0sTJSUlvjIN8R7fv3+/CA0NFVOmTBHbt28Xb7zxhjAajWLBggVN2l5Zfdp/9tlnizvuuEP32hcWFvrWt9T2//DDD+Knn34Su3fvFrt27RJPPvmkMJvNYtu2bUKI1v2619X21vqaNxXGA4wHhGiZY6IQwRsPCBHcMQHjAcYDjAcaR2uMCRgP+DEeYDzQ2sYGxgOMB1pCPMCJkWZq6NCh4r777vM99ng8IiUlRcycOTOAtTp906dPF/369at2XUFBgTCbzeLLL7/0LduxY4cAIFauXCmE8A6oBoNBZGdn+8q88847wm63C6fT2ah1Px3y4K+qqkhKShIvvfSSb1lBQYGwWq3is88+E0IIsX37dgFArF271ldm/vz5QlEUcfjwYSGEEG+//baIjo7Wtf2xxx4T3bp1a+QW1V9Ngc/ll19e4zatpe25ubkCgFi6dKkQouHe448++qjo1auX7rmuvfZaMW7cuMZu0kmR2y+EdxCcPHlyjdu0pvZHR0eLf/3rX0H3ugvhb7sQwfWaNwbGA16MB1r+mBjM8YAQwR0TMB5gPCBEcL3mjaU1xgSMB7wYDzAeCIaxgfEA4wEhmt9rzltpNUMVFRVYv349xo4d61tmMBgwduxYrFy5MoA1axh79uxBSkoKOnbsiEmTJiEzMxMAsH79erhcLl27u3fvjrS0NF+7V65ciT59+iAxMdFXZty4cSgqKsKff/7ZtA05Denp6cjOzta1NTIyEsOGDdO1NSoqCoMHD/aVGTt2LAwGA1avXu0rM2rUKFgsFl+ZcePGYdeuXTh+/HgTtebULFmyBAkJCejWrRvuueceHDt2zLeutbS9sLAQABATEwOg4d7jK1eu1O2jskxzOz7I7a80d+5cxMXFoXfv3njiiSdQVlbmW9ca2u/xeDBv3jyUlpZi+PDhQfW6y22v1Npf88bCeIDxANB6xsSaBEM8AAR3TMB4gPFApdb+mjem1hwTMB5gPAAwHgiGsYHxAOOBSs3pNTed9BbU6PLy8uDxeHRvAgBITEzEzp07A1SrhjFs2DB8+OGH6NatG7KysvDss89i5MiR2LZtG7Kzs2GxWBAVFaXbJjExEdnZ2QCA7Ozsavulcl1LUVnX6tqibWtCQoJuvclkQkxMjK5Mhw4dquyjcl10dHSj1P90XXDBBbjiiivQoUMH7Nu3D08++SQuvPBCrFy5EkajsVW0XVVVPPTQQzjrrLPQu3dvX70a4j1eU5mioiKUl5cjJCSkMZp0UqprPwBcf/31aNeuHVJSUrBlyxY89thj2LVrF7755hsALbv9W7duxfDhw+FwOBAeHo5vv/0WPXv2xKZNm1r9615T24HW/Zo3NsYDUbptGA/4tbQxsSbBEA8AwR0TMB5gPMB4oGG01piA8YAX4wHGA615bAAYDzAeaL7xACdGqEldeOGFvr/79u2LYcOGoV27dvjiiy8CfqCmpnPdddf5/u7Tpw/69u2LTp06YcmSJRgzZkwAa9Zw7rvvPmzbtg2///57oKsSEDW1/8477/T93adPHyQnJ2PMmDHYt28fOnXq1NTVbFDdunXDpk2bUFhYiK+++go333wzli5dGuhqNYma2t6zZ89W/ZrTqWM8QEBwxANAcMcEjAcYDzAeoNowHiCA8UAwYDzAeKC5xgO8lVYzFBcXB6PRiJycHN3ynJwcJCUlBahWjSMqKgpdu3bF3r17kZSUhIqKChQUFOjKaNudlJRUbb9UrmspKuta22uclJSE3Nxc3Xq32438/PxW1x8dO3ZEXFwc9u7dC6Dlt/3+++/Hjz/+iMWLF6NNmza+5Q31Hq+pjN1ubxZfIGpqf3WGDRsGALrXvqW232KxoHPnzhg0aBBmzpyJfv364bXXXguK172mtlenNb3mjY3xQIGuDOMBv5Y0Jp6M1hYPAMEdEzAeYDzAeKDhBEtMwHiA8QDAeABoXWMD4wHGA805HuDESDNksVgwaNAgLFq0yLdMVVUsWrRId0+21qCkpAT79u1DcnIyBg0aBLPZrGv3rl27kJmZ6Wv38OHDsXXrVt2g+Ouvv8Jut/suy2oJOnTogKSkJF1bi4qKsHr1al1bCwoKsH79el+Z3377Daqq+g4cw4cPx7Jly+ByuXxlfv31V3Tr1q1ZXCpaX4cOHcKxY8eQnJwMoOW2XQiB+++/H99++y1+++23KpfyNtR7fPjw4bp9VJYJ9PGhrvZXZ9OmTQCge+1bavtlqqrC6XS2+te9OpVtr05rfs0bGuMBxgNAyx0TT0VriQeA4I4JGA/oMR5gPNAQgiUmYDzAeABgPNBaxgbGA3qMB5ppPHDS6dqpScybN09YrVbx4Ycfiu3bt4s777xTREVFiezs7EBX7bQ88sgjYsmSJSI9PV2sWLFCjB07VsTFxYnc3FwhhBB33323SEtLE7/99ptYt26dGD58uBg+fLhve7fbLXr37i3OP/98sWnTJrFgwQIRHx8vnnjiiUA1qUbFxcVi48aNYuPGjQKAeOWVV8TGjRvFgQMHhBBCvPjiiyIqKkp8//33YsuWLeLyyy8XHTp0EOXl5b59XHDBBWLAgAFi9erV4vfffxddunQREydO9K0vKCgQiYmJ4sYbbxTbtm0T8+bNE6GhoeK9995r8vZq1db24uJiMXXqVLFy5UqRnp4uFi5cKAYOHCi6dOkiHA6Hbx8tse333HOPiIyMFEuWLBFZWVm+f2VlZb4yDfEe379/vwgNDRXTpk0TO3bsEG+99ZYwGo1iwYIFTdpeWV3t37t3r3juuefEunXrRHp6uvj+++9Fx44dxahRo3z7aKntf/zxx8XSpUtFenq62LJli3j88ceFoijil19+EUK07te9tra35te8qTAeYDwgRMscE4UI3nhAiOCOCRgPMB5gPNA4WmNMwHiA8QDjgdY7NjAeYDzQEuIBTow0Y2+88YZIS0sTFotFDB06VKxatSrQVTpt1157rUhOThYWi0WkpqaKa6+9Vuzdu9e3vry8XNx7770iOjpahIaGigkTJoisrCzdPjIyMsSFF14oQkJCRFxcnHjkkUeEy+Vq6qbUafHixQJAlX8333yzEEIIVVXF008/LRITE4XVahVjxowRu3bt0u3j2LFjYuLEiSI8PFzY7XZx6623iuLiYl2ZzZs3ixEjRgir1SpSU1PFiy++2FRNrFFtbS8rKxPnn3++iI+PF2azWbRr107ccccdVQL6ltj26toMQMyZM8dXpqHe44sXLxb9+/cXFotFdOzYUfccgVJX+zMzM8WoUaNETEyMsFqtonPnzmLatGmisLBQt5+W2P7bbrtNtGvXTlgsFhEfHy/GjBnjC3qEaN2ve21tb82veVNiPMB4oCWOiUIEbzwgRHDHBIwHGA8wHmg8rS0mYDzAeIDxQOsdGxgPMB5oCfGAIoQQJ3+dCRERERERERERERERUcvDHCNERERERERERERERBQ0ODFCRERERERERERERERBgxMjREREREREREREREQUNDgxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODFCRERERERERERERERBgxMjRNSqLFmyBIqioKCgoMmfW1EUKIqCqKioepWvrKuiKBg/fnyj1o2IiCiYMB4gIiIixgNEVBtOjBBRizV69Gg89NBDumVnnnkmsrKyEBkZGZA6zZkzB7t3765X2cq6XnPNNY1cKyIiotaL8QARERExHiCik8WJESJqVSwWC5KSkqAoSkCePyoqCgkJCfUqW1nXkJCQRq4VERFRcGE8QERERIwHiKg2nBghohbplltuwdKlS/Haa6/5LjfNyMiocqnshx9+iKioKPz444/o1q0bQkNDcdVVV6GsrAz/+c9/0L59e0RHR+PBBx+Ex+Px7d/pdGLq1KlITU1FWFgYhg0bhiVLlpx0PTdv3oxzzjkHERERsNvtGDRoENatW9dAvUBERBTcGA8QERER4wEiOhWmQFeAiOhUvPbaa9i9ezd69+6N5557DgAQHx+PjIyMKmXLysrw+uuvY968eSguLsYVV1yBCRMmICoqCj///DP279+PK6+8EmeddRauvfZaAMD999+P7du3Y968eUhJScG3336LCy64AFu3bkWXLl3qXc9JkyZhwIABeOedd2A0GrFp0yaYzeYG6QMiIqJgx3iAiIiIGA8Q0angxAgRtUiRkZGwWCwIDQ1FUlJSrWVdLhfeeecddOrUCQBw1VVX4eOPP0ZOTg7Cw8PRs2dPnHPOOVi8eDGuvfZaZGZmYs6cOcjMzERKSgoAYOrUqViwYAHmzJmDF154od71zMzMxLRp09C9e3cAOKmgiYiIiGrHeICIiIgYDxDRqeDECBG1eqGhob6gBwASExPRvn17hIeH65bl5uYCALZu3QqPx4OuXbvq9uN0OhEbG3tSzz1lyhTcfvvt+PjjjzF27FhcffXVuroQERFR02A8QERERIwHiKgSJ0aIqNWTL01VFKXaZaqqAgBKSkpgNBqxfv16GI1GXTltsFQfM2bMwPXXX4+ffvoJ8+fPx/Tp0zFv3jxMmDDhFFpCREREp4rxABERETEeIKJKnBghohbLYrHoEqI1lAEDBsDj8SA3NxcjR4487f117doVXbt2xcMPP4yJEydizpw5DHyIiIgaCOMBIiIiYjxARCfLEOgKEBGdqvbt22P16tXIyMhAXl6e7xcdp6tr166YNGkSbrrpJnzzzTdIT0/HmjVrMHPmTPz000/13k95eTnuv/9+LFmyBAcOHMCKFSuwdu1a9OjRo0HqSURERIwHiIiIiPEAEZ08TowQUYs1depUGI1G9OzZE/Hx8cjMzGywfc+ZMwc33XQTHnnkEXTr1g3jx4/H2rVrkZaWVu99GI1GHDt2DDfddBO6du2Ka665BhdeeCGeffbZBqsnERFRsGM8QERERIwHiOhkKUIIEehKEBG1Boqi4Ntvv8X48eNPartbbrkFBQUF+O677xqlXkRERNR0GA8QERER4wGi5o9XjBARNaCJEyeiTZs29Sq7fPlyhIeHY+7cuY1cKyIiImpKjAeIiIiI8QBR88YrRoiIGsjevXsBeC+R7dChQ53ly8vLcfjwYQBAeHg4kpKSGrV+RERE1PgYDxARERHjAaLmjxMjREREREREREREREQUNHgrLSIiIiIiIiIiIiIiChqcGCEiIiIiIiIiIiIioqDBiREiIiIiIiIiIiIiIgoanBghIiIiIiIiIiIiIqKgwYkRIiIiIiIiIiIiIiIKGpwYISIiIiIiIiIiIiKioMGJESIiIiIiIiIiIiIiChqcGCEiIiIiIiIiIiIioqDBiREiIiIiIiIiIiIiIgoanBghIiIiIiIiIiIiIqKgwYkRIiIiIiIiIiIiIiIKGpwYISIiIiIiIiIiIiKioMGJESIiIiIiIiIiIiIiChqcGCEiIiIiIiIiIiIioqDBiREiIiIiIiIiIiIiIgoanBghIiIiIiIiIiIiIqKgwYkRIqIWZMKECYiOjsZVV10V6KoAaH71ISIiaqma25ja3OpDREQUDJrb+Nvc6kPUkDgxQkTUgkyePBkfffRRoKvh09zqQ0RE1FI1tzG1udWHiIgoGDS38be51YeoIXFihCgIjB49Gg899FDQPXegjR49GoqiQFEUbNq0qcH2GRERUe+yjd33NdXnlltu8bX9u+++a9Q6EBEFM47xgcExnmM8EVFzwnggMBgPMB6glo0TI0REGg0dWNxxxx3IyspC7969G2yfLcFrr72GrKysQFeDiIjIh2N8w+AYT0RELRnjgYbBeIBaA1OgK0BEzU9FRQUsFkugq9GgAtWm0NBQJCUl1ats//794Xa7qyz/5ZdfkJKS0tBVq5dTrVNkZCQiIyMbs2pERHQKOMY3HI7xRETUUjEeaDiMB4haLl4xQhQk3G437r//fkRGRiIuLg5PP/00hBAAvL+YuP/++/HQQw8hLi4O48aNAwCoqoqZM2eiQ4cOCAkJQb9+/fDVV1/p9rtgwQKMGDECUVFRiI2NxSWXXIJ9+/bVWI+ffvoJkZGRmDt3LgCgffv2mD17tq5M//79MWPGDN/jyvrVVP/q1NSm2up7yy23YOnSpXjttdd8l4RmZGTUuy/q46uvvkKfPn0QEhKC2NhYjB07FqWlpQCATZs2Ydu2bVX+NVSAJPd9cXExJk2ahLCwMCQnJ+PVV1+t8uuZxq4TERGdPo7xHOM5xhMREeMBxgOMB4hODidGiILEf/7zH5hMJqxZswavvfYaXnnlFfzrX//SrbdYLFixYgXeffddAMDMmTPx0Ucf4d1338Wff/6Jhx9+GDfccAOWLl3q2660tBRTpkzBunXrsGjRIhgMBkyYMAGqqlapw6effoqJEydi7ty5mDRpUoPWv6Zt5DbVVt/XXnsNw4cP910Km5WVhbZt29a7L+qSlZWFiRMn4rbbbsOOHTuwZMkSXHHFFbUGew2lur6fMmUKVqxYgR9++AG//vorli9fjg0bNjR6XYiIqGFxjOcYzzGeiIgYDzAeYDxAdJIEEbV6Z599tujRo4dQVdW37LHHHhM9evTwrR8wYIBuG4fDIUJDQ8Uff/yhW/6Xv/xFTJw4scbnOnr0qAAgtm7d6tv35MmTxZtvvikiIyPFkiVLdOXbtWsnXn31Vd2yfv36ienTp9e7/jW1WW7TydRX61T7Qt7X+vXrBQCRkZFRZ71qMmbMGBEXFydCQkJEampqlTpV9/zV9X1RUZEwm83iyy+/9C0rKCgQoaGhVdp/OvUBIL799tt674+IiE4Ox/iacYznGE9EFCwYD9SM8QDjAaKaMMcIUZA444wzoCiK7/Hw4cMxa9YseDweAMCgQYN05ffu3YuysjKcd955uuUVFRUYMGCA7/GePXvwzDPPYPXq1cjLy/P9aiQzM9OXfOyrr75Cbm4uVqxYgSFDhjR4/Y1GY7XbyG2qb31l9e2LuvTr1w9jxoxBnz59MG7cOJx//vm46qqrEB0dXe99LFy4sN5lgZr7fv/+/XC5XBg6dKhvWWRkJLp163ZS+z/Z+hARUcPjGF//+so4xjdcfYiIKLAYD9S/vjLGAw1XH6KWhBMjRAQACAsL0z0uKSkB4L1HZWpqqm6d1Wr1/X3ppZeiXbt2eP/995GSkgJVVdG7d29UVFT4ygwYMAAbNmzABx98gMGDB+uCHYPBUOWyUpfL1Shtqm99ZfXti7oYjUb8+uuv+OOPP/DLL7/gjTfewFNPPYXVq1ejQ4cO9d7Pyait74mIKDhwjOcYT0RExHiA8QAR6THHCFGQWL16te7xqlWr0KVLlxp/edGzZ09YrVZkZmaic+fOun+V9+A8duwYdu3ahb/+9a8YM2YMevTogePHj1fZV6dOnbB48WJ8//33eOCBB3Tr4uPjkZWV5XtcVFSE9PT0065/depTX4vF4vtFzcn0RX0pioKzzjoLzz77LDZu3AiLxYJvv/32pPZxMmrq+44dO8JsNmPt2rW+ZYWFhdi9e3ej1YWIiBoHx3iO8RzjiYiI8QDjAcYDRCeHV4wQBYnMzExMmTIFd911FzZs2IA33ngDs2bNqrF8REQEpk6diocffhiqqmLEiBEoLCzEihUrYLfbcfPNNyM6OhqxsbH45z//ieTkZGRmZuLxxx+vdn9du3bF4sWLMXr0aJhMJsyePRsAcO655+LDDz/EpZdeiqioKDzzzDPVBj4nW//q1Ke+7du3x+rVq5GRkYHw8HDExMTUqy/qY/Xq1Vi0aBHOP/98JCQkYPXq1Th69Ch69OhxUu04WdX1fUREBG6++WZMmzYNMTExSEhIwPTp02EwGPgLEyKiFoZjPMd4jvFERMR4gPEA4wGik8OJEaIgcdNNN6G8vBxDhw6F0WjE5MmTceedd9a6zfPPP4/4+HjMnDkT+/fvR1RUFAYOHIgnn3wSgPeS2Hnz5uHBBx9E79690a1bN7z++usYPXp0tfvr1q0bfvvtN4wePRpGoxGzZs3CE088gfT0dFxyySWIjIzE888/X+2vR06l/rL61Hfq1Km4+eab0bNnT5SXlyM9PR3t27evsy/qw263Y9myZZg9ezaKiorQrl07zJo1CxdeeOFJteNUVNf3r7zyCu6++25ccsklsNvtePTRR3Hw4EHYbLZGrw8RETUcjvEc4znGExER4wHGA4wHiE6OIuQb/RERNTOjR49G//79fb84aSlaWr1LS0uRmpqKWbNm4S9/+UuD7FNRFHz77bcYP358g+yPiIhal5Y2VlZqafXmGE9ERM1ZSxtXK7W0ejMeINJjjhEiokb09ttvIzw8HFu3bg10VarYuHEjPvvsM+zbtw8bNmzApEmTAACXX375ae/77rvvRnh4+Gnvh4iIqLniGE9ERESMB4haLt5Ki4iokcydOxfl5eUAgLS0tADXpnovv/wydu3aBYvFgkGDBmH58uWIi4s77f0+99xzmDp1KgAgOTn5tPdHRETUnHCM5xhPRETEeIDxALVsvJUWEREREREREREREREFDd5Ki4iIiIiIiIiIiIiIggYnRoiIiIiIiIiIiIiIKGhwYoSIiIiIiIiIiIiIiIIGJ0aIiIiIiIiIiIiIiChocGKEqBo//vgjunXrhi5duuBf//pXoKvTLEyYMAHR0dG46qqrAl2VZuHgwYMYPXo0evbsib59++LLL78MdJUCrqCgAIMHD0b//v3Ru3dvvP/++4GuUrNRVlaGdu3aYerUqYGuChHVguO/F8d8jvMAx3UZx3Ki4MF4wIvxAOOBSowJ/BgPtC6KEEIEuhJEzYnb7UbPnj2xePFiREZGYtCgQfjjjz8QGxsb6KoF1JIlS1BcXIz//Oc/+OqrrwJdnYDLyspCTk4O+vfvj+zsbAwaNAi7d+9GWFhYoKsWMB6PB06nE6GhoSgtLUXv3r2xbt26oP/sAMBTTz2FvXv3om3btnj55ZcDXR0iqgbHfz+O+RznAY7rMo7lRMGB8YAf4wHGA5UYE/gxHmhdeMUIkWTNmjXo1asXUlNTER4ejgsvvBC//PJLoKsVcKNHj0ZERESgq9FsJCcno3///gCApKQkxMXFIT8/P7CVCjCj0YjQ0FAAgNPphBACnHsH9uzZg507d+LCCy8MdFWIqBYc//045nOcBziua3EsJwoejAf8GA8wHqjEmMCL8UDrw4kRanWWLVuGSy+9FCkpKVAUBd99912VMm+99Rbat28Pm82GYcOGYc2aNb51R44cQWpqqu9xamoqDh8+3BRVbzSn2yetUUP2yfr16+HxeNC2bdtGrnXjaog+KSgoQL9+/dCmTRtMmzYNcXFxTVT7xtEQfTJ16lTMnDmziWpMFLw4/ntxzPfiOM9xvRLHcqLgwnjAi/GAF+MBL8YEjAeoepwYoVantLQU/fr1w1tvvVXt+s8//xxTpkzB9OnTsWHDBvTr1w/jxo1Dbm5uE9e06bBPqmqoPsnPz8dNN92Ef/7zn01R7UbVEH0SFRWFzZs3Iz09HZ9++ilycnKaqvqN4nT75Pvvv0fXrl3RtWvXpqw2UVDiWOfFfvDiOM9xvRLHcqLgwnHQi/3gxXjAizEB4wGqgSBqxQCIb7/9Vrds6NCh4r777vM99ng8IiUlRcycOVMIIcSKFSvE+PHjfesnT54s5s6d2yT1bQqn0ieVFi9eLK688sqmqGaTOtU+cTgcYuTIkeKjjz5qqqo2mdN5n1S65557xJdfftmY1WxSp9Injz/+uGjTpo1o166diI2NFXa7XTz77LNNWW2ioMTx34tjvhfHeY7rlTiWEwUXxgNejAe8GA94MSZgPEB+vGKEgkpFRQXWr1+PsWPH+pYZDAaMHTsWK1euBAAMHToU27Ztw+HDh1FSUoL58+dj3Lhxgapyo6tPnwSb+vSJEAK33HILzj33XNx4442BqmqTqU+f5OTkoLi4GABQWFiIZcuWoVu3bgGpb1OoT5/MnDkTBw8eREZGBl5++WXccccdeOaZZwJVZaKgxfHfi2O+F8d5juuVOJYTBRfGA16MB7wYD3gxJmA8EMxMga4AUVPKy8uDx+NBYmKibnliYiJ27twJADCZTJg1axbOOeccqKqKRx99FLGxsYGobpOoT58AwNixY7F582aUlpaiTZs2+PLLLzF8+PCmrm6TqE+frFixAp9//jn69u3ruzflxx9/jD59+jR1dZtEffrkwIEDuPPOO32J2B544IFW2x9A/T87RBR4HP+9OOZ7cZznuF6JYzlRcGE84MV4wIvxgBdjAsYDwYwTI0TVuOyyy3DZZZcFuhrNysKFCwNdhWZlxIgRUFU10NVoVoYOHYpNmzYFuhrN1i233BLoKhBRHTj+e3HM5zgPcFyvDsdyouDAeMCL8QDjgUqMCfQYD7QevJUWBZW4uDgYjcYqSaJycnKQlJQUoFoFFvukKvZJVeyTqtgnRC0HP69e7Acv9gP7oBL7gSi48DPvxX7wYj94sR/YB8GMEyMUVCwWCwYNGoRFixb5lqmqikWLFrWqS0JPBvukKvZJVeyTqtgnRC0HP69e7Acv9gP7oBL7gSi48DPvxX7wYj94sR/YB8GMt9KiVqekpAR79+71PU5PT8emTZsQExODtLQ0TJkyBTfffDMGDx6MoUOHYvbs2SgtLcWtt94awFo3LvZJVeyTqtgnVbFPiFoOfl692A9e7Af2QSX2A1Fw4Wfei/3gxX7wYj+wD6gGgqiVWbx4sQBQ5d/NN9/sK/PGG2+ItLQ0YbFYxNChQ8WqVasCV+EmwD6pin1SFfukKvYJUcvBz6sX+8GL/cA+qMR+IAou/Mx7sR+82A9e7Af2AVVPEUKIU5xTISIiIiIiIiIiIiIialGYY4SIiIiIiIiIiIiIiIIGJ0aIiIiIiIiIiIiIiChocGKEiIiIiIiIiIiIiIiCBidGiIiIiIiIiIiIiIgoaHBihIiIiIiIiIiIiIiIggYnRoiIiIiIiIiIiIiIKGhwYoSIiIiIiIiIiIiIiIIGJ0YoaDmdTsyYMQNOpzPQVWk22CdVsU+qYp9UxT4hajn4eWUfVGI/eLEfvNgPRMGFn3kv9gP7oBL7wYv9EFwUIYQIdCWIAqGoqAiRkZEoLCyE3W4PdHWaBfZJVeyTqtgnVbFPiFoOfl7ZB5XYD17sBy/2A1Fw4Wfei/3APqjEfvBiPwQXXjFC1IDeeuutBt+mtvXVravPsroeN7ST3T/75OTLn2yfVLe8tfVJbWVaSp8QUfMX6OP5yRynGvOY1VT90BDH79baDyf7/mgu/dDQ43lz6gciCi4NeexrzHigPs9/qhgXndq+GRfVr3xL7QdqxgRRkCosLBQARGFhYYPts0ePHg2+TW3rq1tXn2U1PW6MPqmpTqdTnn1ycutrWlffPpAft5Q+qa1MS+kTImp4Df15DfTx/GSOW415zGqqfmiI43dr7YeTfX80l35o6PG8OfUDETVfzf3Y15jxgPYx46LAvxfqU55xUe3rm3s/UPNlCsBcDFGzUlRU1GD78ng8J72/urapbX116+qzrKbHlcsask9qqtPplGefnNz6mtbVtw/kxy2lT2or01h9QkTN37p16wAAX375JUJCQk57f4WFhfj0008brHxt66tbJy+r7XHl3+Xl5QAarg/qqveplK9pfX2XB2M/nOz7o7n0Q33KNmU/EFFw2L9/P4Dme+xrzHhA+7ihxwDGRXXX+1TKMy6qfX1j9AMFB+YYoaBVWFiI1DZtUFpSEuiqEFErEB4ejkOHDiEyMjLQVSGiWthsNsTExKJd+/YwGBQAgC4YliLjKoGyAIRmaU52NhKTkmrdj3Z5TnaWv3w1UXhOdjYSEpP0254omJubjfiEJE09gLzcbMQlJKGyVnm5OYiLT/Rtn5ebg9iEREAAeUezERufCKGqyM3OQnxSMhSl6p11vU/nr5yQ/pCrLSBwPC8X0bEJ1fZDdX14/FgOok6Ur9JXQqAw/ygiY+KlFUBBfi4io6suLzx+FPboOP/jgjxERlU+FigsyIM9Mg4AUFSQB3tUHISqouB4LqKiEqAoSpV9Vttg7bpqlheVHIM9LKZKe/1/6xtbVJrvLS/kTjixv7J82EOiqz5P+XFEhETpyhaXH0eELdpfUABFjgLYbf5yRY7jsFujAQgUOQtgt0RBCIECZz6irNFQoGieR+ibWaWO1by4J5YXu4sQYbRXKeP76qnpx2K1BBFK+IlH2ved8O9PlCJcCauyvlQtQ6gSottlmdAuEyeWlSMEthOPBMrhgA02AEA5ymGDDSo8KEQR2qANVh5aidTUVBBR63XOOedgy5at6NqtW4PEA0DlGJ9cbVn5z4DFAye2qU9M0DTxQC6iYquO65V/Fh7LrTYeEDgRK1TGBA0RD0SfiAdqGve1j5siHtDurywf9tDoKs9VXTwAARQ7KmOChosH9M2uIyY4hXgAAIo9JYgwhJ9UPAAAJaIUYQj1LZdjgpOJBwQEClGIWMRgwfr/YeDAgaDWi1eMUNBSFAWlJSXYnX4AdnsExIljbeXgL3zHXqFZrl/mC4Zq2FYbSFS3v8qDse+xb51/G4jK/Z34rwDUKss09fXtS7u8cn/auvm39ddP6LfVlQPUyrbq9intF9U/h64PpX2jynOf2F7VDMAnVviXV24rvOtU7f6Ef6BVNdtq2osa9qHtP91yXcV8HaIpDP9jVVNOlbbRLq98e/j2har7VSvfaJrl8JcTVeribxuEZn3lc1VTN+HbTtqHJvoRmn369q9W9o/Q7M//XtOXO7FdddvC3x/e51GrL6err2YbCAihQtX8VxUqBFTvZwWqd3OoJ9576om3wIl1vvL67bz7E77H3ufS7rNya4EKVGBhyW/6E2tE1Cy5XC4s/v13pKW1A6oZs2scr3WPTxyPqtmuvvtB5bIq4+3JjPvSuF1tmdr3LXT10Y/5/qGrln3K+6+xXdU/r5CO7aJyzKnsK1H5X/+4V90yaOqgHbfqs32143qVsRi6sbP+f9dz/5q/6xrb4es37Tr9c9cZH9R3XK9mmX5cPlGh6srVOaYLfz1U4RuHax/PhW88V7XLNWO5tzpq7eVr2F8xSrALu5HWJg3t0Q6rj65BXFzcyR9oiKjZ83g8mPXabFx73fU4lXG8clyrKx5AjdtKj6uMm40TDwA1lat+7G7seADQlKkpJqjneH7a8YC/c+oes5sgHqjsm5Mbz/XP3ZDxgK8+tcUETRgPAKh+jEdN3+/rHw84UYF92Ichg4YgEQn4bcdidO/e/ZSONdS8cWKEgp7dbj/liZHKQb0xgiFol0nBQ20BkX+76ratPmiBpi26bXXlqgZFVetY83Po+rCafdd2sqRyG1+Qc7oTI7XsA6hmP/UJXE48V9UAqJa/K98e9X2OU5kY0Z608K3T16fWfZzY7pQCJuXEckX4H1e3zNvZJ55KAOLELNGJ5cK3/sRrVjmZovi3UX1TFCcCIc3/V/fI+3JVv666ZaqvftWUFP59EhERUcsVgXAMxkAUoBA7sQvJ8cnoiA5YV7QeERERga4eERERNQErLOiJHuiADtiDPejVoxdSkYLlGb+jXbt2ga4eNaCq184TERERERERBakoROIMDMVQDMZR5CHOHodeSk84HI5AV42IiIiaSAhs6Is+GI1RUKGiY/uO6Kh0QG5ubqCrRg2EEyNEREREREREkljE4iwMR3/0wyEcRnRINN5//324XK5AV42IiIiaSBjCMBADMBJnoQzlSElMQVelCwoKCgJdNTpNnBghIiIiIiIiqoYCBYlIwCiMQC/0wMN3PoxoSzTmzZsHVeWtNImIiIKFHXYMxWAMxzDk4zgSohPQU+mBsrKyQFeNThEnRoiIiIiIiIhqoUBBClIwGqPQGR1x68RbEW2Mwvbt2wNdNSIiImpC0YjGcAzDIAxEFrIQExaDH374IdDVolPAiREiIiIiIiKiejDAgGhEww47SlCKvLy8QFeJiIiImpgCBXZEIBrRqEAFnrz8iUBXiU6BKdAVICIiIiIiImruylCGXdiNI8hCGtricNZhJCUlBbpaRERE1IRccGEf9mM/0hGHWGzavAl9+/YNdLXoFHBihIiIiIiIiKgGDjiwB3uRiYNIQQr27t+LDh06BLpaRERE1ITc8CADGdiLfbAjAstWLMOZZ54Z6GrRaeDECBEREREREZGkAhXYh/1IRwbiEY+tf25Fz549A10tIiIiakIqVGTiIHZjD2yw4adffsLYsWOhKEqgq0aniRMjRERERERERCe44cZ+pGMf9iMaUVi5ZiWGDBkS6GoRERFRExIQOIzD2IU9MMCAT7/+FBMmTOCESCvCiREiIiIiIiIKeh54cACZ2IO9CEMofl38K0aPHh3oahEREVETEhDIQQ52YjfccOOdD9/BDTfcAKPRGOiqUQPjxAgFvaKiIgACQgACgBDQPYYQmuX6ZRDeAyZq2Lby8YlNquzvxBr/Y986/zYQlfs78V8BqFWWaerr25d2eeX+tHXzb+uvn9BvqysHqJVt1e1T2i+qfw5dH0r7RpXnPrG96m+UOLHCv7xyW+Fdp2r3J3ztqlwOoW8vatiHtv90y3UV83WIpjD8j1VNOVXaRru88u3h2xeq7letfKNplsNfTlSpi79tEJr1lc9VTd2EbztpH/BvJzT79O1frewfodmf/72mL3diu+q2hb8/vM+jVl9OV1/Nc0FACBWq5r+qUCGgej8rUL2bQz3x3lNPvAVOrPOV12/n3Z/wPfY+l3aflVsLuOEGEbUcr778EiLskUDlAA7/GOpf5B/nNKtO/Le27U6UkLerZj++OELzPL5xWbNP3bJqylS/ndDVqTIm0Q4J2ufX18HXyip10fZPTfvSLxf6elZXVlOgcvzV16myI6S+l4IffX/oKusfFzWV0D23VA994KLfR51/67aRltXnb7k+8t/V9EuVelRZp38OUe1zC/1+fH2mf6zbt+61kteLKtsI7b6l5xQn9uF7f6EynjuxDpXjsqaE8K/TvWd921Xux/8Iusf+51Kh4giyYIIJX/3wFS655BL+IpSolfv6iy/w57Y/oTu+Vq7UjHeA7nCnObTWtl0t21bzuKniAf9z1GMcryxXpa7adp5ePKB9htpigqaJB/TPoausPG5K+6v2b80uqt1HXX9XVx/p76aMB070lrRMs3/tuQD9G7dK+YaIB3z10SzTlwJOJR4QEMjDMZSjHC+/8TLuuOMOWK1WUOukCN+ngCi4OBwOdOjQAdnZ2YGuChG1AklJSUhPT4fNZgt0VYioFm+88QZ27NgR6GoQUTM0YsQIXHfddTAYDIGuChE1sp9++gk//fRToKtBRM1Qx44dcc899yAsLCzQVaFGxokRCmoOhwMVFRWBrgYRtQIWi4WTIkRERERERERELQAnRoiIiIiIiIiIiIiIKGjwGmEiIiIiIiIiIiIiIgoanBghIiIiIiIiIiIiIqKgwYkRIiIiIiIiIiIiIiIKGpwYISIiIiIiIiIiIiKioMGJESIiIiIiIiIiIiIiChqcGCEiIiIiIiIiIiIioqDBiREiIiIiIiIiIiIiIgoanBhpBDNmzICiKLp/3bt3D3S1iIiIqIkxJiAiIiLGA0RERM2PKdAVaK169eqFhQsX+h6bTOxqIiKiYMSYgIiIiBgPEBERNS8ciRuJyWRCUlJSoKtBREREAcaYgIiIiBgPEBERNS+cGGkke/bsQUpKCmw2G4YPH46ZM2ciLS2txvJOpxNOp9P3WFVV5OfnIzY2FoqiNEWViYiImi0hBIqLi5GSkgKDoWXdCfRkYgLGA0RERDVjPMB4gIiIqKHiAUUIIRqwXgRg/vz5KCkpQbdu3ZCVlYVnn30Whw8fxrZt2xAREVHtNjNmzMCzzz7bxDUlIiJqWQ4ePIg2bdoEuhr1drIxAeMBIiKiujEeICIiotONBzgx0gQKCgrQrl07vPLKK/jLX/5SbRn5FyGFhYVIS0vDwYMHYbfbm6qqREREzVJRURHatm2LgoICREZGBro6p6yumIDxABERUc0YDzAeICIiaqh4gLfSagJRUVHo2rUr9u7dW2MZq9UKq9VaZbndbmfgQ0REdEJLv31EXTEB4wEiIqK6MR4gIiKi040HWtZNOVuokpIS7Nu3D8nJyYGuChEREQUQYwIiIiJiPEBERBR4nBhpBFOnTsXSpUuRkZGBP/74AxMmTIDRaMTEiRMDXTUiIiJqQowJiIiIiPEAERFR88NbaTWCQ4cOYeLEiTh27Bji4+MxYsQIrFq1CvHx8YGuGhERETUhxgRERETEeICIiKj54cRII5g3b16gq0BERETNAGMCIiIiYjxARETU/PBWWkREREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODFCRERERERERERERERBgxMjREREREREREREREQUNDgxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODFCRERERERERERERERBgxMjREREREREREREREQUNDgxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODFCRERERERERERERERBgxMjREREREREREREREQUNDgxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODFCRERERERERERERERBgxMjREREREREREREREQUNDgxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODFCRERERERERERERERBgxMjREREREREREREREQUNDgxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREGDEyNERERERERERERERBQ0ODFCRERERERERERERERBgxMjREREREREREREREQUNDgxQkREREREREREREREQYMTI0REREREREREREREFDQ4MUJEREREREREREREREHjlCZGMjMzT/pfMHvxxRehKAoeeuihQFeFiIiIAoTxABERETEeICIiah5Mp7JR+/btoShKvcsrigK3230qT9XirV27Fu+99x769u0b6KoQERFRgDAeICIiIsYDREREzccp30pLCHFS/4JRSUkJJk2ahPfffx/R0dGBrg4REREFAOMBIiIiYjxARETUvJzyxMiAAQOQnp5e57/+/fs3YHVblvvuuw8XX3wxxo4dG+iqEBERUYAwHiAiIiLGA0RERM3LKd1KCwCsVivatWtXZzmLxRKUV4zMmzcPGzZswNq1a+tV3ul0wul0+h4XFRU1VtWIiIioiTAeICIiIsYDREREzc8pTYyoqlrvsqtWrTqVp2jRDh48iMmTJ+PXX3+FzWar1zYzZ87Es88+28g1IyIioqbCeKB1uc16k+7xB86PAlQTImosz0b9Vfd4esHfAlQTak0YDxARETVPigjGyzka2XfffYcJEybAaDT6lnk8HiiKAoPBAKfTqVsHVP+LkLZt26KwsBB2u73J6k5ERNQcFRUVITIyskWNi4wHWhdOjBC1fpwYaf4YD7ScdhMRETWWhooHTvlWWrLVq1dj2LBhDbW7Fm3MmDHYunWrbtmtt96K7t2747HHHqsS9ADeW5NZrdamqiIRERE1MsYDRERExHiAiIioeWqwiZGrr74amZmZDbW7Fi0iIgK9e/fWLQsLC0NsbGyV5URERNQ6MR4gIiIixgNERETN00lNjFxzzTXVLhdCID8/v0EqRERERERERERERERE1FhOKsdITEwMPv74Y4SHh+uWCyFw7bXXIicnp8ErGKxa4r1TiYiIGkuwjovB2u7W7mTzlWjzHsg5D+ra12XKJbrHP4gf611PChzt68p8NkR+wTouBmu7iYiIqhOQHCOjR49GREQERo0aVWVd3759T7kSRERERERERERERERETeGkJka++eabGtf9+uuvp10ZIiIiIqLTVV5ejpycHOTk5KBnz56IiIgAAGzatAkLFy6Ey+WC2+2Gx+OBx+OBEAIGgwHXX389unfvDgDYvn07fv75Z5hMJlgsFt0/RVEwfPhwpKWlAQCOHTuGnTt3IiwsDFarFWazGRaLBWazGWazGREREUyiS0RE1MQ8Hg/y8/Nx9OhRlJaWYsiQIb51P/zwAzIzM6vEA4qiwGQyYcqUKb6y8+fPx8GDB2E0GmEymWAymWA0Gn3j/MUXXwyj0QgA2L17N44fP64rZzKZfGXbtGkDg8EAAHA4HPB4PDAYDDCbzTAajVAUpWk7iYgoiJ1W8vXs7GwkJSU1VF2IiIiIiE6Jqqr49ddf8fbbb+PHH3+EqqoAgKVLl/qudl65ciWmTZtW4z4GDx7smxhZv359rWU//fRT38TI8uXLMWHChBrLvv/++7j99tsBAAsXLsRHFZ/CCCOMMABQsCBlIQwGA0wmE2bMmIFbbrkFALB161Y89NBDyCw9ABOMUGDAtqt3wWAw+CZyKhWLEmz1bMO9994Lg8HgO7GyFdugQEE84pCIRABAQUEBfvnlF10dFUXxbde1a1dfQuCKigps3boVNpsNVqsVNpsNdrsd4eHhvhM7REREzcn+/fvx5ptv4oMPPkBhYSEAICEhQXf799mzZ2Px4sXVbm+1WnUTI5WxRU1cLpfv7+nTp2PevHk1lj1+/DiioqIAAPfddx8++OAD3frKCRSDwYA9e/b4zrk9//zz+OSTT2Cz2WAymXxjtsFggNFoxBdffIHU1FQAwL///W989dVXMBqNvnLaf6+++iratWsHAPjqq6/w5Zdf1jgpM2PGDHTp0gUA8Ntvv+Hbb7/1TfTIkz833HCDb79r167F/PnzIYRA5R38K+MXg8GAa665Bp07dwbg/THKH3/8gfj4eMTFxSE2NhYWi8W375iYGISEhAAAqssGwMkkIjpVpzUxcv7552PLli0NVRciIiIiopPi8Xjw1ltv4fXXX8e+fft8y61WKxITE1FRUeFb1r17d9x4442+X2VWfuEGvF+0O3To4CvboUMH3HjjjXC5XHC5XKioqPD9E0IgMTHRV9ZisaBz584oLS2F0+nUlRdCwGw2+8qWl5fDc+J/vmVZ5br1lY4ePYrffvtN194dX+30/T1w4EDf3w7hwC51D3a9s6fafjLD7JsYOXjwIK699tqauhTTpk3DP/7xDwDAkSNHMHjw4GrLRURE4MEHH8Tf/vY3X33PPPNM3UkQo9EIm80Gm82Gyy+/HE899ZSvnZMmTYLRaPT9M5vNiIqKQlRUFPr374/x48cD8E56zZ07Vzd5YzAYEBYWhoiICKSkpPhO2hARUfBavXo1Zs6ciR9++EF3Aj06OhpxcXG+K0IA763i4+LifLFA5cSAEAImk/5U2fDhw2E0Gn1Xlrjdbt/Vpy6XyxdLAEB8fDw6dOgAl8tVpWxFRYUuJqj8EYdWZdwBQPcDhCNHjmD37t01tl0b7+zcuRMLFiyosexzzz3n+/vPP//EF198UWPZBx980Pf3+vXr8eabb9ZY9swzz9RNjEyfPr3Gsv369fNNjKxduxZ33HFHjWW//PJLXHXVVQC8EznXXHONbn1kZCTat2+P9u3b44EHHsCYMWMAAHv37sWCBQuQlJSElJQUpKSkIDY2FkIIeDwehIaG+q7o9Xg8vteHV+4QBY/Tmhg5ibztREREREQN7lzr2VjmWQEAsMCMeybfi7vuugvdu3ev8qX2nHPOwTnnnFOv/Y4YMQJbcyJ9j++5sk+NZS+66CJcdNFF1a6TT3qMHTsW6enpcDgcvomTyi/obrcb7dq18yVMd8CBgeiP+z94EBUVFVBVFaqq+sqPGDEC05zeq1oOHz6Mf//73751ch3Gjh2L0aNHAwDCwsJ8fwPw1UEIAVVV0alTJwDAO19vRV7OIUTFJsLtqoAi3CgvL4fb7QYAFBcXo6SkBIA3WXipKMNe194a+6l///6+v18Y+Cq+3fltjWX7Rg7E9jYZAIBH1t+Dm266qcaybZU2GGv2vq4fOD/CsGHDEBoairCwMN9/jUYjKioqkPdLEUbE+du+sccKqKqKNm3aYPVbK2FXIhChRMAKCzqFdIJJ8Z/skhPfy975eqvv79reL/XRVAnXX+g9W/f4yW0P1bheXkdE1JyoqorHH38cS5YsAQCMGzcOkydPxtixY3WTEZWeeeaZeu/7ySefrHfZ119/Ha+//nq9yr733nt488034fF4fBMilZMoqqoiNjbWV3batGm4/vrrvT+w8Hh8MUFlXKD9wcZ1112HPn36+PajHeMBICUlxVf2wgsvRExMjG9fWkII30QH4J0g+utf/+qrZ2XsUvnf5ORkX9levXrhrrvu8l2loq2Dx+NB27ZtfWXbt2+Piy++GHl5ecjLy8OxY8d8/eB2u3UTVdoJoEqFhYXYvHkzNm/ejEmTJvmWb9y4EQ888ECN/T937lzf1bc//vij7wcZAHy3RY2NjUVCQgIee+wx3+TMtm3bMHv2bAgh4HA44HQ6fXGdy/X/7J13fBTF+8ffd5feeyCNUELvoTfpvYkNUEFFxQooij8sKHwVC2JDBAtWVKQqgiC9Su8tEEpCKum9Xfv9sXCXOdIgFTLv12tf2Wen7Ozmbndunpnno2Xq1Kmmus6cOcP06dOxsbExOclu3DuAZ5991tSGuLg45syZg5eXF3Xq1CEwMNC0eXp6SmeNRFIJlMsxIr+UEolEIpFIJJLqpIG6PmnGdKxV1jRTN+Gzzz6r7iYJWIabsre3Jzg4uExl7bDDH38ef/zxUvP6+/uXeZCnQYMGxYYPscTLN4C5Xytags/e1wqj0Uh+fj4ZGRlkZGSYQlso7bVlqNUgAN7YOQuVSoVOpzMNGAQEBJjyWqmsGVn3foxGI/1n9jLN1ExLS2Pb17vwtw8S2jFw4MCbBlVycnLIzMxEdcE8WSs7O5uDBw8Wez1NnVvQg94me+3atUUOsgA0NDbgUcdxJnvp0qXUq1ePNm3a4OLiUoa7J5FIJJKqQq1Ws2HDBj7++GPuv/9+U2jMmswN7bKy0KBBAxo0aFCmvKGhoYSGhpYpb6dOnejUqVOZ8vbo0YMePXqUKe8999zDPffcU+F577vvPgYMGCA4XJKSkoiIiCAiIkK4Fn9/f+6//37i4+OJiYkhNjaW/Px8U3phR5DlpJIbDozs7GyuXr1Kdna2KS0qKoolS5YU28bC4VUTEhL4999/i807YsQI035kZCSLFy8uMp+NjQ2vv/66aRVOUlIShw4dMoVVK+wo0+v1tGjRwrQSOjU1ld27d2Nvb4+DgwNubm54eHjg4eEhNfAktZ5yOUYkEolEIpFIJJLqRKVSEWrVrrqbUWtQqVSm0Fg+Pj5CmkalwVelHOvWrVuJ9Virrens0R0Qw3QAzP37M8G2tbUtcVDhCVvzahJra2u2bt1qEtrNzs4mJycHvV6Pra0txz4/K5RduHAh+fn5REZG8sfHy8ggkyxjFjp02KrMgwVao47HHnsMvV6PSqWiSZMmdOjQgQ4dOuDg4EDz5s0B6SyRSCSSqiYlJQUPDw8A7OzsePPNN6u5RZLK5EYfpDDe3t40a9bsprzdunUT+iM3Vnjc0DkpHAJt5MiRpKenm0KeabVa8vPzSU5OJiEhQVj12rhxY9577z1Tn8jW1ta0WVtbC6FOmzZtyk8//UR+fj5WVlbY2NgI4bpuaLoB1KlTh1mzZpGUlERcXBxRUVFERUVx7do1CgoKTBoyAEePHi12tTLA559/bupfnT17llGjRhWZz9nZmTfffJMZM2YAkJ+fT3x8PIGBgVJLTlIrkI4RiUQikUgkEskdxa5du1i0aNFNgqUSiY2NDX379i02fe4Pnwn2k08+adpP+jzetG8wGgiwNw9A5BnzGDp0KMePHycqKoqwsDDCwsJYunQpAC+++CLN7lHio+u0Wj744AOee+45YWWJVqslMzPTNIAnkUgkkvJx9epVevTowfjx43n//fdlVBNJiahUKmGla2GsrKyKXA16QwelMA0bNixzeLW6deuWGA60MMHBwcyePfum4/n5+cTExODu7m465uTkRGhoqCmUmUajMemwaTQavL29TXnt7Ozo1KkTubm55OTkkJaWRmpqKgaDgczMTOG6jx07RteuXXFwcKBJkyaMHDmSt956S3AiSSR3E+VyjMgvhkQikUgkEomkKomLi2P06NGkpqZKwW1JpaFWqbFWmWPSO6udWLt2LaCExTh8+DCHDh3i2LFjppAVNwJy7Ny4jFU/zePTTz/l+eefJyYmhqNHj3Ly5EkAIYzH+PHj2bJlCy4uLri4uNCyZUu6d+9Ot27daNGihZytKZFIJMVQUFDAiBEjiIqK4s8//2TmzJm4urqWXlAiucOwtbW9KYxat27dOHz4cJnKh4aGcuDAAeGYwWAgIyOD2NhYwYkSGxuLjY0NOTk5HDt2jGPHjnHixAl+++23Yp1KFU1BQQGpqakmp88NDZv8/HwKCgpo0qQJjo6OAFy4cIFTp07h4OCAi4sLzs7OuLq64uPjU2XtldzZqIxSQb1GkpGRgaurK+np6TKGsUQikUhqPbX1vVhbr7sk7r//flatWkW7du3Yu3fvLf3ome0mhteIzL0q2JUpeF343KWJeJeEpVi2NjpJsC3rztOLQqp2mtsfaC8csqqehQZISkGqYHvYuAu2ZbvKcz8+Gir+n5wnmUOp3aro+Q2he4AurQYIaa+fnCrYhcXVizrX3LaK2G54xjn+s97GhQsXbjqfo6OjSbAeYMCAAWzZsqXItnl4eBAXF2eKPx8eHk5qaqopBEhwcHCRq0/meJi1ZmalzCmy7juZT74RB3defrpzhdVd2v+4srjV85annfPG/yHYr/72UJnLluu8Dy0Tz/vH2DKXLUxtfS/W1usuiTlz5vD222/j5eXF0aNHBTFviURy++h0Oq5cucK2bduYOnUq+fn5dOvWjbVr1+Lp6XlbdcbGxnL16lWTRl1GRgbJyckkJiaSlJTEe++9R926dQGYMWMG8+bNK7au/fv307mz8u7/+OOPefXVV4vM5+TkxJo1a+jfvz8Ahw4dYt26dXh5eeHh4YG7uztubm7odDqysrLo0qWLqV8VFhbG/v37sbKywtPT07Q5OzujVqtxcXEpsz6QpHKoqPeiDKUlkUgkEolEIrkjWL16NatWrUKj0fDDDz/ImWCSGkmISzO+Pvg5ixYtYufOnTRp0oT27dsTGhpKUJDoUPr5559JTk42DRAcOnSIvXv3cuDAAXx9fYUf3RMnTmTfvn0m287OjvHjx/Pss8/SoUOHKrs+iUQiqW5OnTrFu+8qTvUvvvhCOkUkkgrEysqKkJAQQkJCaN68OSNHjuS///5jyJAhHDhw4LZC1k2fPp1ly5YVmz558mSTY+SGloqVlRU6nc6UR6VS4ebmJpQLDAykdevWZGZmkpKSQnp6uiktKyuLy5cvm+z169czZ07xE0YGDx7Mhg0bAPj333+ZNm1asXl9fX2Jj48vNl1y51Bux0hJMXzt7e1p27YtL774InXq1CnvqSQSiUQikUgktZTY2FieekrRcHjttddo06ZNNbdIIikeGxsbpk6dytSpU0vMV7duXdNAAMCIESMAZbZmbGys6bjRaCQ7O5vg4GAMBgNZWVmkpKTw/fff8/333zNixAhTqK8b+WWsfYlEcjeSl5fHww8/jFarZeTIkYwde3urjyQSSen07NmTvXv3Mm3aND777LPb7lv06NGjRMfIV199ZVoFcu+99/Luu+8KTg5Q+japqal89913pry9e/cu8Rmwe/dunn76aQBatSp5lWN4eLhpvzRnq2XbJHcu5XaM7Nixo9gvhtFoZOPGjfz444/s379fevElEolEIpFIJLeMwWDgscceIyUlhfbt2/P2229Xd5MkkkrFyspKWF2iUqk4ceKEyTYajezdu5dFixaxcuVKwVGYbcjms/QFOKgdWd12LW5ubri7u+Pr60udOnXo3bs3vXv3BhRB+IiICLy9vXF1dZXOFIlEUuN5/fXXOXXqFD4+Pnz77bfyuSWRVDLNmzdn06ZNwrG5c+cyZswYmjZtWqY6Ro8eTVhYGHFxcaYtMTHRFF60cIgulUpFUpI5VKxarUaj0aDVagGEFeNWVuKwtkajwdraGg8PDzw9Palfv74p7d577+Wdd94xaZE4Ozvj6OiIVqslOztb6HeNGjWKzz77DCsrK1M/ys3NDUdHR1QqldQzuosot2OkV69eHDlyhPz8fFq3bg3AyZMnsbW1pVmzZpw+fZr4+HjmzJnDt99+W+4GSyQSiUQikUhqFxERERw/fhx7e3t+/fVXGdNXUutRqVT06NGDHj168Nlnnwki7df0CRSgpcCQRtqJtJvKFhQUmBwjERERNG7cGAAHBwf8/Pzw8/PD3d0dJycnRo4cyYMPPlgVlySRSCRlokOHDri6urJkyRJ8fHyquzkSSa1j+/btvPHGG8yaNYtp06YxZ84cHBwcSizj7+/PggULbjqel5dHcnIyGo3GdMzX15dTp07h5uaGq6srTk5OqFQq9Ho9ubm5gjPUw8ODnJwcrKys0Gg0Qn/IErVaXebJVRqNptRVv5K7g3KLry9evJgZM2Zw6NAhmjRpAigiNR07duTDDz9k8ODBtGnTBg8PDyIjIyuk0bUBKa4mkUgkEomZ2vperK3XXRTXrl3jyJEjDB06tLqbUiSWwu7lEVgfa/VAsWkOGlFXxVIEvbTzftDjG9N+/mlRfN46yFuwDZl5gp2TnGzad/TzFdL0iRniiSxE321ai+20bmY+V9Yfh4U0y2v4es1pwZ58b0uK44Ne4kSsadsnCbal+Pz//P5n2rdtW09IU3uLP/K1Z64JttvMXoId8/hS036OPldIC/n5KcFOm7tTsC3v9RsXXjHtz5+1WUhzaCOGKLYUwJ4T8iGp2hRy9Tnc+91w0tPTSUlJIT4+nvj4eEaMGMGwYcMAeOme91j037vk68Tzm9rxxhumOP5wayG6Fq08Kbbz/tbF57UQ9U7/eK9g/9++Z0z7X/wkfl6mTBT1Vea/tlGwp384uPTG3mF8NPRnwZ7xz4RqacetfDcritr6Xqyt110cqampuLu7V3czJJJayfnz55kxY4YphGejRo1YsmQJvXr1KqWkRFJx1Bjx9ffff5+AgACTUwSgadOmBAYG8uGHH/Lcc8/RvXt3tm/fXt5TSSQSiUQikUhqKb6+vjXWKSKR1CQ0Kg1eNorjadCgQSXmresSxJzB36DVF5CRl4rNvQGkJSWQk51JXk4WgwcrToVVq1Zx9epVoqKi+OSTTyr9GiQSiaQkpFNEIqk8NmzYQEJCAlqtFq1WS0FBgWmzsbHh1Vdf5a+//mL9+vUMHz6cixcvcs899/DXX38xcuTI6m6+RHJLlNsxkpSURHR0NP/3f//HAw8os9vWrFlDWFiYsJSqtGVVEolEIpFIJBJJYa5du8apU6fo16+fjCEukVQgOp2OzMxM0nKTUavUuNi54+noS90W7dm+fjlqtRo3Tx+SkpJ46aWX+OyzzwCYPHly9TZcIpHUSvR6Pffffz+jRo1i/PjxMqSmRFICRqMRnU6HtbW16VhycjJarRaj0Uh0dDSXL1/m8uXLXLhwAZ1Oxy+//GLK+9Zbb3HkyJEi6/b29ubVV18FYNiwYYSGhpry6vX6SrwqiaRyKLdjZPjw4axYsYJ58+Yxb968m9Ly8/M5cuRImQV5JBKJRCKRSCQSgEWLFjF79mweffRRfv7559ILSCR3Cfn5+eTn51dIyJzk5GReeeUVoqOjiY2NJSYmhvT0dFN6izqhTOigxNFWqdX8+NnbGA1KKLSvCtXzyiuvMHfu3HK3RyKRSG6Vf/75hz///JNdu3bx0EMPVXdzJHcpycnJpKWlmbb09HSMRiNqtRp3d3eTPhfAvHnzSE9Px8HBwbTZ2NiY8o4YMcKU95dffiEpKQmDwYDRaOSGooFGo8HNzY0nnnjClPfTTz8lIiKCrKwsMjMzyczMJCsri5ycHNzc3Ni6dasp76BBg9i/f79Qr9FopKCgAHd3dxITE015x40bx+bNYmjOG9ja2vL999+bHCldu3bF29sba2trrK2tsbGxwcbGBmtra0EkHeD7779HpVIRGBiIm5vbbd97iaS6KLdj5Ouvv0an07FmzRrh+JgxY1i8eDGJiYm8+eabtGrVqpgaJBKJRCKRSCQSkYKCAr7++msAkx6CRHK381PMd0TkXuZNO2U2ZosWLfByaUazRp0I9GuCrY1ZY2bhe89RUJDPyq+cUavVaLVa8vPzuXo1ikYOTRjoNQQAFxcXli1bRl7ezToiGrUVKsyrsVQqFV37Dic3J4uCvDxcbI1oNBpefvll7r333kq+eolEIimaL7/8EoBJkyZhb29fSm5JtWMwwKVLcPmyst1zDzRvrqSFhcH77yt5dDpl02qVLT8fnn6agtGjiY2NJTo6mpiYGNzc3EyhIY1GI88++ywFBQWmME/Z2dmkp6eTkZFBaGgo33//vakpPj4+5OTkoNFoTJtarUatVtOxY0eTTgZASEgIqampRV5SaGgohw+bNa4WLFhAVFRUkXmbN28uOEbee+89zp8/X2Te4OBgwTGydOlSjh49WmReb29RCy47O5uMjIwi82ZnZxd5HMDPz4/69evToEEDGjZsSNu2bSksP12USHpxtG5dvH6YRHInUG7HiJubG6tWreLy5cucOXMGgJYtW1K/fn2SkpIICAhg6tSp5W6oRCKRSCQSiaT2sHLlSuLj4/Hz82PMmDHF5nvCVhQd/j6/claWWIqrW2Id4FVhdS/TrRDs5+yfNu1/lfsNJZFnIXr+mvOLgu1bv5Fp37LNhtQswdZmiD+q52Z8ZNr/declIS1uifgjPmetKLyt8XIU7Px9kab90gTjLQWd3w2yWLVQ6JrfjBHv5cLfj1m064Jg2w831/3KN+LA/wfdvxbsmYefF+wP+34v2O9mfIher0ej0TBv/B9C2rP3tSI3N5ekpCSys7P5ujXk5mVxJfoMA7qP55UPFCfG9v4bCd9qHjxRfl+dYee+lTT1as3joS+Tk54PQPjpwxRo8wg/w00YrFUMDXqE+ZP/BGBEp0lo1BomvTECf39/fHx8cHZ2ZsGL/wjlHr6nIQ/f89fNFQJf/CyG1dDGZQq2fkekYM/YMLHIeorCUkAeC3v+q+Z25v8bLua1EF+vKWLrH/QQv6vWj4jXZNwbbdp/5ZcHbqnuksTWb/zPbzD969G3VPcHnReZ9v/vwLMl5rX8bs5/b5v5vG/0vaXzSiTFceHCBTZt2oRKpeLZZ0v+TEqqiYwM2LsX9u+HffvgwAHl2A2++MLsGLl2DUpYBfxbYiITH34YnU5HADAF2NmnD4P8/SEhAVVCAilLlrBLp+NaEeUtnQc6na5YJ0FKSopgu7i4oNVqcXNzw83NDRcXF9RqNQaDQdBVBsVJl5SURF5eHjk5OWRnZ6PVatHr9dSrV0/IO3z4cEJDQ1Gr1UJoWL1ej5eX2BebOHEigwYNwtnZGWdnZ5ycnHBycsLR0RFnZ2fxXv32G/n5+aZ6b2zW1tY4Oor9rk2bNgGKY0mGp5VIzJTbMfLss8+yaNEiGjRoQIMGDUzHr169ysCBAwkLCyvvKSQSiUQikUgktQij0cjnn38OwDPPPCPESJZIahJ6g56ojMtcSDnNyo6LOHLkCK6urjzQ7nlC6igD4XvOb+CTutOIj48vso7G9dsDimPkm2++QaVS8cuMHRgMesLjTxEWcYTzSSeJzbwqlBs38GX0eh1Go+F6qA8NVmorVDE5WGtshbydm/YHoH///hV8ByQSiaRyuTF7fdiwYdSvX7+aW1NLMRjg22/h0CFwcwN3d2jXDoYOVdLPnjXv38DODho1ggYNICDAfLxBA/joI9BowMrKtP3yxx9s2LaN4ydPogNsbGyYZW/PU+npsH07FIpCs/z63xVPP01cixY4Ojri6uqKi4sL/v7+QjOOHz+OTqdDr9ebNqPRiMFguGn10eXLl1Gr1WW6JW+//XaZ8gF8/PHHZc47ZcqUMucNCgoqc94bSKeIRCJSIaG0rKyshKVWYWFhDBgwgNjY2PJWL5FIJBKJRCKpZaxbt46DBw9ib2/P008/XXoBiaSKWbt2LXN2TyFfn4/eqFMOXl8wkZaWhp21gymvSqUyOUVsbGxwdHTEoFNjbWVHQJ1G2NmY896YaGZvcwiAtsHdaePcHoPRgN6gE9rQqmFXZadQ+AsAXX5ShV2nRCKRVCdXr17lm2+U1VfTpk2r3sbUVtLTYcIEKBRyCoCJE83OkObNoWlT6NABunZVtlatFKeHJYGBcF28+wa5ubl89+uv7FGrmTBhAr9OmULbtm1RbdkCc+fC7t2KQ8bHB3x9ITUVUlJ44Msv4cbkmR9/VMJydewo1H0rzoOyOkUkEsndQ7kdIw4ODnz11VeoVCq++OILDh48yLBhw0hOTiY4OLgCmiiRSCQSiUQiqU188MEHALz44ov4+vpWc2skEgWtViusXsrRKaE57K0cCPFowUsfPsc999xDbm4uf842h51qGdCJt75+gXr16uHp6YlKpWL+zI23dG61So1aY1MxFyKRSCR3CJ9++ikFBQX06dOHvn1leLYq59w5GD0aLlwAW1t48Xp4zrQ06NbNnM/FRcl7m9jb27N161Z2795Nnz59zAkDBiib0QiWKx3y8sxOEaMR3noLoqNBrVacJ25uyubhoThs3nnHXPbECeWvWg2uruDvr6xgkUgktQ6V0WgxxegW2bdvH0OGDCEzM5MxY8awadMmMjMzadOmDRs2bKBOnToV1dZaRUZGBq6urqSnp+Pi4lLdzZFIJBKJpFqpre/F2njdaWlpdO/enQsXLnD16lXq1q1723VNdRA1ITxs3AW7NG2L0aqRpv12riWLS5ZW1xy3t0z7Df96TEi78thKwdanitoNpdVdEh8O/FGsO6aQqKhGnBmpcRfjUevi0gT7jQuvKDtGI58O+g4ArZUSsin/0GXxxBYDGFZBYgxtXWSiad9jwWghLXvpKcGese5Rs2E08n6HhUK6dUvz7w19nKiTYtXEQ7CnLxgp2IU1WRZ+e0BI06+7aNo/FXeIY/nbWL58Oc2bNycjI4P/zVqFjbUdbq7eqNUaVJ7mkBwvT+4i1LVolXhNOVst7pejGC5u+jxzSJLle68IaSO7iLHLf/hTFBkprNfx10Ex/NbFNWfF87xfcXoc86euE+v+fHixeVdYXNMD3WtGeJzPvjso2NOe7FRhdc9/XpxtPX3hyGJywsdPrRZslYPoFCvp3t5yu54TNWWmfzWqwuoWzvOqqGdT+DN+K9TG9yLU3uvetGkTn3zyCdOmTWPw4JqhH1SreOUVmD9fWeWxatVNqzHKQ15eHosXL+aFF17AqqiVJbdWmeL4WLcOzhQhvNWnD2wzayDh4gKZhfpa1tYQHAwNGyoOn7fMfTays8FCr0NyZ7J4tdgXe2ZMq2JySu4EKuq9WO4VI127dmXHjh0MHDiQ1atXYzQa6devH2vWrMHJyam81UskEolEIpFIahFubm6cPn2as2fPlsspIqlYbPTXBx2+/hoSEnjJYOBA/aHsbPqQKY/KaMCoMjtbHAxZaIwGMtVl/02g1mnxSwknKPkcfmmXCPPrDFx3jCQmQufO9M8K4rxbG6KdGgrnqyySs6+x4uR35OtyWbp0KXPnzsXFxYU6PsGVfm6JRCKpzQwcOJCBAwdWdzNqBwYD7NwJWVkwYoRy7P33ldUYr72mhLG6DfR6PUdWrSL1yBGyO3XCxdUVtVrNK6+8wrFjx0hKSuLdd29/Agig6Jl88IGyxcUpAu9paUrIraQk8PQU89epozg79Holn1YL4eHKZjBPmMBggPbtFV2UF1+EwYOVVSYSieSu4bYcI3PmzLnpWN++fVm+fDnOzs507tyZTz75BIBZs2aVr4USiUQikUgkklqFSqWiRYsW1d0MyXXURh1PXf0EZqcKx210uQB4ZMXil3uIdnnH+M5d0YTpkvMfA7I3ARBhXY/fEeOJF4VTUhyj3puMW3yU6Vi2baEZYH//DVeu0JErdEzcSYJdXVY3eJIsKmeFer4uj6i0S/x5+mfydbl069aN2bNnV8q5JBKJRCKpVp55RhFYB8Uh0rev4hSYP/+WqtHr9cTExJi0PQyJiXR6SJlE8SpQWIbcy8uLHj16VEDjC1G3rrKVxIULhRsMMTFw6RJcviw6UY4eVZwlFy7Axo3KiplZs2DgQLCR4S0lkruB23KMvPPOO6gs4/uh/IjNysri/fffNx2TjhGJRCKRSCQSSVm4ePEi/v7+2Nvbl55ZUmWojGAs3Pe/7z5WXQkk0qs5/ikXGHP0M+y12cRrfE1xwDXoTdnVRsNN8cFb5x2nUcFFjtu1JV2vY9Dnr+EZFY5bfBR5Vg5EerUg2qMxUR5NaXOj0Lhx4OnJySfm0jjtJD55cUw8/zHr675EhH+7W76ugoICdu7azZ7du+narRvgDEDE5VOs+u0j4mMuY0SJOuxs68ayZcsEjRGJRCKRVA6nTp3izz//5JFHHqF+/ZoRau+22bEDjhxRVj2mpipbWpoiFG40Kk7/G9FWNm6Es2eV0FVNmkBICFRVn6jw+23mTOWvoyOG1q25PH8+UXl5iv6HVgvW1pw5c4bIyEiys7PJysoiOTmZPXv2sGPHDjw9Pbl06ZJSra0tGXZ2HHF1JcDBgZaOjmRkZNC2bVu++uor/P39q+b6ikOjgaAgZSusbwKKNkl4OHz1FXz3HRw6pKymcXODe++FGTMU0XmJRHLHcluOkaCgoCIdIxKJRCKRSCQSye3y8MMPExYWxqpVq+jfv391N0dyHb3aip8Cnmda3a1w8SKsWsV9gE5lhQojGqOeaKsA/nAZa3J+/GffjTO2LfDSJRFpU+8mzZFAbRQtCs6QovEgf+8GGh5SYn9neNVlaevXyLL3wGA0kJKTyNq1azl37hzXrl3Dzs4O5+BH2aFNZ8zlJQRkX2HMtvfZ3e5h9jcbSkTqBcJTzpCam0ywWwjdmtwLgE6v5fzVoyxdmkFycjK7du1i8+bNZF6PMf7GW7Nw91Pi1zs4uBAXowzouNi508izOUObjSUwMLAqbrdEIpHUepYsWcLnn3/OqVOnWL58eXU3p2SOH4cFC5QwVJmZkJMDCQlmh8aiRVDSNeh05v3ly+GHH8y2SgX16kHXrsqKjp49bxYhvw20Wi1ZWVlkZ2cTEBCgHPzySzYFB5P7zz/4h4fT5No1nLOzyd23jybdumFlY0NOTg6a8eNhxw6sjUYSk5O5AIQDYUBhBYekpCS8vLzA3R2XzEz6GAz0sbFharlbX8U0bKismpkyBT75BFasUMJ1/fCDcuwG+fmKQL1EIrmjKLf4uqRyqK3iahKJRCKRFEVtfS/WpusOCwujWbNmWFlZERMTg08xsaxnu7152+fwWfKQYCdM+kOw1TbiaoCkrATTfqcNLwtpD9/TULBfcZqKtyGFRvpovA1puOsT8DRmE6dy5Zy6LlHWISSq3EClwlptRc+CIwTrY8lQO1Lg5k+mtSsx9vVIsfXBkFMg1G3TxBwqSns5UUizbuwr2IJQOfBB50WCrbIzX2P3xSOEtL1TNwi22ttBsA2nYwjKvkirlIO0tI+F2FglYdQo+O03cDDnn//hDqHsAxOakpyUhMFgQKPRoP/gc0J//ZYzvQbwfU4L7ku7jE/GVbY3H8+RJpfYvXs3ly5dIj8/X6jH19eXl7sqYT00ei1+m6YxLj+dH+zdeVabR/718F4A7UMHMn6oIhifk5vJrI/vwxIfHx8GDhzIww8/bBL2NRgM/P3332TY+uPpbb73adn5qLUFuF0Mw+vccTqkXIHPPwd3dyXD77/DZ5+BjQ2RF9MwqDXoNDbk2TrR6t4OMGmSMgMYWDJ/He7xkSQENSHfyZWpj4uCtvPn7zIbSTlio+u5Cub0Z7qKZV8yi6BP/1QU6Z43XvzM2wwUP8e6Y/Fi3eUQ+d5wNFqwh7QPMO1bCqDWDRCvaVSnIMH+bdcl037c3+fFNpYi4j3/RQvR8wXFi55XF3l6g2DbaUqOYT9/8T7xQFyWaXf67AEll526TrArUsi9svhha7hpPzc7i+dHta8V78XC1Kb+gE6nw9/fn4SEBP7++2+GD6+Bn9H8fEXo+4svYNeum9ML61p89ZWSp25d5X3h7q6sOLC2BpWKT8+6YrBS3s3T61xWRMIjIuD8eWV1yQ3UauV4YKCyauPHHyEmBmNiItqGDclt2ZKshg3JNRpp0KABnzzzFwBhUUe5HHcWe/88Tp8+zbVr10zvVpVKhVarRaPRADB27Fj++EN5T6iBJkAQsMfRkZCQELZs2YJnv35w4kSRtyUqOJikb7+ldZ8+pjqrk/lf7DXtT5/SvWIq1eth717YsgVmzwaVit92XaLL+zPwOH+K+A7dueDXmugm7dHaK6LtUx/rUGx1SzaGCfakwXIFikRSFmqM+LpEIpFIJBKJRFJefv75ZwCGDBlSrFOkRpGRAX/+qczevB7mo5E+hvsKdgjZ/IzphOqvgv4AP9kM5oRVCACuxixa6i+CHkhUBhgMqDju3oUdTv3I0ZRdsLyqMKitiHBuSoRzU1oefQEuXiT12DHO+/tzdd06rl69SlRUFDExMVwMT+bR8W+byt43ahSHDx002U8DXwMXdm1mkfV/+A4yO3AuX97M2bNnAbCzs6Np06Y0a9aMwMBAvL29MVwf58jDyGSjkeXAutxUdCirPZ7zCeIeg54/29xjqtPO1oFAvyY0bRGEi4sLrVq1YtiwYbRv3x61hZCqWq1m1KhR/HNEHNivc2gPXd6fgUOy2WHGI48oscYBoqLgoHKN9Sxv3rztMGSIyTHS4Phu+iz9iHQvP36bvbRM918ikUhqA5s2bSIhIQFvb28GDRpU3c0pmoULYfp0Zd/KCu67D554wizq7eZmzvvcc8pWDIb/bTXt50+YwMVu3YiMjORqZCTJ58/DmTOEnj/PoB49UF1fuTjp6adZ9OOP2AAqwOb6Zg8cAvy3bTPVefjCdk5c3gtF+DKsrKxITU1VVnYAQ4cOJSAgAD8/P/z8/AgICKBRo0b4+vqao8bs3q3ocdwQK79wQdmOHycwKIjAPn2U8FR3KxoN9OqlbNdRawvw37sV28x03K6E0xQwqDVku3qS7+gCO3uIK4ESE8HLq0JW/0gkkvIhHSMSiUQikUgkkmpFq9Xyyy+/ADBx4sRqbk3JqHRamqz5BUZ+qThHvv4anlYEx69o/DirCSZB5U6k0Y4UlQP1jCk0N8TR0JjIZY2fqZ4jVs1IUbngbMzBy8GIe0ESgblXaJ+6j6bpJ1gQ8Bpadc0NyaDV6Rg3cyarVq0qMt3Gxg6j0WgaSPH29sLDwwMrKyt0Oh3ZOTmQl0dvlYr/qaxwzE4gw1FxiL355pu88sorNGrUiHr16t006/Sjvb8CYK2x4fUhXxKTG8WotEj83IMJHNydRz+ZTJ2oMJoc2si/ns3It3NCrdYwddICps8peTZ9cdT740dazHsLgHwXN5KbtcFvSB+TUwxQBsaaNgWtlnWf70Zj0GGlK8AuP5Oefeoq4Tiuk2/vSJ6DM65JsXRc9yM8ZxHXXCKRSGopP/74I6CsXqh2XSejUdEI+eorxRE+apRyfMQI+PhjxRny7LNQAToZOl0BTZs2JSIiosj0nO++44baSL5Wy1JAC6QCLYHOgDfQHcj7/nuwHwNAs6BQ7G2dmPDiKFq1akVgYCDOzs44OTlhYyEgPmHChNIb6uwMbdsqW2GuXFGcBnezU6QYDNY2/P3bVnyP/EedI//hfWAPbgnROKcm4JyaABfriAU6dFD0Y558EjsCyXPzLLpiiURS6UjHiEQikUgkEomkWvnjjz+Ijo7Gx8en6kJmGAzYG3JwMmajxoAOK/R6O3Qqa3JVdhhV5h/2KqMRl8iLeJ05RrMVP+B25YKS0LixMuPvOvFqT763U8L0pGrTAThNAOs1rfHUOKBTmbvecRof4jSKI8DVX5kBGph9mf7X/iTOys/kFFEbdUz8721SHXzQaWzQZ+YBKgwqDbkaB+Jc23LJ99aFx8uLtbW1adl6YGAg9erVIygoiICAAPz9/TlyMFVwjKz6a62gUXjw38MUPDIU99Rkphekk3pgHt/2+QhUKnoVmoVZGmqVmiCvRgR5NVJstYaLrXtSJyqMkFO78bt8mh0DJhPZoB1uqfFAIcfIkCFKOJQbDoucHGVTqRQB1q6jQaUicNVSk1MkfMRYjr74JnpbO8b3EsNQ0bChqa6wtUbqxxwjJPIAaS51lLjkN/j0U9QGPQnBzQg6exCVUQyjJJFIJLWVS5cusXLlSgAmTZpUPY3QauHYMcUh8sMPEHY91FFqqtkxEhIC0dFKeKsKQqXSYDCY3wcjRowgKCiIwMBAfH19URdyOMybN4/cOXOwtbXF2toae3t77O3slJWLb76J3bPPwo/XABjl5E37iIM0trNT2u3re9O5K4TCEwUMBpg3T2nPiy+aVkvezRS4uBHVZyhRfYaSeDkVp5RrOKQnY5eTyb2j2pgzZmQon52rV2HrVh4Gkus3IaLHQE489HS1tV8iqa1Ix4hEIpFIJBKJpFr57rvvAHjxxRexrWDhSgdDNvV1Edgbc7mKWWNk9KzHqZt5rMgyBlR84PWGyZ6R/wd+E82hnvJc3LGb/5EyU7SMgyKFnSLFEeXYgB/qT0OTbdaU8NAm45sZiW9mZJFljiaqTY4RtUEHTz0Fgwcr7dqzh0fPrMY3J5pznh3YGDwOA7c/+zY+NxYHK0dcrBU9iE8++YSpU6fSpk2bm/JaaoyoLMJF5NX1Z9e6/fjs2IjLp4u56tnMHFLCYFDEbNu3v612Hhg4kZgGrem/fD6e1yIY9ucHAKS7+cKSF5XzGI1KOJDsbNi+/eZKoqKg271gNOJx7AAAZ8c+xfFnZpQe+uLyZUZv+4BG0UeUqnybm9P0enjzTQbmmP/HZ7sPI/S2rlQikUjuLpYsWYLRaGTQoEFFvlsqDKMRDh2Cw4fNYa6MRhg+XHkn5Jr1qnByUlaLPPusWEcFOkUANBoNa9as4a+//uLtt9++KcxjYerWrVt0QoMGiuYXwI9rAAi5sp/GEfvhif3K+6tHD0Xz6oEHBG2wCuXLL+H//k/ZX7gQ+vaF0aOVyQcpKTB2LLS7Pqlj7154/XVlokmDBsoEg5AQJVRVda8YKgdZHr5keVx3QvUopDHi4gJnz8K338LWrXD8OJ5XzuN55TyuUVdg8J+1ctWNRFJdSPH1GkptEleTSCQSiaQ0aut7sTZcd2xsLAEBiihzZGQkgdfjZ99gjttbgu295EHBPjR+nmD72CirMAL08fTUnaSF9ixW6NFixXfLD5sGMgZ/OJX6h7aT6+iKwcoKjbYATX4+1voCcm2dWDjuR3LWHAfg/uxVhOgvEucQxFXHhhz0vAfbWaLgs9pa/BGb+NQKwVZZmdONFkLL9v2bCbb23DXTvo0+j1c+bKHE8dZq2fHtIQA0Bh32umxi+/YkvE1vAALDj/DgVy9RHOvHvklY/R7mA3ais8ZwPln5azCgUqlwts/nnl3fYkiNIiczEQpycHN1pf7LL7O64yh0DmYdlPhdEaj0emwKcsi3d8ZwShSJf3X5WMH+aLRZVyN//2VlQOq6w6F96wyGbZ7P+Ybd2dD/JfQOdkLZ6Z8MK/YaF60yi3qrtVqaf/YpXQ4vx1pfQLx3Q1ZPnkeukzsYDNSJDuPhLs6m8B+7TiejtbHDNjeLbDcvTtfvCYDKoKfJqR0M+/1/glNk/vR/TPsO2al4p0TgH32ajgdXYaXXKnHnn34aevVi/lHFmWRdkEv33T8T6pQKJ08qq1Z+/ZWlC9bRYdU36K1t2Pn0W+Sn5QEweMk7uFy5gl5jTZaDOyebDiB14kihHZ51nYV7EH3GrIHi6O0opE2+t2Wx9w7gi58OC/aUiebBnPlf7hXSrF3E/8uUCaJ757sNoqDsk0PKLii78HfRaZl3Nd20P/213kLagqVHBfvFR0p2qM2ftdm079ROHFy0vD+F/8cA0+eXLPQulLVwDj7/irgSauGUQiLoFj/Jp381qsznuem8X4j/JyzGVuu2FkO6xJ1OEOznJ3c27ZcmAl+RzP9kt2BPf7lnkflqw3uxKGrLdb/55pt8/vnn/PDDD9x///0Vf4KcHFi2TAmNdeQI+PlBTIw5vXdv2LmTXFsnYn2bcSWwHedC7uHFH8YXW+XHj4shJV/54b6Kb3cZ+G3XJcE2rWo8eRJWr1bE4o8cMWdwcYHx4+Hdd8HTk89/ND//SxILLxMGA2zcCIsWwfr1Nz3jWLJEmVwCsGEDDC3i2dqiBSxerDhyajibj8cI9oC2txBaLTERVq6EKVNAp1OcJX37VnALJZK7Dym+LpFIJBKJRCK54/Hz8yM8PJxdu3bd5BS5VVyMuXQtOEZ73VkCDfGm4/FqX+I0dbDKz0Nnr8yO3PbCu+QUqDBYmWcjandGojLosSvIFur9x34wunoBGAqF16oq9Y8CjZ0yg/U6B7b8KKY38ib24jH0Oi2o1BxqMoz6cccxqjTEeDcmNrQTBo0VPjHhhLXthy4li4SkKBJSoklMjyUxOYrcvCwmPfwe1ro87PMy+PzIj5yLOYIdKpIxIswnTU+Ht99mlOtnHH9qOpeGKw4P/4hTDF01F5v8HH6dvJCUW71DhQb6PVKjMajUNLm0lxwHN7b1f7aEgsVjsLbmYOgDnGgxBGtdHllOXuB0/YeTWk18UHN4tLcp/7EfRacAcZkAGNUawtr0Y1jhlSJGo+DMCY48ypCNhcJl9esHCxZAs+tOr6MbAdDa2LOj32RCPxxszrtmDQ+8NgHb3CzSfQOEJnhHheOVYB7san5pNwnnlnFixAQiQu/B8+oF/I8n4hQTybUO3Ulq2+k27lTNQ63TEnTiP4xqDYnBTcjDpvRCEonkjufdd99l5syZN2lflIsLF5TB9507Yds25T0GYGsLAyx0p+bNA0dHvvosDFRV5xgsioKCAqKjo2nQoEH5KmrdWtneeUcJ4fTzz/Ddd8qkgH/+gc8/V/IZjaiMBozqClitoFYrzo6hQyEyUjnfqVPg7q5szQpNCGnXTnFWXbsGly8r2969cOYM9OypOFgGDSp/m2oq3t7KaiRfXyVcm3SKSCRVSoU5Rg4cOEDnzp1LzyiRSCQSiUQikRSiYcOGNGzYsPSMpfCw7iAdjVcB0KHhjHVzDtl0INZKmbnnbW8e4i9wdMZgyL+pDqNaQ66dOOsoR+2IlarmhTVIyI7ji3cmo9MVmI4NaTOOPkPnm2x1O2V2+Pk2fTEajXz+4xQ6J1xhEnD8+qZHxcA1H9Ho7F5y7Fz5xkHRTcnDyDOAjY0DQYFtePL1p/A26NF89BF24eFY5yrhoNot+oCmy79HfV0r496lb3I0sB9n6/Uk30ZcsVAW/us0nnifEO79513anVqPzsaWvd0eRW91eyE18u2cyMep9Iy3wqJFtDgbzuX6nch1cCXTyYtEr3rkOLpzos1QRv75bukht0CZGTpmDLZAXJO2nBj2sJC87eFXsT5+BStdAYFxZ2gRvgOfy2cZ8Pn/3VRV4z+WsG7V3puO34kM/vQV6h8zryD47bmFxAU1L6GERCK5W3B0vPX3homYGOW5OmSIMuAMSmip2bPNeRo0UAaiH38cPC1Erzt2VP6qLtx+G8pJTEwMEyZMYNu2bXTv3p09e/ZUXOUBAUrYqv/7P0VDpaAArjuhHDJSePKlIWht7eE1JyXMVp06yqqSRx8FN7fbO2e9evC//xWfXqcOPPSQeCwlRWnj4cPKRAOAtDQlBKafn6Jn4uFxe+2pqYwZo/zNzobyfAckEsktUWGOkQceeICrV69WVHUSiUQikUgkEsktscSqO1ZGR2LUPhyzao7R2rP0QncwVmprwSkC4GBTvAMgNzeLuIQr9ASGX98UjHB8EwBaKzuebnU/sd1ewOhihdFowNnBHY3GCo+Jw9ED+kcncHT2F0T2VkJf5Lu6ozYaSPIJxjMxEo/kaPon/0TP08tZNOIrtFbXQy499BCEhirhIkrhcnBH9nYaT/eDv9HxyGqCI46wq+fjRNQvZ3iPikKrpe+2xTSvs40V988lKqgNPz9u1qEpk1MElBnL19k/7kXimovhqGJC2mJI9sBal8f5Bt3ZGzqWjtpDdFq+yLImsgKCMVhbAzc7/O408h1F56TWxq6YnBKJ5G4gJyeH8PBwWrdufZMmVZkwGhXNhmnTFH2QVavMA80DBsCBA3DPPcrWuXOF64OUhxMnTrBv3z727t3Lnj17iIiIMKU1atSock6qVt+0MsEp5RoqoxGbvBzIu66DFREB+/fDa6/Bhx8qQupVgYcHfPON8r+0uj5seeoUjBxpzlOvntKnuLF17nz7zpuawo2QWuvW3bbOmkQiuTVuyTHy4IMPFnncaDSSkpJSIQ2SSCQSiUQikdQO3nrrLU6fPs0rr7xC9+7db7m8Wqelpz6cPepGGFUqClRW/GFrjlNdSZKiNQYPey/mfriJyIgzWFlZ4+FRF+fz2mLzZ+co4UN+tbKjdd9J+CRdxif+Ejb5OUQ06sh5p9bEeDfFqFbjBKidihmMtrLiyqB7TWbYfY8RZgggNqgFNnlZND+xldZ7/iTF2c/sFAHYtQuWL4fFi2nsNYILdTuU6EDY3+EhEj2DGbhjId7JkfTZ+S0/FHaMxMcroSduZxCtvEyYgOqV1wiKOklA9CmiA1vfXj09esCECfDzz/T9ahY7nnkb78tn8T11BO+rF7DLycQmP4c8GweWPLiQXHtXjox+hpPDH0Vr54BDaiIN0iMBiOva5/q9yKq466wmtj4zm92PzcD7ShhxjduQE5dbeiGJRHLHsn79eh588EEGDBjApk2bbq1wWpqi57TiurZXu3aC05nu3ZVQWtVAeno64eHhhIeHExMTQ3x8PNeuXWPx4sWmlTEfffQRv90QTAfUajWdOnVi5syZjBgxosramlivCd9+tgHr/DweG9JQ0WM5dAi+/hpOn1ZW2lQ19vaiHRqqrAqKj1dCdEVGKvopAJ99BlOnKvv5+cp2J+nx7NwJDz+srOL55RfpGJFIqohbEl/38PDgl19+wclJnIlmNBp56KGHuHbtWjElJbdKbRFXk0gkEomkLNTW9+LdfN1Go5H69esTGRnJmjVrGD16dJnK3RBjdzJkcl/Oaurpo9jVeiwHWijlo//cZcprrxF/ULu1aSzYJ/ZvFewWAW0FW+1oHtTXJ2YIaVaB4mqUK2dEsejg+i3EhqvNg/fWTX3FJF8xZIIxVyfaBXrTvvZMvJBGvphX5Shqe9gMMs82TU1P4N9V36BWqRnTZAJW91qIYWdarDRwEx0jahtzOLGXnhJD6M6fu10sm6vFWpuH1ub6/yBPR5tj6+m8fxnOWYrIe1Sd5uzpMB6bmeMF50bEiTihquljGiqhP1xc4JNPmP/FXqzyc3nivfEk+TWg/pqfoEkTysJn3x8UbP3pQiLxeoufRa7ivZw+R4xFf7z1UNqe2kBkQGtW3vs/nPqZB40mj2qpDMokJEBgIF/8fEQoKwiVp6YqIrNx4nXfxMyZMHfuTQK7sT+dEOxXlowx7VsKpk9/4dYdkGVl/meieLbKXgx9ZjgYa9ov3EaAJRtFofZJg8su1F6R/Lz9omDrDeJnImVnhGA7tDZ/l5+9v2Tn2NqDYnSFkZ2Cytwuy8+PSi06Ax28zc+QSYPK9l24wYJfLcTrHy77YNz8r/YJ9vTnuhab95NvDgj2y09bPENe/1esa27RmgJ383uxJO726x43bhzLli3j1Vdf5aOPPip7wYMH4cEHlQFyKyuYOxemT6+yFSH5+flkZGSQnp5OUFCQSRvlnXfeYdGiRSQkJBRZ7uLFi6YQogsXLmTt2rV07dqVuBMaguo0wc5Gmdox/fPhRZavDFbtizDtO9oVmkNtNDK4IEYJM6apIWFF09Lg2DE4elQJt3X4sKKd0vX6M2jZMnj8ccLb9OR8tyFEtO3BCxM6Vl97U1IUB87AgRBUxLP/5ElFTyUjg/jegzj8wWLTve7fThRyt9PUnNVOktrFJ1/vN+2/PLlLNbZEoVrE13v37o2zszO9evW6Ka1169ucJXUXsmjRIhYtWmRaAtmiRQtmzZrFkCFDqrdhEolEIpFIqhTZJyiew4cPExkZiaOjI4NuUVQzSHeV+3JW42zMIt/anhQXv0pq5d2Fu6sP9zd9rGpOplKZnSLXOdFuGGda9KPTwZV0OLiSwPizjFv3JslXVnHk9Q/JrB9SdF0+PopwayH8r5zCISuV+ucOQKtWSviUOXPArupCLh1pN5oWZ7dSL/okXQ4t53S/QrofCxcq7UlIgHHjcOw8gWx376IrcneHX3+Fs2cVcdwePTjk25SkZm3IdfdizODW4OoqzoCWSCR3FLI/UDx5eXmsW7cOgPvuu6/sBS9eVES509KU1Qy//w6dOlVOI4Hly5ezfv16oqKiuHr1KjExMeTl5ZnST58+TYsWyqQItVptcor4+voSEhJCvXr1qFOnDr6+vsIg3vPPP8/zzz8PwPwpf9P0/E6Crx6jwMYe3tinhIfy84OmTaFNG3NoqapCpYIuhQZBDx1SBNHfeqtq21EYNzfo00fZimLHDsjLI+TAZkIObOZa/WbQ5Acl3FZVs3+/Ekr06lVFz+W555TJHt7eoNfD4sWKnZEBPXpw9H8Lao4DSiKpBdzSE3X1jSVqRbB58+ZyN+ZuISAggA8++ICQkBCMRiM//fQTo0aN4tixY6YXpUQikUgkkrsf2SconhXXQ14MGzYMe8tQCSXgYMjmkexfsUJZRfHLwPdIlY6RUsnMTiO/IAe3am6HzsaO/3o8wsl6vehybCUtLu7E9VIY+R5epjyBYYcpsHckISAEo6bonyuRTTvxyyvf88DCqThmpcK8eYpQ7DvvVNGVQJqbH1v7PMvgLZ/Tbf9veH+WwX9PzCDfxQ2yshSnCMDvv/Pw2vWseHMJqX71i66sTx8l9v1zz4FKxdlthVYu+PhU+rVIJJLKRfYHimfTpk1kZWUREBBAx463MKs/PFwJO9SlC/z7b6WHTTp37hw///xzkWlOTk7k5OSY7Mcee4xhw4YREhJySzOZm4TvYdim+eYDJ9eLGe67T9GhqC6io5UQkAUFcP68sjqnTZsapdkCwKJF8NRTHHvrU5rv/AvfK+eU1SQzZ8Ls2UU7l/LzFU2VBg3A2vrm9NshOhp691bqdnaGzExYu1YJ+xYZqbTlhjB9ly6wdi2GS3d+OEyJ5E6iXK7m+Ph46tSpU1FtuWuwjAP53nvvsWjRIvbv31/rOz0SiUQikdQmZJ+gaAwGgymednEadsWhV2nIV9liZVQGIIbuX8jyPm+htZbizEWhN+jZf3Q9G3f9jK9XEJMbvnR7wrYVTKaTN5t7Psve0LG0aQcFru6mtD4rP8c75hL5dg7ENGoDmfcqToOUFEWQ9ToFdg6KU+QGaWmlnldTkEfIke0U2DkQ0aob+lJLlMyZ5v3xSo6kw7E/qXv6EFr768o2Tz+thMto0ACeeQa748cZ+ck0/nj7J/Kc3YqurKYNLEkkkgpD9geK59dffwXg/vvvR30rz8EhQ2DfPmXmfSU7RWJjY2nTpg1z584lKCiIwMBAAgIC8PDwwNnZGY3FDP+goCCCigqZVAo59q5orWyw1hWYDz7yiLLawNcXAgLKeynlIyAAZs2CN99UVjr++it4eiqD/337wv331wxnvkoFoaHsGf8yR4ZNpPuyz2m2Z70Saq1hQ3jiCSXf4cPKsbNnlRVIer0i6v7PP9C8efnb4eio6KTk5yurW6dPh+xsxakEZg2Vhg1hz57rK0WkY0QiqUrK5RgZOHAgJ0+erKi23JXo9XpWrFhBdnY2XbsWH3M1Pz+f/HxzXOeMjIxi80okEolEIrnzKEufoLb0B7Zs2UJMTAxubm4MH35r8bPzVXZ84/Qk3fL30b7gGAXWDtIpUgQGo4GTqUfY9vVcklIVbQetNp9sbSZONjUnPn2Ogzvx3c2aBiqdjnTPujinXMMuN4sGp/fBjEI6BuPHQ+fnACiwcyTDzQcXf2+oUweeeabkk23bxsQ3H8ElWdHyyHFy41zIPZxp0Y9E79sXld3ZcxJhjXvh0dgOg7USXx53dxg3TtnftIn0Fu1wTYxh9LwXWDb7F3NhvR5271ZE6bduVVaM3BCPlUgkdyWyP2AmOTmZv/76C4BHH3209AJGIyQmmgffqyCk++rVq5kwYQI9e/bkn3/+qdTJBVGBrVky8VvanPoHj5Romsx+Tnnv1STeeENxSr37LmzeDMnJsGqVsl27pqyCqEHkunqyZfIcmr3wKDz5pOJIu8HZs7BmjdnWaJSVHN26KZogffuW7+Tu7rBlC/Trp+wPGyaGxXzpJSUc3A2h9d9+o/Xyv9Hk5XGtZz9iB40q3/klEkmp3JL4uiWtWrXi1KlTFdmeu4ZTp07RtWtX8vLycHJy4rfffmPo0KHF5n/nnXeYXcQL5G4VV5NIJBKJ5Fa4k0VHb6VPUFv6A/fddx+rV6/mhRdeYMGCBSXmne32pmCrMA9IOBqyyNMmkqh2Mx3zqW8WG78YLooKN/ASxdetgrwEW13HWbBnrHnYtP+/OnOENGOBKHpu10OsW3vhmmBbNzOvsrYcVDGk5gq264tijPTsyylmI9+8xiEnN5MLG7fi6eiLn4syM1WLlt2XNnIieh/xmdEAONq7MrDTWLq2GITaWGg2rr94vTeJjztYzKFKLNROi7LTp5Qs6v3R4J8Ee8bGiab9hcuOC2m6PB0qgx6vqIsEhB3B7/Qh/C+fRGtrT1j7fux/9CUh/5SJHUz7X/52DJ/LZ/E/ewi9tS29hrZXYnuDMjO0Y0dyvOug0uuxTzELrye2CsX7rxVQ3xzqasm/51Hp9RhVKlCrebi/qIGy8Mv/xIu8ah64tO8iiqU+19JGCePRrZsyExWUuOOjRysDSYX580++SDfPCtam5QnJVs424v26kibYliLxhSlNjH3h78cEOy/OPHPVr6N4TbHrLgi2W59gwU67lCLY05/vVmy7LPl+s1i3fSEh4LSEbCEtJypNPM+0nmU+T2nnfWJA42JyKhS+X5MebCOk3YpAbp7ecNtlAebP3mLan/52/1sqW11YCspPmRBapnKyP3DnXXdJLF68mGeffZb27dtz+PDh0p0OH34In3yihCOqIr2I8PBwWrRogVar5e+//75pQsf897cL9vSZxeheFENGvrk/8fvGMCFt8qiWZa5n0SpxbO7Z+1rdUjtK4pu1ZwT76ZHXVzlptcq7dft2JZzZqlXgdb1vdeIEBAYKKz2rnchIJYyW//X32bFjsHMntGihbDY2cO+9yuqNkBA4c8YUVmv9kShTNcNCA4VqF68W7/0zYyzu/dmzyqqQ0rTCnn8evvrKbC9Zwt5uw4Qs3Zv6Flv86JVkwW5f37Pk80kkdzDVIr5uSU1Yhl9TadKkCcePHyc9PZ2VK1cyceJEdu7cSfNiluPNnDmTl19+2WRnZGQQGBhYZF6JRCKRSCR3DrfSJ6gt/YGhQ4dy+fJlJk+eXK56stVOpKi1AFgbtbTWXyaKRqWUuvNIS0vgwMH15OZkkp+bQ0FBHilp8UTHXMBoNNA9eCAjWz4CQEZeGv+eU/Rb7Kwc6N3hXnq2HoHtDSF0S+dHDcWo1pBYrwmJ9ZpwqKsoxlts5O/oaAZ+OZPG+/41H/uvkdkx0qEDu99bRHzHnhisrKlzaDf1N67Gf/dmnKOuKKtOQNEGee89hm/ZjcelMAxWVhx75AXo/c7ti942a6YMwCQlmY81aaKEB3N3VwZi8vLgt9/gkUfwmPkdKQF332dZIqnNyP7AzTz99NM0aNAAlUpV+vjSzp2KSLXBAEePVpljJCQkhJdffpkPP/yQV199lSFDhtwUOqtauXwZDhyg08pteEZcIKJTH871v/7eTE9XwjQ6O5dcx+1iba04/bt2Vf43hZkyRXmvbd0KTk6Vc/5bpV490W7XTtkKs3mzsnJz6lSz1sj//kfPn35Fb2eP0doaPJyVNHd3aNcOO+9O5LmW4IQoa1iuESPAz0/Rz/npJ3j6adwWLyWtx6052yQSSdkpl2NEUjw2NjY0aqT8mAkNDeXQoUN8/vnnfP3110Xmt7W1xbY077FEIpFIJJI7jlvpE9SW/sCkSZOYNGlShdXnZsjknTxFEHVJbmuu2d9dg0dGo5GtW5diMNysiOHj5IeLnVmfQwW08uuIr3MA3RsMwrlh3SpsaTVSUACdOtE4Lk48npmpzGB1d4f27YnpOdCUFNe1D7Fd+2CXlIBr5EX65ubCZ58pM183b8Y0JzMfunz9PjovDbryhAipX19YkYK7O/z3nyJca22tzLyNi4PYWPp//y7LZ/14++eSSCQ1DtkfuBm1Ws3AgQNLz2g0wmOPKU6RRx8tPXRiBfP666+zePFiwsLCWLduHaNG1ZAQR3v3KmLowI01V9eatKblP7/B4sNKGKf69RXnSVWSlqastkhOVsJEvfuuoj9yJ2hp2dmB5XcyMhKXS+eLzr9sGVaL/y067VYZPFjZjEYl1ObSpTSd8gQXPviSlIHDSi8vkUhuGekYqSIMBoMQI1QikUgkEkntRPYJKgZrYwH1dFfxLzhLW/1FALKxJceqhsxKvE3ydLkcWbeU+JgrjJ/8FgDu7r4MGzqZnNwMbNS22NjY4WjvQoP6bXA+VyCU93D04ZGOU6qj6dWLtbUS9sLSMXLtmjIYA4qORx1l6Mj10nnqHNxFWsMm5Lt5ErBrE7wxGXJylNmj777LjnQbDFZW9H1fmbVt9BJDr1UIHcxhwLC2hhUrIDeXK1Pfq/hzSSSSGoXsD9wCKpUiPh4Roay0q2ISExPJzlbC+PnUBHHxG3jevEqh8+9figeaNlUG2qsy4oubG2zYAMOHK6sfHnoIWraEBx5QVkW0bVu17SkvM2awv31fNHm5qHU6QgNdlMkMsbFw/jxZXuZwqc02rYDm1sp9v11UKliyBJKS0GzcSMPZM0jv1gu9k7Mi5P7dd4qj0NGx/NcmkdRyyuUYqVHLB2sQM2fOZMiQIQQFBZGZmclvv/3Gjh07+PffCvIiSyQSiUQiuSOQfQKRzMxM/vrrLwYMGICvb/ExkktCZTQwIncdrbSn0WCOy5+gcuMb22Gord1LKF1zScq5xn8xWzkcv5eCPcpAWd/hj1DHX1lhcM89DyoZ88VVI3piqrSdNRaVCnbsYNn7y2h0YDO22Zm4x0UQ4O2ozLq8dk0JZ5WqZK9zaDftFn1wcz1t2sCbb8KYMVz69zz2KYlo7RyIbxmK93PPVV77jx9XBoquD3IdGvVk5Z1LIpFUObI/cDMPPvggvr6+vPbaawQEBJRe4LvvIDQU1q9XBo2frLrn5LvvvotOp2Pw4MF07dq1ys5bKk2bKism9+7l+Cc/EHxoB6kBDbDJycJ/0jjFCRESUno9lUHHjnDxInz6KXz8MZw+rWzvvKO8kwuLoNd0GjcmOdPebFtojHBdY8T/5H56ffMuLP1EWXXy8MPcNjY28PffxDz1Aqm9ByhOEYCoKHjhBfO9lUgk5aJc4ut3AydPnrzlMs2bN8eqhPjCkyZNYuvWrcTFxeHq6krr1q157bXXGDCgeCFES+5kUTmJRCKRSCqayn4vVkZ/AMrfJ7jb+gNr165l1KhRNGrUiPDwcNPxSbaPCfmW5P9o2n/CdoKQVkdjw4T8TTQ1RJGscibSvRVXnJpwybkZOrUNcRfNwqVJBeKs0vYPjhHs1HWi+K+tWhS1dnq8i2m/YFeEkKaLSxVstYuDYGvcxVl8mrrm/58hy7zKIzr9CruubeJU5AGMKN1yH/cAerQaTmjj3tha20Gwmym/MayQRgXg/pAozJq66qxgGzPFFSVqb3M77bqKA1F5ZxMFmyyxLHmFBOcLtQnALshVsHPWiiLWr/7+kGDPX7zPtD/9GXGQaf6HO8Tz2ll8z5JFsXpNsPnc054Qhevnv71ZLJuhOJ0aXtpPs7AdeKdcxSUtnqv123J4yKNENW5vnsWqM1Dv/CHa7VzBxoffIC9eFMh2uCdYsAsL3d6SmPa6dcrg1dNPw6JFpYYaKU1AvbBIri5XJ6Tp8kU7uKk4MKXRiDN4LQVmC3OrQr/LdptDuYzt2aDEvCVRrAjwbTD/452C3XFIE8GOTMwS7Ed7i7ovX/5mFl9v1aaOkHbuvPhd1Vvce7/6ZkHie7uIce9/2Bou2I/3q7qBzd92XTLtO9uLij4jOgZV2nmX7rgk2I/0bmjaj0vPM+1nZmTQJMhX9gfucBITE00rL+Lj48s+WWLePJgxQ9GsOHECGtz+s6SsGAwG7r//ftasWcP+/fvp3Lkz8+eaBdeN50XB61d+ur/E+pbvvSLYKdfMzxlL0e6v15wW7Mn3liLGfmN47zZWY3z1xwnTvrufqEkyrhzPbEBZ5fPnn/D332QmpXJ56WpTUptv5kOjRjB2LNjbF19HGdh8XJwsMqCtf7nqu2Xi4mD8eNixQ7EnTIBPPilyZc9tc6PPYG/P1SNnMHibVzAFe5W8giQqJce0H3ZV7Mf2bCWGXi2x3yKR1ABqhPg6QHp6Ounp6Xh7e2Nvb8+qVavYtWsXbdq04Yknnihv9ZVO27ZtUalUlNU/pFaruXDhAg1KeAEvWbKkoponkUgkEomkCqiM/gDIPoElmzZtAihbPPFiyFHZsdh2BP7GJGJUXvj4N66o5lU5pxOOsPSEOeRFU/929Gg2jCaNQksXob3byM9XBrk6dSo9bwVwqWEXLjXsAm525hAjXg435Yts0pHIJh2vW6k3pZebixfhkUeUfWtrs1Pk2DGYM0e5L2q10r6AAHj77Ypvg6RiMBrx2L0Nj51bcLwYRuQz75HjoQxYuUVfwTbxGrHNO5RSiaS6kf2BqmHLli0AtGnT5tZWkL78sjIw7OkJVeQgUqvVrF69mgsXLtC4cQ3vc5Sl7xAVpay62bIF9uxRnBHX+2eVhocHPPEEPPEElyPMjiSr+Fj48ENlZec778CCBTByZOW2pTKpW1e5r3PmwP/+Bz//DP/8o+iXjR9fMeHDhg1TVuMcOoTL4oWkvVUO7TOJRFJ+x8jkyZNZsWIFBw8eJDY2lgceeMD0Qy4pKYkZM2aUu5GVzYEDB/AuwzI+o9FIy5aleOglEolEIpHckcj+QOViNBrZuHEjUD7HCAAqFTGqOygEQzE08WyFi60bjfxb06fFKOq4K7Oxa51TBGDSJNi9G2bOBMoRl/t2qM77/cILkJ6uiNN+8on5+K+/KrNrLTl0CB77vMqaJyk7vmtX0PSNaSa7869fcHLYw/iGn1JCqwD/vvA+F7sNqqYWSsqK7A9UPrfdH9BolEF9R8cqf3bXeKdIWYiKUsJv5eSIx93dcY07R7aHDzrb8q3aKJVC/zejvYMizL5wIVy9CqNGKSuCPvjgztIgKYxGA7Nnw6BBykrQM2eUCRBbtsAPP5S/fpVKCfk5ahQuS74ma9zD6BrdBZ9NiaSaKLdj5MiRI7i5uREaGsqCBQtQqVQMHDiQf//9l59++qnGO0buueceGjVqhJubW5ny9+rVC/tyLu+TSCQSiURSs5D9gcpn3759XLp0CQcHB/r27Xt7lRiNNNdHEKKP5i+bHhXbwGrAWmPDK90/wD6gAkMs3Kl07gyPPw4GAxyt7sZUISEh8O+/cO6c4vTofj0s1rvvwsaNygzTunVhyhTIypJCqzWYvLoB6BydsMpWwuI02bGWJjvWCnkKC/RKaiayP1D5ZGVlsWrVKgBG3s7qAHv7Kh80/++//9i5cyczZ86s0vNWOE5OEBgI58+Lx4OCeDg3l9S69dj38DTSq2jVht7VDf7v/+DFFxVnwrx58NFHkJ0NX3xRamjJGk23bnD0qHI9s2dD797mtAMHlAkQI0Yox62ti6ulaEaMgJ49Ue/eje/4B4jbuA2Dh+xLSiS3Q7kdI7GxsSbP+alTp2jXrh0bNmygWbNmXL16tdwNrGy2b99eeqZC/PPPP5XUEolEIpFIJNWF7A9UPj9cnyX3wAMP4OzsXEruonEnh0n5/6DByHFNIyI1d/Yg45mEo2y7/DeTfd7B3qaWD3i/+KJ5/+iOamtGlTN/vhJOa+NG6NEDYmMVR4idnSJSe4PYWPj9d3jpJYg2H1brtGJ92dnm0GCSKiW9Uzf2bT9GnbUrcDx/FtXpM7hHXSbX1YMzgx7kbLdhaB2cqruZklKQ/YHKZ+XKlWRnZxMSEkL37t1LL2DJQw8pobTefbdKBLwvX75Mr1690Ov1dOjQ4Za0Y2sc7u5w8iR8/71y/3Q6RQg9Nxe9xgqjRkOui0fp9VQ0jo6KA6FRI3jmGWUFSWYm/PRT1belIrGxUVZ3jBsHDc26SWzdqoQNW7BA+Z+MGKGEGrvnnrLVq1LBypVoO3bC+solXBZ/SdrMWUpaaqrSD/Cohv+jRHIHUm7xdXd3d9zc3AgLC8Pb25vRo0fz888/06ZNGyIiIkhPT6+ottYq7jZxNYlEIpFIykNtfS/eLdedmppKUFAQWVlZ7Ny5k169egnpc9zeEuyI3EjTfrC9KErcN/N3ehgucULlz+dWfdAa9UJ6ui7DtO9lI/4otKzrcPoxwe4x+AHBvrh9l2k/ZIwY7kN7Mk6wsehSW4WIgzXGDLOQuS42FZ1Bx+cRH5GqTaGFdyiPtHrOFEJLZSXOkDTqzELemvqiyLnKxU5sh0EU/SZfvD/G7EID6QaxzbaDGgq2QSfWNfUxsz6CpfB2zsl48bx54nmduolC7wWFhN0L/osW0rzuay7Y2YnZgv1EHz/U69dh7N4DY0OxzdtPxAp2ala+YMcdFdM1Lram/ZuE2wsJxAOoLGauWlmIwk+ZEGraX/CruOzl3qFNUWVng7YAo5s7mw6br1mTl8uQ1yfhc/oIJx6byqmJL3JtV4Qp/dGXxNVRPk428NtvyoDRgQOsWL4HnYPiWGv/+Rya7P1XCeExbhwMGCDMuF1/JEqoqyRxdYDvNoSZ9tPPJwpp06f1FGxLwfmFn+0RbNfmZoHYJ4eI4dJW7YsQbL3FZ/PB7vXN9S47LqQ9P7btzQ0vxKKVopj2s/e3LjZv4estqp2WXIgzP282bhYF021dbQV74nDxc11Y2PafI+J3YGio+H3ZdUb8fh3665xgT3+9T4ntrCxORKYIdpt65mfust2XhbSxpYg3L/xdfB4X/r5ZO9mY9nNzspj6YKc7/r14q9wt/QGj0UiXLl04ePAgc+fOvfUVGFu3Qv/+SriikyehefPSy1yn8Hvr2ftEkfP5MzYItkNn8Tv4y/SX2Re5BXd7L6b3/oDg13qb0uK3XBLy+vQTP+tDOwYJ9o+/HBHs6c90Ne3/sUcUZm8SIL7zryZkCXZstHm8rV6wu5A2pL14DeHxGYId4mYD0dHK6pHGjSE42LRy4XiE+N1uG3z7g+xHr4ji9PkFYv+gaxMfwebXX+HJJ2HpUrjvPiFp0zFRXH1gu6oTVy/8TCvteWbJXwfNk8ZHdQpSQof+/DP89RckFnq3/vsvFBVeLjcXLl1SJlJcvKiI2U+bBgkJysqU33+HYcPYdjKWOn+vpPHc1zn3v09p9fJTt3qZEskdQ40RX2/WrBkHDhzA19eX7OxsOnfuDEB0dDQBAQGllK5ZGI1GVq5cyfbt20lISMBg8cNy9erV1dQyiUQikUgkVYXsD1Q8//33H1qtltatW9OzZ8/SC5TAOk1Luhku08YYwxj9cf5QtbwjZ8dbqa14qO4jfHt1IWcSj/Bf9Fa6B/av7mbVaDwjwgj9cwm2j+1GlZeH0caGgq3bMHbtWnrhasQ5KQ7X17/HcelPqHQ6Mqe8jKbnQ+htFaeW3s6e7e9/R+M/fyG+fbeSK9NqYeqryizT63ifOkxcZ2WWqc/JQxAfrzhNfvpJGeh68klluxWBY0nVsWcPTb9ZSnqz1sQNvB6+RquFrl2VwcqpU8GpXsl1SCoF2R+oeHQ6HUOGDCE6Oponnnji1grn5sKzzyr7zz4LzZopmg2nT8Pbb1eqGPvQZg9x5toRUnOT2HV5A8H0rrRzVRl2dsoKjUaNiky2SkzALuwM2R27VG27Hn4Y+vRRVk/e4OefIS0NVddRGK3KPYxZ/fTsqWyLF8PevYrG2F9/wcSJisOv8Eqo7dthzBhISzMfc3SELl0Uofo9e5RVJ9exTknCKiebVtOfhmsX4b334G64ZxJJJVHugH1vvvkm1tbWZGRk0KBBAx599FH2799PamoqXbpU8QO0nEybNo1HH32UK1eu4OTkhKurq7BJJBKJRCK5+5H9gYpn2LBhXLlyhR9//LHcwuIJKheWajoCMNxwmlbG+FJK1FwC7IMY7DMcgH/Cl1Ogzy+lRO3FPfoS97/xCI32b0aVlweAsWlTjB07VnPLSkZTkMfY18fhvHgh6qwsVHl5uHw0l07ffCjk0zo5c+aR50hu3rbIemzWrcWjY1u8Gtc3O0Vefx3OnSOuk3kF1qZFK5UZ1S+8AG5uEBGhhPFo21ZxmEhqFqtXQ8+eNPjla9q9/jzBv31H3U1r4dNP4cgRZRZw1644nT5e3S2tlcj+QMVjbW3NO++8Q2RkJL636qz9+msID1cGzP/3P1i+XAk/9MknMH165TT4OjZWtvQPGQ3A9vC/Kci/+9/XTYb3ptGE+wl+flLVn9zPzzzpJS1N+f9OnUqXh4fgeuJw1benstBooFcv5VnfrJkS1izm+qqYs2eVFTN9+5qdIh06KCtBN21SnCIArVsrujHXiX74Sa5OmKwYH32k9AEkEkmxlNttOHToUKKjo7l69SotWrTA1taWFi1aEB4ejqfnnSX+88svv7B69WqGDh1a3U2RSCQSiURSTcj+QOVQt25d6hae/VcOjCg/lnWoSFE5VEid1UVL5zasT/gLg1GP3qAHTXW3qGaS5+RGakADvCIvAKAfNgztDz/W+FmQBo0V6XWCsLt8BqNaTe6oMejq1ycjq+z/aFVSIi6TJ6HOzFQO+PjAV1+ZQ4wkmsN7GGxsoWdfZSDlo49g5UpFuD0+XhmE7zyiIi9PUl7q1xfM5p/MvjlPnToUePncfFxS6cj+QOVhdTvP7ht9iNxcJXxl4VCKxax6qCgKdPnsj9wKgJejL1a3KpZ9B5I0/jGsE6+h8/KhWt2Azs6KHsrMmTiHn6Pz46OJvnccF6a+AVRdKK1Kxd4e/vhDWRnTtq1yTKNR3tugaI+sWwdORehU7d4NbdqYVkwZray4OH0W2fVDaDb7FUWvZeZMkM5ciaRIKuSXhJeXF15eXibb2dn5tkU1qxNXV1caNLi1WIESiUQikUjuLmR/oGIxGo3lXiViUSEdDYoGySpNe2JUd/YPvavX9VR8nfyxt76znTyVSa6bJ8s/XI5zQgxj7WIw+vnfEcKiRo0Va2YuYuLK97HbsonsRyeS37svZw5Hl174Rh1e3mR+9Q3We/eQP2Qo7kMHls0hZG8Pjz4KLVrABx/A5Mlw/LrGisEgaI9Iqol27UCrZf+SNfju2IgmPx/Hq5fx9HZV/n8hIfB//0dB7N0/O70mIvsDFUtcXBxnz56lY8eOtxcP/v77oWVLJXTWnDnKyqrUVGVAuHzSuaVyLuEYsRlXcbJxYULHaahrwfPz2tQZpndFnepsiEajvL/GjCHmyRfxX/sHAWt+x3vXFli4AB588I4MqXoTrVrBvHlmu0kTZTVUv37KqpCiOHYMBg9WVow89xy2zbqR7+sHQNy9Y2m28gc4cwaeekpZYSWRSG7itsTXv/jiC+rWrcsDDzxQat4VK1YQFxfHlClTbquBVclPP/3Exo0b+f7777G3t6/Wttwt4moSiUQikVQEVflelP2BimXSpEmcPHmS2bNnl3nWbWEx9llp/xPS5rb+HIxG6meFccWpCRHhp4utJ1svina7WbmVmJ5vKBDsFnXNP0TVro5Cmo2FOLIhQxy4NGaJdRlzzLZ1W/PKmbV7v2fXib/oUq8v97Z6DACVgzgTVe1ldpgYUnPFtC4Wmn5R6YJpiM4U8/uZJy9ZtxZnoWvPiOLaIfe3EOyBha558U9iKAt9jlawfVqKIVISTl8T7PodzHVd+eeCkIan+L3zbSOuNLK2EKd/qId51r2liPd9XYMpibWFBFFHdhIFcj//UbzGQQNDBLupn+iUW7DULLje0iWPJl99hNPlCxxcsJQogz3eYSdIaNEeUByGhZk0qIlgf/b9QdO+pSi8pbC7u7/Yjjrudqb9/m2KmE2blwedOkGbNpwc8iCZ7TqaBpX2bxT/F4UF1i3vbcRmUXC4z6NtBftirCj0W1hA3ZKY1BzB9ncv3kn42y7xvK6ONoJdmqB8SWw9GSvYOfk6wR5hIaJcEt9vEu9lnsV319rR/D1/anjZBaSLorDw/crdonjzI70bWmYXuJaRJ9h7z5q/q2O6lKxt8u16UQT+qWHNSsxfmPVHogS7rP832R+4c/sDX3/9Nc888wz9+/dn8+bNt1fJv/8qA8EBAbyfMR6tyvz9t+wvWDK37Rem/dePi+NTH3RdLNj/t+8ZwZ4/+U/ORh7C1saBhnVbQEOzpoPKzU7Ia+tiK9h6i+fIlIkdBLvw9/fbZceFNBsn8fmmsnDIdGvrZ9pvGegmpK3eHynYpX2fl+4wP1tLe25Y8uPWcMF+rJ/5ffnnAbEdozuX3I7CAutFiqvv3g1PPw1hYcq769QpZQLAHcq+8wmCfZMYfUkcPqyE1IqLMx/r0gUef1zRFvvxR5g0CYKCILLQ/8FoZOupOKGqBnXF50p97yJWp0gkNYhqFV+fNm0aXbt2LZNj5JNPPuHgwYN3hGPkwQcf5Pfff8fHx4fg4GCsLZZHHj16tJiSEolEIpFI7hZkf6Bi2b17N+Hh4RU7u1Kl4opz2QfgajJdWwzG0+BOHeeA0jNLbp30dGWWcVycMljwzjsQYL7XNmkp1N32D9GDRt963Tod/PqrEqaqWTMw+mOTm0WHv76n7eZlGOzsOfbeAgq8fDAm55icIgAqvY6OSz7GPfIiVvl58IYR9HoYPx5efbX8110Sv/yiDCSdOkXrpUvJbtSEaw89SsLohyr3vJLyc+aMIjrt769szz9/UzguScUh+wMVy/79+wHKp0U7aBB8/z2MGYO23scV1LKy0bxezda0qjX07AnHjysrIdPS7minSLnp0EERa//lF1i1Cv77D/bvV7aVK5XvyrRpyqqbG0RFwSOP4PT8G2Q1bVltTZdIagq3HUorKiqKOXPmlJovOrrsy8Srm4kTJ3LkyBEeeeQRfH19Kzbsg0QikUgkkjsC2R+oOK5du0Z4uDKLsFOnTqXkLgNGI0FZF8mydiHF9s6Nua/X69h0eBl929+Pt5sfHvX6VneT7l5efx22bFH2z5yBtWshNtYUiqrn4yNxjI3CLewU9Pn91up++22YO9dkhj74AnXCT9Lg2C4AUtt1It+z6M9pm2Xf0Gr1jzcn9Ot3a224HZ58UolH/vXX6H/7HceL52nw3psELZiHscu9HO11P3mOd+aM9Lua6GgljFBhvv1WGeRylDN7KwPZH6g4jEYje/bsAcrpGAFlNnwV8b///Y+JEyeSnZeBo518LtYYbG2Vd7AEvLzgpZeULS5OmbAxa5YyAcLGRgk5l1NoVeZrr8GuXTRNzuDwb+urr90SSQ3hth0jMTExzJ5dhDicBRUeV7oSWb9+Pf/++y89evSo7qZIJBKJRCKpJmR/oOJYfV00MjQ0FI+K0IN4+WUeufIlxzy6ssH/zpzdnp6fyrK/Pici/hyN/FsTElBM3GhJxdCtm+IYuXA9rFG/foI+R2LHHlyztSO1ZTtKDu5RBB06gIODacDhWoMWaLQFJsdIvqcP2cE3hyPxO7KX9ksXAHCxzwgiu/WjX7cQZYB74kRTPu+rF3DISAF9qDjbs7yoVEoorU6dODT5Nbz/Xknd337E4XI4XTf9yIU290jHSE3EoYjwYr17K1okkkpB9gcqjlOnTnHx4kVsbGzKfz/PnIFr10rPVwFcunSJtm3b0sK/G6O7PVkl55TcIqtWKStIRo1S3su1mbp14ZVXYOhQSEkBHx+IiYF69ZQJEd26KQ4TILeeXG0okcBtOkZ69ep1xzg7boXAwMA7Nl6nRCKRSCSSikH2ByqOP/74A4CxY8dWTIUjR8Jnn9E87Shb6oxGq7EtvUwN4lJ6GMsuLCFLm4mdjQNqdQUOdkuK5uGHYdw4RaDXw+MmgdaTr39g2g+91brvvReyzTo10UuPEt28I7nO7vT69WP8N6zGf8Nq9n2zgvh6ZgeYdV4OOlt7LvUZxt6p12PiW2iMYDDQ7+cPqHPlDKyYpzhMBg+GxETabNxLlmcdLnU0rzTqMWcqUT0GEtl32C1dgt7FlfiHJxE/7nE8N68n869tJPndWmx5SRXh5qYMdDk6grW1+FkupFEgqThkf6DiuNEfGDp0KK6urqXkLgGjEV54AXbsoItdf/bblnP1SSk8/vjj/PTTTxzK2saQjo9ga21XeiFJ1bJsmRI2ytER2reHPXsUIXN399LL3q00L6RbdfiwEqrz6FFlA/D0JPyV6ytu9HpczhyHun2qvJkSSU3gtsTX71bWr1/PggULWLx4McHBwdXalrtBXE0ikUgkkoqiKt+Lsj9QMcTExBAYGIjRaOQl1ym4qc0DIbNSxHCsX68RBdQnjjT/oFu1p5CQsNHIw08NgYsXlbjJjz/OR8N/EcruWf+Hab9r20FCmqae+CM58t89gl3HXRT5vJpiPnfD0M5CWvKJMMH2GSqmF5w0i4fG5cVySHWUQxE7MWIkqGFTXpz9Jb7+yhqFuA/2iu3sbqE3Epdl3m8phmYyHo8XbJWXOKvcrpWYP2+PWfDYurN4vdoUUQDbyeJ+ZYUVEme3EJvHQiAWZ9Fp1bS7KFodtvWyad+9nSiunhGVJtgaG3Eul5W9GOe/MHYWIrgphc4DMH2u+JmYv/A/c9rz3Yqttyj+KiTcDjCqkHj7ts+W0velR4noP4KLI8dxyq6BkPele9wVMVQ7pb1/HxLryk5Mpe1386m/ZS22mek3nTu6Wz92f/ANAON6NlDCZWi1iobKrFk3OYBu8N0G8XNr0OoFu/C9dbwWw0NpZ5RBSOBqcraQN8jTschz3A7frD0j2B5exdcdezFZsG0tPmuT7628mOmffXdQsJ95vPjZyXYaUVfJ8hqfHll8XPxv150V7NLE2XeeMYvonjkrCvk+90Abwf5p20XBdnUUv0+X/jWnT59Vcmi3wmLNIAo2W6b5eYgrW/q29hPsHadFIeDeLcXnwg1kf+DO6w8YjUYaNWrE5cuXWbZsGQ89VI4Vn6tXw333Kc/OsDBlJnwlYjQaCQkJ4dKlS4wdM4MObQcqCYXeyzbdA4UyBWl5gl23la9gB1g8O8MumZ9pE4aJ+mmWz5GFFuLstq7md563p/j+NxjEob57SxFfvxUOhCcKducQ7zKXDYsV32nWVuI1Fh6hjErIEtL6tCr0XNDpOH/oLA3uHYz1tTjiZs3Fff1q7I4cRuflTeKXX1P3oXvL3K67mqgo2LdP0SA5fRpmzOB4Y+X9VWf+XHwXfoLqnXfgzTehIjUBr3MsQnxvtwv2FOxTUamm/RA/0XFq+R24FbaejBXsfhbvHYlIaf+nmka1iq/frTzyyCPk5OTQsGFDHBwcbhJXS0lJqaaWSSQSiUQiqSpkf6BiWLFiBUajke7du+N2thyzQwujUsGkSTBzphJbvwrjjN8uO5K3siVpg8nuUO8enln4JTa2ctbp3cy10G4s33wG/fX/s/uOw9Q7e4DjfR9UMjRuXGJ5nYMTh6e8zdFn/o+uF/bhueI37MLD0PrWJdnNh6SW7cUC48fDTz8pjpGEBPjii3KF37LKyWLIjIkQFwXJyTKWu6RWIvsDFcPp06e5fPkyDg4ODB8+/PYrys9XwgSB8reSnSIAKpWKxx57jLfeeouDRzeaHSOS6mPuXFi8GGJiaGIwr5arO+d1075VUiJG2c8yExiobA9e74MUFEBMJgBWaSmojEblPb9/vyLk7lmzB8QlkopEOkYK8emnn96VIcIkEolEIpGUHdkfqBjat2/P2LFj6devH7EzrpZeoKw89pgiqL1vnxJTuoYT4tiYLUkbaOTdggHN7qO+VxPpFKkl3HCKWOVkcd97j2OTn0Ob7asID+0DwRlKrO/kZGXlyHVskhPRurgCyjPIYGNL2vDRpA0fbcoTFnXzChJ+/FGJrT5lCnz1FQQHw6uv3nbbdQ5ORPQcROvl3ynOlgEDoEmbUstJJHcTsj9QMbRq1YoLFy5w8uRJHB3LsdLs22/hyhXw81MEpKuIiRMnMmvWLC5HnCQjMxkXZzloXG0YDEoIy6ioIpOzRt9HyhvvYBN2lrzuPau4cXcQDz6In08gGPTEvD4HTXo67n+vhg0b4NlnYfny6m6hRFJlSMdIIR577LFi03Jzc6uuIRKJRCKRSKoN2R+oGHr16kWvXr0AmDNjVsVVXKcOBAQoP4qzs0vPX8342wXS1b0nh5L3cyhyJ3bW9tShU3U3S1KF6G1sudq0A41O7MLjWiSd//kR/vnRHK4iXgmHZh9zla7PjyeteRt2/N98jLe64uN6yCtefBHmz1f+Xg/VRXo6nDhBi7/+xeNKGPapyehtbNFZ26CztuVSzyHEtjHH6ve8cIpGW/5SDF9faCh1RyS1D9kfqDhCQkIICQkpXyXff6/8/b//Ayen8jeqjPj7+6NSqTAajRgMUs+nWlGr4b33YOxY8PQketlfBEx/DoOdPVe/+RnD4MEA6OoFm8sYjcWGl6y19OyJz/XVVz5LFpmP29hA797V0yaJpJqo+OBxdzBTpkwp8nh2djZDhw6t4tZIJBKJRCKpDmR/4A7gRvgSXyVut3t2PC45SdXYoJJJ1aagM2g5HLmTT7fO5OPXJnHmyH9Iqb/agdHKmr+f/4jv3v+TTRNe52yXIcoqEYNBCXd16BAAjtGR2CfE479lHV0+fl1Jv1UmT1bCZVy7pgjS3uDjj+Gee+j69VyabFpN0KGd1N+7iZAd62i2eRV6G7NOR6PNfzJs+iM4pCQqArYHD5q+a6Vy7hwk1dzvokRyK8j+QA3i1Ck4dgysrWHcuCo9dWJiIgaDAZVKhbNTLRb0rkm0agV+fuS2bkv867O5svxvsnr3F/MUFEBoKLi6Qmpq0fXUVqZP5/KS39F6+5LbpDk6Vzd44w2IjITnnqvu1kkkVYpcMVKI9evX4+7uzuzZs03HsrOzGXzd6yyRSCQSieTuR/YHyk93667UUfnirnJHpVLxbd73QvocD3EFiaUY+31qs1hmaPN7hLQ3I2NxYQJODlno2sxlSN52WhkiSFS58q7dw/T9VqlbrdOR9dUhoWz4xm2CXb++KNKcHh0t2FqD1mxYiD862ziLeU+JAo/WwV6m/cfqvUJk7mX2XNrI6djDnDy4i5MHdxHgVI8RDccSHCiKMBuvpAm2ytMsWmzYckVI0wwWZ/Lrt4rpefYW3X0Pcxivgt2R4nnqiwM+OUkWK3ISCtkNxbx1W9cR7DgL0fOOjUVh1kBv82zfOu6iYOzfFoKx+RmikK2tiyi27VHIvhafKZ5nmKjlseTf84Id0MYs5Gop/hx2QRzgf2ZMK8EuLLYOohjtuJ6i2PqnYYlketbhTI+RnOkxkqRu9bC5FofewRG9swuG7AISOvXk8Htf0uH152i4cRUNG9VVtEIsZrpahtL65JsDgt31vifp+tnbbEpU0SpdmdVuF9Ic54BAkho0JSOkGbm+fqh0WvLTs1EZ9KR16IytSoW9rQb/sGNY5ecR1+Ue/nn+fbSH0+HwKVy9xRA4h63FFS3B29bR/o0XyPPyYdeyzQzs11pIvxCXYdrPzNUKaSUJkQP8c8T83WwTKoqn6vQV52D8bZcoGD6+l/j9mvakuNrr5+1mofIJfRqVWLeDS9lD6JUmtr5qX4RgJ8WbBYqt7UUdjKTsfMFuGSx+d7U6vWCPLiS4Hh6fIaSF1BHFTeu4F39NhYXYi+L7zRcE+4kBJevuVAeyP1B+Zs6cyfnz53nllVfo1q3b7VeUkAAhIdCiBXh5lZ6/FD7ovEiw/+/As8Xm9fHxYd4PO8lIS8YlSHn+6Bp6mNJtnG2LKwrc/Bz5YWu4YBt0Zif48Uvie6dLYx/BLsgUv8/qQs/hRq3E72dyuvju/OugGNY0KSVHsOsWei8H+YgrcloGuol5LQTko1PFui7Hmp8dWXk6Ic3NyUawYyz6Gh6F7qelWPbesGuCXad1S7JbK305e6CBt5OyQmTRIrj3XoiLg8xMCA9npU68l/d3C6a2kac3f9YaPDEWxo7EOj9fcThW4iqs0kS8WwXevsNx/RFzWLVhoYFCWnWKre88Y+5T3tOibgk5aw41XWy9sqgQx0hSUhILFixg//791KtXjylTpnD06FF69+5NUFBQ6RXUEDZt2kTPnj1xd3dn2rRpZGZmMmjQIKysrNiwYUPpFUgkEolEIrnjkf2B8nHlyhX+0+1HhYqHbcZiRwXraahU5GND94KzdNEeQ4PyI++K2jwwr9bpeGT2eCIL/NjrPYAMG4/iaqsSVCoVwR6NCfZoTHL2NXafXc/h+L1EZ0WyM/rfmxwjktpBge/NP5Tjeg/m2FsfEzr7ZfjyS0Vc+IbYcBm5MHwcSU3akFU3wHQsb+Qo8kaN5vCFRCFvSmaBWNhoxPXKBc6PfZKTz8xAmywOrBWH+5njtJk9HQC7pARafvgm9Ft7Uz6HHVsAyG7VAYNDObQGJJIqQPYHyofBYGDp0qVER0fz+OOPl6+yfv3g/HllkLuKUalUOLm44+QiV4uUhNXFcGx37UATE02z0+fQZGcRNm8x2FZd2DNAERB//nlFc0t/3fF74QI08Cm5XG3EwUHZJJJaTLkdIxEREXTv3p3467FxO3fuTFpaGo899hivvPIKH330UbkbWVU0bNiQjRs30qdPH9RqNb///ju2trasX7++fCJhEolEIpFI7hhkf6B8rFmzBoA6Kl/sVJUjMj4q719a68IAOKOux5/W3UhQuZnSg87uxyM+Eg8iaZp+gp8aTiPFtmb8IPZ09GVUo/H0CxrB5sg/6R0ow7FIRKKHjCHUFXjpJUVAfd062LIFrMr4002lIqVxi5uOlbXstsUrb6m9AJnBDUkO7YJVbg4exw/ht/lvJURYx45CPrefvsfp3/U49+rHxR/+uOXzSCRViewPlI9Dhw4RHR2Ns7MzAwYMKH+FKhW4uJSer4LJz88vPVMtRx0Xh2+3Dqh05tUh5+YtVkI0WawYqXT0eujeHfbuNR87dw4a9KjadkgkkjuCcmuMzJgxg7i4OPz9/U1xknv06IGLiwubN28udwOrmtatW7Nu3Tpef/11HBwc2LBhg+z0SCQSiURSy5D9gdvn77//BqCeul6l1G9nzDM5RZbbDecb22EkqN2Fgd+I1j1Y/upi4u38sdfn8GDEN9jpapZQu5ONM/eGPIq7Xe1cti4phSlTYNIkRWjW1VVwijRY9wcuEeFKuJAags7RmcOf/kDMECUMns7eQdFRsUB7XRDXJi6mKpsnkdw2sj9w+9zoDwwZMgQ7uwqYKHH6NFyfkFtVZGZm0rhxY1b9NJ/8vJzSC9RSDG5u5HfrLhxz37uj6hui1cKBA7BiBZw9q6y47NoVhg+v+rZIJJI7gnKvGNmyZQteXl6cO3cOZ2dzrOV69eoRERFR3uornXbt2qEqYgaVra0tsbGxdO9ufrgfPXq0KpsmkUgkEomkipD9gYohLS2N3bt3AxCkCSwld/k5ZxUC+qJncsY2bscfwc8w8dIneBQk0Sd+HedoWultulWiMq8Qfu08dV2CaO7brrqbI6kpqNXw3XcwZ44YOubKFTp/9DoAaQ2acOD/PiCOmhG72qjRELRqKQDhk6bQrAjB9uzefXH/ZiFGa+ub0iSSmoDsD1Qc69atA2DEiBHlr+zFF5Xwgm+/De+8U/76ysjHH3/M1atXyS3YzqjxU6rsvHcc9vYkrVmPzb69OC/4DPt/N5DesWvVt+OJJ2DpUsU5snw5zJtnTvsvourbI5FIajzldozk5uYSEhJy06yJrKysO2LJ4ejRo6u7CRKJRCKRSKoZ2R+oGDZu3Iher6d58+b8cWZFsfksxdYtsVGbhTlfPz0N0tIgOhpatGCa04ssth2BDjWphgIy9WK88W1Pmevu0rQva+uOZ8LVhbRN3Y+3yo6LKrPeyMXLx4WyblZuom3tatrPOC6KpcbmiULdjVxEseSC8+Ks1vyUNNO+fX3zQPaVxHNsil1Da/dQmhgUgVZjlqj7oLEyL/I2ZFj0rzeLIudWA0XRb8tFBfpC4u1qX4u40uli3Tb13QQ7r7DYdrYonh23L0qw8Rbr/mPtWcHWFipvtBCTxdFi0NziXLYWItYxV1JN+61aiSLwR/4TBebdGoh6M4GFBMVPhSUIaZZi65bC3EkRaYL91HizY8tS5N3JTwz/Eh4llrWksLh2xyaBcF0k1zo6AdsuvXA9egC3y+cZ8Oz9NH/2ZWImTzU5G/IKzGLadV3thXotB3zbNhTvR5t6xevxLNstftbGdKkHFy9CVha0bcvm4zEc/W4lgct+IObRp9j112lzZqORLk45WEUonxOtSkNalvn/XljEHG4WMu/b1iygunL3FSGtNJHvW8FSJLmw6DvA0NAAwS5NcL0wt9LO1fvFz22axXfEUqi8sCBx96Y3O6QK49WgZKHowliKrVvSv41/sWmWAvF2NhrBLk1svfC9t7zvlYnsD1QMUVFRnDhxArVaXTFi9d26KY6RH3+EWbMU53E5sBRbn//+djFDro70zGQ+WPghAIObPUDev4Xen13Mn8n8+CyhqL1/yd+blAPic6Xngy1N+5fixD7Nf9vF5+7AoeIEj0aF3i1/Wgz8q9Xi897b4t3pbiGonlzoOWMptr7hqNhmV0dRQL19Iy9lZ3B/GNyfiL1HUAfXp66NDSG+zrB6tbKC45lnwNtbKLtTJ/anHO2Kd5yX9nw7+8DjNPv9d1QrVnDpy+9xnjjelObnWYSWRlqaEnrL05OL18R738jX+eb8dzh2GvP35kJchpAW5CNqwcSmiCukGnhXsVZMGbEUXK8p3CmC65IKcIw0bNiQM2fOsHSpMjsoPz+fBQsWcOXKFVq3bl3uBlY2b7/9dnU3QSKRSCQSSTUj+wMVw43ZocMrMmRBfj707KmE0GjShH5ad/6zakFuGfVLoh0acNKlA60zDjPOeJr/qXpVXNsqgDx9LgB2msrRY5HcXWhbtOLc179jlZZCk/dex3fT3wR+OQ/3HZsJn/cVefUrzklQKtnZ0KkTpKbCv/+CTwt0zi5ceWrq9QzmQRXr3Gza3GuePWy00iCR1ERkf6BiuNEf6Nq1K15eXuWvcPRoJaxgZCRs366IsVcym3b+jFabT72A5rSq16XSz3c3oW3cBACryCsw4VW4EWb/o49gwQJ47LFKOW9uyzbEPTsNvy/nU2/Wq6QO6YfRpxhnyqFDSv/S2RmuXCk6j0Qiuespt8bIU089hdFoZOLEiahUKo4fP860adNQqVQ88cQTFdFGiUQikUgkEkkNx2g0msJoVahj5I8/FKcIwPnzjNDuZ1zBNiGLtVGHvbGgWM2F7T7DOebahS9UnSquXeUkW5fFv3F/sy9pFwB2miJmMkokxaBz8+DMvMWc/uArdK5uOJ0+TrOnxykzX6uKbdsUpwjAc8+VmNXaIja/0dqmmJwSieRuwNvbm27dujFy5MiKqdDeHsaNU/Z/+aVi6iyB85cOc/D4vwAM7/9UkeHVJKVTd/LjilPExgZatFBWGNarHA26G8Q/P52cZi2xSk3BZdqLxetxjR2rTL5JSoLjxyu1TRKJpOZSbsfIlClTeOaZZwDlB/ENAfannnqKKVNqfgxGDw8PkpKSypw/KCiIyMjI0jNKJBKJRCK5Y5D9gfKjUqm4cOEC27dvp2vXCowr3aiRMiv9OjrUnNUEm9ONRl7Q7WSh9g++0f7Kj2zhC3Yxi4MMjl9J1+St2Ouz2VD3AdLLuMqkstEb9Xx3aQG7EraQq8/B3caTNh6h1d0syR1IwpBRnPhrOxntOhIxcw5oqnAlRvv2yizu0FB45JESs+a6epLafzDJQ0dR4OVN9IMTqqaNEsktIvsDFcP999/P3r17efXVVyuu0gceUP5u2lT8YHcFEH/tCr+sehej0UCntoOoH9ii0s51t5PbuZuyU1CgCKFv3Qp9+lTqOY02NkTM+xKDtTW26/7G7vffis744IOgUilaXk2aVGqbJBJJzaXcobR2797N008/zYwZMzh8+DAAoaGh+Pn5kZOTg4NDzZ79lpaWxoYNG3B1dS09M5CcnIy+KmdiSSQSiUQiqXRkf6BisLW1pXfv3hVbabduiojmQw9BXh4fbHImSe1mTlep+MaqB7O16/AgBw/y8SCfYDIhLRGAdCt3kmzrFF1/NXAs5RAJefE4aBwZHfgQzT3aolaVe76SpJZSUMePM7+uFWLue23bgFVGOjR9ASpL6NzfH9asMdvHY4rNatRoCF/0M6q8XIzWNmTmGyqnTRJJOZH9gYqlQldadOsGdnYQFwfnzkHz5qWXuQ2ystMBFfWDWjJmyIuVco7aQtLb7+JuLIBvv4Vly2DjRiVBpwODQVlJUgnkNmtJ3JQZ+M9/D8d33iTvvvtvzvT++zB7trkNFhojEomkdlBux0jv3r3p2rUre/fuJTg42HS8a9euHDp0CJ1OV95TVDoTJ06s7iZIJBKJRCKpZmR/4PbRarUYDAZsbYsW9Z3jMUs8YBBnekbnxQq2g0YUjAbg55/B1hZ1i0/xARx0meRYOaOOUOJCf2A1EUdjHip9Ci7k4mHMxkGXhBc57I6P4+q1PXToJ4b0SN8vCoKrEQdwUrXp5jZqxUHf5h1FrRKVg/jj/tp/xwS77lDzKpqQK86EFnSljmMArfw6Yz2mmXitqbmCaYw2/1h3ntxeSMvdfVWwDQUWA3RJYggjdWFBdQuRc1UdUVgzL1ks2+kxs7j4ieOiWKq1RV3Z17IF27mOKGKaWUhgVuNuIQhrkTf2mHguTzcxf3y2Waz+2CELgdhgd8F2shN//qQUEpvVWoi8z/9qn2AHtinZuba5kDitk2PJgz1BhUTfAbo28RHsvw+Z/69BHuJEs9gkUeg33uLzUk+XQbO3p2OVnkbmV59wauzTXBw4BoONDZ4u4ne0JLF1gBV7zXHXnezF//HvFmLs43o2EOw1eeLvQLVKBfYOqIB+TW5Nc6CwYKyXq3gNX604IdjdO4lCrJbXuPag+d4mW4iaP94vRLAtRb8jk8XPdWaO+TNz6EJiiXWVxJYT4vPFykI0uTSh8uzc4n9zbzwmfiesNaITtl9rPyqDehZCvpEJWcXkrHnI/kD5WL58Of369cPT07NiK7azUzQhNm+GrVvJayIKkdtpSp5gUFhgffpMcdWCaPfBOccGJ3tXrDL1QC6Ow8TvYE5hAXWL90quTnT8/nNE/A6SKD5HDuyPMu2rrcRrcLYQct93QuwvJaWbn/+juwULaUs3XRDshMg0wQ4N9RfswELvpcx88ZlS3+K97OMm9tMs731Sep5pP+Trr+Hee8HPT3GG5OVBq1ZK4tat3NNCbHdGoXMnWDyjUzLzBLupn+jAbFGv0Dv/vVnkpCaQ8/yLGG1s6dakCGdnIcfM3Si2XhKN67qUmK7TlTyBofD/6dzVVCGtc4i3YF9KEJ1ODX2q5l7vO58g2JZ9LUnNxPL542xbbtdFiVRI7cYiljFmZ2cXebymYTDI2UoSiUQikdR2ZH+gfPz++++89tprzJo1i2effbZyTlLI6eKdF8sjEQs54NmbtcaGoFKhU1mRrnIiy2geUEw11MwfQO52Xtwf8lh1N0Nyl6JzcyN28hTqLvkK5/houn02iza/fsXJcc+Q8sA4DLY1I6ScRFITkf2B8hEeHs7YsWNxcHAgIiKiYoTXC/PSS/DiizBkSIVWazQaSU9Px83NDQBfj8CSC0jKjkol/r/+/BMuX3es9+kDu3ZBYCXcbysrMj/9QjwWFVU555JIJHcst71mv2/fvvTt2xeAs2fPmuy+ffvSuXNnTp8+XeblpxKJRCKRSCSSO5eFCxcSHx9Penp66ZnLicqo577oH7E35NIo6xwa5CCWRFIYo60d8U+9wInthznw/Jtke/nimBhP1y/eYcDwLvju3FTdTZRIJHcpixYtwmg00rt374p3ioAywD5iBFhV7AzikydP0rhxY5YtW1ah9UqK4M8/zfsREVCROjQl8e+/im7dL79UzfkkEskdwW2/TXbs2IFKpUKlUpGRkcGOHTtuytO/f//ytE0ikUgkEolEUsOJjY3l4MGDqFQqHn/88Uo/X8v0o3gUJJGjcWR50CT0UQmlF6ohZOals+P8WvxUfrT17lR6AYmkHBjsHTh37wTODxtL4w3LafnHdzglxJIdGFzdTZNIJHchRqORP68Pej/55JOVc5KCgkrRpVCpVCQmJvLEE0/w0EMPVXj9kkIMHgxbtkBqKri5wZgxVXPe9euVz8/EiRASAl26VM15JRJJjea2HSM34m7+9NNPeHt7M3ToUFOag4MDTZs25Yknnih/CyUSiUQikUgkNZb169cD0KlTJ3x9fSv3ZDod3ZK2ALDfszd5GsdSCtQsolIusjt8A74O0jEiqToMNjaEjXqE88PH0ujKabIaFIqVf+AAdOwoCLdLJBLJ7XDu3DmuXLmCra1t5UySNRqhcWOoWxd+/RXqBVdY1U2bNsXKyorc3FyioqJKLyC5fZ54AsaONb9/nJwUMXa1unLfRZ99BteuwfLlivD6X39V3rkkEskdw207Rn744QcAtm/fTmhoqMmWSCQSiUQikdQe/v77bwCGDx9ebJ5ZKXNKrGNuWzEG9KVzR037H/b93rTfPH4fIwoSybFy5FhgP9QaO1ytRfHINF2aad9KJYpFx+09LNiRueLgR0OHYMF2tzaHha3rW09I0/iLIWN14aLwsmegmF/lYkvMJUWA1d8lGJWNuRtuPCOWxUJAXeVhFjnNPSiKNBtTRSFSVZpoY6MRbX0hDUALwXRrB9G28RUdT4f3Rpr21dZivbYWot5OdUVhzdTLKYLdtkuQaT/CQpQ5J0cUQfduJTrcEi0E5QPruZnPk1kgpBksNA9jw5MFO7i5WYemQRNRLDQpQ7yXORZi4tqL4jVdLvR/82goCn5P6NNIsOe/vF6wbV8UZ65ePn3NtP83IpYyjlkWwttpFvfAVE5jRbNHR5lsq+3bMIwaTlLvQZx993MMDg5EXBP/F438zN+vXi1E8fldZ+IFe/Nx8bOZYyGemZ1n/r/m6cUQeEcvJol5c8XPQGKh/8X4Xg0hMxOOH4fOnfk+Ufw8lCYo7+Fs/qw2CRS/xz9tuyjYLhbfiXu7iN/rRTtOmfafva9Viectif5t/EvPVIg1+yMFu3WD4q/ZzVGcXd+lsai9tP9CQonpJbHaoh1jCt0frYVwb0KsKL775W/HBPuF8e0E21L4XlLzudEf6NOnD05OThV/grAwiIyE+HioW7dUsXVLtH+GmQ0L8XUbGxvatGnDkSNH2L59O56juwnpyefFZ1Tzsebv+9kNosi5czPxXXJu5xXBbv9EqGBHFnoH5qbmCmmW71p3V1EjKrvQc3bP6TghbVz/EME+ckHsaySki+84t0J9gpQsUfQ81UIE3dVRfOfvDbsm2N2bFj9RZtOx6+8Kt8YQnk4PhzjsQ9th9PBA9+RTuEx+Gq5PtLkclyGUTc8W2xFsIZhueQ8KP1vz9AZUb7+DzYoVqNauhXPnoFkzU/qpKFFAvFWgu2BfSTT/nyzVlBt4V8LnvZopTZw9rdBnpHmQewk5bxZbL3wvAeqXcP+uWfTFfF3KrpPWqn7J/YHykGbRTzkdIfYJezQr+2SxmDTxe+/vZl9MzruTQxZ9wI6NKiEMYwmU2x0bERHBqlWrKqItEolEIpFIJJI7iNzcXLZsUVZwjBgxolLPpTIa6Ba5DoCDdfqj1dx5AtIxSZcA8HeuV0pOiaTyUScmglqDz9Z/aD/pPqxTkksvVAjPbRtpNekBWk16ANu46EpqZRHs2AEtWkCvXhAYSMdvP8Qh6VqpxSQSSeVywzFSaf2BzZuVvz17gn3FDxzeiIKyYcOGCq+71pGSomiJFBTtqC+MZu1fqLKzUUdFYfP2LEUcffx4uHSpwptlbNIEw6jrEwQ+/rjC65dIJHceFbJOraCggO3bt/Prr7/y888/C9udRN++fZk9e/ZNx1NTU01C8xKJRCKRSO5uZH+g7OzYsYPc3FwCAwNp3bp1pZ4rIO0CnjnxRDk15KjvPZV6rsoiPk1ZoaI36EvJKZFUPgUPPsTR75ZT4O6By9mTdB3WlY7flNHJsG8fLaY8jvuBPbgf2EPD99+q/AYDam0BPPww3HOPEnIlIYFWK7+nz7tTq+T8ktqF7A+UnfT0dPbv3w+UvIK0XNzQtR0woFKqv+EYWbNmDfu2rq2Uc9Qavv5aCXf222+lZtUcVVYJ64YMQd+5M2i18PvvMHIkGAyllL51dK9cF3v/5ReIiSk5s0Qiueu57VBaNwgPD6d///5ER988S0ilUjFhwoTynqLK2LFjB6dOneLYsWP8+uuvODoq4QMKCgrYuXNnNbdOIpFIJBJJVSD7A2UnICCAqVOn4unpiUqlqtRzJTgFsr7pE5x2bo9RdWfqIbSp343tJ9ew8fJKPO29aeHdvrqbJKnlZLTtyLFvl9Ni5os4hZ+j1crvaf7nL/w3dTbhg+4DwC4qEreDe+EfPSQnKzO1n32WrJBmOIWfAyCzVbuSTlNhGKxt4MgRJZRORgasVQYvI3oOqpLzS2oXsj9QdlxdXYmJieHgwYMEBQWVXuB2uHA9ZFXbtpVSfadOnRgzZgyrV69m2aL3adO5Dw5OzqUXlNzMc8/Bd99Bv36lZtWNGIm+Vy/0/QdgDA7G8eRxeO89RQekEjRHjF26YOjRE/XBA/Dff/DAAxV+DolEcudQbsfI//3f/91V4lRbtmxh8uTJdOnShb///pvg4ODqbpJEIpFIJJIqRvYHykarVq347LPPquRc+daOnK7bHeP1+NItkg5QL+M84QV1uGwVTI665guxDw4dT2ZuGofDt7Mi7HsauDXF3tqhupslqeVkhzTj4IrNeO7Zhs/XC6h76hA6O3OYGueTR2j89nSxkNHI8d/W4f7fTjJbt0frVnlxvG+iTh1lsOzECbCyYveU2YQPul/MYzCASqVsEkk5kP2BsuPr61t5YbSMRrhyXaujfv1KOYVarWb58uW8/fbbGLxaSKdIeXB1henTS88H6C0dE6GhsHq1sm+h21BRaBcuxNbLE/z8KqV+iURy56AyGi3l+24NHx8f0tLS2LBhAwMGDKBdu3bMmDGDF198kWXLlt1RS0zVajXx8fG4urry+OOPs3nzZlasWEGzZs3w8/NDr6+6sAcZGRm4urqSnp6Oi0vJokcSiUQikdztVOV7UfYHqp5Jto8Jdj37wGLzWgUpgnz3R3xL48wzpuO7qMsiWtGq1VDTsYOntgpluw0Tf3yH3YhXfp1cvSjq2SKgrWlf7SY6XtS2oiizLlb88W7TRpwxqz2vCFXrjXrWajbRsWlfGvkr4q2GJFF00WghPq5pZRZyNSaLeVVW4mxKg4X4urqphYChi1mI2at1XSEpPSpNrMtCILtec7OQ5NVzomCztZMo8OzmKwppZlq0u/BPEHcfMW+qhRi7q7d47/MtxOnVavPgd4GFQHrfDqKAs4OtOC/sYky6ad9SXD3bQjw8TyueN8+iHY/3Mwvd7jsv3p92FkKSCRZCmztPiYKxbRt6mvbjLMTmc7V6vA7twf3MCVQ6Hd72atBqSXv4MbTB9dl70lxXh2aikHZ0UrZgXwkTxXjbd/DH/uJ5tF4+6Nzc0euNOJ88StCiT8hzcUOl1+G38S909g788/s28rzM9Yf4i8+oI+fEum3tzff+0d6iGL2lGPs/h8SJd4VFvW8IjztfCccuMZ72z44T8sZejiVoYE+MdvYkvD+fwDFDhfSft5sF1if0EdthiWW7UiwEiP0KCaSWJER+q/xn8fnp1qRkQfTC7bQUH1ZbOIf6ti77QKBJJPk6MSniZ7FpgChe37VQO1f+FyGk3d8tWLBzdeL3x95KFJkuDtkfuLv7A8WSmAg+PoqzMzcXbG2Z2/pzIYvrzF6C/fy421/JNv+tTab92GuX8Mp3x9rK/J5T+RV6b7lb6J3YiO9l49F4wVa1EMXZrTzM5d3qiSLWORZi7HUDxP99cqF0DwvBZhcHsZ/i5ym+Sy39xvUKvYtjksXveiPfW3MSFX4m2alV8MkncOiQousRIL6Xt1u8/7oW6mvYadSwdStER8PEiUWfLCICnJ3B05MdFs+/up7myScOFv22AotnkKVAeGWRYPEe8XG2LSbnrRNvIVRepwShcsv3W5hFH7BtcNknPJQmXF8aJ6+ay7cuRcjdksuFhNwblCDiLrmZKIt3eqBH2SdrrT8i9tOGhRb/262yqKj3YrnXpaWlpdGsWTP69euHSqXC2tqahx56iDp16jB37tzyVl+l3AgBYWtry2+//cbUqVMZPHgwX3311S3V8/7779OxY0ecnZ3x8fFh9OjRnD9/vjKaLJFIJBKJpIKR/YGysXbtWtauXUs559jcNge9+rDPqy+XUTrCvYjjE/bgm1uFItC3gUalYVy/qSaniEQCoC7IJ+TvZThHR5ScLy+Xtu++SvcXHqb5oo9o9u0neH3xMR4/fYfe07PEsmUlt1ETdG7mgYnM1u05s2gpp/73GSffW0Bay3ZY5ebQ4ofPS6il8smsH0Jip543HTe4uJI56j5sL4QReN8wePppyMoqogaJpGQqqj8Ad3ef4Ny5c/Tv358PP/yw8voEeXkwZgwMHAi2FTeQXBpXos6w8Kfp/LztI3R6bekFajgOe3Zie/ZU1Z50zhx45RX44w/o3FlZ7WfZrivh+P/+PY7hYWLCwYPK//ypp+C6ho3AvHnQsCGEhMDu3bfVPJszp1Dl5NyccOmS8plbt+626pVIJHcG5XaMODs7Y7guiOTk5ERYWBgHDhzg6tWr7Nu3r9wNrEosX+Jvvvkmv/76K/Pnz7+lenbu3Mnzzz/P/v372bx5M1qtloEDB5L9/+ydd3RURRuHn7u72fTeCST00Jv0XgQFkaLYEEHwEzt27NixV2woNlAEFFEERARBQHrvPSEkhDTS29bvjwu7OxeSAOkwzzk5ubNT7nvLzsxOeX/5+WVnlkgkEolEUq3I/kDZWK1WHn74YYYPH86PP/5YLTYk+DRmZeQwHqEXj9GDdDyIpIDrE6vHnkslKy8Ns9VU3WZIqpkGK/4g+OAeWv9Q+oBr1G9ziPljHgApXfsQN/J2To+fSMqLU7H5nlktZ7fT7bNXafrXL+gKKri+URQOPvwsAN4nT6jubWogmfc/TM6oW9XAV1/BR9U7iSOpnVRUfwAu7z7Bq6++yooVK1i/fn3l6Y3Vqwfz58PSpZVTfglYrRZsNhsHErez+fA/VXruisZwKhnfv//E77f5lSJqfj6U+Hh46SXnBydPqvojGup//h5N33ieRh++Dq47sTp1UicnzGb1/1l3agBbtsDkyeq1ZGbCHXdctH2hj0+iXv8ehN87QZ18c+XJJ2HBArj+ekhOPn8BEomk1lNujZF69epx7NgxrFYrrVu3Zv369XTv3h2ABpXk+7GyiIuLIzRU3NZ444030qxZM7Zs2XLB5SzVNNbfffcdYWFhbN26ld69e5eQSyKRSCQSSU1A9gfKZsWKFcTHxxMQEMCNN95Y3eZwhAD+IprbOUS8d9PqNueC+XPjD6zcsYDh7cbRrdHA6jZHUo2cat+N432uJXzn5lLTne7cA5OvH4bCQg7d+SCn23emaZTozqjZn/NouWg2ANZv3iZz+ChO33gbhc1bVoitmVd15cBjL7DvmlEOXyxtPn2DEGsBOrOZwuYtSb/l4geoKgyrFZ+li7GdEcrGzQ369as+eyS1lorqD8Dl2yfIyMhg/vz5ALzwwgvVbE3F07h+W/x8g8jITMbPqwq1lCoBS2gYqc++rO6OqARR8/Nhj4qCNm1g1y7nhyNHnpMuccxEQlcsJXjNCiyPP4blgw+dOlEzZsD+/bB3r7p7ZO1aCA9Xd4oEB0NGhlrIVVddtH15w0bi8/NPeP+1BIYOhd9+A58z7phuu02dmNmxA0JCSitGIpHUYso9MTJu3DhWr17N4cOHee655xg5ciQmkwm9Xs9LrjPDtYCYmPP7gW3ZsiUtW176D4nsbNV3cVBQyQ1pcXExxcVOX4M5OTmXfD6JRCKRSCSXjuwPlM3XX38NwO23346np2cZqauGuTThMP54RFSS8Gsl4OMZgM1mZfXBxXRpOACdUjUDFZKaR35EFABJ3UofwM9v2JS1X87H5/hRTrfvfN40h/sPw5iXQ7OlP+N36gQhP3xLyA/fAtA0LIIdL31ARqce5bI3fsxELC5aODF/LcDzdLoaWAARH7+DbuAo9gy/g/ywqhW3jRp7M94rlzs/+P57OLNwTyK5GCqrPwBl9wlqS3/gxx9/xGQy0a5dO666hIHpC2L/fkhKggEDzhXGqGTSTyeRkZmMXmegUWSrKj13haPXY9frsVehKzLc3FRXVBMmqLv38vPhPN+dnDYd2P/6R7ScfB+GTz7BHh2D9bHH1Eh/f/jrL+jZE44cgcGDYeVKCAxUXWlNmKCme+MNjImniJn+IekDriWze98yzSvs04/k2fOJHHsruhUrYOBAWLwYgoJAKwovkUguS8otvq4lLi6O7du307JlS2w2G82bN6/I4msdNpuNYcOGkZWVxdq1a0tM99JLL/Hyyy+f8/kVK64mkUgkEokLtV109HLqD2RkZFCnTh1MJhPbtm2jfftLFzctiUe8HywxLtciagV8XfStMFDytO8TjuOD+YdLPc9VdbsIYVu+KIi5O8vph1uviMLAsd5NhLCbnyhq6tY4Qgibj6Y445qqoucmazFv/vckBeY8xvR6hLYx6uCtVnxd18ZFeDlV4wdbI3pui88Swt43iH3xwq0nnYFAjSint1iWt0bkNX+38xqMjcXBvA5XRQnhw0niIF5xjnhvPQOc57bZxJ8jsRpBZz+NXSc1AuID2znPvUAjgB0ZJE7cbd0qikkHu5yrYaQovJqoET2/qom4YjQ5Q7Rjl4uQ+bC+jYS4rDzx+nM1zzhCI3i55ZCzrObRAULcCY04/cAQuzqI46URzbTZ1MGjr76CJUsgNxeA06vWYumgDmDGHT2FzcPT8R3qphH5Ppqa6zjWCtMu2erU82nww5f46qxgtxO0aAFeZ/zE2/V6Tk15ndMT7sHf5Tlmavyypj4AAK7MSURBVO7HKY3Qr+szBVGcN+5UrhDXr5048ZL0zqf0fOdpADbd+wydPxd1L5dsTcQ9NZk2rzxB6BcfQ9u2jrj56+OFtN1dRIABNh8UBeWb1QtwHDeNvPQ6+r8DKUL4pOZ+5OaL78uEQeLOuHn/Od3L3NyjdnltOMvpAtGlYJCX833Z4yIKnJebQ7eWMTWqXbxYLqRPUBv6A3a7nXbt2rFr1y6mTZvGgw+W3HaXi3HjYOZM1bXR229fcjFasWlXPPTiwoS3h8wEYN3x5fy+bxaNYzvwwOTPHfHWLJc6TPN9xUOz/tgo9h90mnbJlu989wNbinVO3kmxLXUPENtto49zksNoEK+hXSNRd2pPvCiQ7espipEH+Tq/c1Ehooj17rjTQritpmxtexjgYpdWuH39wVR0eXmgU7B5eQv1qPtHH+D1rFp/m375hbzBzsUuuiOH8R/YHyU1FVvvPpiWLOFgWqHqektR0Gdl0vjmoXgcPYzNzY1Df66m2YCulMS6g6mOY59d22h+92jcsjPJ7tSdfTN/xdtL7HvUcWmnQ3zcIT0dTp2CVjV3wmzncc1ziyl5cVZZQtzxmr5X/RCx31sbyCoU29IAzXfAFW19cSqzUAiX5/q1ZWvrH8mFUWPE1zMzM7G6+ABs0KABMTExPPvss7Rp06a8xdd6HnjgAfbs2cOcOXNKTffMM8+QnZ3t+Dtx4kQVWSiRSCQSiaSyuZz6Az/88AMmk4n27dtXyqTIxdDOlgD9+8Px42UnroEY9e50q9sfgJV7f682IXtJ7cXr+DF1N8SNN4JJo1Wj06krrOfMgexsSEvj9D+rsTRvocbb7TR95G5i77sDY0r5/KfHjZlI8n2Pknz/Y+xdvJpDM34iv0t3sNtRTMVlF1CBHBk0kllLdjNvzmr2jRqvfrhqFSxb5kgT+8lbhG5YrbpeefxxOJ/wrkRSSVxIn6A29Ae2bt3Krl27cHd35/bbb6+ck6SlqXUYwKhRlXOOUjiUpi6QaNaqW5Wf+3JFn5NN+8HdaTe4B8Yk8b0unvQIlgceAMDtvvtQzrrJAmyNm2BavAS7nx+2pk3U3SiKAgYDurw8Gt0xCo+j6oKY07eMobiRuIClNPLadGDvrAXYjO74b16H77ZNpWdYvVoVfG/dGj4rXRtMIpHUbC55YiQ+Pp42bdoQEhJCWFgYCxcuJD09nZEjR9K5c2d+++03hyj7lcqDDz7IokWLWLlyJXXr1i01rbu7O35+fsKfRCKRSCSS2s/l1h+YNWsWAHfddVc1WwLXWveqA56ff15m2ppKx8ieACSdjiMlO7GM1BKJiFtWpupffelSdWdISSgKhIRg6dgJzri/0x88gP+61QSt+pvWowYRtGxxxYipKwrZfa4m/udFHFm1mYx7J5W/zIs8v9XoTkHImV1bJhNcdx1ccw1sUge7Dj74FMkDrlNXGr//Plx7Lfz1F7riolIKlkjKz4X2CWpTf+CGG24gMDCwck6yaJFz0vevv9QV+lVIQvZRdIqOBk3alp1YckEErlyGMS0F95Rkor78WIxUFCzvvIt14EAwGDDO/kGItrdvj2nTZiyffwF6506ckB++wXOfOol1aOFykl5796LdrhU2bU7a8JuwuRlRzKbSE//vf5CVpR4/8ojqIkwikdRKLnliZPLkyezZswe73U5mZiZ33XUXN954I7//rq52c3NzqxE/mKsDu93Ogw8+yIIFC/jnn39qnQi9RCKRSCSS8nM59gcKCwvJPeOOZ1Q1rNzUksMZlxKGcsvmVRvrE/8BIMgnjGDf8DJSSyQi2W2vgilT1MAff1xUXmuz5uxasJyCRk0xpqUSO2kCjBgBFbUyXVEwNWhYMWWVB6NR3VkGcM01eKQkUxwWyfa3vlB9yfv5wZo1cO21DLumLc2//qh67ZVcllyOfYKrr76a0aNHM27cuMo7Sf/+cHYCacoUiI6GMWMgNbX0fBXE0Ga38Uzf92koJ0YqjKJ69R3HOZ3OsxPHaMT8xyKKTyRSPPHec6LtjRs7Jz3MZsLff5P8zt2wnhFNbzrsaoLmnplQsdlg61YovrCdi4kPPM6Bz2aS07VX6QnvuMN5PGQIeNc+t1ISiUTlkidG1qxZg6Io3HHHHdxxxx1kZGSwdu1a3N3deeyxx4iLi+PLL7+sSFtrDQ888AA//PADs2fPxtfXl1OnTnHq1CkKCwvLziyRSCQSieSy4HLsD3h6enLw4EFOnDhBeHj1D+Jv00WrBwsWVK8hl4jNbiMh5xgAIzpNwE1vLCOHRALYbMS+9QItXnocQ242DB+ufr5iBaSklJ5XQ2HjWHbPX0bivY9gMxhg4UJo0ULdhVXO3SPuhw4Q/PlH6DNPl524svnhB1XwNyuLqx4dj77gzOreIUNg7Vq46y6oWxe9yURRkIuWjHRvJ6kgLsc+wfXXX8+PP/7INddcU3kniYmBo0dh9mzVbaDZDHv2QFHV7O7qENUDP49K2g1zhZLXviPr9ySxZfUuMq4bCYB++3aUJJdds2cXvJQhFF93ymQiPn6HiHencvSHX7H4qbph9Z56GGPcUXU3R8eO6uTa5MmqeHspmCLqkN2rnyPsfvQwxuNx5yZ84QX1PXR19SaRSGollyy+7ubmRqNGjThwQBXWi42N5ciRI/z5558MGjSoQo2sbSglbNn79ttvufPOOy+ojNouMiuRSCQSSUVSG9vFK60/MNHDuVP4y6KvhbhXgqYI4SmnX7ngcrVC7EFuzgEKD3shj+W8jwE7z7qNIEXx59OCbxzxdxjFXS2NvMTV6zkWUdS0TlC0eHI3p5uGotNZpdrp7iMKlbrFhAphxdcpmKqPdKa12W0c2LKWpoEtnXkHaFbZZzgHzuxmqxBlzxQHh3RhmlWLfprJlmznqsmwm1sKUakrjglhy8aTQthrrFM/0K4RjoxqKgqTp2rE1zt3EMW0dxxOdxx7e4nil1qR81MaQdB4jfi4m4toZV6e6P7CohHa9A8V78+1Vzld2QR6XdzE1IGT2UK4WR2nkPtvG0XdmyyNXXcOEH2flybEuXqv6Dqm99ZlqhgxQGys6mrmjjtgwwZ4+22+7TDCkXa85jw//ycO8LiK8xoP7ifm2cdg3Tpo1Ah27jx3FazNBgkJoNcTn2vB7uuL3UN9t7Pzne+WPiuT6OsHEZAYR1yPgfzzwjTaZsYRuWAO+rwcCtJzMJiKMHt4ktC+J/3eeaLUFbdf/3XQcdykrr8QZ9HcuyyNsP2QTvUAUOLjMXbvhpKaysleV7Phjekkn3B5T+12uvvnYw4KwRKoCtR2WrUA3eLFWN57H3vDhuyKyxDKPuIijDy6d6MS7b8S2XpMvFdXNRTFmr9eekAI33Vtswsqtza1i66Ut09QW6+7wtm8WZ28vYAV+m8PnSWEJy+6o4SU53I+oXaLxYLhzIC9ax39/vQNQjqfOuLzKdKINvtr6rDMeOfksdFbnAjo0D5SCO85Kk40m12E25vFiv2O1Gyxf+CnaWu93EVReB9PZxto1bjF9/cW20eDRizax0Msu9jizB+oyXtc04bHzv8et0cfwa7TYRs0CP2ECeqEv7HsNjluySpibhqKriCfxC++x6N1c+zePujjjmELCCCkf69zJ7g/+wzuu++cspKyxOcUlXESevdWJ2lWr6aobj1HXGWKZedr+nnebvoSUlYtqbnirpsw39InrVyJSxOfeYNQnxJSXjzZRc42/2iy2Pfs0CBYm/ySyS22CGFf90vfrZ6SI343w/08SkgJxzNEN20xwbVjd9JJzfepToBnhZ+j2sXXrVYrQUFBjvDZ4yt9UgTUbbLn+7vQQRCJRCKRSCS1n8utP2C1WjFpxZ2rmSLFk4OKqiPQ0Vb7BNgT0g+TmH6USO96UnhdckHo83LhqafUgIcHHDyo7vI468L4668veZeDKba56lLqgw/gp5/EgceCAli+HDp1ggYNIDqa+i0b4v/5tHPKUYqLaHj3HQQkxpEXEsHGe5+lw/cf0WHMUKLmfU/EkgU03LSC6B3/0WjDcnrNmKpOuFQy9vr1Mf26AKvRSJ01y2n+7bm+7QsbNXVMiigmE4aXX0b/xx8Yr+qAbsGvlW6j5PLlcusT/PLLL+zevbvq265OncS66dixktNWENu3bWPotdcwbkwlCcxfwfgtWYjh8ccAUGw29EuXws03qztFnn22zPxFbduTMVEVaw99+1UszZpjbdAAU99++D3+sNoe3nYb/PYbDB6suuBq41zkwdq18NZbqt6UFm9v8PVVFwP07w+JUgdOIrkcKdc05/bt22nYsCENGzZkx44dAI5ww4YNadRIrpqRSCQSiUQiuRyYN28eISEhTJgwobpNETjrTmuIdTfe9tolnLxk249M+/NZpm6ZzIsbJ/HToRlygkRSKiHLl6jiw25u6s6O11+HRx+FW25RB3GSk/FOK4c4sU6nuh7p1Mn52YcfqmUPHAjbtqmrZ8+4N7G7rOh1Sz5J5Duv03j0SHy2bKDY25dlr31JwPEjhBzew+me/UkdOJTDT77Ev3c/zz8PvsrGWx/kaLdB8OabVSKqbO/ale2TXwfA4ln6qku70Yhp2d/YevREyc3FeNNNRH38dpVM4kgkNZm4uDhuueUW2rRpw549e6rHCLsdpk6Fpk3h338r9VQGg4EVy5fz6y+/MG+udJtUkYS9OxXLm29hufdeig8cxPLU0xChLngh8MJcmJ2+50EsQcG4HzuC79NPgN2OUlCA3cdX1ZB6/311B8qSJepEWteuzsw//ghPPw2vvXZuwRERqovKRo3g2DHc7rxTuleUSC5DyqVUaTKZiI+PFz5zDZe0XVQikUgkEolEUrv4+OOPyc3NJSYmprpNEfhP15gutjj26uqQr5S8Fb0m4uPhj79XMDkFpzHbzOxK38JVod1oiVxcJDk/WV16Qmio6te8Qwd1lauiqKta33sP2rQhvyCk7IIulCVL4PHH1eOoKHVy5PXXoU4djqXmOicJrFYa3DsW7107ALD4+fP3lE/JrN+UzOjGJHXsRcviVAobNAbgwKF0fFOTaLvwexpt+BtWL1Kv5c03K872EkgYMgrvkyc4NvJ2SFV3wbVYMZ+AUwl4pfQmt20HTBF1QFGwN2+OaflyDE8/jeGjD4ma9i6ehw5w7M2PsflUnCsQiaQ28emnn2Kz2Rg4cCCtW7euPkMOH1brjdtvV13/BVec2xxXWrdpw/8mTmTGl18yYexYjEYjt44aVXZGSZkcnzmPmJYN1B2Qej2W11/H8Nqr6gTGBS60tvn6cWrqe0TdNx7vr6ZjDwom79kXyFzwBxFH9jknWgDq1xczt2ql/n/lFYxde2Pq0lWMj4qCZcugRQv0q1ZiXfQHtuuHXfL1SiSSmsclT4z07t1bTnxIJBKJRCKRXAFs3ryZDRs24Obmxj333FPd5giYFQPvGgZhdd0InZJyQb6pq5sxvR8FoOjQKRbH/8KGU/+y+uQyWnJ9NVsmqakUR0aprrOmTlV3b/z3H/Tsqe7q6NgRunWDFYcBMBTml17YhXD11bB4saplUr++OglzFkUB/Rnf53o9qRMfInryJMzhERz76gdSLGdW++rU7+bZSRGvY4fpP+1dmqxZgs52xn1J586qL3dXbDZH3gpFUdh/92NnAurESNO1S4g6sA0WzQTA7B+AKTwSt4Yx2OvWxXbzLZhbt0J/330E/bUI713b2fnP5oq3TSKp4eTn5/P116qO2KRJk6rPEEWBadPUnXOHDsHEifDLL2IdVYF89MmnFBcXM+v77xk7ejQ+Hh4MHTq0Us51JWGuG+1wjabEx6PExcHVA9SdQGdJT4e//4awMBgw4Lzl5A4dwanTGUQ++zie339D/r33Yw8KVhcNPPQQ3HOPcxLElQcegPXr4ccfCbxnAqmrN2DXahU0bKjuzHzzTQxPPYXp2sGgv3B9DYlEUrO5ZPF1SeUixdUkEolEInFypbaLNeW6x44dy6xZsxgzZgyzZs0qM/1Tvo8J4bdy3y81vVac/XTx6RJSQliTpkI49fAhIRxu9OHO3O8Jt6ZwVAllny6K3bq6HNeFUM+rrpD2VKHouseG2C0+WZTsOG7l20KIM9tEgeeAumLZ9nzRrZfdRRxSHym6h7CbLGSZM3n/2BvYsPFQ31epF+gUYNdFuLj8CdaIF2Zp3IeZNG5+mmhcUaS4DJaHa1wJZYvCmhjEQWmPps7VuDqNGGiDRkFCOPm0KLroYRTT1wtxnjsxXRzAz9eIZzevL15DskaMvUmUU8i2TbSYVitaGa4Rf9x4IKVEm42aawz2FSfbujQLF8LrXETSfTVC7p4akc5jGoHQiCDRrs6NnSK6i7acEOICzgjZ6grysXl50/PETrjmGjUyO1t1HbJyJdx2G/uee4OMAYMdeXu1iOBicL1/DsHPXbvUVdpt2547cZGXB56ezgmT5GR1FbfRCElJoPmecPXV8Mwz0K+fMKC5csrHdPvoRdKbtWHVsx8QEh3miLu2vaYMDav2JAvhvq0iS0gJ8WfePe8FP+O+bi1e27ei37MbxcXffO7Q4eSMuZOCPv3ZP3MhfT58jsQOPVh37/N4+6mDYzpTMQV28RlPGCjWVb9vShDCni7vl0kj9Oyl+b70b1OnxGuoaL5avN9xfPd1zYW43zaKWk4julz4DsJv/hbr6p6txHexaeSFtXE1pV2samrKdU+fPp17772XRo0acejQIXSVMXl5MWzdqk4Im83w1Vfwv/9dUjFaoXbFU/w+mw+mYrPb+PnELHZlb0evMzBhyHPE1msPgeJuVctmsQ4ydBLrIJ/OUULYbnX2PQrSxDYrpKm4A7BII4AdHuHrODZpRLs7NBHz7jwm9q3qaNod15FBD40wu9aDYHigmDdO06Z1bOpsw3bFieft0kQUiQdg3z51ctxs5uSyf7E0bgJAdLC3upPwmWdg2DD4/fdz87ry2Wdw7bXqZAao2iArV4KvL6ZfF2Dr18+RNO9Mv0zJziage2f0x4/D2LHw/fcAFLjez5wcvJrHqrs1v/ySogl3lWqGVpw9MdPZb6kb6FX6NZTBgZPZjuNmdfxLSVlzKNK0cdr7E+/SD6wfUrqbS62Qe5HJ+ZyaR5V+P1yfA5T+LLQ2a0fOPQ3VXPdJql98XSKRSCQSiURy+ZOamsrcuXOBal4deoGEWDMw2C3osNPEnspw63aeN//BOPNadPbziGvWEALcAmnt144oj3rYbDXXTknNweZ1ZvBg+3bnh59+qv7/4w9ISaHpsw/jcbyCxYkHDlTdeOn1EB4OixY543x8nJMiixdDnTqqHsm0afD88850I0fCpk3qKuD+/Z2TInY7PPYY/V59GI+cLOpuWs2Qx0ZjTE+t2GvQkD/yJk6/8xG56zeRlZJB9uZt5P6+iJT3pnH6kScp6NMfgJQWHfj580VsHvuoI2/Q/l0MG92fyO3rK9VGiaS6sdvtTJs2DYAHH3yw+idFAK66SnXvB/Dww3DwYKWdSqfoGFVvDC382mC1Wfj9v6+xyva6YmjcGJo3h5wcQsfeipKbiz7xhDoRMWiQmuaff8BkKr2c++93TooA/PST+j83F7chg9HNm3tOFru/P7kzvlUn+mfOVMXYXVASE9UFBx98AOPHw7hx5blSiURSw6gBLZlEIpFIJBKJpKby/fffYzKZ6NKlC51cBZlrKMmGSD73v4+P/B5ipqE7W3XqiuaetsM0N+8vI3f1Mjx8FPdGTyImuEl1myKpTZw86TyeN0/9/9ZbEBODIS+XqFkzKvZ8qani8bBhkH8et11nB6QAJk1SRd0TE2HPHvj1V1Hg/Szr1sHKlSR0G8DhQSMBCDp2kJifvqnYaygNLy9sLVthGTiInNFjMbVUNRSUggJCDu3Grtdj9nKuaG03/W280lLo+cHzJZUokVwWrF+/nr179+Lt7c348eOr2xwnjz+uulgqKIAhQ6CoqOw8l4he0XNLvbF0bzmYu697Eb1OX3YmSdkYjfDzz1CnDm6HDhI+fDCRfbpBkyaq3khYmLoj8e67y54ccSU8XH0vGjZEMZtxe/DBc7e/AJZu3Z2T92fbuLQ0dMv+wqNjBzV8++3wzTe1wlWrRCK5cOTEiEQikUgkEomkRH799VcAxtWyFXLZ+gDW6GP5V98MADN6kvRRZeSqXow6o9Twk1w8o0fD55+rOiDPPqt+Nns2HD+OXVFIv3pIxZ7vuedU11d+fhATA6+9Bl7ncUdxzz3wzjvq8WOPqT7jo6KgZcuSy+7QARYvZuMDz2EoVgc3zR6epLi4A6sW7HbCH3uAYU+NofmSOQQeP0yTf37nqo9fJWzXFgCO9b2uem2USCqZxMREQkJCGDFiBP7+NciFj04Hs2apdeCUKaqQN4DFUimnM+gM3ND7HgJ9nS6hlqz6ls27/kZ6qi8HERHw22/YvH0w7tqBLjtLbWPatYP331d3I86cqbrKysq6sDLT0tT26Zi6c9J6730la1e98AK8+qqq1wXolyzGfdj12Bo0PDetzYZy9OhFX6JEIql5XLL4ukQikUgkEonk8mfu3Ln8/vvvjBgxorpNuSQOKJF8beiFj72YLH1g2RlqAPnFueQWZxHhV6+6TZHUBrp0Uf/uuUd1SbVvH9x3HwAJ9z9BdteeYvqiIsjNhdDz+Hm/EF577cLS9eql/j3xxIWX7ekJnp7kReSzb+RYwndv4d9n30dp0fbSbK0gFJMJrFb0Fgs9P3/1nPj4/kPZeucjVW+YRFKF3Hzzzdxwww1kZ2eXnbiqiYyEnTtV131nef99mDNHnSypxD7MieRD/LNOddG0acdShte9hQhf2X5fEp06kTb3V/zfnkrBkKEEPf4wGAyqq63gYLjpJlUzpEcP+PdfCAkpvbybbnIcmmfMwNpfFG83bFiPtUED7OER6nlcXD7q9u1Fsdmw9ewhlhkXh/G661DS0yk+Fqe2WxKJpNYixddrKDVFXE0ikUgkkprAldou1uTrnughCk9+WfR1iWm14upTTr9SatmPeD/oOP4w/xMhbmq7j4WwVnxdK87uSuLBPUI40lfcQbLv9D4hbLI53TV0HXmTELdhwc9CONgoio837NxVCGdtd/o9949tIMTZ8pxuPw7k7eOHpG+I8othUreXAVBchV1Noj9zXYy4ateeIQqIoxN3oAiCsrHBQpx9l6jjoDTSTCS5CE1eNUS8z7u2nRTCNo2d7hqhVt9g5w6DHI2QpsHDTQiHh/sI4aM7RGHb4MbO6xjWTRSDXrY1UQj7aAR1Q/yc9/bYqVwhLnl/mhDu2EMsu26YaJfOZbdPhOZ6z4q8niW/SFzJnKQRoDe63OvsfNFtiM0m/nyL1tyfgKceJ3zW12R3782aD2YKq2N7RXvh06cnuqNHKfjxJ+b4irs3btcIhmsFUl05kiLer7oawdSjGjHehFTncx7coXQB9f8OpACgKyrE5uHJVS5ivduPpAtptUL3reoFlFq2Kz//FyeEb+rRoISUqPonU6dCSgp89x20a8exqCZktmpPcv8hDO0mrirWCpWfOJwhhB8a08FxvOmI+K51bnyJk1aXwOq9p4Rw75ZOUfRf1sULcaO617/k82iv0d9bfG6xkWJd9veOJMfxwHbOuromt4uVyZV63eWiTRvYvVs9fu45eOWVkncLlIG2HzM57SXH8cZ9J5n7/XS+/ew9igoL0en09Ow7imuuvxsPT+9z22U/8d2v09Ypzn5ya5IQ5xklPmu9QXTdVTfa+b0p0rS7MZo2Kvm0KDxdL1SM9/Zwto+bDorf116tIoTwMU39vne3WI/cfH2LEu0K9RfF6nMLxfaxoNjZPnq7a9rsowdUd2nBwbBkCUWRdYT4c9qsEycgIAAOHFAnMFq3VnecLFqk7kBp3RqSk2HXLnKCxHrX79abVLH3Tz+F++93inFbLHjENoXjx+GLL9RFCRpOZonPXO/SFwv389AmFyhLqPxS05aXeE0/pSyRdFeOZ4h5Y4LFvNrrcKUyr0mL63OrE3BxE17J2eIzj/SvmgmzqnwHSuNoqtgndP0eA7SuV/GL02qc+Hpubi5bt25l69at5Obmlp1BIpFIJBKJRFKjKapEP92VjdFahJu1WB3MrEXU8VAHAE/mJFBoLigjteRywG3vHmIn3UWnbi1oceeN+G7bVK7yLL7+mELDSBn7v3MGAT0ffgj9gQMoZjNeY0bXeMFwm0cNWomrKOrg6gcfqG5cVq9m72MvcnLQMOwG6YhBcnmTlJSE7TzaDDWalSvh0UfV49dfhxtuUPUmKhiDmxu3/+9Bfly8lr6DrsNms7L6n7m8/cpoEhMqTwy+SrHbCR01jLDrBqLk5pSdvrJo21bdKbJmDdQtfYIdgHr1wNdX1bT67DP1My8vdVKkuBiSkiAjQ3WjpeXIEfV/o0bi5waD87167z2wihM/EomkdlHuiRGz2cwTTzxBWFgYnTt3pnPnzoSFhfH4449juhhRJIlEIpFIJBJJjWHbtm20aNGC9etr9sBpSTTP2s69B17jxviv1QmSWoKfwZ8Qr3Ds2Nmc9G91myOpAkIeuJvgZYtwy8wgYMNaYh++q+xMpZD06NPsWLuLrL4DhYlBj1Mncft5HpaevbA2boxiMtHx+w/Laf0ViF5/yavOJZLaSGFhIa1btyY6OpqtW7dWtzkXTnCw6k5r5kzVxdbvv6taJJVEeGQUr330NXc/9AEA2ZmpLPzl4zJy1Q70x+PxXPUPHhvX4/nnkuo1pnFjcNW4SUsrOa0rCxeq/zt1Uv+7u8PixerxN9/g9vlnYvoUdeci59MSuesuCAyEw4fV90oikdRayt2je+SRR/jggw8oLi7Gbrdjt9spLi7mww8/5NGzs6gSiUQikUgkklrF9OnTiYuLY9q0adVtyiVx1K85OmzE5uxmWMIsovMOE2XLINCeh95es1f3danXF4DFB+fy3bYPSc05WXoGSa0mZ+L9QvjULePKX6hOBzodXR4YTZMZH2HIzaYoNJy8rdspevV1dAkJABzrU82i5hKJpMbz888/k5mZiZubG+3atatucy6e2293DqQ3LdndZkXRrGVXnnppDr0H3Epsi86Vfr6qwBodQ8qvi8j48FOKBg6qbnNUbDb0r76Ke6OGKDt2lJ1+wgT1/4svwk8/qcfdusGzzwLg+dgjGD91cd96883q/wcegL17xbJ8fODee9XjDz649GuQSCTVTrn3/P74448A3Hbbbdx6662AKtI5e/ZsfvzxRz799NPynkIikUgkEolEUoXk5uYye/ZsAO45j+/k2kCeWwC/1P8ftx+dRmzObmJzdjvjcOdV91HVaF3p9IgeSHZRJusSlrM/bQcH/9zNqE5307Fh3+o2TVIJ5I++g3S7EUtAIJ5xR0i5ZSzGsrOVif/alYRu/o/Qzf/RYPZXbH1rOrbxN6L/ZwV2b28s1w5m74gKmISRSCSXNV9++SUAd999N3q9vozUNZDt2yE1VR3M7tGj7PQVQFhEDMNvehg4j/ZXbUSno7h3Xxz7b5Or0Z3WWRQF3fZtKAUFuN16C6Z/V0OdyJLTv/QS7N8Pv/wCo0fDhg3w7rvw2mtgs8Gbb+LxxGMAmB54UI2z2yE3F1q2BK0OxoNn0qxdC5s3O3eiSCSSWkW5xdeDg4MJDAzkyFn/e2do3LgxWVlZpKenl5BTUhpSXE0ikUgkEidXartYXdf91VdfMXHiRJo2bcqBAwdQFIUvF4qr5SYOE0WbXwl+0XE8JePlUssvS4x9pG644zjEKAqEN2jWTghbEsS+5pbMbY7jrm0H0ShnL91SV+BlycNQnIUfxWxU6vKRritNvBsLebPMWULY3+C858nFKUKc2S6KhRZp3HVFe4rC7p56p9i40VPUTbAUiloueoMqPp5mTefvguUcsRzlkUZPE2QMRhfgJaQ1NBRF31E0wRAxPS6i38bu9YQok0Z8nDTNYI6L0LuXRvA7/y/xt0DQKPH9KM4V74/ZRVDcnCyet8VA8bkc2S+Kwls1go5NXIRr3Q3ihvisfPE5JR0S35c2Vzmfk5eHuGYsUiMOGh0k3ktXcWgAH0+naHzDSPH7ulYjcD1IIz7uqxGYTXARKo3W2LFsu3hes8bvf/fm4eqB1UrW9z8SMe09PA8dwOrtzZavfia3RRs8kk5g9vMnuqloR6MwXy4UrZi2QSP42TQqQAj7GC98QDVBI9Qa5iKCumZ3shDnKsx9Pn78V3SDcnufRiWkLButuGhCilNQvl9rcUBu6zFRbP2qhmJdVpFsOOT8jmh/3XeLDRPCm4+U/vu8U+MQx/HCTQlCXGw9USBdK5j+9V9OPYW7rokV4jILRDfbgV7i9N+/e8Xn2qdl5Hnj8vNyua5rrOwPVBF79+6lVatW6PV6Tpw4QWRkKQPPNRWLRR0Ej4+HMWMqpEhXweNvF+wR4kYMbCKENx4Q27CjGxOFcFBL53fUXCC2WZYiMRxRL0AInzqe5Synjlh/uwp+AzSLFvP6e7sL4bjkbMexn7f4/WxfX6y/tHXhSY0wdyeXesdqEyslbzexLfjvgNi/6tEsnJJIyiwAsxmlqAi7ry9R1gLo2FEVQm/TRtWVCQoqMT9WK0yZAlOnYvPw5NCiFRQ3jgW7negP3yTwo3cpbtGKxKUryTxbZdlsoNPRsVEImEzqe3R259HYsap7tiefhLffLvG0rvWftu4rD2UJb+9NzBLCLesGVFjZ1UV57Kqp11RbcL1/NeHeVVS7WO4dI7fddhvz5s2joKAALy/1x0J+fj45OTmMGydXIEkkEolEIpHUNqZPnw7AxIkTURSljNQ1m6N+LTnqpw7S79qzBsVuxxPnQIOfLYd+xf+x0OOa6jKxREL1IYz2vZWcICtBxsobVJVcpuj1ZA0dSfbAITQafwu+69fS/oE72PzdAgpjGla3dRKJpBZwdrfIsGHDauekCKhi2T17qn+VTH5uNhNuv4U7xt9F3wEDa30fqqahZGUSeu3V6E8lk/7rHzCgFyxfDr16wa5dMHiwGvYtYZJfr4fXX4fOnTmRkKZOigAoCqefeQFL3brkjhyl6o+YzizoOKsptWULDBum7jw6cED9/NlnYdw46N+/8i9eIpFUCuWeGPH19SU3N5cOHTowdOhQABYvXkxRURFeXl688opzBeCUKVNKKkYikUgkEolEUgPYsmULW7duxc3NjbFjx1a3ORWOXVEocHFUNKRoBS0tB9np1oJM/EvJWX0EGYPJMmfiqfPEE6+yM0gkLtjd3Tk2fRZNbhuG197dNH/tabZ9Na+6zZJIJDWc/Px8Zs6cCahutCRls3rZPJYu/oOE4/H0HTCwus257PD6ZR5uhw4A4PvxB+rESOPG8Pff0KcPbNqkaoMsXAhubiUXNHw4WcdPO8vdvgWldUtyxk4oOU+zZlBYCMnJqr7IF1+onzVr5kxzZneJRCKpPZR7YuStt95CURQOHTrEB2dEh+x2O4qiMHXqVCGtnBiRSCQSiUQiqdl88okqPHnzzTcTGhpazdZUPn421U+2l70IaujECMDC5PkcLzjGKMbRMrh9dZsjqWXYfH059sVMWvTrhP/u7bifOklxRJ3qNksikdRgli5dSlZWFg0bNmTQoBoiuH0p7N2rCmQ3bQqTJ1faaQrzc1nxhzqRdP/Dj8ndIpVAUb8BjuPCwUNwOFls1QqWLoW+fdX/06erGiAXgMf+vTS840Ys0fVJ/vFnrHWiwGol/JsvMGRmkPT4c2pCHx/47DPVHdtXX4HZDDNmqLtQAI4ehZtuUidpguUuX4mktlDuiZHo6GhZ4UskEolEIpFcJtxwww0kJCTw0EMPVbcpVYJFUbvDOmxlpKw+0opTOZi3DwWFMC85mC25NMx167H7rc/Iat8Fc1AwiqkYpaAAu5fchSSRSM7lxhtvZNOmTWRkZNRO0fWz7NoFX38NdevCY4+prrUqgVVLf6IgP4fGTWMZfsOoSjnHlY61UWOS0s/om2jHITt1UoXVi4th+PBzM5eAYjZh8/DCfd8e6g7uT/KPP6PLyyNq6gvYFYXsvleTd1UXNfFtt6n/77gDvvtO1a/5/nt1l8jDD8P27XDffTB37rn2SSSSGkm5xdcllcOVKjIrkUgkEsn5uFLbxcv1uqe2+1gIxx3YIYRPmzIdx/NtC0otqywhd1fu9hBdJKQUp/IKG2hHBu/SjqI6NwrxBbk5jmOdRtV8V64oRl/PQxSxPm3OFMI+BqeAtq9eFC4Pia4vhI0dnaLoJksRny98nsSCBJr5t2JMxJ1CWn2IRmy1jvie6AI9hDBGFxcPGqFypbm4Q8heJIqck1HgPD4lCq2694kRwt4acfbTe0Xx2YCmztWUisbthF5jl6+X6A4jw9UOwNfPKSDrrRFQz9EI2RYXW4Wwl6czfb1QUeQ8SXMeHw/RDotGxNNVmNrXUxRXTcsWhezbxojisFohd9dr7tpUFM/eclQUz47WCKYXmpzPLSFFFMjt1SLCGViwAG64AQID1f9ffXXOQI6r0GZuoXgvM3OLhXBTjeC8VuTUFa1o547400I4XXO/rm5busC6K4eSc4SwQfM+ZeU57e7QQFzVqxV91wrfVyTrDzq/E1qBdK1gfJuG4vvSul6gEF6+0/n+uGuEjYVnDuxPyhbCzaNK3ilXllCtNn75dqcdwb6isLO3p/j9aRMtXsOCDceF8MiuYp1ylsu1XSyLK/W6K4TiYoiKgowM1cXS9ddXaPFFVhvZ2dk0b9yIzMxMbh/1LO3buGhOnBbrMwI9xbCPs73w17TDOk39lXMiSwjXbeasO4Z2iRbiflsXL4Q93UufEPJ0qTviNedpoBFuj9a08TGadujISWc93EojGJ+sqd8DfcS6It+l7xGvacOualj6Tow9Grsbu/SJShWLjo+H666DffvUNnHtWlVM/fvvITwc1q8nPdS5MCVk6R/qJInFArNnkzR4BG7btxI6qB+KxQI//AC3316qrSWRlCn2PaICq2bxQk0VJq8uu46miu9eo7ASdGsqAdfvSKS/Zykpr2wqql2sGW+6RCKRSCQSiaRaKS4uLjvRZYjtzISHjpq3Vshms/HDmg9JLEjAS+/NkKiR1W2SpLrYvh0efRS8vGjbKZbW/ToS8dkHUJ41bsnJ6v/MTHU19dKlFWNrBaBYLETP+oqALeur2xSJ5IojLy+PrVu3VrcZFYe7O9x5p3o8fXqlnOLzTz4hMzOTRo0b07ZVn0o5h+Ti0GVno8TFXVji+vXhv/+gSxe1TbzmGnjiCWjTBlJSYPBglNMuE/ijRsELL6jHX34JgLn9VeROfkb97IEH4Lg42SuRSGom5Z4Y6d+/f4l/AwYMKLsAiUQikUgkEkm1M3r0aF544QXMZnPZiS8jCs94lu1FMjq7tYzUVUtyVgL7k7YB0DaoI0HuIQCkFCfzcdw7pBanVKd5kqpk8mQIC4PCQtwyT+N+4jh135+K577dl17mffdBVpbTD/vjj6srq2sAQRtWk9mhMw1mTKtuUySSK44vvviCrl278uWZAd/LgokT1f+LF6u75SqYhb//BkDzFi3Q6Wqx27HLBJ/V/9C0V3vcBl8LaWkXlikgQH0/mjWDxEQYNgzefFONO3gQ99/mi+kffhg+/FDNc4bcR5/E1LETZGdDv35w5EiFXI9EIqk8yj0xsmrVKv79919WrVrl+HMNSyQSiUQikUhqNllZWSxatIjXXnuNQ4cOVbc5VcpvNKQYHY3Jxs+aXXaGKiQyMJp29XsAYLPbUM7sbnFTjKSaUliYMh/pFfcKYf58iI0VPsrqN4iiJs0uvUxFAX9/eOUV1VXI/v2q65AaQOZVXSmIbsDOD2ZUtykSyRXH7NmzsVgs2Gw1V3vromnaFCZNUo9Hj1ZdJVUgU156meuHD2fuL/PLTiypdApbtMbm64vuyBGMI0ZAQUGZeQBVNH3ZMmjUSP17+mn183r1KB4yVEzr769OjrjqdBkMnP56FjRsCHFx0L8/JImuMiUSSc2i3BMjY8eOZezYsYwbN45x48YxYsQI/P390ev1jB49uiJslEgkEolEIpFUIgsWLMBkMtGqVStatmxZ3eZUKQcJZCodeYpuZBmCys5QhegUHaN7TOKG6NHY7FaUM/oPOkXtwscXHmNX+pbqNFFSVfj5qTogdjtbjqSx5UgaR776EbvRWHbesggMVFe9Arz2Ghw8KMZbq34nlc3TC6uvHzZPKQwvkVQlBw8eZPv27RgMBkaNuswExN97D4YOhaIi+OyzCi362iFDmDf/V3RnNLOKTYV8O/sFklMu0JWTpPy4LBSxhoQS//3P2AMD0W3cgNu991y468l69dSJsz/+gLFjITQU/v4bu58/hrWrz1+OxYLnnNlgs2GNjlbdcsXGQpMm4ONzbnqJRFJjKF196QL47rvvzvksPT2dNm3aULdu3XMzSCQSiUQikUhqFHPmzAHg1ltvdXw2/fc9Qpqtt3wghOt6i/28xPxEx7Fdo9fxVdE3QvjZHZOEsFZA/WLQiq3fqCtZhyP0jCuqs0S4hwOQjPrfVmgCoJ4lgUR9XXwb1aMkGh8SxUNzrXlCOPJM2Wcx250uygK9xAkYu0kUObccEsW1u7S+li5njq3bj+OPB/19+/NP7j8sSZhPiyZdcDeoIutasXVbjsY1ksk5yK0LEwed7afEa9CKs+Micq7UEUUom7cSr3f3lkQh7BEqnsvfz2nnySMZQlzDFqIQ9ZEdyUI4qJF4/6LDnIMOB45niefxFScOPIyii5Mbu9V3HM9eLQpeR2oET7W7c9I0YuTbXa6jRYwoLG22iCuvNx8Rn3GARny2dQPnNf6z66RoByIn0sTn1iDC+WzqhooDMik5RUI4K//M+9H7WqL6D8Tn8AHV7UjdujBnDsz4GvdNG8l8/S1Cn35CyBuqsVnLxQiktqt/4ZOSm46IblEig0SBdK0I/DmEljxIVR6x9W1x4nusFXbX4u7yLmrfh9v7NLqoc2flO9/FUd1LF6p3fT/KYssh8V73bC5+zze7CMgDDO1Ycp3pKhAPgEZ8XfvddMVVmL0gP7fEdJLyM3fuXAAGDhxISEhIGalrGQYDzJ0LH32k6kdcBG/2/koIP7367hLTPvBsP158/nn2HljP0fjtDA4dQcegbo7FDW6dxP6T0jb8fMUA4OEufi8y08SdD7oWiuNYK1QepBU1Lxb7GsVmcdK7pUu71ShKrEe1bZi/t1i2tr739XJzHM9aJbqTatdIrBtPZojX5CqwbteIvGuFyR31qM2G/5BraDWgPzz5JHh7Q73OnP5xHoHXX4t+9mzMPXtinXhPiTYLRESo/x9/HCZMgMBAfK67Ho8li8h79Am2T3ramdZup+W4GzGuWU1Ofh6Fd99DUWgY/L1c3YHi7k5evrMvFuJdettZVWLrWmqK2LqW07liP7ZOwIWLkedq3nlf9wsfAq9KsXUtpQmua78D2velusTqazOVcodCQkJo3LjxeSdNJBKJRCKRSCQ1h9TUVFasWAHALbfcUs3WVD91LScYlzuTO/J+wMOSX93mlEhPn54E6APIKcpk5aGF1W2OpJrR5eYQOe0dGt0zBv+WseiOHS07kyuKwqn3P4F9+6BnT8jJgXvuwWPDehSbjcDnn4Z//60c4yUSSY3Abrfz008/AeJCicsKLy945hlwOzNwX1R04RoUF8H9Dz3EwEGDKCoqYsGJOcw5/h3WGqZjdjmgO5mEkpuL27K/cFu7Bl5+Wd2psXIlAOYePcl76VUADI88grLlEnbZBgbCokV4LFkEgM8H7+L77z/OeEWh6PrhatxLz6Okn3mf6tQBd+ckiHHxIric3NNJJJcJ5Z4YeeWVV4S/F198kdtuu421a9diMpkqwkaJRCKRSCQSSSXx7bffYrVa6dixI40bN65uc6odL1sBNnTUtxyn9elN1W1Oibgpblzrdy0AG+JXVLM1kuomaPFv1PnwLQKWL0UfH49+396LLsMaFu50+REZCfffT+aUVygYMhTFaoV3361gqyUSSU1i3bp1HDhwAHd3d0aMGFHd5lQNjzwCAwdCZmaFFhseHs5vixbz+ptvoUPH7qzt7MnaUaHnuOKxWAhs3pTAtq0wLllMzqzZEBOjanoMHw571Xaw4KFHKBp6PYrJhOGtNy/tXLNmCcGQ2d8J4cK778Xcph26vDwCxtwKueLuHa8pz+N3yyg835x64S69JBJJlVBuV1ovvfSSY0uglqFDh573c4lEIpFIJBJJ9VNYWMgHH6gush588MFqtqZmkKYPRYe6oi/et2k1W1M6DdwbAFBoLsBqs6LXleyKRnJ5k9V/EHWCQnA7nY65Zy/MvfuWv9CPPyY3Ix/jxPFquE2b8pcpkUhqLB9//DGg6sj6+ZXhku5yICcHfv8dTp2C666Dv/9WXTBVEDqdjseeeIKf3/qZHZlbyDZnVVjZEsBgIP+1qXg/9wye38zAfO1gdTJk8GBYswauvx5l+b/YQ0LJ+ewrDE3exvLKK2WXez4eeADmzQPA5u1N6oR7xXidjpxPPifw+sEY16/DNnQopkWLwFd1x2Sro7o49J76GmRnqu7c9LLPJpHUBMq9YyQ6Olr4i4mJoVOnTjzzzDN8+umnFWGjRCKRSCQSiaQSMJlMjBkzhhYtWjB69OjqNqdG0K1oAzrsHDY0Js2zdF/91Y274k7DkOa0iOiA1WYpO4PkssUSFkHch9OxKwpua9fg9eLzKKdOlb9gqxWPVWd2JA0eXP7yJBJJjeWrr77irbfeYvLkydVtStXg5wfLlqmuktavh5Ejobi47HwXiYde1QsothaVkVJysRQ99DCFjzwGgPfjj6i7MRYsgEaNIC6OgNtvgeJi7P7+WN55BzxdtBsuZudG796k7txPyuF4Mhb/RX6X7ucksbRtR+Zvi7D5+6P7by3GoUMdO0eK7r2PvLfewa4o8Omn6ruWX3PdtUokVxKKXasiWIGkp6dffoJdVUROTg7+/v5kZ2dfGas1JBKJRCIphSu1Xayq67Zaregvk5VrrwS/6DiekvFyqWmHKeLu5rp6PR9aF2HExqv6fhDUxxHn3qWhkNZ8WBQdTjsRJ4SD3ERhYcXNeX/dmkYKcSe2bRfCdeqI57LlOoXe3RqIwuS6IFF0Ud8iVMybLLpz0AU7BwWUVmJZtg2iOLISpBF/9Hf6ynaL8ReirCbRd7qbtyh67qkpy1V8PVcjYl6UJQ4eeQSIgvJeGvHMvHyn+143jYBzA61wq0bk1eQiKOumEZvP0wjXB2muoU0DUTC8yEXINlQjnBnhJ16DVujdaBDttriIZ97aS3wf9idlC+HmUS7P4pVX4EX1O2CNjES/das6SHTbbRAYyK4E0V1MG40AtjY+2M2Oz9dfYvxvDXMmvYNd77z3bRuLAroRmncxSiOQmpxdSElohUb3JmYJ4ZZ1A0rMG58uDi7VD7nwFd9liZSezBJtDvItWXA4p0h8j/083KgqDiXnOI614vNbjorC7h0bib/PK0uoddWeZCHs7ia+4+0bi3b8uPywEB7Rs4HjONilPpH9gSvruquEDRvg6qvVgeqRI1WBdrfSv79vX+90rTT5jzuEuFeCpgjhjfWOsCXuXzo17Eef2KHoGgaIhRW7tJ/a9k7bpmtE0C0u7adR087cOKiJEC4oFtvpvcdPC2FXgXXtKGGzeqLNqVliW+qnafOb13O2LXmaurFI018I0didU+Bs03009WiGRog71N8DCgowtmmNLj6egkmPUDD1TfQHD+LfvzcYDOQtW4GteQsCPN2cF/fCC1iSkrB8NQNK8IBTWl2YU2zBbfrn6DdupOijafiFuLSlW7ao75PRqO5ciY111LO6X+djHDtW1bbp1AmWLuWYVbx3DUPFfosW1zr7YuvrbJdn4V/ONiotz/kstPW730WInJeFto3ScjH3oCLLqkzK84x3ar7XbWOCSkh5LmUJu5dGWX2J0vopl0pFtYvlfur33XffeT9PSEigZ8+e5S1eIpFIJBKJRFIJuK6NuVwmRcqDDhv32zZgxMZhgjlAaNmZJJKaxnPPqVohgD45GaKiVBcgf/xxaeV5epL34MOc/ukXYVJEIpFcPuzfvx+r9QoWBu/aVXWpZTSqE8ljxlSoDkTfZsN4YvB79ImVrubP4vvOm4R3aovh6JHyF+blhWXaJwB4fjoN/c4dWGNjyZn7C3mr/8PWvIWYfvt2eOMNDN99h/6NNy7plMrRo3g+PAnj7B/xeP5ZMbJjR1i+HP75RxWCd8F2w42wYgUEB8PmzTBiBFjkjl+JpDop98TI9OnTeeihh4TPDhw4QI8ePTh8+HAJuSQSiUQikUgk1cWePXvo3r07W7durW5TagxGbOxWIjhCEF/pO5W4grAmklucxYmsY9VthqQmoNeTuvsgduOZFah2O7RurbqMKU+xx47ieTqtAgyUSCQ1iaKiIvr160eXLl04efJkdZtTfQwYAL/8oh7Pm+cQ7pZUPEpONj4zvkCfcgrf99+pkDJtgwdjvekmFKsVnycfB7sdS89e2Bq47LiMO7Ozt0MH1Z0VYHj5JVVj5iIx/PWn49ht3txzJ9I6doRWrZzhTJfdmN27w6pVEB4O48eDQS46kEiqk3JPjHh5efHZZ58xadIkADZt2kSvXr1ISkoiJiam3AZKJBKJRCKRSCqWt99+mw0bNvDmm29Wtyk1hiIMLNI150X91SQp/mVnqCEczdjPW6snM3vn5xSYpb9qCeDuTs6b72I/6wrm6FG45x44dmmTZ7q0VEJuHMbQR27BP+Fo2RkkEkmt4fvvvyclJYXU1FRCQ6/wnZLXXw/JyfDmm9CsWXVbc9li9/Pn1OZdFPfuS+4jj1dYueZ338M04Gry33jrnMUthhXL1d0br7+uTmLcey+2zl1QrFb0v/560eeyjLoZ8823Yho7jqJXXit9Mc3Chbg3boRu4e/Oz1q1Uidqxo+/6HNLJJKKpdwTI3///Te+vr58+umn3HTTTQwcOJCMjAzatm3LunXrKsJGiUQikUgkEkkFcfz4cWbPng3AU089Vc3W1EBq0U4RgHr+DfEweHG6MI3PNrxKelZy2Zkklz0FE+4mfflqdXCvoABSU2HUqEtyD6Pk54Oi4JuSxNBHb6Pe+hU0WLWYuq88S513XxPSGtf8iy4jvYSSJBJJTcJisfD2228D8MQTT+BWhq7GFUFEBDz1VIWu4t9+/D/eXfoEf+yYVXbiKwS7nx8ZP8zF0qRpxRUaFUXO74uwXNXxnCj9po1gNsPzz8PDD4PFgvXmm9W4uXMv+lT2sDAKZ86i6MsZmO+eWHri5ctRsrNxGzcOZbuLppyLELwuIx23/fsu2g6JRFJ+KkR8fceOHQwaNIiMjAzsdjsDBgxgwYIF+PiULhokKRkpriaRSCQSiZMrtV2sjOueNGkS06ZN4+qrr+bvv/+ukDIvlokedwnhL4u+vuSyXMXWoXTB9TfaTxPCcft3ANDMdhJ/ewFZzYdi0jtFQHfuXu04LraZhLydO14jhFP2ij9odZr1R+Gd2zqOC7aJq+49GtcRwsYbWwrh4h93OI7dhzUX4sxrEjiVn8R3+6aRbcrEU/FklMcI6hrqAhB4bQchvfWkU/zQbVAjMW6bZlJFI9Sq7x1NifiK4qHGQFFM25QhiljX7eC8Zr1OnIwK8hHL8vYUB+u8NYKh//4X7zj20JxXK1Rr14hDRtdz7g66tn1dIW7J1kQhbNDYGagR4j6RXvKOnWDN/UnLFgVkr2oiClHrXM4VrhEx33pYdGnVo1m4EM50EeMNtJtVQfZx49RBoTZthLQrdomuc2LCfYVw3bNC5mlpeIwYDhs3CvHUqQOJiaAoJGYWENGhFUpBPql/riCyQysulWXbk4RwvTDn78oGEb7a5ALan7dWmxjOK3L6c9c8UnYcyRDCNsS8kRqBeYvVGX9VQ1GM/ptlh4TwhEElDwCeLhDrl4TUPCGsfddigi9cYL4sXAV0AXxdvm9a8dSLEWrfcyJLCLfSiDeXxdZjzmfhem9lf6Dirnvu3LnceuutBAcHc/z4cby9K+69qnWsWgV9+pS4OOJi3n0t06ZNY9KkSdx8883MnTv3nL6Ioalzp46uQ4SYuUAULsdDnLDxauL8bngHi/VTvRDxefpo2tKULLFddjc4r8mguT6jmxjWthWudSGIbViYvyiunppdJIS18SaLDWw20OkwGkq/z8mnRbFoVwF5j43rCRvQA7zU++Lx6SfqpAhAly6cfv5lAocNRrHbyVi6nOBrBpR6rtKEu7Xvg1D/mc20mnAT/PsvGI2YX5+K9eGHQafmSVm3jTq33QBA4tJVRDavX2rZpXFCcz/qBV24eHZtJcHlmqOr8XpTczXvta/zvU7IEPuH0RXYhmfki/2HYG9jCSnLT2mi8Plm8TeDt1vl61dWq/j6K6+8IvwtXLiQ/v37Y7fb8fX1pUuXLrz//vu88sorl2yYRCKRSCQSiaRiOXXqFDNmzADg6aefrmZrag6DLLu5y7KaTmmrqtuUSyLCO4r72z5DlE8MhfZCZhfOY5/5QHWbJakJeHmpbmGaNz9nUuSiCA1VhWRHjQK9XvWfPmkSvPeecxeKzYZSVIg+NZXQUcMvyW+7RCKpGqxWK2+cEZ6eNGnSlT0p8scf0K8fXHedOiBfwZwVtt+0aRO2Sij/csNtxlf4Bvlj/PCDSy7Df9Y31LtxCG73THS2UZMmwc8/g78/bNxI4M0jUc7E+b76UgVYXgJubvDrr+r7ZTLh9uQTuF1zjaONtEZEYPdwxy3pBBHjb4Pi4jIKlEgkFckl7Q986aWXUM4zk64oCnl5eY4GFmDKlCmXbp1EIpFIJBKJpMKYPHkyhYWFdO7cmf79+1e3OTWGBnZ1BX5gcRqK3YpdqfxVThWNn9Gfia0e58ct0zhkOczioj+J0tchsLoNk1w+eHmpg0pnVvKeg05Hyj9rCRt8NYa4YzBkiLoK+wpa1S+R1BZmzJjBzp078fX15YEHHqhuc6qXefPU/9u3w6FDFa4v4nnGZVJ8fDzNmjWjaUFrrgrqgofes4ycVyYeDz+EYrXi8fRkip64NA0SU+OmoCjof/oJW9++WO/6nxoxahR06QLjx6OsWKGm7dKVzB/mEl5KeeUmKEidgPvyS+yPPYZ+5T8ovXth2rYdm58/yTPnEt2nC55bNmFatw5bv36VaY1EInHhknaMREdHX/CfRCKRSCQSiaT62blzJ7Nmqf6tP/300/MucrlS+cXQGRsKrTM3MypuBkZrUdmZaiBGvTs3eAwnRh9NM0NT9OWXE5RIzuV8kyJnsEVEkjZ/IdaQEHWQceRIufpVIqmB/PXXXwC89tprBAcHl5H6Muepp6BuXXUF/1VXqeG0tLLzXSC33347jz76KH5+fhw+fJjFSb/y3v5XKa6lfY3KpvCb78hftoKC7y9dk6WwW0/Sn1YXaRsefRRl715nZL16sGwZBXfcSe4zz3N64Z/Yg4LKa3bZKArccw+mzVuwNWqE7dpr4Yz8gGK2oFgs2I1GbB06lFGQRCKpSC5px0h8fHwFmyGRSCQSiUQiqUxat27N999/z969e+nY8VxhyiuZ//RNycOdidbVNM7Zy6Q9z3HctwkH7E0pVipOgLUqUBSFWzxHoa+Fu14ktRS7XfDLb23YiPR5vxE+7FrV/dbIkTB3LviWrg0ikUiqjvnz57Nw4UKGDBlS3aZUP61awdatcOutsHIlvP02fPIJPP00vPBCuYv38fFxuJqfNWsWLz32ClcFdcVd71F25isQyy23Oo7Lo5aQed8kgtb9i37lPxivHgDLlkG7dmqkTkfOJ5+Xy85LxR4bi+m/deDivs7/6y8AKOjTH72/f0lZJRJJJVC7fulJJBKJRCKRSC4JnU7H2LFjq9uMCsctOqTsRGdYv+MvIdzG1ylynkwIX5iDGF38F8H2HAJyE6nnfZ1jwHdo0TIU7CTrwjhoaIgSIboHyt8lCl7GRDQRwkfW/+c4DjBofvQeEQWwlcWiQOrRIzsdxw1+EleYGsIDhLBWbL1g2R4h7NnXxUVImigGqb8qUrTLRaQawPznEcexWzuNQCw+QkinEX3FJJaV7yIQbtGcx00jtqrXi7ubcjVC1XUbOld6BmtEqsM1YuybDoqrgJNSnffgj80JQpyPRuT9lEaoNjRQHNSKcDlXkkaIXaMHTl6hKKgbfypXCBeanCKW7k3ESa52jcR3fufx00LYVZw+UyOsHam5HwPa1BHCSZnie7zjaLrTpmJRWDMmwpeIm0fgsWkDhb37UnfUSNWHekQE9OsBv/0G118PcXFgsfCPi9B795ba90ekWXSAEC5NqPRUjvidiPATn8vRVPHeNgpzTtBoxVIHtY8q1a6DydlCOK/Q+e5uPCy+W6MHNC61rEPJOY7jOhrR5PRs8V3Tvi8VKb6uffc6NS65Tj2UJF6/l7s4nNDYRZC5sFj8Xv+28bgQHtElplS7XAXXj6Q4bczNzT1fcslFoigKw4cPr24zag5hYbBiBSxZAi+9BFu2gMnZ1lyMALaWt4f94BLy5cGwh7Bjx5qZB0BCYir7U7YxKHYU7hnid58QsW4IaCM6fAp1EZs+fihdiNMKl+/dLeo+KTqxbW3Zyll2oKYtbaDp8+yNF9ud+pr49BzndWjF1ZM1QtSpmnanUR1nH8lDrwOzGZKSoH59cjT1Sqi/2Kb5GDWLQubOgWuuQdm+HWufviTP/oXiTl0AcDNo0los8MUX6uRJz57kafotroL0Zb0PreoFCOHsImcd7u6mhxBnPRvgocd/1rcA2EaMwPvrGfD669C0KSxYQI6beP/83Esexr0YsfWcIrFd8dP0eWoKWtF77b33dHnmZaUtK748uIqta88V4lf6JOjFCKhrr6Eixdb3nMgSwtr3uLT7ZSpDfD0119kfDdPUL9VNhbwFJpOJlStX8uOPPzJz5kzh70pl9erVXH/99dSpUwdFUfjtt9+q2ySJRCKRSCRVTE3oDxQVFZGXl1fl562NHNdH8obnON71HM189/7OVfB2O23N++li3smI4r95Kn86Y1dPoc3xldVrcBlk5KUwN38+/xatxWaXgq+SikWfkoLXqhXoCvLxXroY/vc/iIyEhx5SEwwYoGqMLFkCgVLtRnJlUxP6AwAzZ84kOzu77IRXIoqiTu5u2qTqQTz6qDPur7/gttsgMbECTqOgU9ShOKvdyi87Z/Dv0SXM2PAWhUWyvyZgt6u7Dhs0gNmzLz5/aKi6c7FHD/Q52XhuXF9y2qefVtuvgQNh//5Lt/kiUdLTsLRthzUmBs/PP4V77oGEBFi+HIYPVydsJBJJpVHuiZHDhw/TpEkTrr76asaOHcv48eMdfxMmTKgIG2sl+fn5tG3blk8//bS6TZFIJBKJRFJN1IT+wEsvvUTTpk2ZP39+tdlQq1AUTulCOKx3auUp2PndYyArjV2J10dhAyKy47h21zf4FmZUn61lsPPEevZbDrCy+F8+yZvOTtNurDZr2RklkgtAn5oCgLluPU5Pfg7O+kX/3MU9SefO6oDWGQI3rMYtQ1zVLJFcCdSE/sDChQsZN24czZs3lwsmSkNRYOhQVTD7LG+9BXPmQNeusG9fhZ1Kr+i5rsVtuBs8iTt9kOk/P0dBkdwV5SAxERYvVo+nTr20MgICYNkyUj/8jKwHHj5/GrsdvvpKPS4qgl9+ubRzXQL28Aiy1qwnc9d+im6/A4KD4bHH1Mh//kG3fVuV2SKRXImU25XW008/zYkTJyrClsuKwYMHM3jw4Oo2QyKRSCQSSTVS3f2B5cuX8/bbb2O32zEYpAfVS8Wu6Njl1twR9rbl8z/9YsJzjlM/bQ+7o/tUo3Ul0yf2eooOn2SjaQunbadZULiQ1f9sZEDTEbSv1x2pQiIpD6YWLTn562KKevYGIOit1yA8HG666bzpo+Z+R9M3nscUEo4y63tsV19dleZKJNVKdfcHEhMTueuuuwAYM2YMPj4+ZeSQCLz/Powere4k6NVLHazv2rVCim4R0YF7uz/HV+vfJPHUYabPe457bnodL0+py0TdutCyJezdC+PHX3o5Xl7k3jbGEdQnJaIEBmD3O+O2S1Hgqafg44/ViZSqdj2rKKAoFN19Dz733u2cpGnQAFu79lVri0RyhVHuHSNr1qzBYDDw999/A9C+fXt++uknQkJCHJ9Jyqa4uJicnBzhTyKRSCQSyZVFRfYHEhMTue2227Db7dx1113Sl3gFkq/z5mh4e+woBOSnVLc5JaLX6enr0ZtHfB9ggHs/PBVPMvJTmLd9OjM3fYjFai67EImkJPR6x6SIg5QUVbT4PGR27klB/Ua4p53CeO01GCZPFnz4SyQSJxXZHzCbzdx8882kp6fTrl07XnnllQq09AqhXTtYswa6dIHTp1VXgX/9VWa2C6WOfwwTuz+Lt5c/SSlH+GLeM+QXSJdnKArs2aPu6Hj88QopUpeTTZ3bbiB88AD0x+OdEc88AydPqpNfMaVrIFUa7u7g7w+TJ6vhKVPArWZqf0gklwvlXjqYlZVF8+bNGTBgAIqi4Obmxi233MLrr7/O1KlT6d+/f0XYednzxhtv8PLLL1e3GRKJRCKRSKqRiuoPmM1mbrnlFscgyLRp0y66jHs97xbCXxR+dcF5Xwl+sdT4L4u+vuD8ifmiP29t3me2P3TBdi20LxLCb1wlDuBq5Yyf2fpgyYWlpYFuBt2Cg+kGvD1MjDbtEndUu4qxp6SKIt9ZFnHwo35GsBC249QHyUoXxVPDuzUUwsX/HRXCnv2a4wkMoh19LLez7vBfLD/8G77GAHQFduyKc3JEMYnuO2ynRRFYfYTL6lUfjdhjnjjAXbROs6PcKqqPZ7kIUdoPiu7ITBoR+KOasiObhwrhljFO/Yr9CVlCnLen+HMn0EcUfPQNdT71qFBxBbVW5F0RdWoxmUXdlh07kh3HPbrWE+IOJorP+OoOosi3VgC7aV2n+Oy/u5KFuK7Nw4TwrjhRBLeuizC3p7u4L6iORphVK+IZFSjG61zEedM1IuerNXY1HNBECM9Zc0wI3zq8NwzcqboImT4dw/vvYVi1EhYtYl2OaGf3WPEaZ692vtejezcS4rTPyWQRryk8QBTn/W7FYcdxm4ZBQtzGA6lC+PpO0UI4NtKfS0UrEt800ilW/PsmsU7w1jw3N0PpArJLtzi/b3VDxJrMuwxBXa2we2loRZKvbluyWL1WxL11g6ASUqrklyLc6irqnuMp1iWXKxU5PvDUU0+xfv16/P39+eWXX/DwKF0IWFICwcGq7sONN8KyZXD99TBzJtx660UV83z8M0I4z+R89w0PBPHF7Kc5mXqMJf/N5PZurwlps9aLbWtRM+f3zLQvTYhLyikWwl7hYhvnEyzWjXlFTi2LtGyxvtKKRzeIFMXWT6SKrtmaRzvb5UNJYvsXpamj6mranTUrthM960tSrh1Om5sGCXFaQfkLEte22UCnI+pM26ikHMctNwfl5EmirukLv/0G3bsTlyZeQwNNn2Def3GO496txX5KRBni2u4u9Zm2LdVeP2lp8MILUK8ejBmDn8EAqamqYLtOvN4kTZ2sbcO1AvI+RmefqKaKrWspSyA91KdkIe+yBOZTc8VnoRVQLw+udhdRus7fxQioV6RgvBat2PrFEOhV+jXUNMF1V8p9R319fbHZ1Ifs4+PDgQMH2LhxIwkJCaxfX4qwkUTgmWeeITs72/En3ZNJJBKJRHLlUVH9gaeffpp169Y5BkE8PT3LziS5OEJDRf/jtQB3gwf9Gl/Pgz1eZETLO1C0I/0SSQXilXKSzm8+Rdg2l9+EXl7wxRfqQFRwMGzbBv3745aRVmI5EsmVSEX1B+bPn88HH3wAwPfff0+jRo3KyCEpFR8fVZj91lvBbIZvvlF3M1QQEaH1ue/2t2kd24Pr+99ddobLkOYvPUHM91/Q+bbB6Bb+7ozIzATX74HZXPK9LypSdyUqiroLY8oUR5S9RQuK12+A9u3VSYiBA+Hw4fOXUx2EhsIrr8Ddd4NeD488orqpHDmyQt81iUSiUu6JkXr16nH8+HGsViutW7cmNzeX7t27k5ubS2RkZNkFSABwd3fHz89P+JNIJBKJRHJlURH9gbVr1/L+++8D8N1338lBkMrAZFJX8z36aHVbcklE+kWj1xnYGb8Os0W6MpJUDvVW/cmWR1+h0aK550YOHw6bNqkrYg8cIHjxb1Vun0RSk6mI/oDNZmPKmQHhJ598UrrUrCiMRvjxR3jnHZg//9zthOUkPCSacTe8gIe7V9mJLzcsFoLW/+sIGt5+Rz0oKMB4/fUYbxgJhYWQmIixd2/47LPzFqNs3ozh/fccZTJ1KhS77KCJilJdo0VHQ0EBLFxYWVdUPlJS4KOP1OOFCyEhofT0Eonkoim3K61x48axevVqDh8+zHPPPcfIkSMxmUzo9XpeeumlCjBRIpFIJBKJRHKhtGjRgrvuugudTseIESOq25zLj23b4M47YfduNXzXXdC6dbWadCkcTt/DDxvfJ9SvDo8Nfw+Dvna4VJDUHo4NuQm3/Fy2TXrh/AkaNoQlS+DwYU616FG1xkkkVwA6nY41a9bw4Ycf8sILJXwPJZeGTgdPPFHpp7FYzOzfuY6W7Xui0+nLzlDbMRg48KI6GRK6fAl+H74DZjNut9yMbsN67IGBKElJ6JYuRbd5E2zfpvbBeot6V/aePTG//ApuL05RdWH69lV3jrji7a3qeYDaHtVEwsPV6zvb54yOLj29RCK5aMo9MfLoo4/y6JnVcs2aNWP//v1s376dli1bEhsbW24Dayt5eXkcOXLEEY6Li2PHjh0EBQURLSsziUQikUiuCKqjPxAUFMSMGTMcrk4lFci0aeouEatV9fX8+ee1clLEZrexaN9PAMRGtZOTIpJKwex7ASvcW7VS/w6mlp1WIqnFVGV/wG63O1wlBgUFSbH1yiY/Hz79VNUeqcBduna7nbeevZWUk/Hc++Q0WrTtXmFl12SSh9/i+N+jZQSGZ55B/+ef2D09Mf2+EHvjxlgfeADdhvXo58yBm26CLVvUHYhnURSszz2H2yMPg6enKmCu0R8hI0MVdgfo2rWKru4iURT45x/w81Mn46QLVImkwlHs9vI7qUtPT2fatGls2LCBmJgYJk2axLZt2+jbt+8VOwmwatUq+vXrd87n48aN47vvviszf05ODv7+/mRnZ0u3WhKJRCK54qmt7WJV9Afu95xIgb2QvZZ9bCjehF5f8orC+z0nCuHPCr8s04YLZaLHXY7jssTVq4pXQ18Swi+kvVRqfHZhZolltbUlcnvhr+iA3YZYZhu6kqc4tVsKrKJQeYZJFMSO9WnsOA7q1EqI2/KvKArf9f47hfCJb5Y5jqOG9xLiEn9bLYRDw+oKYX2gKB6qC/ZhY9IqFhyYiae7D0/f9AleHqqwseKhWTNVV3zn7PvSncdFoqCnrm24mLdYjMdPs1LTRRRWHyMKWht9SxZIB8g4It5bz1CnuxE3jfhjs+gAIXxII4Jez6XsU5niM7TaxJ9JriLvADuPiqLxQS7XGKy5hsQMUSB1RLf6Qvh0niiS62l0fo9/X39cY0eAEG7TIFgIbz3s1OtwFcAFUVwXYMP+FCHs4SbWH1c1cQr7Hjkp3ruW9UWNnR1H0oVwiL+obVTsIq7dpUko53DqlDq4+MwzJIh6qES7iMYf0wjkmi2iaHdWnugeLkjzLFKznM+5RzPxvU3WCA5H+pcuxJqQke84PulyDNC1qSggv+FQaonx5xUMduGPzaL7FK0ofGn8d0B8xnWCxe+TXicOtEVr4ktjvWZCq1vshV9TWRxMdr5vRoPzvczNzaFtoyjZHygBi8XCrbfeSo8ePRwLWCWVzG23wZw5MG4cXMCzLA3t9+bqZtfx35GltKnbhTHdHkHxERcyNLj7Ksdx/Jw9YmF1xPbfq7HYVtTTtCXNXdrLUI2Y+JLNosZNhrYtbSSWbXRzft+bRIltfGZusSat2O40dUkffyqHRp1a4ZacxMlpXxJ0n7OvSUEBxl490e3cia1NG0yLl5DjHyKU5dqWummE2y0pqbh98Tm6I4cp/m6mIEwOkKIRSQ8vQ2C9NFyfa1l14eq9p4Rw75YRl3xeLZmFTjHyQM+qWxTjKlwPcHOPBiWmLW/bUVpZWi6m7KOpuUK4UZhvtdhxJVLSO1FR4wPlvvvx8fG0bduW1157jeXLl7Nnzx6ysrK48847+eSTT8pbfK2lb9++2O32c/4upNMjkUgkEonk8qAq+gNmu5lFpiVssW7jySefrLByJU6CbVncVLgIHbDRrR1zPYcLkyK1iSJLIcuOLgBgUPubHZMiEkm1UlwMnTrBa69B797oT0g/6pLLi6oaH7jrrruYP38+Tz/9NHFxcWVnkJSfsxNQs2bBrl0VWnSnBn0A2Ju0hYy8lDJSX364HTuKW3ISdkUhd/BQMdLLC/Mv87GHhaHbtQv3Ht3Ru+zKKpOQEMzPv0DxdzMr1miJRFKrKPfEyOTJk0lOTiYqKoqzm0969uyJn58ff//9d7kNlEgkEolEIpGUTJwtngz7aTzx5N57761ucy5LmlvjMWImXl+XJe4DqtuccnEq7wT5ZnXVW1Z+BlabtYwcEkkV4O4OP/wAwcGwdSuRfbrh+cfv1W2VRFKriIuLY+bMmeh0On7++WcaNCh5VbakAuncWdV+sNlUUfYKpE5AfZqEt8Zqt/Ln7p8qtOzagPG4Ormn2O3o8vLOibc3aIBpzVpsTZqgJCTg++iDF3+SwkJVoF0ikVyRlHtiZPny5YSEhLB//37h85iYGOLj48tbvEQikUgkEomkFLLtOQDU10fTtGnTarbm8mSLoTlzPYYxw/M2rIoe7HbGm5Yx2LyFhtZklPJ7pq0yov0b073u1QCs2/cnGTmnysghkVQRffqofuK7dEGXnUXonaMJvfUGfL77GtLTy84vkVzhHD16FIDY2FiGDRtWzdZcYQQEqP87darwooe2uR0FhV2JG4lPPVjh5ddk8nv1Ja9Pf6z+/lhDnC4YdYsWoaxbB4C9USNMy1dgvekmcj6dflHlK/HxePbtjfHFKRVqt0QiqT2UW3y9sLCQJk2a4O0t+iLNy8ujuLi4hFwSiUQikUgkkoog05YFgK/iU3pCySVTpLiz1y3WEQ60Z9PBegw4xhC2kKl4s1Gpz0ZdAxKUoBotjqlTdAyLHU39gMbYQ9wJC4iqbpMkEif168OaNeQ8/hR+0z7A8++/8Pz7L+jdDUJCyswukVzJ7N27F1AXqUqqkKIi2LdPPe7cucKLjwyIoWP9PmyOX8WizTN5YMhrKDW4n1GhuLmROOtn3PfvcfStlDVrcLtpFHh4YFq8BHv37hAVhfmnOdgKzmhomM2q4HoZ6LZtRb9jB/odO6BLZxg1qhIvRiKR1ETKPTHSqFEj9u7dyw8//ABAcXEx06ZNIy4ujjZt2pTbQIlEIpFIJBLJ+cnJyeGkezIUwrT/PqvSc7uKrYMouF5a3IUwTHH6kV5oF4XJL6Zsrdj6xca7niu4ZRPHsc4SxOKj1xFjPk5j82EC7flca9/Ltba9nPSoy9+hwzkZ2lEo6/TBo47jPWuWC3HNfGKFcPHKY0I4yN0pcm3aIgqgFthEwXCdj6h9YjeJ7iFsOWr6Vp6tsacWY0pVhb1PFiVR6GOlaZCLMPyeNCGv4uMUNlc0Yql2jSC6PVcUwNbV0WiZuIjC2izijpvCZNFdRmGKGHbTiGkXpjmFzUNbiec5kJAl2qURVD8S57RbO9DkrRHeDtYIr/r7iELvOpf8ew+I966uRgQ+K1+8P4cTRTuLXITKh3YRhbZ9NYKpSRrR75hw5z0I0ojRb9gvimU3jBDvV8dG4uRDUqbz3vZpGUlpdIoVxcbdNe/IrjinWP3O4+L7Els3wBnQ6dl695N49RtG6D9L8du1ldx6TeGM6HrYzs1Y27YFX9X2vcczhbK6a+zYHp8hhLWC664kpYvvmvZe+xjFawoLcH7ftNerFQvVirG7ohVe1ebViq1rhdxdN61101z/VRqh+4oUeY1LEcVo2zd2vj/a86zakyyEkzIKhPDtfRoJ4bxCZ93l7ua8wIIi6fKmJM6OyQwaNKiaLbnC2LNHdcUUHAz16pWrKO33RhejCgpfGzSeHV+vJ7BRHQJvboyXt1r/ubmm13w3PBsGCmFznrhw2UtTn63Z7dxBWi9UXPh8XWexDlqEqAPVIFJsS5rUcQqoa+to7SZbk1l06Znt0j7WP9ue1ekJqO2ILrg+Ta/qgt+GtRivG+KcHAF8PAxgt+PRrCH4B1DUug2Wxk3RpabgkXgcjh4FvR6WLeOkbwhcOwzrg4/g88mHcOed0Lw5tGwJgJ+XWP9fjIC6Ftf0mQVi+x+oaacrUmxdy8UIrpclgl7a/Si0iHlLE1vXcrH31lUUPSpYfG/LKqs8Qu8Xk1cbd1zbb9PY7UqGpr8Y7G0sIeXlS2WL05d7YuTuu+/m0UcfZdy4cSiKwo4dO3jkkUdQFIUJEyZUhI0SiUQikUgkkvPw888/U1hYSFBQEJ3OuG+YM2cOWVlZgDrQqygK0dHR9O3bt/oMvcwoMnizzbMj2zw7ordbaGI6TCv7ARrn76NOUSLe1nP9YNdkss1ZzEz4inxLHoMbjaJbVD8Mugv/8SyRVAYFjWM53lidNKyvU38UG+KO4T1yGLbQMAp+X4itiXQfKJEA7Nmzh23bthEaGsqYMWMoKChgwYIF5OXlYbfbHf2BwMBABgwYQFBQUNmFSi6MkyfVidr27Sttx6i/bwhPjv+ClmN6VUr5tQmbpxeHvvyBphPHOCdH/l6OveOZBSmnTqE7eRJOnsRr/75zC/j6a4iKghx1oijnxVdw270T939XwsiRsGmT0zVaVbFoESQkwH331ehdxxLJ5Ui5J0YmTZrEwYMHmT59ukN8XVEUJk6cyKRJk8ptoEQikUgkEonk/Ozdu5fo6GhmzpzpWO3+xBNPkJSUdE5ab29v6pgiGeDW98pxwVAFWBUDB9ybcyi4M16WXFrnbOWgTyuHkF/H1FUYrcX8Y4+iQPEstazqwtvgQ0PvxuzM3sbio/NYeXwJTYNa0iy4DU2CWuLtJt20SWoGuuws7EHB6OOO4f7ySxT+MLu6TZJIagT79u3jxhtv5OGHHyY0NJS0tDTGjBlz3rR6vZ6JEyfy2WdVu9P0smXYMMjKguxsNbxnDzRuDB4epWa7WIL8nbvBzk52XanYPL04NH0WHR4ch27NagxTXsC85E81MjKSguMn0O3YjmnjFgzHjmCNiMS3ZTNo1EjVgdG5rEA3GMic8R0RA3rB4cNwyy3w559Ve0GdOsGAAep7FBhYZnKJRFJxlHtiRFEUPvvsMyZPnsyWLVsAuOqqq2jQ4MK3SkkkEolEIpFILp7nn3+eoUOH0qdPH8dn1113HWlpqhsfu92OzWZj69atJCUlYdKZhB/Sjz32GK1ateL6668nNDT0nPIlF0eBwZeNQX0dYYPNRI9Tf+FlyaMbBrYamrPDEEuqXY9Nqdxt4ReDQTEwqs5oGoS14J/ji8kxZbIjdSM7UjeioDC6xT20DlNXYlqsZvQ6A1fucIykOjG160DBzB/w6dsLt7+XUWgylZ1JIrkCuPHGG+nevTt169YFwN/fnwEDBuDr64uiKI5FrEeOHGHPnj1ERjpd46WmpnLffffRq1cvrrvuOpo0aXLec0hKQadTB7RtNrjmGsjNheuug6uvVv8qUPclLyeLL996mt6Db6Tv1UMqrNzahs3LG/MXX+DesgW65ctR4uIgpr4aGRmJLTSU3F4DHOl9A72E/LrUFPTHj2Pu1BlbSCgsXAjdu8OyZfDOO/D4E1V3MQEBkJkJEZXnRksikZyfck2MmM1mrr32Wry8vFi4cCH169evILMkEolEIpFIJGURFBRE//79hc+mT59+Tjq73c62bdt4o/trjs9y7Xl8/sFXABgMBoYMGcK4ceMYOnQoRuOV57+2MrApepbXvYHOKf8QUZhIN8tuull2MwYjO5Q6bFSi2amrGeLnOkVH16i+dIrsRULOUQ6e3s2BjN2cyk8kxMupybD5xL8cSd/HrZ3ux2hwL6VEiaRysHbqhC08HF1KCoaV/0CzLtVtkkRS7ej1esekCIDRaGT58uXnTRsXF4enp3MH43///cevv/7Kr7/+yqOPPkq3bt0YO3Yst9xyC4Fy9frFceKEOkmSmwtz5qh/oO5UGDwYRo+Gbt3KdYplv85i69rl7N+xieYtWhNep3y6JrUZe2ws1oED0f/9N7pFi7A+8KAjzu3xxwiKP072G+9gOLgfWjSFVmd01A4dIrRfPygqJn3lWqzRMdC2LXz6KXz2Gdx8c9VeiLu7nBSRSKoJxW7XSh9dHIGBgcTExLBjx44KMkkCqpiqv78/2dnZ+Pn5Vbc5EolEIpFUK1dqu1iZ133y5Ek++eQTli1bxtatWx2fBwQE0KVLF5588kkGDFBX2mVlZZGamordbsdisWAymSguLsZkMuHh4UHTpk0JOOOPubi4mLy8PGw2GzqdDh8fHx4OeFA49xeFX12y3fd63i2Eo3zEiYXSBNW1eTNMoijzz9ZfS0yvtVlbVqnXZLfDv//Ct9+qfqRPq8LT293bs8h3GHaNgOP+nINCOMzoFDTOs4qCjT56UbDRUy+668owiyLXDZq2dRxbkjSC6VZRANW9VTQ5xVn4GP3QKTqs2QXMOzGTXdnbqRfQkDu7PoaPuz/nQ19P8756GEoOa0Q6dRrBWFuhKCjrESqu+nT9NVN8IluIC+1cVwinHRRF0b1CnW7C/ELEcpvVCxDCB05kCeGoYDG9t4dTl2Xn4XQhrkGUeD+6NRcFwBdtSigx/liyeE11Q0XXZh4a0e/MPOcuisJi8d7p9eJeH4NG0PKURhA7JsJ5rqQ08d3z1oi4dtGIfG89Jn6/BKF3jQuYYo34rt/Zsm02lIMHMWzZhHL4CNZBg3Dv1xcmTYJp06BNG9i6FQwlr/fbo3lurVye66HkHCGuaaT4nJKzC4VwoUm0s6HLs5j3X5wQpxWbTc0tEsJGg/O5BWju5S/r4oXwtR3F99jHKF7v5iPO962TiwA6wN7ELCHc0lXovhLJLjIL4dO5ovBzgebdjNCs5nYVmHUVuc3JySE8KFD2ByqQo0eP8vPPP7Ny5UpWrFiB9UxbYDQa6dSpE1988QWtzgwop6SkkH3GZZTVanX0BYqLizEYDLRv3x6PMy6kCgoKKCwsxGazoSgKXl5eeHp6Xv4uoGw22LABli6F5ctVzYqz7etjj8F776nHVqsq2u5+4YsM3ntjJRaLmU+/fJgTiQeIDmrMvf1exKAzoOscKaQNaC0OtBedFuv34lxxx12Pfg0dx3vjRMH0kADRLVjnZmFCOEAjCL12T7Lj+KqmYtq/tyUKYW0bluUiNn1z74ZC3J+bT5xjh2H3LhSbFXPb9mw8kKras38X/e4ajmK3Y7qqI8atWyi8YRRZ38xUMxYVETl0EGzZomrDrF9PQp5F7VBYrWAwEOjjfC5KUhKeL09BWb0a8w8/khzbVrCjfojYFyuPqLeWyiorT1NH+3iI7VBZ5zmZ5Wwf6wSIfc8TmnetXpBYv1cV8eliv8Vf855ejBi9lop8LhVJcrbY14j0r1iXftVBSfe6otrFcj+5kSNHcuTIEU6ePFneoiQSiUQikUgkVUSdOnWYOnUqW7ZsYe/evUyePJk6deqQlZXFX3/9RX6+88fEnDlziI2NpVmzZrRq1YoOHTrQrVs3+vTpQ5cuXVi5cqUj7U8//URISAhhYWGEhITg4eHBV0Xf8F3RLH4qnkucNd6R9ujRo3z55ZfMnj2bP/74g9TU1Kq8BVWHokDfvvD995CSwvf+d7Lesxv/eDtdPPhbs/C15ZRcRjXh5x6A7ozbL0VR6BLcC0+9FyeyjvHp6pc5XZBWRgkSySWQm4vxtlvx8jDi2bY1bnfdheHNN3Dv3w/69VMnRoKCYNcu+Pzz6rZWIqnVNGrUiKeffpq//vqLxMRE3n33XVq3bo3JZOK///4ThNqnTJlCbGwssbGxtGjRgvbt29OlSxd69+5N9+7dOXXqlCPtM8884+gPhIaG4u3tjcFgwN/fn+joaPbu3etIu27dOr744gtmzZrFggULOHz4cJXegwpFp1NdMr3yCqxbpy6G+O03GD9e1a84y8qVEBYGEyZAYmKJxWkxGNy447YpeHr4kHD6CH/tmVvx11CLsLRug7lte+cHVivt334OxW6n8OZbyfnoUwA8fl+APuHMIgQPD/j1VwgJge3b4eWX1c8VRZho1//9N8aXX8K7dQv0M2eii4/H7dFHK/eC8vNhxAh46qnKPY9EIgEqQGMkJCQEi8VC+/btufHGGwkPDxdWAEyZMqW8p5BIJBKJRCKRVCItWrTgrbfeYurUqWzbto3NmzfTvXt3R7zRaCQgIAC73Y7BYMDd3R13d3eMRiNFRUWCq43zrQS1YaOYYortxSgu6hQbNmzgnnvuEfL26NGDkSNHMmLECBo2bHhOWbUeg4EEtxgS3ER/44MLl9LEfJgEQzT/2ILZrERhR6EuOXjaLBzXOVd+6u02rNWkUVLfuyH3NHqYmYlfc7oglXnbpjOxx7OOyROJpCLQbduKbtNGR9jWuDEEh6DbuAFWrYJt21Qf8PffD4MGVZ+hEsllRkREBI8//jiPPfYYhw4dYvv27dSpU8cR7+Xl5dghqiiKoz/g7u6O2WzG19e5M+y8/QGbjZycHHJycoQVvr/++ivvnd1JcYYWLVowcuRIRo4cSfv27dHpamk74+cHw4erf678+Sfk5Ki7SX/+GZ59Fh55BDw9z1uMK0GBEdx0wxPMnP0S64/8zZDWoyvH9lpG8I5NNPr5ewIP7Mbk40vua29g9/bB5u+PLjsbt+1bsUZHq4nr1YMvv4QbboB33sEw/GYsjZ36OsZXXsZ9qtMFrT0sDCU1Fd3mTepOn1J2KpaLPXugQwc4dgxMJtBX0nkkEglQARMj7777LoqikJaWdl6f1nJiRCKRSCQSiaR2oNfr6dSpE506dRI+nzBhAhMmTLigMu644w7GjBmDoihYrVby8/N5MOJ+zHYTxRQToAQ40kZGRjJs2DDy8vJITU1lz549rF27lrVr1/L444+zfPlyhzuvxMREioqKsNgtGJTL60eim92E0W5CAWIsCYwngfH27Y74HeaGfOt+LQCK3c4H5rmkKb4s0rfmsK75OW6JKptQ93Du7v4UH6x8lriMg3y25hUGN7+ZRqEtqtQOyeWLrXcfzC9MwX3i3diaNMW0Zw/Y7biNvg19YiJcf7264rdNG4iNdWb86SfVj/+ZgVuJRHJpKIri2BniygcffMAHH3xwQWW8//77vPfeew7x94KCAnJzc8nLyyMzM1MQgG/ZsiUjR44kLy+P7Oxstm3bxr59+9i3bx+vv/46aWlphISobuIOHTqE1WqlXr16+Pj4lHT6ms8776g7A55+Wt1Z8uyz6g64116DMWPUnSel0DxW1VcyWYspNOdTi+9EhWA4sJ8ej47DUKS6eNp3z5NEhEfg89IL6LKzsdRvQNE1g8VMI0fCddfB4sUEvPQ86T84d9/YoqOx63TYWrTA9MxzKDffBPn56FavrrxJEYBOnVT3XmYzGI2gcSMkkUgqlnJ/m6Ojoy9/H5ESiUQikUgkkgvCdUWnTqcjICAAH8UbFO9z0vbv318Qj09ISOC3335jwYIFrF27lg4dOjji3nnnHT7++GMAPPHAX/EnVBdKs+JYogxRBOoCam2f1KwYmek7Fj9bNs1NB4gp3EYz0rGhcAofshTncEcYOXhjwtuewYOWVRyyHWaBWw9O6kJKOUPFE+Qdxo3t7uKXHTM4kXmUlNwkOTEiqTgUBeud4ykcOAhSU1D0qg9689x56IuLnCuqO3Z05tm6VRU2DgqC555Td5N41H7f2hJJbUW7w8PX11fYUeLK+PHjGT9+vCOclZXF4sWLWbBgAUePHnVMigDcf//9rFixAgB/f38aNmxIx44d6dSpE507d6ZNmza1oz+g00GvXrBmDcyerdZbCQkwbhwsWKD+lYKbmzteRh8KTHnkFGZe8RMjlqaxJA24jpjFv5DZrDXHRt5O1NEjeH+q9h1zpr51/jbhnXdg6VK8li7GffUqinv3Vcu7czx5I29Qd/woCm6KAj4+2IYMgczCc8upKHQ6dULEaCw7rUQiKTflFl+XVA5XqsisRCKRSCTn40ptF6/U6wYoLCzE08WdxIMPPsg333xDYeH5f4weO3aMBg1UsePU1FT8/f1xvwhB0+rk1bCXhbChXjDulgIsOjesOlEY0tAwGJ/C07Q9toLOBxdhsJmxobDB0Jolxp4kWzRCkwbxvYl6bqTj+Nirol/yMHdxcsW9jejuy5LgFHjOy1CFtfNs+Wwz76C7sYtjJ0+KNYXQwCj89M5zG6KChLJ0/s5na9eKrweKAxe6BgFCGI1Qt/Eqp5sXU6p4/Yq3RlhTM1jm5hJvzhOFaKM1wrUZaXlCuEUT8X4dcBGrDQwUXaGEacQv92lE4A0aAdCWDZ33y08jFpqVJ4pY5xSIAqpGg3Mw8ujxLCHuhn6NhHCaRqRTS1K685qjw8QBzd3xp4WwXife23aNxPuTU+C8v8F+4v3YfkQUq+/VSrz3C/6Ldxz31MS5nxHuNW7aQNCjD+J2YL8a0b49rFtHivhYBdHv/QlZQlzHpqLNYb6lT6ykugiKL90iigJrRYO1wqxHU3Mdx1HB3qWmvRj2J2UL4eZR/qWmT9WIoof5Vk696SrUC5CmEbbX6UoeyHZ9p/Nyc+gYG33FtYtXcn/Abrc7Jjrsdjs9e/Zkz5495OScq8sVGhpKSkqKI/3evXuJjo4ucUKmRlFYCB9/DFOnwocfqpokoIqB63SgKOeIEL/85jSMRnc69+jL0SNi+6c3iqLmRes1OiYB4ne92bBmjuMDK48JcT2GNRfCbgax7Jx8saItcmmnrTZxyHFox3pCOLNAzOvpfuHrt7M05z164jT+m9aR17odNncPuo8erLqmGjyYzJ8XCH0A1/MYHnsUQ1GRqgsTHn7uiYqKwN3dkb/IbIFTp+CMmzmTpl/ipxEyd31ul1S/FxSAl1eZZV2MIHhZdf/FlFVW2poqVF4aB06KbWmzOmJbWtY1Ldhw3HHcsWmoEFeZYvS18V5fKjVGfD0zMxOrVa0ETp48yZQpU5g8eTJr164tb9ESiUQikUgkkisUT42P7U8++YT8/HzS09PZtm0bM2fO5MEHH6Rz5840aNCA+vXrO9Lec889+Pj40LZtWx544AH++OMPEhMTsVgs1BaKDV7nTIoAoCjkeQXzX6ub+fra99ipb4IOO90tu3i08Eci7Nnn5qlEfHTe9Hbv4ZgUsdgtzCyczTsn32Jfwd4yckskFYepc1dOrd4IX38NwcGqoO7kyVDGOsCYOd/S9e4b8TlyoIoslUgkF4Pr7g9FUfjvv//Izs4mOzubvXv3Mn/+fJ5++mn69+/P1VdfLUyiXHPNNfj7+9OsWTPGjx/PggULSEtLo0auD/b0VAW3jx2DO+5wfv7NN9C/v+payYW8vDwGj7iFAUNG4OsfULW21lT0erK79cLq44vdzQ2eeQbq14cvvijV7ajlvfdh+vTzT4oAPPqo6rpx6VKIj8fYty/GQQPVCZPK5vffwdsbRo0qsz2TSCQXzyW70oqPj2fYsGHs3buXsLAwZs2axZ133klycjKg+p6cN28eI0eOLKMkiUQikUgkEomkbBRFITg4mODgYNq3b88dZwYObDabMHBy4MABLBYLu3btYteuXXz22WeA6tYjIiKCOnXqEBoaSkhICCEhIbzxxhuO3SVbt27l5MmTGI1Gx5+Hh4fjr379+ujPuPXJy8vDarViNBpxd3evcmHYHO9QfvC4jvXWE9xcvIxTumBOc67LssqmyF6E1W5Fp+j4z7QeG+pqta35W2nh1bLK7ZFcwej1MGEChIWpOiTTpuFrtpL7xjsl+utv+e4ULJ5eNJz5BQzpWcUGSySSS8XPz48WLVrQokULbrjhhnPiMzMz0el02O12Dh48yMGDB/nuu+8A8PDwoF69etStW5fw8HDCwsIICwtjzJgxxMSouyVPnTpFfHw8bm5ujj93d3c8PDxwd3fHz88PNzd1AYPNprZ7FdIPCA52Htvt8OKLkJyMfe1aEuo3YN1/a/l5zhz+XbWKOcs24+cfWP5zXq6MHq2Kq3t4gGZnioDrpElhIaxapepVnWX3bnXnyQcfwJYt6E6fxu7jg7JjB/auXSvNfAB+/FH9P38+5OWBV9X38ySSy5lLnhh56qmn2LNnDwApKSlcf/31FBc7t2JZrVbee+89OTEikUgkEolEIqlUtAMR+/bt48SJE2zdupXffvuNuLg41q1bh9Vq5eTJk5w8eVJI//bbbzuO3333XebMmVPiubKysvD3V7fTP/TQQ45BFlDF610nUbZu3Ur4mdWHr7/+OnPnzkWn0zn+PDw8CAsLIzH3BH29+uCrV119JOTHkVKYjEExYNC5Of4bdUY8s/II9a2Dm151r5Rny2cd7mwzXouieJJrLcZoV9AropuLiiDHkkOSKYk0cyodaOX4fHnxSvZa9glp6xnrMTTw+gq3QSK5IIYOVV3STJqE5/TPKRpxA+ZuPc6bdNWC1Vg9PFEsFpe3WiKR1HaCgoJISEggJSWFbdu2sWjRInbt2sXatWspKiri8OHDHD58WMjTq1cvx8TIzz//zKRJk0os/88//+Taa68F4Ouvv2bixIkAGAwG9Ho9BoPBMaHy7bffct111wGwYMECHnnkEQwGwzmLMDw9PXnqqacYMGAAALt278YLaAxMHDmSGdnirtAt61bTf/Dwirhdly8eHmC34/b7b5j79cewexd2vR769Do3bVGROqn+zz/w3Xcwdqz6+XPPwZAhsGwZALaOHbG1bIl+zk9YWrQAz0qcrHjtNXVCZtcu8PWVYuwSSQVzyRMja9asQVEUJkyYQFJSEkuXLsXLy4stW7Zgs9no1KmTY+JEIpFIJBKJRCKpKhRFITo6mujoaMciHavVSmpqKomJiZw6dYr09HTS09PJzMzEYHB2iWNiYujcuTNmsxmTyURxcTHFxcUUFRVRVFSEh4tw59kVomexWq3k5+eTn6/6+T67khQgMTGR3bt3l2hzby/nD/Tdmdv4L3XV+RMegseveYdwv7oAbLVsY7N56znJvgc6omCzhFGgBLHO0IpfbIlse/VbbHYbIUF18DHpCNIF4af4YsGCv90Pd0WdcDlqPkZi/HasdgtpBadIzDtOrsk5INPUqz4+OlXq1Y7TtYOX4kVfYy+6hvaqHeK3ksuXhx6C4GByk1OdkyJWK/qTSVjrRDmSFdRrUE0GSiSSqiA8PJzBgwcz+MwOAJPJRFJSEgkJCSQmJpKamur4q1u3riOfu7s7DRo0wGw2O/7O9gesVqugY+baH7BYLFgslnMWDp+loKCAhISEEu2dMGGC4/jw4cPok5NpDOiyszEYDLRq3ZqBg65h9Jgx5CjBJZZzpeOzcxu88A00aACxsfj873+OOPPVA7H2WXpuJnd3iI2FFStUjRd3d7jlFnX3yP33w2efwcSJmJ5/AffYpiiFhdj69YMhlbgQpGlT9X+Us93CalV3SEokknJzyeLrRqORFi1asGPHDgoKCvDx8aFjx45s2rQJgE6dOrFt2zahAZBcOFeyuJpEIpFIJFqu1HbxSr3u2oLNZnNMoJxvEqVNmzYOt1sHDhzgxIkT2O12bDYbdrud/Px8UlJSOHXqFC+88AJGozopMWPGDH7//XehvMLCQgoKCsjPz2fTpk3Uq6eKl7799tt8/PHH2Gw2cnNzycvLYyrwjMZWu5cX39x2G//7+usSr+eJzq8T4qXucPnr2K+sTFgixCsohHlFUs+nAX08exPo5nTfYc3Mw4YdBQWdooCb+IPdEB4ghE8fdgq7hvbtIBqiXQ2pKUvxEbVX7FnOwSdFIyarqy+e156iEWdv6BJfJGrQ2BNzhbDnIFFMu2j1cSFMrHOAyq+xOFhVpBE5d9eInBo0Qq0mF4H1ejEBQlyRSfx9lZYs2unjIupp1txL7VSVVti9sFi8B8F+Tjt9NQLxyadF8WwtreqL7l12xznF2uuHi0LIWhF4i8buSJdrat0gSIhLzymCwkJ0BfnYgkMEoW6AAy4C64Fr/6HVfWNIateN7bfci+91VwtpQwNEbaO9xzOFsIfmXQz1d06U+niJ96dJndJFzxe6CLMGap5Dl+ain3vtT/aTGQVC2NvDObkbrRFyP61xH5NTIOoUaOcvA32cz9zvIkSQAXJd3p+cQvE8UZp7q2XzkXQh3KlxiOP4373JjuP8vFyu6xp7xbWLsj9Qs7BYLI7dnwBFRUUO95pWq9UxOXJ2QiU6Otrx3DIyMjh27BgWiwWTySRMuBQWFtKzZ0+HbtrevXspvv12OuzcScJ99xH63nuCBpur0HKBpv5OyRTraG19fzRJ3H0SFugsN1WTt3GUWJ8FadqwxZvEiR7XOj7EpZ6Ec9sSrd02F7H2jFyxbagb4iOEj57UXoOzrfBcsYzI225Uy/T2QZefp05yzJ0LoaGkHjkuVICGsyLVNhteDz2Ax3ffqJMPv/wCI0aobs0yMiAkBPPrU3F7/jlsbdti2rIVi6bbUmQSrynER7xf5aHozbdxf+N1il5/A+W+e4W4ihTaTsoS34Gy6nBJ9ZCj+f5cbLtdURxJEfuijTX9vMqgotrFS75jFosFLy+10jn733W1neuxRCKRSCQSiURyuaHT6XB3dxdWjZZEs2bNaNas2QWV+7///Y//uaxsLI3JkyczefJkR9hqtZKbmsqpffsojo8n1A7us2ejX/kP4+fNI6fLI5z0iyI1J4nM/ARuPr6OVoVZPBrYAEVx/qCO9mtEt4i+6NAT4B5IXZ/61PGNxqhXr9WaIg5GKIqC/pxhd4mk8jEcPkREl/YAZH7wCea77ioxre+u7Sh2O3W3r6Pu9nWkrB7Jgdc+wO5mLDGPRCKRaNGOd511oXkhnNVKuxBatmwJAwbAzp1Ee3urAu2SC6KwV1+sfv7oc7LVSZGuXeHrr9WJjrQ0dCeTsEXVPTejTkfBtE/xsFvh++/h1ltVF1q9e0NICJhMGD79BADLI4+cmVypIlH0FStwf/ZpFLsdj4cfwty0CbYzbtckEsmlUa7pxO3bt9OwYUMaNmx4Tnj79u0VYqBEIpFIJBKJRCK5MPR6PQGRkUQMGEDMXXehGz8e8++/Y+vVG11uLmP3zSPcJ4JBHv58f3wdY3JP0c5SxJToTgR7hjrKaR7SlmH1b2Fo/VH0jBxAfd9GjkkRiaQm4bF8mePY64fvS02bcP/jzPnyT/ZfezM2nY7wJQuI+eLDSrZQIpFIysGZ3SP8+COkpVWrKbUKo5GCIUMBsHl4wDffgJcXBKq7GXWnTpWcV6eDGTNg2DAoLlb1RdauVePS01GSz+xi8/EpuYzKYNkylDM7CBWbDd2yZWVkkEgkZVGuiRGTyUR8fDzx8fEAFBcXO8Imk6n0zBKJRCKRSCQSiaTy8fLC9NtvWK+5hj86PYhd0dE6fhWBuc5BAbOc9JDUUvL+dw8Z078m46tvOf3NzDLT50ZGs/aBF1n5xDsAxMz4GL+d5+r0SCQSSY1gwgRo3hzCwiA3t+z0EgenX3mD9Hc/4uSKteo9jIuD9HQwGrG0bFV6ZoMB5syBgQPV47M7gurUwTJpEgBuEyeinBkPrRIefxxbA3VhurVZMyyPP15155ZILlMu2d9V7969paCiRCKRSCQSiURSg1GOHMHt7ruxjhuLefES0m6eA8DKNmMweXoTfWovYVnHKXb3LqMkiaSG4uZG4U23OoIXKkd7rNe1tNr7H+GLf6XBx2+y86u5lWOfRCKRlAdvb/jzTwgPdw7OSy4IW0AguWOdYvaOXR8dO17YvfT0hN9/h2PHoGVLx8eWN99Ct34Dus2b0H/2GeY33qpgy0sgLIy8zVvVnS85ORhDgsrOI5FISuWSJ0ZWrVpVgWZIJBKJRCKRSCSSCsVsxn3M7bBlC7oN63Hr0IFRXwxzRO88NpCmowdBFgTd1JHW3fsI2Xfet1Asz0XkVR8mihyaUkWRaoNeHHAwuAgpAwS6CJOa9iQKccZmdYSw4i4OddvSRUFQfYRzUkcJ8RLTHswQy/IWRV8pdhEyjxBdYmjLKjoklkXLUCGodxHfzkkUNVg4Kt4fe2tRXFvRFQthk4sY+SmNYG6Wi4g5QHizMCGc7yKam3dAdLvi1UT0a59xWBS87tCjvhBuEOl8zts04tjpp8SVyzaNYPrKkzlC2DfE+Zz2n8gS4rpqrkGnExfg1XXJqxVEz9SI8xoN4vsSHiT65D+V5QznvPM+Qds2UDDxHiJDfYiNFAWGHaLvZjNuq1ay63gWaV16OeKjXcRFtcK0xTt2Ynjmaez16mF56WWSDOL7dXOPBo7jhIx8IU4rnrrpiPgcwwLEdzPUv2TdgXiNIGqURpw93E/8rrqKtc9fHy/EdW8RIYST0vOEcMdGzu+5bxkCsOsOpgrhmDDx/mw45Izv0zLScZyTIydxJVcgMTFiuLDwHL0RL813zmSxCmG9pl6NDBbrkd3xzro1MlAsWyty7tNIbNOv6xwthF3r6ROpYj3RTpP3iKbsNg2c7dSJNDGvQSMuHqMReE5KF+tSD6PznhRZbRjWrMEAWLr3IMz3AieZPD2FSREOHwb/AExz5qCfNw/r449j0NxbH43AfJFL+1iWQHqeRrjdxyg+V7/ggDN2nbmPW7fCunVw772IrWHplGWHtk0r0rTxF1OWNq82fb7Z+a56u13o8obqpaxrqiqqUmy9tPdYK7ZeU+7PhSAV0iUSiUQikUgkksuRqVPhrO6f2Qy33w7L/wM35w/2k/0Gk920JQWR5xEglUguc2wBAZyYvxhzTH3nh19/rQrtAj5mCxQVYdiwHl1mJs1adxAmRgTy8sBkgqAzK3g9PdEvXQqA/tdf8fxsBoV9pUiuRCIpB1YrvPoqzJsHO3eCrnYMItcULC9MwdavH/bmLTCkpIDR6NAcuSD+/BNuuQW3bt0w/74Q65NPVp6xF0JeHnTuDDabqj/z4kvVa49EUgupuVM2EolEIpFIJBKJ5NI5cgT+/RduPeNmaP9+9GniKu0Ddz/K1pc+IL9efcJXLaXXzQNo/OUH6o9sieQKwFy/AZx1EZ2dDU89pQ46zpuHccGvGP9cgi4zE1tYONlNW6oDk0DU3wsxrl4FgO5UMvTpowr1Fqlrdu2NGmH+eBq2tm1RMjKIuHM0Hps2VMclSiSSy4W8PHjrLdi/X/2TXBxRUdhuuRV7mzbqBFNQkFp35+WVnRegTh0wm9EvW4bb7aPVRScAhYW43TkO5ayrrqrixAlnf+2ff6r23BLJZYLcMSKRSCQSiUQikVyOzJyp/mg/+0P9kUew1okqMXngjs34HjuE75fv45aXw07aV5GhEkkNwdsbZsyAhATQ6ci32ECnwxrbDEv3Huzap04shq9bSccpD2P38SHrg0/we/kFOJEAISGquG/z5qAoWO+/H+v//ofbqBvRL1lCxJibSZ79C8UdO1fzhUokklqJvz9ERcHRo1KIvbyknXFRuHo1PP44TJ9edp62bWH+fOwjR6L/9Ve4YwzmH2djePNN9D/8gO733zF/9RW2UTdVru1nad4cVqyAgABVd0QikVw0cseIRCKRSCQSiURyOaIoqpuIZctg3Dh1lWkpHBt3P3ufeBmABrNn0OnUiqqwUiKpORgMMGIETJoEDz5I8cR7Kf7fRCy9eoPe6bIm7apupLfvgi43l6D/jcNwIgGaNIENG9SBKoCCAvSvv47+yy8xz5lLYeeu6LOzqHvd1Xgt/6t6rk8ikdR+vM/o7OTnl55OUjpz56qTCgBffgmLFl1YviFDMM/7GbubG/pffkH/3ntYnnoKa5++KLm5GG+9FcPDk6C4uOyyKoL+/aFDB2jWrGrOJ5FcZih2u91e3UZIziUnJwd/f3+ys7Px8/MrO4NEIpFIJJcxV2q7eKVet6SaeecdmDxZPZ49G267DYD3Jv3hSGL677iQRRcsCieb94qC6m6xoqC6JdEpIK7TCKBaM8RVsPoQP0286PJCcRHqNESL4uKIeqjoQsUVlfYcp9C0LbNAtPnGFkLYtjFJLCtWcy4X0XNjF1GzxZQgisvaD4hC5oq2LFfhVu1SNqv4861Jr/pCOG5viuO4fktR5D01TRxIK9QI1QbGBAjh03FOAV3tz0bPQPFehmjE68P8xed6KCHLed7ThUKczSyKBEc1FcV5g3zcHcdZ+SYhzl0j1KoVHC40ieHUo853r45GjN7bQxTM1eLu5nwY+twc2t15AwFH9pPe+ioOfPId5kC1PN/d22n1/CQ84o4CcGTmL2zyjaHbh1OI2LmRX35cRUQdVYtEV1jAgK6Nne68gLQ8cUAtJVO8X1qh8n93JzuOh3asJ8TFacSLHYLyJTBv9THHcYHmvK1bhAnhFjFBQnhvvMu9DRFF0huGijb/sTlBCKdlirLBEwY1dRynu9yP3JwcGkaFXXHtouwPSBx07w7r18OCBepE7hlKE8c+H+k54nfO20XE2bMMQWdtPawVds8pcMabzKJd2jrIwyjW4a4izQkZYhsVphEE1wo6p2iuydelLfXStBVn75fhiScwfPgB9rAwinfugtBQ4Ny2I1AjqM4338Bdd6m6bZs2QatW8PzzjkUoto4dMc+Zi71+fUqjJotSSyqHsoTJSxM5L8+5Lrd3raLaxcvrrkgkEolEIpFIJJLy8cQT8PDD6vG4cXBGQFoikTix+vqx8tM5rH3zS/798AfHpEjkLz/QYewwx6RI5vU3kN+xCyZff/594SN+mf0vVnd10siQnUnnccPhxRer7TokEkkt4+yOkQvVxZCUiuW117C1bImSmorbgw9ceMbx49WJKbMZPvpI3XH45pvwxx/Y/9/evcc3UaZ9A/8laZO2tGkKPSM9QoucKocFK4K6dAX0UUFRBB4F1sVF4VmVwwruroiv78LqviryILrrCq6r1nUX0JWD6yJF1IKAlDPlTAF7AEqPSZsmud4/QpNO6BGStkl+389nPmQy90zuKzPNXOTOzBURAfWuXQi8a6yj7hQRdU4cGCEiIiIiIieVCnj1VeDBB+3/4b/ovLpBazZCbbV0YOeIOg9LlzAU3poFm855RUv0l59DfaVAu+nGfiiePRcS7PyFtFXrbBv5XQ7Cjh22FwH+7LP26zgRea+EBPu/y5cDZnPzballQUGoW/kWAEC9Zo2zmHlLVCr7Lbhefhn485+dz//Xf8G8cxckKgqqU6eg2r3bA50mInfhwAgRERERESmp1cB77wG//CVw112OpzP2b8TD/1yAMPPlZlYm8l+H/+8bODf557AFBUN7+iTqIqOabFs0djzOTJlhn5k+HTh7tp16SURe6/nnga5dgREjOronPkOGDkXt9h0w793XthWjooD58+1XiwD2gSqjEZKUBPOmL1BbXAIZPtz9HSYit+HACBERERGRv9iyBbjjDvv9sFsSHAy89Zb9CxgAEEFiQR7iio9i+pFX0KPymGf7SuSFzJHROLbgJRzatgenV7wLa9duzbY/9tRCYMgQoLQUePhh4MsvoTl61LFcdfEiuj/zBNJuHYjEaQ9Bc7m0ma0Rkc9LTATy84E//hHQaju6N74hIAAyZAikTx/7D0Ouhc0GTJsG/OxnQGkpJCMDYD0gok6Pxdc7KRZXIyIicvLX86K/xk0eUlQE9O9vvzVWQgKwdy9gMLRtGydPAvffb19Xo7F/MfPUU3hl4seKZlKhLB4ttcrbb9nKnIXOr/rviEV5G4uAFGUhbilX3q+7ruCS47G2n7LIu1TXKeZVoU1/iaQKVRZWVXdTFnmF67plyn6obop1vu5xly+vXb5o0Y9MVMxXnC1TzAeGOF+rduNxZTceuFExb3F5b82nG2xLpSyIG9ZPWTzbYlKuayp2uWd9g1uKBHdXfgaZy5X7OGVArGL+QqmymH3D3ezSLZirlLeDsbkcA5E3hDseFx69oFjWJSZMMd89Vjl/Ml/ZPiXdeQVHoUvx+dAuyn0cGKDcbxkpymLjIQ0KFG8/XILmjOgbA+3n/4KlT1/YUlNx9Hy5Y1nBtj24/6kJ0Brt77/tpptg3nXl9itmMwIiIhBQaz/eyuMT8cPyv6I6IdmxfsPCx4UXle/7wDTlwExUuPK41gYoCxI3LKB+qVK5j3tEKQuq9+5hUMwf/7HC8XhwivJ1L7kUa+4SpCzu/GnuGcV8w/f+/pudfy/+el7017ipFerq7PVGIiIUT7sWeHb9e1a7fBCXVjrPaalxymOsqkZ5Lg0NcilE7qK2zlm4XOdS9LzSpNxWmGtR82a49qPWpbC71abMJ6LDg5rclmsh6stG5WeUawH65gpXXzaaoT5xHGEjh0NdVgZb374wr98A3HCDfV21ynHia6nwtqsLVcr9FhWqa6Ll1du2ubwfrgXovVFb37/OwBv77A1YfJ2IiIiIiFrv8ced9UIKCoBnnmn7NlJSgO++AyZPBqxW+zZee829/STyQUF/+TP0kx9C15v6Qn22QLGsMi4BXzz/Js4OvhWlCT0h6enOhVotvpv5G3z17B9RGRWH8B/PYPj0exG54+t2joCIOp2CAuD22+234qProlu5AkH/ZzHUJ4633LgRttSeqPxiM2xx8VAfPAhdWi/ouoRA2zPVXoeEiDolDowQEREREfk6EeDQIXtR9cGD7c/l5l7btkJCgL/9Dfjd7+zzc+di0LGN7uknkY/S7Hfeu15zNP+q5UX9hmDT4j/hn29+hroPPlQsOzp6Ak7edjc+e+1jlKQNgLaiHMP+5xH0Xr7E4/0mok6suNj+Y4V//av1RcOpUdoPP0Dw0t8jdOKD0OzZc03bsPXrh8qvcmBLT4fKbIaqthbq06eBykr3dpaI3IYDI0REREREvk6lAg4cAO65B9i/3z7/xhvXt73Fi4E5cwAAwbVVLaxA5N+Mi19C6b5DKP/HOtT9NOuatmHqGoX1f3gPZ8ZNgop3xCaiPn3s/9psgMnUsX3xcsYVb8EWGQnN4UMIu204Ap57DqipaXlFF7aERJg3fQFrVhasEybA/O67wKJFHugxEblDQMtNiIiIiIjI6wUFAT17At98A2zfDtx5J7B8ObBxo73IekJC27anUtlrjNx5J759hwWhiZojBgPEYIAtOeW6tmPVBWH/b/6Awqy7Ud57gON5w95d0OcfQNFtD0A03n8feSJqhZAQ+7lYxH5VQpcuLa9DjbIOGICKnXsQMn8OtP/4BAEv/wHqdWtR97cPIIMGtW1jPXqgbtMXznnWlCDqtFh83YNWrFiBV155BUVFRcjIyMDy5csxdOjQVq3L4mpERERO3nxeZD5Anda6dcD48fbHw4YBX38NaJsuTt4q1dXA0qU4Mm02JMhZ9PTG7uGKZq+/873j8fjxfRXLErspv9g5d1lZTHrDN6cV8z0aFAVvWPAVAKJcCq/u/v6cYj6kQTHpWpei7tE9lH0+d0hZXNvmUuQ6rK+zsLnRpai3zaVArD7BoJg3XVJu62c/TXU8PuJSmP3H08r5sBjl+1VysEE/Ncriuj36Kwukn3lVeTu1iF8ov/yJ6hbi3G6J8qqgkDBlAdhueuX8wR1nFfORac6i567F1y8dv6SYT3LpZ0mx8zYk6anKot6XXQq3hwUrf/sX4lIkOP+cs+i5WJX/FXYtZF9dpLz9SZeY0CbbJyQrC7PnuxynURlxivnbBjjnL5Qpf+m99fMjivnug+LRnJTYUPSeMg76nbnAzTcDf/oT0L8/AKDQ5bjO2fejYr6sRHmsDmnQz1CXosh1LgVkByQoiz03dNGlYHCkS8HgrQcLFfNhIcrPnkHJzv38zkbn+2EyVuFXE37itefFa80JmA9Qk/R6+6DIsWP2Hz9c4VrwubBUeZ6psyiXBwY4v7y3uKxb6lK43bWgemzXEMV8w/VNLp+rZpfXdX2t7g1ygB9d+hxjCFbMm8zKc36wVtmv8C7Oz5Uql6LvGrXyRKRqcGIK/OxThDzzK6gKCyHh4TB/vxNnw53npUi9MrcI0rZ+MNq18Lbrfrrk8l53d4m5LVy33XBfuBaXb4k/FAxv+H61NV7X97oh122VVCrPy3qX819zr+3OQu5t3VZz74/J4vK3GKD8mzA2yM9DAt3z4w0WX+/kPv74Y8yZMweLFi3CDz/8gIyMDIwePRolJSUtr0xEREQ+gfkAdVoWCzBvnnN+xw5nzZDrMXUq8NJLSJgyHqrGbutx4QLwl7/g3uVzob/449XLiUhBYzEjbnsOBr32Aob88bfo9c+/IvqHXOjKnINJAaWXEJq32z6zfTswYADw/vsd1GNqCnMC8ojQKwO25eXNt/MnZnPLbQAE/v1jhDw2Hdrsj6AqdV75WnfX3TB/+BFstwyH9YEHIMnJnuopEXUw3krLQ1599VXMmDED06dPBwC89dZbWL9+Pd59910sWLCgg3tHRERE7YH5AHVaAQHAli3A0qX2miPbtgHff9/yei158kngP/9ByI5cxDz/LIpeeQPqqkpg1Rr7F7VbtwI2G1IA7LttPCoir/wS3mYD1PzNFnV+KqsVolZffdkLAIhAZbVcaWcBVCoE1NWiTuf8NXW/D1YirPAcosQIddll2ELD0CUsHJaIbqhNSMKFKfbzRYC5FmM+/D2SD+dCW3v1IGPxoExsef1v9pfVaqGuc/ki8IsvgEcecVPU5A7MCcgjUlKAwkLgpZeAtWs7ujfXr64OmgP7gS6hUAeFwxYa1qp1EOi8wi3stwsQkLcHmD8PtnvuBdRqqAt/hObYUVgTEmFLsg902BITocv+ELrsDyEaDayZtwBWKzR786AyGlG7Jw/Sty/zEyIfxoERDzCbzdi9ezcWLlzoeE6tViMrKwu5ubnNrElERES+gvkAdXo9egAjRwJvvgnodMCrr17/Nn/6U+CTTyCjRyPio78i4qO/whYcApga3A5j0CB8mzAUF3qk2edFEPXfE2FJToYlMQkIDbJ/6RwdDdx+OxAY2tgrka8SQXDhOQSXFEE0atSFhaOiRgNzlzBo6swIKFfDEu68hVPYyaNQWS1QWyzQ1JgQZquFxmSEaAJQGxkFy9CbHW3Dv9uKlGMF0FWUQW21ABYr1FYrNOZa1OoN2Dd2sqPtiP9dhMCSC7BoddCaqhFadgFhFRcRXF6Kyzek4JMVnznaTnh2EroWnYGmxuQoin73lWVFN6Tjg7l/drRN/WItws+dUoRcP2xSk5zqGBixaHWILDwBba0JxsgYnB8+CnVh4Qg/eRThp4+hLCXdsb41TI/zs+bAGhqGhN5JQNeu9hpC1GkwJyCPWbYMuO8+YObMju5JiwIKTkObfxRVd2Q5ntMdOwJLZDSCD+6DYf2niPhiPdSlV66IG/8Qzr7+lv2xCIL//DYsGRmwxsZBU/gjVGfOIvDEcYS99xcUf7wWyBgA1NQg6O8fQ325FJgwARIXB1RVIajSfmtE02MzUP36cgCAdfAQ1MyZh8BNG6E5dBAB32xz9EvCwqAqKYFcuS0hEfkmDox4wMWLF2G1WhETE6N4PiYmBkeOHGl0ndraWtTWOu8lWH7lMsiKigrPdZSIiMhL1J8Pvak0GvMB8gqjRwO//S0QFQWkpgLuONaGDcPFJ59G5IrX7PMmo33bU6YAEyYAiYnY9t6uK8uqUPfFBlj+vRGA/T8nrj1Q/eKXqPjtC/aZ2hqoCo7BFBEFlc0GXXUlUC7Q1JhQpw9HTVgEbDpnLYNqjfKe4jUmZZ0MldH5mVJrVN7z2Vjtch9wk0vdkBrlvc8DjFVNt61TfnYFGpX/DTOZjFBZLQgtu4SA2hqYg4ugNtv7o71oBFRq1EZ0gymuO0zGKsBmQ5eyi7BpAmCxhUI0AdCYaxFoqkbYsXMwB3dBebfugMZ+xULf7z6HzlSNrl8KAqqqoDHXQCWC5GOXUBiRir0p9i+pTMYqDFn9GqxaHep0wQjqqodVFwSVpQ6hlytRGd0dBUNvt3dabUbq+k+gqTUhqPwy9MYKaMtKEVh2GYHll2GIT8fmSb92xHjbzx+FxnLl/uYNPstFrUJRXC9s/m/7L+ZVNitunjAWapvyftX1Lg++GQf+9z3H/NBZE6Eru9xo24peN+LwR/9yzKfP/SV6XG68bWlSL+y47V7HvP6HbxB2sUjRpu7KdDkwECZjlaPGiKnGCKNJeTw4O1yEmppqmKrtX8r9MPp+BNRUo0fvJNjCw6E2VsP0YwkCyi7DptOiqrISNTX242f93Y+jNqgLNHePvPoXyyLAlW1WVQL5j80CABhSI+3LzWbAbEZlhetxraybYjIq+11V2WC5RXmcutYYqaho+j7hlS41RrQ2ZY2R6iplP1RW5T3WKyqcv/42Nfjbqn/sTfkA0PacgPkAtVqvXsCePfYfODQ4PlzrB1RWKv/WLS61PgIa1Bixuqxb7VLLqU6tQmBJEQJLiqC5dBF1tVWoeXiy40q6oP/3CoK3bIbodNAEBcMWHIzAc2cRdHA/LOEGFH29Gwi0f74k/s/jCDly0LHtKgC28HDAZkOpIQJVlfaYAs+fA+Y9jQA4v8is/9cIACuWofKP9ryjenMOgla9iy7vr4aq0F7PSFQq2JKSUFddjeqKCqiv1BipmP8sMP9ZaM4WIGDLFkhwEKw3DYS2T2/75+6V97Sy0nle10L5fpjbUGPE3EKNkUqXGiMVamUe0xbN1Ripa2ONEdd++6KG71db422uxojrtipdaozAojz/Nffarq9zPfulrdtq7v1xrTFS10yNEYsba4wAbsgHhNzu/PnzAkC+++47xfPz58+XoUOHNrrOokWLBAAnTpw4ceLEqZnp7Nmz7XEqdwvmA5w4ceLEiZNnJm/KB0TanhMwH+DEiRMnTpxanq43H+AVIx4QGRkJjUaD4uJixfPFxcWIjY1tdJ2FCxdizpw5jnmbzYbS0lIEBgYiISEBZ8+ehV6v92i/O5uKigr06NGDsTN2v8HYGTtjb5qIoLKyEvHx8e3Uu+vHfMA9+DfC2Bm7/2DsjN0X8wGg7TkB84Gr8W+EsTN2/+HPsQP+HX9rY3dXPsCBEQ/QarUYPHgwNm/ejHHjxgGwJzKbN2/G7NmzG11Hp9NBp1NeXmwwGByXBun1er/7Y6jH2Bm7v2HsjN3ftDb28PDwduiN+zAfcC/Gztj9DWNn7P7GV/MBoO05AfOBpjF2xu5vGLt/xg74d/ytid0d+QAHRjxkzpw5mDp1KoYMGYKhQ4fi9ddfR3V1NaZPn97RXSMiIqJ2wnyAiIiIAOYEREREnQ0HRjxk4sSJuHDhAp5//nkUFRXhpptuwqZNm64qtkZERES+i/kAERERAcwJiIiIOhsOjHjQ7Nmzm7xVRmvpdDosWrToqsto/QFjZ+z+hrEzdn/jL7EzH7g+jJ2x+xvGztj9jT/Ffr05gT+9V64YO2P3N4zdP2MH/Dv+9o5dJSLSLq9ERERERERERERERETUwdQd3QEiIiIiIiIiIiIiIqL2woERIiIiIiIiIiIiIiLyGxwYISIiIiIiIiIiIiIiv8GBESIiIiIiIiIiIiIi8hscGOnEVqxYgaSkJAQFBWHYsGH4/vvvO7pL1+2FF16ASqVSTL1793Ysr6mpwaxZs9CtWzeEhobigQceQHFxsWIbBQUFuPvuuxESEoLo6GjMnz8fFoulvUNp0ddff4177rkH8fHxUKlUWLdunWK5iOD5559HXFwcgoODkZWVhWPHjinalJaWYsqUKdDr9TAYDHjsscdQVVWlaLNv3z6MGDECQUFB6NGjB15++WVPh9ailmKfNm3aVcfBmDFjFG28MfYlS5bgJz/5CcLCwhAdHY1x48YhPz9f0cZdx3hOTg4GDRoEnU6Hnj17YvXq1Z4Or0Wtif/222+/at/PnDlT0cYb41+5ciUGDBgAvV4PvV6PzMxMbNy40bHcl/d7S7H76j5vT8wHmA944zkR8N98APDvnID5APMB5gOe42s5AfMBJ+YDzAd87dzAfID5gFfkA0KdUnZ2tmi1Wnn33Xfl4MGDMmPGDDEYDFJcXNzRXbsuixYtkr59+0phYaFjunDhgmP5zJkzpUePHrJ582bZtWuX3HzzzXLLLbc4llssFunXr59kZWXJnj17ZMOGDRIZGSkLFy7siHCatWHDBvnNb34ja9asEQCydu1axfKlS5dKeHi4rFu3Tvbu3Sv33nuvJCcni8lkcrQZM2aMZGRkyPbt22Xbtm3Ss2dPmTRpkmN5eXm5xMTEyJQpU+TAgQPy0UcfSXBwsLz99tvtFWajWop96tSpMmbMGMVxUFpaqmjjjbGPHj1aVq1aJQcOHJC8vDy56667JCEhQaqqqhxt3HGMnzx5UkJCQmTOnDly6NAhWb58uWg0Gtm0aVO7xuuqNfHfdtttMmPGDMW+Ly8vdyz31vg/++wzWb9+vRw9elTy8/Plueeek8DAQDlw4ICI+PZ+byl2X93n7YX5APMBEe88J4r4bz4g4t85AfMB5gPMBzzDF3MC5gNOzAeYD/jauYH5APMBb8gHODDSSQ0dOlRmzZrlmLdarRIfHy9LlizpwF5dv0WLFklGRkajy8rKyiQwMFA++eQTx3OHDx8WAJKbmysi9hOqWq2WoqIiR5uVK1eKXq+X2tpaj/b9erie/G02m8TGxsorr7zieK6srEx0Op189NFHIiJy6NAhASA7d+50tNm4caOoVCo5f/68iIi8+eabEhERoYj92WeflfT0dA9H1HpNJT733Xdfk+v4SuwlJSUCQLZu3Soi7jvGf/3rX0vfvn0VrzVx4kQZPXq0p0NqE9f4RewnwaeeeqrJdXwp/oiICHnnnXf8br+LOGMX8a997gnMB+yYD3j/OdGf8wER/84JmA8wHxDxr33uKb6YEzAfsGM+wHzAH84NzAeYD4h0vn3OW2l1QmazGbt370ZWVpbjObVajaysLOTm5nZgz9zj2LFjiI+PR0pKCqZMmYKCggIAwO7du1FXV6eIu3fv3khISHDEnZubi/79+yMmJsbRZvTo0aioqMDBgwfbN5DrcOrUKRQVFSliDQ8Px7BhwxSxGgwGDBkyxNEmKysLarUaO3bscLQZOXIktFqto83o0aORn5+Py5cvt1M01yYnJwfR0dFIT0/HE088gUuXLjmW+Urs5eXlAICuXbsCcN8xnpubq9hGfZvO9vngGn+9Dz74AJGRkejXrx8WLlwIo9HoWOYL8VutVmRnZ6O6uhqZmZl+td9dY6/n6/vcU5gPMB8AfOec2BR/yAcA/84JmA8wH6jn6/vck3w5J2A+wHwAYD7gD+cG5gPMB+p1pn0e0OY1yOMuXrwIq9WqOAgAICYmBkeOHOmgXrnHsGHDsHr1aqSnp6OwsBCLFy/GiBEjcODAARQVFUGr1cJgMCjWiYmJQVFREQCgqKio0felfpm3qO9rY7E0jDU6OlqxPCAgAF27dlW0SU5Ovmob9csiIiI80v/rNWbMGNx///1ITk7GiRMn8Nxzz2Hs2LHIzc2FRqPxidhtNhuefvppDB8+HP369XP0yx3HeFNtKioqYDKZEBwc7ImQ2qSx+AFg8uTJSExMRHx8PPbt24dnn30W+fn5WLNmDQDvjn///v3IzMxETU0NQkNDsXbtWvTp0wd5eXk+v9+bih3w7X3uacwHDIp1mA84eds5sSn+kA8A/p0TMB9gPsB8wD18NSdgPmDHfID5gC+fGwDmA8wHOm8+wIERaldjx451PB4wYACGDRuGxMRE/P3vf+/wD2pqPw8//LDjcf/+/TFgwACkpqYiJycHo0aN6sCeuc+sWbNw4MABfPPNNx3dlQ7RVPyPP/6443H//v0RFxeHUaNG4cSJE0hNTW3vbrpVeno68vLyUF5ejn/84x+YOnUqtm7d2tHdahdNxd6nTx+f3ud07ZgPEOAf+QDg3zkB8wHmA8wHqDnMBwhgPuAPmA8wH+is+QBvpdUJRUZGQqPRoLi4WPF8cXExYmNjO6hXnmEwGJCWlobjx48jNjYWZrMZZWVlijYN446NjW30falf5i3q+9rcPo6NjUVJSYliucViQWlpqc+9HykpKYiMjMTx48cBeH/ss2fPxueff44tW7bghhtucDzvrmO8qTZ6vb5T/AeiqfgbM2zYMABQ7HtvjV+r1aJnz54YPHgwlixZgoyMDCxbtswv9ntTsTfGl/a5pzEfKFO0YT7g5E3nxLbwtXwA8O+cgPkA8wHmA+7jLzkB8wHmAwDzAcC3zg3MB5gPdOZ8gAMjnZBWq8XgwYOxefNmx3M2mw2bN29W3JPNF1RVVeHEiROIi4vD4MGDERgYqIg7Pz8fBQUFjrgzMzOxf/9+xUnxyy+/hF6vd1yW5Q2Sk5MRGxuriLWiogI7duxQxFpWVobdu3c72nz11Vew2WyOD47MzEx8/fXXqKurc7T58ssvkZ6e3ikuFW2tc+fO4dKlS4iLiwPgvbGLCGbPno21a9fiq6++uupSXncd45mZmYpt1Lfp6M+HluJvTF5eHgAo9r23xu/KZrOhtrbW5/d7Y+pjb4wv73N3Yz7AfADw3nPitfCVfADw75yA+YAS8wHmA+7gLzkB8wHmAwDzAV85NzAfUGI+0EnzgTaXa6d2kZ2dLTqdTlavXi2HDh2Sxx9/XAwGgxQVFXV0167L3LlzJScnR06dOiXffvutZGVlSWRkpJSUlIiIyMyZMyUhIUG++uor2bVrl2RmZkpmZqZjfYvFIv369ZM777xT8vLyZNOmTRIVFSULFy7sqJCaVFlZKXv27JE9e/YIAHn11Vdlz549cubMGRERWbp0qRgMBvn0009l3759ct9990lycrKYTCbHNsaMGSMDBw6UHTt2yDfffCO9evWSSZMmOZaXlZVJTEyMPPLII3LgwAHJzs6WkJAQefvtt9s93oaai72yslLmzZsnubm5curUKfnPf/4jgwYNkl69eklNTY1jG94Y+xNPPCHh4eGSk5MjhYWFjsloNDrauOMYP3nypISEhMj8+fPl8OHDsmLFCtFoNLJp06Z2jddVS/EfP35cXnzxRdm1a5ecOnVKPv30U0lJSZGRI0c6tuGt8S9YsEC2bt0qp06dkn379smCBQtEpVLJv//9bxHx7f3eXOy+vM/bC/MB5gMi3nlOFPHffEDEv3MC5gPMB5gPeIYv5gTMB5gPMB/w3XMD8wHmA96QD3BgpBNbvny5JCQkiFarlaFDh8r27ds7ukvXbeLEiRIXFydarVa6d+8uEydOlOPHjzuWm0wmefLJJyUiIkJCQkJk/PjxUlhYqNjG6dOnZezYsRIcHCyRkZEyd+5cqaura+9QWrRlyxYBcNU0depUERGx2Wzyu9/9TmJiYkSn08moUaMkPz9fsY1Lly7JpEmTJDQ0VPR6vUyfPl0qKysVbfbu3Su33nqr6HQ66d69uyxdurS9QmxSc7EbjUa58847JSoqSgIDAyUxMVFmzJhxVULvjbE3FjMAWbVqlaONu47xLVu2yE033SRarVZSUlIUr9FRWoq/oKBARo4cKV27dhWdTic9e/aU+fPnS3l5uWI73hj/z3/+c0lMTBStVitRUVEyatQoR9Ij4tv7vbnYfXmftyfmA8wHvPGcKOK/+YCIf+cEzAeYDzAf8BxfywmYDzAfYD7gu+cG5gPMB7whH1CJiLT9OhMiIiIiIiIiIiIiIiLvwxojRERERERERERERETkNzgwQkREREREREREREREfoMDI0RERERERERERERE5Dc4MEJERERERERERERERH6DAyNEREREREREREREROQ3ODBCRERERERERERERER+gwMjRERERERERERERETkNzgwQkQ+JScnByqVCmVlZe3+2iqVCiqVCgaDoVXt6/uqUqkwbtw4j/aNiIjInzAfICIiIuYDRNQcDowQkde6/fbb8fTTTyueu+WWW1BYWIjw8PAO6dOqVatw9OjRVrWt7+tDDz3k4V4RERH5LuYDRERExHyAiNqKAyNE5FO0Wi1iY2OhUqk65PUNBgOio6Nb1ba+r8HBwR7uFRERkX9hPkBERETMB4ioORwYISKvNG3aNGzduhXLli1zXG56+vTpqy6VXb16NQwGAz7//HOkp6cjJCQEEyZMgNFoxHvvvYekpCRERETgV7/6FaxWq2P7tbW1mDdvHrp3744uXbpg2LBhyMnJaXM/9+7dizvuuANhYWHQ6/UYPHgwdu3a5aZ3gYiIyL8xHyAiIiLmA0R0LQI6ugNERNdi2bJlOHr0KPr164cXX3wRABAVFYXTp09f1dZoNOKNN95AdnY2Kisrcf/992P8+PEwGAzYsGEDTp48iQceeADDhw/HxIkTAQCzZ8/GoUOHkJ2djfj4eKxduxZjxozB/v370atXr1b3c8qUKRg4cCBWrlwJjUaDvLw8BAYGuuU9ICIi8nfMB4iIiIj5ABFdCw6MEJFXCg8Ph1arRUhICGJjY5ttW1dXh5UrVyI1NRUAMGHCBLz//vsoLi5GaGgo+vTpgzvuuANbtmzBxIkTUVBQgFWrVqGgoADx8fEAgHnz5mHTpk1YtWoVfv/737e6nwUFBZg/fz569+4NAG1KmoiIiKh5zAeIiIiI+QARXQsOjBCRzwsJCXEkPQAQExODpKQkhIaGKp4rKSkBAOzfvx9WqxVpaWmK7dTW1qJbt25teu05c+bgF7/4Bd5//31kZWXhwQcfVPSFiIiI2gfzASIiImI+QET1ODBCRD7P9dJUlUrV6HM2mw0AUFVVBY1Gg927d0Oj0SjaNUyWWuOFF17A5MmTsX79emzcuBGLFi1CdnY2xo8ffw2REBER0bViPkBERETMB4ioHgdGiMhrabVaRUE0dxk4cCCsVitKSkowYsSI695eWloa0tLS8Mwzz2DSpElYtWoVEx8iIiI3YT5AREREzAeIqK3UHd0BIqJrlZSUhB07duD06dO4ePGi4xcd1ystLQ1TpkzBo48+ijVr1uDUqVP4/vvvsWTJEqxfv77V2zGZTJg9ezZycnJw5swZfPvtt9i5cyduvPFGt/STiIiImA8QERER8wEiajsOjBCR15o3bx40Gg369OmDqKgoFBQUuG3bq1atwqOPPoq5c+ciPT0d48aNw86dO5GQkNDqbWg0Gly6dAmPPvoo0tLS8NBDD2Hs2LFYvHix2/pJRETk75gPEBEREfMBImorlYhIR3eCiMgXqFQqrF27FuPGjWvTetOmTUNZWRnWrVvnkX4RERFR+2E+QERERMwHiDo/XjFCRORGkyZNwg033NCqttu2bUNoaCg++OADD/eKiIiI2hPzASIiImI+QNS58YoRIiI3OX78OAD7JbLJyckttjeZTDh//jwAIDQ0FLGxsR7tHxEREXke8wEiIiJiPkDU+XFghIiIiIiIiIiIiIiI/AZvpUVERERERERERERERH6DAyNEREREREREREREROQ3ODBCRERERERERERERER+gwMjRERERERERERERETkNzgwQkREREREREREREREfoMDI0RERERERERERERE5Dc4MEJERERERERERERERH6DAyNEREREREREREREROQ3ODBCRERERERERERERER+4/8D9tXjNA6/b7QAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": "HTML(value=\"./fig13_aerosol_rates.pdf
\")", + "text/plain": [ + "HBox(children=(HTML(value=\"./fig12_collision_rates.pdf" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAASnCAYAAACwzMTzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTVR8H8G+60z0pHbTsQimrbATZS4aACCgoy4Giooh7sNwTVFBBkPEiqMgSBSnKRgqy94YO6KY7Xcl5/zjkNuneKeT7eZ48JPee3HvuTej55UyVEEKAiIiIiIiIiIiIiIjIDFiYOgNEREREREREREREREQ1hQ0jRERERERERERERERkNtgwQkREREREREREREREZoMNI0REREREREREREREZDbYMEJERERERERERERERGaDDSNERERERERERERERGQ22DBCRERERERERERERERmgw0jRERERERERERERERkNtgwQkREREREREREREREZoMNI0REtciuXbugUqmgUqlw/fp1U2eHiIjIbC1fvvyuL5N79uwJlUqFnj17mjortdLEiRN5f4iI6K5x/fp1JTZZvny5qbNTK/H+UHmwYYSIaiX9D3mVSoX3339f2X7+/PkqLej0P4j1DysrK9SpUweDBw/GsWPHKn18IiKiyjIsE1UqFSwtLeHn54ehQ4fiwIEDps5ehVRHhbRhQ8auXbuq7LhUPMN7XhaG32OVSgU7Ozs0btwYL774IrKysqo5t0REdzfGA2VjWDZZWFhArVbDz88P/fr1w/Lly6HT6arsXPci/fds4sSJpaY1vNf6++3i4oIuXbrgl19+qf7MElUSG0aIqNb79NNPkZSUVO3n6dSpE1q1aoXExET8+eefGDBgADQaTYnvycnJqfZ8ERERAYCNjY1SVsXFxWHLli3o0aMHDh06VOx7als5VdvyQ6bh6emJTp06oW7durhy5QoWLFiAmTNnlvgerVYLrVZbQzkkIqq9GA+UXbNmzdCwYUMkJiZix44dmDRpEgYNGlTr7se9oHnz5mjfvj10Oh0OHjyIRx55pMTvJFD7vpdkftgwQkS1XkpKCj7++OMS00RERODxxx9H3bp1YW1tDX9/fzz77LPlalA5ePAgjh49ijlz5gAA4uPjcfbsWQDGQ1Z/+OEH9OnTB3Z2dvjggw8AADdv3sTkyZPh6+sLGxsbNGzYEPPmzUNeXp5y/NWrV6Njx47w9PSEtbU13NzcMGDAgFKDhZdffhkqlQr29vbYsWOHUV4Me8TWr18fKpUKs2fPBmA8LdfmzZvRvXt3pWfmunXrynxfiIiodvDx8cHBgwdx7NgxbNy4EQCQl5eHn376CYBxr8tPPvkE/v7+sLOzU97/448/ol27dlCr1XBwcMB9992HTZs2KfsNy5eVK1di8ODBUKvV8Pf3x8KFC43yUpZyT9/j8LHHHsMrr7yCOnXqICgoCPXr18eKFSsAALt37zYqqxwdHZWyVu/UqVNKmoMHD5brnhn2ZNy5cydCQ0OhVqsRGhpa6Fhff/01/Pz84ODggHHjxiElJaXIY27duhU9evSAk5MT1Go1unfvjp07d1b7fXz88ccxa9Ys+Pj4wM3NDePHj0daWpqS7vbt2xg9ejTs7e0REBCA7777rsj8Z2dnY9asWWjSpAlsbGxQp04dTJ48GQkJCUqa2bNnQ6VSoX79+vj111/RrFkzODg44P7778eFCxcAyO/bpEmTlPfor1kfh5Rk8ODBOHjwIK5evYqmTZsCkN+Fos6/cuVKNGrUCDY2NoiMjCzTZwAAEyZMQJMmTeDk5AQbGxsEBgbihRdeQGpqarH5iouLQ/PmzaFSqdCxY0ckJycb5UWvqKlPDf//LVy4EIGBgbCzs8OgQYOUfBMRVQXGA2WPBxYtWoQzZ84gNjYWjz76KABg+/btmDt3rpKmvOXiunXrEBQUBDs7O3Tt2hWnTp0yOmd54oTly5djyJAhsLe3R4MGDbB06VKjY+3cuRMhISGws7NDt27dlPqJgs6fP4+HH34YXl5esLGxQfPmzfHtt98apdHXF7z22mt47rnn4OHhgTp16mD69OnK56VSqZTyeMWKFeWaUnTRokU4dOgQtm7dCgDQ6XTYu3dvofO/8sormDx5MlxdXTFgwIAyfwbHjx9Hnz594OPjA1tbWzg4OKBDhw743//+V2K+NmzYAGtra6PZSArWnQBFj17SX/8XX3yBcePGwcnJCV5eXnj33XchhCj1ntBdQBAR1UI9evQQAETjxo2Fk5OTUKvVIjo6Wpw7d04AEADEjz/+KIQQIjY2Vvj6+goAwtbWVgQHBwsrKysBQISEhAiNRlPseSZMmKAcTwghsrOzxZQpUwQAYWNjI2JjY4UQQly7dk1JZ2NjIzw8PERwcLCYO3euSEhIEPXq1RMAhJOTk2jVqpVy/kmTJinnmj59urCzsxNNmzYVrVu3Fra2tsp7bt26JYQQYufOncp5rl27Jt555x0BQNjb24u///67UF527typHD8wMFAAELNmzSp0LFtbW9G0aVPh7OwsAAgLCwtx9OjRqvq4iIioGunLxMDAQGXbli1blL/x06dPF0Lkl2k2NjbCwsJCNG/eXHh4eAghhJg3b56SPiAgQNStW1d5vWrVKiGEcflia2srGjRoIDw9PZVtmzZtEkKIMpd7+nzb2NgIa2trERISIlq1aiWGDx+uHNfJyUl06tRJdOrUSRw5ckQ8+eSTAoDo0qWLcpxZs2YJAKJp06Yl3qcff/yxUPlouM3W1lYEBQUpeQ0MDBS5ublCCCE2b96spPPy8hL16tUTDg4ORmWyEEKsXbtWqFQq5f0NGjQQAISlpaX4559/qvU+WltbCycnJ+WcAMSbb76ppBs5cqSyPSgoSDg4OCjX0KNHDyXdAw88oOS5VatWSmwQHBwsMjMzje65lZWVsLa2Fs2aNVOuu2vXrkIIIebOnSsaNmyonFP/OS5ZsqTYz0ifdsKECUIIIaKiopTv4oMPPljoM7e2thYqlUo0bdpU+Pj4iGvXrpXpMxBCCBcXF+Hh4SFat25tlM9Ro0YpafT/Z3r06CGSkpJE69atlWtJTk42yovh/7+C8ZrhsWxtbYVarRbNmzcXFhYWAoAIDQ0VOp2u2PtCRFQWjAcqHg8IIURmZqbw8fERAESdOnWUv8vlKRetra2VOgdra2sBQPj5+YmMjAwhRPnjBGtra1G/fn2j3+nnzp0TQghx69YtpRy3t7cXzZo1M4pN9PUhFy9eFC4uLgKAcHd3FyEhIUoe5syZo1y/vr7A2tpauLu7Cz8/P+VYixcvFkII0alTJ+Hk5CQACE9PT+UzuXnzZpnutU6nM9q2YcOGQue3sbERarVatGzZUgwaNKjMn8GGDRuEhYWFCAwMFG3bthVubm7KebZs2aKcx/D+bN26VdjY2AgA4sMPPyyUF33diRDGMUHBY9na2gpfX1+je7ZgwYISv4d0d2DDCBHVSvrgqVOnTkoQ8vTTTxfZMPLuu+8qQcSRI0eEELLQ1KdbtmxZsecxbBgxfKhUKrF06VIlnWHw0qNHD6WxJS8vT8yePVsAEN7e3iIuLk4IIcTGjRuV41y6dEkIIQMWfcAkhBCXLl1SjvnDDz8IIYx/aE+bNk0Jggx/6FekYeT1118XQsjgytXVVQAQY8aMqchHQ0RENcywQqFTp06iTZs2SsWDlZWVOHjwoBDCuEz7888/hRCynEpPTxdqtVoAECNGjBBarVZkZWWJjh07GlWwGJYvjzzyiNDpdCItLU00adJEKZOFEGUu9wzzffz4cSU/hnk1/PEphBBHjx5V8qCvGAgJCREAxHvvvVfifSqtYeSrr74SQgixYMGCQufo1q2bACAaNWok0tLSRF5enujZs2ehyu/69esLAGLy5MlCp9MJnU4nRowYIQCIbt26Vet9dHJyElFRUUKr1Yp27doZHevy5cvKOV977TUhhBDnz59Xvif6+7xr1y4l3e7du4UQQty8eVP5fujjEX3sBUBs3rxZCCHESy+9pGzTV1IY3t+yKCrmAiD8/f1FZGSkks7w/N9++60QQgidTie0Wm2ZPgMhhPKd03vrrbeU/zP6OE7/PWzXrp3o1KmTACA6d+4sUlJSCuWlrA0jVlZW4vTp00IIIb777jsl3datW8t0j4iIisN4oOLxgN7QoUOVfXFxcRUqF7dt2yaEEGLbtm2FyqryxgmjRo0SOp1OnDhxotCx3n77bQHIxgJ9uaLfZlgfMnHiRAHITqH6+ob58+cLAEKtVovU1FQhRH59QYMGDURycrLQaDRKB1PDugH956XvxFDWe13wUfD9+vN7enqKiIgIIYT8HpT1M7h165aIiYlRjqfRaETjxo0FADF+/Hhlu/5YkyZNUo7x8ccfF5mXsjaMdO/eXeTk5IicnBzRvXt35XtPdz9OpUVEtd7LL78MT09PLF26FJcvXy60//DhwwCAoKAghIaGAgCGDx8Oe3t7AMB///1XpvN06tQJ7du3h7OzM4QQeOmll3DixIlC6aZOnaoMRba0tFSmwoqNjUWdOnWgUqkwfPhwAIAQAuHh4QDkFBcPPvgg3N3dYWFhgSZNmijHvHnzZqHz6Icpr1mzBr169SrTNRTnkUceAQDUrVtXOVbBIb9ERFS75eTkIDw8HCdPnoSXlxcGDx6M3bt3o1OnTkbpgoKCMGjQIACynDpz5oyyZtbYsWNhYWEBW1tbPPTQQwCAGzduID4+3ugYY8eOhUqlgqOjI4YMGQIAOH36NACUudzT69WrF1q3bq3kpyRt27ZVrmfZsmW4ePEiTp8+rUzBAQDz5s1D586dlce8efPKdP/07w8ODla2xcbGAgDOnDkDABgwYAAcHR1haWmJkSNHGr0/Pj5emUpi2bJlsLCwgIWFBTZs2AAAha4bqNr72Lt3b/j5+cHCwgLNmjUrMv8AlM81KCgIrVq1MjqG4fSdPXr0gEqlgq+vr/L9KDg1iYuLC4YOHVrovsXFxRW61vLQrzESEhIClUqFqKgoPPbYY4UWxFWr1XjqqacAyOksEhMTy/wZ7NixAyEhIVCr1UbTZ+Tl5RX6vh85cgTh4eEIDAzEX3/9BWdn5wpfW8uWLdGiRQsA+fEXwLiLiKoO44GKxwMFy5nylov66bABGTO4ubkBkH/jKxInjBs3DiqVqsTYJCgoSClXRo8eXegY+ms4ffo0HBwcoFKp8OKLLwIANBoNTp48aZR+2LBhcHFxgZ2dHRo0aGB0zspo3rw5OnXqBB8fHwByKq5ly5YVSvfQQw+hXr16AIzrU4CSPwOVSoWXX34Zvr6+sLKyglqtVuqHiqpP+fHHH6HRaPDSSy/h1VdfrdS1jRo1CtbW1rC2tsaoUaMAyHtW8P8L3X2sTJ0BIqLSODk54Y033sDLL7+MWbNmVdt59AVufHw86tevj9TUVHz66aeF5qz09vYuNp+GAY2evb090tPTMWDAACQnJ8POzg5t27aFtbW1EhwVtZioo6Mj0tPT8dlnn6Ffv35Qq9UAZECgZ/i+4uZCJyKie0NgYGCZ5ngurpyqaiWVe5XJz7PPPovw8HCsWrUKTk5OAGRlSkBAAADgypUrRpUL+kaC0ri6ugIArKzyfwKJCs4P3bBhQ3h5eRXaXpFFRMt6H/X5B/KvoaL5B1CoAg2QHShKO2dlzwvINUaWL18OQM5JPm3aNOzatQv//PMP+vbtq6Tz8vKChUXRfflK+gx+/fVXZTF3Hx8f1KtXDwkJCbh69SqAwnGXg4MDMjIycOPGDaxatQrTpk1T9unjLsZcRFRbMB6oWDyg0Whw5MgRALJ88fT0NNpflnKxrMoaJ1RlbOLp6YlGjRoV2l6wEaqq4wm9RYsWoWfPntBqtejWrRsOHjyId999F5MnTzZKV9L3oKTPYPz48dixY4fSkOTo6IizZ88iLS2txPqUNWvWYNq0aUb3hmU76XHECBHdFaZNm4Z69erh6NGjhfZ16NABAHDhwgVl/8aNG5GZmQkAaN++fbnOpVKplMAgKyuryP1Fnd/Kygpr167FwYMHcfDgQYSFheHZZ5/FiBEjcOHCBSQnJwOQvUeOHDmC+fPnl5iPlStXwsnJCXv37sXo0aOVBdHq1KmjpLl48SIA2StSf/yi/PzzzwBkD0/9gu0tW7Ys8fxERHR3KlhOtWjRQmlc//nnn6HT6ZCdnY3169cDkBUsBX+8//LLLwCAjIwM/PHHHwCAkJAQAGUr90rKD5BfWZKRkVFo3+jRo+Hu7o6YmBh8/PHHAIDHH39c2b98+XIIOSUwhBBKBXtl6Htibt++HRkZGdBqtUoPTz0vLy8EBgYCAEJDQ7Fv3z7l2leuXIl58+bBxsbG6D1VeR9LYlghpc/3xYsXC/US1Z8TAN544w3lnPv27cPs2bMxZcqUMp8TMK70KuqzLK+CcVfB705ZPwN9ZxcnJydcu3YN4eHh6N+/f7Hnbd++Pd5++20AwPPPP481a9Yo+/RxV1xcnFJpsm7dumKPderUKZw7dw5AfvwFMO4ioprHeCBfSkoKnnjiCcTExAAAnnjiCahUqnKXi7dv30ZYWBgAICwsDLdv3wYg/8ZXJE4oiT42uXDhglKuFFX+6K/BxcUFf/75p3LOLVu24KWXXkLnzp3LfE6g5M+kLAw/5/LUpwAlfwb6sv3JJ5/E6dOn8eeff8LR0bHYfMybNw8hISGIiYlBv379cOvWLWWfvmzX16ckJCQo9SRFWb9+PfLy8pCXl6f8f/H29i6y8YvuMjU+eRcRURkYrjGi98MPPxjNWWm4+Lp+ETVbW1vRokWLCi2+3qlTJ9GhQwdl4TKg6AXoCs5TGhcXpyzCZWNjoyzyqV+MTQghkpKSlIXS9AuNeXt7K8csal2Qa9euibCwMOU4jz32mLJAXJcuXZRj9erVS9jb2ysLfBZ1LAcHBxEUFKRcm+F6LEREVLsVtdhqUYqbp1uI8i+26uDgIBo0aCC8vLyUbfoFNMtS7hnmu6g5qg3X+QgJCRGdOnVS1q0QQoiXX37ZKC9paWml3qfS1hjRMywf9en0c6IDckHWgIAAYWtra1QmCyHE6tWrlW1eXl6iTZs2Snmuv86auI/6z9rwOzF8+HDlHPoFWvXXYPidGDBggJIuKChIBAcHKzGK/n4Uta6G4b3U3w/DOdEDAgJEp06dxL59+4r9jPRp9Qu6tmzZUlkg1svLSyQmJhZ7fr2yfAaLFy9W0vj6+ooGDRoId3f3Qvkv+H9m0qRJApAL0+rn5T937pwSYzVo0EC0a9dOeV3UsRwcHIRarRbBwcFKujZt2nDxdSKqNMYD5Y8HmjdvLoKDg43K9P79+4usrCwlfXnKRVtbW6FWq0WLFi2URb19fHyUtT3KGycY1i0UrBu4efOmsLe3F0D+4ut2dnaF6kPOnz+vLFZub28v2rRpIwICAoSlpaXRd6WodTX0n43hd0W/ppiFhYVo27atGDBgQJnvdadOnZR1SwCIKVOmlHj+8nwGXbt2VfIVHBwsXF1dlQXYi1oX5McffxSRkZHC399fABAtW7YUSUlJQggh3njjDSVdt27dRN26dZUyu6hjOTg4CD8/P6PF17/88sti7wvdPThihIjuGhMnTkRQUFCh7XXq1MHBgwfx2GOPwdXVFRcuXIC3tzemTp2K3bt3K+uBlCY8PByHDx9Gbm4u2rZti0WLFmH8+PGlvs/LywsHDx7EpEmT4OHhoczd2r17d3z55ZcA5Fykv/76K4KDg6HT6WBjY4Pff/+91GP37dsXy5Ytg0qlwqpVq5S5QpcvX47u3bsDAKKiorBo0SJlns6irFu3Dt7e3sjKykLDhg2xZs0aZT0WIiK697399ttYunQpQkNDlZ7vXbp0wcaNG4ss6xYvXoyQkBCkp6fD19cXCxYsUOYNL0u5V5rJkyfjoYcegouLC06fPo3w8HCj6QymTp2q9CgcOXJkiT0Cq8KDDz6IL7/8EnXr1kVaWhrat2+P9957r1C6Rx99FFu2bEGPHj2g0Whw4cIFODk54fHHH8cTTzxRKH1130dDS5cuxUMPPQQ7OzukpKRg7ty5RfYS3bhxI9599100adIEV69eRUxMDJo3b463335b6QVcVq1atcI777wDb29vREREIDw8XOk9W5KEhASEh4fjzJkz8PDwwJAhQxAWFgZ3d/dS31uWz2DKlCmYMWMGPD09kZaWhp49e2Lu3LmlHnvx4sUYNGgQcnNzMWrUKOzfvx/NmjXD4sWLUb9+fdy6dQuenp5YtGhRscdo3749vvrqK2RkZMDa2hr9+/fHxo0bi+wpTURU08wtHjh37hwuX74Md3d39O7dG8uWLcPWrVtha2urpClPuVi3bl2sXbtWyWPnzp2xdetWZZRFeeOEkvj4+GDz5s0IDg5GXl4enJycsHr16kLpgoKC8O+//+Lhhx+Gvb09zpw5A51Oh4EDB5Z5HTZDM2fORN++fWFvb49jx46Vec3Wc+fOITw8HPHx8WjUqBFefvllfP3112V6b1k+g+XLl6NXr16ws7NDZmYm5s+fX2gttYL8/f2xbds2uLq64tSpUxg8eDAyMzPxxhtvYPz48XB1dcXFixfx+OOPY+zYscUe54MPPkCfPn2QkpICDw8PvPXWW3jhhRfKdG1Uu6mEqIKJ5IiIqNbZtWuXstD6tWvXUL9+fdNmiIiIarXr168ri3Du3LkTPXv2NFlesrOz4e3tjZSUFPz999/o3bu3yfJSXrXpPlLNmThxIlasWIEePXqUOB0HEVFtV5vKsdoSD8yePRtz5swp8/oudG/QN8r9+OOPmDhxomkzQ9WCi68TEREREVGtMX78eJw5cwYpKSlo167dXdUoQkRERFWD8QARVTc2jBARERERUa2xevVqWFtbo2vXrlixYoWps0NEREQmwHiAiKobp9IiIiIiIiIiIiIiIiKzwcXXiYiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiITGzEiBFwc3PDqFGjTJ0VALUvP0REROagtpW/tS0/RERE5qC2lb+1LT9EVYkNI0REJjZ9+nSsXLnS1NlQ1Lb8EBERmYPaVv7WtvwQERGZg9pW/ta2/BBVJTaMEN1DevbsiRdffNFszmsKPXv2hEqlgkqlwvHjx6vsmE5OTmVOW933urj8TJw4Ubn2jRs3VmseiIio4hgPVD/GA4wHiIhqO8YD1Y/xAOMBuruxYYToHrJ+/XrMmzfPbM5bVlUdLDz55JO4desWQkJCquyYd4MFCxbg1q1bps4GERGVgvFA0RgPVA3GA0REdwfGA0VjPFA1GA/QvcDK1BkgoqqRk5MDd3d3k5zbVOfNycmBjY1NjZ/X3t4edevWLVPaNm3aIC8vr9D27du3w9fXt6qzViYVzZOLiwtcXFyqM2tERFRJjAdqDuMBIiKqrRgP1BzGA0R3L44YIbpL9ezZE8899xxefPFFeHp6YsCAAYV6PujTPPfcc3BxcYGnpyfeeecdCCGUNDqdDh9++CEaNGgAtVqN1q1bY926dUbHeOGFF/Dqq6/C3d0ddevWxezZswvlpeB5S3tPWloaxo0bBwcHB/j4+ODLL78stedGUdcMANu2bUO3bt3g6uoKDw8PDBkyBFeuXAEgh3fu3r0bCxYsUIZ5Xr9+vUzXXlbr1q1Dy5YtoVar4eHhgb59+yIjIwMAcPz4cZw+fbrQo6qCnj/++AMuLi5YvXo1gLLd1+rOExER1RzGA4wHAMYDRETmjvEA4wGA8QBRebFhhOgutmLFCtjY2GD//v347rvvik1jZWWFQ4cOYcGCBfjiiy/www8/KPs//PBDrFy5Et999x3OnDmDl156CePHj8fu3buNjuHg4IDw8HB88sknmDt3LsLCwkrNW0nvmTFjBvbv34/NmzcjLCwMe/fuxdGjRyt0zRkZGZgxYwb+++8//P3337CwsMCIESOg0+mwYMECdOnSRRneeuvWLdSrV6/M116aW7du4ZFHHsHkyZNx7tw57Nq1CyNHjjQKLqvLTz/9hEceeQSrV6/GuHHjAFT8vhIR0d2L8QDjAcYDRETEeIDxAOMBonISRHRX6tGjh2jbtm2hbdOnTzd63bx5c6HT6ZRtr732mmjevLkQQoisrCxhb28vDhw4YHScKVOmiEceeUQ5Rrdu3Yz2d+jQQbz22mslnrek96Smpgpra2vx66+/KvuTk5OFvb290XHKcs1FiY+PFwDEqVOnisyfEGW79uLyYHisI0eOCADi+vXrpearOH369BGenp5CrVYLPz+/Qnkq6vzffPONcHFxEbt27VL2VfS+ljc/AMSGDRvKfDwiIqo+jAeKx3iA8QARkblgPFA8xgOMB4iKwzVGiO5i7dq1KzVN586doVKplNddunTB559/Dq1Wi8uXLyMzMxP9+vUzek9OTg7atm2rvG7VqpXRfh8fH8TFxZV43pLec/XqVeTm5qJjx47KfhcXFwQFBZV6PUVd86VLl/Duu+8iPDwcCQkJ0Ol0AICIiIhiF0Ar67WXpnXr1ujTpw9atmyJAQMGoH///hg1ahTc3NzKfIwdO3aUOS0gh+bGxcVh//796NChg7K9Mve1MvkhIiLTYjwgMR6QGA8QEZknxgMS4wGJ8QBR6dgwQnQXc3BwqNT709PTAch5KP38/Iz22draKs+tra2N9qlUKiW4KE5F3lMWRV3z0KFDERgYiCVLlsDX1xc6nQ4hISHIyckp9jhlvfbSWFpaIiwsDAcOHMD27dvx9ddf46233kJ4eDgaNGhQ5uOUR9u2bXH06FEsW7YM7du3NwpsiYjI/DAekBgPMB4gIjJnjAckxgOMB4jKimuMEN3jwsPDjV4fPHgQTZo0gaWlJYKDg2Fra4uIiAg0btzY6KGfZ7M6NGzYENbW1jh8+LCyLSUlBRcvXiz3sRITE3HhwgW8/fbb6NOnD5o3b47bt28bpbGxsYFWqzXaVpXXrlKpcN9992HOnDk4duwYbGxssGHDhnJfS1k1atQIO3fuxKZNm/D8888r26vyvhIR0b2F8QDjAcYDRETEeIDxAOMBonwcMUJ0j4uIiMCMGTPw9NNP4+jRo/j666/x+eefAwCcnJwwc+ZMvPTSS9DpdOjWrRtSUlKwf/9+ODs7Y8KECdWSJycnJ0yYMAGvvPIK3N3dUadOHcyaNQsWFhbl7t3g5uYGDw8PLF68GD4+PoiIiMDrr79ulKZ+/foIDw/H9evX4ejoCHd39yq79vDwcPz999/o378/6tSpg/DwcMTHx6N58+bluo7yatq0KXbu3ImePXvCysoK8+fPr9L7SkRE9xbGA4wHGA8QERHjAcYDjAeI8rFhhOge9/jjj0Oj0aBjx46wtLTE9OnT8dRTTyn7582bBy8vL3z44Ye4evUqXF1dERoaijfffLNa8/XFF19g6tSpGDJkCJydnfHqq68iMjISdnZ25TqOhYUF1q5dixdeeAEhISEICgrCV199hZ49eyppZs6ciQkTJiA4OBgajQbXrl1D/fr1q+TanZ2dsWfPHsyfPx+pqakIDAzE559/jkGDBpXrOioiKCgI//zzD3r27AlLS0t8/vnnVXZfiYjo3sJ4gPEA4wEiImI8wHiA8QBRPpUQQpg6E0RUPXr27Ik2bdpg/vz5ps5KqTIyMuDn54fPP/8cU6ZMMXV2inU33VOgeu6rSqXChg0bMHz48Co5HhERVa+7qexiPFA9GA8QEdHdVHYxHqgejAeIjHGNESIyiWPHjmHNmjW4cuUKjh49inHjxgEAHnzwQRPnrHSLFi2Co6MjTp06ZeqsFFKd93Xq1KlwdHSs9HGIiIj0GA9UD8YDRER0N2E8UD0YDxCVjFNpEZHJfPbZZ7hw4QJsbGzQrl077N27F56enqbOVolWr14NjUYDAAgICDBxbopWXfd17ty5mDlzJgDAx8en0scjIiICGA9UF8YDRER0N2E8UD0YDxAVj1NpERERERERERERERGR2eBUWkREREREREREREREZDbYMEJERERERERERERERGaDDSNERERERERERERERGQ22DBCRERERERERERERERmgw0jRAC2bNmCoKAgNGnSBD/88IOps0MmkpycjPbt26NNmzYICQnBkiVLTJ0lMrFr166hV69eCA4ORsuWLZGRkWHqLBFRNWI8QHqMCcgQ4wEi88J4gPQYD5AhxgP3HpUQQpg6E0SmlJeXh+DgYOzcuRMuLi5o164dDhw4AA8PD1NnjWqYVqtFdnY27O3tkZGRgZCQEPz333/8LpixHj164L333kP37t2RlJQEZ2dnWFlZmTpbRFQNGA+QIcYEZIjxAJH5YDxAhhgPkCHGA/cejhghs3fo0CG0aNECfn5+cHR0xKBBg7B9+3ZTZ4tMwNLSEvb29gCA7OxsCCHAtmPzdebMGVhbW6N79+4AAHd3dwY9RPcwxgNkiDEB6TEeIDIvjAfIEOMB0mM8cG9iwwjd9fbs2YOhQ4fC19cXKpUKGzduLJRm4cKFqF+/Puzs7NCpUyccOnRI2Xfz5k34+fkpr/38/BAdHV0TWacqVtnvAiCHyrZu3Rr+/v545ZVX4OnpWUO5p6pW2e/DpUuX4OjoiKFDhyI0NBQffPBBDeaeiMqL8QAZYkxAeowHiMwL4wEyxHiA9BgPUFHYMEJ3vYyMDLRu3RoLFy4scv/PP/+MGTNmYNasWTh69Chat26NAQMGIC4uroZzStWtKr4Lrq6uOHHiBK5du4affvoJsbGxNZV9qmKV/T7k5eVh7969WLRoEf7991+EhYUhLCysJi+BiMqB8QAZYkxAeowHiMwL4wEyxHiA9BgPUJEE0T0EgNiwYYPRto4dO4pp06Ypr7VarfD19RUffvihEEKI/fv3i+HDhyv7p0+fLlavXl0j+aXqU5HvQkHPPPOM+PXXX6szm1RDKvJ9OHDggOjfv7+y/5NPPhGffPJJjeSXiCqH8QAZYkxAeowHiMwL4wEyxHiA9BgPkB5HjNA9LScnB0eOHEHfvn2VbRYWFujbty/+/fdfAEDHjh1x+vRpREdHIz09HVu3bsWAAQNMlWWqJmX5LsTGxiItLQ0AkJKSgj179iAoKMgk+aXqVZbvQ4cOHRAXF4fbt29Dp9Nhz549aN68uamyTESVwHiADDEmID3GA0TmhfEAGWI8QHqMB8wXV4mhe1pCQgK0Wi28vb2Ntnt7e+P8+fMAACsrK3z++efo1asXdDodXn31VXh4eJgiu1SNyvJduHHjBp566illQbXnn38eLVu2NEV2qZqV9W/DBx98gPvvvx9CCPTv3x9DhgwxRXaJqJIYD5AhxgSkx3iAyLwwHiBDjAdIj/GA+WLDCBGAYcOGYdiwYabOBplYx44dcfz4cVNng2qRQYMGYdCgQabOBhHVEMYDpMeYgAwxHiAyL4wHSI/xABliPHDv4VRadE/z9PSEpaVlocWxYmNjUbduXRPlikyB3wUyxO8DkXnh/3kyxO8D6fG7QGRe+H+eDPH7QHr8LpgvNozQPc3Gxgbt2rXD33//rWzT6XT4+++/0aVLFxPmjGoavwtkiN8HIvPC//NkiN8H0uN3gci88P88GeL3gfT4XTBfnEqL7nrp6em4fPmy8vratWs4fvw43N3dERAQgBkzZmDChAlo3749OnbsiPnz5yMjIwOTJk0yYa6pOvC7QIb4fSAyL/w/T4b4fSA9fheIzAv/z5Mhfh9Ij98FKpIgusvt3LlTACj0mDBhgpLm66+/FgEBAcLGxkZ07NhRHDx40HQZpmrD7wIZ4veByLzw/zwZ4veB9PhdIDIv/D9Phvh9ID1+F6goKiGEqJYWFyIiIiIiIiIiIiIiolqGa4wQEREREREREREREZHZYMMIERERERERERERERGZDTaMEBERERERERERERGR2WDDCBERERERERERERERmQ02jBARERERERERERERkdlgwwgREREREREREREREZkNNowQEREREREREREREZHZYMMIERERERERERERERGZDTaMkFnIzs7G7NmzkZ2dbeqsmBTvg8T7IPE+SLwPROaF/+d5D/R4HyTeB4n3gci88P+8xPvAe6DH+yDxPpgXlRBCmDoTRNUtNTUVLi4uSElJgbOzs6mzYzK8DxLvg8T7IPE+EJkX/p/nPdDjfZB4HyTeByLzwv/zEu8D74Ee74PE+2BeOGKEqBQLFy4s976C2w1fl/a8pPOVprT3LlmypEzvqy35vdvub1H7S9tW274PtTm/Zbm/ZfluFHcNREQlqem/UZX9+1TS+ysSDxR8XZP5rUg8UFzeGL8Udi/Eh6aMX4jIvNxtv1mq4jdhbcrv3RRvVTZ+MXx+N8SHtSEeKCl/ZXnOeMAMCSIzkJKSIgCIlJSUcr+3efPm5d5XcLvh69Kel3S+0pT23qCgoCLvQ23Nb3Xd34p+HyqS39K21bbvQ23Ob1nub1m+GwW3VebvAxHdfUxZBpTnb1Rl/p6W9v6KxAOmzG9F4oHi8maqeKC0/Na2eKA257e64i3GA0Tm5W6JB8pyzvLmx1BZfhPWpvxWR7xVm+qLypLfyqjO+LA2xAMl5a8szxkPmB9OpUVm4cKFC2jWrBnq1q0LlUpVrvfGx8fDy8urXPsKbjd8Xdrzks5XmbwCQFxcHLRabaH7UFvzW13319PTEzExMeX+PlQkv6Vtq23fh9qc37Lc37J8Nwpus8yzRDaycfXqVTRo0KBCeSeiu0fPnj2xe/duk5QB5fkbVZm/p6XltyLxgCnzW5F4oKg8FtxWk/FAafmtbfFAbc5vdcVb+njg8OHDaN++fYXyTkR3jxkzZuDLL7+s9fFAWc5ZmfyW5TdhbcpvdcRbFY0HSstvZeOX4vJbW+PD2hAPlJbf8tQXbdq0CcOGDatQ3unuwYYRMgt79uzBoEGDsOmPP2FtbQ0AEADyv/0i/7nI3ycAbN6wDkNHPHRnuzDa//vG9Rg6fITBseRxtmzagMHDRsjDCWDL5g0YPGw4BIA/N23AoKF3nm/egIFDhwMC2Pr7RgwY8iD+2rIJ/Qc/eOf8wuhfCKHkS+jzKvLT/LN1M3oNHJqfRhjn6++tG5GZkY7+wx6GlaX1neMI7An7A937DIbuznv27diC+/oOhhDA/h1/oGufByAEcOCfP9Cl1wMQAA788yc69xqEf//Zis49BxnfAxjky2hb/n2FTuC/PdvQrvuA/OsyvDghcOTAXwjt3F851p134uiBMLTt1E9/A3D04A606dgHEMCx8B1o06EPhABOHN6B1u17Azrg+H//oFW7Xjhx5B+0aNkN/x38E+07DoKlpRWUCwcMnov853denjy1C62C74fyweoM/nwK4OSZPWjVrLvRe09e2IdWTe4z+lKdvLQPrRp1lc8vH0Crhl0AAZy4cgCtG3QGdMCJawfQun4XnLj2L1oHdJan0IkC+Sx4U/X38M55bh5Cq7odjdIY7j8RcwjZeRq08+4CC1gCAjgdfwQh7m2N3nMq6ShaurSBEAKnk48jxKk1IAROpx5HC8dW8n2pJxDi0BKn00+ihX1I/r25cxzls9Vfg8FrAQGd0OFs3nk0s2oKHWR6Ad2dfwV0QuBi3iU0tmoEncH2y9qraGAReOdQOlzTXUegKgC6Ozfoui4C9VT+ENAhUhcFP5U/IkUk/OALHQSiEQ13uOMMziIH2WiIhvgv9QicnJxK/qNCRHctS0tLjHxoFJ5+9tkiYoKKxQOAwO8bN2DI8BFljgeAomOCrb9vxMDBw7Fty8YKxwMCkDHBgKFljgcAYHfYFnTvO1gpxvbu2IL7+gxR3rdvxxZ07T0YALD/TkxQFfEAABzesw3tu/XPjweUDwY4sv8vhHbtB+jyjweIEuMBIYDjh8LQun3fqokH9B+iAE6e2o1WLe43Lut0+XkuKh4ABE6e338nJqhcPACUHhNUNh6AEDidcAQhbm2VdMXHAycQ4tRKbk89gRDHVjidegItHFrm35sajAfk18o4Jrihi0A9C38IIRChi4CfPjYQ0fCFD6IRDS944RzOIQ3p8IMv9l7fh8DAwCL/jhDR3a9bt26wtLLCO7PnVGs8AABbNm7AAw+OUH6zbdm0AQ8MGwF9uVhSPCAgsG3LJvR/4MEqiQdQ4BqLigkqEw9A6OsKHihTPKDPjz4mqEgdQVnjAQiBE//9jdahvYuJBx6ApZXVnbLLIIMVqSOoYDwAAZy8sh+tGnQFkB8TnLjyr/z32r9oHdBFyVt54oH8mKBDxeKBO9d4KvEoWrq1lWW3QUxwOuV4DccDl9HEqqF8WxnrCMoSD3ijDi7iEpKRAle4YMvBP9CpU6di/pLQ3Y4NI2QWDh48iIdGjcLl6xHQF+aGBbHhNgiDH+2FXhcOfEQxr0s8jigYHOQHL0B+uaAzDGoKBjkCxWwzzFMp7zNKgzsFDozSAsUcs+Dxi722Ys6rMy6Ihcgv1PODPGFcCaIv/A22FwyYynIM/TaDCy/5uc7gQy74XH7sRewrx/ELXI9RsKUECvnXlr+9wHlRkWMIJaAxfF3UNmGwr7j3yePrClUWFXyvMHzPncBHfv/kvzqhg4BO/h+4868+2NEZblfSGr+nqLQAij0eACQiEedwARnIQGM0wn+ZR6BWq8v1t4aIaj9LS0ucvXQZAQGBqHA5XgXxAPTbCpWbhcvsmogHYJSu6JigRuMB/b0S+n/zy8qitsEgD9USD+g/sJJigiKfl/H4Bs9LK8uh3DfDfcbnrtF4ACg9JijmvdURD8jslBwTlBQPZCADF3ARtxCDQATg35iD8Pb2LudfGiKq7e6//35MfuopjBn7KCpSjuvLtdLiART73gKvC5Wb1RMPAMWlK7rsru54ADBIU8E6giqLB/JvTuXqCIp8Xo5jG+SnsnUEVRkPKPmpTB1BMe+rSDwAoOgyHmWvIygpHshBLq7gCq7hOjzhiR2ndiAkJKT8f2yoVuPi60RERAA84IH70AVt0BpRiIa7vTuWLFmC3NxcU2eNiIiIaogDHBCKtuiO+5AJDfzq+qGpqgmSk5NNnTUiIiKqITawRnM0Q2/0hD3UaN2yNfxV/rhy5Yqps0ZViA0jREREd6iggjfq4H50QzCa46WnXoKbjSvWrFkDnU5X+gGIiIjonuAMZ3REe3RBJyThNuq4eaG5qhkyMzNNnTUiIiKqIXawQwhaoBd6wAIqNG3cFPVVgbh586aps0ZVgA0jREREBaiggh980RP3ozEaYfKjk+Fm6YotW7YoQ9CJiIjo3ucGN3RBJ7RDO8QgBu4O7li4cCFycnJMnTUiIiKqIfawRxu0xv3ohhzkIMAvAI1VjZCYmGjqrFElsGGEiIioGBawQAAC0Bs9UQ/18NDQh+Bh4YHdu3ebOmtERERUQ1RQwQue6Ib70BIheP251+Fq64qVK1dCq9WaOntERERUQ5zghPZoh67oglSkoa5nXTRTBSEtLc3UWaMKYMMIERFRKSxhiYZogN7oCUCgZ8+eiIqKMnW2iIiIqAapoIIP6qIn7kcdeGHChAlYt26dqbNFRERENcwVLuiMjghBMC7gIlo7tzJ1lqgCrEydASIiotpOQCAWcTiPC8hFLpYuXQofHx9TZ4uIiIhqWApScR4XkIhENEUTDBo0yNRZIiIiohqWhSxcwmVEIBL+8Mc/13aaOktUAWwYISIiKkECEnEe55GBTDRBYxzJOgpbW1tTZ4uIiIhqUDoycAEXEYMY1EcgTsedhpeXl6mzRURERDUoBzm4gqu4huvwghdOnTmF4OBgU2eLKogNI0REREVIRjLO4QKSkYxGaIj/0o7A0dHR1NkiIiKiGqSBBhdxCVGIhj/8cD3iOurVq2fqbBEREVENykMeruIaruAq3OCKfw/9iw4dOpg6W1RJbBghIiIykIY0nMdFxCMeDVAfFxIvwN3d3dTZIiIiohqUjWxcxhVcxw3URV2cu3AOTZs2NXW2iIiIqAZpocUNROASLsMB9gjbGYaePXuaOltURdgwQkREBCATmbiAS7iJmwhAPUTejOQ6IkRERGYmF7lKj1APeODIsSNo06aNqbNFRERENUgHHaIQjYu4BCtYYd3mdRgyZAhUKpWps0ZViA0jZDZ0Oh2SkpIACAgBCABC6Pfmb9NvNHwtlNdyY/57DY5VxHHuJCl8HOW5yH+tT6ekMUiHgumEcRphnCY/j6KY4xSVhwL7De6PYf6Mnt9JX/K1FXNenT6f+SeU2/THvHMtuvxjKZ8N8rdDFLhuo2OI/O0GFyUEAJ3BjTZ8LorYrjPYriuQ5s5nnJ8ehY+p038Rithu8FwUygMMzpd/bcp2FMgTDI6hK3gMw/tQYLv+3Eo6+dxom+Fr3Z0MFXyfTtzJoy4/fyjivYbXohPy+wEddBAQQv6rEzq5Vch9QtxJcedf/Xadkka+V9zZVzityP8uG6aBUOYIjUAkfOGDS1cuoWHDhiX+PSGiu1tKcjKSHJ2AQjFBzcUDyrFLiAlqMh6AUboCaVDwHAWeV0c8oL9X+jKwiJigRuMB/QdWUkygbEeB54bHKeJc5YwHoNw3g30F8lej8QBQhpigiPcafE5VGQ/IW1FyTFBUPKCFFlGIxiVchhOcsHvfbtx3332l/TkhortYRnp6MXUEVRcPFPXegjFBTcYDKHi+osrmGowHAIM0FawjqLJ4AAY3uzJ1BMp2FHhucIwyxAP6e1NSTFCT8YCSn0rVERTxPsPrKEc8AKDSdQRFxQM66JCARFzABeggsPSnpRgzZgwsLCzK8FeF7jYqof82Ed3Drl69ipYtWyIzM9PUWSGiWqguvLHj9N9o0aKFqbNCRNWsSZMmuHz5sqmzQUS1kAuc8fO2X9C/f3/2CCW6x02cOBErVqwwdTaIqBaygy0WfP8VJk2aBGtra1Nnh6oRG0bIbGRnZ0Or1Zo6G0RUy6hUKqjValNng4hqSG5uLnJzc02dDSKqhdRqNRtEiMyEVqtFdna2qbNBRLWQjY0NrKw4yZI5YMMIERERERERERERERGZDU6QRkREREREREREREREZoMNI0REREREREREREREZDbYMEJERERERERERERERGaDDSNERERERERERERERGQ22DBCRERERERERERERERmgw0jRERERERERERERERkNtgwQkREREREREREREREZoMNI9Vg9uzZUKlURo9mzZqZOltERERUwxgTEBEREeMBIiKi2sfK1Bm4V7Vo0QI7duxQXltZ8VYTERGZI8YERERExHiAiIiodmFJXE2srKxQt25dU2eDiIiITIwxARERETEeICIiql3YMFJNLl26BF9fX9jZ2aFLly748MMPERAQUGz67OxsZGdnK691Oh2SkpLg4eEBlUpVE1kmIiKqtYQQSEtLg6+vLyws7q6ZQMsTEzAeICIiKh7jAcYDREREVRUPqIQQogrzRQC2bt2K9PR0BAUF4datW5gzZw6io6Nx+vRpODk5Ffme2bNnY86cOTWcUyIiortLZGQk/P39TZ2NMitvTMB4gIiIqHSMB4iIiKiy8QAbRmpAcnIyAgMD8cUXX2DKlClFpinYIyQlJQUBAQGIjIyEs7NzTWWViIioVkpNTUW9evWQnJwMFxcXU2enwkqLCRgPEBERFY/xAOMBIiKiqooHOJVWDXB1dUXTpk1x+fLlYtPY2trC1ta20HZnZ2cGPkRERHfc7dNHlBYTMB4gIiIqHeMBIiIiqmw8cHdNynmXSk9Px5UrV+Dj42PqrBAREZEJMSYgIiIixgNERESmx4aRajBz5kzs3r0b169fx4EDBzBixAhYWlrikUceMXXWiIiIqAYxJiAiIiLGA0RERLUPp9KqBlFRUXjkkUeQmJgILy8vdOvWDQcPHoSXl5eps0ZEREQ1iDEBERERMR4gIiKqfdgwUg3Wrl1r6iwQERFRLcCYgIiIiBgPEBER1T6cSouIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzAYbRoiIiIiIiIiIiIiIyGywYYSIiIiIiIiIiIiIiMwGG0aIiIiIiIiIiIiIiMhssGGEiIiIiIiIiIiIiIjMBhtGiIiIiIiIiIiIiIjIbLBhhIiIiIiIiIiIiIiIzIZVRd4UERFR7vcEBARU5FRERERERERERERERERVpkINI/Xr14dKpSpzepVKhby8vIqcioiIiIiIiIiIiIiIqMpUqGEEAIQQVZkPIiIiIiIiIiIiIiKialfhhpG2bdti/fr1paYbMWIETpw4UdHTEBERERERERERERERVZkKL75ua2uLwMDAUh82NjZmP7rko48+gkqlwosvvmjqrBAREZGJMB4gIiIixgNERES1Q4VGjOh0ujKnPXjwYEVOcc84fPgwvv/+e7Rq1crUWSEiIiITYTxAREREjAeIiIhqjwqPGKHSpaenY9y4cViyZAnc3NxMnR0iIiIyAcYDRERExHiAiIiodqmyhpHw8PCqOtQ9Y9q0aRg8eDD69u1batrs7GykpqYaPYiIiOjux3iAiIiIGA8QERHVLhVefL2ghx9+GBEREVV1uLve2rVrcfToURw+fLhM6T/88EPMmTOnmnN17xqmGmL0erPYYqKcEBmbbj/N6PWCzIU1ct7n7Z8xev115rclpjfMZ2l5fMRqjNHrOjaeRq/Lc42VuT+lvbc811SaFx2eU54XXDer4LEN05bX/IxvStw/znqs8nx17tpi9xW1v2C+SjrXTMfpJebjs/QFxe6b4fCC0esvMr4yev2Y9aNGr1fl/lSmY2WLnBLzVFsxHqh5hjEB4wGqLcrzN7gqlbecLU/6ysQDlSn/S7uXVXmvy3uukhR8r2EZV7CsLFiWFlRS2epV4HMomLag0sp8QyWV/wWPFZeTYLRvZc7qcuUjISdJeb48Z1VZs1hrMR6oeawjoNrIVPUDgHEdQXnqB4Dqiwcqc97yvrcq731p5b9hmV9aWosSxiyUVoaX9tvacH/BfaX9bi/IMH18gTK+pN/0JR2nLIqLkaqqfqBcDSOjR48ucrsQAklJSUXuM0eRkZGYPn06wsLCYGdnV6b3vPHGG5gxY4byOjU1FfXq1auuLBIREVE1YzxAREREjAeIiIhqp3I1jOzYsQOrVq2Co6Oj0XYhBPbs2VOlGbubHTlyBHFxcQgNDVW2abVa7NmzB9988w2ys7NhaWlp9B5bW1vY2trWdFaJiIiomjAeICIiIsYDREREtVO5GkZ69uwJJycn3H///YX2tWrVqsoydbfr06cPTp06ZbRt0qRJaNasGV577bVCQQ8RERHdexgPEBEREeMBIiKi2qlcDSPr168vdl9YWFilM3OvcHJyQkhIiNE2BwcHeHh4FNpORERE9ybGA0RERMR4gIiIqHZSiYKryJZDTEwM6tatW5X5uWf17NkTbdq0wfz588uUPjU1FS4uLkhJSYGzs3P1Zo6IiKiWu1fKRcYDREREFXevlIuMB4iIiCquqsrFco0YKah///44efJkZQ5hNnbt2mXqLBAREZGJMR4gIiIixgNERESmV6mGkUoMNiEymaysLGRlZUGn08HS0hJWVlbKw8LCAiqVytRZJCIiomoihEBeXh7y8vKg1Wqh1WoBABYWFlCr1bCyslLSAWBcQEREZAZ0Oh2EEFCpVMqDiIjubZVqGGFBQbVFXl4eNm3ahK1btyI2NlZ5pKSkICsrC2fPnkXDhg0BAPPmzcMHH3xQ7LGOHDmC0NBQAMCXX36JuXPnwtLSEjY2NrCzs1MeVlZWWLx4Mdq0aQMA2LBhA7799ltYW1sbPWxsbGBpaYkZM2agRYsWAIADBw7gp59+gpWVFSwtLWFpaQkLCwtYWFjA0tISY8eOVdJeu3YN+/fvVxptLCwsjN4XGhoKPz8/AEBiYiLOnz+vBHL6tPq8+Pr6wsXFBQCg0WiQkJBgdFz9Ma2srKBWq2FtbV0tnxcREVF1EEJg3759WLduHaKjoxEbG4tvv/1WmcP922+/xbPPPlvs+zdt2oRhw4YBAFavXo3HHnsMVlZWsLGxUR7W1tZQqVT45ptv8OCDDwIA9uzZg9deew0ODg6wtbVVyn99+Tt58mTcf//9AIDLly9j5cqVsLOzg42NjVIG68vs7t27o1WrVgCApKQkhIeHw9bWFra2trC0tDRK7+/vD29vbwCy40dUVJSyzzBOV6lUcHd3h6OjY9XfdCIiolooIiICK1aswJUrVxAfHw8rKyts2rRJ2T9o0CDs3LlT6ShhyMbGBtnZ2crr0aNHY9u2bUYdKy0tLZVy/syZM8pv51mzZuGff/4x6oBp+Jt82bJlcHBwAACsWrUKBw4cUI5rWI9gYWGBGTNmwMnJCQCwf/9+nD17VunEYfg73sLCAv369VPK+UuXLiEiIkKpZzBs7FGpVGjTpg3s7e0BANHR0bh586YSYxSs52vSpImS35SUFCQnJyt5NbwX+m0WFhYAZB1NTk6OUYdqfV71MQ/rFInI1CrVMEJUWzz99NNYtmxZsfuzsrKU56UVvvqCHAAyMjKQnJxcbNqMjAzl+fXr1xEWFlZsWsPGjtOnT2PhwoXFpm3Xrp2Sdv/+/XjssceKTfu///0P48aNAwDs3r0bDz30ULFplyxZgieeeAKArMQZOHBgsWm//PJLvPjiiwCAgwcPom/fvkYNQzY2NkpQM336dEyZMgUAcPbsWYwePbrQ8fRB21NPPYVp06YBkEHYhAkTjCqPrKysYGtrCzs7O/Tr1w+jRo0CIIOwL774ApaWlsp+Ozs72NrawsbGBk2bNkX79u0ByCDs0KFDsLOzg0qlghBC6QEEAB4eHkpDmU6nw4kTJwDIANjZ2RkuLi5wdHQ0+i4QEVHtlZaWhv/9739YtGgRTp8+bbTvxo0bSsOIfjRIcQxjBH0liX50SWZmplFajUajPI+JicHBgweLPe7999+vNIxcvHgR8+bNKzbt119/rTSMnDp1Cg888ECxaT/66CO89tprStqOHTsWm/b111/Hhx9+CAA4f/48+vfvb7RfX06rVCo8+eSTeOONNwAAsbGxGDt2rFLm2tnZwdnZWXl069YNvXv3BgBkZmZi1apVAPJH3BiW240aNUK7du0AyPt76NAhpdJG3wnFxcUFbm5usLe3Z4UJERGVixAC+/fvx4IFC7BhwwajBg99Q4BeXl6eUeOHoYLlT0ZGBtLS0oo9r2F8cf78eezbt6/YtD/88IPyfOfOnfjxxx+LTTt16lSlYWTt2rX45ptvik175coVpWHkhx9+wCeffFJs2lOnTimx0Q8//IDZs2cXm/bff/9F586dlbQzZ84sNu0///yDXr16AQC+//57PPfcc8Wm/f333zFkyBAAsoHo+eefh5eXFzw9PeHh4aF0CLGyssL06dPRqVMnAMDJkyexcuVKAPmxhpubG+rXr4/69eujRYsWcHNzK/a8RESG2DBC94Tx48dj8+bNmDRpEpo2bYo6deqgTp06cHNzg1qtho+Pj5J29uzZmDVrFlQqFXQ6HfLy8pCbm6v0FDEsRJ999lk8/PDD0Gq1yMnJQXZ2NrKysqDRaJCXl4fmzZsraQcOHAgvLy/k5uYWeuTl5aFx48ZK2tDQULz77rtGU3nodDolP02aNFHS+vj4oF+/fkrlvn7aD61Wi7y8PHh5eSlpHR0d0bhxYwghlPT668vNzYWtra3RfbOxsTE6riFLS0vleXZ2NjIyMowaggzFx8crzzUaDc6cOVPsZxUTE6M8T01Nxd9//11sWicnJ6OGkblz5xab9umnn1YaRlJSUnDfffcVm/bxxx/HihUrAMhGM/0IoYI8PT0xcuRIfP/99wBkJc5bb72lVOA4ODjA0dERjo6OUKvVqFevHrp27QpABmm//fabcu8tLCyMehz7+voqo4306VkBRERUfocPH8bAgQORlJQEQFZ8jB07FqGhoahTp47R3/hx48bhwQcfhLW1tfJjW1/eCSGMRkqOGTMGgwYNUv6OZ2dnIycnR+n9qG9gB4D77rsPGzduREZGBrKzs5Gbm6ukzc3NRYcOHZS09erVw7Rp05CVlaUcSwihlOtNmzZV0qrVaoSGhipp9bGCvtzWjwIFZCWOk5OTciz9NQGyE4Crq6uSNjc3F5GRkcXe09TUVOV5WlpaiXPhv/DCC0rDSHJyMqZOnVps2kmTJikdWdLT05UysyijRo3Cr7/+CgDIyclBvXr1jBpvLCws4ODgACcnJ/Tp0wcfffSR8t41a9bA2dkZDg4OsLe3h4ODAywtLZGTkwMHBwc0atRISXvgwAGoVCr4+/vDz8+PnSKIiO5SOp0ODzzwAP766y9lW+/evdG/f394eXnBy8vL6DfXypUrkZubq8yaoG+o15fLhpYuXYr09HSj3+H63/m5ublGv+NmzpyJMWPGIDc3t1DanJwcqNVqJe3w4cMRGBgIrVZbqA5BCGHUmBMSEoJhw4ZBo9EY1R/oOwAaHtfb2xstW7ZEXl6esl//ux+Q9QB6Li4uCAgIUI5lSAgBOzs75bWFhQXs7OyUaytJab9tC3ZGSUlJQUpKCi5fvlworb5OAJAdMT///PNij2vYGXTDhg145JFHULduXfj6+sLX1xceHh5KrPTkk08qjT6nTp3C999/bzRyx8bGBh4eHqhTpw46duyIBg0aAJAxTFRUFIQQyMrKUuqJ9HFfixYtUL9+fQAyNvrvv/9gY2NjVDejv3/BwcFK/U92djaio6Ph4eEBZ2dn1g8Q1QCVqMRCIW3btsWxY8eqMj90R2pqKlxcXJCSkgJnZ2dTZ6fWCQ8Px7lz5zBx4kQAUAokw2CAys+wYkY/NBiQjQfR0dFKgZ+dnY3s7GwluGrUqJFS8KelpeHw4cOFCnF92vr16yuNRMnJyfjjjz+MGpD0lU9ZWVno3Lkz+vXrB0BOEzZr1iylZ49hAJKbm4shQ4Zg+vTpAGRDTefOnZU8Gk4rIoTAqFGjlGBKo9Eo+cnOzkZqaipyc3OVfE+YMAHLly9X9hsGhgWNGDEC69evV663pMqV3r17GzUK6RvVnJyc4OTkBGdnZ+Xfli1bGvXiiYyMRJ06dQo1dBHdy8y1XDTX6y6Pc+fOYdCgQcoIxgkTJhg1ApBkWBmk0Whw9uxZo32GlSa+vr4ICAgAIL+DW7duVcpdjUaDtLQ0pKamIjU1Fd26dcP48eMByLJ6ypQpRtN1GJbbgwcPxiuvvAIAuH37Ntq3b2/U6SMnJwfJycnIy8vD5MmTsXTpUgAoNcYzbETRarWwtbUttsLmwQcfxMaNG5XXtra2yMnJAQBlVEvDhg3h5uaG9u3b4/nnny/yHhKRaZhruWiu111e27dvx7hx4zB8+HC88MILaNmypamzdM8yrDvQ/+vg4KCMntF3ENHHA4ZxhlarhYODg9JAk5mZiYiICCQkJCAhIQGJiYlK/UBeXh6GDBmi/GY/evQo1q5dq5THQggkJCTgxo0buH79OpYsWaJ02FizZg0effTRYq/BcPaNjRs3YsSIEcWmXbRoEZ555hkAwNatW0sc0fvNN98os2Ts2bMHPXr0KDbtxx9/jFdffRUAcOLECaXzpFqthr+/P+rVq4d69erBx8cHgwYNUkYgE5m7qioXKzVihI0iZAqnT5/GAw88gKSkJFhbW2PcuHFQqVRsFKkCKpVKmSfUkL6ioCycnJyUQKQ0rq6uSiBSGg8PjxKHDhvy8vLClStXypRWrVYjOjpaeS2EQHZ2NlJSUhATE1Ooh8xLL72kjMTJzMxEeno60tPTkZmZqQxHBuS91N8Ha2trCCGU4DArKwvBwcFG57x9+7bSU6aggts6dOiA2NhYpeLKzs5O6eHUvn17ozV0Ro8ejczMTKVxyM7ODi4uLnBxcUGTJk3w5JNPKmnDw8Oh0WiUXkWWlpbw9PSEl5cXPDw8Sp2ChojIFJo3b45///0Xjo6OynQTVJhhhb5arVamtCqNs7MzxowZU6a0Hh4eRo0OJXFzcyuyrBZCIDMz06hhw8bGBidPnjSaGlNfDqelpRmNns3MzET//v0RHx+vjHbNzMxEXl4ebG1tjUbZAEDjxo2RmZmJqKgoZGVl4cyZM8rI1+TkZKVhRAiBgIAA+Pr6om3btujQoQM6dOiA4OBglo9ERLVE//79cfPmTa6VWQOKqzvQ08+UUBb29vZo1qxZmdKGhoYWO+NDQcOHD8e1a9cQExODmzdv4ubNm7h9+7by27h169ZK2qZNm+Kdd95RRvboO2wmJiYiLi7OqD7EysoKbm5uUKlUylSj+oeVlRU8PDyUtLa2tmjZsiWys7OVdev0I5dVKhV8fX2VtGlpabC3t0dmZiY0Gg0uXbqES5cuKfvVarXSMHLgwAE8+eSTynozBUcVv/XWW8qU7MePH8fo0aOhVqthb28PV1dXuLu7w93dHV5eXujfv78ycobI3FRqxAhVH/YIKdqVK1fQrVs3xMTEoGPHjvj777+5kCjd9YQQuHXrFtLS0owe+t64vr6+GD58OAA5asXDw6PYac369euH7du3K69dXV2LbGwBgK5du2L//v3Kaz8/P9y8ebPItMHBwUZTpI0bNw6xsbFGiwk6OzvDzc0NDRo0UEbvAEBUVBTc3NyURfuIKsJcy0Vzve7SZGZm4sSJE+jSpYups0L3iLy8PNy4cQOXLl3CjRs3kJKSggYNGuDhhx8GIMuyevXqFXqfWq2GjY0Nnn76aXz88cfK9uTkZI5cIqoG5loumut1l0YIgTlz5mDMmDFG01wT3c0yMzNx69YtREZGKo+oqChMmDBBWWtl27ZtGDRoULHHMFwzdteuXcraL0WZN28e3n77bQBy7dxXXnkFzZo1Q7NmzdCrVy+jxhui2qJWjBgBUGLPcLVajTZt2uD5559H3bp1K3sqMnPx8fHo27cvYmJi0LJlS2zdupWNInRPKNhTpCS2trZIS0tDQkICrl+/jsjISOTm5io9Q7y9vY3SL1y4UJlSTKvVQqPRICUlBcnJyco0KXq+vr5wcXFRph3Lzc1FQkICkpKS4OnpaZR2586duHXrVpF5bNmypVHDyIABA3D27Fn4+/srAZazszNSUlLg7++P119/XUk7f/58ZGVlwcrKShl2Dcj58D09PTFlyhQl7eeff474+Hg4OzvDz89Pebi7u8PZ2ZmjyIjuUUIIjB8/Hlu2bMGqVavKPJqBqCRWVlZo1KhRsSNkfXx8cP78eZw4cQJHjhzB4cOH8d9//yEtLU0pW/WOHTuGbt264eWXX8arr76KmJgYHD16FEePHkViYiKWLFmipP3ll19w/fp1ZTH7kJAQtGjRwmitNyIiKtp7772HOXPm4Ntvv8XFixcLjQokuhvZ29uXGJMAQMeOHbFz505lKjPD6cMtLS2N1rht27Yt9uzZA41Gg8zMTCQnJyMpKQlJSUm4efMmunfvrqQ9efIk1q1bp7x2cnLC+vXr0bdv3+q5WCITq/SIEf1/vKLo5+GtW7cuDh48WGQvKyoae4QUNnbsWPz8889o1KgR9u3bx8Y2ohqin67E8G/R5s2bkZ6ersz7mpOTg9TUVNy+fRuenp54+eWXlbT169fHjRs3ijx2+/btcfjwYeW1v7+/0dRmhlq1aoUTJ04or4OCgnDx4sUi0zZs2NBoipa2bdvi7NmzsLCwgJeXF+rUqYM6derA1dUVPj4+Rgv4rV27FqmpqXB1dYVarVaGRTs6OqJ+/fpwd3fnHPMmYK7lorled0l+/PFHTJ48Gba2ttixYwe6detm6iyRmdLpdLhy5Qp0Oh08PT2VqTNmzpyplCv66S301Go1MjMzlddDhgzBH3/8YXRcZ2dndOnSBV27dsUbb7zBKWGIDJhruWiu112Sw4cPo3PnztDpdFi4cCGeffZZU2eJ6K535coVbN68GefPn8f+/ftx5swZWFlZ4ccff1TWlKsqWq0WiYmJSEhIQKNGjZQ1VH/99Vf8/vvvSqOPVqtVpjbLycnBwoULlRFiixcvxocffggHBwdlnVYXFxfl9/6jjz6qNBLpp2p1dHTk7/l7QK0ZMXL//ffjyJEjyM7ORqtWrQDIFkZbW1s0b94cp0+fRkxMDObOnWvUO4qoPDZt2oSff/4ZlpaW+Pnnn9koQlSDrKysChU0w4YNK/P7r1+/jqSkJFy4cAHnz5/HuXPnoNFo4OLiggYNGhilHT9+PGJjY6HVapW55AE5R23BES4TJ05EXFwckpOTER0drcwbm5ycXCi/ubm5yuK6+uHIeo0aNTJqGPn4449x/PjxIq/FwcEBaWlpyusFCxbA0dER48aNM1qPhoiqR0xMjNLwOm/ePDaKkElZWFigSZMmhbZ/+umn6Nq1K2bOnIlr167B1tYWrVq1Qrt27Qql79evHzw9PZGamorExEQcPXoUqamp+Ouvv/Dff//hnXfeUdK+8sorCA8PV3qFBgcHY9q0aZw+hojMTk5ODiZPngydTodHH32UjSJEVaRRo0Z46aWXAMhpvCdOnIi1a9fiscceQ0xMDGbOnFmh47733nv46aefYGlpqUwbnpycDH1f/RMnTih1yhcuXMCqVauKPdbt27eV5xkZGbh+/Xqxabt37640jKxYsaLEvxUrV65U1mVZtmyZ0WwVBc2ZMwfvvvtusfvp7lHphpGxY8fi6NGjOHXqFIKCggAA58+fR4cOHTBx4kQMHDgQrVu3Nprznqi8zp8/D5VKhZkzZ5Z5sVAiqj3c3d3RpUuXUtcD+Oijj8p8zDfeeKPI7TqdDtnZ2Ubb/vrrLwghkJubi/j4eMTFxSE2NhZpaWmFFmvu27cvAgICkJycDI1Gg+zsbGRnZyM1NRV16tQx6l2ydOlSnDp1Cm+//TaeeeYZDBkyBG3atIGFhUWZr4OIykYIgSeeeAK3b99GaGio8qONqLZRqVQYOXIkhg4dioiICAQEBBQ76sNw6klAjtI8deoU9u/fj7S0NKMy59dffzUagblz504sXLgQPXv2xLRp0zBq1KjquSAiolpm1qxZOH36NLy8vLBgwQJTZ4fonmRra4vVq1fDz88Pn3/+OW7cuKHMDFRe6enpOHfuXLH7N2/erDSM3HffffD09ERGRgY0Go2SRqVSwdXVFUePHkXXrl0BAIMGDcLy5cuRmpqKpKQkpKamGh135cqVyvoqxc02oTd9+nSlYaTgcQr66KOP2DByj6j0VFqBgYFwcHDA2bNnjbYHBwcjIyMDN27cwMCBA7Fz585CFVVUPA6VLezAgQMIDQ1lr2wiMpm8vDxYWeX3Kfjggw/w7bffIioqStnm7e2NgQMHYuzYsRg4cKApsnlPMtdy0Vyvuyjffvstnn32Wdja2uLw4cNo2bKlqbNEVGOEENiwYQN0Oh10Oh0yMjKwadMm/P7779DpdBg6dCg2b94MQPakfv/991GnTh24uLjA1dUVbm5u8Pb2ho+PDxwcHEx8NUQVZ67lorled1H27NmDnj17QgiB3377DSNHjjR1lojueSdOnEDr1q2V17GxsYXWNy3J33//XeI6JS+99BK++OILAHKGh4KzRRh65plnsGjRIgByLeI6deoUm/bRRx/F6tWrAcj4SD9dV1GmTp2Kb7/9FoC8vpJmqjHML5lGrZlKKyEhAVFRUXj99dfx8MMPAwA2bNiA8+fPw97eXkln+JyoIvQtwkREpmLYKAIAb775JmbOnIm1a9diw4YNCAsLQ2xsLFasWIE6deooDSOXLl1C165d4eTkBEdHRzg6OkKtViuP4cOHY9y4cQBkAX/o0CH06dOHc58S3XH16lVlCq2PPvqIjSJkdvSjUAxNmjQJkZGRWLJkidIbEpBTUMydO7fYY7388sv47LPPAMgf/k899RS8vLzg6+sLPz8/+Pr6ws3NDY6OjvD19S2xwoGIqKZ99dVXEEJg8uTJbBQhqiGGjSKJiYlo1qwZevbsic8++6zEReL1+vTpA41Gg5iYGNy6dQu3bt1CfHw84uPjkZCQgA4dOihp7e3tMWHCBLi6uiodPCwtLaHRaKDRaNC+fXslraOjI+bMmQNra2tYWVnB2toa1tbWcHd3h4eHB+rXr6+ktbGxQVnHBnh7e5c5Ld3dKj1iZMyYMfj1118LVd4IITB69GisWLEC/v7+aNy4Mf79999KZdacsEcIEBUVhQkTJuD7779X5gQkIqrNsrOzsW/fPmzfvh29e/fGgAEDAAD//fefUbBX0FtvvYX33nsPgBziGxQUhL59++Kzzz4zCkLNmbmWi+Z63QXpdDp8+eWX2L17NzZu3Mjp6ohKcOHCBXz++edISkpCSkoKkpOTkZSUhJiYGGRmZuKDDz5QpqM8deqUMnVFUV555RV88sknNZV1olKZa7lortddlNzcXCxYsABPP/10oSlxiaj6/frrrxg7dix0Oh3UajU++OADPP/887C0tDR11siMVFW5WOmGkeTkZEyZMgUbNmww2j5y5Ej88MMPSE9Px2+//YaWLVuid+/elTmVWWHgI4e8rVmzBgMGDMC2bdtMnR0iMlNCCJw/fx6HDh1C9+7d0bBhQwBAWloaEhIS4OHhAScnpxJHd2g0Gly5cgXp6enKQ9/jJTMzE+3bt0fnzp0BAGfOnEFoaChycnKgUqkwZcoULFq0qNj56c2FuZaL5nrdxanovMZEJKWlpQGAUpmYkJCA3377DXFxcbh58yaio6Nx8+ZNpKamIi0tDS+99BJeffVVZGRkICYmBrGxsRzFTSZlruWiuV43EdUOQgjk5ORAo9HA1dUVZ8+exXPPPYedO3cCANRqNa5du1au6bWIKqPWTKXl6uqK3377DVevXsWZM2cAACEhIWjQoAESEhLg7+9faFFBotKcP38ea9asgUqlwocffmjq7BDVKjqdTqlQz8zMRE5OjvLw8/NTprxISUnB6dOnkZWVpTycnJwQGBiIgIAAqNVqE19J2el0OuTm5ipzgkZFRWHp0qXIzc2Fs7MzAgMDERgYiHr16iE9PR3u7u7w8vICIIf6bt68GXZ2dlCr1cpwXBcXF+h0Ori4uChpU1NTERYWBhcXF6hUKoSFhWHDhg3KQm0///yz0jASFhaGhx56CICcYsvb21vJR0BAAJ544glltNuJEyfw4Ycfom7duvD29oarqysyMzORnp6OtLQ03Hfffcq1RkVFwdbWFjk5ORBC4IcffsCYMWNKnJOV6F6l77+jbwxhowhR5RTsXe3p6Ymnn366xPdcvHgRI0eORE5ODurXr4/t27dXZxaJiIq0e/dudOnSBTY2NqbOCtE9IScnB5cvX0ZsbKzRlJwDBgzA0aNHkZubi9zcXOTk5CAvLw8A4O/vj8jISAQHB2PHjh3KKBGNRoMVK1bg1VdfNcm1EFVUpRtGnnnmGXz77bdo2LChUlkEABEREejfvz/Onz9f2VOQGVq4cCEAYNiwYWjbtq2Jc0NU/YQQOHLkCNavX49z587B1tYWtra2sLOzwzPPPIM2bdoAAFavXo3x48cXe5zvvvtOqeA4fPgw+vXrV2zaTz75BK+88goA4PTp05gxYwYsLCygUqmgUqlgY2MDT09PeHl5YfDgwejWrRsAuRjaTz/9BK1WqywCq9VqkZWVBY1Gg6FDhyrnTUhIwA8//KA0Rugf1tbWyMrKQr169RAYGAhAlhsLFy5EfHw8srOzlcaexMREnDhxAp9++immTp0KALh58yZmz55d7LXNnz9faZS/cuUKJk+eXGzaTz/9FDNnzgQAXLt2DaNGjSqUxsbGBp06dTJaBE6j0cDOzg5ZWVnIy8tDdHQ0oqOjceDAAQBA+/btlYaRCxcuKIviFuX+++9X/tbpG0vUajU6d+6MgQMH4v777y/2vUT3st9//x3vvvsuXn/9dYwdO9bU2SG6K+Xl5eHChQuIiopSRoUkJCQgLS0N6enpCA0NxWuvvaakdXd3h4WFBezt7WFvb49bt24hMzMTDg4OWLVqlYmvhojM0fXr19G7d294e3vj3LlzcHFxMXWWyMxpNBpkZ2fD3t4e1tbWVdZ5Jzk5WSmf09LSlOeZmZmwsrJS1nYGgBUrViAiIgI6nQ5CCOWRk5MDS0tLvP/++0rajz/+GKdOnYIQAlFRUbh27RqioqIghICvry+io6OVtLdv30ZCQkKR+UtJSVGeW1hYYNasWdizZw+6d+9e4m9uotqq0g0j33//PaysrPD1118r286fP49+/frh5s2blT08maG0tDSsWLECAPDcc8+ZODdEhWm1Wly6dAlxcXFITExEYmIiMjMz0alTJ3Tq1AkAkJSUhD///BNZWVnIzs6GhYUF7OzsYGdnBxsbGwQFBSEkJAQA8M8//2DixImIjIws8nwdO3ZUGkbq1q1rtE/feGJjYwMbGxs4Ojoq++zs7NCoUSOo1WrY2dnB1tYWKSkpuHbtGjIyMoyGucbExCAsLKzYa/by8lIaRm7cuIHXX3+92LR169ZVGkYiIyOVecyLMnv2bMyaNQuADAJLmsf8+PHjRueYOnUqrKyskJSUhIiICNy4cQPR0dFwdHRETk6OktbR0RGDBg1CVlYWMjMzkZKSosy5bmFhYZTW0tIS9913H1JTU5GRkYEOHTpgxIgRGDRoUKHhmePGjcO4ceOg0WiQmJiImzdv4saNG7hx4wYiIyPh7++vpO3SpQu+++47ZRqS5ORkODg4KIuxBwcHG6U9ePAgQkNDzX76LKKvv/4aJ06cwLFjx9gwQmZh1apVuHTpEm7fvo2cnBx06dIFAwcOLFT+A8DWrVuh0+lgYWEBCwsL5OXlKR0LGjRooMQkycnJSsxRlPT0dKVhxMrKCjqdDmlpaUaVH927d8fPP/8MHx+fKr5iIqLSfffdd9DpdGjRogUbRe42QgBaLWB1p/oxIwO4ehXQ6YC8PPnIzZWPnBygaVOgQYMSDidw5coV5OTkKKMZMjIykJKSgtTUVLi7u2Pw4MFK+vfeew95eXmwtLRUHvpy08/Pzyi+fOaZZxATE4Pk5GQkJycjJSUFQghYWlqiZcuWRksI1K9fH3FxcQDkb0h7e3vY2NjAwsICzZo1w549e5S0ISEhOHfuHHQ6ndG1qFQqNGzYEJcvX1a2de/eHadPny7y2n19fY0aRhYvXqx0yivI2dnZqGFkx44d2LFjR6F0jo6OaNiwITIzM2Fvbw8A+N///ofc3FxlIXN9XYO1tbVRfQOAEjsrEt0NKt0wYm9vj0WLFkGlUuGrr77CoUOHMHjwYCQmJqJ+/fpVkEUyN6tWrUJaWhqCgoLQp08fU2fn7pSUBJw7B0RHy8DiTqX6XSk9HbC3h1YIJCQkIDMzs0xrOgBARkYG0tLSoNFolKmkcnJy4OnpiUaNGgGQUzSdPn1aqUy/ceMGrl+/juvXr8PCwgKdO3fG0KFDAQBnz57F22+/jV27duH27duFzjdr1iylEiIqKgqPPfZYsXl744038MEHHwAAAgMDERkZCQcHBwwaNAg9evSAEELJc/PmzZX3de/eHXFxcbC3t4darS5xAeJu3boZBVl6QggkJSUp01IBQHBwMFauXKn0NgGArKwsJCQkID4+3mjhcB8fH0ycOBFWVlZKUGnY8GM497iTkxMmTpyoNEQkJyfj9u3b0Gq1sLOzM/phU69ePbz44ovw8vJSAkt98NW6dWsEBQUpaQMCAvDtt98WeW0FvxfBwcH4888/i71PhkJCQrBv374ypdVTq9Xw9/eHv78/OnbsWGSapk2bomnTpmU6nq+vL3x9fcuVB6J70dmzZ7Fjxw5YWFjg2WefNXV2iKpFfHy8Mp0jIDud7d+/X3m9ePFiAEBoaCieeOIJPPPMM8q+0aNHIz09vcjj9uvXT5nyytPTE23atIFWq4Wvr68y7aaTkxOcnJyU0Y16p06dQm5urjJlp6WlJdq3b89FVYnIJLKysvDDDz8AYMfJWi8lBQgPB/79Fzh6VDaAXL0KfPcdoP9t/N9/QM+exR4i8oUXsMDaGtevX8etyEjkRESgcc+eWLNmjZKmadOmKG655H79+hk1jHz66adITU0tMm3Xrl2NGkY2bdqEW7duFZnWzc3N6LWLi4vSMKLVapU1vAAUuc5GwUYRQP52Lbjd0dFR+Q2sL6cdHR3h4OBgFC8AcoaVkJAQo1kfVCoVrK2tC3Xqmzp1KgYOHKiMENHP+uPl5VXo93NZf7cS3Qsq3TASFhaGQYMGYeHChbh16xa2b9+OtLQ0tG7dGlu3bq2KPJIZEULgm2++AQBMmzaNc4mXx+HDwFtvAcePA/Hx+du7dAEMexHk5gJ3QS/0XZ98gi4ffQTbOw0Qmn790DwsDPrmCDs7O3h7e8PT0xP29vYYPnw4ZsyYAUBOnRQaGlpsAPTUU0/h+++/ByAbT1q3bl1sPiZNmqQ0jNjZ2Sm9RBwcHODn5wd3d3d4eHjA0dERrVq1Ut7n5uaGfv36KSM1dDqdMnokKyvLqOK7UaNGCAsLw3333Vfquh82NjaFAqLyUqlU8PDwMNrm6+tbYkOOoUaNGuHHH38sU9rGjRuXOa2bmxu+/PLLMqUtDv9mEN079PHAgw8+qEy5R1RbJSUlYceOHTh06BDc3NwwduxYpRPGkSNHsGvXLly/fh1xcXHIyMhAZmYmkpOTceHCBURGRsLd3R2A/L63bt0abm5uyMvLw44dO3DkyBEcPXoUS5YsMWoYadeuHTIzM5WpLa2srJSpOPXrjekdO3aszNfSoISeukRENe3nn39GYmIiAgICMGTIEFNnx3xpNEBEBODqKh8Gnexw7BgwfrzsnFlUg8XVq/nPbWyAOnUAS0s5iuTOI1OrRWRsLD766issv5P0YQCrARz9+29g0CAgLg6quDhctbDAYUtLfOPkhGv29nBwcICLiwucnZ3RpUsXo1NPnToVaWlp0Gq1ykMIAa1WW6hjwOzZs6HT6ZTpn52dnWFpaQmdTqeMpsi/5GOwsrJSZiXIyMhAbm4utFptoVH/27dvh0qlUhow9LRabaHfr/v27StzRwT9aM+y0K+NSUTGKt0w0qVLF+zatQv9+/fH+vXrIYRAnz59sGHDhkJDrIhKo9Pp8Pzzz+OLL77A448/burs3B2EAJYsAZ5/Xg491QsIAPz8gO7d87clJQHt2wPTpgHTp+cPZ61FMjIy8MILL2DksmUwCLXgGBaGcQB+uLOmQ1ZWljJtEQC0bNlSSevp6ak0iqhUKmXRbf2UU/rKB0D2QKpTpw7S09NhaWmJ+vXrKwtoq1Qqo9EPDRs2xIIFC9CpUye0a9cOViXcv3r16pVrcVIurE1ElO/mzZtYvnw5AOD55583bWaIinD+/Hls3LgRycnJ2LNnD8LDw416fXbt2lVpGNm6dSveeeedIo+jUqmwa9cujBw5EgCUtb8MxcbGYtu2bYiNjTXavmvXriq6GiKi2ikvLw8ff/wxADnNEUeumcg//wBjxxp3wBw/HtCvO+XmBpw9K583aCA7Z3bqJGevaNgQMOzg0qULUKA802g0aNSwIWIyMmBtbY1HH34YnTt3xgNbt8J661Z0io8Htm1T0tcHUF8IPHz0qKz3AIDERMDdHSjQ0KD//pTFU089Vea0Dg4OAOTU1qVN71ae2QD4HSeqWRWqFZ07d26hbb1798Yvv/wCJycndOrUCV988QUA4N13361cDsmsWFpa4plnnsHTTz9d4hRBVMC2bbJRZPhwOWqkWTOgqIbJpUuBa9eAmTNlEPPyy4CFhXxvTg4wZUp+Y8mpU0BWluzN4eUFFOghUZUyMjKwe/dubN++HRs2bEBERAQOAujs4QGPwEDg6FGIiRMx/6uv8LWTEzIzMxEbG4uYmBgkJSVBo9EY9W50dnbG2bNn4efnV+qUW15eXoUqGkrywgsvVOZSiYioDD766CNoNBp07doVPUuYboHIVM6ePVtoDa0WLVqgR48e0Gg0aNKkibK9Q4cOGDt2LAIDA+Hn5wcHBwdlYfPWrVuXOiLK29sbEyZMqJbrICKqzX7++WecO3cO7u7uRiPmqIYIAXz5JfDKK3JNEDs7IDtbbjesbwgIALZsAdq1A4pYE6s0arUav/zyCz799FN89913+Q0Jzz8PHDkC7NkjG1/q1JGP27eBqKj8RhEAGDkSuHIFGDwYCArKH9ni7i4bazj6mIiKoBLFTcxXgoLDv0qi1WrLnSkCUlNT4eLigpSUlEJzA5IZWbwY0A8bffBBGQwAMhCIiQH0a0+kpgKrVwNTpxbqIWFEpwOWL5eBTVJS4f25ufkNI488Aqxdm7/PxQUIDQU6dpS9PwYNkoERABw8KBdUa9oU8PQsOQ8FfPTRR5g1a5bRAtg+Pj5YvXo1evXqJYMuIWQDTkVlZxsP9SWiu465lovmeN2pqanw8/NDeno6/vrrL/Tv39/UWSJCXFwcNm3ahCeeeAIqlQrHjx/HV199BQcHB7Rq1QoDBw5EvXr1TJ1NonueOZaLgPle93PPPYeFCxfivffew1tvvWXq7JifV18FPv1UPp8wAfj2W/m7Oi1N/kZ3da3U4VNTU6vm+6zRyAaZYqbSRtu2cs0TvWHD5HssLOQ1NGyY/wgMBApMsUVEtU9VlYsVGjESEBDAedypyr377rto0qQJHn74YdjpK9zNRV4esGYNsHAh8NdfshECACIjgV9+kQ9ra6BfP0CtBn7/HejQAdAvEu3sDBTsQXP8OPDFF3IEiX7RagsLYPJkYOhQYM4c4ORJGdjY2Mh/DaeG8vEB6tUD4uJkw0JKCrBzp3xYWBgHHe+8A+zYIZ+7usoGkgceAKZORUR2Nvbs2YOIiAhERUUhOjoaH3zwAVq0aAEAqF+/PnJychAYGIgBAwagX79+GDBgAJycnOTxVKqyN7RoNHKky4UL8nH+PHDmDHDpkmxI8vSU6X76Cdi1Cxg4UPYoYaMJEVGt4ejoiF9++QWbNm1Cv379TJ0dMhQbC/zvf/LftDSgd2/g4Yer51wZGbKXqI8PoB99odXKTiNDhsgYpYZotVqMHz8eYWFhuHLlCj766CO0adMGy5Ytq7E8EBGZo2+++QZPP/10uaYiokrKzMyfLWLcOFnuvv8+8Oyz+b/LS5k6qjRCCCxfvhwzZsxAWFgY2rdvX7k8q9UyNtm1CwgLk8+Tk2WH0oQEIDjYOP3OnUB6etHH6tFDHkfvs89kw0rv3uXqAEpEd4cKjRih6mduPUIiIyPRoEEDaLVanDp1CiEhIabOUs3Zv182Vly8KF9/8AGgn5rh+HFg/Xpg40ZZ4W+oVSu5qPqduS2NaLVA69ayUcDdXTYQVHTBbiFk5cf168ChQ/KRnAz88guSkpJw8eJFOM+ejUYnTsA2NtZosbUclQqrhMCTAAz/0Lz//vt48803AQBpaWm4desWmjRpUrkG17Vr5dopRY2EAWRw06OHfD5smGxcAmRjyauvyunFGOgQ1VrmVi7qmet1Uy0jBPDxx/nxid4LLwALFsj90dHA9u0ypgFkDPLhh/Lf116Tc5OX5TyLFslRsIcPy44jb70FvPee3L93L3D//fJ5hw5ypOykSdVafgsh8M477+D999+Hvb09Dh06pHTuIKKaZ67lorleN9Wgf/4B+veX9QsxMbKxAZCNC/qZKyogS6PBUV9fNE1JweO+vrjp6QkLCwscO3YMAPDEE09gyZIlVXEFZffrr3Iqca1W1h9cvSqn4bp6Vc6QsWKFTBcVBdSvL9MFBwPvvguMHs16A6JawKQjRoiq2vLly6HVatGjRw/zahTR6YBHHwUiImQDxiuvAM89l7+/TRv5mDtXNm789pvswTF6tGz4KM7Nm7IiApAF/datQEUXs1epAGdnJPr5Yb0QOGFjg5MxMTjr6YnExEQl2dtvv415b74JXL6MyE2bcPOdd9BJCPgB6NS5M5o1awZ/f38EW1mhscFC405OTvmjQyrjzTflPUxJkQvOBwXJR4sWQMuWxnOdvvAC0KiRDIiio2XDyJNPVnooMBER0T0pI0OWs3qPPCLL2M6dZcXCk0/KKSquX89vqPjqK9nAAQDTpwNjxhhXJGRmyoVafX3lY+9eOWr2/ffz0/j5GY/q1OmAbt1kp5LDh+Vjzx7gu+/yp/esgPT0dFhYWMD+Tg/ZuLg4bNu2DYcOHcL+/ftx/PhxAMCiRYvYKEJEVAMyMjKQk5MDt0pUyNcqWm3+CIakJPk8L0/u69dPzg4ByBkQbG0rN410Rc2eLfOZmipHjHTvLjsWhobKmRb0DSXFyMnJwaFDh/DPP//g9u3b+PLLLwEAdjdvomtyMm4DGBYdjWeiowHIKfrnzZuH119/vZovrAhlHe1qYSE7YaxYIWOWsWOBWbNkTDNmTOGRKER01+GIkVrKnHqECCHQtGlTXL58GStXrsRjjz1m6izVjH//lYVqWJgcinr9etVWzH/9tRwlcvKk7NlQRIWBTqdDQkICEhISEB8fj0uXLuHcuXM4e/YsLl68iPHjx2POnDkAgAsXLqBZs2aFjuHv74+mTZviqaeewpgxYwDIoOjVV1/FYHd3dOzaFS76hpCICDlnZ4MGMsAKCZGNFq1by4aKyvS8SEuTa6Q4O+dPCZaXJ4OZogJLIWSPmB075JQc+hEkRFQrmVO5aMjcrvvNN9+ESqXC1KlTuV5DbbNwoXHnjbZtgZ49ZZzx999y248/AhMnyudnzgAvvywbOzZsAIYPNz7eyJFy+/z5wIABsiODTif3zZ4t5zKvX19Jnp2djcTERGRnZ6OBvT3w/fdyWlCdTvbuXL9eNqQASElJQWRkJPz9/eFaRGyl1Wpx6NAh/Pnnn/jzzz9x9OhRzJ49G7NmzQIA7N69Gz179lTSW1lZ4ZNPPsFLL71UwZtHRFXF3MpFPXO77iVLluC5557Diy++iI8//tjU2Snd2bOyoT4tTTb8v/VW/m/SiRNlRwF9Q0hBt2/n1wM8/7xs7Pfzk9NTBwUBzZoBXbvKcrc6nToFMWUKcPIkVNnZRrvGDhyIqLQ07Nu3D1i1Crh1C6vDw/HL8eM4n5uLxMxMpKSkIO/ONdrY2CA5ORnqO40pV+fOBTw8kOznh3i1GqmpqQgJCUFz/ZqptV1Kilxr5bPP5DTjeps3y2nKiajGccQI3TPCw8Nx+fJl2NvbY8SIEabOTmHJyXLB8pQUOXqjXTsZqFSmEv/SJRncADJg+uCD4htFcnLkGiBlpNFosGvXLtz28EByUhKSHR2R/O67SElJQVJSEnr37o1n7qxHcuvWLfj7+xd7rKioKOV548aN8cADDyA4OBitW7dGSEgImjRpAocipvKysbHB/PnzCx/w2DHZQHPtmnz89lv+Pg8PGWjoK1QuXpTDebVa2XMmIyP/odHIOU4N5yJ1cpLzhA4fLkfMREcD8fFyn7OzbHx64AG5YBwgR+Ds2CF75CxYkH+cixdlRc2JEzJ4rVs3/+HgIBeeN6ioISKiqpGRkYGvv/4a6enpGDRo0N3bMKKfVurCBeDGDaB5czntk1WBsPv6deDWLbmGhq9vucp6k5g2TV7L6tXAsmWyTL8zDQYcHOQozEGD8tO3aAFs2ybvR1Exk76zxcWLcrFTNzcgMRH44AMc7NUL53ftwsWLF3H27FmcPXsWV65cgU6nQ0BAAG7cuCE7fXTtCs2wYVAfOoSkfv2wYNQobA8Lw6FDh6DT6TB06FBs3rwZAJCUlITOnTsjNTUVycnJyC5Q6aPTN8oACA0NRbdu3dCxY0d06NAB3bt3h9+dRhdFXp6sCGvRArC0zL+WkyflZ2ljI3sAq9VyRKuHh/xXn5aIiIq1atUq5OTkwN3d3dRZKZ5WC/z5pxwhqV9vU+/FF/PX4bCzy28UcXSU5Z2rqywjVCrjTny3bsm0N27IR1hY/r6OHeXvVMP1VjIy5Boafn6F4wwDiYmJOHnyJE6fPo3Y2Fikp6cjPT0dWVlZ+N///icTtWyJ4T4+2Hz4MBoB6AmgKwBPAD9v2wZAdjxwWbYM2LUL4wCMA6ADEAngAoD/OTkhe9Ag9O7d26hcbfjuu2W6pbWWi4uc1vPVV2VjyC+/yJGuvXrlp1m/Xo626dsXKKGOhYhqFzaMkMmtWrUKADBy5Eg4OjqaODd36HT5AUpWluzxaFCww8tLDit98EFZ2V6WgM2wYqBJE2DUKFnAvvWWHEFRUFSUnI5i/37Za6TAVFharRYpKSnYv38/XF1d0b17dwBAcnIyHnjggWKzoVarlYYRT09PqFQquLm5wcPDAw0aNEDz5s0RHByMZs2aoVGjRsr7LC0t8ccff5R+nSV58EG5mPu//8qepKdO5T8SE43nLg0PL7ygvKF+/fIbRvSLrI8YIXumFuyNk5IiH3Fx+duaNZOVE6+9Jitk9E6cAEoazrt8eX7DSFaW/JwaNy7L1RMRUQk2bNiA9PR0NGrUCPfdd5+ps1M2Op186Csjvv9erllVcEFPJyc5uuKdd2QjCSDLmp9/zk/j5QXcd5/sLFFbe1D27i0f770H7N4tFy+9fl1Of9W+PfLy8nDr1i1ER0cjIyMDffr0UWKfN998E8ePH4dOp4OlpSVG3LiBJwD8/euveP/cOfxz/bpsUAoKwgsdO+Lw4cOFTm9hYWG0Hpmud290t7PDVxoNnjp3DmfmzQMABADwcXREQECAklatVuPSpUvKaxcXFwwYMAAPPPAABgwYAG9vb2Wfk5MT9u7dW/j6c3KAL7+UFWH//Sd7BZ88KUe/AnL06cyZxd+/P//Mbzz69Ve5BsvIkcDbb5d424mIzMn169exd+9eqFQqjBs3ztTZKdrmzcBLL8k1KQBZd9CnT35nOsMOAe+8I//Oe3vnT5lVnLVr5cLh169DnD+P7JMnkXPsGBwPHoRFbKw8BoANv/yCgRMmQJ2VBQDIsbLCdQ8PXHJ1xUlnZ8zYtQu2d6aHfPjhh7Fu3bpiT/n9998rnR29vLxgYWGBTG9vHPf1RYK/Pxo3boxvGzdG48aNYWdnJ3/T+/oi48QJ2Ny4Aev0dAQCCATQTwiovvmm4uub1nbOzsD48fKRlZU/K4cQssOGfjrzZs3k96FpU9kIVq+ecSMKEdUabBghk8rJycHatWsBAI9XdA2MqhIVJX/Qbtoke3/oe2fUrSuDnpgYWYF/5owcibBunXw88gjw008y7enTsheBpaXsteHpKR8ZGcCaNbLnpL73wM8/Fz936N9/y3kvb9+WrydMwC8rVuDLzExERkYiJSUF6QaVLg8++KDSMOLq6orQ0FC4urrCxcUFbm5ucHV1VR6tDdYmsbW1RU5ODqxK6F1S5Zyc5BRW/fvnb8vOlgvNG1YEBQbKhg4LCznHqYND/kOtlovP69/7yCPy/VOmyEVb/fxkTxofHxmk6BtG7gSHAOT25ctlgBIeLkeCALKxZcwYOb2Xo6P83G/dkv9qNMY9dN5+W45A+f57GRwREVGFrVy5EoCMB1S1fVHLpCRZqb1qFbB4MTBsmNzu7y8bRSwt5RSR/v6yfEpKkjGGYQV4jx7AgQOy0T47W8YWGzfKdFOnAp98Ylxu1SY+PsDYsdhfrx6+//57XH3xRURERCA6OlrpIert7Y2YmBjlLQcOHMDu3buV1+4AngDgEh+Pc/v3Qzg4QBUUBAC477774OLigsaNGyM4OBjBwcFo3rw5fHx8jL4beXl5eO6LLzD/jz+Qe/IkxoaGol+/fnh49244/fILdPrPBYCdnR327NkDFxcXODs7w9/fv3zxT1SUbMQwbLBxcpI9evUNI76+ck723FzZiJKTIxtP9PPJe3jkvzc6On/UTdu2wODBZc8LEdE9TD+CoXfv3iXOblBjhAAOHZJ/4/WjWW1sZKOIm5tcZ+vZZ+Xv16IUHHFYgi+//hqbNm1CfHw8IiIilN/8XgBurloFqzujDn/ZsAHds7KgBpALwCYvD01jY9E0NhaDAWQ//zywdCkAKPewYcOGaNmyJerVqwcnJyc4OjoW6pg6f/58fPfddyWXjy++CABw0N+bxERl1gVVcPC92yhSkOFU5bm5suOrg4PsOHH+vHzodeggv0N6r74qO5oMGMCF3IlMjGuM1FLmModobGwsJkyYgFOnTiEiIgKWNTm9gFYrK8T//BP44w9ZcaGnUsmKCk/Pwu/LypI/Yv/8UzaivPmmXIQLkKM7unUr/pxPPSUr0UszeLA8PgA0bAiRm4uzN28iRKstlLRBgwZ4+OGH7465V6tDbq5cq+Wjj2Rg1rSpnONcP1VZSf77Tza+pKbKXq+hoWU/b16e7PW5Y4cMjM+c4cgRompkLuViQeZy3WfPnkVISAiEELhy5QoaGo7kq010OlnGvP66nLoCkI0dd0YqICMDiIyUIxH1U2NptTLG2LlTViYUrGzQVypcuSIbWzZtkmtwnTghOwcIIXuQNm4sOwaoVPJhbS0rZNzcTDI9U25uLpo1a4ar+t6yd1hZWcHHxwf16tXD3r17YXGnE8jmzZuRkJAAKysr5OXloc6ZMxjyxRcAAJ21NVRjxkC1cmXVVBC0bCk7q1hZyZGhb71V9KKx69bJxif9CNnMTPlQqeTUqfqF32/eBO6/X35Gbm5yxEzPnnLu95LuvU4np0+1sJCjg1Uqmf72bTkP/dNPy04zjz0G3GkYJKKSmUu5WJC5XHd2djYaNWqE6OhoLF++HBMmTDBdZjIzZefGRYuAo0fliMBPP9VnVJYhw4fLyvAqOV0mnJycjKagAuQsD97e3vj333/h5OQEAFi2bBmu/fMPcpydAQcH+GdmokF8PAJu3kTzw4chvvgCNtOmAQASz52DXXQ0HHr1qtl44dYt2bGwtsZ01SU5Gdi1Sz5u3ZJlflCQXAMWkPUXTk7yO+TnJ0eW9O0rF7g3l0YloipQVeVilTWMhIeHo5O+xzVVmrkEPnpxcXGoU6dOzZ1QCNmAceBA/jaVCujSRS6eNXx4/tzXZTmW/kd8XJxs0MjOloVgYqJ8WFjIEQlTppTY+1MIgUOHDuH3Tz7BlD/+QIPsbNkD5fPPsfWTT5AcHIymTZvC1dUVzs7OcHJyksNZSQYe48fLHpgqFTBjhqyoKlgRkpcnp/LavBn45hvZ0NWsmXzdpEn5zqnTyanU/vpLBjJffik/X3d3OdqEiKqMuZWLeuZy3c899xwWLlyIESNGYP369dVzkuzs/IpuQM4JfuyYnLIiL0/2/LOzk+WGl5ecHkqf/rPPZMPGwYOy9z8ABAfLaa8GDara9UH++UfGDfrFv2Nj5ejV4kyaJNf80LtwQXYSUKlkLLJ/v7zO4cPzp/Gqsqz+g6VLl2LYsGEIDAxEYGAgvL29lcaQEul0srPI4sWy4WjMGNkAVBXi4mTMtWWLfN2woRzJkZOTP8oXkD1/DdZTM9KggWwIAeQUZ//+K6fS3LmzbGuN7d4tF6s/fVqOkv3rr/x9gYGywi0rS44wWrMmv5MNEZXIXMrFgszlutesWYNHH30Ufn5+uHLlCmwNy+3qYLiepxCysXrfPvk4dEj+nQZkPDB1KlDUOppV6I033sBHH32ETz/9FMOGDYO/vz/syzt69OJFOeWWfo2Tr74Cpk+Xsc0DDwAPPSRjl+qcNSIsDBg3TtaFDBkip8ju31+W/cnJ8jez/rpiY+VoTE9PWV57ed3boygyM+VU7T/+aLyQu6OjjFt69DBd3ojuIlVWLooqUq9evao6FAkhUlJSBACRkpJi6qzcu/78UwhXVyHGjBFi5Uoh4uJMko2srCzx119/iWnTpomAgAABQAAQ9oCImDBBiPR0k+TrrpSUJMSECULIsFaIpk2FiIjI3z9hghDu7vn7ASEGDxYiOTk/zfLlQkyZIsSDDwrRv78QffsK0aePEL16CTFsmBAxMcbnPH9eCGtr42O+8Ub+fp1OiJycarxoIvNgruWiOVy3RqMRbm5uAoD466+/qvbgJ04I8dRTQvj5CVG3rvG+vn2N/3YbPmxt5d9vva5d8/c5Owvx+ec197f9wgUhevQQwtdXCC8vITw9hfDwEMLJSeZn5sz8tNevy20NGgjRsGHha9q2rXznzs0V4sgRkffHHyL8rbfEe61bi7Annqj6mOnYMSFOn85/feWKEL17C3HgQMWPqdMJsWGDEP7++ffA0lKI+Hi5X6sV4uGHhWjVSt5LV1d5jxs3FqJOHSEeeyz/WEePCtG2rRDXrpV+3uhoIR55JP+cdnYyptBLThbCyip/v6enEBqNzO+pU0L8+6/x8f76S4jffhPijz/kfTL8XhKZIXMoF4tiLtc9YMAAAUC8++671XeS7Gwh1qwRont3IQIDjfc1amRcdjZsKMQnn+SXHdVMq9WK+Ko+1wcfCOHiYnxdPj7yN+ulS1V7Lr1Tp+TvZ8Nz2tnlP1+9Oj/t5s3G6RwchGjTRojFi2VZfa/KzBQiLEyI118Xonlzee329kKEh5s6Z0R3haoqF8s1YmT06NHFNa5g69atRmseUOWYQ4+Q7du3o2XLlvDx8aneE2Vmyl5769bJaRGefTZ/n1Zrkukn9FauXIlnn30WGRkZyja1Wo1Ro0bh6aefRteuXWv/POu10R9/yGnLAgOBvXvzP2NPz/xF3h94QC4cN3Kk8Xdg0iS59khxEhLy5wg/dkz2Nv3pJ9mbOCNDft/eeit/HvkTJ+Q6JhMnyu2G84sTUZmZQ7lYFHO47sTERLzzzjvYt28fjh07VvlpNbOz5XRUCxcCe/YY70tJkQtnAsD//idHC3h7y96iGo3sGZqRIXuQvvNO/vtWr5blR5cucg2qqhwhUhm5ufKh73W5ebMceaHv4apSyWml1Go5euTff43WysrMzMTFixcRGxuLAQMGKNuXLl2Kc+fOwU2jwVuLFhU6rXBwgOqll2SPR1dXuTEvT/ZKjY6WU4JV5h7py2JLS7nuWmV6T6anAwsWyDVchg+XI0dK+47pdPJ9hv/nDEcIF2XLFln2X7qUPx3X00/LabcKlv1ZWXIkycmTcm2zxo1lfLpihZxuw3Be8rZtjad77dBB3veHHjLu7ZuSInubmjCuJaoJ5lAuFsVcrjs+Ph6rVq3CQw89hMDi1uyoiJwcOY3yH38AP/wgRxYC8vdhfHx+urffltMndusmH02a3BujF3Jz5QjSTZtkTKO/ZisrICJCrh1WHc6fl6NDly+XI0X0vv1WjsAB5PTmzz0nR45ERcnyVq9rVzkq9s4aZPesrCxZN5GaKkct6Uf7EFGxTDKVlru7O1atWlVogSYhBMaMGYPY2NgKZ4SM3euBj0ajga+vL9LS0nD48GG0bdu2YgcSQv5wvTPXJgBZ0F+8KCswLlyQFeP6IYouLnKRTBMUNDExMVi/fj0eeugheHt7AwB27dqFXr16oW7duhg6dCiGDh2KPn36lH+4bFVbuhR44gn5fM4cWaF/t/3QTk6WgUVAQP62RYvkvO1duxYeOpyXJyvQ0tKAU6dkJYajo5zORD8lSHo6MHmyvBfh4XI4cIMGsuHN8DtlWHkyd65cAwWQlUfz5wOmnCuX6C51r5eLxTGn6xZCVL4zwCuvAEuWyEpiQP69HjlSNpaHhsqpDu8h6enpePvtt7FgwQIAQEBAADavWYPWt2/Lcq5zZ1k+5eUBMTGAvz8WL16MvStXIvviRYTFxyMZgNrODpn//Scb+lUqDDl+HH/88QcA4F8AtgC0lpZw8/FBPbUaNpcuyQzo18Y4e1ZWcOzdK7e/9ZZcg62i8UxUlGwo+P13WVmzd2/+OiC1xdmzMk6oV0+W+b/9JhdeBeR9X7iwbGuXxcfL+cVPnZLxRt++xtNuTZ4s41qNRp5T3+gFyGk8t23Lf92nD7B9e37ccjdbuxZ45BH5fMQIWZF5j/3/pYoxp3LRkLled4Xoq7j0McVnnwHvviv/jur5+srG64kTjX8v1hIXLlzA119/DRcXF7z//vtVe/CcHNmY/8MPQJ06+Z0CNRrZKcTZWZbfarWcynPQoIqX53oajew44eoqH8VN45WdLetrtmyRv6Fzc2VHAnNYy1OjkdfL/99EZWKSqbRGjBghdu/eXeS+vn37VmroChm714fKrlu3TgAQAQEBQluR4ZE6nRBffCGns/D1Nd7XrVvhKTECAuRUGsV8f6uDRqMRe/fuFR9//LG4//77hUqlEgDEiBEjhO7ONAhZWVni+PHjFbsH1ang9BsFp4+6F/3vf/JaW7WS02llZZWc/tw5Iby95Xuef774dHl5ctq2Vq3yp/E4dKhq805kBu71crE45nrdFbZzp5wyys9PiHfeESIqytQ5qlZ79+5VpuDUP55++uli02s0GmFpaSleMyjjb1hYiAhbW6Nyf8ubb4pXXnlFvPTSS+KFF14QP/74o8jMzJQH0enk1E4tW+ZPf/XAA4VjLxcXWT4aTgn6zz9CJCaW7eLS04Vo0SJ/Wo3Fi2vXNFKvvSanYVm6VL6OiZFTlR0/Xr6pP1auzL9nW7aUnDYuTojZswtP4Wn4iI6u+DXVJvq4Sf9Yv97UOaJawlzLRXO97nJJSpJTInt5GU/FuGJF/tSFI0cKsW5drZvqOC8vTxw/flx88803YsyYMUqZ3qpVq+o9sWF5df580eWKq6ssz8+erd68FBQZKT8rvZMn5VTZvXoJMXmyEF9/LT/njIyazVd1SkwUYt48WYdARCWqqnKxytYYoap1rwc+jz76qAAgXn755fK/OTVVzgmtL6itrIwL9E8/FWLqVCHefluIRYtkBXY1/5DOzc1Vnmu1WtGtWzdhbW1dqLKiU6dO4vPPPzdKXyvt2yfnUnV3F2LrVlPnpmZ8/rmseDGcd3XOHCFu3Cj+PTt2yLQWFrIipCR5eUKMHi3TN28u5xMnojK718vF4tzr171//36xb9++ynUQKPj39OrVe3tOagM6nU58+umnAoAIDAwUvXr1KnFu8sjISAFAzACExsfHuOLDxkaIIUPkvN9liZsM05w6JSubLl2S8UODBvlrfRmmq1tXNph8/rmc4700kZFyfRV9Hrt2Lf09NeXAgfwYoDJrrqSkyA48gBDPPSe3aTRC7NkjxFdfyVhkxgwhXnkl/3udmSlj3GXL5Hz4Li5CPPSQjEvuFYcOCfH++/K+zJ1rNv+nqXT3erlYnHv9uk+cOCH69u0rli1bVrED7NuX/7cUEOLLL/P3JSXJhnwT/x3Jy8sTMTEx4vjx4yLPoOJ7xowZwun/7J11eFNZE8bfpLS00FJci7v74u724a4Li+tiiy3uvvgCi7u7S3F3CkVbKFK0BvVkvj+GkIaW0ib35ibp+T1PnkZuzpnbpjlzz8y84+ISbe+gUqVKdOvWLfMZ+OIF0ZAhvJfSqRNRixZE2bLpf6dTppjPlpg4cCDmwI1aTVSoENH27craZyrBwfqedn36KG2NQGDxKNJj5Ed8fX2RPn16Y98uiAVbLpUNCwtD2rRpERgYiIsXL6JcuXJxf/PDhyyJ4enJ5Zdz5wLduwOOjvIZ/I0PHz7g48eP+Pz5Mz59+oQHDx7g1q1buHXrFtKmTYvz589/PzZfvnx49OgR0qVLh/Lly6NKlSpo2rQpslhgma7RvHoF9O7Nuqu5cgEFC7JOdtKkSltmPH5+wPLlrJH+5g0/p1KxrMX+/UDixNHf06oVsH07UKYM0K0b688XKqQf79AhLkEuV47LYwsWZP3UmjWB48f14wQGirJZgSAWbHldjA1bP+9atWrhxIkTmDdvHgYNGhT/AXbsAPr3B06c4O9XQazcvn0bxYsXR/r06fH27VuWnbxzh9egqlUNpUlNQavlNS48HGjUSP981H4ZefIAc+YADRrErt+u1QLz5rE0V4UKwKlT+tdGjgRq1QKqV5fG7vhAxGv/tWssOzp2rPFjHT/O8pw6HBz4d/cju3axrJRAkICx9XXxZ9j6eY8dOxaTJk1C48aNsWfPnri/UaPhvlbjx/P9nDm5f0WlSmbZI/gZly5dwvnz5/HkyRM8fvwYT58+xdu3b6HVagEAb9++/b6XNnjwYMybNw8uLi4oV64cKlasiOrVq1tGv1Hder5iBbBoEV/XKoWfH/ssr1+zZPqNG3zTSfrv3Ml7RQDLb61cCbRvz3sUSv8egdh7lUVGcu+wfftYauz8eeHXCgS/QBEprR8pXLiwSVEZwc+x5YyQAwcOEADKmDFj/DJEr10jcnbmCHrGjIblsRKh1Wrp8ePHtGHDBpo/f77Ba8WKFYuWxaG7OTs7G5zL2bNn6enTp98ls2yS48djztYoWpRly6LKRYWFEQUFKWZqvAkLY2mtatX4vKpU+fmxL14QJUkSc3bShQv653PkIHrzhmW1kiYl6t1bf5yfH1GKFERt2+plSaLaYsufI4EgjtjyuhgbtnzeHz58IDs7OwJAT58+jd+bIyI4q1H3HdutmzxG2hharZb8/PzoRWzVkHISGUm0ciVR2rT6v12ZMiyV8SvZiLdvWUZDx6lT+jGaNyfy8pLV9BjZuJHnd3QkunPH8LUPH4gmT+Zq0WvXfj1Wjx6Glavp0hE1bszPDxvGYyWUKl6BIBZseV2MDVs/7wIFChAAWrduXdzfpNEQNW2q/95s356r8GQiMDCQ7t27R4cOHaJly5bR33//Tf3796dOnTpR48aNycfH5/ux/fv3j3HfQKVSUdq0aenhw4ffj3327BndvXtXX0USGsrrnZcXXydaWsWcRsPVuZbCq1dEe/YQffyof274cP3nIk+euFfDykFkJFd/uroSdewY/Xfn50fUrh3bmjgxV4wKBIJfYhFSWoUKFTJpcltlyZIlVLhwYXJxcSEXFxcqW7YsHTp0KF5j2LLj07VrVwJAffv2jfubtFrWcQb4p8Q9L27fvk3VqlUzcFpcXV0NAhs1a9akFClSUM6cOalUqVLUunVrmj59Oh05coTevXsnqT1WwcuXREuXsrxDo0as5x41SBLVqT11ikilIsqXjzevojiCFs/z50RRS5hfvIgum7VpEwdPGjVi3XUd164RVa/OerYAB40+f2aHPepnZtOm6EGmpElZygwgGjVKxhMUCKwDa10XTfUJrPW848LKlSsJABUrVix+b4yM5O9W3fflsGEcKBFYDwEB3KMjam+TCxf0r8dl8+LzZ9Y8t7PTByeOH5fP5pjQaIjq1uX5c+Uy9A/attWfm0rFMlmxBX80GvYNVq9mSTKRFCEQxIi1rovCH/g5Dx8+JABkb29Pfn5+cX/jv//qN5PXrJH9e7NPnz4/TZQEQNevX/9+7K5du6hNmzY0duxYWr9+PV2+fJnevn37a0ltLy+irFkNrwtVKpaiLFrUsOeGEnz4QFSrFgfvb95U1pbYOHmSqE0bIicn/e+xShXzB3QiIohq144uXTp6NH9eL17kv60uyVT00xII4oxU62Ii42tNoHxZn4Xi5uaG6dOnI3fu3CAirF27Fo0bN8atW7dQMIGXw2m1Whw5cgQA0Lx587i/UaVi+YCRI4HZswFXV0nt2rBhA06fPv39cbly5VCyZEmEh4cj8Tf5pGPHjonPPABcvQqsWQMMHAj06mX42uvXwJUrwPXrQNGi+ucfPmQ3wNOTb//9BxQpAtSpw7eKFWOWqbIEsmc3fDxiBLBlC5flVqkCZMjAciC7dwMpUhgeW6oUcPIk8Pw5UL48l/5WrQocOwakS8fHEAHZsgHFiunlRQDg61e+ASwfIhAIrBLhE/ycLVu2AABatGgRvze+eGEop/Tbb5YhkWDBBAQEYNy4cUiTJg1Gjx6ttDksHTl9OvDnnyzNcfMmS07qaNEC+PSJ19mqVYGyZQEnJ35NqwXUal5zR4wANm4EPn8GQkNZWq1mTfOdh1oNbNgAlCgBPH0KlCwJvHwJZMzIEm+PHgE5crBdixYB9vYsA/uzsdKmBbp0MZ/9AoHAbAh/4Ods3boVAFCjRg0kT5487m/s0oWvn8qVAzp2lMM0A4oVK4aUKVMiS5YsyJw5M9zc3JAyZUokS5YMyZIlg5ub2/djmzZtiqbGSB8eOMB+TlSIAF9flgabNYsll5QiaVLg7VuWrypRgqUsa9Tgn6VKsdy5JVC9Ot++fAH++QeYMgU4c4YlPffsYd8C4Nfv3QM8PPj29Cm/b9AgaXzLJ0/42h/gfQ8iIHNmYPVqluD87z/+2wIsC1utmulzCgSC+GFKVEVIacWdFClS0MqVK+N8vC1nhPj7+9OaNWsMGo4pzfv37yl79uzfsz0uyiDTZTM0aMAZDSNHxu99794RHTzIshAqlWHWRNSKjFu3iI4eJbpxg8jbm+jLFwmNN5HISMMM0B8zP2JrFnjvHmfWAES//aY/L42GyMVFP44u81V3mzRJZI0KBGRb62J8fAJbOu+ovHr1ilQqFQGg5/HN3tNq+btRJzuUNi03rBREIywsjBYvXkzp0qUjAOTo6Ei+ElfdSk5EhOG6qMsGrlSJqGBBwyrKt28Nj/vvv9jHDg3l5vDp0hHlzs3yVFLIinl5cWZqp06Gz+vW76iVoTNnxryuP39OtGIFN5wXCAQ/xZbWReEPEGk0GsqRIwcBoPXr1yttToy8f/+eevToQXPnzpV/ssBAojFjWDoc4OpKX1+WqT5/nii+0qNy8Po1y5b9eE3v4kK0aJHS1sWMlxdR2bJs5+7d+uc3bIj52r5dO/YZTEWr5UbqAFGyZFxxo7sR8d5HmzbszxCxHNjDh1yNExZm+vwCgQ1jEVJaIjDyayIjI2nz5s3k4OBAHh4ePz0uNDSUAgICvt98fHxs0vGJN8OHc4msGQgPD6chQ4ZQp06dbLs3iKls28YLu5sbUXi4cWO8f8+bBJ07ExUrZqib2qZNdMckfXqiGjWIBgxgZ1Fprlwh6tmTqH59ouLF9Vrp5cvHLpPx+DFRliyscxqVOnX4d3Hhgn6z5Pz5mB2y0FARKBEkSGxhQyAuPkFC8QcmTJhAAKhy5crGD/LxI9HYsZZ7EW4mtFqtgTSH7vHq1aspW7Zs35M+8ubNS8eOHVPQ0jii1RJ5erL/164dUYYMhj5B6dL6Y8PCiLZu5d4bt24Zro8xabIvWRLdx1CpiGrW5I0SU3XcY3v/pEk8X968+ud8fYlmzCAqWdKwJ1lUnXSBQGCA8Aes97xj4sSJEwSAXFxc6EtcEuIePCAaOtSsEpqrVq36buNb3Qa23AQHc5KgJUt2P35MtHAh93lJkYLXMHd3/euWds0aFsbJnVF7eKxbx0GoWrWIBg1iiatEifhcKlc2fr8jKhoNy4+fO/frY3v00PsD2bNzEEogEMSIRQRG4q0JnYC4e/cuJU2alOzs7MjV1ZUOHjwY6/Hjxo2LUafSlhyf8PguKrqGlkD0hpYyErWJ+tevX+m1WIwMCQkhSp6c/y4VKnCvESnp2ZOoSBHuWeLgED1jNGrg4epVy3AWtFqiuXOJPn369bEvX7LDE/U84uI0hoQQTZzIOqkFC3KDOUtzNgUCGbHmjZD4+AQJwR8gIqpevToBoI0bN0o7sA33GgkICKAXL16Qh4cHXb16lbZt20bdu3enbNmyGWSxvn371uCzkyFDBlqyZAmFWWvmoVbLmy+rVnFyxq+CBjduEFWtqq/mLFpU/1poKFee/Pcf0dq1RNWqGfoZuh5oWi2v17t28SbJhAlxW+N/dR6jRvFYUW3Vza1WczYpwMkgNvxZFghMQfgD1nfesXHx4kWqVatW3PqPBgVxcNkY9QIT0Gg0VKpUKQJA3bp1M9u88ebzZ6LTpw3VGMyFRsPX5lGvT//6i3uSWhvHj/N6HHW9vnCB+9hs28bX4YcO8XHXr/N1ulQMG8Z7Lbqq6GLFLCMxVCCwQCwiMCL4OWFhYfTkyRO6fv06jRgxglKnTp3gK0ZGjBhBJUqUiFuTuSdP9IvB6NHRXw8P54abAFHHjkTxadIWR8LDw6l+/fqUNWtW8hGyBobs36+/eE+ZkhfwKM3mJEOrJfL3J7p8mTcxZs40fC1/frYhY0ZufC5FtqdUbN3KzqlUfPigz8TR3SpU0JfhCgQ2jjVvhMTHJ0gI/gARbzKcOHGCQqS6mAwLI+rdmyhzZpv8Xrx06VKMG2S6W/369b8fe/v2bQJAKVOmpFmzZtHXr18VtNyMaLWckfljRUiBAtGPi4qXF2+wdezIjz9/NkzO0d3SpDFsEC+VzR06EC1bxlnBd+/q/d9hw6SdSyCwEYQ/YH3nHRfiJLPdqZP+2s/MlRQXL14kAGRnZ0dPnjwx69yx8v49qw9EXa9WrOBEgCNHOOlw6lTz2+XvT+TszFWZc+ZYnyzUixeG/kKvXjFLbgFcYXL3rrTzP3+uV6WoVYuDggKBwACp/AEVEZEpPUoCAgIQEBCANGnSwMnJCTt37sTZs2dRtGhRdO3a1ZShbYqaNWsiZ86c+Pfff+N0fGBgIFxdXREQEIBkyZLJbJ38EBFy5MgBb29v7Nix49eN11euBLp354bcb99Gb2rt4wNkzcpLEcCNtCpXltTmt2/fokqVKnjy5AmGDRuGmTNnSjq+1fPsGdC6NXDjBjcmu3yZG+CaC39/oHZt4No1w+dz5QL69OFmfD9+bszF0qVsQ5o0wOzZ3AxQiuZtmzbxZ335cv1ze/YAjRubPrZAYOHY0roYH5/Als5bNnx8gIULuSEpAJw/D1SooKxNJvLlyxd4eHigTJkyAACtVosCBQrA29sbSZMmRdKkSZEqVSpUqVIFtWvXRuXKleHs7AwAiIiIwOvXr5E+fXo4OjoqeRrmJSwMcHYGIiOjv5YtG/sEM2fqm7OHhgJ2dtwQHQCePwfmzwdWreI1W6MB8uQBihThBu9aLdCzJ7BsmbznsXs38OEDsHgxcOeOvHMJBFaILa2Lwh+IB0RAqlSAnx8wfjwwbpxZp4+IiEDGjBnx8eNHbNiwAe3btzfr/D9l376YrwWdnbmxOAAkScL3pbgejStEQP/+vJYBQI4cwJgxQLNmgKur+eyQioULgYMHgeBgICICCA/nn2/e8L7Ely+Azuf68AFIndr03/f160CVKjxn4cLs3yZLpg/JqNUmn5ZAYM1Iti6aGqFp3bo1qdVqun79Ou3bt49UKhWp1WpSq9U0Y8YMU4e3GapVq0adO3eO8/HWnAkTE0+ePCEAZG9vT0FxiXYHBrKmIkD0++8xH7NnD9GQIVyeKZOk0NatWwkA5c6dW/QdiYnQUJaiWLHC8Pn7980n8xQYyBmcI0fqJb5i+9yYg3Pn9NUsOn1ST09pxu7WTd+8bcYMy6mQEQhkxpbWxfj4BLZ03kTc/0KS9fTGDaKBAw2/a/GtSakVr9fPnz+nIUOGkKurK6VKlYqCozSVDxYN5n/NhQtEDRpwlqqbW/SsztOn9ceuWUNkb09UuDBLV6nV+uM6dNDril+7xpJcrq5c0WwOtFrRZ0Qg+Am2tC4mZH+AiOjYsWPk7e0d9zfMmsXf0c7OnFFvRpYvX04AKG3atHHbzzAXOklnnZoDQGRnxz8zZOBqg2vXlLFNoyFavJgoXTrD6orq1bnSxRbQaonevNE/9vcnypmTqG1baSSwLlzg31+PHvrnfH25ujQuSiwCgQ1jMRUjuXPnxufPn/Hp0yd06dIF69evR+3atXH06FHkz58fHh4epgwvO3fv3o33ewoUKIBEiRL99PWRI0eiXr16yJIlC4KCgrBp0ybMmDEDR48eRa1ateI0h61lhCxZsgR9+/ZFlSpV4O7uHrc3nTvHEXIixbLiAwMDkSZNGoSHh+PBgwfInz+/2W1QDG9vIEMGrtqJD56eQNGiQKtWwJo1nI1pLr584azOxYuBFSuAb5m2+PiRMz/TpTOfLeHhwNy5wMSJQEgIV4/cvg1kzGjauLdvAwcOcNZqmjRSWCoQWAVyr4ty+AOA6T6BrfkDd+7cQd26ddGkSRMsXbrUuEE+fOCq0ZAQfqxWc8XiwIFAmzbSGWtGrly5ghkzZmDv3r3QarUAgFy5cmHfvn0Jy/eQitBQ4MUL9gu0WvYB3r9nv1KXqTpiBDBjhuH76tYFhgwBatTQZ3pevAhUrMi+6P/+J4+9nz9zFe7s2exDCQSCnyL8AdvwByIjI5E6dWoEBATg1q1bKFas2K/fpNEA1arxPkGlSsDp02a51tRqtcidOzeeP3+OefPmYdCgQbLPaRRfvwInTwIpU/I1fMmSllFV8PUrV1ysXct7BenTA69f6217+JBVH3QVnNbM/v1A06b6qtMtW4DixU0b880brpbS7cvoqoQKFeLKUkv4GwsECmAxFSNJkiT53oS9RIkSVLJkSSIiypcvHzk7O5s6vOzoKlxUKlWcbnZ2dvTs2bNYx+zatStlzZqVHBwcKE2aNFSjRg06duxYvOyytYyQJk2aEACaMmVK/N44bBhnFgwZIo9hcaBu3boEgKZNm6aYDWbnv//49+7iQtSyJdH69XHvl7FxI2dgAqxpqkTmrlZrOG/37pxZNHkyZ1YcPEh04ADRpUtxsy84mGjJEuMa2Xl5cTYqQFSlimHTdYFAEGfkXhfl8AeITPcJbM0fmDVrVrSeGEZx4wZRq1ZEO3dK28/JzNy6dYuqVq1q0C+kVq1adODAAdKIikB50WqJvL25b9rChUT37sV83Nu3RLH0CTQZjYaoXj32EwoW1FeChocTnT9PdPIkV7qcOUP09Kl8dgikQaslevaMaO9e9h91iP9nyRD+gG34A7qeHSlSpIhbfxEdz5/zdV3ixGathPDw8KAePXrYTt+uiAi+Fp41i2jRIvNVKT55QhT1cx8RwT1j0qXjfqK6ak1r5sIFfdWqnR1XM0v5ufnwgcjRkcffs0e6cQUCK8NiKkZSpEiB5MmTw9PTE2nSpEGTJk2wbt06FC1aFN7e3ggICDBleNlRq9W4evUq0sQh85qIUKhQIdy9exc5cuSQ1S5bygiJjIxEqlSpEBgYiGvXrqFUqVJxf3NYGGeC1K0rn4G/4N9//0WvXr1QpkwZXL58WTE7zEZwMGuAvnunf06t5tvx40DVqr8eY/t2znzUaYvOmhX/yhOpCA/n/jNXrsT8evv2XNnysyyvkBDOSLpxgx9v3Ai0axc/Gx4/5oydkBDA3Z0zTwUCQbyQe10U/oB5qF27No4fP4758+dj4MCBSpujOA8ePEDBggWRKFEidOjQAUOHDkXBggWVNksZduzgCo7VqzkLMqEwZQrrrjs6ApcuAbqs6aFDgTlzYj5+1CizmiiII56eQPPmwIMH/Pj6db3/V64cX9ccOADkzKmsnVaO8Adswx+YMGECxo8fj5YtW2Lbtm3xe/PevUDu3ECBAvIYZ8uEhAB9+wK7dgFR9+q8vLgfl7nx9OT9Bd3eQ4ECvJdg7X/bT5+AXr3YtwGA7NmB9eul64E3ciQwfTqvMVeumFelQyCwEKRaF2Ov94wD+fPnx5UrV5AuXTp8/fr1e5PIV69ewc3NzdThZadKlSrIlSsXkidPHqfjK1euDCcnJ3mNsjGOHz+OwMBApE6dGsXjW0aYOLGiQREAqPtt/qtXr0Kr1UJt66WKb97oHZMTJzgw5e/PC/nRo3ELjLRsye/p0YPLZk+dAiZNAho1+nkAQi4cHFgGY8sWbooeHMzyGOHhwL17QPLksTsSHh76oAgAbNgQ/8BInjz8+0uXji+MBQKBxSH8Afn5+PHjdznNOnXqGD+QVgs8egTYgMRUgQIFsHLlStSuXRuZM2dW2hxlWbsW6NSJJasSUmDkyBH+WbAgkC+f/vnWrfWBkQIF9Jvty5eLwIilcuSI/u8EAKVKAdWrs9TJp0/83NGjQJ8+ytgniBPCH5AfIsLOnTsBGOkPKCCxrdVq8eLFC2TPnt3sc0vKq1ecgPAjy5ZxcL55c+CPP7hhuznIlw/w8eFr7L/+4u/QypU5IdNUCSolSZWKAzz79nEgysuLkz/27ePX/fyAoCAgSxbjxv/zT2DBAt6nGDGCE1EFAoFxmFq6cvDgQUqcODGpVCrKlSsXBQQE0KVLl0ilUlHXrl1NHT7BYkulsjdu3KBWrVrRsGHD4v/m0FCiwYOJXr2S3rA4EhYWRrNnz6aVK1dSRESEYnaYleXLibZtM3yuZ8/4/x127CBKm1bfbO3qVelslIIbN34tbaXVcrOz4sWJsmb9udRGfDlyhGjpUqtuEiwQmBNbWhfjgy2d9/z58wnAd9lVo/Dx4Ybrrq7c4NLKCQ4Opk2bNilthmXw+TNLpNiCjEZ8uHaNZWF0kptRfc0bN/T3q1fnY0aPNruJgjgSEkI0fz5R9ux631d3S5qUaMoUw7+vwChsaV2MD7Z03teuXSMA5OjoSH5+fvEfYP9+eSUOf+Dt27dUpUoVypQpE322YvnO7+zYQZQnT/TvKd1t6lRl7PrwgahUKbbB1ZX/zrZAYCDRgAGGcmU66fKiRYkmTOA9hvjuC2zapP+brVwpqckCgTVgMVJaAGcAvnz5EgULFkTixIkRFBSE9+/fI1WqVHHOtBAYYmulskYzaxYwfDg343r0SDSWshSIWB7q9m3g1i2uvKhcmbM8fuTTJ24meucOcOiQ/vmICMtqsBYeDtSsyXbqXIwaNYCdO7nCRKXiJmqxVbyEhAAXLnCFjIsLZ4fE9P/78SNnhr5/DzRrxo3iU6aU79wEAhsgoa6LtnLeRIRixYrh7t27WLx4MfoYmzGt1XI1wcOHVi8pFBYWhjJlyuDOnTvYsmULWrdurbRJAqU4dQqoV499kRMn2P/4ka9fueFw8eJcgRoWBpw5w89NnKhvFr9rF/D8OVdcFyyof15gXgICWCLmwQMgTRr+e5i7atpGsZV1Mb7Y0nn37t0by5YtQ7t27bBx48b4vfnzZ5bRCggwm0Tx169fUbx4cTx58gSdO3fGmjVrZJ9TdiIjWSL6zRvg2DFWOMiThysUa9VS7vsqIABo2BA4fx7o3RtYskQZO+Rm6lRg7FjeX9BRpgxw+DCQIkXs742I4GqTlCmBCROA8eO5CqhzZ17zT59mubkpU4CkSWU9DYFASaRaFyUJjNgKRIQdO3bg9OnTeP/+PbRarcHru3btMpsttuT4GM2rV7wwBwXxF32XLsDbt7yZnjq10tYlXPz9gf/9jy/EdajVfCFfrVrcxnj8GGjQgEt2Y7r4V4LRo9lB+ZF//gEGDIj9vevWsVTW+fNAaKj++YwZ+f3NmxtuTGi1wLx5rA0aEQFkzsybIrlySXMuAoENYs51UfgD0nP06FHUrVsXTk5OeP36NVL86qIvNjZuBDp0YCnE8+d589dKGTVqFKZNmwYXFxfcuHEDuXPnVtoky+fBA2DxYpaoqF4dmDuX11tL58ULlvT8+pUDehkyGL6+dy/QtSvLkE6bFvtY9+6xPOmLF/rHOvmxOnV4kwvg53r04P8XU/7nBPLz/j0HxnRS1ETA1q28UVmihLK2WRjCH7BufyAiIgK5c+fGixcvcPLkSVSvXj1+A/TuzdeQhQpxgl5EBCfiySzjfunSJVSoUAFEhAsXLqB8+fKyzpegCQ7m6/JBg/T7Pj4+nHhoS4nXnz4B+/dzQsOxY5zw0Lo1sHmz4d7B16/cT+TaNeDpU8DbmwMqOonv/v2BNm30QcIlSzhBs1AhHlv4lgIbRap10aj0+wULFmD79u1xOnb79u1YsGCBMdOYnUGDBqFjx47w8vKCs7MzXF1dDW6C+BEYGIj+/fvj+fPnxg3Qty8HRcqUYc3p0aP5wjdNGl4o4tukzUgiIyOxfft2HD58GN7e3maZ02LRajmj8dw5/huUKQP07An8+y9QpQpfoMcl1jprFi/q//sfL/CWwMSJXJX0+DHw5AlXuQC8eeHlFft79+3jwFBoKH9GO3bkIMebN6wP/uPvRK0GhgxhHddcudjRmzhRnvMSCATxRvgD0lOiRAmMGjUKw4YNMy0oAvBFY5kyHKivUQN4/VoSG5Vg4sSJqFSpEoKCgtCqVSuIfKVYCAxkH6RgQb7o//CB+5GEhChtWewQsa+UMyfriy9axJvdBw8aHte4MVeU/iwo8ukT96eYMoWbt754AaRNy8GUqBW4zZrx78nREbh/n5M7Mmbkql7x+bI8vLz4s5EuHdC+vf5vFBQEtG3LjXWrVtX3KBGYFeEPSI+9vT08PDywbt06VItrUp2O8+c5KAJwH8uXL/l/J3NmDiTKSLly5dC1a1cAwIABAxLGej1kCF/zm7tCJkkSYPJkfVCEiPue5MnD/chs5XefKhUn/+7bB5w9y31Pt27lalCAz/PSJU4onTyZfYBnzzgo0rmzPvly0SLDyqmiRYH06dkHKFWK/28EAsHPMUp/S6Wi8uXLx+nYsmXLklqtNmYas5MiRQo6ePCg0mYQkW1oiG7fvp0AUP78+UkbX71ErZYoWTIWNFq1ip/LnNlQ+7J+femNjoJGo6Ft27ZR3rx5CQABoF27dsk6p8Xz9i2RnZ3+bzB2LOtfa7X8d3JyIlq27NfjhIYS1a7NY9SoIb/dxqDREFWqxDZOmBD7sTdvshbrw4d6bdCQEP793L4d+3vHjeM5ypSRxGyBwFYx57oo/AEr4MYN/Vq0Y4fS1piEl5fXdz/jzZs3SptjuVy7Fl0HffVqpa36NUFBRA4ObK9azf5t2rRE7dvHfYyICPaXop57lSpEnz79/D1+fkSLFhEVLiw0yC2Z1aujf65/vOYBiM6cUdpSi0H4AwnYH5g8mf8f8ufna66VK/X/I23ayD79hAkTCADZ29vT169fZZ9PcbJmJUqRgqhaNWXt+PSJ/+a6v3WlStL1/bQkJk8mypVL32vtwAHDdeDvv4nc3bnva9T9NY0m+lhv3hBVqMDvK1FC9DUV2CRSrYtGCwf6+PhgYhwynF+9emXsFGbH1dUVOXLkUNoMm+Hy5csAgKpVq0IVX31jlYrLZGfMAObP54qRnTtZM3n+fI6CT54suc06Ll26hH79+uHmzZsAgFSpUmHMmDFo0qSJbHNaBenTs3TF+PGcgTBxIt/SpOHMTQA4coRlG2L7mydODCxfDuTIAZw8CXh4WJ4UilrNci0HDgC9esV+bPHifIuKtzfrhtrZ/fx9x4/rP8dNm5pkrkAgkA7hD1g4RICuR0m5clx9aMW8e/cOAPsa6dOnV9gaC6ZUKZaaWLGCpaPq1eNMS0vH2ZllMTp04OqW/v25iuPr17iPERjI77Wz435orVrxeA4OP39P8uRcfd2nD/Dnn1zdG9/sbIH8dOrEn4UVK7h3UurUXEkclUWLgEqVlLEvgSP8AQujSxe+dnr4kHtXtm8P+PkB5ctz9r2MHD58GOPGjQMAzJs3D0mSJJF1Povg9m3g+nWu1FCSlCnZlvnzuaeGrt/W8OHA339zhaQtMGoUS2PpqkBr1gSyZGFljr59uVr6R8LDgfr1uaqkTx/eZwFYrnPvXq6munmTK1KqVDHfuQgE1oQx0RSVSkVqtTpON92x1sCaNWuoTZs2FBwcrLQpNpERUqFCBQJAa9euNW6AT5+IXF0Nq0bMwOHDh8nR0ZEAkLOzM40bN86q/w6yEBpKtHYtUdOmREmS6LMgp06NOWPh06eYsxSaNeP39ughv81S8OgRZ34SEfn6Ev3vf0QTJ0Y/Nw8Pzght3JgotmyikBCicuWIOncmCguTy2qBwCYw57oo/AFp2b9/P23dupV8fX2lG/T8eaKaNYm8vaUbUyFmz55NAKhRo0ZKm2JdREQobcGvuX6d/SWNhiteWrViH8oYtNrYfYpfvffhQ8PnVq0iunPHuPEE8hAQwH+na9eI7t8nevrU+L+5DSP8Aev1Bw4cOEDFixenKVOmGD/I0KF8/Zg9u1n/P968eUPVq1enPn36mG1OQQy8eEHUpIm+iiJ3bqInT5S2Sj5+5eusWaP/Xbi4ELVty5XUuv+N3r35tUSJ5LdVIDAzUq2LRjVfN6YC4PTp0/GdxuyEhISgadOmuHDhArJlywb7qHq9wPfqAXNg7c3VwsPD4erqitDQUDx69Ah5jM0yWLiQNZTHjDFLo63Pnz8jW7ZsCAoKQsOGDbFq1SqkSZNG9nmtmpAQwN2dq0l+rJqIiAD69ePqkFKlgKFDWQsz0bditTNnWDfZyYn1Mn9sRGpJaDR8fh8+cKZKxozc+DRfPs5aAgBfX2DBAtY+Dwjg7L7jx/WZG2/fck+VLFmAYsX4uS9fgKRJ9RU2N25wRkzLloAV/u8LBHJhznVR+APSUqVKFZw9exarVq3C77//rrQ5FseiRYvwzz//oHv37hg+fLjS5tgmJ08C795xRqU5+gK8eAGMHMk9UNq25Say6dJFP87Li/2f4GD2pyIjOUM0pmOl5Px5fQVC2bLcA6VVK9Z1F1g2gYHAnTvcTDddutgrtG0U4Q9Yrz8watQoTJs2DV27dsV///1n3CBBQVwh0qcPf3epjWqbaxQajQYajQYOsVXrCczD7t28z+DiwtfOtlI1El+IuKpwxgzDnntp03JvmNy5ed+hSBHg4kX96/v3A3XqxF55KhBYOFKti0ZJabm7uxs9oSXTuXNn3LhxAx06dEC6dOniL/8k+M7du3cRGhqKFClSIHfu3MYP1L+/dEbFgZQpU2LTpk3YvHkzVq9eLZyeuODkxHIWP0LEQZD9+/nx9etAmzbcKPfECX6ucmUuCb1yBdiyhaUeLBUfH5Y68PVlJ1yHLhj0zz/c2DQsTP/87t3srA8bBmzaxM3YAWDgQC4FBlhiQ8d//wHdu+sbzK1ebR0yIQKBjSH8AemIjIzE9evXAQBly5aVbmCt1qybIXLw8uVLZM6cGf369UO/fv2g1WqVNsk22bGDkw109O/Pa7Du8zN2LDBpEjc8bdUqfmOfOsV+jY4rV3jTun9/9gecnIAmTWIOdNy+zT5QeLjh85Ur6xuvykWSJECLFhy4uXyZb3/+yVKogwfLH5gRGIefH0uh3Lunf65rV25G/cOGvUAahD8gLTqpbZP8ARcX/p41kw/w7Nkz5MyZE0QEOzs72MUmkywwH02bAtWr8/V1Qg2KABwc79+fpbauXmWfZ9s23ruoX5/Xi9evgffv9e8ZPZoTNv78E5g7VznbBQILwegeI7bIwYMHcfToUVSsWFFpU6yeI0eOAADKly9vugMZHm7WSHbDhg3RsGFDs81ns4SEsBY4AFSowBmQixcDzZrpj1GpuLrizRvA0n/n2bJxZcjSpdxX5fNnfr5yZf65di1vgiROzEGQJk24aqRePc5UBdiBL1CAq2tiYts2Doro2LpVBEYEAgUQ/oB0nDt3DsHBwUiRIgXy5s1r+oC7d/PFXJcufBFopWzfvh1du3bF9evXv/9e1FYe6LFYDh82fLxyJTBvnv7xv//yZvPhw/EPjOzbZ/j40CHgwgV9ksScOVxd+iMBATyXLihSpgwHK3x89IkTAFeQ2NlJXxVQogT3jPP15SSMFSu4emXmTK58PXWK+/cILIvwcMOgCACsW8cbW+aohEqACH9AOgICAnDxW8Z6hQoVTBtMo+GfZlg3e/TogTx58qBmzZpo3ry57PMJ4oGrK998fTk4YgaFEYtFreYK0LJluQ/PsGH8f1KoEBAaykos5cpxtdW33nbfk1UFggSOuAKLQubMma22LNXS0FUVmew8+Pqy7NDff0fPqJOJo0ePYu/evWaZy6ZJkoQvtFUq3iQYOBB4+ZIz26JSooRhUOT+fW48Fn+VP/lxcODzePKEAyQHDnCFB8CbLA4OnB1aqBBLY5Qty0GRpEn5+MBAvqAdMSLm8adN08tY5MzJGYACgcDsCH9AOrZs2QIAaNasmTQb/z4+XIG4YoVlrhO/IDw8HIMGDUKrVq3w5csXXLp0SWmTbJ9587gB6ZQp7E/eucPBBh1XrrDfsXBh/MeeNg3YuZMbaM+Zw+MsX85+AMBSLwMGcIVTVObMYV8iSxaW6Lx8mYMRjx8bypKOHg0ULcrBkg8f9M9rtdGbt1+7pg/IxJX06Vny6+lTDvKUKcPNv0uWjN84AvPg6sqfsSlTWDZlxAiuPBJBEdkQ/oB07N27F2FhYciXLx/y589v2mAzZwK//cbfnTLTrFkzLFu2DJMmTZJ9LoGRTJ0KpEjBAQEBB4kWLmSJLYCbry9cyI3ds2VjlQqAkz11WKFPLRBIhhQNT2yFAwcOUJ06dcjLy0tpU6y+uVpkZCS5u7uTv7+/aQMNGMDNon77Lebm3RKza9cuAkBp0qShz58/yz5fgmDrVqIbN4jCw399rEZDVKoU/82nTpXfNqnZvZsbrxMR/fsvn0fmzES3b//8PaGhRFeu6D/fX74QvX0rmm0KBD9gznVR+APSEB4eTqlSpSIAdPz4cWkG/fSJKHFi/n69dk2aMc3Ew4cPqVy5cgSAANDw4cMpwhoaiAviT2AgUePG+oaoM2cavh4eTjR4MNHVqz8fIyCAKHly/Rj29kRlyxLlyEHk4EDUvr3h8XZ2RDlzcsNuY9FqiV6/Nnz84YPx4wkEMiD8AevzB4iI6tevTwBo/Pjxpg306hVRkiT8vbhpkzTGxcKnT5/IwcGBANDNmzdln09gBKVL6z8P27fz4xEjiEJClLbMMnj4kGjgQP69JErEv6sOHfSv37hBVKkSkbe3YiYKBMagaPN1WyVFihQIDg5GZGQkkiRJEq252meddI4ZsIXmaibj5cWNrcPDWZKpVi3ZpwwPD0exYsXw8OFD9OzZE8tExr75WbiQsysBYMMGoH17Ze0xhfnzua/Kz6SzANbynjePy11nzox9vAsXWP+7YUPOFBQIEhDmXBeFPyANR44cQb169ZA2bVq8fv0aiRJJpODavj1LFvbsaRWVdWfOnMGUKVNw/PhxAICrqyvWrl2Lxo0bK2yZQFa0Wm582qkT33dwYJlRJ6e4j+Hnxz3YVq/mipCo/NiLxNGRK0bSpQOOHOFmq6ZAxNUJ69cDp09zA1eBwAIQ/oD1+QOfPn1C+vTpERkZiYcPHyJfvnzGD9apE38vVagAnDsnvdRgDLRp0wZbt25Fv379sNCY6kKBtLx6BezaxWoUL15wv6zISCBvXuDRI/1x06dzD1CBnuBgrk4tVAhIlIjX+t9+42rslCnZv65TR2krBYI4IdW6KAIjUVizZk2s/TA6d+5sNlus1fHRarX4+PEj0qZNa/pgrVtzz4UaNYDjx83i9ADA2bNnUaVKFQC8mVFZ10NCYD6GDmWZCXt7vrivXl1pi+QhMtKwWaa7O+ucx8SlS/xaRAQ/PncOEHrHggSEOddF4Q9Iw+TJk/H333+jb9++WKQr55eC06d5XXB25gvilCmlG1sGVqxYgR49ekCtVqNRo0aYM2cOcubMqbRZAnMSGcl9cTZuZOmtqlXj/7m9fx/w8AAyZQIyZwYyZjT0Id6+BerWBe7eBZIl4/+TEiWMtzkoiCVBHzwAMmRgCbI0aYwfTyCQCOEPWJ8/8Pr1a0yaNAlPnz7FCVP6Gly7xpu4uvulSklj4C84duwY6tSpgxQpUuDNmzdwTMjNvpVGqwWKFOH1MCYcHIA//uC169Ch+CUjJCQ2bWKpTnt7/p21aAHcuMF7bv/+q5cLFwgsGIsKjHz8+BELFy7E5cuXkTVrVgwYMAA3b95E1apVkSVLFlOHtwhCQkLgZMYvVWt1fC5duoS6deti6tSp6GtKU9RXr1h3mYgvxIoUkc7IWIiMjMSECRMw+Zs+5YwZMzB8+HCzzC2IglYLtG3LgbFkybhiqEwZpa2SnoAA3mTQBTsWLAD694/5WJ2WtI7YjhUIbBBLWReFPxA/fHx8QETS+oNEQNq0wMeP3MfJwoPnX79+RY0aNZAiRQrMmTMHBQoUUNokgbkJDORKjtBQfqxSAYULA5UqAZ8+cYWsnR1/tidO5OaoxlRK+/tzs/fz5/n9x45FP0aj4WzR9++5ysTRkTeOMmc23EDSaIDevbmfDyASMgQWg6Wsi8IfUICOHfn7skMHrhoxExqNBkmSJEF4eDiePHmCXLlymW1uQQz4+7PCROrUwNmzvKEPcELtkiVAnjy8npopsdYqadiQ1Sj8/bm3WVAQ9xsDgCZNgN27lbROIIgTUq2LJnfB9Pb2RtGiRTF58mScOHEC9+/fh7+/P7p06SJtdqAZGKCT7/mBr1+/on79+ma2xjrZsWMHAgMDTW8munEjL2aVKpktKAIALVq0+B4U6dq1K/qLjWdlUKuBtWtZJiIwkDMWDx5U2irpcXUFDh/mrM6ZM4FevX5+bP/+QL16fL94cS4jFwgEsiD8AenInDmz9EkyKhWvEwBfFFs4SZMmRcqUKXHkyBEULFgQ9evXx6lTpyCKthMQyZJxk/eOHVnqg4grOxYvZqms8+f5uHXrgPHjeVNC91x8SJ6cx7Cz42rrqIGRDRs409rZGShQgKtWypZlya28eQ03GYOC2AZdUGTqVJatEQgSGMIfsCCCglg+CQBMScA0gpCQEISHhwOANMoYAtPQrXVz57JUVtq0QOfOvO7lycPHqFRcrbllCycc6BIRBcy//wIlS/L9W7c4KJIiBTB6tL45u0CQQDBZ7Hn48OF4+/Yt3Nzc8OrVKwBAxYoVkSxZsu9aytbCwYMHkSJFCkyYMOH7c1+/fkXdunUVtMp6ICLs2LEDAAcYTGLdOv5pxvJkAOjRowfOnDmDZcuWoXXr1madW/ADjo6sF9q3L3DxImeA2CK686paNfbjkiQB9u5l/XBnZ9nNEggSMsIfMJ3Q0FD5pCaIuM/ImzcsK3T2LMsvpk5tsRdzw4cPR+LEibFv3z4cPnwYhw8fRokSJTB8+HC0atUqVqkWgY1QpIjev/X15c/txYv8uc2Rg59v2xbYupWTJurXB06dir9UTPbsLEe7aZPh84GB+j4lSZJwhUhYGPc9iYwEWrXSHzt4MHDgAPti69YBLVvGbe7374Fu3fhcJ08W2boCq0f4A6Zz4cIFqFQqlC1bFmq1CXm5e/Zwf4Tcuc2uJKDRaPDXX3/hw4cPcHFxMevcgl/QsmXMa1RYGMtEde3K61zbtqJXVlQyZeLkif/+Y7lMLy/+XSVNqrRlAoH5Ma0HPFGKFCkoTZo09OXLF1KpVFSuXDkiIipSpAglT57c1OHNytOnTylDhgw0b948IiIKDAykcuXKUaVKlejLly9mtSUgIIAAUEBAgFnnNYWrV68SAEqaNCkFBwebNtjjx0R//03k7y+NcT9Bo9HQ06dPDZ7z8/OTdU6BEQQG6u9HRBA1akS0e7di5lgkT54Q/f470aBBRL6+SlsjEEiOOddF4Q+YRkhICKVMmZLq1KlDHz9+lG+iZ8+Imjcn4lAJUY0ahq8vXkzk6Snf/Ebw9OlT6tu3Lzk5OREAAkDNmzdX2iyBJREcTFS1Kn+mU6Ykevgw/mO8fEnUti3RzZv657y8iLZtI3r0iCgyMvb3lypFlC4d0eXL8bO7bFn9/+OmTfG3WyCIA8IfsB5/gIioWrVqBIAWLFhg2kDh4UT79hHt3CmNYQL5+PSJ148jR3693sjBhw9EyZMTdeqkX5MOHjS/HQKBQFakWhdNltIKCQlB+vTpkfSHyOKXL18QFhZm6vBmJWfOnDhy5AgmTZqEBQsWoHbt2nBwcMDhw4ejnZ8gOjt37gQANGjQwHS91dy5ueTR1VUCy35Onz59kCtXLlzTZdABSJ48uaxzCowgambOypXA/v1A06bcWE2jUc4uS+DRI86eCggAVq8G5s8Hatfm7E+BQGAUwh8wjePHj+Pz58/w8PBAihQp5Jlk82Ygf35uZK1Ws7zgqFH61x8+BPr142N69rSYtSJnzpxYtGgRfHx8MH78eCRJkgRNmjRR2iyBJeHkBOzbxxnRnz8DDRpwprRWG/cxMmfmipHixfXPZcvGWbV58rDU1s8gYjmv27fjl5V98ybLcegywvv25T5AP9KsGfdXsdDqLoEgKsIfMI3379/jzJkzAIBGjRqZNpi9PfdQatZMAssEkhMSwmuMSgWkSsVSjVOmAF++mN+Wffu4d4auShMA7t83vx0CgcAqMDkwkjNnTnh4eGDDhg0AgLCwMCxcuBBeXl7Io9P3syKKFCmCAwcOYNSoUUiSJIlweuLB3r17AQDNrMRZISKcPHkSAPDbb7/hypUrClskiBNdurCWqFrNF9X9+/NFfELk7FkgXz4ueY0qteHhAfj5KWeXQGADCH/AePbs2QMAaNq0qWmyGbExahQQHs6N12/f5r5UUZuwq9W8gUIELF8OjBwpjx1GkipVKowbNw5Pnz5F+/btlTZHYGm4uAA7dnCC0PPnwJAhhrJUciY/qFQcjEmfPn7vq1ABcHdn3XKA/ZBnz6If5+TEG1Tz55tqqUBgFoQ/YDwHDhyAVqtFiRIlkC1bNqXNMZo5c+bgxYsXSpth2fj5cUAiKgMGyJ7oGiNNmrBUZbdu+ueEtKNAIPgJKiLTdhT/+ecf/PnnnzFqI8+bN++nDcssheLFi8do+4sXL5A2bVqDyoebN2+aza7AwEC4uroiICAAyZIlM9u8xvL06VPkzp0biRIlwsePH+FqygIYFAQsWsQXV4cP6zPPZODevXto3rw5njx5Ant7eyxZsgR//PGHbPMJJGT7dtbQJuJKiS5dlLbI/OzYAZw8CSxbpn9OrQYWLgT69FHOLoFABuReF4U/IA1arRYZM2bEu3fvcPz4cdSsWVP6SV6+BLJm5fs+PoCb28+P3bSJ+5EA/J3ZvLn09phIWFgYiEi+niwC68XLi9f4zJm5AgrgKtHMmbmao00bbuhuSRs+TZpwT7SaNVm//EfbtmxhrfciRYA7dxQxUWDdCH/AOvwBgBMmd+/ejfHjx2PcuHGmDXboELBgAdCjh1mrRk6dOoUaNWrA2dkZL1++lK8S1ha4fJnXJV0QqW9f3tcxJ2vXAn/+yY3Zu3ThipW7d7mCRcZ9JYFAYH6kWhdNbr4+YMAAPHr0CP/++y90MRaVSoXu3btbfFAEgJAvkAgHBwcMGTIE/v7+pgVFAC7vnzaNAyRnz/66KbUJFC5cGNevX0e3bt2wY8cOdO/eHY8fP8b06dPly3IVSEPLlsCTJ8Do0cCgQUCtWtxELCHRogVLis2YwU7f16+cZRrfLE+BQCD8AYm4ceMG3r17BxcXF1SuXFmeSdzcOKPd0fHX3/vt2vEF8YwZvFbUqQM4O8tjl5GsWrUKffr0QcuWLbFt2zalzRFYEtmz82c3KhcusMTW4cN827ABWLUq9gChuSBif+zSJeCff2IO2OguXO3tzWubQBBHhD8gDWFhYTh27BgAoGHDhqYPeOECcPQo7xWYKTCi1WoxbNgwAEDnzp1FUORXlC0LeHuznOmcOcDgwfrXIiP5WlXuCpJ377h6ZfBg9vkyZADKl5d3ToFAYNWYXDFy9uxZJEuWDMmTJ8f169cBACVLlkTGjBmh0WiQJEkSSQxNaFhjRoik9OgBrFjBmuFr18o+HRFh0qRJ3zNZpk2bhhEjRsg+r8BEIiPZ0bl2jSVTfizfFQgENkNCXRet7bzHjRuHiRMnokWLFti+fbt0A8+fDxw5whUfrVvrN1fjQkgIULAgZ98PHx59o1lhpk+fjpEjR6JLly5YvXq10uYILB0ilqLavZsTiUJDeaNp8WIOBJq7eqRHD67i2rpVv+EVGsqBy6iEhQGtWnFFeGAgV7xcvmxeWwU2gbWti1Jhbed97Ngx1KlTBxkzZsSrV69irMKJF0+ecI8ktZq/c8yQELdx40Z06NABLi4uePbsGdKkSSP7nDbJsWOsZvDyJfd9GzMGSJdOnrkiIoBy5YAbN4CGDXl/4GefvchItkWrZd/QkqovBQLBL5FqXTQ5Jb5q1aro27cvsmXLhhYtWqBFixbInj07qlatahULtsBC+f13/rl9O188yYxKpcLYsWOxceNGlClTBn379pV9ToEEJErEMlpFixo23RUIBAKBIhw4cACARNmhOm7e5My/o0d5EzZ9ekMJwV/h5MTyG46OQMqU0tklAW/fvsX58+cBwPSKW0HCQKXi5uVjx3Kz89KlgYAAoEMHvmk05rPl1i1OZDp6lDe7dMQkCxcQwBtUOr9eVIwIBDbN8ePHAQANGjQwPSgCALlzAxUr8iZ21KbaMhEYGIjRo0cDAEaMGCGCIsYyahRXbjx7xkGLRYv0vajkwN6eE2sdHIADB4A1a35+7B9/cEBk1izgwQP5bBIIBBaNJFpBMRWdfP36NcbnLY2UKVPi48ePcT4+S5YsovHWD9y7dw/Hjx9HSEiIdIOWLcvOT0gI91AwE61atYK7uztcXFzMNqfARAoW5AvzsmWVtkQgEFgxwh8wHSJCly5d0KBBA9SrV0+6ge/e5Sx5HT/6BkTA+PFA9+7cZH3OHN40OXWKL8TDwzlr0MsL+Osv6ewykenTpyNr1qw4ePAgACBPnjwKWySwOvLl4wazEyZwwCRxYpaZMRf+/vr7v+oXkjgxByl1WHEjZoFtI/wBaZg+fTouXryIgQMHSjdop078U2aVgMjISLRp0wYvXryAm5sbBg0aJOt8Ns03OTU4ObFvVq8e9wCRk4IFgYkT+f6gQVypEhMXL+rvh4fLa5NAILBYjO4xUr169e/3Hzx4YPD469evuH//PpInT26ScebA398fhw8fjnOW3qdPn6AxZyaWFbB06VIsXboU/fv3x4IFC6QZVKXizIInT4ATJ7iPgsxERkaiQ4cOCA0NxbZt2+Dg4CD7nAKJiJqFtHYtX6gPGCDKYQUCQZwR/oDpqFQq9O/fH/3795d24ObNgd9+Y7/g7VuWY9Bd8PLEQMmSwPTpLNcT3TCuLuzcWVq7TODhw4cYPXo0tFotKlSogAEDBqBly5ZKmyWwRhIl4uqRatW4glbHp09A0qQxV29IRbVqgKcn8Po1N1OPDVdX7j0SGsrvadVKPrsEAhMQ/oA02NnZoVy5ctIOWqcO/7x6lavQZKq0XL16NQ4fPgwnJyfs2rVLyMObwpo1QM2a3Ptj1Srg9GnzzDt0KLBnD0s2/v47cPx49Obr7u5sT8uWoopRIEjAGB0YcXd3h0qlgkqlQmBgINzd3aMdU7NmTVNsMxudLehC2doICQnBjh07AAC1a9eWdvAaNbjU8sQJaceNgYiICLRv3x7bt2+Hvb09bty4Ib0jJ5AfHx/eMAsOZlmHNWuAtGmVtkogEFgJwh+wUFxcgAIFONMwbVrOBPyROnW4D4mnJ/DxI1+A+/hwlmBIiMWtBdevX4e9vT3q1auH3bt3K22OwBaoVEl/nwho3x64dw8YNowl6OTa2Mubl29xQRe4KVNGHlsEAokQ/oBpaDQa2MlRvZYlC/cZefyYN7UbN5Z+DgBdu3aFp6cnypcvj9KlS8syR4KhUCHgzBm+Rm/QgKXQ1Gpg4UJeq/r3lyeZ0c6O/cbixVl+MjKS5bWikjEjr5UCgSBBY3RgROcsrF27FmnSpEH9+vW/v5YkSRLky5cPXbt2Nd1CmdFqtUqbYNVs2LABHz58QJYsWVC3bl1pB69aFUiRgi/0wsK4BF8GwsPD0bZtW+zatQsODg7YsWOHCIoAgJ8fZ+H8mFlhKiEhnFmYK5e04wKAmxtrhA4ZAhw+zE7Q5s1AlIo2q4aIs13y5wcyZ1baGoHAphD+gGk8ePAAe/bsQa9evZBSrj4e1arp72s0nA3Yvz+QIwdf7PbqFf09RBwocXaWxyYj6dixI6pVq4aIiAilTRHYIt7egIcH8OYNS5ZMm8a+UZ8+Fve/IBBYGsIfMI2wsDAULFgQdevWxZQpU6Tvn1WnDvcaS5VK2nGjYGdnhzlz5sg2foIjb16WQCXiIMjdu6zuAACvXsnX+Dx3bpZUlavRu0AgsAlUZGIjkGzZsqFkyZLYuXOnVDYJwM2+XF1dERAQYLFN7IkIBQoUgKenJ+bMmYPBgwdLP4mMARGAz6FVq1bYsWMHHBwcsGvXLjRo0EC2+ayGjRu5gWf+/Fx+KtVn0M+PN7D8/YGlS2PexJKC+/eBtm35p7MzBxNsoQfJmDHAlCl838eHA0ECQQLBGtZFObCW8/7jjz/w33//oU2bNti8ebP8E/bvz1Wl2bJxlYiMvoJAYJWEhbG86LRpHCgBgDRpgL59uVF6+vSKmicQGIu1rItSYy3nvXr1anTt2hVubm54/vw57KWWKIqMZAlBifn06RNmz56NcePGwVFOCUIBB+rnztU/njtX/r4jABAYyP7jnDlA6tTyzycQCGRFqnXR5FRwb29vERRJoNy+fRuenp5IkiQJ/vjjD3kmkXmjY/ny5d+DInv37hVBER1377LkwqdPwOfP0o376pW+UeeVK9KN+yOFCrH2bOXKwJcvQJUqLKtl7Vy7pr+v2+QQCAQChQkPD8f27dsBAL1795Z/Qk9PYPFivj9njlUFRSIiIvDmzRuYmJckEPyaxIlZQuvxY+6xkzMn8OEDMH48cOqU0tYJBAIbZdOmTQCAPn36SB8UAWQJigCAp6cnpk+fjpIlS8oyviAKP+4v3L5tnnn79GF5rWrVuEeNQCAQwAQpraiEh4fjwoULePPmTbTGY506dZJiCoEFsn//fgBArVq15Mla8fDgksu6dVlLVGKCgoIwYsQIAMCMGTOklwKzZqZN40aeDx9yNq5UFC7MPWNKl+Y+IHLi5AQcOAB06sSN13x85J3PHKxaxZkufn5A+fJKWyMQCAQAgHPnziEwMBBp06ZFxYoV5Z9w8mSWY/jf/4BmzeSfT0Ju3bqFMmXKoHDhwrh7967S5ggSAvb2QJcurKO+cydLjLZooX9dJ20iEAgEJhIYGIgzZ84AAJo3by7PJLNmcaC3Th0gaVLJhs3zbb/h4cOH+Pr1K5JKOLbgB2bOBGrXBnbtYtl0uZJsf2T0aE4MuH+fe5yMGWOeeQUCgUVjcmDkyZMnqFmzJl69ehXtNZVKJQIjNsy9e/cAAI0aNZJngh07OKutVStg61bJh3dxccHx48exfPlyDNBpXAoYtZodzVKlpB+7Rg3+aY4ScBcX3gTYto0/R9ZOpkx8EwgEAgviwIEDAIAGDRpALXVfqh95/Jg3dgFg3Dh555KBmzdvAgAyZsyosCWCBIe9PdCmDd90fPnCAcaxY7m3n0AgEJjAsWPHEBERgTx58nwPNEhKYCAwciT3GfPykjQwkiZNGqRLlw7v3r3DjRs3ULlyZcnGFvxAmjQse922LT+OjOR1KGVKoHNn7jMrB/nzc6Vxu3bAggUs6eXkJM9cAoHAajD56nXEiBHw8fEBEcV4E9gu27dvx6NHj+TLBjl2jH/WqiXP+ABKlSqF5cuXy7+RY+2cOMFZOT16cHaFu7teEsvSUat5E0D3Nw4NZQkW0VhRIBAITIaIvleQNmzYUP4JJ0/m7+9GjYASJeSfT2Ju3LgBAEKqQ2AZTJkCnD7NvvbKlfF/v0YDHD0KHD4svW2xERnJ1c1lywJTpwKvX5t3foFAECOy+wOnT/P3Tu7c0qoafKNmzZoAgMPm/k5L6OzeDUyaxH1GMmXiCpJbt+SZq2VLIGtWlpZcu1aeOQQCgVVh8m7wuXPnkChRIhw/fhwAULx4cWzevBmpU6f+/py1UL16dUyYMCHa835+fqhevboCFlk+efLkQfLkyaUfODBQ34NC4sCIn58fPD09cfbsWXz9+lXSsW2WJEm4SeeKFcCAAazLmTYtMGKEdQUYdNIr/foBf/+ttDUCgcBCEf5A3Hn06BGePXsGBwcH1JIxkQEAZ4du3Mj3rbBaBNBXjBQpUkRhSwQCcIZu27YcaOjenf2juEqPvn0LFCzIkrf16wMzZshrqw6tFqhXD5g9m68VRo8GsmSx2u8EgWUj/IG4o9FocOjQIQAyKkro9pdk8jfq168PANi5cycCRA8K01i7lgNYly//+thz5/hnkiRASAjw33+c/NK/P1+/S0miRFwpAvA68kMrAIFAkPAwOTDi7++P/Pnzo0aNGlCpVLC3t0fr1q2RPn16TJ06VQobzYa7uzsWLVqEJk2aGGyYh4eHf9fKFDCyVwPdu8eLVJYsHNGXEH9/f5QsWRKDBg1CsWLFcPbsWUnHt0nKlwd69eKLz//9j/8mERF8EdytG19QWwMqFdChA9+fPh24c0dZewQCgUUi/IG4c/fuXdjb26Ny5cpwcXGRd7LPn4FixYBr1wArrbiws7MDAEybNg3+1lJ5KbBdnJw42KjbJFq8GMiRg6VMYuqBo9EAHz9y1fD798CjR/rXrl0zi8nQalmT/t9/OUCie+7iRfPML0hQCH8g7oSEhKBr166oXLkyKlSoIM8kuioCmWSu6tatC1dXVzx58gRlypQRwRFTyJOHK/v8/H59rL8/B1HWrOEgSdu2rPbg5CR9YAQAunZl2a5nz7jPiUAgSNCYHBhxcXGB9lvGuLOzMzw9PXHlyhW8fPkSly5dMtlAc3PixAn4+vqibNmy8Pb2Vtoci0Sr1SJfvnxo0qQJfH195ZnEy4t/5swp+dDZs2fH/v378eHDBzx9+hRVqlTBgAEDRPXIryhXjiVMZs8GvL3ZcbGz4586vXdroFMnLqHVajkzUkj+CQSCGBD+QNxo1aoV/Pz8sGLFCvknK1kSuHRJ3//q2TPAw8Oqvsc3btyIdOnS4c6dO2jQoIHwPQTKo1JxM+MjR7jPSGQksG4d/6/p2L6dNd8TJWJt+DRpuLp7507+fxw1imVQzEGiRFzpUrYsy+oAbMP69eaZX5DgEP5A3HB2dsaMGTNw5swZ2NvbyzOJjHsEAJAyZUqcPHkSbm5uqFGjBlxdXWWZJ0FQtizQvLk+gB0bq1dzD7mWLYGKFYFNm4CHD7lJuxyS50mTcq+aESM40C4QCBI0Jn/LZM6cGS9evIBGo0HhwoURFBSE8uXLIygoCBkyZJDCRrOSIUMGnDlzBoULF0bp0qXh7u6utEkWh4eHBx4/fozjx48jZcqU8kyiczqzZ5dl+OrVq+P+/fv4448/AAALFy5E4cKFcfXqVVnmswm0Ws4ozJ+fL0Q7d+YL5f799VUYQNyyQpRCJ/s1Zw6X6p4/z9IRwcHK2iUQCCwO4Q/EnaRJkyKbDFrfMeLgoL8/fz5QqBDg5gb8/nvc5BoUJnfu3Dh27BiSJ0+OTJkyybd5JLB9iLh6NziYs20/fjRe3lSl4l5yp0+zPFWXLoZVWfb2hr3lIiOBwYOBJk2Aq1e5V0n+/MafizG4uXFAplEj7n2XPr3+Na0WWLSIN9uETIrARIQ/YCGEhLCEHyDbHgHAPcBu3ryJ+fPnyzZHgkCl4puO9++B69djPvZbNa0BefLo74eHA+/eSWvf0KFc0RJ17RAIBAkSkwMjnTt3Ro0aNfDkyROMHj0a9vb2ICKo1WqMHz9eAhPNh+rbF3fixImxadMmDBw4EHXr1sWSJUviNc60adNQunRpuLi4IG3atGjSpAkeRS01t3JOnDgBAKhUqRIcom5QSIkuG0TGjRZXV1esWLECR48eRZYsWeDl5YUqVap810YV/IBKxRfdGg3QujXw6hXQtCmwYIHe6fHw4N4j9evre8QYi1YLHDrEF+d795psPpYuBZIn5+BOpkzA3Lls93//AaVLA8+fmz6HQCCwCYQ/EDc+f/6MSCWlFMPDAUdH4M0brl6sWJEvci2891WRIkVw5coVbN68WT4/SmCdxLX66fZt1l93cODM1xQpuIrj3j3TbfjtNw4o6CqzAKB6deDBA96Yev0acHbmDa5t2ww3vszNmDHctDdpUsPnv34FVq1iuZRKldg/FQiMQCp/ALBtnyAsLAxHjx6Vtwry5Uv+6ezMMkgykiZNmu+JC2FhYWjRogX2SnE9mlDx9AQKF+Zr7mHDfu6nRUQAoaGGz/n6cn/TevViTmZ88wZo04YDHeHh0tpNBDx9ynYJBALbhSTm+fPntHPnTvL09KQHDx5IPbysqFQqevfuncFzO3bsoKRJk5JarY7zOHXq1KHVq1fT/fv36fbt21S/fn3KkiULffnyJc5jBAQEEAAKCAiI83vMQVhYGGXNmpUA0Pz58+Wb6P17oosXiZ4/l2+OKAQEBFDDhg0pXbp09PLlS7PMaZV8/UpUtCgRQFSoENG+fUShofrXFyzg1wCiZMmIbt82bp6AAKIiRfRjAURz5hhv9+7dhmONHMnPnzhBlD49UY4cPKdAILBYzLkuCn8gbrRs2ZLy589Ply5dUs6IkBCi48eJWrXSf8d366acPQKBsVy7RpQ1K9GkSbEfd/48kYODoV8DEJUqZXjcnTuGPpqUTJzIcxYoQKTVyjOHqZw/r//d2NsTHTmitEUCibBGf4DIdJ/Akv2B+fPnEwDKnj07aeX6ToiM5L2By5flGf8nzJ07lwCQvb09XbhwwaxzS05ICFHDhkRDhphvzi9fiNzcDNergQOjHzd0KJGzM9G8eYbPe3sTpU7N7+vSxXDN8fUlSpdOP27z5vG37+RJopo1eV/jR6ZO5XFz5eLzEAgEFoVU66LJgZHPnz9TZGSkwXPXr1+nZs2aUaJEiUwd3qx4e3vHuJDfv3+f1qxZY/S479+/JwB05syZOL/HUh2f7du3EwBKly4dff36VWlzJCUyMpKemykQY9U8e0aUIoXeAXF1Jfr9d6KICH7d05OoTBl+LXVqonv34j/Hq1dEiRIZOlDt2xtv84wZhmM1a6Z/7d0742wUCARmxZzrovAHfo2Pjw+p1WoCQHfv3lXaHL5Qrl6dv+NLl1bamjhz79496tixI924cUNpUwRKs3070adPRIMHx37cqlV6f2bFCqKgIKKwMMPNovv3iVxceMNoxAiip0+ltfXLF04qOXRI/5yXF9HDhxyQCQqSdj5jCAszTIwxJcFGYFHYgj9AFH+fwFL9AY1GQzly5CAAtGzZMqXNkZyIiAjKkycPAaClS5cqbY5pvH9P9Po10ZkzRBqNeeZ8/ZrIzs7wWrxmzejHTZ/Orzk5RQ9+nThBpFbz66NG6Z+/c8dw3Ny5429f7976APqOHYavdepElDEjv/bhQ/zHFggEsqJ4YMTLy4sKFy5MarWaUqZMSXv37qUPHz5QkyZNSK1Wf78JiJ48eUIA6F48Nl8t1fGpW7cuAaCRuox7OTDXIi0wnkePONMjY0Z2JMqVM3zdz48zFwGiNGmIPDziP8emTUQqld7RuXPHeHvDwzmDeMwYonr1eOOBiOjzZ6Jz54wfVyAQmA1LXRfjgy35A5MmTSIAVLlyZaVN0fPmDV9s37qltCVxpn379gSAWrdurbQpAqXRatkH/lWVh0ZD9OefRLVr8+Z/TBw9yhWxUTeMKlUi6t+fs3G9vEy3NzjY8LEuoxfgoMyQIURKVWGvXx99E+5nvyuB1WGp62J8ia9PYKnnferUKQJALi4u8aqIjRcREYpVp3358oUcHBwIAHl6eipig+SY+3f577/6oEb37pwE+SPh4UR16+r3D34M6C9fHnOgO2rF8KpV/NzTp/qkzV8RFkbUsiW/X60mWr1a/1pQEN+kTi4QCASSoHhgpGXLlqRSqb7fUqdOTZUrV/7+OHHixNS9e3eTjLMFNBoNNWjQgCpUqBDrcaGhoRQQEPD95uPjY3GOz8uXL0mlUhEAevLkiTyTRERwWX6/frxprQDPnj2jfv36Uf/+/RWZ36rQaDjj5NSp6K99/kxUogQ7GRkzGifnsGoVZ4joLmbPnydq04Ylu0zNRtRoiOrX5wwWnRMlEAgsFkvdEIgrtuQPaDQayp49OwGgtWvXKm2OVXPnzh0CQGq1mp6KC29BfPjVRn94ONHOnbzRFDXRBGD5OanJnZsripMn18+TKBFX/L54If18sdG2rd6GEiWIAgOjH6PREB07ZrlSYIKfYu3+AFHcfAJr8AeI9AH+Hj16yDfJvHlExYoR7dkj3xw/4cCBAwSAsmXLJp9MWELg5s1fHxMUpN8/yJUrepXGtGn673ZdxdabN0QHD3K1R2Qky1ECRGXLxl3+KjKSkyh1Y1t7ZZBAkEBQPDCSPn16UqvV1KlTJ+rUqROpVCpSq9Xk6OhIQ4YMoTdv3phkmK3Qq1cvypo1K/n4+MR63Lhx4whAtJslOT4BAQG0cOFC6tWrl3yT7NypzxKQSxf5F1y5coUAkJOTk0X9/q2GqBefnz6xE9u1q+njnj5NlCQJfz4cHU3X+dSV6zo6EgkJE4HA4rH2jRBb8gdOnjxJAChZsmTKy2q+f0904ICyNphIvXr1CIC8/pXAdtFqWS7rRwmQqHh7Ey1bRjR8OFGLFkRRv4c2b445wcVYNBqW2NJJ2wFcrWtO3rzhyuO//2YNeiLe+Ir6Pfrff2xb3boiG9jKsHZ/gChuPoE1+AN+fn7k6OhIAOjKlSvyTKLR8CY5wN9jZqZ///4EgHr27Gn2uW0WrZZowgSiyZOjB6ffvuV+WwBRo0aGr2u1LDepS7z8cT9g7lz9upMkSfyC8lHHTpKE6OPH2I8PC+PKyLp1Y66AEQgEsqN4YCRRokSUN2/e74/z5MlDarWajh49apJBtkTfvn3Jzc0tTn0rrCUjRHZq1tRLMymUkaHVail//vwEgBYsWKCIDVbJ+/dczZEvn2E1x6dP+otSItafjm+FxqNH+qBIhQpEo0cbvr5+fXRJh9gICdH3SencmR2wqJ+306eJsmUj6tAhfnYKBALZsOaNEFvzB3TZoRaxSdC5M3+XT5mitCVG4+7uTgAoceLE9EFoWAviy4YNen30q1fj914fH5a9AnhDSOqkpKtXifr2JfL3l3bc+BIRQVS1KlHFivpKm9mz9U3sHR05kCKwCqzZHyCKu09gDf7AkiVLCAAVKlRIvmqKY8f0m90KyPPlzZuXANCO2ILPgvhx+rT+b7poUfTX797lNQ2Invyi0XCQ/9Ejw+cPHNCP2aQJ9xGNL1otJ3XGJQjXurV+voIFhRy8QKAAUvkDahiJRqNBypQpvz/W3a9du7axQ9oMRIR+/fph9+7dOHXqFLJnz/7L9yROnBjJkiUzuCVIgoP556VLQIECwKJFQFCQWU1QqVRo3779NzMumXVuq8beHnB3Bzw9gXbtAI2Gn0+ZEkiXju+HhAAjRgCDBwN+fnEf++1b/Wdj4UJg8mT9a8uWAR07AtWqAe/fx228sDAgPJzvr10LZMgANGigf93HB/D2Bo4fj7uNAoFA8AO26A9ERERg//79AIDOnTsrbA2Ax4/5Z/LkipphChEREd9/fv36VWFrBFZHmzbsw0REAKtWxe+9yZIBHTrw/blzgWLFgLNnpbOtdGn25V1dpRvTGFQq4N494Px5oH173soaMgS4exeoXh0IDWXftXBhYOhQ4PJlZe0V2CTx9Qks3R8AgDt37gBgf0ClUskzie4aEADy5AG6dQNu3ZJnrhhInjw5hg0bhsqVK5ttTpvH11d///nz6K8XLgycOwds3AgkTWr4mloNzJjBn4Wo4714oX9coADg4BB/u1QqYMwY4H//A7p2jf3Yp0/199+84f0FgUBglRgdGAGAW7duIUeOHMiRIwdu374NAN8f58iRAzlz5pTCRqujb9++2LBhAzZt2gQXFxf4+vrC19cXISEhSptmNHv37sXKlSvx9u1beSfatg3o2xdwduYN9v79+WKPSN55fyBTpkwAAL/4bN4ndJInB/bsARwdgf37gQEDov/dHByAZ88Af3++AI8rlSvrAxf9+wNarf61AgU4+HLlClCmDPDgwa/Hc3VlG2vUALJkYSfIzU3/+sWL/LNhw7jbKBAIBD9gi/4AAKxfvx6DBg3Cb7/9prQpQK1a/PPYMWXtMBKNRoN+/foBAPr164esWbMqbJHAavD0BO7fB+zsgF69+Ln9+/WJKXEhWTJgyRJg+3ZOYvH0BKpUAf74A/j82XQbw8KAwEDTxzEVOztg/XreUNuxA5g5k5/Pm5eTYPr1Y1/w/n1gzhz2ZwUCibFFn2DZsmV49eoVuv5qE9kUGjcG1q3jwG1oKAeAS5YEbtyQb84oXLp0CTNnzkSaNGnMMl+CoG5dDpoPHAj89VfMx5QpwwHrqlVjH+vECSBHDt6D6N6dn5s6FciYkdex8+c5gXLSJA5g/IrmzYFduzjpE+B9h5j2ovbs4bVy6VJg927AyenXYwsEAsvE2FITXU+RqA3Yf7yp1WqTylmsFcSgBQqAVq9eHecxLK1EuGrVqgSAFsVU6igHAQFECxdyGWRUGSYzsXfvXgJAv/32m9nntnq2btWXlQ4aFF0STddHxsWFZbbiyosXRM7ORGp1dKmIR4/02rOJExP16cN62nElLIzIz4/vR0YSpU3LYx05EvcxBAKBrFjauhgXbNEfsDhu3ZKu95RCnD17lmrWrEn+SssNCayHp0/5M69SEc2axRKhKVPy/8Lhw8aN+fkzUY8eeh8uSxZDaVRjGDmSfbeJE/mxVkv07Bk34b1wgejECaJLl1jqyhwsXKg/v507DV/7+JFoyxbui3fxov75x4+Jzp41j32COGGt66KpPoG1nrdkaLX8vdGqFdHu3UpbI5ASLy/uS9WuHdHJk/GTpRo0iL/THRz4+n/gQKI//iCqXZv3D7Jk0X/v29nx/lJcZSe1WqLevWPe0xAIBIoj1bqoIjIuFb9q1apxKpc8ffq0McMneAIDA+Hq6oqAgADFy2aDgoKQMmVKREZG4unTpwmiEuj8+fOoVKkScufOjcc6mQ5B3Fm5Up+xMXQoZ+bpvi+0WqB4cZYvGD3aUBbrV6xaBaRJAzRqFP21jx85q0Qnf5UoEbBgAdC7d/xsd3fnrJIUKYB37/TZIgKBQFEsaV00Jwn1vOMMEWcKensDO3cCzZopbZFAID9NmgB79+ofT5nCPsuCBUCLFlwBYiznz7NUTcuW0X00ImDzZs6mtbPjDN2WLWOusF2xAujRg++vW8eVKN26cXbvj6RKBXh46KVX5aR/f85UdnLicy1R4ufHEgH16wNHjgCdOwOLF0eXdRGYnYS6LlraeWu1WqjVJgmQWA1arRYnTpxAUFAQmjdvrrQ5tsXnz0D58sCjR4bPFy4M/PcfSzLGBhFLIrq7A7//zu/R7TuMHs3VI25uQLZs/J0PsJR2p076+Yl4HfqRixeBChX4/l9/AdOm6ccWCASKI9m6KEmYRiA5lpQRsmbNGgJAuXLlUtaQ9etjbs4lAx4eHpQsWTIqXry4WeazSZYt48wMJyfOtovKrl38mrMz0ZMn0s2p1XIztxo1ePzr1+M/Rv/+/N6mTaWzSyAQmIwlrYvmxJLO+/HjxzR69Gg6f/680qYY8uef/L1drhxnzlsRPXr0oEqVKlHHjh3p77//trzfrcDyOHNGn/k6bBiRmxs3Ub9zh59PlMj0BsVBQUTh4frHN28S9exJVLSoPvNWd5s+XX+cVsu2bNzI9gFEY8ZwZa+rK1GGDNxQN2NGopw5iQoV4kqXvHmJ3r41T/PaiAiievXYts6dYz82LIzPW6Xi4wsVIvpFw2yB/FjSumhOLOm8w8LCKHfu3FSnTh16+vSpcoa8eEHUsiVRYKCs02zdupUAUMaMGelTfBQPBL+mQQOiEiWIMmfmqsVkyfTrS4cOcRvj8mU+Xq3m+0RE/v5ESZPy83v28HP37xMNGED04YP+vbNm8Zw3b8Y89pIlenvmzjX+PAUCgeRItS6KwIiFYimOj1arpaJFixIAmjRpknKGnDvHi5G9PdGNG8rZIYgfS5cSnToV/XmNhui33/hvmikT0evX8R/76VO+oA0Ojvl1Dw/Dx3F1YocMYbuaNBElswKBBWEp66K5saTz7tOnDwGgunXrKm2KIXfusH9QpIjp0j9mRudj6W6JEyem18asiYKEw759+k2aunUNJeSqVGEJESkDDL6+ep9NF3gZPpxowQLeUNJtQhERzZxJlCSJ/tjOndmXevSI6O5d9gt/TJbx9GTJEwcHTpwxB76+ROnTsxSfjufPfy7fe+YMUbp0fE6pUhG5u5vFTEHMWNK6aE4s6bw3btxIAChdunT0RSkZS62WqFQp/r/s1EnWqYKDgylTpkwEgIoXL06fP3+Wdb4ExdixnCh5/z4//vKFaM0aou7dee2IK61b67+jdfsA584RdesW+zV9mzb8vrx5fy7JOmcOH5M0KdGbN3G3SSAQyIoIjNg4luL4nD17lgCQk5OTstkRWi1vVANE2bIRvXtn1um9vb3p69evZp3T5vH1JSpQgB3ZyEh+7skTzszbvz/290ZGEuXOre9j8itOnuRMkB07fn1seDjR5MmcZSIQCCwGS1kXzY2lnLe/vz8lTZqUANDJkycVtSVGTpxgjWor4/r167R582aaNm0a5cuXjwDQX3/9pbRZAktGqyXq21cffNBlawcHcxaszqeSikuXuBK3Tx+izZu5siMmIiM5MKOza/jw2AM0d+7whpRarX9Pr17S2h4bP36n6jbVsmblHgZTphCtXcs+5KNHnJlesqQ+ODRypPl6owgMsJR10dxY0nmXLVuWANBEXf8gpTh3Tv8dsnGjrFN5eHhQmjRpCACVKVPGIv4ONklYWMzPa7VEse3HBAUZJl5+/Kh/n7f3z4MjHz/y8QBXrPxs7rJl+Zhu3eJ+LgKBQFZEYMTGsRTHp0WLFgSAunfvrqgdRMQZ/zlz8oJUtuzPKwUk5smTJ+Tm5ka1atWisJ8t1IJfc/MmOxtRL9g/fTJ8vHu3/uK4fXt9Q/SYOHRIf+yvAik9e+ovZEeNir98l86xEggEimEp66K5sZTznjdvHgGgggULktYaqulmz+bv/t27rSbQvWfPHgJArq6uiv+9BRZOZCRn165fz9JVL19ypUbDhvrNn/BwovHjDSVD5CYsjKtIYmuMvGMHV7pEleOqVy96g/OgIKKpUznoaQ7q1tVLZsV0Gz2aN+V0AZSyZc1jlyAalrIumhtLOe+rV68SAHJwcCDfn1VZmZNx4/h/Mlky2aXu7ty5QylTpiQAVLFiReWqZWyRsDAOjtetGz3Av3YtSzAOGBD7GB8/EhUsyEmOurVQJ5PdujVRaGjM7zt5Uv/9/7P168IFfl2lMk6uWyAQSI4IjNg4luD4aDQaateuHSVKlIju3r2rmB0GeHoSpUjBi1LLlmbRIr5w4cL3LNkOHTpYx4aQpREUxBrSAFFskmz373NGoi7zx80t9gtinaOTLFnspbaRkaxRGvUCt2JFotWrY8+sjIggGjyY5RZevfrlaQoEAvmwhHVRCSzhvDUaDeXMmZMA0LJlyxSzI86cP2+4wWlnR1S16s/1oy0EjUZDefPmJQC0Zs0apc0RWBP//qv/vJ8+zc916sSPa9eWvopk7Fii6tW5v8jNmz/3x9+9Y/9r1iz2BYcN09upUvFGVVQ5Kx0PH3JVse64xYultf9n+Puz3zllCsuA1axJlD+/Xp+eiDfbdu3ijTQdISH8u/jZpptAUixhXVQCSznvjh07EgDq2LGjonZ8JyKCqHx5/r4oX172Sq7r16+Tq6srAaAaNWpQhKgckwYPD+5NCnAiY1R0/Unz5v31OD8mzy5erF93qlb9eeKlbn1KkeLnFcitW/Pr58792g6BQCA7IjBi41iK40NE9P79e6VNMMTdnbXEAd5ENwNHjhwhOzs7AkDTozaZFMSd1av1TdEuXYr92IsXiXLl0jsx8+fHfFxYGFGFCnxM/vyxV3ZoNETbtnFWYlTZhtiqoYKCuNGmztEWQTGBQDEsaV00J5Zw3gcPHiQAlDx5cuvIjoyMJDp4kKhfP6I8efTf9w4ORNeuKW1drBw7dozOnj0rkjAE8ePPP/Wf8/r1+bm7d/WbTD/zo4zlx2qKAgVilj/R9W3TbTYdPky0ZQtR164/T2jx8eFkmty5DfuVrF8v7TkYS0z/m7rK5P/9z/z2JEAsYV1UAks473fv3pGDgwMBoKtXrypmRzS8vPRNuwcOlP2a7dKlS+Ti4kJzRTNuadm4Uf+dv3w5f7cOHMhSWHZ2/LwxQYmtW4lcXPTJkTF9PsLCiIoXN2z6HhnJfUd0Mo+fP0fvkyUQCBRDqnVRDYHgF6RJk0ZpEwypUgX47z++nyeP/vmPH4H372WZsk6dOli0aBEAYNq0aQgICJBlHpumSxegXTtAqwXGjIn92HLlgFu3gDZt+PGgQcCKFdGPc3AAtm8HMmYEHj4E6tQBfva3UauBli2BQ4eAly+B8eOBNGn0c8SEszOwdy+QNClw8SJw/HgcTlQgEAhsiy1btgAAOnXqhKRJkypsTRywswPq1wcWLgQePQLOn+fnw8OBd++Ute0X1KpVC5UqVYJKpVLaFIE1kSWL/n7ixPwzZUr2XwDg82dp58uVy/Dxz3wve3v9fY0GyJ8faN2a/fioPnxUvnwBZs8GBg4E5s7VP28J/7v797Ov+ekTPyYCfHyA06f58du3ytkmEJiB3bt3Izw8HCVLlkTp0qWVNkdPtmzAv//y/Zs3gbAwWacrW7YsHj9+jD///PP7c3fv3sXXr19lndfmadcOGDKE7/fowX/Tf/4Bjh4FGjbk52vVAnbtit+44eG8bwDwnhFR9GMcHIBNm4BUqYBkyfi5c+f4O3/7dn6cIgWQO3f8z0sgEFg0KqKYvhXiTvXq1X/6mpOTE4oVK4b+/fsjffr0pkyT4AgMDISrqysCAgKQTPfFbEbevXuHkJAQZMuWzexzx5mbN4HixQHd5sGUKcCkScC2bcD//if5dFqtFoUKFcLDhw8xbdo0jBgxQvI5bJ4XL9iZiIhgB6NFi9iP12qBUaPYSbl+HUibNubjHjzggFnevMDBg4Cra9zs+fKFgx+/YuBAYMECdrq3bgV++y1u4wsEAslQel1UCks477Fjx2Lt2rXYsGEDKlWqpIgNJnH/PtCxI+DkxEEStcgLEtgYEREceDh+nDdxAKBqVeDSJaBYMU7ucHKSbr7nz4HgYA582NsD6dLpgzBR0Wg4iPDoEVC4MJA8efzm6dGDE2PatwfWruWgp1KEhgI5cwJv3vDjEiWAV6/0SVmpU/PvWWyayY4lrItKYAnn/fHjR+zbtw+urq5o3ry5IjbEys6dvHGu+/1cvgw8e8bXnLqgsQx8+fIF+fPnh1qtxj///IPGjRuLBAdj0Wo5oXL9ev4+XbAAqFuXr9tbt+YkR5UKmDMHiBKY+inTpvF+AgCULAns3g1kzvzz4yMj2QYHB2DyZODvv3kN2rBBf0xYGLBxI3Dlij4gJxAIzI5U66LJgRG1Wv3TL30igkqlQvr06XH58mVkju0LSGCA0o7PhAkTMH78eAwcOBDz5883+/xG0bo1B0WSJOGNj+LFJZ9i/fr16NSpE9KkSQNvb28kSZJE8jlsnqFD2ZFxcGDHpkaNX78nIMAw2EGkD4jpePiQMyaNzWb29OQL+IIFo7/25g1QoQLg7Q0kSsRBuKFDxeaaQGBGlF4XlcJSzlvnLlrthb5Gw1mC6dIpbckvuX//PubOnQsnJycsXrxYaXME1sjixUC/fuw73bjBG/pRWbIEuH0bmDUr7skkSqDVAqtW8SZZokRKWwPcuwc0acKBIR12dhx8WrYMKFVKKcsSFJayLpqbhHreJtG8OVcXFCzIKgA/fhdKxL1799CoUSO8ePECAFC/fn0sWLAAOWWaz+YhAu7c4SrDqAGtyEigf3/+vgVYYaJYsdjHmjoVcHEBrl3jKsT+/YHff+cAmkrFQY+0aXl/4sdr+y5dOCg/eTIwerT++ZcvgRw52Le8cYMD5QKBwOxItS6avKtXuXJlJEmSBHZ2dihevDiKFy8OOzs7JEmSBKVKlULixInh6+uLiRMnmjqVwIzs3r0bAFDsVwuNJbFhAy9wwcFAo0b6jC4JadOmDfLkyYMGDRqIUlljmT4daNaMS1r374/be3QX7VotO0K1a7MjEpX8+Y0Pily6BJQty5+fiRO5AiUqGTOy49WyJTtkc+cCfn7GzSUQCARWiEqlst6gCMCbl1YQFAGA4OBgrF69Gps3b4ZWq1XaHIE5IGI/Y8YMlgwx9e++Zw//HDMm+kbgnj1A375cidGgAWDJ/qxaDfzxh2UERQCuerl6lZNpli3jbOGgIK5qFkERgcDyKFWKN709PLji/9QpWaYpXLgwPDw8MGrUKNjb2+PQoUMoWLAgJk+eDM2P16zWzOnT+vVFTlQqDnj8WOWTKBEH9idOBLZs+XVQBOBqkf79gXXruFpkyxagTx9edyMiuMpo/nxWqPiRp0/554/ykVmy6OW4Z82K58kJBAKLw9RmJ0uXLiUXFxfy9PT8/tzDhw/J2dmZFi9eTM+ePSNnZ2fKkiWLqVMlKJRsrnb58mUCQHZ2dvQxtmbWloifHzfhBogqV5ZlitDQUFnGTVCEhhKtWBH/xni+vkSurvz3nTIl5mN8fIj+/pubjsaVjx+5yWfURqJVqxK9fGl4nFbLdh87Fj+7BQKByVhC01ElUPK8/f39ae7cuaTRaMw+tyScPEk0cSLRnTtKWxIvIiIiyNnZmQDQ9evXlTZHYA66dTP0QRo0MG28Dx+4WfmPfkxgIDc2B4hUKsMmswKBlSD8AWXOu2/fvjR37lx69+6dIvMbzevXRL/9xt93dnZEZ87IOp2npyfVrFmTABAA6tOnj6zzmY1Pn/RrlDEN0C2BUqXY/hkz+LFGQzRoED+XKRPvI0QlXTp+7dSp6GPduqX/TD1/LrvpAoEgOhbTfH3atGlwc3ND3rx5vz+XL18+ZM6cGTNmzECOHDlQoUIF+Pr6mjqVwEwsWLAAAFdHpEqVSmFr4kny5FwmCwBnz8qSBZdYRn3SBEPixJwBGN/s43TpgHnz+P7ffwPHjkU/pndv7jXTqFHcm2CmSsVlsKtXc/akgwPg7g5UrmzYvE+lYrtr1dI/Z5oaoUAgEFgsGzduxODBg/HHH38obYpxhIQAY8cCRYvqfQMrIFGiRKhbty4AoF27djhz5ozCFglk58frJFOvm1KnBjp0YB31PXuADx/4+YgIoFUrbiibPz8/97PG6QKBQPCN27dvY/Hixfjrr78QHBystDnxI2NG4MwZwM2NFQe8vGSdLm/evDh27BjatWsHR0dHvHr1Stb5zAYRS5KlS8cKCpbCq1dcARL1mv1n6KSydu7kaj+1mqW2cucGXr/m3lw+PvrjM2Xin3/+yZLaUSlWjPcENBrugyIQCKwWkwMjHz9+xKNHjzBixAjcuHEDN27cwJgxY+Dp6YlPnz59P070YrAOPn36hB07dgAA/oxLMytLJHdufXPHbzqfcvDkyRM0atQIHh4ess2RIHj9moMZz57F7fguXYCuXVlmok2b6O9bvZo/Ay9eAA0bcqO2uODiwmMfOMBSWhkzsgO0Zk3Mx2u1rDlapoxly1AIBAKBERAR/v3WUNKqZDWj0qAB91kAeL0oVYovYlu3BiZM4ItiC2Xy5MlIkSIFHj9+jKpVq6JZs2Z4qpN0ENgeGzfyhkyuXEDevLxpIwWvXvHnPVs2YPhwwNERWLqUk0EePODEENHHRiAQ/IIVK1YAAJo2bYps2bIpa4wxBAXxNSdgmOAmEyqVChs3bsSHDx+sp1/rr0iVCrh/n6+Pq1ZV2hpGowFq1uR17a+/fn38xo1AypQsifjbb9yj1MkJOH4cyJ6d9xWqVuUeIgCwaBGQLBnw+TMnHPzIkCH8c+VKkWQgEFgxJgdGGjZsCCLCrFmz8Ntvv+G3337DtGnTvr8WFhaGGzduIF++fCYbK5CftWvXIjw8HCVKlEDJkiWVNsd4ypUDKlXizDiZGDVqFA4cOIC+fft+b0orMII+fVinedSouB2vUvFFfJky3OejSRPg3Tv966lTA4cP88+bN4G2baP3I/kVOXOyc5U27c91rcPDgfHjuZHb9OnxG18gEAgsnKtXr+Lu3btwdHREhw4dlDbHeObNA+rWBUJDeTP4xAlg2za+iP2xyaYFkTdvXnh6eqJ3795Qq9XYvXs3Ll++rLRZArlwdQWOHOHeFffvA1mzSjPup0/cFyM4mHXQW7Rg37hfP66m2rSJq0oEAoHgJ3z9+hUbNmwAAPTo0UNha4wkIABo3BioWJGT38yEs7MzsmfPbrb5zIKjo9IW6LGzA2bP5vv//MMN1GMjVy5eazNl4vX2t9/0a667OzdUf/6cg2dhYbyn9PAh+43OztHHq10bKFCAEzH/+0/y0xMIBOZBRSbu6Pr7+6Nbt27fm3XraNasGVauXIkvX75g586dKFy4MKpXr26SsQmJwMBAuLq6IiAgAMmSJTPbvJUqVcL58+exbNky9OzZ02zzWiPe3t4oUKAAQkJCsGHDBrRv315pk6yTu3e5FJUIuHyZAx5x4fVrzv719eUGaJ6enPGh4/JloFo13gwbMQL4FrCNM6GhbFPUMX9k925uJJ84MWde5sgRvzkEAkGcUWpdVBqlzrtbt25YtWoVOnbsiHXr1pltXlnQajko8uEDZ/35+vKFbP36+td1a5EF4uHhgZUrV2LOnDlQW3AwR2ChELGUXLt2LC/XoQNXvIrPksBKEf6Aec971apV6NatG3LmzInHjx9b9zpEFH8p53hPQbh48SLKly8PlcxzJViWL+fG6JMm8XX4tGn6JMtly4Bf7WO9f8+VxE5OwP79+vXQx4eDHRMmsOzkj/j7A//+y36kTt77v/+A7dt5/sqVJTtFgUDwa6RaF00OjOh4/vz5d0mhQoUK2V5k3Mwo5fiEhYVhz549qFevXoJyNI1lypQpGDNmDDJkyIDXr18L58dYfv+dJatKl2YN2NiCEVF5+BBo2ZKltQYPjv76pk2ALmC1cycHMYwlJCS6XUTsPJ04ATRtCuzaZfz4AoEgVsRGiPnOOyAgABkzZkRwcDDOnTuHihUrmmVexVi9mqsXHz3iQLtAYIscPMgZ0xoNbyaNGaO0RQKBUQh/wLznXaZMGVy9ehXTp0/HX3GRK0rgnDhxArVq1UK5cuVw4cIFsT8gNYcOsVQqAAwbBsycyfdHRVogTAABAABJREFUjmQVB5UK2LyZZSRjIzKSr+9dXPixLmgWGflzxYjbt4HixblS5cIFTug0Q7BNIBDEjFTromTh/hw5cqBRo0Zo1KiRCIpYMYkTJ0br1q1tx8mUsccIALRo0QIA99oJDw+XdS6bZtIklpG4do2zM+IqgZY/P7/nZ/1w2rUDhg5lzdCUKY23b+1alqK4eJEzi3WoVFy2q1Zz9ci3MnOBQCCwZtasWYPg4GAUKFAAFSpUUNoc+ZkzRy+1ZcHMmzcPI0aMwGudTrpAEB8aNOBMWoBltfz9FTVHIBBYPtevX8fVq1dhb2+PLl26KG2OaTx8CNy5I+sURIRJkyYBAEqVKiWCInIQtX9o1PtTpwJ9+3KgolMn4Pz52MdJlEgfFImMBBo1ApYsMQyKfPxo+JkpVgz43/84waBWLd4biPo31mq5j4lAILAqfhIKjTtarRarV6/GyZMn8e7dO4NeCyqVCidPnjR1CoEZCA4ORuLEiWFnZ6e0KdIQEcGakbdvs06kTMG6c+fOAeBMmsSJE8syR4LAzY3LWGvX5ubnffoA35r8/ZKoVRxfv3KQIupzkydzL5CkSY2zLTycy3OfPQMqVADSpGG9+gYNgObNWY6lRw/ebOjYkTOOvznEAoFAYI1cu3YNANCvX7+EcVGfKhX/jG8/KjMSEhKCadOm4cOHDyhevDha/yoTUiCIia5dOYmjenXOeBUIBIJYSJIkCVq3bg0nJyekS5dOaXOMZ+lSvr6sU4d7TMjE6dOncfbsWTg4OGD48OGyzZOgad6cExKTJwei9jHWJSy+ecNSWfHZm9m8masqDx7kvaOZM7lXaf36vIdw756+x8jGjUDDhqxyUacOV7BUqsSvjR0LTJnC+xFt20p2ygKBQF5MrhgZPHgwevToga1bt+L06dNwd3c3uAmsg6lTpyJXrlzYvn270qZIg709VyAAvOEuE7rPeLVq1WSbw+ZZuhQYN46DDjt2sCNx8iQ3yYsPw4dz0OLHz3DixIZBkaiZJXHBwYGbsbVpw1klHz4A69fz4yZNOHCyaBEwejQ7ZEWLxm98gUAgsDA2bNiA69evo2PHjkqbYh50G8SRkcraEQv//PMPPnz4gCxZsqB58+ZKmyOwVtRq4PRp3rxxceEEor59OdP2+nWlrRMIBBZGgQIFsGXLFqxatUppU0yjdm3+eewY4OUlyxREhPHjxwPgJvVubm6yzJPgsbPja/CqVYH06aO/tnUrcO4cS3THlQ4dOJkS4Cri9u2B3LmBJEkAb28OqukSwJ2dORhSowbvK9Sty8EUQF9t0qcP8OqVCScpEAjMicmBkc2bN4OIkCFDBlSoUAFVqlT5fqssmg9ZBT4+Pli8eDG8vb2tu5naj/zvf/xTxsBI9erV0bBhQ9TWOVsCdhoOHwbevv31sUePsuMwcSLLVTVowFk8Dx/qA1txJUkS1glds4adoatXObsj6kbXf/9xg3RPz/iNnT49Z5J8/MgbCsOGAY6OnFUyYQI7YZMn83zf5NUEAoHAmilZsiScddlxto7uQtZCAyM7d+7EqG9NRUeNGoVEP9O+Ftg2ROyHeHsDDx6wlOinT/EfJ2oV2O3bLB0yejRQpQo3lLUkwsMNJUwFAoHZ+FEJxKrJmZOlj4iAlStlmeL06dM4d+4cEidOjBEjRsgyhyAO2NvHv+eHSsXr4MaN/P4tW7iZ+qpVfJ2/fj0nFOhIkoT3mCpUAIKD9UGV0aM5IOPvD3TpItYvgcBKMHkXXKPRwM3NDc+ePcO5c+dw+vRpg5vA8unevTv8/f1RunRpNG7cWGlzpKNRI/7p7g74+ckyRdeuXbF//37bb0wbHw4c4LLTTp30mRUxodUCvXrpH48cyRJotWrFr/RVhy6D9vRpoHJlboZWpAhQqhRXn2g07Nx8+MBN2GOz7Wc4OHB2ysyZXMJbpQoHSXQULMg/ibiE9+bN+M8hEAgECrFlyxZ4e3srbYb50VWMWNqmMIA3b96gffv2ICL8/vvv6NGjBwDg7du3WLNmDSItNJgjkIGePYFy5VgetmBBlozNmhUwpedMkSLchD1PHt7cmThROntN5d49zgru0EFpSwSCBIe7uzvq1q0LXwtcF43m2/qJFSuMCyr/glmzZgEAsmXLhkyZMkk+viCe+PsDI0bwLa60a8dykyoVJw2cOKHvzTV5sqEMm5MTMHs2r8O6fnz29hxEcXJiBYwxY4zbcxAIBGbF5MBImzZtEBISgoi4NksWWBTe3t44evQoVCoVNm7caFtZiLlz8wVfZCQvUDJCYsHT4+TETT1DQn6dJRG1Yb3u/oMHXJ4aXwoVAgYN4r953rzspABAihRsh52dPojh5xf/TJIfqVuXgzDJk0d/beZMnn/vXtPmEAgEAjNBRBgxYgSKFSuGR48eKW2OeSlXjn+OGQM8fqysLT9ARLC3t/9+X+dvREZG4vfff8f06dOVNE9gTipUYNnQqISHm7bpUqIE90X7919+vGwZcOWK8eNJiZ0dS6w2bKi0JQJBgmPFihU4duwYpk6dqrQp0tG4MVeOfPgANG3K16oSkipVKjg7O2PTpk2SjiswknPngBkz+LZ4cdzf16oVy2QDwMKFrGSh48e9jbJlgadPgW7d9M/lzQvMn8/3p03j/QmxVyQQWDQmB0acnZ0RGBiIYsWKYfDgwZg4caLBTWDZbNu2DQBQtWpV5M6dW2FrZEBXkbBkiWwL0q1bt1C8eHHcuXNHlvGtjpo1gaFDuSFZbI091WquEtExfz4/17s3S2rNnh2/eVUqYN484M4dlsry9gaePGG5rhQp+Jh9+/hns2bxGzu2OQH+bC1ezFUyx47xnKGhLNslEAgEVsDly5fx4sULaDQaZMmSRWlzzMuoUZyZPmoUJ1VYEJkyZcK1a9dQrFgx+Pn5fZc81WXxTp06FS9fvlTSRIG56NwZ6NiRE0jOnOGgwfXrgBQ69lWr8thEnFVtCQlvBQpwsk27dkpbIhAkKIKDg7H3W3JX+/btFbZGQuztueI/WTLeNP/jD0mHX7NmDc6ePYsSJUp8f+7s2bMigVIpGjXiwD8ADBjAEthxpU8f7oO6axdf2wMsn12/fvRjoyYW6xI9e/Tg/SeVihMO4ivjLRAIzAuZiEqlIrVa/f3njzeBcQQEBBAACggIkHWe4sWLEwBatmyZrPMoRmAgkbMzEUB0+rQsUzRv3pwAUMmSJSkyMlKWOWyW0FCiBQuIvnwhCg8natuW/1ZJkhC9eEF0+zZRgwZEe/aYPldYGI8NELm7mz5eVFav1o8d9Xb2LNHFi0StWhHNnCntnAJBAsNc66KlYa7zHjBgAAGgDh06yDqPxfLj+q3VKmPHTwgNDaVr1659f6zVaqly5coEgFq2bKmgZQKb4f17olSp2H9Zt46fCw8n2ruXaOhQIm9vZe0TCL4h/AF5z3vr1q0EgLJnz05aC1sLJeH0aaIMGfgaTUaOHTtGAKhZs2b0+fNnWecSfGP7dqI3b/SPtVqi7t15XUuenOj58/iP+fEj0T//8FjbthGVLk10/brhMVot0caNRJkyEXl66p9fulS2PSiBQCDduqgiMi2EnS1btlibcXl5eZkyfIIlMDAQrq6uCAgIQLJkyWSZ49mzZ8iVKxfs7Ozg6+uL1KlTyzKP4ixbBmTOzNJHsVUwGMm7d++QN29eBAQEYOnSpegVtW+GIG6EhgJt2rD0lK7hWd68nMH48SPg4gI8egRkyGDc+ERAxYrAxYucuRERIe1ngQi4fJk1SbduZd1atRooWZKbo+rYsAGwpcwrgcCMmGNdtETMcd66fnG+vr44cOAAGjRoIMs8VkNwMFCnDlc/WnDvtTt37qBEiRLQarU4efIkqlevrrRJAqXx9+feHPfvs78R3++MrVuBr1+B338HvLxYJuTDB34tf37g6lXA2VlyswWC+CD8AXnPu1mzZti9ezdGjhxpW1JaUQkJ4Yo0GVm1ahV69eqFiIgIZM2aFZs3b0Y5nXSnQHqePeNKQwcHVqUYPBhwdOQqjsqVWSayZEngwgXj+pm+e8f7EwEBLJl965ZelYKI/cbjx1n28ty5mGW7NRpZ9qMEgoSKVOuiyVJa3t7e8PLy+ulNYLnkyJEDd+7cwfLly203KAKwnFaDBrItQunSpcOkb2Wao0ePFuWyxvDnnxwUSZwY2LOHS1/r1+egCAAEBZnWEFSl4sAIwA3YpP4sqFSsUb94MfDmDXD4MHD+PDdItbPjRvAAl9XqNhgEAoHAQjh9+jR8fX2RMmVK1KpVS2lzlGf+fP4Ob9JEL8FogRQtWhS9e/cGAAzT9dASJFyOHwfSpuUNoD59OEASX1q3Brp2Zb8mWzYgaVIgXTogdWrWWY9PE1uBQGB1fP78GYe+9Xps27atwtbISNSgyMmTwNy5kk/RtWtXXLx4ETlz5sSLFy9QqVIl3L17V/J5EjRaLdChA/cROX8eKF4c+PIFGD2a+8hERnKgZNs2IFUq4MYNoH9/4+aaNo2DIgDw4gX3pdOhUgErV/KaeeECsGJF9Pd7eHBPVCGrJRBYHCYHRgTWi0qlQpEiRdC1a1elTbF6ynzb+A4NDUWEJegyWxu6jIrUqYHffuNqC7WaL8Z12tlqE7+uZszgprpy9z5ycODqpHLleM6TJ/WNQzUa05u+CwQCgcTM/tbTqW3btnBwcFDYGgtg4EAgSRK+HxSkrC2/YOjQoQCA27dvi8SMhA6RvjdIvnyGuufGoFZzsOXVK6BLF37O39+0MQUCgUWzePFihIWFoVixYihUqJDS5shPYCD3MRoyJObNbBMpVaoUbt68iVKlSkGj0cDd3V3yORI0RMDt2xy0HziQEy3XruVKkSNHuGoEALJkATZuBFxdje81qvMLdfxYcZQlCzB8ON/v1QtYt87w9b//5qBIzZrcE1UgEFgMRnnMEydOhJubG7p27frLButjx441yjCBvISEhMBJ5vJRi+LQIS5prF0bqFZN8uE3b94MAGjcuLHYVDKG6dOBEyfY4fjyhQMkJ09yBUmtWuzcRG3Ubiy6pro7dgBFi/LjEye4ikOOrKgsWTjz8vRpfjxoEJ+bQCAQWAjv3r3DpUuXYGdnhyFDhihtjmWwbRvLaWXMCLRoobQ1sZImTRoAgFarRXBwMJImTaqwRQLFqF2bK1OXL2dJTymasufKxT9PneKfdeqYPqZAILBYMmbMiEyZMmH48OGxyqXbDMmSsXTgjBlAz578uHVriadIhmLFiuH69esI0FUcCKTBzo73eKpV42DD0KHA+vUs+di8ObBwIctA9u7N65eXl17+Kr6MHw+EhbFEu4cH71/8yJgxgK8vN27XJRR06sQ/Fy5kafAHD4BKlXg/onZt42wRCASSYlSPEbVajXLlyuHChQtQq9WxLpoajcYkAxMqcmqI+vn5oWDBgqhevTrmzZv3/aLapunVC/j3X47US1wxEFWbff/+/Wioqw4QxA8vLyB9+ujZF5GRnAlSqpQ087x8yQ5SZCQwezZnlzg6cmlt/vzSzKHjyxfW+HZ3B2rUAFav5n4pV65wqa+jo7TzCQQ2jNAUl++8/f39cebMGTS24H4aZkOrBQoW5Ky+mTMBC5eoIiLcvHkTrq6uyJ49O+yEdnXCJjSUK1Zv3+bHI0aw/Ed4OFeQGFN9+/UrkCcPS4X6+nI1r0CgIMIfkPe8w8LCkChRooSznhCx/OCyZfw9uXcvSzpLyNChQzFnzhwMHToUs2bNknRsAYDr11m6WqvlSseaNXntGzWKgyfXrwPFihm+5+lTXtN0ctvG4OvLt6hja7VAv34cHFGpuN9oyZL8mr8/S3y5u/NnbflyDswJBAKjkGpdNKpiJEuWLEifPv33+wkim8CGGDNmDN6+fYtbt24hefLkSptjHrJm5Z8vX8oy/OrVq7Fr1y7UFlF/48me3fCxrjlZokTSBUUA7mcSHMyZGn36sH78iRPc/P3KFWmDFc7O3DMlKIgzkMLCuDJl2zZuaOrublzzN4FAIJCQ5MmTi6CIjhUrOCji6srZoxaOSqVCSd0Ft0Dg6MhZqLpKj+nTWQpr/36WFSlbNv5jJk3KYzx6JIIiAkECIHFCuzZRqbhPZGAgsGkTVxocOMBJbRLRpUsXVK1aFXny5JFsTKvn82eubtQpOphCqVIcjFiwgKtD7t7lxIBHj7hfVtGihsd7eABVqvB+w8WLxiVHRkRwT68nT7i/aN26/LxaDSxaxPddXIASJfTvSZ6c1+Ju3Vjaq2tXtuGPP4w5a4FAIBFGVYwI5EeujJC7d++iWLFiICKcPn0aVatWlWxsi2bTJs7cr1pVL2sksEy+fgVmzeLMjgMHpB376lV9I/QzZ9iZefqUtbg1Gt5A+OsvaeeMSp8+nD2iY+xYYMIE+eYTCGwIkSEq7XkHBwfj0KFDaN68uUhw0REQABQpwkkUM2botaKtBCISf0sBc+oUZ6UGBuqfGzMGmDTJ+DGJRJ80gUUg/AHpz7tbt26oUaMG2rZtm3DXkYgIls/ct48VDJ49AzJkUNoq2yQkRN+zY+JEVvUwlcBAoEAB4PVrvUrIz9at0FAOfF28yIkEDx/Gvy+Xbn8J4DGePDF8XbfNGtP8ROxjzp7N/VUvXDC9L5hAkACRal0UzdcTGNOmTQMRoUWLFgknKAIAmTLxz7dvZZtCo9EgJCREtvETDNu2cbDg1Svpx3Zx0VeEdO7MGwQ1anBQBJC//8ePEhYiLi0QCBRi1apVaNmyJbp27aq0KZaDqytvhJw9a/ESWlF58+YNevbsiS46PWuBoGpVIGdO/eO6dYEGDUwbc9gwTugQvotAYFPcvHkTq1atQseOHfFSJnUFq8DeHtiyBejYkf0BY6QHBXFDrQZWreKggVRBvmTJgH/+4fuvXkUPiugkrr29eT9g714gVSpOknR3j/98qVLp76dNG31tVKn08wcHA0OGcIWM7rWZM1lKSyerJRAIFMPk/0CtVovVq1fj5MmTePfuHaIWoKhUKpw8edLUKQQS8ezZM2zbtg0AMHr0aIWtMTNp0/JPX19Zhvf09ESXLl1QvHhxLI1aESCIPw8e8E9j5B5+Rf78wKVLXCL9/Dlf4AMs47VsmfwN0CZM4F43kZHsfPfuLe98AoFAEAMRERGYPXs2AKB06dIKW2NhJErEUotWxLt377B8+XIAQKFChTB06NCEm/ErYNRqrowdOJD7mx05wrcuXfSbUfHh8mVgzhy+//Ilb+Y4OAA+PsDHj9w3TSAQWCUzZswAALRp0wZZdfLTCRUnJ2DdOq4esbeXbNiHDx/i8uXLyJ49e8JKTv0ZiRNzb4127aSVlW7WjHts/SidBfB6uGkTq4ccOcIVwi1a8LX51q3clyQ+6Jq5azScXBnbutqxI7BrF3DvHnDoEPuaKhXQvbvhcaIyUyBQBJPD4IMHD0aPHj2wdetWnD59Gu7u7jhz5gzc3d3hbkzkVSAbs2bNglarRb169VDsx+ZTto6uDDYggEs3Jebt27e4cuUKli1bJoKBpnLpEv8sV06e8YsV40brv/8OzJ3L2Rv37skfFAE4syQ4mDVV9+zRfy61WvnnFggEgm9s3boVL168QNq0afG7aPrIBAXpqwetjOLFi2P4N9mv4cOHo2fPnoiIiFDYKoHiuLhwEGTbNu55Vrkya60bs+lStiwHQ+zsgLVrWTM9c2YgSxagRw/DYxs2BEaOFJUlAoEV8OTJE+zYsQMA8JeccsLWQNTvLAmDIgBw8uRJdO3aFUuWLJF0XKtH6n42KpVhUCTq33TiRKBQIVYQqVSJgyGtW/NrO3eyHxhfsmXj6kxX19iPGzeOpcOOH+fgzYcPhq9rtXyMSJoUCBTB5MDI5s2bQUTIkCEDKlSogCpVqqBy5crffwosg9DQUOzduxcAMGLECIWtUQBXV84AAWSR06pWrRr69OkDgDVag4xZWAVAeDj3FgHkqRjRkTw5bxb8+SdreyZNKt9cP2JvD6RIAdSvz0GS7t3587lypflsEAgECRatVovp06cDAAYNGgQn3dqY0Pn7b97o3bBBaUuMYvr06Zg/fz5UKhVWrFiB+vXrw9/fX2mzBJZAy5YsK3LmDG+8GEv37qy9nzQpN6599YoDJXZ2+qAiEcuCTJ/OjW8FAoFFM3v2bGi1WjRo0ABFihRR2hzlePcOKF0aOHpUluE1374j1UKeK268fs2BDC8v48d4+5YTAg4e5MeZMrFUaqVK3I+kTRvu/Zk8OeDnJ2+f0SJFgPXreR9g/36gcGG9XQDvf0yaxNUrusbtAoHAbJj8zazRaODm5oZnz57h3LlzOH36tMFNYBk4Ojri8ePHWLt2LSpZmUSEJKhUwPnzrCmZJYssU8yYMQPZsmXDixcv0KBBAzx//lyWeWyaY8eAsDC+nxCqKP74gwMiX77whsONG0pbJBAIbJwNGzbAw8MDLi4u6C0y0/Ts2sUX0V++KG2JUahUKgwcOBB79+5F0qRJceLECdSuXfv7ZowggfOrbNa4Ur++Xlbr9GmuxL58mYMjAAdGxo/n+zNncmWuQCCwSB4+fIjVq1cDSKCJk1GZNo2vw3r0kOUaVPttzK1bt2LZsmX4YqW+htmoVo0D+SVLGj/GggW8/9O+vT7AkiIFcPIkj21nB2zfDuiSSAoVMtnsWGnWDLh2DShYkANxDRuyHUTcgP1b0hIGDtRLiwsEArNgcmCkTZs2CAkJESX7VoCLiws6deqUcHWnS5QAsmZlTUcfH9MyEGLA2dkZa9euhZOTE86dO4fChQtj7ty53x0hQRxIk0Z/cb19u7K2mANnZ8PHInNbIBDIyJcvX75LZYwcORLJkydX1iBLIkcO/jlkCGtPWymNGjXCuXPn4Orqirt37+LWrVtKmySwNQoVAgYP5gbvP1bcqtXA0KH6DZ4hQ4CNG81uokAg+DVDhgxBREQEGjRogIoVKyptjrJkzMg/X77kvhc+PpIOX7FiRTh/u+7r3bs33Nzc8Oeff4oAyc/ImJGvi3W+mTFMmMAKFAEBQIcO3OMT4KqN8eNZvtvNjaWtT5wAvql/yErRolwdMnAgP964kRUkAJbRSpSIA3Ni/0ggMCsmB0acnZ0RGBiIYsWKYfDgwZg4caLBTaAsRIQjR46IzfmoaLVA585c0vhNXkwqKleujLt376JatWoIDg6Gu7t7wg1EGUOZMuwstGsHDBigtDXyM28ebyw0aQKMGQMUKKC0RQKBwIZ5+/Yt0qVLh5w5c2Lw4MFKm2NZ7N8P1KrFF6iNGrHU4unT+gtpK6J48eLYvHkzHj16hFKlSiltjiAhMnw4/w8B3PD9wAFFzREIBNEZM2YMKlasiHnz5iltivIMGwYsXMgJelu3ArlyAX37smSgBJQuXRo+Pj6YN28ecuXKhYCAANy5cwdJzSnnbE0cO8b+2JUrxo/h4MDN1pMlAy5eBHr1MuwlV7o0y1k9fAjUqGG6zXHF0RGYPx9YsYLt030GDhxgnzNPHq4qEQgEZkNFZFpnPLVaDZVKBSKKcQNYlPAbR2BgIFxdXREQEIBkyZIZPc7evXvRpEkTVKlSBadOnRK6lgBrSDZuDJw7x40p793jShIJISL8999/qFu3Ltzc3AAAISEhSJw4sfgbxBcfH3YcRozgpmW2BpFxjVAFggSGVOuitSH1eWs0Gvj4+CBbtmymG2drhIcDXbvqM9ydnIBPn/TVfFeuAKlSAdmz66sbBYKEzr59wM2bHFgsW1b/v6HVAh078saPgwPw9Cn38REITET4AwnrvM3K5cvAyJHcKwkAateWvO+IVqvF0aNHkTdvXuT4VhERFBSEjx8/Inv27JLOJQCwYwc3Wddq+ee6dbwm/YyQEA5emPv6XDffqFH8GVy9mgN09eqZ1w6BwIqQal00eYc2S5YsyJIlC7Jmzfr9ftRbQuXs2bNo1KgRMmbMCJVKhT179pjdhvDwcAwdOhQAUKFCBbEhryNFCs4CLV8eCAriTRCJK2pUKhX++OOP70ERAOjTpw9q1aqFVxJlniQIiDiDY9IkvrC2VC5c4Cyj0ND4v1cERQQCm8YS/IGo2NnZiaDIz3Bw4AvmnTuBTp2AVq0MJQ7btwdy52Y/ok0bYMsW9iMsnEuXLsHb21tpMwS2SFgYbzRNmABUrAikS8f/O7dvs6zW6tVcpT1rlgiKCBI8luIPhOn6OQqiU7Ys7xOcPg1UqQKMHq1/zdeXlQ1MRK1Wo169et+DIgD3eClUqBC2bdtm8vg2yb59vNa8fh3/97Zowf6avT1XAw0b9vNjL13iJu01agDmbBXw5o1+TyAwkH3NAQOABg2AzZvNZ4dAkEAxeafc29sbXl5eP70lVL5+/YqiRYti8eLFitkwb948PH36FOnTpxcN1X7Ezg5Ys4Y3PE6d4nJGGXnx4gW2bduGU6dOoXTp0vjw4YOs89kMKhWXvQLcFO/jR2XtiYnTp3kzYMAA3hgQCASCKFiCP3Du3DlMnjwZISEhitlgNajV3CBz7Vr2E3RoNEDy5JxFGBTEF9dt27LcgTFBcTMxc+ZMlC9fHmXLlsXSpUvFhphAWh4+1H/+kyfnCqv164GaNfk5BwcOjkSVR7VCeTqBQAoswR94//49cuXKhTFjxiDUgtcuxalalatGKlfWPzdvHssvDRsmaVJlREQEHj58iODgYLRu3Rr//vuvZGPbBJ8/s9rHtm363hzxpWVLDq4UKgR867UXDSJOgPHz4+v75cuNtzm+ZMwIHD/O5/jyJQfhXF3Zpo4dueJSIBDIhiQlBB8/fsS4ceNQp04d9OzZE/fv38e6devw8uVLKYa3SurVq4fJkyejadOmisx/9+5djBs3DgAwffp0uLi4KGKHRZM7NzB7Nt//6y/g/HnZpsqaNStu3bqFvHnzwtfX93sljyAOdOvGjdGeP+dS0sBApS0yRNe8OFUqvgkEAkEUlPYHAgMD8fvvv+Pvv//G+PHjFbHBJrCz40zRL19YamPECJbj9PHhqkELpVGjRkibNi3evXuHPn36IFeuXFiyZIkIkAikwc2NfTNPT+DDB738jKOj/piolbEvX3LF9siR5s3GFQgsAKX9ASJCz5498erVK+zfvx+JEiVSxA6r5etX/jl7NvD775J9h9nb2+P48ePo27cvAKBXr15YsmSJJGPbBFFlrz5/Nn6cunW5mjFjxp8fky6d/n7atMbPZQw1anAAZ8YMTtrdtUv/WtQ1VSAQSI4kFSNFixbF5MmTceLECdy7dw/+/v7o0qULFi1aJIWNCYKwsDAEBgYa3IwlMDAQLVq0QFhYGBo0aIBOnTpJaKmN0bs3Z3xGRnKDNRmb1OfJkwdr1qyBSqXCunXrsCZqJqrg57i6cgO21Kl5U6pRI9b+tBSKF2cn7eNHYMgQpa0RCARWjpT+ABGha9euePbsGbJkyYJRo0ZJaGkCxc4OKFOGqxh1m1vHjytrUyzkz58fz58/x4IFC5AxY0a8evUKffv2Ra5cuXDixAmlzRNYO6lTA4cOAXnzAokSsfTM2rXAmTMxH79tG3DtGjB9OlfbiixYgeCnSOkPAMD8+fOxZ88e2NvbY82aNSIwEl8WLeLvNzs7lt1s1owbhEuAnZ0dFi5c+D15sm/fvli4cKEkY1s9zs4c0PjwgX//phC1P9ykScCCBVyVAXAQf9s24MYNVhRp0cK0uYwlXz6ujBk8mB///jsnIQgEAtkwOTAyfPhwvH37FpkyZYKuj3vFihWRLFkyHLfgC0VLY9q0aXB1df1+y2yCDm+/fv3w5MkTuLm5fd+IF/wElYobe3fuDBw8yBIaMlK2bNnvlTy9evXC1atXZZ3PZsifnxvfJUsGnD0L9Oypd2IsgRQp+Kf4XxMIBCYipT/wzz//YOfOnbC3t8e2bdvg6uoqoaUCtGvH+uMtWyptSawkTZoU/fv3x7Nnz7Bo0SJkypQJr169Qvfu3REeHq60eQJbo1MnIGfOmF8bOpQ3npInB65e5eQSUze6BAIbRUp/4MKFCxg+fDgAltsuXry4VGYmLDp1Anbv5gz+AweAOnVYekkCVCoVZs6cib++ST0NGDAA//zzjyRjWyW+vvrr/aJFORAvVa+qy5eBsWM5ANG3r776J3NmoEQJoFo1Za/rP30C7twBkiQBxoxRzg6BIIFg8i7wiRMnkDp1ajx8+NDg+axZs4pGj/Fg5MiRCAgI+H7z8fExeqwRI0agSJEi2L59O1KnTi2hlTZK0qSsIx41Et+tG5fJvngh+XR///03GjdujLCwMLRq1UpsSsSVEiWAPXs4eOXpyXImlsrGjcDcubJWIAkEAttEKn/g4sWLGPatweTcuXNRpkwZKc0UALwhMnkyULKk0pbECUdHR/Tt2xdPnz5Fz549sWfPHjhElagQCKSGCLh/31BypmVL4O5dri758gXo0oX/jwQCgQFS+QPv379H69atERkZiTZt2qBPnz4SW5rAaNSIK0VdXVmKu359yRL2VCoVpk2bhlGjRsHe3h45fxZktnUWLwYyZGD5q4AA48d5+RL491/g77+BJ0/0z5cpA8yaxcGPpUuB//3PsvpfuboC79/zGpk1K+DhwUG5I0eUtkwgsElURKZ9izs5OSF37ty4e/cu1Go1ypYti4sXLyJnzpx4+/YtgiUqL7RmVCoVdu/ejSZNmsT5PYGBgXB1dUVAQACSJUsW7zm1Wi3UMlc/2CyXLrH+McDllhcu8OIpIYGBgWjcuDEmTJiAylGbugl+zfHj3AgvcWKlLYmZK1eAsmX5/vLlQPfuytojENgIpq6LloC5/IHAwEAUKlQIPj4+aN26NTZv3iyqR+Xg5UvgzRv9d74VEhkZKeRUBPKxZg03sbW3B1auNHxNowEmTuQbAKxaxZIhAsEvEP5A3M+biNCwYUMcOnQI+fLlw9WrV0XvUam4e5eDJP/+yxv4EkJEePToEfLlyyfpuFaBVgukTKkPiDRuzMmRACt9fPzIfaoAYNMmoFw5IHv26ON4eHDiiq6nWvr0gLe34R7C3r0smRUZyfJoHTvKdVbG4+fHwZGgIJas9PUVfU0Fgm9I5Q+YvHOeM2dOeHh4YMOGDQBYC3PhwoXw8vJCnjx5TB1eEEeCg4Ph4eHx/bEIiphA6dK8oQ3wRduVK5JPkSxZMpw6dUoERYyhVi1DhyY0VDlbYiJlSq5CcnQUeqACgUARbt68CT8/P+TIkQMrVqwQQRGpIeJN3kKF+ILalGxGBfn06RPy5MmDuXPnIkI0whbIQY4cwD//ANWrR3/Nzg6YMAEYNw6oVImTXgQCgaQQEWrXro1UqVJh+/btIigiJUWKAI8eSR4UAThwFjUoYmIus/WRP7/+foEC/HPnTqBXL5YwvXcPWLgQaN8eaNIE+Po1+hiurnxdrsPZ2bCRO8BBl9Kl+X5QkKSnIBlOTnrbIiOjn4NAIDAZk3fPu3fvDiJC586doVKpcPv2bQwaNAgqlQpdu3aVwkar5MuXL7h9+zZu374NAPDy8sLt27fx8uVLyecKDQ1F06ZNUaxYMUyfPl3y8RMciRJxlv+ff/LjV69kmUZsVJmIVsvZIpUqWVYz9ty52Xn5+hWoV09pawQCgcKY0x/QUbVqVTx48ADbtm0TmyBS8/o1f7d3787f9VmyWG1gZPz48fDy8sK6detEQo1AHipX5n4i7dr9/Ji//+aqkoQqGSNIMCjhD6jVagwcOBAvX75EoUKFZJsnweLoqL/v52coGygBRISpU6cib968sn5OLAq1mteEgADg2TNg6lTuMdquHV////EHJ6Y0bQqkTcuVO926RZczc3Nj+ax583ickyej9w3RaABdSwBLrf51dOSg0Lx53KNL+PUCgeSYfBU0YMAA9OrVCwB/ceui2T169MCAAQNMHd5quX79OooXL/69sdngwYNRvHhxjB07VtJ5IiIi0KpVKxw7dgyJEycWFQhSosv2N6Hfy69Ys2YNhg8fblJPGZvn5UuWMztwAFi/nmUZQkO5jHTlSuD6dctrxq5SsVMnEAgSPObyBwDgzZs33+9nzpwZJa2k94XV4OcHVK0KHD3KlYuzZgHnznFwxMp48OABli5dCoAb8drZ2SlskSDBYmfHNx3v3ilni0AgI+b0B06dOmWwkZ4kSRLJ5xBE4Z9/gGzZ+DpVQlQqFU6ePIknT55g7dq1ko5t0Tg6AsmScdUhwFUi4eEcDFm6lK+13dyAHTs4qXXrVmDGjOjjJE0KDBrE48Tkq3l58R6CqytXAFkqzZrxebRsqbQlAoFNYvLOnUqlwpIlS/Ds2TNs27YN27Ztw9OnT79fbCVUqlat+j1QFPW2RsLFMjIyEu3bt8f+/fvh6OiIff9n777jm6reP4B/0r33BgoUaAHLLBTLVrYDAZUhKoqAA1BAUHGAoj9BcICKqKgofBEVZTlAENmUTVmyoVCgg1K6Z5Lz++OQ26R7JE3bfN6vVyC59+TmOWna++SetWEDuurWxqDqq4GGkYULF2LBggU4ceKEyV6jTtuyRc6p2b27nMP1ySfl/NOTJwNBQcDq1fLL9IoVwBdfmDtaIqJiaiIfAICPPvoILVu2xK5du4x6XLpDowFGjgQuXJDnpZgYYPp0wwu6dcj06dOh0Wjw0EMP4Z577jF3OETyoteUKfL3a9kyc0dDZHQ1lQ9s27YN999/P3r27IlrJpr5gIoQAkhPB959t3BNCyN5+s7aS9999x3UtWmB8JqSkQHs2yfvf/SRYd7Vo4dslALkTBJvvlm5zpLNm8s1S/btkw0sRGSRjNal2dvbG02bNkXTpk3h4+NjrMNSGRYtWoTVq1fD1tYWa9euxb0lzd9LVadrGOnb12Qv0fTOQmF//fWX5c0dWhErVxbeb9cO6NNH3v/mG3lxqndvYP58uW3KFDnfKBGRhdm3bx+mT5+OjIwM7Nmzx9zh1E/LlwObN8v769cDdXhB1KNHj2Ljxo0AgBdeeMHM0RDdYWMjR4vk5QFjx8rRwNnZ5o6KqE7JyMjA0KFDkZubi7Zt28LPz8/cIVmGZ5+VIxzi4uTaF0Y0bNgweHt7IzY2Fl/r1kG1JNHRcm0NACjpOuPzz8u1qgDg//4PmDOncse3sanTOR0RVV+1G0YKCgowffp0+Pn5ITIyEpGRkfDz88PLL7+M/Px8Y8RIpYiOjgYAzJ49GwNNsOiXxWvfXs5hqTvRmsCQIUMAAIsXL8bIkSORnp5usteqk9q3Bxo1kvdzc+Uw2pdekut4aDRy+9SpcuE0tVo2jrCBiYgsjC4fGDRoEF599VUzR1NPtWgheyaeOSMb6gFg7946ub5IQEAAfH19AQDDhw/Had382kTmZGUlO8S8/bacJuXrr4HISDnXvCX2kiaqgtOnTyMtLQ1+fn745ZdfYMeFmmuGo2PhtE9GXkfUyckJ77zzDgC5NpjFXS9o3lxOiaVSGY4WyciQDekqlTxvfPGFbOTQaiv/Gt99Bxw8aLSQiahuqXbDyJQpU/DJJ58gLy9PGQ6al5eHhQsXYqpu8WoyiStXrgAAF1IzFScnYOnSwuQmLQ14/HFAbw736nryySexcOFC2NjY4JdffkGnTp1w/Phxox2/zpsyBZg7F/D1Bc6eBa5dAxYulPfDwmQZlUpus7cH/v1X9uQlIrIg+vmAyshfyOmO7t2B7dsLzz1ZWUCvXoCXFxAVJc9D8fHmjLDCAgMDceTIEXTt2hVRUVEI09WJyNysrGSHpM2bAX9/4NQp4N57ZR54pwGYiEqnyweaN28OB/2Fwcm0hJDfUwHABGu+TpgwAaGhobh58ybm62ZLsBQhIcCmTXJUjm6tnPR0YOBAueaGrjP2c8/JawR3GpEq7Ouv5eLtDz8MJCUZN3YiqhOq3TCy8s5UN6NGjcL69euxfv16PPbYYxBCKPvINL7++mu8+OKLbBipKePHy55sPXsCd5LO6lKpVHjppZewa9cuNGrUCOfPn0ePHj2QyIUnC40eDZw7B3z8sWyYAor3xGnSBHj5ZblwWh3svUtEVFVCCGzatAkAO0qYnJVe2nz1qlwLQauVc1NPnQo0aCCnfPz556r1WKxBDRs2xPbt2/HTTz/B6k691Go1cnJyzBwZEeQ0tseOyXXlvLxkz+BWrQr31/LfLyJz0U2TyHyghl27JteqsLYG2rQx+uFtbW3xwZ3FxRctWmR5o0a6d5eLruucPAkcOQL8/jvwyCOycUSlKhy1AwDvvy/Xqzp2TM48ERsLbN0qG0K++67wPDJiBBAaKqdBGzGCIxSJLJBKVHNhA29vb3h6euLChQsG25s3b47U1FQkJydXK0BLlZ6eDnd3d6SlpcHNzc3c4RAAXL4sL3hcviynd9q6VU6tYSTJycl49tlnMX78eE6NVp6UFDmSZPp02aMQADIzgZwc2auQiOodSz0vllfvffv2ISoqCo6OjkhMTISrq6sZorRg164Ba9cCq1YZ9mifOxd47TXzxVVJQgiMGzcOZ86cwYYNG+Dt7W3ukIgkjQb477/Ci40ajewp3K+fzAOtjLZkJtURzAdKrndmZiYCAgKQlZWFXbt2oXv37maI0kKtXw8MGQK0bSsvxJuAEAIzZ87E448/zoYvANiyBRg8WDZ6PPgg8OuvgG7quNxcwMWlcOrtotq2Bf78s3BN2dOn5dSNmZnAtGlykfealpsr19Xy8qr51yaqo4yVD1Q7kxw1ahTS09ORrbc4XlZWFtLT0zFmzJjqHp7KoFarMXDgQLRv3x5NmzaFl5cXXFxc4OLiAldXV8ydO9fcIdYvTZsCO3fKaTTi4mTPhV27jHZ4Hx8f/PbbbwaNIlr2iCvZ4MHAhx8arv/i4mLYKMK1RojIAqxZswYAMHToUKVRpFWrVgb5gJubG8LDwzFz5kxER0ejmn1iSF/DhsDkyXK9kUuXgFmz5MiRZ54pLHPunGzQr8ViY2OxZs0a7N27Fy1btsQ777yDmJgYflbI/Ir2wF67FvjnH+DVV2UuSEQAgM2bNyMgIACTJk1Ct27dkJCQgMDAQLi6uhrkA8HBwZgwYQK2bt1q7pDrj44dgS+/lKNHTUSlUmHevHlsFNHp1082SDk4yJEjs2YV7svJkeuS9u4N6C6W2tnJ6zj9+8upUXWNIoAckfjDD/L+xx8Dy5fXVC0KLV0qO9VY2mggolqg2g0jrq6uyMjIQMeOHTF9+nRMnz4dnTp1Qm5uLpycnDBnzhzlRsa1du1a/P333zh27BhiY2Nx+/ZtZGVlISsrC5mZmcjXzbcI4OzZswgLC8Pzzz+PH3/8EXFxcWaMvA5r2BDYsQMID5dzUN5zDzB/vkmG9J8/fx4dOnTAkSNHjH7sOq+gQP4fGCiTh9deA7p2LewVsnGj/BJ9/br5YiQiqgHdunXD2LFj8f333yvb1Gq1QT6QkZGBU6dOYd68eRg7dqzBOiSXL19mI7yxNG0q57a+fNmwof7ZZ+VI04kTgfPnzRdfGZo2bYrdu3cjNDQUycnJePvtt9GhQwc0bNgQzzzzDNc/o9rj4YcB3ffKFSvMGwtRLRIeHo533nkHH3/8MVQqFZydnZGQkIDMzEyDfCAuLg5Lly7Fcr2LvwUFBYiOjja4fkCV0KiRPNc/9ZR8/MwzwBtvAIcPm2zqv507d3J2lv79ZYMUIBszdNcIPD3lqI9t24Dbt+V1m+xs4MwZ4O+/5X4d3fWDYcPkzwyQP8uaznseeUSOhtSto0JENabaU2lZWVlBpVJBCKF80da/r09T2lA2KqYiQ4IuXbqEI0eOwNXVFe7u7nBzc4ODgwOEEBBCwMvLC153huLNnz8fr776qsHzQ0JCMHLkSIwZMwahoaEmr1O9kpkpF/hauRJo3hw4elSOWDCi4cOHY/Xq1fD29sbGjRvRuXNnox6/Tnv1VdkgNXasTIYCAmRv3G3b5BowUVHAgQPAffcBf/xRfE0SIqpzOHVG6fUumndduHDBICfTarU4fPgwNmzYgPDwcLxx54tfTk6Okj8MHToUY8aMQbdu3biAuzFlZMjzUkxM4bbOnYGHHpKjH8PDa9U5Sq1WY9WqVVi9ejW2bt2qjAjftGkTBgwYAADYu3cv1Go1eppggVmiCklJAfz85AWtS5dkoyRZDOYDFau3EALHjh2Di4uLcr0GAC5evIgNGzZg8ODByt/1AwcOoEuXLnBwcED//v0xZswYPPDAA7DTTU1EFZeQIEeO6hpEvLyAe++VU3IPGiTXJ6umr776Ci+88AIGDhyI33//XVkrzCLl5cn1RhMS5KiPJ58s3Pfvv4CNjczDhJDrh9jayn0aDfDWW3LB9tWr5bSMWq2clmvjRuDTT4FJk8xSJSKqGGPlA9VuGGnSpEmFv0Bfvny5Oi9lUYyd8KWnp2Pr1q3YtWsXdu3ahaNHjxo0VG3evBn9+vUDUHrDFhUhhBzy2KUL0K6d3LZnD/D660C3brJnaIMGVT58eno6+vbti4MHD8LBwQE//PADhg8fbqTg67hNm2Ri2bSp/EI8dqxcXG3SJOCzz+Rc1B06yIXYli0r7L1DRHUWL4QYv97Hjh1D165dDaZDbdasGR5//HH06NEDnTt3tqj32mSEkNM2fPQR8NdfhlM9PvggsGGD2UIrS25uLnbt2oWNGzfirbfeguedHpavvfYaPv74Y3zzzTd4Uv8CBJEpCQGkpgIeHrIx8Z575O/VlCnAJ5+YNzaqUcwHjF/v9evXY9y4cQYjELy8vDBq1Cj069cP99xzj0W919WSkyOneFq9Wq6DkZFhuP+ll4CFC6v1EsePH0eXLl2Qm5uLDz74AK+88kq1jlfnffih7Kg6c6bscAIAWVnAXXcBV64Ao0fLDipPPSXXpgKAU6fkFGj5+cD//Z+8hgMAycmybN++xV/n+HFg92557cHBoQYqRkRlqTUNI2Qapk74MjMzsXHjRvzwww84cOAA4uLiYG9vDwCYOHEioqOj0aBBA4MepwUFBbC2tsaff/6pHGf+/Pk4duyYwUgVrVYLW1tbuLi4YP78+UpPk//++w/5+flo3rw5XIw8uqLW+OCDwsVWHR3lifeVV6o8miQ9PR2jRo3CX3/9BQB4++23MWvWLDZcZWbKIbBqNRAbC5w8CTzwABAUJNd/sbIq/Fl4esr53X18zB01EVUDL4SYpt4FBQXYs2cPli9fjtWrVyMzM1PZ99VXX2HChAkA5IiBL774AkIIqNVq5OfnIy8vD/n5+XBwcMB7772njCDYvXs3vv32W2i1WlhZWSlzm7u4uMDT0xN9+/ZFixYtjF6XOiEhQc6FvWGDvGCyZo0c3VhHCCEwdepULFq0CADzEjKx/fuBzZuBffvkSODkZDniavZs2Qt44EC5Bsnhw4WdlKjeYz5gmnoLIXDy5EmsXLkSK1aswI0bN5R9hw8fRseOHQEAixcvxt9//w1AzgiiywXy8vJgY2ODX375BQ3udA788ccfsWXLFmi1WqhUKjg5OSn5gLu7O0aOHAk/Pz+j16XWKCgADh4Etm6Vf8v27gW++QZ4+mm5/+pV2dFy5Eh5Eb8Sli5digkTJsDa2ho7duxAt27dTFCBOmzmTGDePCA4GJgxQ64H17Ch7FSpGzXyzTfA+PGysX3XLtm5tSSJiXJ0yTffyEb6qVPlWiSmtH+/nJY1JMS0r0NUhxntvCioVkpLSxMARFpamslfKysry+Bxu3btBIASb3Z2dgZlBw4cWGpZAEKj0ShlR44cqWy3tbUVHh4eomHDhqJt27Zi2rRpIjk52eR1NbnLl4X47jshunUTQp42hWjVSoiLF6t8SLVaLaZNm6a8d8uXLzdevHVZVFThe9y6deH9SZPk/oICIdq1k9seflgIrdas4RJR9dTkebE2qcl6Z2ZmiuXLl4vhw4eLpk2biiNHjij7lixZUub5/o8//lDKfv/992WWXblypVJ29erVwtXVVQQGBorQ0FDx1FNPifXr14vs7GyT19fsiuRf4pNPhHjsMSE2bBAiJ8csIVWERqMRr732mvLznD9/vrlDovro4MHC3K6k26ZNQjz6qLy/ZIm5o6UaxHzA9PVWq9Vi06ZNYty4cSIiIkLk5eUp+yZMmFDmOf7GjRtK2ZdeeqnMsqdPn1bKvv7668LZ2Vn4+fmJkJAQMXjwYPHdd9+Jmzdvmry+NSYpSYiMjMLHH31U+Ddt/HghKlFXrVYrHnvsMQFAtGrVygTB1lG5uULs3i2EjY18X9etk9vc3eXjDRsMyz/5pNweGiqE3udcCCHEhQsln38cHITQu85ldMePCxEcLET79kLk55vudYjqOGOdF6s0YmTOnDlo2LAhxo4dW+6i6rNmzars4Qnm7Qlz5coVHDp0CKmpqco2IQTs7Oxgb2+PESNGKNv/+OMPnD9/Hrm5uVCpVMqtoKAAeXl5Bp+PCRMmYM2aNbh161ax13R0dERycjKc7iw2tWvXLnh7e6Nly5Z1c85MIWQv0BdfBG7ckK39R49Wa2qtiIgIHDlyBD/88AOnrgCAn38GnniicJE1fbt3yx4f+/cDPXrIMu++C7z5Zs3HSURGwR6i5q336dOnsXfvXgghYGNjA3t7e9jZ2cHOzg55eXno3r07AgICAAAnTpzAX3/9BZVKBY1GY7Doa0pKCt58801EREQAAJYtW4axY8cWez1nZ2cMGDAA7777Llq3bl2jdTWLrCy5eOvt2/Kxqytw//1yBOSpU0CvXsCdURoA5CLvYWFyIWpdz8ca9sknn2DatGmwt7fH8uXL8cgjj9TNnI1qp/h4uaacboH1NWvk6N+ePQE7O5lXe3rKXsHffSd/VwA5LQrXRajXast5sabVlnrv3r0bZ8+eBQCoVCrY29srOYFarTZYm+Sff/7B4cOHlTVOsrOzkZGRgczMTNy+fRvffvutUpcXX3wRn332WbHXs7KyQs+ePfHrr7/C29u75ipaE7ZsAT7/vHBKTTc3OaXTiy/K2SfKkZCQgMDAQABy+kvdDCAWKycHGDpUjs4RQs4o8fvvcsRO377yPHHyJNCqVeFzUlNlPpWUJKc4e+mlwn3DhgFr18r7XboA770HHDokf26bN8sRi6aQlCTPZefOyWkjOSqXqERmnUrLysoKUVFR2LNnj7L4emm44HrV1JbExxTS09ORnp6OzMxMZGZm4vLly7hx4wZe0jsJtWzZEmfPnoWbmxvCw8PRqFEj5da2bVv07t3bfBWojBs3gAED5An4jTfkybSK4uLiEB0djR49eigJkMWLjZUJQ0aGvJg0frzc/vPPgG49Ft0Q2eefBxYvZmJBVEfV5/NiWep7vTMzMxEfH4/MzEwkJSXhr7/+wtq1axEXFwdANsi0bNkSgJzaa+PGjQgODkajRo0QGhqKyMjI+nNOPHgQ+N//gN9+A65fN9zXvbuc5gGQ5zsvL3k/LExO52CG6biEELj//vuxceNGAMCMGTMwf/78Go+D6rG0NGDBAnkxS9fZ6vJlOc/7Qw8VL5+VBbRpAzz6aOF0qlTv1PfzYmnqe73T0tJw69YtZGZmIjU1Fdu2bcPatWtx7NgxuLq64vbt27C+cyH69ddfx7Fjx9CoUSM0bNgQISEh6NSpE5o3b143G+h37ZKNITEx8nGjRnIaqMceK/NpQgg4ODggPz8fsbGxaGyEhd3rtIsXga5dZcOCg4Ncd7RhQ6B9e3lftx5pUUuXAhMmyHPGhQuFOVZKilyEPSoK6N+f1xGIahmzNow0adIEERER+O2338pdfJ0LrldNfU98ylJQUID+/fvjwIEDBgvC6nTo0AFHjhxRHq9duxahoaFo1apV7UyEjhwpXOyrNsZXX7z2mlxXZMQI4KefDPft2iVHjpjK33/L25tvFiZSRGRUlnpetMR6CyFw5MgR/PPPP5gxY4Zybn/qqafwww8/FCvfoEEDREZG4vPPP0dQUFBNh2t8Wq0c8fjXX4Czs5x3vE0boEkTuT8xEZg7F1i1Sn75B+RaCx9/bNgLsgZkZmZiwYIF+Oyzz7B3716lEUsIwXVHqOZ99x3wzDPyvqenbFTRPaZ6wxLPi4Dl1vvSpUuIiYnBsGHDlG2hoaE4f/58sbIeHh7o2rUr/vjjj7p3DtJqZeeIN94Arl2Tf7u++abcp919991Qq9X43//+p5yDLdrJk3JNkTFj5Nots2bJmSN8fGSHypIazDUaoEMH2bCyZo3s2EpEtV6dWHz99OnTaFXDX9DqC0tNfPSp1WqcPHkS58+fR1xcHOLi4nDlyhWEh4crU3Tl5ubC3d0d+fn58PT0RNeuXdGxY0d06NABPXv2rDfDbQsKCmBrpqky6oyePWUDyLffykSotKGtBQVyhImxGjD++kv2WlSr5VQnmzdzCgciE7DU86Kl1rsk0dHROHr0KOLi4nD16lWcPHkSJ0+ehFarhZ2dHdLS0uDg4AAA+PTTTxEbG4sOHTqge/fuaNq0qZmjN4G0NDkSddEieW6ztZWPp0+v8Y4YOTk5cNSb9uOFF16ARqPBBx98AA8PjxqNhSyYEMCff8rOMqdOyd6927bJ/KwsN27I6VHuu08u6k61mqWeFy213kUJIbB582ZcvXoVcXFxuHbtGk6fPo2jR48iLy8PEREROHTokFL+6aefhqOjIzp27IioqCjcVclFzmtcTo48r48YAehyl//+kyMZBg82b2x1TUEB0KePvEbw/ffyGkFpjh+XjSeldbBZv15Ou/XII7LTytq1wIkTsuHF1JKTZYeYBx8E6srMKUQ1oNY0jNy+fRtubm7KsEYAOHz4MN5//31s2LABBSXN/0/lYuJTMdeuXcOYMWOwb9++YqNLbGxs0KBBA/Tq1QsNGjRAw4YNERQUhICAAOWmu4BSY1JTgT175Lzh5SgoKMCJEyfw66+/4vfff8eoUaPw2GOPoYmuxygZ8vCQF4n69ZO9QQ4elGu76EtNldMrODoWzuVaHfn58jXS0wu3ff45MHFi9Y9NRAYs9bxoqfWuqMzMTBw9ehRXrlzB448/rmxv3749jh07pjz28fFB3759lXwgMDAQvr6+8PHxgY+PDwIDA+te71Kd8+eBKVNkQ72TE7B3L9CundnC2bdvH6KiogAAw4cPx88//2y2WMhCaTTAuHHyQpi/v+y00rZt6eVdXOQ0XG+9VThlF9ValnpetNR6V1RBQQFOnjyJzMxM9LgzU0BWVhY8PDygVquVcu7u7njooYeUaTkbNWoEf39/+Pn5wdfXt3au0/Hww3Ikw7lzQIsW0Gq12LVrF/744w988MEHtXPWjNoiO1s2YoweXbnnaTSGHS11nTDffBO4eRP46ivZ+L53L3D33caNuainngJ0I6YzMuQ5i4jM3zASGxuLwYMH49SpU/Dw8MCyZcvQtWtXjB8/Hhv0LjhyjZGqYeJTOQUFBYiJicG+ffsQExODAwcO4Pz589BoNAaJkL6iU3I9+OCDuH37NlxcXODs7AxnZ2dlMbnGjRtjxowZStmvvvoKWVlZcHR0hJOTExwdHZX1dtzc3NCvXz+l7L59+5CbmwuX7Gy0efZZ2CUk4OKyZbgRHAwhBHrp9WL7/PPPcfr0aRw5cgQxMTHIzc1V9oWFhWHHjh3w9/c35ltXfwwZInty6JS02Prp03JKEiHkMNvq9hgSAoiIkAuA6mzZIhd3IyKjstTzoqXWu7qWL1+OQ4cO4fDhw9i3bx9cXFyQrt+IXUR2drYy4mH69On4448/YGtrqyww7+DgoNxWrFgBlztfSr/77jtER0fDzs5OWXxWv+y4ceOUsvv378e5c+egUqlgZWUFKysrODg4wN/fHwEBAWjUqBFsqtpbXQg5jVDbtkDnzlU7RiVkZGTA1dVVefzll19i7969sLa2xoYNG5CSkgIA+OyzzzBp0iSTx0NUTEaGXJvn+HHA3V2OHOnQoeSyzz0H+PnJnsLPPVezcVKlWep50VLrXR05OTn4/ffflXxg9+7dsLW1RVZWVqnP2bp1K+69914Acsrujz76CLa2tsrN3t4eDg4OsLe3x7Rp09CmTRsA8jv/L7/8Amtra9jY2Cj/6543ZMgQhIaGAgDOnDmDLVu2wMbGRskzdPmDo6Mj2rRpo6yflpWZCfvmzWGTmIg1Tz+NnzIzsXfvXly/sxbZzp07lYYgKkfRxo7S/Por8H//JxvVdR0tp0yRI3l0VCo55db8+XK6U1NavFhOs5aTI6dpZ0MYEYBa0DAyfPhw/Prrr8pjb29vtG7dGrvuLAxpZ2eHJ598El9//XWVg7NkTHyq78aNG9i2bRuuXbuGa9eu4fr164iPj0d8fDwSEhLQpUsX7NixQynv5+eHmzdvlnisoo0ozZo1w6VLl0osGxoairNnzyqP27ZtixMnTgAAfgYwHMBVAO0AeIWE4OLFi0rZTp064fDhw8pjd3d3REVFYcKECRg8eLDByCwq4tYtOQpk507Zo+PJJ0tOfB55RC5sO3asnHaruk6cAH78EfjlF6BjR2D16uofk4iKsdTzoqXW25ji4+Nx4sQJnDx5EtevX1fygeTkZNy8eRNpaWnIzc1VRowMGzYMa9euLfV4WVlZcHJyAlD6uic6iYmJ8PPzAyCnl1qyZEmpZc+cOYOwsDAAcmHZJUuWKB00dA0tTk5OcHZ2xjfffKOMIP3mm2/w448/Kp0zdLf2ycnwz89H1COPwLttW6B1a+zavRu7du2CWq1G8+bN0aZNG4SFhcGuhCkg8/LykJOTg/z8fJw5c0a5sHTw4EFcvXoVaWlpSs/a0aNH48cff1Se27ZtW3zzzTfoXAONNESlun1bTj2Snw9s3QroNeZR3WWp50VLrbcx3b59GwcPHsSRI0eUqbji4uJw8+ZNJCUlQa1WY9++fejSpQsA4MMPPzToHFnUli1b0PdOh7ivv/4azz77bKll165diyFDhgAAVq5caTDKtagVK1Yo+9etWweHoUMxEMAYAMvvlHF1dcXw4cPx8ssvc/r60ggBHDggp9QKCpINGX36yE6N7dvLUR9F5eYCLVsCV67Izib//gt4ewOZmbIBJDZWrlOyciUwc6bsePnbb8ADD9R07YgsnrHOi1WeRHXXrl1QqVTKH+wVK1Zg9+7dsLe3x8SJE/Hyyy8rrdxE5hAUFITRpQyZFEIgJyfHYNuqVauQlpaGzMxMZGZmIjs7G3l5ecjNzS02SuPhhx/GjRs3kJ2djZycHOTk5ECr1UIIgeDgYIOyzZs3h1qtRm5uLt7MzkbEzZtoptVilYsLPmnWzKDs6NGj0bdvX7Rp0wadO3dG8+bNOTS2ory9gaefljdAJkLffy97B+pPKTJ9ukxe/vc/ORd7df9OtWkj5/ycNUsO1SUiololMDAQgYGB6N+/f4n7tVqtwTRa77//PqZOnYr8/HwUFBQgLy9PyQdyc3MNpuF89NFH0aJFC+Tn5yM/P18pm5OTg9zcXDg7OytlW7Vqhf79+0MIAa1WC61Wi+zsbCQmJiIhIcEg18jKykJqamqpddIfDXv58mVs27bNYH9nAG8B8APk9BsAMGgQtnfsiFn/938GZW1tbREUFIScnBwcOHAAjRs3BgC88847mDt3bqkx/Pfff+hwpwf+6NGj0aFDB6jVagQGBuKxxx7j2mhkfp6essdvTk5ho8jVq3INkqefliN86+oUekRUaZ6enujfv3+J+YAQAqmpqQbn7cGDByMkJAQFBQXFcoK8vDy0aNFCKduuXTu8+uqr0Gg0yqwVarUaBQUFKCgoUM6tANC4cWMMHz4carXaIH/Q5Rm+etNBCyGQbm0NaDTo3bYtWj/2GDp37oyoqCiDtb2oBF9/LUcBdusm12G7cEHeADl9YkkcHIC//5ZreRw/DvTvLxvWPTzkGlYrVgDPPiunMT12TK43cmf60Bpz+TKwfDkwfnzpa6IQUYVVecSIra0tmjVrhjNnzgCQ0/xcuHABGzduLPWLJ1Uce4TUYwcPAl27ysW6v/kGeOYZc0dUP23fDtxzj7yfkiK/HOt07y7Xenn9dTlM1thOnJBTOHTtavxjE1koSz0vWmq9LY0uHdc10Ny8eRMpKSkGjTI5OTnIzs5GVlYWhgwZoly8OXbsGE6fPg2tVouMjAykpaWhyZ49aHz+PJzS09HS3R22Fy4A+flIiIzE7LvugsbKCqdPn8aJEyfgn5GB9gDWADh24gTCw8MBAG+99Rbee+89AECDBg3QuXNndOrUCREREYiMjISXl1dNv01EJVOrZSeVw4eBL74o+0LRu+8WLpZ7991yapTIyJqJk4zCUs+Lllpvgly/8osvuA5SZcXFAfqdVp2cZGN59+5yOqqMDLmtJP/9JxtHbt6UDStbtsh1SnUGDQI2bQJefNFwii1TS00FOnUCLl4EWreWa5y4u9fc6xPVImYfMaLRaAy+EOnus1GEqBydO8uRCq+9BkybJqd8Yq9K4ztwoPD+smXyvdaZPl02jHz8MTBqFHDnIpBRZGYCQ4fKBdmjo4Eio4KIiIiKKrrwu6+vr0GP0bK0a9cO7cpbbP3ff4H77kPAgQP4qm1b2YtSCIiFC4FXXoFKo8HVefPg17y58pRZs2bhrbfegrW1NafypNrt228LGzvS0+XnvTSDBwMJCXIh23375AWvXbtMv3guEVFV6a67xcTIWRE40q1iGjWSDd+66wLz5sm/+T4+QHKybPzo1Knk57ZuDfzzj5yie88eOR33mjWAvT1w44ZsFAGAJ56ombrofPihbBQBZPzz5smOAURUZdWao+fo0aMICQlBSEgIYmJiAEB5HBISgma8IEhUsokT5f/p6XLeYzK+qCjZgyMoSPYK0ffgg0CPHnIO0cWLjfu6Tk4yabpypXCxNiIiInO69165mKiVFWBjA2i1wFNPQfXyy1BpNACA4DvrmOjoFp9nowjVepGRwJ01d3D//WWXbddO5n7nzwMDB8rRJk8+yelQiaj2GjJErp35++9y9gmquLfeApo3ByZPltdgMjPl+lMAUGS69GLatpVrmDo6An/9JTtbArJhRTeN2uzZMqeqKXfWv1F061Zzr01UT1V5Ki0rKyuoVCqU9XSVSgXNnS9bVDkcKlvPZWcDU6YAeXmyl5tNlQdvUXkKCuSInIICeVHovvvkcNPTp+W8ocOGccQOUR1gqedFS603GZFWK7/Qd+kieznqRpds2wY89JCcSgKQPeiffNJ8cRJVV2V7Ut++LdeKu34dmDQJ+Owz08VGRmOp50VLrTfd8emnQNOmsoMfVd3WrXJ9qeBg2ZGxIv79F/jjDzlaQ7f+a0yMHGmYlydHbbz6qslCLuZ//5MLxJ89C5Sypi6RJTD7VFo9e/YsNuyfiCrIyUlOY0Gmp2v0ePddeevfXw59bdVK3oiIiOqz//s/Oc1QmzaG00zec4+8KNC/P3DokOFaXER1UWW/m3p6yh7A/fvLBkSttvCiV2ny8uRUKhWRmSl/5xo0AMLCKhcbEZG+F180dwT1w+7d8v+iM0qU5d575U1f+/ayMf3992VDS016/HH5v24aMCHkLCQVPTcRkYEqN4xs377diGEQEZlQVlbhlFmbN8shsQ89VLhfrQY0GiYTRERUvxw4ALzzjrx/4gTw5puyx6OOpydw65a87+NT8/ERmVu/frLjzLPPFjaKXLkCJCXJ+1qtnHp1xw458rhjR+D77yt27JgYoE8f2WAzZYpcY7C0hX6JiCrq6lX5fXbSJHNHUvf4+wMREUCvXlV7flYW8Pzz8m/7uHHAY48Bzs7GjbGyHntMjmjZsoXrZRFVQZWn0iLT4lBZC6DVAgsXyhNZQIC5o6nffv4ZGDmy8HHnzoW9Zr//XvaknTBBXjAiolrJUs+LllpvMpI+fQBvb7lA56lTctu1a7IHu05BAZCSAnh4AHFxsjflgAFAYKBZQiYyu3795KK7JfHzk1PSWVsDqamAnV1hY8fSpbIRZNw4+TgrCwgPB2Jj5ePevYGNGwG9tXyo8iz1vGip9aYiUlLkmhmpqfKcrX8+p8r59ltg7165hktFpyhbvFg2SNnbyzVf+vUr3HfggByd6+hoknBL9N9/wF13yfvduhWOiCGyAMY6L1Zr8XUiqoZp04CXX5YNI1yLx7TatTNcx6VHj8L7trYyqZwzR645QkREVF988AHw00+Al5d83KIF4OtrWMbWVvagtLeXPVCfflpO+3P4cM3HS2RuKSlATg7QqBHQuLFc1D0kBHjgAdmZ5swZ2Shy4wbQsycwfLicwuTNN2Unm+eekyNFANmL+PJl4M8/AVdXYPt2YNQoOVKZiKgqvLxkY6wQcn0kqrpNm4DvvgMGD5ZrsVXE88/LhpS8PPk8XSP6L7/IawyjRslG8ZrSuLFsEHnwQRkPEVUaG0aIzOW55+QXpm3b5EV5Mp2WLeVUIsuWyS+78+YV7nvsMTmtVkGBXHS2oMB8cRIRERlTp06y80XHjrIH46+/yh7upfHzA1q3lguy33cfcPFizcVKVBt4ecket1evypEely/L34PffwfGjClci+fqVeDCBdnoERYm1/IBgDfekB1ydG7fllObrF8vf/fWrZMjudgZh4iqStczuiYvwNdH48cDw4bJ+888AyQnl/8cKys5G8WDD8ppFgcPln/PdTOArF8PREYCp0+bLm59zs7ynLV+PfDKKzXzmkT1DBtGiMylZcvCBdjff79wigsyjddfB556Sk5fYGsLXLoELFokL/58+aWcauTYMTm9GRERUX1hayvPbWfOAG3bll328ceB6Gi5qGhSEjBwIHDzZk1ESVS33H03sHq1HD0SGytHJn/7reyIo1LJKXMXLQKCguQ0J+HhcvSWjQ2wcyfXGiGiqtOtaZGdbd446rr+/YH//Q9o1QpISJBrTVVkpQE7O/n3v18/2eny8ceBLl3kGh+BgXJ6q06d5LFrikpVc69FVM+wYYTInB57TPYyUKvlsEwu+VMz0tKAe++VC2EOHiznVdctRvv227IXIBERUX0SHFyxcm5uckqJJk1kj/gHHmCvVKKS3H8/sGqVnD7lzz+BsWPl9mvX5AW3KVNkj+KEBPm7NHSobKD88ku5RoDOl1/KC2lERBWhaxjhubn6HB1lA4aNDbBmDbBiRcWeZ28vy/r6AidOyOkUe/YEjh6VowKzs4EnnpCjCImoVmPDCJG5ffqp7DW2axfwzTfmjsYyLF4MXLki7+/YId/3J5+UPT2ys4FPPjFvfEREROYUGCjn3vbykouJLlpk7oiIaqdHH5UjQPr3L9w2bhywdau8HxYm1y2JipKPmzWTvZJ1Vq2SnaP696/YNC5ERK6u8v9jx8wbR33RsSMwa5a8P316xTur+vvL6wjBwXL6Ud22v/8uPN7779fctFpEVCVsGCEyt8aNgXfflfdnzmTPj5oQHm74OCJCzhd6//2y10irVuaJi4iIqLYIC5OLsTs5AYMGFW7fskVezCWikj3ySGGP7rNny54ut39/+bt2/Trw9NMcPU5E5Rs+XP7//fe8dmAsL74oG7ofeEBOhVhRgwfLkYD33FO4zdpaTqs4bZq8zuPubvx4ichoVEIw+6qN0tPT4e7ujrS0NLjpFtei+kujkb3FJk40XLCRTEMIOdR192657siyZYX7kpPll1lHR7OFR0TFWep50VLrTSaUmwv8+6+cG9vWtvzy8fFyUVHd/NVjxgDLlwMvvQQsWFCxYxBZmlu3gM8/Bw4dkg2MZc3/fuyYHLWclwd8/DEwdarhfq1WTrW1axcQGiqnabFglnpetNR6UwmEkOffJ56QIzyp9vjnHyAxERg92tyRENV7xjovsmGklmLiQxZL9yepphYQE6Lk17p+Xc4d6uNTM3EQUZks9bxoqfUmExFCrnOwfr1cD+Hbbyv//P/7P+Ctt+Tjnj2BX36RU0cQUflKyzu/+EJ2kLK2lou1R0YCS5fKffHxchF3nblzgVdftdjFdi31vGip9SaqMy5cADp0ADIzS27kJiKjMtZ5kVNpEdVGe/fKHmaWJiVFTi3Wv79c66MmqNXAiBHA5s3ycUYG8MILQMOGcr5RDk8mIqL6YulS2SgCAN99B/z2W+Wer1LJBUbXrpVznO/cKaejPH/e+LES1TenT8ve3WPGyPxT3/PPA48/LkeRHz8OnDtXuC8wUOakERHy8cyZwDPPAPn5NRc7EdVev/wC/PCDuaOo+zQa2aih0VTt+SEhco0pQE6j9dprwMWLMvfat894cRKRUbFhhKi2+eADoFcvYMYMc0dS87ZvB+Li5BDUmkrufv1VJpNDhwK3b8v5QJcskfvi4uTis0RERHWdEMAbb8iG/4YN5baZM6t2rCFD5KLsoaFyhOXgwcC1a0YLlaheWrBATrGyfDmwcaPhPpVKbj9xQu575x3D/YcOydtnn8l18ZYtkyO2Ll6sufiJqPbZtEl28ps+3dyR1H2NG8tOH3PmVG29JysrOVJk7lz5+IMPgObNgQkTuDYbUS3GhhGi2kQIYOVK2YvMEtcaad8emD8f6N0b6Nu35l7TykqOUImJkQuu6c+X3qxZzcRBRERkSioV8Mkncn2RvDy5rTprFbRsKUdbNmwoFx595hnjxElUXz3yiFybJypK3opSqYDwcGDgQJkLF90HAJMmAX/8AXh4APv38/eOyNJ17iz/T07mKLLqGj9e/j9njvw7HBtb+WOoVHKkyOLFhdvCw4GRI40SIhEZH9cYqaU4h6iF+vNPeWHe0RG4dEkudkqmN3GinNu5bVvgyBEgIUH+f++9ciF2IjI7Sz0vWmq9yYSysuS0PceOyakdMjKAkyeBe+6p2poFV67Ii7PffQcEBxs/XiIqLjYWePZZOepL14iSni4XavfwMGNgpmep50VLrTeVo6AAsLOT92/dAry8zBtPXSYE8OGHch21vDx5HWDePDnNtlUV+pQfOwZ4ejI3IjIRrjFCVN/k5MheZIDsDcZGkZozZ478Enn8uOyF16AB8OCDbBQhIqL6x9lZTle5c6dsJImIkCNHPvywasdr3FhOgan/xT8+3jixElHJmjQB/v7bcGTJBx8ArVoBq1dXbRoYIqp7bG0Be3t5PzPTvLHUdSqVnM78+HGgRw+ZI02eLKcqKyio/PHatWOjCFEdwIYRE1q8eDGaNGkCBwcHdOnSBQcOHDB3SFSbvfeenCe4QQO5sCkAbNggF+66ccO8sdUHQsiRIGfPytEgu3bJ6UQ0GsDbu3Do7FdfmTdOIqp3mA9QraNSyXm0H3+8cG2QmTPlubG6fvtNLkBa1nzaajWwY4e86EBEFRMbC1y4UPLCwBoN8P33MtcdPlx+n2ADZa3EnICMzsVF/p+RYd446qLLl+XIDq22cFtoqFz7dPFiORpn506uo0ZUj7FhxER+/vlnTJs2DbNnz8aRI0fQrl07DBgwAElJSeYOjWqjgoLCnpovvACkpAAPPSRvn3wC3HWX/LJTn3p/5ebKHqbHjpVe5tQp4JVXgK+/ltMDFKXVyrVByvL118CwYUBQEBAYKOdEj4iQC1b27Vs4bci4cfL/TZuq1iOEiKgEzAeoVuvWTV5QiYiQF1Zff736x1y7Vp7jR48Gtmwp3F5QAPz1l5x2KyBA9nQ/caL6r0dU16SmAufOAbt3A7//Li/AnTwpGzV06/8AMu8/eBB44w35XaBpU6BFC9mo2akTMHt2Ydnr1w07UsXHAy+/XFM1ogpiTkAm4e4u/9+/37xx1CZ//y3zkZIakvVt3SrXHG3YUE5P+PvvwLp1wKxZspPqihXAtm3y7y8R1UtcY8REunTpgs6dO+Pzzz8HAGi1WjRq1AiTJ0/Ga6+9Vu7zOYeoBbr/fvlFJzRUNpLk5BQv8+OPwKhRNR+bsdy6BaxZA6xfLxOM7Gw5UuPrr+V+IWTykpoqv+x99VVhMjNtGvDRR/L+qlXyvdizB7h9G/DxkclKSIhs6Pjxx8IGjyFD5OsBcm5QNzc5jYizs5yDNTq6ML7335fHmz+/avOsE5HJ1NXzIvMBqvV27ADuu0+ek999t3DUalVpNLLx44cfAF9fYPly2UCyciWQmFhYztsb+OUXuZ4XIKeybNuW005QzRJCjmDKzZW5t59f4b59++Tn2dFRdtC5fl3eEhJk494rrxSW/fJLuT0rq3ABZJVK3vz95WK8Oo0ald77ODRUjm4GZEy+voXT49jYANbWhY0no0bJnBeQnYXc3GRDZ1KSfI2vvpILCNczdfm8WJ2coC7Xm0xszhz53fmRR+RUerWdEKV/1z53Dvj5Zzmzg4uLvEby3HOF+zUa+XdQX2am/Bs8caL8ey2EbOw4fhxo3hyYMEH+fT9zRv59HT++8JgpKbJRpKRrL4C8ZqE/ZSER1RrGOi/aGDEmuiM/Px+HDx/GzJkzlW1WVlbo27cvovUvwurJy8tDnl4PobS0NADyB00W4rvvAAcHOWIkJ0f24vz4Y3ky/+wz2ctywIDCkRNlJRQlEcJwcbayXLsmR2v4+8svaE5Oxcvs3Cm/mDVrJi9i2JTx52TNGnlBZNs2w14b/v4y4dHVadMmOZXHrVvAnd8B9O0rF3Z99NHCcvv3ywsoOsnJ8nbwoHz8xhuFF1aGD5c9YTt3lglS0bro/45NmiT/5zBkolpHdz6sS/05mA9QnWBtXdjBYOLEkkdoVtYHH8hpK0+cAAYNKtzu7S1HcQ4eDHTtKnOH9HQ5RdCIEbJxxta28IKyj48c4fnww0C/ftWPy5IJIfPL9HR5y8mR23SLdYeEFJa9cUNeXHJxkT8P/WNotcUvSmm1smPJrVuFOVlysszz7r+/sNz33xcuYKv/t1ylkg0N/fvLxxoN8PTTshHC2lrG5+Ehe0Xn5cnP6tSphc9/8kmZNxYUyHplZcnPko2NnOP9hx8Ky+ryytu3i48Q7tRJ9h7WGT0auHSp5PezdWvDi3ULFpRetkkTmd/reHvLeH18ZL0yM+V7l5IiG2n0fweHDJH7779fvj+urnLql9On5fP1y8bFFf/Z1MNzR13MB4DK5wTMB6jCJk+Wf29HjKg9v/MxMfJvlYOD/P7t7CzP9evWyb93GzcWln3lFfn9+8SJ4iNJAwIK65SVJUfN3XWXnA3ixg15i4+X543cXODFF+V5on9/4OpVOf2gfiM2IDtlPvaYvG9jI88Ju3bJmP79V67Z0rGjvAUG1p73lIgMGC0fEGR0169fFwDE3r17DbbPmDFDREZGlvic2bNnCwC88cYbb7zxxlsZt7i4uJo4lRsF8wHeeOONN954M82tLuUDQlQ+J2A+wBtvvPHGG2/l36qbD3DESC0xc+ZMTJs2TXms1WqRkpICW1tbBAcHIy4uzuKGzKanp6NRo0asO+tuMVh31p11L50QAhkZGQgKCqqh6MyD+UBx/B1h3Vl3y8G6s+7MByTmA8Xxd4R1Z90thyXXHbDs+le07sbKB9gwYgI+Pj6wtrZGov48ygASExMREBBQ4nPs7e1hb29vsM3Dw0MZGuTm5mZxvww6rDvrbmlYd9bd0lS07u66xSXrCOYDxsW6s+6WhnVn3S1Nfc0HgMrnBMwHSse6s+6WhnW3zLoDll3/itTdGPmAVbWPQMXY2dkhIiICW/XmqNVqtdi6dSuioqLMGBkRERHVFOYDREREBDAnICIiqo04YsREpk2bhjFjxqBTp06IjIzEwoULkZWVhaefftrcoREREVENYT5AREREAHMCIiKi2oYNIyYyYsQI3Lx5E7NmzUJCQgLat2+PTZs2wd/fv1LHsbe3x+zZs4sNo7UErDvrbmlYd9bd0lhC3ZkPVB/rzrpbGtaddbc0llJ3Y+QElvJelYR1Z90tDetumXUHLLv+NV13lRBC1MgrERERERERERERERERmRnXGCEiIiIiIiIiIiIiIovBhhEiIiIiIiIiIiIiIrIYbBghIiIiIiIiIiIiIiKLwYYRIiIiIiIiIiIiIiKyGGwYqcUWL16MJk2awMHBAV26dMGBAwfMHVK1vf3221CpVAa3li1bKvtzc3MxceJEeHt7w8XFBQ8//DASExMNjnH16lXcf//9cHJygp+fH2bMmAG1Wl3TVSnXzp078eCDDyIoKAgqlQrr1q0z2C+EwKxZsxAYGAhHR0f07dsX58+fNyiTkpKC0aNHw83NDR4eHnjmmWeQmZlpUOb48ePo0aMHHBwc0KhRI8yfP9/UVStXeXV/6qmnin0OBg4caFCmLtZ97ty56Ny5M1xdXeHn54chQ4bg7NmzBmWM9Rnfvn07OnbsCHt7ezRv3hzff/+9qatXrorUv3fv3sV+9s8995xBmbpY/yVLlqBt27Zwc3ODm5sboqKisHHjRmV/ff65l1f3+vozr0nMB5gP1MVzImC5+QBg2TkB8wHmA8wHTKe+5QTMBwoxH2A+UN/ODcwHmA/UiXxAUK30008/CTs7O/Hdd9+JU6dOifHjxwsPDw+RmJho7tCqZfbs2eKuu+4S8fHxyu3mzZvK/ueee040atRIbN26VRw6dEjcfffdomvXrsp+tVotwsPDRd++fcXRo0fFX3/9JXx8fMTMmTPNUZ0y/fXXX+KNN94Qa9asEQDE2rVrDfbPmzdPuLu7i3Xr1oljx46JwYMHi6ZNm4qcnBylzMCBA0W7du3Evn37xK5du0Tz5s3FqFGjlP1paWnC399fjB49Wpw8eVKsWrVKODo6iq+++qqmqlmi8uo+ZswYMXDgQIPPQUpKikGZulj3AQMGiGXLlomTJ0+KmJgYcd9994ng4GCRmZmplDHGZ/zSpUvCyclJTJs2Tfz333/is88+E9bW1mLTpk01Wt+iKlL/Xr16ifHjxxv87NPS0pT9dbX+GzZsEH/++ac4d+6cOHv2rHj99deFra2tOHnypBCifv/cy6t7ff2Z1xTmA8wHhKib50QhLDcfEMKycwLmA8wHmA+YRn3MCZgPFGI+wHygvp0bmA8wH6gL+QAbRmqpyMhIMXHiROWxRqMRQUFBYu7cuWaMqvpmz54t2rVrV+K+1NRUYWtrK1avXq1sO336tAAgoqOjhRDyhGplZSUSEhKUMkuWLBFubm4iLy/PpLFXR9GTv1arFQEBAWLBggXKttTUVGFvby9WrVolhBDiv//+EwDEwYMHlTIbN24UKpVKXL9+XQghxBdffCE8PT0N6v7qq6+KsLAwE9eo4kpLfB566KFSn1Nf6p6UlCQAiB07dgghjPcZf+WVV8Rdd91l8FojRowQAwYMMHWVKqVo/YWQJ8GXXnqp1OfUp/p7enqKb775xuJ+7kIU1l0Iy/qZmwLzAYn5QN0/J1pyPiCEZecEzAeYDwhhWT9zU6mPOQHzAYn5APMBSzg3MB9gPiBE7fuZcyqtWig/Px+HDx9G3759lW1WVlbo27cvoqOjzRiZcZw/fx5BQUEICQnB6NGjcfXqVQDA4cOHUVBQYFDvli1bIjg4WKl3dHQ02rRpA39/f6XMgAEDkJ6ejlOnTtVsRarh8uXLSEhIMKiru7s7unTpYlBXDw8PdOrUSSnTt29fWFlZYf/+/UqZnj17ws7OTikzYMAAnD17Frdv366h2lTN9u3b4efnh7CwMDz//PO4deuWsq++1D0tLQ0A4OXlBcB4n/Ho6GiDY+jK1La/D0Xrr7Ny5Ur4+PggPDwcM2fORHZ2trKvPtRfo9Hgp59+QlZWFqKioizq51607jr1/WduKswHmA8A9eecWBpLyAcAy84JmA8wH9Cp7z9zU6rPOQHzAeYDAPMBSzg3MB9gPqBTm37mNpV+BplccnIyNBqNwYcAAPz9/XHmzBkzRWUcXbp0wffff4+wsDDEx8fjnXfeQY8ePXDy5EkkJCTAzs4OHh4eBs/x9/dHQkICACAhIaHE90W3r67QxVpSXfTr6ufnZ7DfxsYGXl5eBmWaNm1a7Bi6fZ6eniaJv7oGDhyIYcOGoWnTprh48SJef/11DBo0CNHR0bC2tq4XdddqtZgyZQq6deuG8PBwJS5jfMZLK5Oeno6cnBw4OjqaokqVUlL9AeCxxx5D48aNERQUhOPHj+PVV1/F2bNnsWbNGgB1u/4nTpxAVFQUcnNz4eLigrVr16J169aIiYmp9z/30uoO1O+fuakxH/AweA7zgUJ17ZxYGkvIBwDLzgmYDzAfYD5gHPU1J2A+IDEfYD5Qn88NAPMB5gO1Nx9gwwjVqEGDBin327Ztiy5duqBx48b45ZdfzP6HmmrOyJEjlftt2rRB27Zt0axZM2zfvh19+vQxY2TGM3HiRJw8eRK7d+82dyhmUVr9J0yYoNxv06YNAgMD0adPH1y8eBHNmjWr6TCNKiwsDDExMUhLS8Ovv/6KMWPGYMeOHeYOq0aUVvfWrVvX6585VR3zAQIsIx8ALDsnYD7AfID5AJWF+QABzAcsAfMB5gO1NR/gVFq1kI+PD6ytrZGYmGiwPTExEQEBAWaKyjQ8PDwQGhqKCxcuICAgAPn5+UhNTTUoo1/vgICAEt8X3b66QhdrWT/jgIAAJCUlGexXq9VISUmpd+9HSEgIfHx8cOHCBQB1v+6TJk3CH3/8gW3btqFhw4bKdmN9xksr4+bmViu+QJRW/5J06dIFAAx+9nW1/nZ2dmjevDkiIiIwd+5ctGvXDosWLbKIn3tpdS9JffqZmxrzgVSDMswHCtWlc2Jl1Ld8ALDsnID5APMB5gPGYyk5AfMB5gMA8wGgfp0bmA8wH6jN+QAbRmohOzs7REREYOvWrco2rVaLrVu3GszJVh9kZmbi4sWLCAwMREREBGxtbQ3qffbsWVy9elWpd1RUFE6cOGFwUtyyZQvc3NyUYVl1QdOmTREQEGBQ1/T0dOzfv9+grqmpqTh8+LBS5t9//4VWq1X+cERFRWHnzp0oKChQymzZsgVhYWG1YqhoRV27dg23bt1CYGAggLpbdyEEJk2ahLVr1+Lff/8tNpTXWJ/xqKgog2Poypj770N59S9JTEwMABj87Otq/YvSarXIy8ur9z/3kujqXpL6/DM3NuYDzAeAuntOrIr6kg8Alp0TMB8wxHyA+YAxWEpOwHyA+QDAfKC+nBuYDxhiPlBL84FKL9dONeKnn34S9vb24vvvvxf//fefmDBhgvDw8BAJCQnmDq1aXn75ZbF9+3Zx+fJlsWfPHtG3b1/h4+MjkpKShBBCPPfccyI4OFj8+++/4tChQyIqKkpERUUpz1er1SI8PFz0799fxMTEiE2bNglfX18xc+ZMc1WpVBkZGeLo0aPi6NGjAoD4+OOPxdGjR8WVK1eEEELMmzdPeHh4iPXr14vjx4+Lhx56SDRt2lTk5OQoxxg4cKDo0KGD2L9/v9i9e7do0aKFGDVqlLI/NTVV+Pv7iyeeeEKcPHlS/PTTT8LJyUl89dVXNV5ffWXVPSMjQ0yfPl1ER0eLy5cvi3/++Ud07NhRtGjRQuTm5irHqIt1f/7554W7u7vYvn27iI+PV27Z2dlKGWN8xi9duiScnJzEjBkzxOnTp8XixYuFtbW12LRpU43Wt6jy6n/hwgUxZ84ccejQIXH58mWxfv16ERISInr27Kkco67W/7XXXhM7duwQly9fFsePHxevvfaaUKlUYvPmzUKI+v1zL6vu9flnXlOYDzAfEKJunhOFsNx8QAjLzgmYDzAfYD5gGvUxJ2A+wHyA+UD9PTcwH2A+UBfyATaM1GKfffaZCA4OFnZ2diIyMlLs27fP3CFV24gRI0RgYKCws7MTDRo0ECNGjBAXLlxQ9ufk5IgXXnhBeHp6CicnJzF06FARHx9vcIzY2FgxaNAg4ejoKHx8fMTLL78sCgoKaroq5dq2bZsAUOw2ZswYIYQQWq1WvPXWW8Lf31/Y29uLPn36iLNnzxoc49atW2LUqFHCxcVFuLm5iaefflpkZGQYlDl27Jjo3r27sLe3Fw0aNBDz5s2rqSqWqqy6Z2dni/79+wtfX19ha2srGjduLMaPH18soa+LdS+pzgDEsmXLlDLG+oxv27ZNtG/fXtjZ2YmQkBCD1zCX8up/9epV0bNnT+Hl5SXs7e1F8+bNxYwZM0RaWprBcepi/ceOHSsaN24s7OzshK+vr+jTp4+S9AhRv3/uZdW9Pv/MaxLzAeYDdfGcKITl5gNCWHZOwHyA+QDzAdOpbzkB8wHmA8wH6u+5gfkA84G6kA+ohBCi8uNMiIiIiIiIiIiIiIiI6h6uMUJERERERERERERERBaDDSNERERERERERERERGQx2DBCREREREREREREREQWgw0jRERERERERERERERkMdgwQkREREREREREREREFoMNI0REREREREREREREZDHYMEJERERERERERERERBaDDSNERERERERERERERGQx2DBCRPXK9u3boVKpkJqaWuOvrVKpoFKp4OHhUaHyulhVKhWGDBli0tiIiIgsCfMBIiIiYj5ARGVhwwgR1Vm9e/fGlClTDLZ17doV8fHxcHd3N0tMy5Ytw7lz5ypUVhfr8OHDTRwVERFR/cV8gIiIiJgPEFFlsWGEiOoVOzs7BAQEQKVSmeX1PTw84OfnV6GyulgdHR1NHBUREZFlYT5AREREzAeIqCxsGCGiOumpp57Cjh07sGjRImW4aWxsbLGhst9//z08PDzwxx9/ICwsDE5OTnjkkUeQnZ2NH374AU2aNIGnpydefPFFaDQa5fh5eXmYPn06GjRoAGdnZ3Tp0gXbt2+vdJzHjh3DPffcA1dXV7i5uSEiIgKHDh0y0rtARERk2ZgPEBEREfMBIqoKG3MHQERUFYsWLcK5c+cQHh6OOXPmAAB8fX0RGxtbrGx2djY+/fRT/PTTT8jIyMCwYcMwdOhQeHh44K+//sKlS5fw8MMPo1u3bhgxYgQAYNKkSfjvv//w008/ISgoCGvXrsXAgQNx4sQJtGjRosJxjh49Gh06dMCSJUtgbW2NmJgY2NraGuU9ICIisnTMB4iIiIj5ABFVBRtGiKhOcnd3h52dHZycnBAQEFBm2YKCAixZsgTNmjUDADzyyCNYsWIFEhMT4eLigtatW+Oee+7Btm3bMGLECFy9ehXLli3D1atXERQUBACYPn06Nm3ahGXLluH999+vcJxXr17FjBkz0LJlSwCoVNJEREREZWM+QERERMwHiKgq2DBCRPWek5OTkvQAgL+/P5o0aQIXFxeDbUlJSQCAEydOQKPRIDQ01OA4eXl58Pb2rtRrT5s2DePGjcOKFSvQt29fPProowaxEBERUc1gPkBERETMB4hIhw0jRFTvFR2aqlKpStym1WoBAJmZmbC2tsbhw4dhbW1tUE4/WaqIt99+G4899hj+/PNPbNy4EbNnz8ZPP/2EoUOHVqEmREREVFXMB4iIiIj5ABHpsGGEiOosOzs7gwXRjKVDhw7QaDRISkpCjx49qn280NBQhIaGYurUqRg1ahSWLVvGxIeIiMhImA8QERER8wEiqiwrcwdARFRVTZo0wf79+xEbG4vk5GSlR0d1hYaGYvTo0XjyySexZs0aXL58GQcOHMDcuXPx559/Vvg4OTk5mDRpErZv344rV65gz549OHjwIFq1amWUOImIiIj5ABERETEfIKLKY8MIEdVZ06dPh7W1NVq3bg1fX19cvXrVaMdetmwZnnzySbz88ssICwvDkCFDcPDgQQQHB1f4GNbW1rh16xaefPJJhIaGYvjw4Rg0aBDeeecdo8VJRERk6ZgPEBEREfMBIqoslRBCmDsIIqL6QKVSYe3atRgyZEilnvfUU08hNTUV69atM0lcREREVHOYDxARERHzAaLajyNGiIiMaNSoUWjYsGGFyu7atQsuLi5YuXKliaMiIiKimsR8gIiIiJgPENVuHDFCRGQkFy5cACCHyDZt2rTc8jk5Obh+/ToAwMXFBQEBASaNj4iIiEyP+QARERExHyCq/dgwQkREREREREREREREFoNTaRERERERERERERERkcVgwwgREREREREREREREVkMNowQEREREREREREREZHFYMMIERERERERERERERFZDDaMEBERERERERERERGRxWDDCBERERERERERERERWQw2jBARERERERERERERkcVgwwgREREREREREREREVkMNowQEREREREREREREZHFYMMIERERERERERERERFZDDaMEBERERERERERERGRxWDDCBERERERERERERERWQw2jBARERERERERERERkcVgwwgREREREREREREREVkMNowQEREREREREREREZHFYMMIEVEtNHToUHh6euKRRx4xdyiK2hgTERFRfVYbz721MSYiIqL6rDaee2tjTESVxYYRIqJa6KWXXsLy5cvNHYaB2hgTERFRfVYbz721MSYiIqL6rDaee2tjTESVxYYRIgvUu3dvTJkypd68Tm3Qu3dvqFQqqFQqxMTEGOV4rq6uFS5bUz/PkmJ66qmnlLqvW7fO5HEQEZFxMB8wPuYDzAeIiOoa5gPGx3yA+QDVDWwYIarnSjoprlmzBu+++26dfB1jMnbCMH78eMTHxyM8PNxox6wLFi1ahPj4eHOHQUREZWA+UDrmA8bBfICIqPZjPlA65gPGwXyA6hIbcwdARDXPy8urXr1OUfn5+bCzs6vx13VyckJAQECFyrZv3x5qtbrY9s2bNyMoKMjYoZk0Hnd3d7i7u5sqNCIiMhHmA6bBfICIiOoS5gOmwXyAqPbjiBGiWm7Tpk3o3r07PDw84O3tjQceeAAXL15U9mu1WsyfPx/NmzeHvb09goOD8X//938A5BDGHTt2YNGiRcpQxtjYWIOeEF9//TWCgoKg1WoNXvehhx7C2LFjKxRDRV4HkD0wXnzxRbzyyivw8vJCQEAA3n77bYPXzcjIwOjRo+Hs7IzAwEB88skn5fbc6N27NyZNmoQpU6bAx8cHAwYMKDfu0mLWvadz585F06ZN4ejoiHbt2uHXX3+t8M9M59dff0WbNm3g6OgIb29v9O3bF1lZWQCAmJgYnDx5stjNGEnPn3/+CXd3d6xcuRJAxd5TU8ZDRETVx3yA+UBlMR8gIqp/mA8wH6gs5gNEpWPDCFEtl5WVhWnTpuHQoUPYunUrrKysMHToUCVRmTlzJubNm4e33noL//33H3788Uf4+/sDkEMYo6KilCGc8fHxaNSokcHxH330Udy6dQvbtm1TtqWkpGDTpk0YPXp0hWKoyOvo/PDDD3B2dsb+/fsxf/58zJkzB1u2bFH2T5s2DXv27MGGDRuwZcsW7Nq1C0eOHCn3ffrhhx9gZ2eHPXv24Msvvyw37rJinjt3LpYvX44vv/wSp06dwtSpU/H4449jx44dFfqZAUB8fDxGjRqFsWPH4vTp09i+fTuGDRsGIUSFj1EVP/74I0aNGoWVK1cqP7+qvqdERFR7MB9gPlAZzAeIiOon5gPMByqD+QBROQQR1Sk3b94UAMSJEydEenq6sLe3F0uXLi21fK9evcRLL71U5raHHnpIjB07Vnn81VdfiaCgIKHRaMqNoTKv06tXL9G9e3eDMp07dxavvvqqEEKI9PR0YWtrK1avXq3sT01NFU5OTsWOXfR1OnToUOr+0uIuKebc3Fzh5OQk9u7da7D9mWeeEaNGjSozBv1jHT58WAAQsbGx5cZVkj59+ggfHx/h6OgoGjRoUCyekl77888/F+7u7mL79u3Kvqq+p1WJCYBYu3ZtpY5JRERVw3yg5DoyH2A+QERkSZgPlFxH5gPMB4gqgmuMENVy58+fx6xZs7B//34kJycrvTCuXr2K7Oxs5OXloU+fPtV6jdGjR2P8+PH44osvYG9vj5UrV2LkyJGwsrIqN4bKLiTWtm1bg8eBgYFISkoCAFy6dAkFBQWIjIxU9ru7uyMsLKzc40ZERBTbVpW4L1y4gOzsbPTr189ge35+Pjp06FBuHDrt2rVDnz590KZNGwwYMAD9+/fHI488Ak9Pzwo9/59//qnwawFyWG5SUhL27NmDzp07K9ur855WNyYiIjIe5gPMByqC+QARUf3GfID5QEUwHyCqGDaMENVyDz74IBo3boylS5cqc32Gh4cjPz8fjo6ORnsNIQT+/PNPdO7cGbt27cInn3xSoRgqy9bW1uCxSqUqNn9pVTg7OxfbVpW4MzMzAch5OBs0aGCwz97evsLxWFtbY8uWLdi7dy82b96Mzz77DG+88Qb279+Ppk2bVvg4FdWhQwccOXIE3333HTp16gSVSmX01yAiIvNhPlAxzAeYDxAR1WfMByqG+QDzAaKK4BojRLXYrVu3cPbsWbz55pvo06cPWrVqhdu3byv7W7RoAUdHR2zdurXUY9jZ2UGj0ZT5Og4ODhg2bBhWrlyJVatWISwsDB07dqxQDJV5nfKEhITA1tYWBw8eVLalpaXh3LlzlT5WReIuKebWrVvD3t4eV69eRfPmzQ1upc2LWhqVSoVu3brhnXfewdGjR2FnZ4e1a9dWui4V0axZM2zbtg3r16/H5MmTle3GfE+JiMg8mA8wH6go5gNERPUX8wHmAxXFfICoYjhihKgW8/T0hLe3N77++msEBgbi6tWreO2115T9Dg4OePXVV/HKK6/Azs4O3bp1w82bN3Hq1Ck888wzAIAmTZpg//79iI2NhYuLC7y8vEp8rdGjR+OBBx7AqVOn8Pjjj1c4Bp2Kvk5ZXF1dMWbMGMyYMQNeXl7w8/PD7NmzYWVlVekeDhWJu6SYXV1dMX36dEydOhVarRbdu3dHWloa9uzZAzc3N4wZM6ZCr79//35s3boV/fv3h5+fH/bv34+bN2+iVatWlapHZYSGhmLbtm3o3bs3bGxssHDhQqO+p0REZB7MB5gPVAbzASKi+on5APOBymA+QFQ+jhghqsWsrKzw008/4fDhwwgPD8fUqVOxYMECgzJvvfUWXn75ZcyaNQutWrXCiBEjlDk5AWD69OmwtrZG69at4evri6tXr5b4Wvfeey+8vLxw9uxZPPbYY5WKoTKvU56PP/4YUVFReOCBB9C3b19069YNrVq1goODQ6WOU5G4S4v53XffxVtvvYW5c+eiVatWGDhwIP78889KDXF1c3PDzp07cd999yE0NBRvvvkmPvroIwwaNKhS9aissLAw/Pvvv1i1ahVefvllAMZ7T4mIyDyYDzAfqCzmA0RE9Q/zAeYDlcV8gKhsKiGEMHcQRESlycrKQoMGDfDRRx8pvVxqo969e6N9+/ZYuHChuUMpl6neU5VKhbVr12LIkCFGOyYRERHAfMAUmA8QEVFdw3zA+JgPkCXjiBEiqlWOHj2KVatW4eLFizhy5AhGjx4NAHjooYfMHFn5vvjiC7i4uODEiRPmDsWAqd/T5557Di4uLkY5FhEREcB8wBSYDxARUV3DfMD4mA8QFeKIESKqVY4ePYpx48bh7NmzsLOzQ0REBD7++GO0adPG3KGV6fr168jJyQEABAcHw87OzswRFTL1e5qUlIT09HQAQGBgIJydnY1yXCIislzMB4yP+QAREdU1zAeMj/kAUSE2jBARERERERERERERkcXgVFpERERERERERERERGQx2DBCREREREREREREREQWgw0jRERERERERERERERkMdgwQkREREREREREREREFoMNI0QA/vjjD4SFhaFFixb45ptvzB0OmUlqaio6deqE9u3bIzw8HEuXLjV3SGRmly9fxj333IPWrVujTZs2yMrKMndIRGRCzAdIhzkB6WM+QGRZmA+QDvMB0sd8oP5RCSGEuYMgMie1Wo3WrVtj27ZtcHd3R0REBPbu3Qtvb29zh0Y1TKPRIC8vD05OTsjKykJ4eDgOHTrEz4IF69WrF9577z306NEDKSkpcHNzg42NjbnDIiITYD5A+pgTkD7mA0SWg/kA6WM+QPqYD9Q/HDFCFu/AgQO466670KBBA7i4uGDQoEHYvHmzucMiM7C2toaTkxMAIC8vD0IIsO3Ycp06dQq2trbo0aMHAMDLy4tJD1E9xnyA9DEnIB3mA0SWhfkA6WM+QDrMB+onNoxQnbdz5048+OCDCAoKgkqlwrp164qVWbx4MZo0aQIHBwd06dIFBw4cUPbduHEDDRo0UB43aNAA169fr4nQyciq+1kA5FDZdu3aoWHDhpgxYwZ8fHxqKHoytup+Hs6fPw8XFxc8+OCD6NixI95///0ajJ6IKov5AOljTkA6zAeILAvzAdLHfIB0mA9QSdgwQnVeVlYW2rVrh8WLF5e4/+eff8a0adMwe/ZsHDlyBO3atcOAAQOQlJRUw5GSqRnjs+Dh4YFjx47h8uXL+PHHH5GYmFhT4ZORVffzoFarsWvXLnzxxReIjo7Gli1bsGXLlpqsAhFVAvMB0secgHSYDxBZFuYDpI/5AOkwH6ASCaJ6BIBYu3atwbbIyEgxceJE5bFGoxFBQUFi7ty5Qggh9uzZI4YMGaLsf+mll8TKlStrJF4ynap8Fop6/vnnxerVq00ZJtWQqnwe9u7dK/r376/snz9/vpg/f36NxEtE1cN8gPQxJyAd5gNEloX5AOljPkA6zAdIhyNGqF7Lz8/H4cOH0bdvX2WblZUV+vbti+joaABAZGQkTp48ievXryMzMxMbN27EgAEDzBUymUhFPguJiYnIyMgAAKSlpWHnzp0ICwszS7xkWhX5PHTu3BlJSUm4ffs2tFotdu7ciVatWpkrZCKqBuYDpI85AekwHyCyLMwHSB/zAdJhPmC5uEoM1WvJycnQaDTw9/c32O7v748zZ84AAGxsbPDRRx/hnnvugVarxSuvvAJvb29zhEsmVJHPwpUrVzBhwgRlQbXJkyejTZs25giXTKyifxvef/999OzZE0II9O/fHw888IA5wiWiamI+QPqYE5AO8wEiy8J8gPQxHyAd5gOWiw0jRAAGDx6MwYMHmzsMMrPIyEjExMSYOwyqRQYNGoRBgwaZOwwiqiHMB0iHOQHpYz5AZFmYD5AO8wHSx3yg/uFUWlSv+fj4wNrautjiWImJiQgICDBTVGQO/CyQPn4eiCwLf+dJHz8PpMPPApFl4e886ePngXT4WbBcbBihes3Ozg4RERHYunWrsk2r1WLr1q2IiooyY2RU0/hZIH38PBBZFv7Okz5+HkiHnwUiy8LfedLHzwPp8LNguTiVFtV5mZmZuHDhgvL48uXLiImJgZeXF4KDgzFt2jSMGTMGnTp1QmRkJBYuXIisrCw8/fTTZoyaTIGfBdLHzwORZeHvPOnj54F0+Fkgsiz8nSd9/DyQDj8LVCJBVMdt27ZNACh2GzNmjFLms88+E8HBwcLOzk5ERkaKffv2mS9gMhl+FkgfPw9EloW/86SPnwfS4WeByLLwd5708fNAOvwsUElUQghhkhYXIiIiIiIiIiIiIiKiWoZrjBARERERERERERERkcVgwwgREREREREREREREVkMNowQEREREREREREREZHFYMMIERERERERERERERFZDDaMEBERERERERERERGRxWDDCBERERERERERERERWQw2jBARERERERERERERkcVgwwgREREREREREREREVkMNoyQRcjLy8Pbb7+NvLw8c4diVnwfJL4PEt8Hie8DkWXh7zzfAx2+DxLfB4nvA5Fl4e+8xPeB74EO3weJ74NlUQkhhLmDIDK19PR0uLu7Iy0tDW5ubuYOx2z4Pkh8HyS+DxLfByLLwt95vgc6fB8kvg8S3wciy8LfeYnvA98DHb4PEt8Hy8IRI0TlWLx4caX3Fd2u/7i8+2W9XnnKe+7SpUsr9LzaEm9de39L2l/ettr2eajN8Vbk/a3IZ6O0OhARlaWm/0ZV9+9TWc+vSj5Q9HFNxluVfKC02Ji/FFcf8kNz5i9EZFnq2ncWY3wnrE3x1qV8q7r5i/79upAf1oZ8oKz4KnKf+YAFEkQWIC0tTQAQaWlplX5uq1atKr2v6Hb9x+XdL+v1ylPec8PCwkp8H2prvKZ6f6v6eahKvOVtq22fh9ocb0Xe34p8Nopuq87fByKqe8x5DqjM36jq/D0t7/lVyQfMGW9V8oHSYjNXPlBevLUtH6jN8Zoq32I+QGRZ6ko+UJHXrGw8+irynbA2xWuKfKs2XS+qSLzVYcr8sDbkA2XFV5H7zAcsj40Z2mKIalx2djYA4Pnnn4etrW2lnnvjxg089dRTldpXdLv+4/Lul/V61YkVAOLj4wEUfx9qa7ymen+ff/55AJX/PFQl3vK21bbPQ22OtyLvb0U+G0W3tXZvBQAQnFmSyCJ88sknAMxzDqjM36jq/D0tL96q5APmjLcq+UBJMRbdVpP5QHnx1rZ8oDbHa6p8S/d5UKvVVYqbiOqWDRs2AKj9+UBFXrM68VbkO2FtitcU+VZV84Hy4q1u/lJavKbKt6qbH9aGfKC8eCuTD6SmpnIqLQvAhhGyCOfOnYOdnR2ahDSDtY01IICil0ALr4kKue9OmS5RXREU3OTOfgHlXwF0vrsr/Bs2htDbKAB06hIF36Bg5TUiIqPgHdgIANAxMgpeAY0gAHTofDc8/BsCAujQ6W64+zVA+05d4ObbQIlJ94q6+ITe6yj1EHJLeIfOsHMP0ItRGPzfqm0E8vLyYO3mD5WVtVKuZdtOEE6+EHdeJ7RNBNSOPoAAQsMjUODgDQigRXgE8u29IQTQ/K4I5Np5odldHZFj61VubPrvsQAArUDjsA5I1borhYXBE4FGLdohJc/F4NgA0LBZW9zKdpbHFUDDpm1wM9MRANCgSRvcTHeAANCgcTiS0uwBAQQFhyPxtj2CGt2Fm6kOaNaiI27etoeVlfw8GASne+P14xFAkH9LJMSp9LbrVwgI8glDwiWtwXGCvEORcF5jUDbIswUSzhTI+x4tkPBfPiCAQLfmiD+ZJ++7NkP88VwEujRDfExOifEU+ZDceVj4OoH2TXEjOqPk+gEIsAmGj3sBEnenQ6WyAgQQoGqE61tToP+BCxANcf3vmxAAArQNcO2vJAACAeogXPsjARAC/gWBuLbhBvzzAxG37rr+L5Te+1n4oRBFH0PAV+ODy6su3nkklHK6x54aD5xdeVp5LCDgrnXDyf+dUI7hqnXBsRVHlSM4CyccXn4IgICTcMSh5QfhKBxx4If9EBCwhz3sYAcrWCHEIwR/7P0DUVFRIKL6a86cOehy992l5gRVyQcAmRP4NWxc4XwAKDkn6ND5brj7NaxWPgAAd93JCSqaDwCF+YDuyKFtIqBx9FGO3SI8AgX23hAAmodHIM/O2yj5AAAEh7VHqtbN4PSqe3KjFu2Qku+ivNe645eVD0DcyQPSHYyUDxTGExTQCgnXVEXOzYUfpJLyAQAI8gpFwjm1sr3K+QD0X1cvPr0YqpsPQAiZE/xzSzl2qfmAJgjX/kwszAd+j5f5wPobd2IShvGZOB/QHUk/J3ARzjiy4jCEKMwHBAQchQP2/7AP9rDHgR/3wxa2aOTdCN+u+hbDhw+HlRVnniaqr7788ku0bNnK5PkAcCcfaBCsHCMiMgreQcHKi5SVDwBCyQmMkQ8Uxlt6TlCdfAACaNZa5gQVzQeUmKp4jaCi+YByP9W+lHzAofDvfpk5QeH9Eq8RVCMfgBAIcm+OhFP5AApzgkDX5jIfcG2G+GO5pcajvDEl5AMQAoF2TXFjb0bV8wFA5gObk5XPkC4nqOl8wEvjibM/nlY+UxW5RlCRfODgjwfgCEc0b9wczdEMh7IOw8nJCVQ/cfF1sgj79u3Dw488gguxV1H4x7RIsqP8DRZF/kbrPxaF5xyBEo5VweMo90Xh4yIJghCAVm970XK6MsW36cdUzvMMygBa/f0GyVYJxyx6/FLrVsrranWJjtwhhG5b4UlRyKCUYymJnN526MWACh5Dt02v4mXf1+r9kIvelz/2EvZV4vhF6lO4HXeOaVi3wu1FXhdVOYZ8vlCOc+f/ErYJvX2lPU8eX6v33pT8XKH/HAhohfbO50/+rxVaCGjl78Cd/7XQQtz5X9mulDV8TkllAZR6vAIU4CIu4RIuwwfe2HxsC9q2bVvZPzVEVAdYW1vjv/MXEBzcGFU+jxshH4BuW7HzZvFzdk3kAzAoV3JOUKP5gO69Err/C8+VJW2DXgwmyQd0P7CycoIS71fw+Hr3yzuXQ3nf9PcZvnaN5gNA+TlBKc81RT4gwyk7Jyj1eNAiDtdwDudhBzv8+MePuO+++6BSqSr/x4aIarWePXti7IQJGDHyMVTlPK47r5WXD6DU5xZ5XOy8aZp8ACitXMnnblPnA4BemSpeIzBaPlD45lTvGkGJ9ytxbL14qnuNwJj5gBJPda4RlPK8quQDAKp9jaC0fEBAIBnJOI2zyEUuPl78McaNGwc7O7sq/b2h2otdYIiIyOLZwhYtEYY+uAdOcEKHdh3QUNUAFy5cMHdoREREVEOsYIXGCMa96I1GaIhhDwyDt5U3du7cae7QiIiIqIaooIIvfNED3dAG4Xh14qvwtPfAihUroNFozB0eGREbRoiIiO6whz3CcRfuQW9YwQphLcLQWNUY169fN3doREREVEOsYY0QNEUf3AM/+KJPrz7wU/nh8OHD5g6NiIiIaogKKgQiAL3RE6EIxbNPPgtPGw+sW7dOGYFFdRsbRoiIiIpwgiPaox16ogcKUIDghsFopgpBcnKyuUMjIiKiGmIDG4SiBfrgHrjBFZGdIhGkCsSZM2fMHRoRERHVEBVUaISGuAe90BiNMXLoSHhZeeKff/4xd2hUTWwYISIiKoUrXNAJHdENXZGJTAT6BiJMFYr09HRzh0ZEREQ1xA52aI1W6IN7YAc73NXqLgSrGuHKlSvmDo2IiIhqiDWs0RRNcC96IwABuK/fIPiqfLBv3z5zh0ZVxIYRIiKicnjAHV0QiUh0RgIS4ePuw9EjREREFsYBDmiLNuiNniiAGiFNQvDvv/+aOywiIiKqQTawQQs0Rx/cCw94ICoqCq1VrcwdFlUBG0aIiIgqIA95SEACMpEJX/jA0dHR3CERERFRDdNAg0QkIQUpcIcbGjZsaO6QiIiIqIYJCNzCLSQiCY5wxMcbPzF3SFQFNuYOgIiIqDYrQAEu4TIu4hK84YXDRw+jffv25g6LiIiIapAWWlzDdZzDedjABr9u+BUPPPAAVCqVuUMjIiKiGpSMZJzGWeQgBx9+9iHGjx8Pe3t7c4dFVcCGESIiohJooEEsYnEeF+EKV2zftR3du3c3d1hERERUgwQE4pGAszgLLQS+WfkNRo4cCSsrTr5ARERkSW4jFWdwBmlIQzM0w6HMw3B2djZ3WFQNbBghIiLSo4UWVxGH8zgPO9hjw8YNGDBgAHuEEhERWRABgZtIxhmcQR7ysPDLRRg7dixsbW3NHRoRERHVoHRk4CzO4iaS0RRNcC7lPDw9Pc0dFhkBG0aIiIggL4Bcxw2cxTmooMLyX1bg4YcfZo9QIiIiC5OCFJzGWWQgAy3QDIeyj3BtMSIiIguThWycwzncQDyC0QjX4q8hICDA3GGREbFhhIiILJqAQCKScAZnUYACLP52MZ588knY2PAUSUREZEnSkI4zOItbuIVmCMHltMtwc3Mzd1hERERUg3KRi/O4gKuIQxCCcPHyRTRp0sTcYZEJqIQQwtxBEJna0aNHERkZiTZt25VSQuj9a7Cp+PaizyztSbpHJTy5+FNEia9R/LdTr1xp8Qn9/wwLlfgaBsVKjqP85wrDbSXGUvR5ooSNFduvbCrpz5cwKFDqz1S3v/TXKFLp8p5b7LWLbKjMa5fyXFHO/uKPS/gBlPVcUdL2wmOI8sqVdqySXtvgEEJvszDcbvAyQu9lKvBvib9bhqUEADXUKEABWqA5Duce4aJpRPWck5MTQpo1g51dSb/rNZsPlPxaxc/FNZEPFI+zhJyghvOBCpepyXygss83QT5gcLfM83qRO6bMB4qWLSsnMHE+UOLWYr9bxfMBAYFMZKIJGmNf0n74+vqCiOqvfv364fyFC/Dy8i5hr2nyAWVLOaetGskH7jws+7xechzGzgcKn1b6ObFG8oFyX6Po+a0Sz61OPlDG82s+HzA8Tok5QY3lA4WvUVpOUJV8AAAykQk/+OKfU1vRunVrUP3FhhGyGP/++y/S09PNHQYR1TJWVla499574eLiYu5QiKgGxMTEIDY21txhEFEtFBERgUaNGpk7DCKqAXFxcTh8+LC5wyCiWqhp06Zo166ducOgGsCGESIiIiIiIiIiIiIishhcUZaIiIiIiIiIiIiIiCwGG0aIiIiIiIiIiIiIiMhisGGEiIiIiIiIiIiIiIgsBhtGiIiIiIiIiIiIiIjIYrBhhIiIiIiIiIiIiIiILAYbRoiIiIiIiIiIiIiIyGKwYYSIiIiIiIiIiIiIiCwGG0ZM4O2334ZKpTK4tWzZ0txhERERUQ1jTkBERETMB4iIiGofG3MHUF/ddddd+Oeff5THNjZ8q4mIiCwRcwIiIiJiPkBERFS78ExsIjY2NggICDB3GERERGRmzAmIiIiI+QAREVHtwqm0TOT8+fMICgpCSEgIRo8ejatXr5o7JCIiIjID5gRERETEfICIiKh2UQkhhLmDqG82btyIzMxMhIWFIT4+Hu+88w6uX7+OkydPwtXVtcTn5OXlIS8vT3ms1WqRkpICb29vqFSqmgqdiIioVhJCICMjA0FBQbCyqjv9OiqbEzAfICIiKh3zAeYDRERERssHBJnc7du3hZubm/jmm29KLTN79mwBgDfeeOONN954K+MWFxdXg2dw4ysvJ2A+wBtvvPHGG2/l35gP8MYbb7zxxhtv1c0HOGKkhnTu3Bl9+/bF3LlzS9xftEdIWloagoODERcXBzc3t5oKk4iIqFZKT09Ho0aNkJqaCnd3d3OHUy1l5QTMB4iIiErHfID5ABERkbHyAS6+XgMyMzNx8eJFPPHEE6WWsbe3h729fbHtbm5uTHyIiIjuqOvTR5SXEzAfICIiKh/zASIiIqpuPlB3JuWsQ6ZPn44dO3YgNjYWe/fuxdChQ2FtbY1Ro0aZOzQiIiKqQcwJiIiIiPkAERFR7cMRIyZw7do1jBo1Crdu3YKvry+6d++Offv2wdfX19yhERERUQ1iTkBERETMB4iIiGofNoyYwE8//WTuEIiIiKgWYE5AREREzAeIiIhqH06lRUREREREREREREREFoMNI0REREREREREREREZDHYMEJERERERERERERERBaDDSNERERERERERERERGQx2DBCREREREREREREREQWgw0jRERERERERERERERkMdgwQkREREREREREREREFoMNI0REREREREREREREZDHYMEJERERERERERERERBaDDSNERERERERERERERGQx2DBCREREREREREREREQWgw0jRERERERERERERERkMdgwQkREREREREREREREFoMNI0REREREREREREREZDHYMEJERERERERERERERBaDDSNERERERERERERERGQx2DBCREREREREREREREQWgw0jRERERERERERERERkMdgwQkREREREREREREREFoMNI0REREREREREREREZDHYMEJERERERERERERERBaDDSNERERERERERERERGQx2DBCREREREREREREREQWgw0jRERERERERERERERkMWyq8qSrV69W+jnBwcFVeSkiIiIiIiIiIiIiIiKjqVLDSJMmTaBSqSpcXqVSQa1WV+WliIiIiIiIiIiIiIiIjKZKDSMAIIQwZhxEREREREREREREREQmV+WGkQ4dOmDNmjXllhs6dCiOHTtW1ZchIiIiIiIiIiIiIiIymio3jNjb26Nx48bllrOzs+PoEiIiIiIiIiIiIiIiqhWq1DCi1WorXHbfvn1VeQkiIiIiIiIiIiIiIiKjszJ3AERERERERERERERERDXFaA0j+/fvN9ahiIiIiIiIiIiIiIiITMJoDSOPPvqosQ5FRERERERERERERERkEpVaY2T48OElbhdCICUlxSgBERERERERERERERERmUqlGkb++ecfrFixAi4uLgbbhRDYuXOnUQMjIiIiIiIiIiIiIiIytko1jPTu3Ruurq7o2bNnsX1t27Y1WlBERERERERERERERESmUKmGkTVr1pS6b8uWLdUOhoiIiIiIiIiIiIiIyJSqtfh6QkKCseIgIiIiIiIiIiIiIiIyuWo1jPTv399YcRAREREREREREREREZlctRpGhBDGiqNemzdvHlQqFaZMmWLuUIiIiMhMmA8QERER8wEiIqLaoVoNIyqVylhx1FsHDx7EV199xcXpiYiILBjzASIiImI+QEREVHtUq2GEypaZmYnRo0dj6dKl8PT0NHc4REREZAbMB4iIiIj5ABERUe3ChhETmjhxIu6//3707du33LJ5eXlIT083uBEREVHdx3yAiIiImA8QERHVLjbVebK1tbWx4qh3fvrpJxw5cgQHDx6sUPm5c+finXfeMXFU9dfDVkMNHv+mXWumSIiIiAoxH6h5+jkB8wEiIqoNmA/UPF4jICKi8lRrxMjRo0eNFUe9EhcXh5deegkrV66Eg4NDhZ4zc+ZMpKWlKbe4uDgTR0lERESmxHyAiIiImA8QERHVTtUaMUIlO3z4MJKSktCxY0dlm0ajwc6dO/H5558jLy+v2Ggbe3t72Nvb13SoREREZCLMB4iIiIj5ABERUe1U7YaRe++9t9R9jo6OaN++PSZPnoyAgIDqvlSd0adPH5w4ccJg29NPP42WLVvi1Vdf5RRkREREFoD5ABERETEfICIiqp2q3TCyfft2qFSqEvcJIbBp0yZ8//332LdvHxo1alTdl6sTXF1dER4ebrDN2dkZ3t7exbYTERFR/cR8gIiIiJgPEBER1U7Vbhjp2bMnDh8+jLy8PLRt2xYAcPz4cdjb26NVq1Y4efIkEhISMGfOHCxdurTaAZPlGm79iMHj9m16Kve5kBoREZFlKCsfAJgTEBERWQLmA0REVF3VbhgZOXIkjhw5ghMnTiAsLAwAcObMGXTu3BlPPfUUBg4ciHbt2mHz5s3VDrYu2759u7lDICIiIjNjPkBERETMB4iIiMzPqroHmDt3Lho2bKg0igBAy5Yt0ahRI3zwwQcICQlBt27dkJCQUN2XIiIiIiIiIiIiIiIiqpZqjxhJTk7GtWvX8Nprr+HRRx8FAKxduxZnzpyBk5OTUk7/PpEpJCUlYfv27UhMTFRuaWlpyM3Nxddff42AgAAAwJIlS7Bs2TJotVpYW1vDxsbG4Pb555+jRYsWAIB169Zh1apVsLa2hp2dHRwcHJSbjY0Nxo0bhyZNmgAADh8+jG3btsHW1tbgZmdnB2tra/Tq1UuJ4cqVKzh27BhsbGxgbW0Na2trWFlZwcrKCtbW1mjVqhV8fHwAADk5OcjIyICVlRVUKhWsrKwMnmdrawsrq2q3cRIREdULOTk5+Pfff3H9+nUkJibi6aefRsOGDQEAv//+Oz777DMUFBRArVZDo9FAo9EAAKysrDB//nz06NEDALB161bMnz8fNjY2sLOzU262trZQqVSYMGECunTpAkCOll61ahWcnZ1hb2+vnP91uUCXLl3QrFkzAMDt27dx6tQpODg4wM7ODiqVyuD87u/vD3d3dwCAVquFEIIL8xIREVWSEAL79+/HxYsXcfPmTWg0Grz88svK/rfeegvHjh0zyAeEEFCpVLC3t8eff/6plJ07dy4OHz5scP1A913c1tYWCxcuhI2NvLz222+/4b///it2nUFX9vHHH4e9vT0AeQ3h6tWrynH1ryNYWVkhIiICdnZ2AICbN28iOztbuRahf33A2toajo6OvC5ARFRJ1W4YeeCBB7B69WosWLAACxYsKLYvLy8Phw8fRsuWLav7UkSlev/99zFnzhzk5eWVuD81NVVplLh+/ToOHjxY6rGysrKU+6dOncIvv/xSatlBgwYpDSO7du3CjBkzSi27efNmJYbNmzdjwoQJpZb97bffMGzYMOX+E088UWrZFStW4PHHHwcAbNiwAaNGjSp2kUWXXC1YsAAjR44EAOzevRvjx48vllDpkrKpU6dixIgRAOQFn9dff92gYUh3McfKygr33Xcf+vTpAwCIi4vDJ598UixOXdk+ffpg4MCBAOTFoaVLlxpcPLKxsYG9vT0cHBwQGhqKNm3aAADy8vJw6NAhWFtbK/sdHBxgb28POzs7ODk5sQGWiMiCJecl4cCtPfiwwdu4ffu2sj0qKkppGLlx4wa2bNlS6jFSU1OV+9evXy9zKth+/fopDSOnTp3CnDlzSi37zTffKA0jBw4cUM6DJVm0aBFefPFFAMCePXvQs2dP5dxnbW2tnE+trKzw9ttvY/LkyQDkGn9DhgxR9qlUKuWYKpUKzz77LKZOnQoAuHbtGt5++22D19UdV6VSoV+/fnj44YcBAOnp6Vi8eLFyznVwcICbm5tyCw4ORlBQEABAo9Hg6tWrEEJACAEAsLa2Vs7Zjo6OysUgIiIiU8jX5uPY7UNo23YpTp48qWz38PAwaBiJjo7G1q1bSzxG0XPVnj17DBpKilq0aJFyf/Xq1fj5559LLfvoo48qx1+8eDGWLVtWatn4+HjlGsJ7772HTz/9tNSyFy9eREhICADgtddew4IFC5QOmLrrA7rb/v37cddddwEAPvjgA8ybN0/JMfTzBwD466+/0KlTJwDAd999hw8++EC5xqDfSGRjY4OFCxeiQ4cOAGSH6Y8++sggJ9Bdc7CyssL777+PqKgoALIzyldffQVfX1/4+PjA29tbyXtsbGzQu3dv5bpLYmIiYmJiDGL09PREkyZN4OvrWyx+IqKyVLth5KuvvoJarcbatYYLWw0bNgxffvklbt68iTfffFO5uElUVbnaXIPHr8e8qNz//vvvkZeXh7Zt2yIsLAx+fn7w8/ODp6cnHB0d4e/vr5R9/PHHERUVBZVKBa1WC7VabdBzNDg4WCk7YMAAuLm5QaPRID8/H3l5ecjNzUVOTg7UajUCAwOVsi1btsQTTzyBgoKCYje1Wg1PT0+lrK+vL+6++26o1Wqo1WpotVrlplar4eXlpZTVJRGl0fVMAQC1Wo3s7OxSy+o3+mRmZuLMmTOllk1MTFTuJyUlFfsd1+fr66s0jCQlJZXYMKLj4OCgXBBKTEzEq6++WmrZKVOmKMdKSkpC9+7dSy07YcIEfPXVVwDkha2GDRvC3t4eKpUKQgil1y0AjBo1CkuWLAEgexbrfuZ2dnZwc3ODu7s73Nzc4Ovrix49euC5554DIHvubt++XUnonJ2d4eLiAhcXF+Vij65xRgiBjIwM5TNgZWVl0ONY/+dGREQVVzQfeHbraIwZM8bggkVwcDDat28PPz8/+Pr6KtvvvfderFixAra2tsqXbd1oDCEEOnfurJTt3r07VqxYofwdz8vLQ35+PvLz8yGEQNu2bZWyTZo0wQsvvICsrCzk5eWhoKBAKVtQUKA0zADyXNOiRQvk5uYqxxJCQKPRQK1Ww9nZWSmr6/Ch0WhKPL/rdwjJzc3F5cuXS33f9HOA27dv49tvvy21rLu7u9IwkpycjNdff73UspMnT1Yu1CQlJSkXZUoyZswYfP/99wCAjIwMBAYGKp0ydD1vPTw84OnpiQEDBmDWrFkAZH7z9NNPGzTeWFlZwdnZGa6urmjTpo3S8QOQF5J8fHxga2tbaixERFS3Fc0HZh6djA8++ACfLViAlJQU4Brg7OyMLl26wNfXF35+fsqIEACYOnUqRo4caXAesrKyghCi2MiLF154Affdd58yskT/GoJarTYY2dm3b194eHigoKCgWNn8/HyDRpfmzZuja9eu0Gg0xa4faLVag++MKpUKDg4OyM01rLeOfsz61xhKon+NIScnx6BjSFH6x0hOTsa5c+dKLat/nPj4eOzZs6fUsikpKcr9uLg4rF69utSyv/76q9IwsmPHDqUDZ1GOjo746quvlI6le/fuxbx58xAQEICgoCAEBQXB29tbybvuvvtuNG7cWIn3wIEDxWb/8Pb2hp+fHzw8PMptdBFCQK1WQ6VSKT873Xute64QQvlsAFAamYjIPKp9Zc7DwwO//fYbLl26hFOnTgEAwsPD0bRpU2X/Sy+9VN2XITKQhzz8999/aN26NQB5oTssLEzpcVCWli1bVngEU6dOnZTeEeUZOHBgmT1A9Q0ZMgRDhgypUNknnngCTzzxhHJxX5eM6ZIsR0dHpeyAAQNw6dIl5SKLfsNPQUGBQaNPZGQktm/frpTTb5jRaDRKDxJAJmxffPGF0jCUl5eHvLw85bm6HrMAEBAQgFdffbVY0qArq9+44eLigjFjxigXjnSx6l6nefPmSlkrKyu0aNECarXaII7c3FxoNBqDZCI3NxdZWVkGF4H06V9cEkIgOTlZeXzjxg2DshqNRmkYKSgoUBqASjJ06FCsWbNGeaybCqUkffv2Nei1PGLECAgh4Orqqtzc3Nzg6uqKJk2aVPizRURkafbt24e///4bKpUKgwYNwgsvvICBAweWOP1UixYtlOkyyxMSElLmRX59ERERiIiIqFDZe+65p8yLCvp69eqF5ORkpRFF/3yt0Wjg5+enlG3dujWio6OVL/tA4ZdxrVarfPEHAH9/f7z//vvKY13eUNK52snJCWPHjlXOu7opPtPT05Geng43NzeD4zg6Ohr0StWdt4UQcHBwUMrm5+eXeJ6Oj48HAIMcQKPR4H//+1+p79OQIUOUhhEhBEJCQpCbmwtbW1s4OTnB2dkZ1tbWyM/PR//+/bF8+XLluZ6enlCr1WjYsCFatGiB5s2bIyQkBJ6enmjatCm6du1a6usSEVHtkp6ejpSUFDRp0gSTJ0/G2LFj4eHhUWLZ+++/v8LHve+++ypcdty4cRg3blyFyr7++utldj7Qt3DhQixcuLDY93ddB0D9c+zbb7+N6dOnKw0k+ud4AAYdNiZPnoxRo0aV2JCiO6fqjB49GlFRUcr1Bd01Cd3/+tcQBg4ciN9++03JB/Rj0Gg0ysgSAOjWrRsWLVqE5ORkJCcn49atWwYNT/odUl1cXNCuXTuD4yYnJ+P69evIyckx+HnHxcXh999/L/U9/d///qfkR/v378fQoUPLfP911za3b9+OJ598EkIIg+sSBQUFAORIoBdeeAFA4ehfOzs75b3S98EHH+CVV14BAJw7dw6DBg2Cj48PAgIC0KhRI+UWGBiIdu3aGXSiJaLqM1qX5ZK+PCYnJyvrJBAZixpqHMAhdO3aFRs2bEDPnj1hb29foUaRukylUik9WUrj7OysNEqWx8vLC7169apQ2aCgIDz//PMVKtugQQPMmzevQmUbNmyo9BytyHFLu5BUNInz8fHBxYsXkZubq/T40fUwFUIYXMRxcHDAqVOnIIRAXl4eMjIykJaWhrS0NCQmJhpcQBNC4K677lIakLKzs5GZmYmMjAxotVqDXjq6XiK6HiNFR/4UnfZr/fr1pU4F161bN4OGkR49esDGxgZNmjRBcHAwHBwclFEsTZo0wSOPPKKUXbJkiTJixcrKCg4ODnB3d4e7uzsCAgIQHh5e1ttORFTr3X///fjrr7/g5eVV4caJusLW1hbe3t4VKuvi4oK77767QmX9/Pwwc+bMCpUNCAgoc3SJvqCgoBJHtuh6R+qfCz08PHDhwgWDTh/5+flITU1FamqqwUUQa2trfPjhhwYjQHXn4YyMDIPRO+np6VCr1QBkhwbdOV1Hv4cqIDtL5Ofn48yZM8VG0t53330GI5HGjh2LBg0aoEOHDujcuTMaNmzIKTuIiGoJlUqF999/H0OGDEFERES9XZ+rItcFdLMaVIS3t3eFc40GDRqgQYMGFSpbmQ4mlem4ct9995XYUJWfn4+4uDiDTiOdO3fG119/jYSEBNy4cQPXr1/H7du3le/G+qOKPTw80KVLF2Vkj67D5q1bt5Cenm5w3OzsbMTFxZUao66BBIDSOaS07/r6EhMTcenSJVy6dKnE/VOnTsXHH38MADh79iy+/PJLZb2Zop1nHn74YeV6z+XLl/HRRx/B0dERTk5O8PDwgJeXF7y8vODr64tWrVqV2amTqD6rdsPI888/r0xJo+/q1avo379/mVP1EFWWBhocwEGkIhVe1l4GJzKyXLrERsfGxqbCSZiVlZUy8qg8Dg4OBvPU6ugu+BSVkZGhTNeiu4iTn5+vNNjoP//LL79ERkaGwU3XG7ddu3ZKWbVajejo6GI9TXT69etn0DAyc+ZMgwtC+iIjI7F//37lcYsWLXDlyhWDxX59fHzg6+uL9u3b44cfflDKLlmyBBkZGQaLCbq5ucHT0xP+/v717uIkEdUuAgJqqGELOVqwX79+Zo6IyqJSqZTFY3Wsra2VdVfKY2NjYzAvfFnc3d2Rl5eHtLQ0ZfRodnY21Go17O3ti/UcPnv2LAoKCnDlyhWcP38eFy5cQGxsLNLS0tCxY0el3O3bt4vNA6873zk7O2PQoEF4+umnKxQjEREZTzJuwQMeyuPIyEjzBUNmY2dnVyyvqEzjTO/evbFv374S9+Xm5hp0hOjWrRsOHjyoTG9mb2+v3GxtbQ2mRe3Rowfi4+ORl5cHGxsbZX1V3Zou+vlRu3btsHv3biQnJyM+Ph5xcXEGN/1RrLGxsVi4cGGp9WnWrJnSMHLt2jUsXry41LKvvfYa5s6dC0B2IPntt9/QsmVLtGrVip3dqd4zyhojNjY2+Oyzz5RtZ86cQb9+/YpNSUNUHVpocRhHcAspsIEN/v77b7Rq1crcYRGVeMEHgMFwZpVKpcxVqp8o6fY99dRTFX6tHTt2IDY2FrGxsYiLi0NBQYHSM0R/+DIAPPLII8jKylL25+TkIC0tDampqcV65dy8edOggUer1SI+Ph7x8fHFYp47d26pvWRatWqF//77T3n8wAMPIDU1FWFhYcpUdm5ubkhLS4Ozs7PB9GQHDx5U5v3XX/yvoKAAtra2BiNc9u3bh+zsbLi5uaFBgwbw8/Ortz3DiMjQJVzCZVzB3eDFDyrOysoKnp6eBuu7lUY3Z3mLFi3Qt2/fMo/56aef4tixYzh8+DBOnDiBxMRE/PXXXwDkemu6hpGkpCSMGDECc+bMQY8ePQDIhpWjR4/i5s2bBnOjnz17Fjk5Ocpi9t7e3hyFQkRUQUm4iQM4CE94IDMzs8KjJIgqQ/97PSA7YVR0ynU7OzsEBARUqKybmxu6detW6n79zpVNmzbFzJkzlem5dGvk6EYU6a+b17BhQ7z55pvIyclBdnY2UlNTkZKSgpSUFNy4ccPgO/bRo0cxYcIE5XFUVBR+++03g5G8RPWJSpS3snM5XFxckJOTg4kTJ+LTTz/FgQMHcP/99+PWrVto0qRJqUPAqGzp6elwd3dHWlqawbQ/lmSIarDB487vdcGbb74JBwcH/P333+jZs6eZIiOqn65duwYASkJVUFCA5ORk3Lx5E/b29ujdu7dSdtq0aUhJSVHmfc3Pz0d6ejpu376NkJAQg8XzgoKClDnji7r77rsRHR2tPG7atCliY2NLLNuuXTvExMQoj8PCwgymV7O2tkZAQAC8vLwQGhqKX3/9Vdk3adIkXLlyRRky7efnpyyi5+HhYbDmz8WLF2FtbQ0PDw84OjrCzs6OF6lqAUs9L1pqvfUVzQdm7nsDUVFREELg008/xeTJk80UGVmynJwcxMTE4OjRo9BoNGjfvr3SCDJ58mR8/vnnAGSv0hs3buDy5csAAHt7e4OFcx966CFs2LBBeezv749u3bqha9eu6Nq1KyIjI9noT6THUs+LllrvovRzgi/jv0br1q1x+/ZtjBgxAitXruTfS6IqEEIo33d3796N999/H6dPn8aVK1cghEDjxo2xadOmCq/VW13Hjx/HsWPHlEYf3Ro2eXl5yM/Px5NPPomgoCAAwObNm/Hbb7/B2dlZWaPV3d1d+b7funVri/6bWZ8Z67xY7REjW7ZswaBBg7B48WLEx8dj8+bNyMjIQLt27bBx48bqHp4IAJCODMyZMweAHKXERhEi49NfhE8nODi4xLK6uU0rYt26dbh06RLOnj2LM2fO4PTp08jJyYG7u3uxES4BAQHIz8+HRqMxWCDQzs6u2NR5LVq0gI2NDVJTU5GQkACNRoPr16/j+vXrxdZ02bZtm8EoFn0hISEGDSOjRo3CwYMHDcrY2dnBxcUFoaGh2Lt3r5I4RkdHIzAwUOlxTESmpYUW48aNgxACo0ePxqRJk8wdElkoR0dHREVFlbjG3axZs1BQUIClS5diz549yvaQkJBiFxU8PDwQGBiI9PR0ZGVlITExEWvWrMGaNWvg6OiIjIwMpewvv/yCc+fOKVOItm7dGvfffz8vBBKRRZo0aRJu376NDh06YPny5fxbSFRF+p0Au3fvroyGvXTpEgYOHIjz58+jW7du+P333w2m86qMDRs2ICYmRpkuPD09Hbdu3cLNmzeRnJyMf//9F6GhoQCA1atX47333iv1WL169VIaRk6cOIGvv/661LKbNm3CgAEDAABr1qzBggUL4OPjAy8vL7i4uCgzVWi1WkyZMkWZeu2ff/7Bd999B1tbW7i7uyvr+uimQHvwwQfLHN1DdUe1G0aioqKwfft29O/fH2vWrIEQAn369MHatWs5jJGM5hIuIT8/H4MGDcITTzxh7nCIqBIiIyMrPNev/uiR8vzxxx/KfbVajaSkJNy4cQOpqamwsTE8vb3zzjtIT09HQUEBbt68iaSkJCQmJiIjIwP+/v4GZe3s7ODo6IicnBxlW35+PlJSUnDr1i2DxHHy5Mk4evQoHn30UUyZMgWRkZEG690QkXGdxTmcO3kevr6+WLRoEUdzUa3k6+uLL7/8EpMmTcKuXbvQsmVLtG/fvsSpvfTX78rNzcWhQ4ewZ88e7NmzR5kaQ+fdd98tttZZ48aNMWHCBDzzzDPFzmdERPXVdVzHod+OwNraGt9++22J0xoTUfWEhIRgz549eOCBB3DgwAHMmDEDu3fvrlL+vXHjRnz55Zel7j9y5IjSMBIeHg4fHx9kZWUZfCdXqVTw8PAwmI2iU6dOaNu2LdLT05GSkoL09HSD4+7cuVNpGImOji51HRkA+Pnnn5GYmAgAOHnyJFatWlVq2U8//RTZ2dll1Jjqiio1jOh67uu799578csvv8DV1RVdunRRehPPmjWrehESAWiLNhj7zjN4+umneRGEiIqxsbFBUFCQ0nOkKP0F6cuze/duAEBeXh5yc3OV/9PT05GZmWlQ1s/PD1qtFj///DN+/vln+Pr6YsCAARg0aBB69uxZ4igcIqqaW0jBOZwHAHz++efw9vY2c0REZQsPDzeYt7s8Dg4O6N69O7p3715snxACvXv3RteuXaHVapGZmYm///4bV65cwRtvvIH169dj//79AOQaYdHR0fDz84O7uzs8PDx40ZCI6o0c5OAYTgAAZs6ciQ4dOpg5IqL6y9fXF//++y+WLFmCiRMnVvl63D333FNmw8i2bdswcuRIAEDXrl2RnJxcrIwQArdv38bff/+NYcOGAZDrmx4/frzU416/fl25P2bMGHz44Yellm3WrJlyv7zRIM2bNy9zP9UdVVpjRDf/fEVoNJpKB0WcQxQoPqf4OrGhlJJEROZz7NgxLFiwABs2bDCY8mTixInKHPM3btzAjBkz4OLiAldXVzg7O8PJyQmOjo5wdHREhw4dlAX88vPzkZuba7F/+0tjqedFS623viGqwShAAbZjB7KRgyeeeALLly83d1hEZpeTk4NffvkFS5YswdixY5XFUi9fvqxMBaHj5OQEf39/BAQEYMyYMXj22WcByL8xK1asgK+vL4KCgtCgQQMEBgYWW2iWqLaw1POipda7qCGqwdiPA0hAIjp37ow9e/bA1tbW3GERWRS1Wo2+fftixIgRGDduXIV+B9PT07Fjxw7Ex8crN900WsnJyRg+fDhmz54NQDZmdO7cGR4eHkoHD2tra+Tk5CAnJwfDhg3D9OnTlePef//9sLGxgY2NDWxtbWFrawsvLy94e3ujS5cuePTRRwHIhpXo6GhlLRJXV1e4uLigoKAAWVlZsLa2VjpeCSFw5swZ2NjYKOuS8m9N7WKs82KVGkaaNGlS4YYR3UKDVDmWmPgMVj1g8Pjn7NX49NNPMXXqVPZyI6Jar6CgAHv37sXGjRvx999/Y8KECXj++ecBADExMWX2Znvttdcwd+5cAHLx94iICLz55puYNGkSL07dYYnnRcBy662fE2wQfyApKQlPPPEEzp8/j5iYGIt6L4gqQqvVKlM57tu3DyNHjkRKSopBg73O22+/rVx8OH36NFq3bl2sjKOjI1xcXPDiiy/izTffNG3wRJVgqedFS6130WsEG8QfuHTpEp577jl8/vnnytQ7RFRzli9fjjFjxgAAOnTogO+++w7t27c3b1Bkccy6+HpsbGyVX5CoohYsWIDZs2cjOjoa69atM3c4RGTBhBBISEiAh4cHHB0dSyxja2uLXr16oVevXpg3b57BvoCAAHz00UfIzMxUbroeL9nZ2QZTraSkpCAtLQ0zZszA4sWLMX/+fKWXC5Gl8vPzw8aNGxEfH29RF4SIKkp/fau7775b+b6m0WiUebcTExMRHx+PsLAwpay9vT2GDRumrNN1/fp15OXlKeeogoICpWxeXh7S09Ph6+tbY/UiIioqJCQEmzdvNncYRBZr5MiRyMjIwKxZs3D06FF06NABzzzzDJYsWcJRFVTnVHvxdSJTyEe+cmFx1KhRZo6GqG4TQkCtViM3NxeOjo7FFiavizIyMnDy5EkUFBTAzc0NjRs3hoeHR4mjGfPz83Hz5k04ODgoU1eVNupRo9EgOzsbLi4uUKvV2LVrF9auXYt169bh2rVr+PHHH5W/SZs3b8bEiRPh7e0Nb29v+Pv7o3HjxmjcuDEaNWqEjh07KgvtZmdnw97eHo0bN4a/vz88PDyQnZ2NzMxMZGRkoHPnzkoMNjY28PX1xc2bNxEbG4vhw4cjOjoad999twneSaK6w8rKCg0aNDB3GER1irW1NTw9/5+9s46P4mzi+O8uSoSQ4CFYcHe34hq0QHEtxYqWQoFCoRRaXmiBQoEWaClWihV39+AaCAmBeAJxz+Vu3j+Gy+VC/Dx5vnz2c3e7e7uzl+Oe2WdmfuMIR0dHNe1sJa6urjhw4EDqa6V+d3R0NGJiYlC0aFEkJiZixowZiIyMRFJSEg4dOqTPSxAIBAIAQAqETLtAoAtiY2NhZ2eX+nrx4sXw8vKCTCaDTCZDcnJy6mJvb49jx45hypQpGDBgAEqXLg0A2Lp1Kxo0aIApU6YY6jIEgjxh+rNjgnyJL/yQkJCABg0aYNCgQYY2RyDQC3K5HNeuXcPz589hZWUFKysrWFtbo2XLlqkOx7lz5/DTTz8hPj4+dUnrqKxcuRJjxowBwA3MevXqhcTERCgUCgA8QVKmTBmUL18eU6dOTf3/FRAQgD179qT2kJJIJLC0tESxYsVQvHhxVKtWLbWxeWxsLF69egW5XA6FQgGFQgG5XI7ExEQkJCSgWrVqqFKlCgDWP/fw8EDhwoXh6OgIBweHTAMz0dHRuHPnDt69e4ekpKTUawoLC8ODBw8wZswY9O7NvYeePXuGli1bqr3f3t4eZcuWRWxsLL799luMHz8eAPDkyZPU/h0AUnVCHRwcoFAoMHfu3FStdQ8PD9SpUwcSiQQWFhZITk5WO4etrW3q86CgIHh5ecHLyyvD6zl8+HCqvbdv38bUqVMz/dvv27cvtUH8q1ev8O7du1Rb27Vr95FWvEBQUIhCNL7++mtMnjwZFSpUMLQ5AoFJk5KSgpCQEAQEBOD9+/eIiYlBbGwsypQpg27dugFgX+Tzzz+HmZkZbGxsYGNjg1u3buHBgwcAgI0bNxryEgQCQQFFBhnO4yKGDh2KTZs2iepRQYGBiJCYmIj4+HjIZDKUKlUqdZuHhweio6OhUChARKlLcnIy5HI5OnfunLrv2bNnERQUBCKCv78/fHx88Pr1a3h6esLe3h4eHh6p+544cQJ3797N0B5l4h/Aqgg9e/bE8ePH0bhx42wblgsExogIjAiMDgLhDd4CAKZOnZrjfjYCgb4hIsTHxyMsLAzx8fEoXrx4arOulJQUhIeHIzExEUlJSZBKpbC2toa1tTUsLS1hbm6eKsn0/Plz/Pzzzzh8+DDev3//0Xl27NiB4cOHA+Dqh3PnzmVqU9qJfGX1Q1rkcjl8fX3h6+uLYcOGpa739PTEnDlzMj3uihUrMG/ePADAgwcP0LZt2xzt++rVKzRq1Ehtu52dHSwsLJCYmIgFCxZgwYIFqTZ06tQp0+O6urqmBhpsbW3h6uoKc3NzRERE4N27d4iJicHz588BAL6+vmqfibm5OVJSUgDw30bZ5A0A/Pz8UveNjo4GgFSHslixYujduzf69euHjh07qvX76NmzJ65cuYLw8HCEhYUhMDAQb9++xdu3b+Hn5we5XJXVVrJkSfTv3x/BwcEICQlBZGQkbG1tUxu+pb25q1atGpYuXYrWrVujWbNmsLGxyfQzEQjyOz7wwZX/XYWfnx/27NljaHMEAp3j5eWF4OBgREREIDk5GS1atEhNTEiP0r9QLjKZLDWxwMLCInVsCQkJQcOGDREcHJyaKJGW3r17pwZGzM3Ncfz4cSQlJant4+TkhF27dqXuJxAIBPrEHwGQQYb79+/D3t7e0OYIdIVCARABZma5epsyeKAMEiiTCgHg5s2bICKYmZmlLspxU3lPqeTff/9FWFgYIiMjERkZiaioKBARpFIpypcvn3qPCwC9evVCaGhoahKBjY0NLC0tIZVK4eLioiat/MUXX8DX11ctgAFw0mLp0qXx559/pu47aNAgPHnyJFVZIDY2NvW+0sXFRe3eddy4cbh582aGn4mjoyPCw8NTX//vf//D2bNnM9zX3Nwc8fHxqfed06dPx7t371IbmVtaWsLS0hIWFhZwcHBQe+/Ro0fFnJ3ApBGBEYHRIAVrIwcjGAlIgJOTk5DR0gQiICoKcHAAxECVY2QyGfz9/fHmzRtIpVK4urqibNmyAIB3797hwIEDOH/+PG7fvo3Q0FC1iYNvv/0WS5cuBQA8ffo0y2bbafeNiorC1q1bAfDEQ6tWrVKdu8TERDWdzsaNG2Pnzp2pzlehQoVSgy2WlpZqkyctW7aEt7d36j5WVlaIiorCmzdv8PbtWzX5pmLFimHEiBFqzlpiYiLCwsLw7t07lCtXLnVfGxsbODs7w9zcXG1CRhn4KVGihNrn6ezsjKioKMTFxQHgihMlaQM3pUqVQq1atVCsWLFUx9LCwgJ2dnaoV68ePvnkk9R969SpA29vb7Xj+Pn5wd/fH3Z2dmoObosWLSCTyZCSkoL4+HhERUUhKioKkZGRqX/jtPsq94mPj0e5cuUyrXApVqwY2rRpk9mfWI0OHTqgQ4cOOdq3Xr16qFevXo72FQjyK1JIkYQkBCAQADBt2jQDWyQQ6Idhw4bB3d1dbV29evXQvXt3uLm5qVVLFi9ePMPm6gAwYMAA7N+/HwD36FFWjyonYUqUKAF7e3vY29ujadOmau/duHEj4uLiUitTzczMMGrUKDVfQCAQCPSBFFKROGlqJCUB9+/z8vo1L1OmAMoEuJs3gf79OQiSksKLTMZLSgpSfvwRFxo0wJs3b+Dv748Af39UrVYNc+fOBcBBkMqVKyMpKSlV5ikuLi61J1bXrl1x6tSpVHO6du2a6VjZsmVLXL9+PfX11KlTUyv309O4cWO1wMjz58/h4+OT4b61atVSC4xcvXpVrSIjLRUrVlR7/ebNG7x48SLDfZWJfkqcnZ1RoUIFNdUHpfJB2soOpf0SiQREBGdnZ7i6usLV1RWVKlVCnTp11JLxlEmZOUH8fxSYOiIwIjA6fPAGADB27NhMmxwLMiA6Gvj9d+DhQ8DDA3j5EoiLA1q1Aq5dM7R1uSbo+XNYrVkDp6dPgaJFEdahAzr8+SfiExJS+zmULFkydRK9cePGqVmMAQEBmDFjBgIDAxEdHZ0q8ZSYmIjk5GSMGTMGa9euBcBSTxUrVoSdnR2Sk5MREBCglk05dOhQ7Nq1CwDw9u1bTJo06SNblZP3abOXrKysUh+trKygUCiQmJiY6sykDQ40a9YMX3/9Nbp27Yq2bdtm2QOkRIkSapUeWWFjY/ORBJONjQ1Kly6NFi1aqK2vU6cO/v777xwdt1GjRggICMj1vjKZDFFRUYiIiIBcLoe1tbWaw+bi4oKnT5/m6LjpsbGxQbVq1dQayqbH3NwchQsXRuHChVODXemRSCSpfUgEAoFheQtfKKBAo0aNRI8dgUnw/v173L9/H46OjqhRo0aqXndcXBxev36NN2/eIDQ0NDXoEBkZiWvXruHixYupSRAVK1ZEeHg4HB0dkZKSgocPH+LRo0d49OgRbt68iUuXLqWeL6PqDyUPHz5MfS6RSHD9+nUUKVIExYsXh1k2mbhKSU6BQCAwBt4jDLGIhRnMMHLkSEObI8gIHx9g3Trg1i0OiKSTI0aLFqrASHIyEByc6aF+WrYMCz/cKzcDsAnA7Zo1AUtLIDQUktBQzH37FtfkchwFEJnmvRKJ5KN76erVqyM8PBxyuTx1ISLI5fKPggddu3ZFfHw8ihQpgiJFiqBw4cKQSqUfVaEAwObNm1MTGePj41ODM3K5HE5OTmr7Llu2DDExMakBDCVyuVxNqhkA1q1bh8TExNTkBTs7O9jZ2cHGxuaja1MmQOSE5cuX53hfgaAgobXAyO3bt9GsWTNtHU5QQCEQzMA3axlNQAsy4elTzrp49erjbWmz++Ry4IsvOGMji2oGQ7N3715YDR+OvmkyIooeO4aGAP4CMuzpMHHiRDUZiKychLRBidjYWISEhCAkJCR1nZWVFcqVKweJRKLWqLRBgwbo2bMnmjVrhk8++QTlypWDk5MT7OzsPsqUqF69OhQKxUfr5XI5kpKSUgMnADcU/umnn7L8TPIDFhYWKFasGIoVK2ZoUwQCgZEjhzw1UeLLL78U2WgCoyMyMhKvX79GZGQkrly5glOnTsHd3T1VHuPkyZOpfsmKFSvwww8/ZHqsQ4cOpfb8+ueff9S2vXv3DmfOnMGJEydS5R6VBAYGpvb6UigUMDc3h6WlJaysrD4KflSvXl3jaxYIBAJD4A2uEi+LsqK3iKEIDQUmTQLu3gWKFOGlRw/gQxUH4uKANWtU+xcrBjRrBlSrBri6AmllmBs14mROMzPA3BwwN0eSXI6+gwbhzuPHiI2NRenSpdGoUSN8++IF6nt5of7z58CsWamHmPBh8dq5EymNGsHW1hYODg6ws7ODVCpVMz19FWZW7NixI8f7pu3fkR39+/fP8b4iGUgg0C9aC4wMHDhQTdNdIMgLEkjQFE0Qi1jRbDinEAGjR3NQpGxZYOJEoGZNoEYNoEwZICFBte/GjcDWrcCffwLTp7MjI5Vy1kZyMlC+PL9WHlePE1FxcXG4fPkydu3ahd27d+MzAH3TXmbhwhj3yy8YW6UKwsLCEBISguDgYISHhyMhIQGtW7dO3bd48eJYu3YtypQpgyJFiqRKPCklp4oUKZK6b5EiRfDw4UPExsbCzMwMFSpUQIkSJT5yqADWAD127FiOriezSTxlM1OBQCAQZM4bvEUiElEI1hg8eLChzREIPuLs2bOpwYy0VK5cGQkJCWqViRUqVICTkxPKly+PMmXKwNbWNlUSs1GjRujVq1em5ylevDiGDRuWYbWomCAUCAT5nXCEIwShkECCSqiY/RsE2ufOHU7C9Pfn18p5v6pVVftUrQpMmwY0bszVIZUqZT6XYGcHpJMNNpfL0WLAANwLCsKfa9fi008/5UrKiAhg0ybgyhXA0REoUYKXiAggKAiVhw5VnWfSJJbx6tmTAzLKAI6trZAWFwgEmSIhZVpTDsjI+QdY4+/kyZNqWdgCzYiOjoaDgwOioqIKzE1PX0lvtdf/0REDWWJEXL0KeHoCXbpw0CMtMhmg7D3x/DmwYAHwxx+cnZEZwcHAzJlAumzEVJKTVcccNgw4flzlfDg7Aw0bAk2bssOT9nspl3NAJQ8Ox4EDB7BhwwZcv349tXG4RCLB/Pnz8d3s2TCPjwciI4FatXJ9bIFAkH8oiOMiUDCvWy6Xw97cHglIQD3UxUN6ZGiTBAKkpKTAy8srtfLi7NmzGDNmDGxtbVG3bl10794dXbt2RZkyZT56LxGJqieBQEsUxHERKLjX7SIpgwAEohzKoQHqiTkCffP338CECRxwqFYN+PVXXh8ZyfMTWq5uiIqK+qi5d45ITuZ5kIx6iVhYAB06AGn6jmDNGp5PkUq5J6urKy9ly+a68btAIDAM2hoXc1Uxcu7cOezYsSNVL1cJEeHKlSt5NkJQcEkbDPnixCTUqVMHLi4uBrTIgPj6Alu2AIsXqwbjw4eB1av5ecuWwKBBQKFCwI4dHKjYu5e31awJHDqkfrzISODoUWDAAEBZoVCqFLBnD1eYfPmlSnrL3BywsuJHJYmJ3Lw9Kkq13759/CiRAO/eAUWL8usuXYDbt4EqVThbpGpVztT44CiFhobC19eXm6cFBODTTz9FyZIlAQBBQUG4ePEiAKB8+fLo2rUrRo0apWou6ujIlS85hYhLfV++BF68AJ49Y6mxo0dVn4O7O3/eHTvy8QUCgUBgUNL6AzKk4IsZX+DIkSO4+fSWAa0SfAQRj6khITz54Or6UdanVpHLeTImbaWltzdnouqZb7/9FmvWrMHmzZsxcuRIdO7cGf7K7NlsEEERgUAgyBnpkyWfhD/Fn3/+ie7du6NGjRoGsqoAI5XyONynDwdJtBiUe/nyJWbOnInt27ejePHiAJC3oAjA8yf//QccOwacPct+SkSEqrF7+mDHokWZB1G6d+d5GCU3bgB163Kli0AgyHfkKjDyySefwN7eHm3T6gN+oG7dulozSlDwSEEKhgwZgtjYWLi7u6Nhw4aGNkl/hIZyMGTrVh60q1cHhg7lba1bc+N0d3cekG/cUL3Pxoa1PNM160plzBh2DnbuZAdBWQkCAF27cuAgKYmbmGUgG4WtW4EffmD7QkOBN2/YDqVG54egCBEhycwM1nFxrBWqbPa5bBneliqFdVIpfgkMRNrSNEtLS3z++ecAgD59+nwwqSsqV66c98mDly9ZGuzSJQ7mpMfDg/VMAS7H/fNPdpD69AHmzNF6totAIBAI8oYFzPHLL79g9erVGcoaCgzEjRvA7NncWFXJrFmqBA6Fgqtclb0s4uLYD4mPBzp3BipUyNl5nj4F9u8HLl5k+Y7Fi1Ua5i9f8vFr1GBZj5Ej1aU8dMSJEyfw448/AgAKFSqk8/MJBAKBgHF0dMSsNL0lBDokOJjH3GLFeB4AAIYPB4oX53E8jz5ZUlISjn72GQq9eIFzzZvDonhxSKVSrF+/HnFxcZg1a1auentkiJkZV4V06KBaR8Q+yPv3PM+SlmHDeJtcDoSHA69fcwP55GQOpiiJi+OET4WC51dmzmT5cYFAkG/IVWDk4MGDmW47e/asxsYICi4BCERUVBQqV66M+vXrG9oc/TJwIGtmAjyQV66s2ta3Ly+BgcCBAzxREB/PlSNDh2YeFPH358kIADhzht/72Wfq+0gkgLV15nYpNTk/THAQEd6+fYvHjx/Dw90dD4cMgaenJzw9PYHYWCydOBEze/YEXr7Eu9OnUfjsWZQPDsZoAGskEjg7O6NMmTIo4+ys1ni8bNmymDp1ao4/rkzp14+DH8prq1iRy31r1gTq1FFvQl+pEq9//hw4eJAlw0JDtZoBIxAIBALNEEERIyIuDmjfnicMAB5X7e1VMp87drBExYkTPMEgkXAwY8MG3l6qFPsy6ZMfiHiywcyM/ZsrV4DevdUnMJ48UT1/8IATPTw8eNJm9WpO5FAmlGiRoKAg3LlzB9evX8e6desAAFOmTMHAgQO1fi6BQCAQFDAUCl4AHgONobJw5EiutgA42bB7d26a3rJljoMiKSkpuHv3Lvz9/fHpp58CACwDAvDph7kJrxcvMCPN/u3bt8fKlSu1dglqSCQ8X5LRnMnGjR+vk8vZV5HLVet8fDgw9OoVsHYt+xxjxgCDB3MvFeGrCgQmj0bN14ODg1GqVClt2SIowPjBDwAwfvz4gjMREh8PrF/PkwBmZuyEtG+f8b7Ozix99eWXOTt2qVKAmxtPOAQFsTOTDUQEPz8/eHh44Pnz5/D09ESbNm0w9MNkw/3799G4ceMM3yuVShHv4gL06gX06gXrCRPQsVEjzLazQ5k2bRC+dCmXxUZHs+RGiRIs1VW7Ni/aCEj88gsfNyWFJ2yyCvosWMDLiBFcUVOxoiiNFQgEAiMgEEGwhAUUCkXB8QdMARsb9isOHODXiYlAjx6cPPHDD8DChbx+3DjV5E7HjqrAyPDhH0/6fPUVV2+uXMnVH9WqsayFTAZ88gkwZAjQpo16RchnnwHdunEAZvNm9qGGDeOAyY8/5koXPCUlBTdv3sSJEydw5coVjBw5El988QUA4OTJk+jRo4fa/j169MBqZXWMQCAQCHRKMELwCl7Ys2cPhgwZYmhzskcuB96+5XEsPh5o1kw1af7zz8Dp0yxFHRHBS1qFg8hI7nMB8D3tmTOceFC1Ko+N1auzdKWue18MG6YKjKRRqyCJBH8uW4a3SUlYsmQJK0QQYf/Dh7j26BHi4uIQGxuLsLAw3Lp1CzExMXB0dES/fv1gZmYGSbly8GrSBH4lSsCpaFHMKlYM0dHRqF+/PiZOnAgzY+npYWb2cV/X2rVZnvvsWeC777hq9tdfeXFxAXbt4uCRQCAwWTQKjHTp0gWPHz/Wli2CAko84hGGcEgkEgwbNszQ5mTM8+fsvNSpo50JdG9voFUr1r4EeMIgs6BIHpARIWrbNkSGhSEyOhqRnp6IunMH4eHhqFy5Mtp/OFdISAi6du2K9+/f4/3790hKSlI7DhGlBkZq1qwJa2trVK1aFfXq1UPt2rVRrVo1VK1aFa6urmpVIPb29rjm6fmxYceOsSTX77+rr69YkaWsPv9c9TnExnIVh1zOzmVcnGpJSODPL20VSNeuPFGzeTNX1gQGclDIzIwdzcKFgSZNgA+THnj5koMiADs2Ssc1KYn/3o8e8eRMqVKqxc6Ol7SyZAKBQCDQCgTCUzxFAhJx+PBh9OvXz9AmaUZKCstSlCql3sPLFJFIuK/Z4sXAhQvAzZvATz/xomTOHA5OKOnXjz+D9++BD33F1FDKVzx/zq/fvePHHj2gOHAAweHh8PT0xPOLF/H8+XN4eHggJCQEjo6OuHr1KmdrLloELF8OrFoFuacnbsyejbPnzuHs2bN4+/Yt+vfvj/Xr1wMAYmJi8M033yA6OhphYWG4ceMGIiMjU83p1KlT6vP69etDIpGgVq1aaNKkCTp27IghQ4Z8HKwjUn0+APshycksU5qZVKlAIBAIssUP/ghHOG7fvm3cgZHwcK4i2LCBAyNKYmJU8waPH3OwIzMojej03bvqTcKVlCjB98pffcWqDnkgJSUF3t7eCAkJQUxMDGJjY5GYmIhRo0bxDqNGYcHLl3i2fz+qBAaiSVwcWgKwIMK4BQsgkUgwf/58WC1YAJw4gU8BtALgCeAVgBcAngGwcHJC+/btERUVBScnJ8DcHJXd3aHUxRiRJ+sNiFTKcw2dOvHfZu9eVucICFDveebhwfMOzs4GM1UgEOQeje7SKO0PuECQByQSCfwpAADQoUMH42y8/uIFUKsWP5dIOGOjYUPODHBzA0qXzv0xK1bkSQIbG+Dbb7lyIT1yOWeXXLwIrFrF0k8ZEB0djdjYWDh/GID9/f1RNn2mQxrGjRuXGhixtbXFo0ePUreZm5ujSpUqqFmzJqpXr47WrVunbitUqBCio6NhoUlQ4NNPudn5+fPcFP3JE3YofHx46dZNte/Bg4DSScuIvXtVgZHoaM60KV0amDEj8/e8f68KjFSuzAGOPn3YyVGyaxdnvGbGn39y83qAndiUFBEoEQgEAg2RSCR4T++RgERYwALdu3c3tEl54+RJ4I8/2Hfw8uIAu4MDV0B06sSVEcob5rFjgX//5bHLxQUoU4aD/uPG8aS6sWFmBixbxuP2+fMss3HxIr9evfqjqtbExERYW1unBkUOHz4MHx8fKBQKmJmZocmbN2gJ4PGFCzhcpAi+vXyZkxLGj0eTVq1w//79DM0o+qHHGczMgB9+wIw//8QPQUH4/MgR7DlyBABgDUD2wYa0bFBWsHzAyckJ3bp1Q9euXdGiRYvU9aVLl0Z0dDTsMkqGuXePJ0Zu3+a+a7dvq/TGN27kvitKpFKgUCHAyYl7s23YoKrivXULOHSIpUo++SSzT10gEAgKFBKJBDKSIRjBAIARGd0nGwNPnrD6w44dnLQHAFZWHLSwteVkO+UYMmoUzx2UKsX3wk5OvJ+FBc8vpFVPmDGD/YU3bziRT7mEhgLr1qX23PLy8ECRqVNhERIC88hIxJQujXcVKyKwbFn4ly6NUTNmwPxDUsayZctw6NAhPHv27KNESAAYMmQILD/4HX7+/jj86lXqtkKFCqFexYroV60aKleujMTERFgVLszyUu/eoTSA0gDafdj/x8KFIX3+HNKMEiJMHTMz7jfSsycnQri7s++mZPp0riypWZP/hh07ctVPkSL8d0+TSCoQCIwHjQIjeW6SLBB8gIhSZbSMwunx9gYOH+bqkCVLeJ0yEOLnx9mMHh687NrFk+xffslOCsCTA/v28aBZpgzfBBcrxhUPu3cDK1awxJNUyucpUybjSXV/f9bLvnoVAEC3buHGwoU4ExUFX19fREdHIyoqChEREXjy5AlGjhyJLVu2AABLVn3A1tYWjo6OKFKkSOpSr149te2nTp1CsWLFULRoUZQpUybLwIdGQRGAJ3q6d+dFSUQETzLcvKk+MWBlxU6lVMoBJKU+qK2tapJByZQpwNGjXIkydizrnjs782QTEf89o6K4BFmJRMKSHD/9xDY4OvL6evX4eb167MwGB3PlSUjIx0GQ3bs5aLV7NzeCFQgEAkGe8YU/AKAMnHlC3ZghAs6dA7ZvZz+gWTNeHxnJk91KJBIefw4f5qVyZVVgpEIFroL08uIFYN9izRrgf//j5Atj9LXLlGEd8pEjERUVhWOHDsHb1xe+48fD19cXfn5+CAgIgKOjI96myZ5duXIlbnyQ5QCAMQBaAvB/+BArvbzw7bffpspRuLi44NGjR6hQoQJq1KiBmjVrokaNGnBxcYGjcrwGBz5CP/kEjU6cwMuoKBQtWhSdOnXC7JQU1L5zB4HKRAYAdnZ2WLhwIRwcHFC4cGHUqVMHTZs2zVTC46OgiEzGkmHptdDd3VWBEWUPFiUKhara1c9PPSv4zh0+1rp1HBDSQxN5gUAgMAUCEAgFFLCHHRo2bGhoc5ikJP5NL1SIXz94oFJBqFePJ8U/+0y1PS3t2+dYHeKBuTkuR0XhbXQ0fGUy+JqbI9DODm2Sk7H7hx8gtbcHACxcsgR/XLgA+w/vsw0IQKm7d1EHQDI4OcD8q68AAG/evElNNrCxsYGLiwvs7e1hZ2cHOzs7xMfHpwZGpk2bhuHDh8PZ2RnOzs5wdHT8eN5vzx5+jIxk/8XTk5ejR2HesmXGVaL5DWtrdQmt5GQOkEkkXAn7/LlqjggAGjQA0iZ8HDnCPUqKF9efzQKBIEMkpEHZR926dYWUlo6Ijo6Gg4MDoqKiUDgfN4TuJumCC7gEBRSIiI6Avb199m/SJjIZT8gfP84yT0o5Bxsbri5QOjZyOQc7goPZCXJ3Z31rd3ce8JRZkteusR52ZnzzDUs+ZEffvjyBAnCmaVQUHgDIzC1s164dLl26BICDTeHh4XBwcEjNEsnXxMZyRsbt2/x6zBjWZk0TIMqU6GiWMXv7ljNfHR0/lsVQoqwOkUr5u5CSwkEzb28OwLx4IZq3CwQ6pKCMi+kpKNfdU9Idp3EWcsjRBq1xha4a2qTMefUKmDZNJXWxciXLSAEcSN+/nzXBq1XjIMjDhxxEuXiRgybKJqBhYZxwERLCiRXe3px9GhrKiRVv3qiyTd+/53VGFCiRyWSoVasWXqXJLE2Lubk5kpKSUuWnFi9ejJcvX8Lc3BwpKSlo4OeHuR8CJW+cnVF+0SJIJkwAJBJERLBPmFM/Ri6Xp1bMSqVS1gj39+eAxfbtQLt2Gb/Rz4/lSbLL4pTJeMLr4EF+3acPJ3M0a8aTHcpAnkLBkyMyGT8qJ0rCwnhp3lwlgXL1KvuPjx5xUsfWrTm6VoGgoFNQxsX0FJTr7ivpjSu4ighEoiZq4Bk9N6xBb96wVPPWrRwcnzaN179/D8yezVWebdpoZXyOj49HkSJFIJPJMtye9m8/c+ZMmO/aBZmVFeIsLVFDLkedxETUiomBc3w8Er/5BtYf5h3cr11DYFAQ6jRsiIoVK+quh5tMxvMmyjFRLufPpSDJSoaHs7+nrKwNDuYA0iefsBQpwPMKyurXvn25sqRjR64oEggEOUZb46IIjBgpBcXx6Sftg2SSIRzhuEm39HdiImDiRJZjStv4zNycI/99+/JNqnLyIjMCAzl4osxe9PTkplxJSTw5orwRlkr55nnJEq4+yYKkpCTcmzsXTdevh7lczpP+K1Zg74wZOFWlCqpWrYoiRYqgcOHCKFy4MKpXr44qVapo9HGYPDIZf7bLl/Pf1sUF2LKFtUAzIjkZuHyZM3s8PHhC5MgRoEuX3J03OJgdYS8v1nv93/80vxaBQJAhBWVcTE9Bue5akpp4Dg84oDA+QTv8R0d0f9Lbt4HXr1UVgdbWvBQqxBl8HTqoeoPcucNNSG/e5OCGso/E559z9WidOtqxKTqa+3SULq1KuoiO5mB/kSJsm3LyxcKCqycHD06V1gDA42DaCZrISJ58b9iQKyq1yJo1a/Dzzz+jc+fOKF++PMqXLw8XFxeUKVMGZcqUyTrhJSaG5UUOH+aAQps23ExdG9y6xcGL0FB+PWoUj/Hh4cDUqar9qlXjMVwp5Rofz4tEwvKe+/bx+mHDOEPW0pKrej79NHsbIiPZNzl4kAMie/eqtvXtyz7mnTscaFu1iifYBAJBthSUcTE9BeW620ha4xquwwxm6IyOOEmn9WtAfDwnP167xhPbFy6oEuc6dOAJbx1BROjatSvOnj2LUqVKYcGCBShXrhzKli2LkiVLolSpUtkHNYhUCQEVK/K6PXuAyZN5XOvVC+jRQzV/oSsCA3ns9ffncXfEiMyTCIlUfpURJYBoDYWCpbdsbPh1TAzQuDHPHaWlTRuWWBUBEoEgRxhFYKRBgwZ48OBBnk8uyJyC4vj0k/ZJfX5IcVi/J1+9miezixZlaaeePXkiXddOQgbEx8fj3LlzOHr0KP777z+8f/8edQHcqlsXhQ4dUpeAEmTO1atcMeLtza/HjeM+Lcr/Q9u3c3XQ6dM80QSwJMh//7FzAnBmr6cnZwElJLAjQ8SP9vYfO3UnTvB3RyrlzGAbG2DSpKx7nQgEglxTUMbF9BSE6yYi2EvtEYc4NEB9lJeU055PkJLCE+/Hj3OF4b//qra1a5f5RLxUykkOysBI7drcG0tJ167Ar78C+khMePiQgxqZuezTp7P8FsDJHnXr8uSHVMoTO8+e8XurVuUeKHnxKRQKRISEYPe2bWjcqBGafegJJpfLkZSUBBvlzX5eCAoCdu5k+/p88AtjYrgfx5QpeQ/mREQA8+dzpq/ysytcmIMlVlY8rpcowQksGdG9O4/xAMulTJvG1UC9emV9XoUC+PtvDlYpAzOtWvHfAuBJN3t73g/g71hAANsCfBzYioriSlVra9X3USAowBSEcTEjCsp1l5OUgx/8UB7l0EBSX3dzBMHBnEj37JlKGoqI7w2DgtT37dyZ7+/c3HT+OxweHo7Hjx/jE232nho/Xr0q0cqKA/zjxrEvpIuKjn/+4ePHx/NrW1uWE4uP5ySFH37gAA3Aflrfvjw2urryUqUKvz+/ykzKZKrKknPnWJWEiOW5L14sGHJkAoGGGEVgRKA78qvjM9JyWOrzJErCXtl+/Zw4Lo57UJQpo5K6ksm4t0WTJnzDaQAuXryI1atX4/z582oNQp2dnTF+/HhMnjQJJUXGQO6IiwMWLGCJs1Kl2NlVBrucnHiiBOAJiN69gaVLOTNXyfDhnA2aGUFBqiyO6GiWORk0CDhwQLXPd98Bixfz88BAzvr9/HOeSMuPWTACgR7Ir+NiduTX607rD8RTPB5VeIqgoCAEBwdn3PA6t4SGchP0TZs4WxHgG/+EBFVj89mz+Ua0ZElel5jIS1wcT1orJQ8Alsry8GA96HbteKJbn7/nCQlc3SKT8Y2zMrsyPJyrHerW5f3++QcYMuTj91tb8zWdPauuif2BpKQkWKWRk7p37x7CwsJgGxGBJhMmwFKZTPABeatWMFu+/ONjPXrEk02ZVWzmlKVLeRx1ceEqHWVFR164fRv4+muWLevbl58r5ayI+Lvi48O+oI0NL1FRLAHSqJHqOH5+LNGVGffv8+d/5YpK3rNaNe5lVq8e95QB+O92/jx/9x4/5srg8eO5X9lXX7HPkjYI16iRSpe8eHH2J6ZOVfddBIICRH4dF7Mjv153Wn8AAAbsG4SNGzfiu+++Q/PmzbV7Mrmcg9QbN/K9W0oK+wDBwap9+vblar42bYDWrXk8M3V1Brmcx6VjxzgIoZQPB4BKlTi5UBdjSmQkN6fftEn9nACv++ILfn7mTMZ+g6UlMG8ey5Ebe+85TXn1iiuS4uM5MKL06wQCQaYYTWAkKioKUVFRKF68OAoVKoQDBw7gypUrqFevHsaOHavJoQs0+d3xISIcTjmKSvUrY8+ePahevbr2TuLtrZKx8vTk6oCrV/lGtFo1vglVToroGS8vL5QrVy61udnBgwcxYMAAAED58uXh5uYGNzc3dOjQwbD9QR4/5kmJkBC+oW/Z0nC25JWrVznbt1Mn1brBg9mxdXPjgFj67JjYWM5QPXGCK4mUzd+V+8XGctDE0pIrSjp35gmLjRv5excXx86Mi4uqdHndOs7mBVg7dN06oGZN3V+/QJDPyK/jYnbk1+tOPxGyPWknvL29UblyZc0OfOAAZ+ufPMlBBIAnk0eP5qqLfv2y7ydhQhARTpw4gR07dsDGxgYVy5TBV40bo9CFC5zV2qoVL3I5V5706IEnT57g7NGjeOHlBY9Xr/Dy5UskJycjMjycx87YWLht2oRjx44BAEIBZNoaVFmtkpwMrFjBvoNCwb5XbuUp03LwIAeu3rxh+y9cMJjvlinR0WyTcrJmzx5g6FB+bmvLgZ3p07O3Wybj/TZu5Nfly/N1K6lV6+MJJXNznrwbPZorl5KT2f/o25cnkfIDnp7cv+fNG67WHTlSJJcIAOTfcTE78ut1p/cH/k7OIkEtrxw+zJV/166pVAMAHl/Gj+ffUiVxcRwgN/DvDRHh2rVrCA8PRx9lNaV2DgzcvcsVJLt38wT81at8vSkpPN7a26sSBYoXVyUTaHLOa9eAJ084+O/oyBKkZcrw9uRk/txDQjgJ5PVrDuKc/iCjdu4c30fnd7y8+HOoV8/QlggEJoHWxkXSkMGDB5NUKqW7d+/SkSNHSCKRkFQqJalUSj/99JOmhy+wREVFEQCKiooytClaZYTFUBphMZS6mnUmAGRnZ0exsbF5O9jdu0SffkrUu7f6+mbNlLmU6kuFCkQLFxLFx2t+ITkkJSWFHjx4QMuWLaN69eoRAPruu+9St4eFhdHKlSvp0aNHpFAo9GZXtlSurPrcJBKikBBDW6R7btwgKlyYaPZsordvs9//6FEiqZQ/o99+y3w/Dw+iGTOILC1536JFiYKDtWe3QFBAyK/jYnbk1+tW+gPKRWssX64av5o1I9qxgygxUXvHNzKuXr1KANSWiRMnZrq/TCYjBwcHmgxQPEC3AdoM0AaAFM7O/LnZ2dH3w4dTvXr1qFatWtTF1ZUm9OtHN06dIkViIpGfH9HEiUTm5jwWEhH16KHuc0mlRL168faUlLQG5PzivLx4XAaIGjUiev48j5+Sjvj2W6Ivv2R/lIjoyROiWbOIVq4k8vfP+XH27FF9bgsWfOxzpaQQxcURvX9PdOAAUcuWGfu5yiUoSHvXaEjq1VO/rv/+M7RFAiMhv46L2ZFfr1ur/oBCQbR3L9GwYUSenqr1a9aofkscHIgmTCB68ECzc+kAhUJBnp6etHXr1tQxvXbt2ro7YWws0Zs3qtdv3nw8pmQ2nusahYJo3z6iadNU63x9iaZOJVqxguiff4heviSSy/Vnkz6Qy4lu3jS0FQKBSaCtcVHjwEjlypXJycmJiIhGjRpFUqmUunXrRhKJhGrWrKnp4Qss+d3xqS6tRgBo+PDheTvQH3+oJpqtrXngVPLZZ0SVKvGESN++RGvX8qCpp8CDXC6nRYsWUadOncjOzk5tssLMzIzc3NxIlpuJAUOwejVRgwb8+c6aRZScbGiLdM+kSSoH0MyMv0c3b2b9vfn5Z97f0ZHo3busj//6NVGdOrx/v356+z4KBPmF/DouZkd+vW6lPzDQvD8NNR+svQMrFETbt/MkdQEgJiaG2rVrp+Zr3LhxI9P9g4ODCQD9ltmkup0d0ahR2Y9pRJxEoBzLDh0iKlGCJ586dVIdz9FRPSHF2ZmoY0eihw9zdoGnT/MxlP7e11/n7H364J9/2K7SpTULvnl58bUB7N8qkcmIXrxgX+TUKV6Un/fNm0RduxLVrav+9/v6a/1OXOmSjRuJqlbl66pfnyg01NAWCYyE/DouZkd+vW6lPzDAvB81lNYnLy+vvB0oPJyTJpW/h9u2qba9esX3bffuGeVv5J9//kn9+vWjEiVKqI3ntra29Pvvv+vPkKdP+X7V1ZWoVClVckLaMcaQnD37sd9ib0/Uti3PWdy5Y1j7NEWh4IRKiSTrxEuBQEBE2hsXNZbSsrW1RdWqVfHgwQM0atQIEokEd+/eRY0aNeDv74+YmBhNDl9gyc+lskSEQymHEYd4HDp0CH379s35ARISWFd52zZ+7ebGWsvK5td6IjExEc+fP8eDBw/w8OFDWFpaYvXq1anbXVxcEBAQAACwt7dHmzZt0L9/f/Tt2xdFixbVm50akb75Z3qUmqFVqgCVK7N2tik3BVUogFOngNWr1XXla9Tghu4ZyWGkpLCU1uPHwNixwKJF3NhV2dNEJuPPqWhR/n4+esRN3lNSgMmTWbZLIBDkiPw6LmZHfr1upXTGtZQb8KcA/LXrLwxVyhDlhjdvWDpo82bAwUG7RpoQcXFxkMvl2X5Hnj17htq1a6OYkxPe3brF8loPH7K0SLduLFWRFx1vIpZysrXl156eLFtSuDCPjUpKlWKpDImE5UuWLVM1Hc+MgAAeY8+c4TH37l3VtpMngebNVeOuPpHJWDYzIADYvp2lnvLKzz+zdBjA1+rry71V4uJU+0il/LeqU+fj9ycksISsJr1YjJXkZOOTURMYlPw6LmZHfr1upT/wUu4Jd8VdtGjRAjdu3MjdQW7c4P5avr58PzpzJv8m166tA4tzRnx8PF69egVPT0+8evUKr169QkBAAIKDgxESEgIPDw84OTkBAL744gv8/vvvAABLS0s0bdoUHTp0wNSpU1G8eKZilvrh5Usez7dv5/5YhpR5evGC5VIDAtiuR4+4N5ySbdv4vh3g/mF377L0tYWFYezNLf/7H/dBA4CdO4Fhw7LeXyAo4BiNlFaRIkWoQoUKlJiYSPb29jRixAgiIqpbty4VLlxY08MXWPJrRkgfuFFbtOHqCZhRfG5krd69I2rYUFXSuXy5zkonQ0JC6E66jIP+/fuTi4sL2djYfCRbUbJkSbV9V61aRb/99hs9evSIUowwK0UrXL+unq1hY0PUpg3RnDlE+/ebtpTDgwecMVuoEF9b1aqZV3hcvar+Oaxfr9p25w6vMzcnGjmSK2++/57XjRmj2k8mI+renejPPwtGdY5AkAfy67iYHfn1uvvAjXqhB5nDnADQ9evXc3+QkyeJnJw+/k0VZEp4eDjt3buXdu7caRgDPDyIBg1SjZmFC7PMaXaSnUp5lB07VOt8fLjSomhRos2bDZMFrJRuq1CBs5XT4+5OtGULy5VkRUoKUYsWH2fC2trysevV44zYX3/VyWUIBKZEfh0XsyO/XncfuFEfuFExFCUAtGrVqtwd4Ndfudof4EoHd3fdGJqGpKQkev36NV29epWOHj1KO3fupA0bNlB4mnFgzJgxH80ZpF2ep5GHPHPmDK1atYquX79OicYq/5mUpP7aGCSskpOJHj/m6qDJk7kySIlS2aF4caIpU9QlwwzB1atEAweyH5ORv7Jli2rsX71a//YJBCaI0UhptWjRgqRSKTk4OJBUKqX1HyYFnZycCqyU1m+//UZ16tQhe3t7sre3p+bNm9OJEydydYz87PhUQWUCQM4onfM3KhQsGQAQFSvGZZRaJDo6mlatWkW9e/emChUqEAAqXVrdvjZt2qg5M46OjtShQweaPXs27dy5k+TG4Bzok7t3WRKqTh1VACHtsmWLat+HD1kT+8svWXrCVCb/IyOJfv+dKO0EUnw8UUKC+n6TJ/M1W1qqOzKnTql/JqNHsxN58iQ7R0p27VLfr3NnounTWc7rk0+I1q3T6WUKBKaAqY6LmvoEpnrd2dEHbtQMTQkAWcM692PosmUsNQAQNWmSs95QAuPh6lXuG6Ic96ytiW7dyt0x7t8nqlVLdYyGDVm2Up9ERhJVrMjn79VLXVIrrURn2bLZ98jw9+drGjKEaMMGokePjGPiSSAwMkx1XBT+QMb0gRt1Q5fUe+zXufkdP3ZM5QsMHUqk489myZIlVKpUKZJIJBkGOx6mkYlcvXo1OTk5UfPmzWnEiBG0dOlS2r59O50+fZoePnyYeQAkNpYT9IoVI6pShX2czp05yW7BAk4KMCRyOdFPP3GwPv09sTHxyy8cFFGOw4UKse9oiHmIlStVwTuAqEYN1XxWcDBRnz6qbbNn698+gcBEMZrAyPHjx8nKyookEglVrlyZoqKi6ObNmySRSGjs2LGaHt4kOXLkCB0/fpw8PT3p5cuXNH/+fLKwsKCnT5/m+Bj51fHpjV5kC664aISGuXvz5cucBaID3fCZM2eqOTUSiYSqVq2q5rA8ePCA7ty5Q97e3hQeHm5czdL1SVISa4m/f69aJ5dzU9Q//yT64gue7DhzRrV982b1iX9XV6KvvmKHwJgdqoxYvJiofHmiv//miThl9kxiYsZVJcnJ3CxV2ah9/PiPs0Tev1f1dEm/2NkReXvr+qoEAqPHVMdFTX0CU73u7OgDN3KBCwGgiqiQuzf7+Kj/ToqgSI44duxYrhN1dIpczo1VmzThwEHayYqVK4l++IHo2rWPs1TTEhpKVLKk6rswdaru7U7PvXtEVlaqAEhAAK/fs4fIwoJ12pX2/fuv/u0TCPIZpjouCn8gY/rAjeqhLgEgB+RSceT1a+61NGWKXvo3rl69OnW+wMrKiipVqkRNmjShjh07Uv/+/enly5ep++ZZNWL9+ozvCZVJBI0ba+lq8khAADewV455P/7ICZPGqJIhk3GiYtu2qs+wRQtu4p4WhYJ9yRMnOCHxwQPt2eDhoTp3o0ZERYoQdevGf8ukJJ47UW5fuFAkRAgEucBoAiNERO/evaN79+6lTiJHR0eTl5cXRUREaOPw+QJHR0fakjaDPhvyq+PTG72oGZqSC8pQT3TP/QF01LT8zp07aoGRy5cv6+Q8+YKOHXngzo2cg58fl41On66euaHM3kjrfMTEGKdjRcR2Vav2sZPq5ETUunXWQbvt21XBkYEDVRNAcjk3bs3MAW7XTjRqFwgof42LufEJ8tN1p6UnupMZzAgAtUGr3L05OVn9JtfBgccOQYZ4eHhQ7969CQC5uLhQjLF9VgoFUWCg+usyZdSlOjt3ZinKmTPV5bT8/dXHzKVLsz/f/ftEI0bwRJq7u3bG2P/+48byLVqojpeczNcVF8dJEcpJrdu3Mz6GQsFSH8bqAwkERkJ+GheFP8CBESc4EQCqiRq5P0BsrM6rABQKBe3bt492795Nd+/epdDQUN0lSXp5ETVrphrXatXihLxly7gKYv9+3Zw3N5w9S+Tioj7+FinClQ9aVvbQCgoF+w7KgM7ff6u2HTnCDdzTXou5OSd8aoPkZA5m4YOs16tXRDduEJ0/z9v37uUEig0btHM+gaAAoa1xUSudkosVK4ZixYqlvra3t4e9vb02Dm3yyOVy7Nu3D3FxcWjRokWm+yUlJSEpKSn1dXR0tD7M0zsSSFAKJVEKJXP2hqNHgfLlgbp1+bWOmns3btwYb968waeffoqUlBQ0adJEJ+fJF7i5ceO1v/8Gpk7N2XtcXIDhw3lZtgw4dgw4fZqXqChucK5k1ixgyxZupFqsGC+VKwO1avHSqRNgZaWba8sOMzPg/n1gzRq20d+fm6+GhwPXrgEDBgDPn/N+6Rk5EihUiJuoeXuz2wVwM9USJfhx/Hhg3DjAzg5Yu5abCf/zDzepFQgEJk9OfIKC4g8EIBByyGELGzgil42zLSyAS5d4LPnhB24EamenEztNGR8fHyxZsgQ7duyAQqGAubk5hgwZAomxjSkSCVC6tOq1XA7MnQtcvszL+/fA2bO8AEDXruxPAOwrjBvHTd5LlQK++CLrc/39NzB6tGoM3rABqFmT140Zwz5HXujTh+0KDlaN2RYWquvatAkICgKOHwf69wf8/Hg/Im6ovm8f8O+/7B/07g0cPJixLyEQCPIFwh9QEYMYhCMcAOCCMjl4Qww3W+/alV/b2urQOmbTpk2YPHkyqlSpgqdPn8LS0lJ3J6tUCbh5k8e8t295HqRZM92dLy906gR4egJ//QWcPMljdWQkcPgw0LevgY3LAImE/YaWLYHPPgM+NL0HAISF8XfK3ByoWpX9SXd39gm8vYGlSzW7F7ewAM6c4SbwgwbxvEblyqrtAwfy/EqhQvx64UL2VRISgF69uPG9qTSPFwhMFAmR8s4g56xbtw6lS5fGwIEDs9133759CAoKwrRp0/JkoKny5MkTtGjRAomJibCzs8Pu3bvRo0ePTPf/7rvvsGTJko/WR0VFoXDhwro0VacMkPZTe92o9idqr+c/np75mx8/Bpo350Hqxg2gdm0dWKhOUlISwsPDUfrDjSwRQaFQwEzcnKoIDQXKlAFSUoBvvwUWL877zTsR4OvLwS8lLVoAt25lvL9EAsTFqRyH+HjAxiZv59YGCgUHRQICgHnzOOjTqFHW7zl5EpgxQz2A4ukJuLp+HPiTydQdoVu32DmrVg345hsOqAgEBYTo6Gg4ODiY5LiYG5+goPgDd6wfwC/hLbqWckPb4h2z9geygghISgKsrbVgpWkRHh6OCxcu4OzZs+jRowf69OkDgL8rffr0wY0bNyCTyQAAffv2xfLly1EjbSKCKaBQAB4eHAi7do0nLHr2zHriJSGBExguXODvRfnywPr1vC04mCc+evbkMfjAASAxkbcVKgTcu6eerBETAzx4AFha8sSUJpMjMTE8MVKtGrB9O687f54nmNLzzTfA8uV5P5dAkI8R/oDpXXda0vsDlmWL4KD/brjaVsWICuOz9geIgE8/BQ4dAn77DZg4UcfWMtHR0ahatSpCQkKwcuVKzJkzRy/nzRMpKTwO6jNROSWFx8ozZ4Cvv1bdv+7dy4Gexo31Z0t2EAHJyapEy9BQTsCoXJnHeoWC5ziWLwe6deNEXXNzDqAkJ/Pcg6UlL7mZA0lKylly57RpwK+/ql6PHg1s2yYSJQWCDNCWP5CnwIhUKkWLFi1w/fr1bPdt0aIF3N3dIZfL82SgqZKcnAxfX19ERUVh//792LJlCy5fvoyaNWtmuH9GGSFly5bNV47PW/KFbXFHNHFqCSfLogCyCIzExPAE86tXnA1y/PjHA8+xY8D8+Tz4Dhumk8Fi+fLluHXrFv79919YF8BJl0xZsEB1w96uHWc2tGihnYydlBR2PMLC2EkJCQFevACePQNiY/nvrqRDB3ZmmjTh78vgwUDx4prboA0CAgBnZ+19L/39gYoV+fMBeHJozhz+W4jAnaAAYMoTIbnxCQqCPwAAFarUwp3wm2hdvD3szO3zHhhJy/XrnFm3ZUu+y6579OgRJk2ahPDwcMTGxiIuLg5RUVFQuvHDhg3Dzp07AQAeHh6p363OnTtj2bJlaNq0qcFs1ytHj3LFRVqqVWM/QklICFDyQ+VyVBRXa2zcyOPrw4c8bvv6sv/58qWquqRHD/5upa1uyS1yOfu4RYrw6+RkHtubN+es0bg4rh4FgD17OLNVIBCoIfwB07vutGSUOJkkT0S8PB6Olk5Z+wNr1gAzZ/IYf+UK/3bqie3bt2P06NFwdHSEj48PHBwc9HbuLFEouCrx9995Av/ZM75PnzmTx5Tz5zmZTo+fFQBO8Ktalce8c+eA+vX1e35N2b+f/QBlgGnqVK4yTYtEwpWrDRqw0kOlSpqf9/Vrngfx9GTFCYUCWLQIyCBIKhAUdAweGHFxccF4peOeBX/88QcCAwMLXGAkPZ06dUKlSpWwefPmHO1vyg5fWtI6PhfpEiIQiV6l+6NFsbYAsgiM/PEHMGECR9X9/D6e7H7zhm8klZw7B3TsqFXbfX19Ua1aNSQmJuLnn3/GzJkztXp8k2f3bpasiI3l19u38+CtL6Ki2MlLTlatK1QIGDWKHZdatfRnS3pu3+bv4yefcMZH2u+qJkyfDvj4cNWJMkBy4ADLcggE+Zz8Mi4CufMJ8st1a1RBmhNOnOAqAIArBdq31+x4RkBCQgIKfaiQjIuLQ7ly5RAeHq62T40aNdClSxf07t0bHTp0AAC8f/8eBw8eRO3atdGyZUu9220wkpI4aUA5PiqxsWEJDUdHYMSIjP0DIuDdOx6/f/6ZZTTi43mbiwsQGMiTE5MnfzwxoikpKeoVo3PnsuzW7dscmBEIBGrkl3EREP4AkAt/gIglkCIjOSnv++91Y2AmyOVylC5dGu/evcOOHTswXCnpaGgOHfr4XrBSJa5+PHeOqyItLflRn1UHcXGcxOjuzpLRo0ez0kS5cvqzQZtMmsTBj8ymT8PC1CW6tMHvv6skQidOZKltXcq4CQQmhrbGxTw3bAgICMiwtDM9RGR8WsYGQKFQqGV8FDSSKAkRiAQA1HKol/0bOnbkG9n4eM6YSy/FVrYsT36vX8+ajFn0b8kr5cqVw4oVKzBz5kwcOHBABEbSM3Qol8UuXcoZkCNGqLalv8nXBQ4OXJVx9Srw6BFXkty7xxkzmzZxr5LVq3VrQ2bcusUBm+PHOUtn4ULgq680742yZg0wZIhq0qdjR3Y4BQKBSVHQfQKtEB/P8kpnzvDi4cHrmzc3Pi3uXEBEOHv2LNauXYu3b9/iyZMnkEgksLW1xdGjR5GSkgJbW1vY2tqiaNGiKJ5BlWSxYsUwYcIEA1hvYCwtge++4zEX4IximYy/K7//zuvatlUFRk6dAn75BahThxNw/vxTFYjo3JkzNKtU4ezNtm05MNKrl/btTu8vLV/O4/yNG9o/l0AgMCoKuj8gI1nOd5ZIuCLw779ZomnePL30F1Fy+fJlvHv3DhYWFmjTpo3ezpst7dsDrVuz3KQSb29elPz4o/7tsrXlpJXx44H//mM5qL/+4nkbNzcONJhSgG/jRpZvS0pi3yI5mR8DA7kqVRkUUSi42rN7d+5TogkTJnAy6Ny5PM+hUPD66GhOSP3f/9hPEQgEGpGnmcu2bdvmm2DH48ePc/2emjVrwjyLSd9vvvkG3bt3R7ly5RATE4Pdu3fj0qVLOH36tCammjTv8A4AUNKqNApb5KDs1NWVf+inTOGBoEsXoHp11XYzM87ET6u/qAMGDBiAmTNn4saNGwgNDUUJ0dNBnapVgQ/SHalERbG01fz5nBmiS4oVA/r142XxYp4kW7+eG7+lDZbJ5Zypoq/frenTufR28mTg4kWepDlxgp9rkuUhkbCjFRjIEnI9ewq9UYFAS+jCHwCET5CeeErAczyHeaQ96hXJpidTZoSH8zjz+rVqnTIbccMGk+w3kpCQgO3bt2Pt2rV4kUb26eHDh2jQoAEAFKzqj7wgkbC85Ny5nDTh78+LQsF+QGgoN7FVcuuWKrCmpHBhzs78/HPVZENCAr9/4UKe6NAFCgUnc0yezJNJZmb5oupJIDBFhD+gH4gI53EBN1+6Y1j5cShhXSr7N61Zw0lnr17xb72yf5QeUCYFT5gwAeXT9sc0NEWK8JiXlMT3wkePcsVIQgIHIGrXNtz9YtGiXNFy8yaPzxcvsuzpgwd8v6xELjcNaWiJhH3MtH5mqVJAw4aq1//+yxKd+/ZxU/oNGzQL4M2ZwwkddeuqzvvqFc93EPGjQCDQDCrgSCQSkkqlJJFIcrSYmZmRt7d3lsccO3YslS9fniwtLal48eLUsWNHOnPmTK7sioqKIgAUFRWlyeUZHDf0JDf0pHIoSwBo1qxZOX+zQkHUpQsRQDRokO6MzIZGjRoRANqyZYvBbNA7t24RValC1KsX0R9/EAUF5fy9q1fz30wiIdq9W3c2ZoWfH1Fysur1qlVErVsTubsTpaQQyWS8XS7P+TFfvSJKSMidHQoF0a5dRA4O/JnMnJm79wsEglR0PS7qwh8g0twnyG/+QD3UJQDUrFmzvB9MJuPfdScnogkTiA4cIAoP156xeiQiIoKWL19OJUqUIAAEgOzt7WnatGnk6elpaPPyNx4eRL//TvTll0RubkQ//0wUHf3xfvfuEa1dy/6Drli0iP2EJk1y55sIjJe4OPG31BHCH8gf/kB7tCMAZGlpSXFxcTk/wJkz/HsJEN2+rTtD0yCXy2ndunVUsWJF8vPz08s59UJKCtGjR0Senur3zrrC15fot9+Ili5VX9+yJdGQITzemjpyOdGyZURSKX9HXV2Jzp7V7jlu3VL9H3j4ULvHFghMCG2Ni3nqMZKfkEqlcHd3z1CKID1EhNq1a+Px48dwdXXVqV35RUO0t6QXCIRzuIBEJOLUqVPo2rVrzg8QEMAZdN9/r9dS2bR8//33WLRoEdzc3HDkyBGD2KBXFAqgaVMu11QikXAFxp492euCEgFffsnZEebm3AMjfSNUfSKTARUqcJVFehwcOPMoq8oWIpblWrOGj3P4sHrGaU44cgTo04efX7kCGFP5tUBgIuh6XBT+gG7pLWEJont4gEAE4ttvv8XSpUs1O6hCwZUiJszJkyfRo0cPACzhOXPmTIwdO9ak/9Z55sULltlYuJB7hRQUjh3jrF6AJWKU0qTbt3MFSVKSqurVxYVlwbTcV0+gJWJj+fu7cydXtnl4ANWq8bbNmznL9/vvuSeeIM8IfyB/+AM+eIOneIYOHTrg/PnzuTvIvHncw3HCBL1WQygUCkhN3O8AEUuR/fsvV3BERvJ6Dw91hQ598ewZV7UA/LecPBn46SeDzf1ojcuXgWHDeD4LYOmrNWu435k2+Owz/jsOGsSPAkEBxOA9RvIL7dq1Q+XKlVGkSJEc7d+2bdvURpiCnBGNGCQiEVJIc6/HWaYMN8E0IL1798aiRYtw7iXmBwEAAQAASURBVNy5gtEz58ULVVBkzhwuybW0BO7e5WDHTz9l/X6JBFi3jp2sXbs4IDBlCrBkCZfT6hsLC25gunAhTzikjQVHRXE/kuHDM++JcvcuOzEA8OYNl22fPJk7G3r35s+ySBGgVas8XIRAINA1wh/QPXLIU6U1O3furOHBTER2IRu6deuGwYMHo1evXhg8eDAsLCwMbZLhmDWLExZWreJeIQWF5cv5sXVr9X5tSUmqBvByOT++fs167T4++rVRkDN++42b4ypp3pwncG/dYo19gPskppWQERgdwh/QDyEIAZBHf8AQPTPyCx4e3LNSiaUl98t48wY4eBDo2xeoWVN/9tSqxffbq1YB//zD8w0PH3KvToccSLAbK+3aAc+fs4TYhg08DxEQAJw7p53jz5+vCnANGgQMGKCd4woEBZACXzFirOSnjJAgBOMxnqAonBBIQbk7ABFrP3fubLCs0Pj4ePTv3x8ODg7YsWMHLDXpEWEKyOXcWL1aNW6sDgDv3/MN+9atOZ/Yl8mAadM48ABw4/Fr17hhu6GIjeWJBomEv1tbtgDjxnGvksxITORrvn+fX//7LzBwoOa2+PjwhIeyCaxAIMiS/DIu5pb8ct29Jb0QiCDcw31YwxqxKbEwy0tgIzycA+2XL3MQPx8ER3x9fVEuu2rMgsD165xJaW3NveYKCtu2sS8CcDLQzJn8nAhYtoyTNywtuZ/anTvso+3aZTh7BZnz9i0wcSJw6lTG25s350pqZ2f92pXPyC/jYm7JL9fdW9ILCUjAOVwAAHh5eaFSpUq5O4iPDydQ6um+PCUlBT/++GNqT5g8+S/GglwOTJ3K1YfKZt5pkUiAX34xTAD37Fme5I+MBBo14uBIyZL6t0Pb3LrF4/zOncCHvnE4cICDJm5uQP/+QLNmuZ/vmj6dE1ILFeI+M43y2LtPIDBRtDUuisCIkZKfHB8AUEABGWQ4TWdzd4CjRznbvm1bLvU09dJVU4GIAwJps5+IPi5VDg/n5mlPnvAEf0YZP+fPc6Pw0FB2YrNpTGhQli0DHj1SKnayVMXkyRwYsrAAgoKyLzFOTGTnx94+c+dEJuNA0+PHXI2i5zJwgcAUyS/jYm7JL9fdW9ILt+GOULxDZVTCK/LK24FiYljWMDyc5R0/+0yrduqT5ORkzJo1C9u2bYO7uztqK6UkBAWPH37gylaAM0xr1Ph4n/PneZJo1CigXj1el5DAwZK2bVX7PX3Kk1116gjfwlB4ePDfUbkUL84BE31mYedj8su4mFvyy3X3lvSCJ17hJTxRFE54T2G5O0BKClC/Plc57N+fe4njPODr64tatWohNjYWq1atwuzZs3V+Tp3j6clJkO/fcyJq+fJA1ar8OzV3LjcVNwQPH/Kcwvv3PA+UX5qLp5d/nTdPXYmjdGkOnnz3Xc6TflJSOLBy6hTPY8yfz+P+ixdcYfpBqlUgyK8IKS0dQETYv38/Ll68iNDQUCjSRdAPHjxoIMtMFzMJ/6ibwQwWyKU8RGIioHQ6WrQQQRF9IpF8rH+svLlWZjBu2QL4+qq2r1qVcWCkY0cujw0JUQVFEhKAGTOARYs428cY2LIF+PZb9XUHD3LljFLLO7Ny3rdvuZLk3DnO1khI4PUDBnDgw8VFff+4OM6KTUzkG+UzZ7i81tS1VAWCfILwB7RPPOIR+kFGqwLK5/1A9vaq8WPJEqBnT15ngpibm+PVq1dISEjAwIEDcefOHdgVpN4aeUUu574c//7L4/Po0abhIxJxkk9cHNCrl3rQYv58Dvb9/DNLMSmrbdPSsaPKH4mN5YzfvXvZlwgM5EkVAFixAti9m18PGQJ8/rlhdOMLMjVq8JJbaZP0E2fh4SzDagrf73yK8Ae0jwQS+ILvIcsjD9WSmzZxXwonp4/vsXREuXLl8Msvv+Dzzz/H4sWL8dlnn6GMsdzD5pWqVbmCQSbjcdXa2tAWMfXr8/30yJHck0mJTMaJiqZK+t/xr7/mJMpDh9inCQriORZ7e96WnqtXORHCy4uX8HBg/XqWH2vThitOlH7F9essu/nFF+xTWFnp/voEAhNGK17W+/fvsXjxYnTt2hUTJkzA06dP8ffff8M37aSpCTBjxgyMGDECPj4+sLOzg4ODg9oiyB1yuRxBFIw8FyUtXcpNCkuV4hvGkye5yZqFBdCyJW/TEzExMZDJZEhKStLbOY2WmTN5Qkr5/9vVlW+8Z87MuBwX4EE6bdbJ5MlcvtupE/Dune5tzgmtWgG//soOxoYNXNIKcDWHUuM7MwYPZgfmzBkOipQqxZkeBw7wJEb6z6VIEeDECQ4mWVhwAEapMS4QCAyO8Ae0TwrkKIIiKIVSsJNoOPn/5ZcsgfjiBU8wK4PRJoZUKsWOHTvg7OyMFy9eYPLkyYY2ybghYnkPc3PWQN+9m7Mrb90ytGXZs38/V3B07MgZsK1b88SGEomEfYI7d4D//S/jY8jlLAd65w5rl2/fzkERFxfODFVibs7JLUFBHGipUYP3P31at9coyBuJicBXX/F3YMkS1fqEBO7NZ2HBPmJmPrZApwh/QPtIJVI0RiO4wAVlkMvggq8v8M03/Pz771lK67PPOJHt8WPtG5uGcePGoWXLloiLi8PXGU1cmyoWFpkHRY4f595Xz57p16bq1blHaNpqoDlz2OdLO96ZMk5OLM+9ezfPh6xaxesXLGBFDiXJybyubVtOGt64kSXHzMwAOztO3HR3Z6lGJYUK8ZiyeTO/LyiXcvYCQUGDNMTHx4ecnZ1JKpWSVCqlFi1a0NWrV0kikdCcOXM0PbxecXR0pOPHjxvaDCIiioqKIgAUFRVlaFPyzLlz5wgAFYUT9YEb9ZX0zvmbFQoiW1sWNPr9d15XooRS4IiXDh10Y3gaAgMDadKkSQSAANCOHTt0fk6jJiBA/W9w/DhRSgpv8/AgatCA6ObN7I/j40Pk4sLHGDtWpybnmagolY3ffJP1vvv3E33yCdGaNUTPnvH399EjohYtiPbuzfq9P/zA52jcWHu2CwT5EH2Oi8If0D59Jb2pD9yoJ7rnzh/IjCtXVGPRvn2aH8+AXL58OdXPCA0NNbQ5xsuNG+o+iDH7EGmJjlbZK5Wqng8dmrvjzJunfu3FixNdvMg+R3oSEoiOHCHq3Vt1TqmU6MIFrVySQIts2qT+d23ZkmjcOPYr064/dcrQlhoNwh8wfX8g7ZIrlizh/w9VqxLJ5er/fwYN0o3Bafjjjz9Sx+u4uDidn8/gODjwZ9u0qWHtCAsjsrFhW6ytiZYuJUpMNKxN2kahIBowgMjenujdO153+TKRk5PqO968OdH8+UQbNhC9fZv18U6cIHJ05Pf166d7+wUCA6CtcVHjipGvv/4aQUFBKFOmTGplQOvWrVG4cGGcPZvLfhIGxsHBAa4Fqdmjjrlx4wYAoBAKQZJbjWOJBOjalZ+fPMmPixerJASUr3VEZGQk5s2bh0qVKmHjxo0AgB49esDNzU1n5zQJSpdm6QYlPXvyumHDuKn6gwfcBCy7KqEKFVgbHuAGosZSNZKWwoU5G7NvX9ZZzYr+/VkeY/p01mWVSDhD89q1rBu1P3nCWR8A0KSJ1kwXCASaIfwB3SCRSGAh0ZIMwo4d/FiyJGfDmzAlPzQWtbKyMmndeJ3ToAFnjCoZNQrYutVw9uQUe3tVE1uFgqtmz55l+3PKu3cqeS0bG86Qvn0b+OSTjPuIWFuz7vjhwyz32bgxn1su1/hyBFpmwAD1+5sbN/h7femSal3v3ib/O2eqCH/AyFDOD3h5cY8MNzfOlB86FBg+XKen9vLywpwPY9Dw4cNhY2Oj0/MZBQcPstx02mo2Q+DkBNy7x7+ViYmsXlGnDt9/5xckEv6st2/nqmiAe7jGxADOzlw5eOMG9ySbPBkol0aG7scfgfv31Y/Xvbvq8/nvP8DbWy+XIRCYIho3X3dycoK5uTl8fHxgb2+P5s2b48aNG6hXrx58fX0RERGhLVt1zvbt23Hq1Cls27YNhdL3V9Az+aG5Ws+ePXHixAnUQW1UkrBDeUiRi+ZZz5/zgKdQsKZi69Y84S6TcdmsjvDz80PHjh3x6oNUV4sWLbBixQq0EzckKl6+5PLl48eByEjV+vbtuRw0J83aiDgYcO8eD/Dz5+vMXK2RnKz67sXFAX/9BTRsyA552omJ6GierBg7Vj2QlJ43b1gP1MmJm6o6O+vQeIHAtNHnuCj8Ae3i4+ODqa6TYSlRjd258gfSo1Cw3OaqVTzxm3ZS0QTZtm0bxo0bhzZt2uDKlSuGNsc08PVlf7BSJUNbkjWJiUBYGI/v69bxd/bGDaBs2dwfy8+PpWLat+fgSG6IiGA5r88/V617+ZI/P3PRctIoSEzkXnXh4YC/P0uhWFtzH4AOHTIOgBVQhD9guv7Aw4cPMajBQBRHMZSQlACQB3+gTx/gyBGWZD5zRm//N65cuYIBAwagcuXKuHjxIqyNpSdHQYKIe2vNnAkEB/O6ceNYgtLR0bC26YoHD1hSLLOG7Pv2AYMGsSRaly7Ap59yMN3Jibf36MGJxpUr61WKXiDQB9oaFzUOjBQqVAhVqlTB48ePIZVKUwMjlSpVQlBQEOKz0+Y3IhISEtCvXz9cv34dFSpUgEW65k7300dhdYipOj69Jb0AAATCaZyFDDK4u7ujSV6z4SdMYM3EzZt5AlnHREREoGHDhnjz5g3KlSuH9evXo1evXrmveCkoyGTAlSvcMKxMGXZS0g/a+/cDP/3EA/XUqarmoABn/I4cyRMGr18bf2MwZRPNH38EQkM5WFemDN/AAuysXb7M2re3bnGA6PlzdUctLo4DLMp1jx4B5ctz3xGANaXfvVPPAhEIBHodF4U/oDlKfwAA3HEXIQjBli1bMG7cOO2dJDqaq/tMnOnTp2PdunWYN28eVqxYYWhz8icRETz2fqjO0TkKBfD336wLbm3NjVBLleKm6XbpeuwQce+Q+Hiu6CheXPf2+ftzZauDA08qjR+ft2CNQP8oe40U4Ibswh8wLX8AUPkEXvCGB15gwIAB2L9/f94O5uXFyZPdunHzcFtbLVqaNQEBAQBg+o3XTZ2oKL7f3riR/cDnz/mevCASFcXVUseOqdaZm3MAcf16wMODg+t16/K8g5LQUKBECf3bKxBoEW2NixqnCFWqVAnPnj3Dzp07AQBJSUn49ddf4ePjg7ppmyWZAKNGjcK9e/cwfPhwlCxZUkyGa0Ac4iGDDFZWVqhXr17eD/Tzz5wxlVmEXMsUKVIEgwYNwsGDB3HhwgWUFTeJWWNhwZm6mWXrrl7NDSUB4O5dzpScPJmbpwKc3TB3LhAYyI3PlfsaI69fcxmqQsFZSikpvL5BA368cQOYMYObogLspB89ygGQM2dYOuzuXXbcFizgbGcASPv/484dzvLw9QXatGFnxsR+RwWC/IDwB7QHgRABrh6uWbOmdg9uYhND6SEiSCQSrFmzBjNmzPhowk2gJZ48UR9LDx/mbEolFy4AU6ZwFmpux9yAAJarePKEJ+m2b+egw/jxnOVZpAjLIikradMGRcLCuLr02TN1CdL+/YEDB3J7lbnD3Z3964AA9keWLeOs0hkzRHWCMZOQwHIqy5ap1v3zDzB4sOFsyucIf0C7KP2B5mkbReeWypX5N7dyZS1ZlTVyuRxmH+YiREDESHBwAH77jeW8AwIKblAE4M/iyBGeYzhwgJNSnzzh51evctLmiROcTKTkyBEOpmzYAIwYYTjbBQJjQdNmJ2vWrCGJRJLafD3tsnbtWk0Pr1dsbGzo6tWrhjaDiEy3uZobepIbelJd1CEA1KJFC0OblGsUCgVFREQY2gzTJy6OyMyMG341a8bNJAGiOXPU99u1i2jaNCJT+MyfPiXq0UO9GeZ33/G2OnX4tYUF0eTJRK9fcxO1Zcs+bhabWcPVjh3V92vXTm+XJhAYO/ocF4U/oDlKf+ATtCUAZGFhQQkJCZof+PVrogULiE6f1vxYBsTHx4eaNm1KwcHBhjYl/zNihPrYKpUSyWSq7fb2vH7IkNwfe8IE9WPPn0/UqpX664y+93I5N0ZP7x8ARDt35v1ac0NiItE//3zc5Lt5c6Jnz/RjgyB3BARk/J0JCzO0ZXpF+AOm5Q8QsU/QE93JEpYEwGg+05zQr18/OnjwID1+/NjQpggEOePBA56baNGC/R25nOjoUVVT9zFjeOyoWdOgZgoEmmI0zdenTZuGiRMnKoMsqQ3YP//8c0ybNk3Tw+uVsmXLmlxZqrESiEAA0LxZeVISN5i8elULVuWMsLAwhIaG6u18+RYbG5ZnALhB6NGjLCUxc6b6fkOHAmvXqqSkIiK4wsIYqVWL+6qcPQv06wdMm8ZZpgD3EwG4kkQpGTZiBLBwIa/v3ZuzMwIDueF8Rowcqf76m290cx0CgSBLhD+gPQIRBADo0qWLdvS4N27kvlTr1ml+LANx/PhxNGzYEO7u7riUtsGyQDfMmsWLszNXQvzxh3pfjd9/5yUvY+6sWaom6pUrc6XIN99wNQbAjVRfv/74fT//zD6BpSX7FVFRLPUVGMh+kZI9e4DZs4GnT3NvW3ZYWXGlwcWLwIsX7LtYW7PUhj7kvAS5x94eqF+fs6OVlQvr1+dfbX0jQPgD2uM9wpCMZBQrVgzNNJXI/u8/YN48bkytY6pXr47+/fvjG3FfZrwsW8ay67t3G9oS46B+fa4MPXiQ/Z0XLwA3Nx7bq1Xj9YCoNhQIlGglTEOc+bZv3z7at28fvX79WluH1SvHjh2jrl27ko+Pj6FNMdmMEGWGaDu0ocqopPl34ddfOZrt7MyZbTrm4sWL5OTkRA0bNqSUlBSdny/fk5LC2ZS//87Pc8LIkVx1cf68bm3TNgoF0cyZRH/9xa+XLuXvrpkZ0caN2b9XyfXrRJcvEz15ojtbBQITRJ/jovAHNMcNPakXepAtbAkA7dixQzsHfvlSlfXv56edY+oJmUxG8+fPJwAEgJo2bUpv3741tFkCXXD/PlHZsqqM/u3b1be/fk3UoAHRH39kfozYWKLSpVXHaNKE6NtviSZO5OrVxYvV93dyIho3TjN/OSiI6MgR9XVpfRSBwAgQ/oBp+QNE7BOUhQsBoIkTJ2p2sPh4ogoV+Hfxhx+0Y2AWeHp6EgCSSqXk7++v8/MJ8kCnTvx9+O039g0XLCC6cMHQVhkPV64Q1aihXmlYvz5RcjJvf/+e6Pvv1atpBQITQFvjosbN169cuYLChQujfv36auuTkpIgl8thY2OjyeH1iqOjI+Lj45GSkgIbG5uPtJ7Dw8P1ZoupNlcbIO2n9vqA4lDeDxYbC1SpAgQHs4bkpEkaWpc9ISEhqFatGqKiorBu3Tp8+eWXOj9ngYCIe3Nk1ytGoeDMhf37WTv+2jVurmeKJCayTvjs2Zn3YAFYe3z2bGDbNt4/K96/50zpDh0460MgKEDoc1wU/oDmDJD2QyRF4gIuQQopIqIitGd/u3bAlSvcG+Hbb7VzTB0SHh6Obdu24bfffoOPjw8AYMqUKVi9ejWsrKwMbJ1AZ4SEANOnc2+1cuWAChXUtycnc8VIZsjlrAu+bRs3VVX2NlPSubN6ha25Ob+nQwfg0CHt9OA5eZKrtPbuVVXBCAQGRvgDpuUPAEBfSW+cwCnIIMOlS5fQrl27vB9s+XLu1+jiwpnwemi+3qZNG1y7dg0rVqzAvHnzdH4+QTYoFICnJ/flfPuW76VjYlh94eBBnkcCuIfG5MmGtdWYCA8Hbt3iKtQhQ4CyZXmepkcP4NQpoG1bHu+VfdEEAiNHW+OixoERqVSKFi1a4Pr162rrW7RogTt37iAlvRNvxPz1119ZNlQbpSyV1wOm6vgMkPZLbSYKaBgYWbQI+P57wNUV8PDI+uZRi2zatAmTJk2Cvb09Hj9+jArpb2QFuiUxEejSheXTXFyAmzf5MT9CxM58QgK/9vbm73tGBATwZKC3N0tdvHgBlC+vP1sFAgOjz3FR+AOaM0DaD0/pGTzxCs5wRgAFaO/gO3eyVGG5coCXF2DkTcsXL16MpUuXAgCcnJywfv16DBkyxMBWCfTO338DixcDDx9ys9TcEBrK3/tnz1hGqWxZoEYNoHVr1T579gATJvCEUMOGwOnTQLFiebc3JgaoWJGbxHfsyJJfIpAnMAKEP2Ba/gAAdJF0wnXchAIKxKbEpjYzzzVBQZw4GRfHv4nDhmnX0Ez4888/MXbsWFSpUgUvX77M8jsh0DEKBScGXLiQ+T5VqvC4+fgx+4qCj3n+nOdYrK1Z8nzMGB73S5UCDh8GmjY1tIUCQbYYVWCkefPmuHHjhtr6unXr4tmzZ5DL5Zoc3mhISEhAIT1mSpmq49NV0gX3cR91UQdFJEXyHhiJjeUf5bg4rh4YMEC7hmbBhQsX0PFDhv+SJUuwaNEivZ1b8IHwcKBVK578r1uXM4NzO4lgCoSHA0WLql6vWMF6uRnx/fccLFSyahVnxwgEBQRjGReFP5AzBkj7IZmSEYgg2MEWl0mLvcISEvi3MyEBuHyZM9yMmICAANSqVQtt2rTBnj17YGdnZ2iTBPomIgJwclK9btKEkx3atOHAw5gxqm0XL/KkTl6SQu7dA7p3B969Az7/nHunaEJa3+PcuawrYAUCPWEs46LwB3KOMnkyAYk4SafyfqC5c4GVK7mfxM2bql47OiY2NhZOTk6QyWTw9vaGa2aJbAL9cOkS96EtVowTBpQ4OfH3Y8wYVlooUcJgJho9HTqwHx0RAfz0E/sLJ07wti5dOLlCIDBytDUu5rn5eocOHdChQwcAwPPnz1Nfd+jQAc2aNcPTp0/hYGITmZk1i4+Li0OPHj30bI1pEohAvEcYnuJZ9jtnxaFDHBSpXDl7eSEt8t1336FTp04AgGrVquk1C0iQBicnlm8oVYozPerWZec3v+HkxDIw8+YBnTqpT4ykZ/hw9bLW3r11b59AUEAR/oB2sJRYooKkPIpJNMhaz4hChVSTzCYg71OmTBl89tlnOHbsGGrXro1ffvkFMXpoGCswIooUYUkPJXfucIJDnz7A2LFcGQ3wRES3bhyACAnJ/XkaNQL27ePnf/wBvHmj2nb7NrBwIdCrF1ecWFqy3FbJklyBunOnal8iYO1a4Lvv+HWnTurVKQJBAUH4A9pDIpHARqLBmC2Xq36nvv5ab0ERALC0tIRMJgMA2Nvb6+28gkz45BOWW3/6lKsxAU4o8PAAxo0DpFJVUCQsjOcRNMsHz398+y3Lkb18CfTtqwqKNG4MLFliUNMEAn1jntc3Xrp0CRKJBBKJBNHR0bh06dJH+ygnmE2F48ePw9HREUvS/BDExcWhW7duBrTKtAgAS2U4w1mzA23fzo8jR+rV6TE3NwcRYdy4cVi7di1s9aBZKsiEChV4gHZz48zH/CpptnQpO2rZfc8rVuRJjZgYoHhxkQEjEOgQ4Q8YOURcMRIfzwHjqCieLLG1BUaPNrR1GeLi4oKiRYvi7du3mDVrFpYsWYKJEydi2rRpcHbW0GcSGD8SCeucT57MmuiXL/Ny4wZnvCoDZTVq8Hfa05MzNi9eVK80yQlt2wItWvBE0I0bKv/p0iXuU5YWmUx17pYtVeuXLFFNjEyYAKxfnzPJupQU7klSvTpLnQgEJo7wBzQnNDQUClJAKslzTi5z/jwQGMi/iT17ase4HBIdHY0GDRrg3bt3KJq22l9geHr2ZInKSpWA9BW5MhkH/+VylqUW/paK9u05sPTll+wneHoCX33FlaxCKk5QwMizlNaYD5nN27dvR/HixdUyJmxsbFC9enWMHTvWpCaWvb290aZNG3z99deYMWMGYmJi0LVrV5ibm+PkyZN6vRZTKZXtLemV+jwe8TiPi5BIJAgKCkLJkiXzfuBNm4C//mK95IoVNTc0C+RyearOqVwux/nz59GlSxednlOQCxISOLMyrVTK+vVAv36ssy1g3r9nmQsHB55Myat2r0BgpOhzXBT+QN5Q+gQEgnlfS7Ru3RpffPGF7qSj5HJgyxbOenv3jrPc7txRbX/4EKhdm5tSGwEJCQnYtWsXVq1ahZcvXwIArKyssHjxYnzzzTcGtk5gNLx6xT5PcDBLbp0/D+Q2Q/nKFa64/ucfrvYAuOHq1q1AvXpA/fqsu56czH6WTMZ9SZT06cOa46tWATNn5nyS5Msv2UczN+f/i/Xr585ugSAHCH/AdPwBALiHB4gvEo9NmzZh8ODBeT/oy5f8++LgACxbpgUrBTqFiMcWPfWJVSM5GRg0CBg4kOXXAgI40eCTT/RviymQkyRNgcAI0da4mOc7xT///BMAcPHiRTRq1Cj1tSlTqVIlnDp1Cu3bt4dUKsWePXtgZWWF48ePm1SAx1AEIRgA0LZtW82CIgAwcSIvOmb79u1YsWIF7t+/DxsbG5iZmYmgiLFRqJB6UOTECb7x/vZbzkr87DPD2WYMKBRcLvz6NaBs5jt6NJAPfpMFAkMh/AHNiEQUrv13HefOncPkyZN1c5InT7jp6pMn/LpsWfUmrOHhnPVWsiT3bxo4UDd25IJChQph/PjxGDt2LI4dO4aVK1fi+vXriI6ONrRpAmOiShXg7FmewLlzh7/Xf/2Vu8qRtm05YSItzZvzkh1EbMOJEyzrlVPOn+dJS4ArR0aOZPvTN2xfupSrvIYOZekvgcCIEf6AZsghRwhCII+Uo6KmyY7VqgG//qodwwTaR6HgZJUVKzh49fo1V3A8ewY4OurXliNHuIH44cOqdc+eicBIZoigiKCAo3EK3Zs3b5CUlISLFy8iMDDwo2brI0eO1PQUeqVu3bo4duwYOnfujGbNmuHYsWN6bapmygR/CIwM0GOjdE0gIixYsAABAQGwtbVFZGSkyfXFKZBUrMgZlHfu8E01UHCDI6GhPOlXoQJgba1a/9df7JSm7UkiEAhyhfAH8o7SH+jZs6fuPrNJkzgo4ugILF7MEkVppX6ePuUJWW9vzho8cECvPcuyQiqVonfv3nBzc8PBgwfRvXt3Q5skMDZq1wYOHuQG7UePAjVrAv7++ql+kki4UiS3dOjATW/9/YF16/j/p7s7ByjT8uQJsH8/cO0aS4QKBEaO8Afyzju8hxxylC1bFk2aNDG0OXnm7t27aNiwIaRSDeXA8jNv3wJffKG+7uRJ/QdFAJaTXLKEqyR9fXldaKj+7RAIBCaBxt71q1ev0KlTJ/j7+3+0TSKRGH1gpEGDBpBkECG1srJCYGAgWrVqlbru/v37+jTNpEhGMsIRAQDorWlTaCLg/n0ud/zqKy1YlzESiQTLly9PbbDeqFEjHDp0CHXq1NHZOQVaoEYN1syeNo0rRkaOZE1RE3a288zvvwOtWgHXr6uv/+wzERQRCHKJ8Ae0Rwi4aXSfPn10c4KgINXv3uXLQEbjdtu23Hh65kzOYBw+nCdpa9fWjU15QCKRmEwyicAAtG3LUlgrVnD/D2VQRKHgcb5lS26Yaiw92CQSYM4cQCkL5+qasW/WqhUHRhIS9GufQJBDhD+gPULAk9G9e/fO8DPNFaGh3E+sfXugQQMtWJczXr9+jZYtW6JWrVq4cOECHA0x0W8KVKgA/PgjMG+eat3PP/Nvvj55+ZLVJb7/HliwALhwgX3G9EEbgUAg+IDGgZF58+bBz89PG7YYhL59+xrahHxBAhJhD3tUrFsR5cuX1+xgoaFA06Z849e7N1C1qnaMzICRI0eiRo0aGDhwILy9vdGqVSv8+++/oqGesWNuznINISGcUTl6NAfT0ss15HcWLuTJkYcPgdhYIC6Os3I+/dTQlgkEJofwB7RDPOIRg1iYmZnpbix1cuLm6wAHyzPDzo4D6L6+wJkzLNF59arRSQYcPHgQa9asQZcuXbBw4UJDmyMwJgYP5iUpSbXu/n1g3z5e5s5lrf1Zs4yjtxgRV2kBwC+/qFezKqlenR+NpPePQJAe4Q9oBwIh9EOihJubm+YHnDuXq+LHjwf++EPz4+WQ+fPnQyaToXjx4iIokhUSCf+Npk4Ftm3joMi0afq3Y+VKlqMMDgbu3gU6d+ZFIBAIMiHPzdeVlChRApGRkTh58iQ6d+6MBg0a4Ouvv8aXX36Jf/75Bx06dNCWrQUKU2muNs5qtNrrtWHrtdNktWdP1jaeN48z5XRMWFgYPv30U1y6dAlSqRR//fUXRowYofPzCjQkLIzlJUJDgfnzgR9+MLRFAoFAR5jKuKhtTOm6x1mNxnO5B27J3dGuXTtcunRJewe/dYurBfv356zE8HDur1SkSPbv9fPjydj4eGD7dq40NCJWrVqFOXPmYMSIEfj7778NbY7A2AkKAnbvBg4dUlVOtW7N321XV/3b888/QGAgMGMG/58EWCKraVP1IGRKCrB5MzeG//df3i6ktAR5wJTGRW1iStc9zmo0whRhOJxyDOYwR0xCDKwzCpTmhsuXuUeEvT3/Duqhx4u7uzuaNWsGiUSC+/fvo379+jo/Z74hJYUD9hIJ97xasAB4/pwrC93cdJek8u4dUKsWPy5YwMkDWXH+PDeJF4mxAoHJoa1xUWORxMjISNSoUQMdO3aERCKBhYUFBg8ejFKlSmH58uWaHl5gYmglKAIAY8bw499/A+n61uiCokWL4vTp0xgzZgzs7e3RuHFjnZ9ToAWKFuVsYAsLdpIFAoFAYFD8FCyt2qtXL+0dNDgY6NoVmD2b+0x16AB4eeUsKAJwY/ZFi/j50aPas0sLEFGqHK2xT3QJjITSpfn/wtWrLBNnZ8f9OurW5eCIPgkIAIYMYXt+/FG1vlmzjye9oqM5k/jff/l12p5AAoEg3+FHPLY5S0prHhQBWF6wUiUgJob7hukYIsKcOXMAACNGjBBBkdxibs7jwJEjnJzy++88VvXpAyxdqrvzFi/O8wMAj0t37mS+76ZNQKdOQPfuHOAXCAQFEo0DI/b29lAoFAB4UvzFixe4ffs2fH19cfPmTY0N1DVOTk54//59jvcvV64c3r59q0OLTI8kSkYKaTl44ebGUhmBgTyA6gFLS0ts3boVDx48QI2spDkExkX//jxBllbPVCAQCHKJ8Ac0h4hg/uFfz549tXfgI0d4UlXJxYucBag6MWeS7tvH25484WDKB/8UAPca2bdPNSlrBFy+fBmNGzfG2rVrAXAVtkCQYyQSYNw44PFjrhiJiwM2bNBLQlEq7u6q55s2Zb1vSor6axEIFBgpwh/QDuUl5dDArB6qmlXRzgElEpZPBoC9e7VzzCxYtmwZrly5AmtrayzLrupAkDnffMMqD4UKsbSWgwOga2WOAQNYblou5yrhzHpaLVmieq6UgRQIBAUOjcVdy5Yti9evX0Mul6NOnTq4efMmWrZsCQCoWLGixgbqGqUMmIODQ472DwsLg1yfNxwmwFP5MzxVPEN9s3raO6iVFWeH7tnD5Y3t2mnv2Fnw+++/IyEhATNmzNDL+QRaolw51fP791nKQWT1CASCXCD8Ac2RSCToaNEecpKjurKPgDbo0gVYvFh1A1urlnp2OsDBk59/Vl9nYcHVIuXLc/DciPovRUREoE+fPoiKioK1tTWGDRuGKVOmGNosgSlSsSJw6RI3mh0yRNVrhEj3/XR69uSqlcBAoHnzrPctUYL7w0kkLAGWNrgpEBgRwh/QDo5SRzhCyz053NyAb7/lZAiZTGeVZwcPHsSiD5Wma9euRdmyZXVyngLBggUcCElIABITAX9/rnTUNevX89j44gXbkN5HBICtW4Fdu1iSu3Jl3dskEAiMEo0DI6NGjcKVK1fw6tUrLFiwAP369UNycjLMzMzw3XffacFE3TNq1ChDm2CyEBHeki/kkKMQtFAim5ZOnTgwcu6cbsstP/Dbb7+lTko0bNgQbdu21fk5BVomJoablPr68qTZ9OkqvWuBQCDIBuEPaAcziRkk2pyQrVAB+O47zjC3tOQm6mkbN0sk3I8sOBh48IC1rMPCeNLk9WtevvxSe/ZogW3btiEqKgq1a9fGxYsXUaxYMUObJDBlzMz4/0ha5s8H3rzhCaHatXVzXktLrlrJKcrg3+TJurFHINASwh8wUurUAYoV43H+9m2ultMBLVu2RJMmTdCmTRtMmDBBJ+coMAwdyvfjI0ey76YMijx8yGNXnTq6OW/Rohy479WLAyRJSZx8m5YePXgRCAQFGo0DIzNnzsTMmTMBANWrV4eHhwcePHiAWrVqoVq1ahobqGsUaWUWBLnmhcwTkYiEGcxgL9dyj4eOHfkxNDTjgUyLrF+/Hl9+mDSZPXs22rRpo7NzCXRISgo3Y/fyAmbNAk6dYr3tUqUMbZn2iI/nUmRdZ4EKBAUM4Q9oRlhYGLySX8MRRXR3klmz1F8fP85JFFZWPEG7a5dqW0oKZ7G/fcvB8mbNdGdXHpg5cyacnZ1RokQJERQRaJ/Xr4H//Y9lRP75h2VHFy4EGjQwtGUCgdEj/AHNICKcT76IkiiJUigJCbR4zyKV8hzB4cOAn5/2jpuOUqVK4fLly7C0tNTZOQoUn33G1b8KBS+hoUCLFjxGHTzIwQtd0LMnH79nT/YTBQKBIAO0nkpdsWJF9O/fH9WqVYOHh4e2Dy8wMrzAWozlUQ6W0PJgU7489xd5+VKnQZF169alBkXmzJmD//3vf9rNdDVF7t7lz/ybb9Q12jVFLudS2pIlWUZB2zg6Av/9xw3XrK2BM2eATz4BIiO1fy5DcOgQYGvLE3zx8Ya2RiAQCFL57bffcAVX8QhP9HPCHTv4RrpXL06eSI+5OcsstmkDDBsGODvrx64cIpVKMWTIEHRUJoEIBNrE1ZV9uQED+PXBg0DDhkC/fsDNmyyzJRAIBDrg4sWLeAtf3MN9yCDT/gl++IETH4YM0ephk5KScPHixdTXhQoVgplSmlCgOU5OXO0jlQI7d7KslkzG49SFC7o7b79+qqAIESfRiOCnQCBIg8aBkYiIiI80Ne/du4f+/fujbt26mh5eYMT4+fnhHd4BAFyho34yrVqptJJ1wPXr11MrnubPn4+ffvpJBEUAYNs2IDkZ+OUX4Plz7R33zh12hEJDgV9/1d5x0yKRsMzKvXs8EfbyJdC0KZAfArWrVvHjnTvA1auGtUUgEAg+QETYunUrAKCotvXEMyIiQiXJU7u2yAIUCDKifn1g/37g6VOeQJRIOHmkZUvWVRcIBAIdsGXLFgBAWZTVfuIkAFSqxMlwWub+/fvo0KEDPv/8c60fW5COmzdVz5OTgXXr9HPe778Hhg9nCUgRHBEIBB/Ic2DkzZs3qFu3LooVK4YSJUrgyJEjeP/+Pfr164emTZvi8OHDogw1n3Ps2DEAgBMcYQtb7Z/g/XtulqWjrLa4uDiMGjUKCoUCI0eOxLJly0RQRMn8+dzUbtkybnKrLRo3ZimUf/7Rvd57zZrAiROcMfzqlV761OicpUuBDRuARYuA9u0NbY1AIBAAAJ48eYK3b99CCilKQQ/ShWvWcE+p2rWB1atNSlrw5cuXqF27NiZNmmRoUwQFhVq1gN27gWfPgDFjgCJFgL59DW2VQCDIh8hkMpw8eRIA4IIyujnJjRs6UQMo9UF6+e+//0ZKSorWjy9Iw9y5XM1brBjLXK1YoZ/zVqrESbd//cXjokAgEECDwMjXX3+Np0+fgogQERGBcePGYcCAATh8+DCICBYWFhiXm2Z8ApNDGRgpiZK6OcE//wA1ami9TFaJtbU1Jk6ciCpVqmDdunUiKJIWFxegbVvgq6+0O+Fkbs6TWIMHczWQrqlXj6srxowBNm3S/fl0TceO3LB0yRKRIS0QCIwGpT9QHMVhrnn7uqyJjATWruXnixezJIMJce/ePTx79gyPHj0ytCmCgkaNGlwRHBjIk1EAJx/9+CNX8goEAoGG3LhxA5GRkbCEBZx0UUEqkwHdunFjbS2rAZQvXx62trZITk4WkvC6pmlTVpHw9gaOHePx6coV7SpVZMSwYew7AsDKlUJWUiAQANCg+frVq1chkUgwfPhwAMCOHTtw7do1WFlZYcqUKZg9ezZKly6tNUMFxsM4q9EAAFsqhF9//RXdunVD5cqVtX+iM2f4UUeNIs3MzPDVV19h2rRporFadvj5Af/+y31f6tQBKlfWqcSZVilRgicC0uLhwQ6YQCAQCPKM0h84KjsBAFiyaQm++OIL3Z507VogKoqrRfr31+25dMC9e/cAAI0aNTKwJYICS6FCquc//8z95DZtAo4eZR8vt8TGAikpXImiT9zdeUKtd2+gUSOTqhwTCPIbSn/APeUOAGDwiM/w999/a/9Et29zxWjRokC1alo9tFQqRevWrXH69GmcOXMGdfLyeyjIHYUL8+P160C7dvy8bVuWS+3XD7Cw0P45p04FfvoJePIEOH2aA20CgaBAk+c0u/fv36NKlSrYvn07tm/fjipVqgAADh8+jFWrVplkUKRDhw5YsmTJR+sjIiLQoUMHA1hk3NhL7DB16lTdBEVkMuDSJX7eubNWD52cnIzk5GQEBgYCgAiK5ITz51nCaeBAoHp1wM6OG9oqg1emAhHw3Xc8ofbff4a2RiAQGCnCH8g5CZSAd8T9xnr16qXbk0VFsYwWAHz7rclViwCqwEjDhg0NbIlAAJYwqVwZePuW/bojR3KeQZuYyJNX9vZcaXz2rG5tTcvy5UCLFqwX36QJ91M5cUJ/5xcUGIQ/kDt8Ff4AADc3N92cQPk706mTTnyAHj16AACOHDkCEtUEmnH/PisdfJhzyZLTp1XPr1xhdYny5YEDB7Rvl6MjMGECP1+5UvvHFwgEJkeeRxO5XA4nJ6fU18rnXbp00dwqA3Hp0iWsX78effv2RVxcXOr65ORkXL582YCWFUCePuVsEEdHvtnRIp6enqhfvz6mT5+O0aNHIyIiQqvHz5eMHg388QdX79jY8M3wtWtAjx5cBmtK+Ptzs7WxY7mPjUAgEKRD+AM5J0DBN7xFJU4oU0ZHeuJK7t/nSdvly4FPP9XtuXREQEAAAODy5cuiF5/A8FSvzhnYLVty4LFPH/a7d+0C0vz2ZYi7O/Dbb/w8Lo6rT/RBcjJw6hTwww/cTw4AHj/mxBeBQMsIfyDnJFMyzCXmkEKKrl276uYkN27wY8eOOjl8z549IZFIcOXKFYwZMwaJiYk6OU+B4OZNrs74ILeaJZ6e/DhjBie+lCwJBAVxMowufKWZM1ni++JFlt0WCAQFGo3C7A8ePICrqytcXV3x8OFDAEh97erqikqVKmnDRr1y7tw5BAcHo3nz5njz5o2hzTFabqbcgof8BaKjo3Vzgtev+bFaNa1ng9SqVQsDBgzAgQMHsH37dtSqVQtHjx7V6jnyJR078qRUZCQ7L8OGAXI5MGIEcPCgoa3LGRIJy0XUqwdERHCTeYFAIMgA4Q/kjPLScuhs3hENzOrr/mRt2gC3brH0j1QKJCWZnD70//73P0ilUmzfvh1fffWVyEgVGB4nJ+DkSWDWLK4IfvwYGD4c+P131T5Xr3IGb+fOQMOG3CeufHlg0iTeXro0oGsZPSWWlsDlyyyzomyQXLiwyPwV6AzhD+QMS4kl+lq4YajFYBRWSiRpG+UcQfXqOjl8pUqV8Ouvv8LMzAwvX74UPUg14YsvgOhoICd9hxctAnx8OMC+dCng6wts3MgVQrqoDi5bFhg6lMez5GTtH18gEJgUGv3KJCcn482bN3jz5g2SkpJARKmvlYupUbp0aVy+fBl16tRBkyZNcEkp5yRIJY7i4KF4iVtyd91lOyq/OxUrav3QEokE33//Pa5du4aqVasiKCgIvXv3xogRIxAZGan18+UrTp5k/elChYC//wa+/JJ1nXWUtaMTzM2B9ev5+ZYt3DtFIBAI0iH8gZxhIbFAWakLyknL6v5k5ubqkyErVrCEz5gxwJ49XGlq5PTt2xdbt24FABw9ehRRUVEGtkggAAcWVq/myahly4AyZYAPMskAgOBg9pfOnQMePOCs7W++4YqRgABe+vbVn70SCVCpEuDqCpQrx/r0n3yivs/z56r7CYFAA4Q/kDssJTqSqZbL+TcK0MkcgZIpU6bgzJkzOHjwIKysrHR2nnyPuTnQvLmqLykR/w0zomZNoEIFVa8oS0tg4kTA2lq1j7YTSTZuBO7e5UC/QCAo0OQ5MNK2bVu0bdsW7dq1y3Rp27atNm3VOcqMACsrK+zevRvTp09Ht27d8JuyTFwAAHgl8wYAOMABRXTVaNHHhx8rVNDN8QG0bNkSDx8+xJw5cyCVSrFz5060aNECXl5eOjunSaNQAAsXAi9fsoSJTMZNcC9dAhwceJ/QUJZjWLOGJRk0JTIS2L2bb7g15f59YMAA4PhxoHVrnkgj4gzIiROBhATNzyEQCPIFwh/IGeGyCLVF71y+zNrVf/3FmX+1a3NFiZEzevRo7NixA1evXtWdHyXI38TFAXPnAu3bs0/TtCnLnT55otlxHR2BBQtYdrRnT9X6Ro3Yt9uxA/jzT5682rOHJ5WcnQ3T+NzcnIM1t27x//20REVxA98qVViWRcjhCPKI8AdyRlhyON4lv9etPxAQwFViFhZcpaZDOnTooNYzd/PmzXitrFYR5J64OG5yXqoUJ1rmBrmcx6Vx4zIOjsjlwLZtLLGYG2xsDDN2CQQC44MEqUgkEgoJCVFbt3//frK1tSWpVJrj4yxfvpwaN25MdnZ2VLx4cerTpw+9ePEiV7ZERUURAIqKisrV+3SNQqGgoihKAKgKKuvuROfOEX33HdHFi7o7Rxpu3rxJLi4uZGZmRufOndPLOU0Sb28iR0cigGjECKLISPXt69fzNoCodu2Pt+cUmYxo1iwiGxs+lqMj0YULebf78WMiBwc+llRK9O+/RMnJRPPmEUkkfJ5c/h8VCAT6RZ/jovAHckY1VKWKqEjd0ZX6Snrr34CEBKKzZ4nmzCEqV45/483NibZt078tAoGmBAQQDRhAdPhw1vv5+hJVq6byt5RL2bJEKSmq/RISdGfr8OF8zrZtiRQK3Z1HE/78U/XZVKtG9OqVoS0SaAlT9AeINPcJjNkfaI5mJIWUSqIE9YGbbk4SHk60aRPRTz/p5viZsGXLFgJA5cqVIz8/P72eW+soFETffku0ZYv+zimXE3XurD5e7djx8X47dhD17k107Jj6+jt3+P4dINq4UX1bUhJR166q4/78c+7ti4oiWrmS5znSc+IEH/eLL4x3rBMICjDaGhd1INhnuvj4+KB48eJq6wYMGIDbt29j27ZtOT7O5cuXMWXKFNy6dQtnz56FTCZDly5d1Bq2mSq3bt1CGMIghRQVobsSVnTsCCxe/HFZvI5o3rw53N3dsXfvXnQ0JVkofePqyg05JRLOGixRgqUT9uzhbI1PPwXWrWO96qdPge7d8yZt8uYNa4zGx/PriAjOVMwre/eqKlgUCmDzZs42WrECOH2aJbWqVcv78QUCQb5C+APZExsbC294wwc+CEO4YYywtgY6deLeAk+esBRDSopJ9RqQyWTYuXMngoKCDG2KwNCcOAGMHw8cOZL1fgcOcPUuAEyZwq+PHuX3KSVLoqO5imTwYG4uq20JkmXLACsroF074824HTWK/T2AP6+dOw1rj8Ak0ZY/AORvn+AVXkEBBexhr7u+HI6O3Lfi6691c/xM6NGjB5ydneHr64v9+/fr9dxaJzCQ+7UVLqybpuYZ4ePDvULSopS1Tsvt2zyOzZgBvH+vWt+4Md+zAyzjffy4atudO3wvryQv/t/w4fyd6tgR8PZW37ZpEz9u3syVlAKBIH+ipUCNIAtCQ0MJAF2+fDnH7zHWjJBx48YRACoLF8NkhwqMgx07iGrUUGVnuLqqZ1Hcv6+qLGndmigmJnfHVyiIJk5Uzyw5cCDv9gYGEtWqxVUjxYsT3b7N6+Vyzj4SCARGj7GOi7khP/kD27ZtIwBkC1vqAzfj8AlOneKxZ/t2Q1uSYwYOHEgAaO7cuYY2RWBo4uLY/3n5Muv9wsKImjThChF//4z32bJF3YeqXJno+++Jjh4levaMKDFRc3vv3FH3/ZQ2lSzJGbynTxsuw9bHh6hvX75ugMjFhcjUM70FqRjruJhbcusTGOt1v3jxggAQAOqKzsbhD2iRlJQUcnR0JAB0/fp1Q5ujOcnJPI7oC4WCaORIlaJEuXKsDpKeoCCi8uV5vxYtiOLjVdvkclWlorU10dWrvD45mahuXdVYlxdf6u1b1VhRqhTRkyeqbU+fsm/511+5P65AINA5omLEhFA21nRycsp0n6SkJERHR6stxkZsbCz27t0LACiP8ro70YwZnPmWWXMuHSOTyXD06FHsFJllmTN8OPDsGfD4MWt+Tp+unjHYoAFnhjg4ANeusU51UlLOjy+RABs2AMOGAd99x/1B+vUDwsJY21qZKZlTSpcGbt4EwsP5vU2b8vply4D69VkjWyAQCHRMfvEHAKQ2EC+PcrrLDs0tXbsCnp7AyJGGtiTHDB8+HACwceNG0Yi9oKPUO69aNev9nJy4CuTCBW6SnhHjxgH37nF2tb094OXFvTbc3IBatYAzZzS3t3Fjdd/P3x/w8wNCQjiDt2tXoF49YPt27kunT4YPB/77j6+7SBHWnndx+Xg/I/19FRQMsvMJTMUfUFbOlERJFJIU0s1JTpzgvkpv3ujm+Flw9+5dREREwMHBAU2V95CmjIUFjyP6QiIBfv+dqznu3ePf5YwUOpT9Rxwd+b592DDVfJBUyn1EevbknlG9evE8hIUFV3P078+95ubN47GxUiWeo8hJtWS5csDVq0CdOkBwMPencnfnbbVq8Vg2apT2Pg+BQGB8aClQI8gEuVxOPXv2pFatWmW53+LFi1MzLdIuxpAR0l/Sl/pL+lI3dKFSKEU1atQgha4ywG7f5mi9pSVROj1XfXH48GECQKVLlyaZTGYQG/IN7u5EhQtz1UhevjNyuep5UBBR9er8/ZBIiIKDNbPtxAk+DsA61AKBwKgx1kzJnJKf/IHO6EgASCqVUkBAgGGNSk7m8cFEkcvlVLNmTQJAP+lZN12Qjzh1KvNKk5gYoq1buX9Jgwbslz19qtr+9Kl2sofv3OHl9m2iGTOIbG1VWbyffab58XPDrVtEPXpwFvC1axnvc/06fxY//8y97QQmg6n7A0Q58wlMwR/oi95kBSsCQAcPHtTdCdu359+SBQt0d45M+O677wgAffrpp3o/d77m6lWiGzc+Xn/lCs8FAdwPJS1xcUStWvG2MmWIYmPVt1+7RlSokGrs8fDIuT1hYUTNmql6diUnZ/+eU6d4DMnJvgKBQOuIihETYcqUKXj69Cn++eefLPf75ptvEBUVlbr4+fnpycKcYyOxQUtJczx8+FB32aEbNvBjjx7cv8IAdOvWDcWKFUNQUBCOHTtmEBtMEoWCMznGjFFlZzRpwpUjv/yiyiqMiOBskZwg/fATFRkJtG8PvHjBmX9t2wIlS6r2y232kEIBzJzJdk6cCIwerb79+XNgwgSuThEIBAItkJ/8gTd4C0Clu21QfvqJM/oOHTKsHXlEKpXi6w966b/88gsSExMNbJHA5Dh5krNnO3cGMupVY2cHjB0L7N/PFbiRkdyPB+DM2/79+fWpU5rZ0bgxL02bst/n58eVudWqcTW4PmnWjHXoPT2BVq143bJlwJIlqn22beOKkVmz2O4XL/Rro6BAkxOfwBT8gWCEIAlJKFGiBHr16qWbkzx7xlVyAFfB6ZnTH3pYdO3aVe/nzre8fMn3823aqP62Stq04d9ngHuLPHmi2mZjAxw7BjRqBKxeDdjaqrY9f85zSAkJ/PrMGaB69Zzb5OTE8xYlS/L4lY2/jl9+Abp14zFkzJicn0cgEBgdGgdGOnTokOnSs2dPLFiwAMHBwdqw1eSYOnUqjh07hosXL8Ilo/LtNFhZWaFw4cJqi7FiaWmpu4Pfvs2P//3H8ky5lUzSApaWlhgxYgQA4Eh2DTAFKnx82Fn96y/gxx9V65s25RtOgAMRP/7IpbEpKTk/9pUrqhvW8+d5UXL7NlCjBjBnTs6byIWFqb5bmzYBdesC33yj2v7oEfDHH/wdFAgEAg3JT/4AEcEfAQCAsWPHGtgacKPO8HAeg0yU5s2bAwCCg4Phnb7xp0CQHY0aAa6ugK8v8Ntv2e8vkaiSVQIDuWF7SAjQvTswaRIHTrSBoyNLmTx/zoEKQ6C8zuRkYOlSlmf95Rde9/vvvDg6st/Xti0wezZPpikn1gQCHZBTn8DY/QEAqf7AiBEjYGFhoZuTKOcHAJZL2rtXr/J8Xl5eqFevHtq0aaO3c+Z7bt7keQG5HNi9++Ptw4ap5gwePFDfVqQIfycGD1atI+L5I6Xc3OXLQKdOubfL3p7v/ytW5KTMrFAm9AIcRImLy/35BAKBUaBxYOTSpUu4fPlyhsvJkyfx448/olGjRkaZ4aAriAhTp07FoUOHcOHCBVSsWNHQJmlMDMUgnuJ1f6ING1TayuvWcZR/5Mic6UNqkRo1agAA3r9/r9fzmjSVKvHfDADmz2enNT0JCcDOnRyUyE0Ply5dVN+LzZv5Jl7JrVuc8bhqFTBwIBCfg+9p8eLA998D5ub8+skT1sZWogzCtGuXcxsFAoEgHfnRH1BAgdIoBXvYG0f2ZKNG/Gii2d5EhFmzZgEAOnbsiJrKTH6BIDtkMk4IKVFCldxx/HjujuHqypNOyizsTZs42eTff7Xne0uNQKDA0pJ9UwD4+mvWoJdKgc8/Bzw8uBfKu3fAzz+znry+K1wEBYL86BPUQW00QkPdJkoMHcp9g8zNuXflZ58BFSpwQFMP3LlzBw8ePEC1atX0cr4CQdu2QJUq/HzixIz3mTuXEy4z6huXdi7A3x9o2RJo0YJ/ywG+h+/ShcfI4GCuPLl9O2fj2qxZnJSZTSIT1q8HnJ353MuXq1evCAQCk0JjT7Vt27awsbGBmZkZGjRogAYNGsDMzAw2NjZo3LgxrKysEBwcjKVLl2rDXpNgypQp2LlzJ3bv3g17e3sEBwcjODgYCSacffQMHjiFM/AiHWcyduzINyinTwO9e3NJ48iR6s0d9YCyCV54eLhez2vyTJqkupkcPhw4fFh9u42Navv33+c828famrP6AH5M2yx9+nRg1y6+6T14EGjenDNGsqseWbgQiI3lybQTJ4Avv1RtO3CAHwcOzJl9AoFAkAH50R8wk5ihvqQeOks6wsbGxtDmAP368ePhw6omnSaEQqFA48aNYW9vjw0bNhhPI3uBcRMTAzRsyJODt29zQ1oLCw5yPH6cu2NZWXFA5NIllr0KDuZM3P79Nc+APXCAs3YzC9goleD1weLFwJAhXLE8YICqcrhkSc5e3ruXJcfKlGFZMiUxMcCHJtkCgSbkR5+gkMQa5SXldBvUt7YGduwA3r7l/8clS/LYr6dEgvLly4uxWdu4urLUoULBCS6JiVwhsn177sedr77iRMnhw1lmq2lTXn/rFuDtzePZ/Pk8R9CgAbBxo6qyJCOsrNSDIv/+y3ML6enWjeW8r13jgLtAIDBdNG12snHjRrK3t6cXL16krvPw8CA7OzvasGEDeXt7k52dHZUrV07TU5kMyKBJGgD6MxcNno2pqdxnZgPJAhYEgLqYddLvyePj9Xu+D1y4cIEAUI0aNQxyfpMmJYVo6FC+1bWwIDpyRH17bCxR8eK8fdu23B37iy+IZs7kc6Tn6lWiokVVzdbq1CE6fTr39j9/rrI9IiL37xcIBDrBmMbFnJLf/IGh5oPVFqMgKYnIwYF/t69eNbQ1eSYyMtLQJghMiXnzVP6OlRXRvn3cXB0gmj4978dNTCRavJh9oB49iBSKj/fx8SHavJloyxaiHTvUG7mn5e5dVQP2r75i3+2nn4gqVSIqVoy3SaVE9vZEgwYRvXuXd7tzSkICUYsWbFOlSkTv33+8j0Kh7mfOnElUogTRrl26t0+QI4xpXMwNmvoExnTdBvUHEhMz/m3SMdHR0WpzXgItIZcTDRyoGtPs7Yn69CHaupVIJsv+/RERRBUr8nuXLyeKjubf+ogIop07VeOklZXqHKtWqd6f1Xfp1i0iMzMeE48f1/BCBQKBtjGa5usrVqyAi4uLWmlh9erVUbZsWfz0009wdXVFq1atClSfESLKcBmdvsGziRBK7yCDDJawhBMc9XvyQoVUz1++5IwuPaCsGImIiNDL+fIVZmac7TF4MFeEfPop8OqVarutrSqr4vvvc6fjvH49yxykLZ9V0ro1Vxt98w3rgz55knU2SGbs38+PnTuzhqlAIBDkkfzmDyRTMkIpFArKYT8nfWBpyY2nAVWzThNi8+bN+P7773HkyBFcu3YNsbGxhjZJYOx4e7MvBHDViFzOFdbjxvG6HTu4yiEvWFlxH47bt4E//1RVbEdGctXH118DtWqx9Nb48cCIEdznJy1EnAncsydn/nbqxJIobdvyo7c38P49b1Mo2NYLF/Tjc1lbc+ZvhQpsx9y5H+8jkaj8zORkbsYbGspa95Mm8TqBIA/kJ5+AiHBHfhceihdIpCT9ntzKSvXbJJMBW7bovPLs5MmTKF26NIYNGwZFTntaCnLGggXc28nCgnt7xMRwFfC4ccCgQdm/v0gRnlMAgJ9+4uoTa2v+Hf/qK16/aBH31PrlF5Zqd3NTvX/HDlYtCQv7+NiNG7OChEzGVZTpG8ULBIJ8gcaBkffv3+Ply5eYN28e7t27h3v37mHhwoV48eIFwtL8uBiF3IIgT7wkTwBAWUkZSCUG0gm+f58bN376Kd9M6ZgqVarg1q1buHr1qs7PlS8xN+ceIp9+ypJVSg1RJZMmsSa2jw/Qt2/OgyPKniAAOyi7dqk7wsWLs8bn27fAmjXswOQWZRAnMlLvvW0EAoHAmPEib5yTX8RZ+XlDm6KOsgHnoUMZ39gaMX/99RcWLVqEkSNHok2bNqhdu7ZJy6oI9MC1a6rJ+a++Yi30Dh1YT71cOV5SUjQ7R4MG7KcBHHiZOpUDkP/7H/dya9iQX3fuzD3mlFy8yP568+bc0L1uXZbT8vBgn3D2bJZEffqUAxOBgZz01Lkz68Onb7KrC0qUAPbt4x4jPXuq1mfk81laAvfu8aSaRMKSY5076+VeRCAwZt7hPV6RNx4pnkABAwUKiFhS6/PPVX0udUTDhg0hk8lw7949TJo0CSTuEbXH3bssV7V9O+DlxYHyoUOB8uVZ3jAnDBnC/UWionhsio3lZMypUzkQMns2JxDMmAE8f67qXQpwcP/CBQ7EpP+7mpkBf//N37OkJLYnMVFrly4QCIwEjepNiGjQoEEkkUhIKpWqLRKJhAYPHkyJiYlUrFgxat68uaanKlAYS6mst7d3aplvL7PuhpPOiI0lql6dSx+7dctZWaUWken5fPkGuTzzbVeusIxCrVoq+YR374gOHCAKCcn6uCkpKimEv/7K3o7AQKKOHYk8PbPf19eXqG1boidPst9XIBDoDWMZF/WNsVy3TCYjG9gQAGoubWo8UlpELIOwcCHRqVOGtiTXrFmzhsaMGUPt27cnOzs7AkCbNm0ytFkCYyY+nqh5c5UkSHS0apu7O1FoqHbPd+QIkURCVLky0ZgxRLt3Z+zfpaQQVa2qsqtZM6Lg4I9tV5KUxJKq1aqp3jNsmHZtz4rLl9WvY/Jkorp1iT7/nGXC7twhCgpS7XPsGEu8AEQVKhBdvGgQOR+B8YyL+saYrrucpCwBoEoSV8P6A+vX8/9JS0uiBw90eqqdO3eSVColADRt2jRSiP//2kEm085v6fPnKlntjh1Zco2I55Gy4vZt/v4ARJn5X7GxRM7OvM/KlZrbKhAItILRSGlt3rwZ/fr1+6gktH///ti0aRPevXuHhQsX4ocfftD0VAIDsGHDBgBAaUkpFJYUNpwhtrbAP/+wtNapUxzt11OmRkJCAnr16oXvlSWagpwjTfMTExvLGXpK2rRheYILF4BixXjdvXvcELNKFc7OyOxvbGamKoH98kvOLsmKKVOA8+eB9u25uWhW352yZXmf2rWzuzqBQCAoMBw5cgTxiIcVrFBeUs7Q5qgjkbCMQteuqnVXrwIHDxp90+Tp06dj27ZtuHDhApYtWwYAWLVqFeQm2EheoCcKFeIM102bOMP11SuWperenf2X4sVV+16/zhUfmuDmxpmyr16xXN2QIer+nRIzM+DkSa6omDSJbSlZ8mPb4+OBX38FKlfm7NuXL1kKZeFCljlJy717uqsCa9tW/TquX+fG9X/8wTJhTZoApUuzJEuFClzlcusWV8i8eQOMHKn5ZysQmCD+/v7wI38AQFVplWz21jGTJwO9e3MV3dCh/PuiI4YNG4ZtHyQ7161bh7lz54rKEW1gbq6SRjt4kJuwp+faNWDMGJbVzowaNYATJwA7Oz6eTMbrjx0DqlUDtm7N+H1NmwIrVvDzmTOBFy8+3sfWFlDOZ/7wA/DuXc6uTSAQmAaax2gYb29vOnLkCB05coRev36trcMWWAyZEeKGnuSGntQLPcgWtgSAjhtLs6kDBzhrDSBas0Yvp/z3339Tq2ZEFmceiYlRVfycOJH5fmfPqmcO9u+feTPOlBSi1q15v9q1+RyZERJCVLOm6riurkRLlxK9eZO97cePE/XsyZmNAoHAYBhTpqQ+MQZ/wA09qSicCADNnz9f73bkGk9PIkdH/r03MyNq1Yrohx+yHieMgJiYGHJ0dCQAtH//fkObIzAldu9W+TheXrzuhx/49YIF2j/fv/8S/fgj0f37WVcHp6QQ/f030cOHqvcp7QSISpXi7Nv0v28JCVy5ARCVLMnn0TUBAUQHDxLNnUvUrh1R6dKqe44ff+RGvkTcsH3iRKJ161TvVSiI7t3TvY0CIhL+gKH9gSqoTACoXbt2ercjQ0JD+bcEIJo0Seen27RpU+rcwKJFi3R+vgLDgweqseHQIfVtv//O61u2zNlxlNUiRERDh6qOu3hxxtUpcjlR5868T4MGGd/3y+VE9evzPrt25fy6BAKBztDWuKi1wIhAuxiL49MD3Wjv3r0kz+qmR9/87388IEkkRHv36uWUixcvJgAklUrp5MmTejlnvmPKFP67FS1K5O+f+X4yGdGyZUTm5qobYnf3jPcNCFA5wgMHZn1zHhJCNH48kZ2dyjkyMyP688/M3xMZqZpcmzw5R5cpEAh0g5gIMZw/0A5tCACZmZmRn5+f3u3INYGBRNOnq8v6ABygDwoytHVZsnLlSlq4cCEFp5cgEgiy4ttvVd/z8eN5XdpgibZ917T/rwD+/5aRD7Z6tWqfnj2Jfv2V/bUKFYg2buQASHri4ogaNVLJVgHsu2XmC+qS5GSWWPX1zXq/LVtUARSBzhH+gOH8gR7oRpawJAB04MABvduRKWfOqH4v9u3T+enWrFlDAMjNzU1IbmuTadP4b2hvT/T0KSfFHj/OyYzKe/fsJLfTo1BwsEP5/ZgxI+P9AgJUUlxpA2wKBZEyWeXBAx5bBQKBUWA0UloKhQJbt27F0KFD0bFjR3To0CF16dixo6aHFxgYM5hh0KBBkGZUMm8oZs8GJkzgoe2//1TrdVjKunjxYowePRoKhQLTpk0TEhd5YdUqbuYZFgYsWZL5fubmwIIFwO3bgKsrN+/s0AE4d+7jfZ2dgf37+T379nGDtcy+ByVKsDxCcDDLdLVqxRIIb99mbouDA7BjBz//7beMS2sFAoEgn+MHlszo168fXFxcDGxNDihdGlizhiV6fHyAtWt5/YsXGY8lRsScOXPw/fffo2R6CSKBICuUkiEAy0EBQP/+3IgdYCkRXbJhQ8YNaZ8+VT0/fpx9rx07AE9PYOJElqlKz8OH3ER35Ehu9g6wHOuhQzoxPUssLFhitWxZfu3lxTal9TWJVPIumzfr30aBQI+E4h2SkQwXFxf07t3b0Oao6NyZ5wgAYNYsnTfInj59Og4dOoT9+/fD3NwcAMtvCzRk1SqWOYyJYYmrAQOAnj1ZPrJOHb53b9eOfbucIpGwFHvFivx6505Aofh4P2dnldyWhQU/eniwzOPw4fy6fn2WkxQIBPkKCZFms8kzZszAr7/+CgAfaSxKJBIxgZxHoqOj4eDggKioKBQurN/eHr0lvUDgv6UEEhwhHd9M5YWUFODnn3ki3MaG1/3xBw9mO3eybrGWiY2NRbly5RAREYF//vkHgwcP1vo58j3XrnFvEXNz4MkToHr1rPcPC2Nn6MED1otv2jTj/XbvZoelaFHg/n3VDWxWELGedOvW2e/bpw87ZN26AXv3Anr+PykQCAw7LhoSQ/sDAHAb7gjFO+zfvx8DBgzQqw1a4coVDrCXLMnBEjs7Q1skEGiXoCDup/Pbb8C0aewHT53KAQtHR/aNKlTQ3vkOHFAlloSFAb164f/s3Xd4k2UXBvA76S5dlAJtgbIpG9kbypC9QRGRIconCi6GCqggIiiCisp0MBRlCYIIKLL3LntDmWWX7p3n++OQtIEWOpImae4fVy6y+r7Pm6R9T55xDho2zLhdYWHAvHnSwZW+DlBmlJI4HwC6dZOc8ZUqAZs3P16zJC8lJAB16gAnTkgH3fPPy9+TAwdk0FWjkdele3fLtdFOMB6wXDwQgQhcxCW88tGrmDBhQp624amSk6X25NCh8jsKADduyO9mQIBZd63T6dC8eXMEBQVh6tSpCDDz/vK1e/dk8OPECald9fbbwMSJMjDdoQNw7ZpMePzrr8z7BtLT9z8AgKen1K3t0CHz5+/dC7i4yCDI11/LQFv79nIuSu/SJWD3bqltQ0QWYarzYq4HRooWLYo7d+4gMDAQpUuXNoyY623evDk3m7dblg58wnAZF3EJZVAaR9WxPN1/jnXqJLPRKlSQ4ogFC5p8F5988gnGjx+P6tWrIzQ0FBp9oTDKurZtgX//BUqWlIGJYsWe/PzERGDfvrSAJjO//ALUrg1UrpyzdsXHyxdxT8/HH9u3T2Y5pqTIKpbFi6UoJxHlGXaEWK4jBACiEYO/Y9fCXT8ZwdZcugRcuSJftq3cvXv3sGHDBiQlJaF///6Wbg7ZorVrZWIJILHxo51AR45IMfWePdOK3lqjO3ekk/PbbwF/f0u3Bpg7Vwac0q/QAaTz7vvvZRUMmR3jAcvGAwCsc+JkRt56SwaMX3tNOrmdnc2ymz179qBx48bQ6XTw8vLChAkTMHTo0Mf6xiiL7tyRAfWOHYEqVdLuv35d+nxCQ2Vy7N69QNWqT95Whw6ySlGjkWwj+/bJuU//O/Tdd/L9Xn/OTO+NN4BZsySbxcSJafefPy8F3R0dZfCfA2FEFmGq82Ku8yOlpqaiePHiuHDhArZv347NmzcbXcj2aKHFTdxCLGKRChta8TN9uqwUOHsW6NXr8S8tJvDmm2/Cw8MDkZGRuHbtmsm3bxcWLpSZjJcvpy15fhIXF+NBkZMngSlTHn9ev345HxS5cUM6y7p1k0G1R5fX1qsHbN0qgzkXLwIhIRKwERHlY9p0/7zhZbuDIoCkULCBQREAOHDgAPr06YPx48dbuimUl1JSZIVsVFTut7Vwofw/dOjjgyKnTwONGgHPPQeMGmXWVLS5VrgwsHSpdQyKAJLKd9MmSd/aowfw6acy8HT9OgdFKF/TPvLPZoSFSfqlmTOBVq2A27fNspsGDRpg3759qFu3LqKiovDOO++gdu3a2LVrl1n2ZzH37klaanMrXBh47z3jQRFAJlRu2wa0bi0rNYKDn76tNWtkIsChQ8DVq8CgQbLd1FQ5/02eLIMte/c+/rPnz8v/Zcsa31+unKySTEqSgXsismm5Pqu98MILiI+PR7IZOqHJMuIRj7u4CwAIgJV8EcmKsmXlxOfhIV9a3n3X5Lvw9fXFli1bcO7cOZTISromelzRosCGDTJ4NWtW9n725k1ZFfL++5IrNCNKyZLZBw+yt93jx+Vz07Ch5OSePFkCJr1GjWR2Sq9ewLhxErAREeVjCgqRiLR0M3Lu7FkZ7I6NtXRLsqVRo0ZwcHDApUuXcOXKFUs3h/LCTz/JRJBataS+WUYTQLLjxRdlwsjAgcb3p6RIfvS4OLk9bZpcKOuaNJFY8I8/JPd8hw6WTfFFlEdu4AaiEG1IuW0TVq+WFXTe3vL9sG5dGSwxg9q1a2PPnj2YM2cOfH19cfToUTRt2hTz5883y/7yXGKirIwICgIuXLBcOzw9pc9n7ty0WiBPotXKahFPTxkgA2TFiIODDGyULCn3vfvu4xNr9QMj+vok6Y0aJf/PmiU1UYjIZuV6YMTDwwNRUVF45plnMHz4cEyYMMHoQrbnIi5BQaEgCsIDNpaHu3p1qTcBALNnm2XVSO3ateGUlZMwZa5UKZltl910Z/7+MlsPkJoiGQW2vXrJCpMXXsj6+1+rluSu7tNHBtauXwfGjJEVJOlnUvr4yMzFkSOz124iIht0E7ewFdtxARct3ZSc2bVLBrtLlZJBEhvh6emJ+vXrAwBGjBiByEgbHpyirJk923i1qr6Yd0516SKrRurUkVWx+ljm5k0ZFJk4MS0H/x9/5G5fRJTvJSABB3AIm7EFD/DA0s3JnvbtZTWAn5+k1Fy3zmy70mq1+N///oczZ87A1dUVOp0O8+bNM9v+8tTt2/LdOjkZOHjQsm1xcUlLA5maKimysuL4cfk/Lk7Oiy4uwPLlkpZr927pC0jff6Cvd7VgQdqEAr3OnWXFSmRkWtF2IrJJuR4YmTJlClJSUnDx4kVMnz4dn3zyidGFbEtSUhKu4CoAoDxMX8A8T3TqBLi6yknSjOmukpOT8d133yEiIsJs+7ALSgErV2Z9psXnn8tAxr17UuDy0SDlgw8ANzfgn38kL2hWU0TUry+DanfupM3cXLNGVrekp9HIzBNActZ/+KF1p6EgIsqhy7gMBYUEJFi6KTnzwgsyMHL3rszqHjMG+PJL+Ru/e7elW/dEY8eOBQAsX74c5cuXx+zZs5Gi/4JO+c+cOU++nVNxcUDNmkCzZsB//wHFi0tB2+LFgWPHJJ757DPT7IuI8q0ruAoFBV8UREGYvo6n2QUFpa0ebdLE7Lvz8/NDXFwcNmzYgNGjR5t9f3miRAkZBAgNlRUX1iA1FWjTRvoEFi16+vOnT5fv8j/8ICm14uMlPdeyZVJ/5o8/gOefl5UkgHzPB6S+6KMpxLRaKcyu326qDaWgJyIjuR4YCQoKQlBQEEqWLGm4nv5CtuXPP/9EEpLgAhcURRFLNydnNJq0JZFXr5ptN3379sVbb72FD/UnTMqZvn0lT/OXX2bt+W5uMpBSuLAEZoMHG8+yrFtXghetFvjxR0mJlR2urhIo6XNFPzowohcXJ/v67DPg99+ztw8iIit35coV3ILk4i4JG43nXF3lfFGihKR9mDxZcla/+irQsiVw65alW5ipDh064O+//0ZwcDDu3LmD119/Hd8yj3X+VauWfEbv3AFOnZIZzqawd6+kFt2xA3j2WWDSJCkW++yzQOPGsnKkZUvT7IuI8iWdTofLkLSOJVHSwq3JoTNnJO1SsWJPL9ZtIhqNBq1bt0a7du3yZH95wssLqFFD0lBZAweHtPpx//ufnOuepHNnWZGp1QLz58t58OpVmTyzapVMjPzzT1k5otPJNleuBL76Sgq0P6pfP6BQIclikdVVK0RkdTRKcaqzNYqKioK3tzciIyPh5eVl1n311HY3XN+uduIO7qBF0bZ4NqAjAGD04TfNun+zuHpVTlJmLBS7ZcsWtGjRAhqNBvv370ft2rXNtq98beVKGRhxd5fCaIGBWfu5rVuliF5qqnQg/PGHDJrozZgBDBuWto9u3bLXrvBwKRDfoEHmz5k0CRg7Vtp85oyk4SIis8jL86I1sVQ8cFKdwmmcQRmP8ni1nMQBNhkPALJ6dMEC6XS+f19m/TVtCnz0UdpzEhJkIMXKJCcnY/bs2ZgzZw727NkDD55nKLuuX5dJHPq6bnPnyqSS5GTpVNLmep4cUZ5iPJA3x62PCW6p29iJXXDVuuGDqp/CWetsm/FAcrJ0YJcvb/ZdJSYmwsXFxez7sVsnT0qayNatJd1V165SS8bLS2qGPq1fZuNGWVXs5QUcOJCW3vuffyQV5YAB0peQUfr0Q4ek9sjzz8vtjz6SAuxffJE2sZKI8oSpzouMhMlIFVRGHd8GqOP7hM5gW1CihFkHRQAgJCQEL774IpRSGDp0qFn3la916yaFzePigOwsNW7eXDq6XF2l9sejHVpDh6YNjLz0kqSOyI6AgCcPigCyfLZMGQnMmIqCiPIJndIhDJcBAHULNbJwa0ygeHEZxP7mG6m78O+/xoMiO3dKjTIrLJ7p5OSEN998E0ePHuWgCOVMsWJScHbMGLk9ZIikCnVy4qAIET3VJYQBAJ7xrQtnrbNlG5MbTk55Mihy5swZBAQEYOTIkeAcZDM4eVJWrTz7rPQFODpKnZDmzYGoKKBtW3nOk7RqJQMcq1cb1zxt21YyUsyZk/GgyLZtMujy2muS1huQ2qPXrnFQhMiGOebkhyZMmIDixYtj0KBBTy2w/vHHH+eoYWQZvpqCaBPEJfVZ9eGHH+K3337D3r17OTMkpzQaYOpUGRxZuBCoUkVSnWRF374SGAUFpRVgS++rryQw2roV2L5dtp0TR48CX38tsy3TD8C4usr9XbtKh9vAgVKEjYjIhoXjJhKQAHeHAqjiXd3SzTG/ESNkxeLWrVKnzApptVps3LgRGo3GsFqVKFsmTpT0cT/9BLz9NtCunXQoERFlIl7FIxzhAIB6tj5RIjUViIkBvL3NupsvvvgCEREROHv2LM/V5rB1a1pR9L//ltUdbm7AX3/JYMnevZIaa88ewN8/8+2UKGF8e/p0GVx55pm0+5SSz4ynp9xu0kS+6585I6tVNmwA/PyMt3P5clpadyKyCTmKhsePH4+GDRti0KBBGD9+/BP/4HNghCwiOVmKcK9ZIyfFguYpEnfq1CkAQOXKlTkokhsNG0qNkVGjgPfflzRor7yStZ99Up5YJyfg119lRUdOU50lJcnAR1iYzCpp21ZSd7VtCxQpIrlKGzeWGcf160u9EVPlBicisgD97NC6hRrBUZvBjLn8xvnhDNjERMu24wmUUnj33Xdx7NgxzJ07F4MHD7Z0k8jWaDTS8bNqlayKvX076+lLicguRSMGznBGQIHi8Hez4b8Xq1cDb70lndk//mi23Zw/fx4LFy4EAIwdO9Zs+7FrL74I7Nsn57T0qzQ8PWWgpGFD+e6/ebPUCsmKFSuAd96RtNhLlsjAyrVrknYyJUVWGms0ssryjz9kxUloKNCihaTlKvKwNu+aNcBzz0n/U40apj5yIjKTHK2fDgoKgv/D0deMCq6z+Lrtuayu4KA6jEgVZemmmIaTE7B+PXD2rPxvJps3bwYAtGjRwmz7yPeOHJHVHCNHyqAIIDMZIyOzt53ffwfatHm8WHpAQM4HRQDpMPvpJwl47t+X/fTvL9v96isJkpYvlxUvkZGS15SIyIbVRW1UQWXU92ts6abkDX0RUf0MRCu0bt06HDt2DAUKFECvXr0s3RyyVQUKSGfO9u0yKHLjhgyUHDgAxMdbunVEZGWKaAqjHdrg+ZL9LN2U3ClYUGby//67pFsyk88++wypqalo37496tevb7b92DVvb2DePODnn4F69YwfK1RI+gIuXMj6oAgAtGwpgx0xMTLp8ccf5Zy4ZQvw33+SjlKvShW5PyAAOH4cCAlJS8X6yy9Ss65fP/mfiGxCjlaMhIWFZXidbJNWo8FZdQ7RiEZBjbdtFlPLSJcukkbpr7+yd2LMBp1OhwIFCnBg5FGxsVLj5WnLhy9eTKsvsnMnMHmy3N+3b/aXOW/bJoFQyZKyjDYjJ04AH34oQUt2crW3bCnFS/fsAdatk+JuoaGSfqVAAckzunmzpNpivRkislFOWgkLneCIqqiML06Ms3CL8og+nZCVDoycOXMG/fpJp9Srr76KgmZaBUt2olixtOvbtqXFyOXLA8eOAVwBTUQwjglsPh5o0gSoVAk4dQpYtAh4/XWT7+L8+fP45ZdfAEiGFbKQnKSx8vGR7/dDhsigy//+B/z2GzBpktQUffttoHRpWUkCABUrSkqvkBD5TH37rdSy++476RM4dkxq2X35pSmPjIjMJNcV97Zt24bQ0NDH7k9MTERcXFxuN0954Kg6hmhEwwUuKK0pZenmmE7nzvL/2rWSWssMZsyYgYiICHTW74uAw4dl0KF376c/d/BgGRQBJOAAgM8/B6pVy/5+e/aU/3/8Ma0ge0CADF4oJXllu3cH/vwTePnl7G/f0VGC6s8+k2P88EPA1xeoW1ced3aWY9B3sCll1hlJRESmFqmioFM6Szcj7+lXjCQlWbYdGYiNjUW7du1w//591KtXD5999hkAID4+HteuXbNw6yhP/fSTpOzUaNIuISG5W+nh5iYzbt3dpc7O7Nkma26u3bolE2W++srSLSGyOxcvXsRp3dn8Uzxco5HObkAmsqWmmnwXkydPRmpqKipUqIB6j65kIMvYtEnSW2WFPkvEsGHyPb5/fxkA6d9fPi/PPWdc1L18+bSBj8uX5f8iRdJStU2bJhMqicjq5XpgJCQkBEMzmCEdEhICLy+v3G6ezCwyMhLn1UUAQD1tHThrnC3cIhOqXx8oWlTSG2X1hJgDTk5OcHbOR69bbh0/DvTqBVy69OSgMzUV2LUr7XZoqCw5ffBA8l5nV0hIWr2RxER532/elNUhV65Ix9fEifL4339LwJMbEybIbJBatR5/bO1aWQkzZUru9kFElIf26Q5gk24L4pWdpdTRF+D89FMgPNyybXnE5cuXDauz69evDzc3NwDApUuXEBQUhNWrV1uwdZSnDh4E3n3X+L6tW2VAI6e6dpVCtV9/LbfHjbOe34FTp4AffkjrcCKiPDNjxgwcUUdxVB2zdFNMp39/GQQ+dkxqkZrY+fPnAQBvvPGGybdNObB4saTHev55Oc9lhb4WV+/eMrG2WzepSwPIZM7du42f37u39H3MnZt2X5cuwKuvSl9Dt25Sv4SIrFquB0YAZDiTIDY2Nv/MMMjHVq1aBR108IInAuBv6eaYloMDMGiQXE+fF9LEYmJiMGrUKNy/f99s+7ApffpI0bLffkubhZsRBwdJQaU3eLDMXBw9WmZnLF+evf06Osrgys2b8iX6zBng++8l/ZV+Se3hw/J/hw5PT/P1NBqNcdHSw4dlECYmRmZc7tkDFC+eu30QEeWRixcv4v7Dfxrk8u+jrfn0U6BsWUmTkJ00i3mgcuXK+Pnnn+Hu7o6IiAhotRK6JycnQymFN998kyu07cXMmTKI17Mn0L69dPh8+23OVtk+6pVXgDp1ZFLJO+/kfnumEBIiMdU331i6JUR2RafTYcmSJQAAP42fhVtjQr6+MtgKAFOnmnw12sKFC/H999/jbX0WBEg/AVlIr17ynT8+HujUSeqOZIVWCyxcKOfaDz8ExoyR+9u0kdoh6Tk4SM2RR33/vew/KQl44QUZ6Cciq5WjGiMA0LJlS8P1kydPGt2OjY3F8ePH4ePjk6vGkfktXrwYAFBCUwKa3HYUW6PXXpPUTP/9Jx3lwcEm30WfPn2wZs0ahIeH49dffzX59m2OPpVU+fJPf+4HHwDnz0tOzoYNZenpnDkyw6JIEUlFNW+ezLwoXfrp23NwkFVCehUqpF1XSoIcQGaOmNKaNTJjJC7OuLZK6dJSb2XxYqByZTlGIiIrpO8EKYIicNW4Wrg1eczfXwpp+vlJKkYr8/LLL6NRo0bYtGmT4b7y5csjKCgIV65cwRdffIFPPvnEgi2kPNO4sVxMzcFBOgzr1AGWLpXOn06d5LGICGD/fqBFC8DJyfT7fpIiRfJ2f0SEHTt24Pr163CCE/xR9Ok/YEtefBG4elW+g+pMmzq0ZMmSRplULl26hHr16mHixIn43//+lz/7WqxNWJhMiNRopE9iyRIZZD94EOjRQyYuPlx5+0TOznIu1Gplxchnn8m2LlwAfv1V6o4UKmT8M5cuAR9/DMyYAXh5yff/Pn1k8kLFiuY4WiIyEY3K4bIOrVZr+OOe2SZ69eqFpUuX5rx1diwqKgre3t6IjIw0eUqy5xx6AAASVSLWqHVQUBjZ+ksU8ZTZ76NWvGjS/Vlcv34yQ2TkyLR0GSa0f/9+1K9fH0opbNmyBc2bNzf5PuzCN9+kpYh4911JVdW2raTbMkVB0E8+AfSF8GJipGi6qdy5IzM5f/1VBnr0hg4Fli2T1GCurhKM1ahhuv0S2RFznhetmbmPWx8TbNBtRCSi0KvmYNQrFQIgH8YDWaWUpF4cONAscYOpLF++HM899xxcXFxw6tQplM7KBALK/3Q66aAJCsr+QMaoUdJp+M03sp133wVWrZIUpc89Jx1D7NwjC2M8YN544JAuFBdxCXWCmuP52lKXI1/FA0oBBw6k1Yk0kw8//NBQF+y5557D3LlzOXHYnKKjZVJkmTJyDtO/vzduADVryvfxQYOkjkhOJCXJ9/jTp4FnnwXWr5eBE0A+U888Axw9KrVs5syR+3W6tOcQkcmZ6ryY49/SAQMGoH///lBKoXDhwhgwYIDh8vrrr2P69OmYN29ejhtG5qeBBlU1VVCrRGPDoEi+9MsvkivSTJ0bdevWxWsPU0INGzbMLPvI92bNShsUGTlSipX17JlWg+TcOXkPc0op4J9/5Przz5t2UAQACheWvNxnz8rgx7vvApMny/Xbt2XWSUKCLKlNSDDtvomIcilKRSESUXDQOKBqoHk7CmzC3Lky669mTRmUt1I9e/ZEixYtkJiYiFGjRlm6OWRpZ84ATZoAnp5AuXLGRWKz6osvZJarvz/g4yMdP4mJ8tiyZTITlojyLZ3S4RquAwCeKZFPV7prNMaDIpcvG9e9NJEJEyZg6tSpcHR0xLJly1CzZk3cvXvX5Puxa/qMEEePAps3S7aJXbuAevWASZPkOYGBwO+/ywDFzz+nFUfPrhkzZFAEADZsME7zqK9NAsjqywMH5Hr6QZHYWCnsHhWVs/0TkdnkeGBk3rx5mDdvHoKCgtCkSRPD7Xnz5mHGjBl48803UcDUnY9kUs4aZwRryuOFOiwQllv6ImsnTpxAov4LJGWdftCiXDlJfZaUBOzYIfe5u8v/+gAjJzQa+XI/Y4Z5c1VrNED9+pKz9oMPgC+/lByjf/4pj58/L7NWiIisyHl1EQAQXLQG3J0Zu+HZZ+Xcc++epNiyUhqNBlOmTAEArFmzxsKtIYvbvRvYuVPSerq4yMqP7ErfiePuLrNeDx0C9DnzN2wwTVuJyCpdxTUkIQkucEFZv8qWbo75JSVJOuT27eVvnQlptVqMGDECO3fuRLFixRAWFobl2a2hSU+WmiqDDTVqyISWkyeBvn3lsbFjZaAfAFq2lGwUgKyozIkjR4xv799vfDskRFZWKiW1TY4fN358wADpi3juOVndQkRWI9frusLCwvDbb79h8+bNWLRoERYuXGh0IbIK16/LLIKLF82y+XXr1gEAmjdvDpfcpHuyV5MmySqOGzfSUmb9+qusuEhNlefoV5TklJcX8MYbQECADFAkJ8v9d+48HriYSosWkou0Qwe53b27LO8lIrISCSoRYbgMAGhWvoOFW2MlLl+WzmVXV+kwsWLlH9bzSkxM5MQMe/fiizJLFgCqV5dCsbn1wguyckpfODYkJPfbJCKrFaEiAADlNWXhoHWwcGvyQGqqfO+MipIUzvoVASZUr149PPvsswCAiIgIk2/frjk6ygTLQoVk4GLxYulDGDFCHh84ENi7V66PHi3PfZjeLNs++0zqhQQHy//Tpj3+nDlzgFq1pH+hZUvjPoa335b6Jv/+CzRvzsmSRFYkx8XX9c6dO4fWrVvj2rVrjz2m0WjQv3//3O6CTEwphb1qPwI0/iiB4pZuTt4YOxZYsEBOaGPGmHzzixYtAgC8+GI+yr+alypXlkCmdGmgShW5r3t3+f/YMSlubqrC5XFxUkTN01Nmlrz1lsyKPHxYBk9MKSpKCrcBUtj088/lOvONEpGVcIEzGmka4Ka6hdKFWBwSgKQTAiQXtZUXf/b09MSkSZPg7e1t6aaQpemLxdasKTNZXVxkxWrXrrnbblwcsHWrXG/XLtfNJCLr9Yy2BkqqkvCAnawedXMD/vpLOrEPHpTviDt2AKVKmXQ3+nN0FNMomV7DhsDXXwP9+0tN0eeekzju3Dlg9Wo5B+7bJ3W30k8YSEwEIiOzHucVKwaEhsqKkNjYtH4DpdJqbxUsCPz3n3yODh2Sz9X27TKY0rSprELu3Fn6HRo2BNauTev7ICKLyfXAyAcffICrOVmqTRZzAZdwDddxS92Gv6Zo/iqmlpmSJeX/K1dMvumkpCS0bNkSkZGR6Nmzp8m3bzc6dcr4/vLlc79aJL3Jk2U2cIkSQKNG0nFw8SIwZAiwaJFpi4p6ecnslcuXZfDH1VXymo4YIfvTd74REVmIRqOBP4rCX1MU763sa+nmWN7u3TKjUKtNm3FoxbRaLUaPHm3pZpC1KFlSauvpY6p+/SR1xx9/SJrPnKxadXOTgZatW4GKHDwlyu8KanwA5LOC60/i5SUpl5s1k9VxrVsD27ZJbQoTCQkJgVIKjRo1Mtk2KZ2XXgLmzwc2bZIMEevWyff6xo2lXtajKf7v3ZNJmNHR8l57emZtP/qJjfpBkeeek4GPHTskJThgPDji7m78OapXT+LM9u2lNmnjxsDGjUDt2rk5eiLKpVxPWd6+fTscHR2x4WHO2Zo1a+L333+Hn5+f4T6yHnfu3MEJJcUYq2oqw0VjJ2mfgoLk/8uXTb5pZ2dnfP3117h06RJ8fX1Nvn27tGMH8Omnpt9uWBjwMB87vv5aZn7oi7H9/rsUFjW1QoVkSa2rKzB7NjB4sKwkmTJF9klEZAFKKdzgMn5jkZHA88/L9b59mfqQbFPHjsDIkXI9Olpm0a5aBaxYkbPtaTSSNmTYMNNOHiEiq7Fw4ULEqjhLN8Ny/PykhlLp0pIGuUULWS1nIt26dcP06dPRuXNnk23TpqWmAg0ayDnlr79yvz2NBpg1SyY8/vMPsGQJ4OEhaas2bJDv4+lFRQFnzsgKkJdeytk+t24Fli8Hbt2SCY/p6QdH1q59fNClTBkpEN+4scSdffoAKSk5awMRmUSuB0YePHiASpUqoVWrVtBoNHByckLv3r3h7++PSZMmmaKNZEJff/01kpEMH3ijDEpbujl5p0QJ+T+DlG+mouGXRdP4809ZamqOQYOwMCmyB0jAdP48MH26pLYCzFdrRO/RweJt28y7PyKiTKxduxYVKlTAeXXB0k2xHl5eknbhww+B77+3dGuyTCmFP/74A3PmzLF0U8hafPEFkH6yTps2ua85smqVzMYlonwlPDwcgwcPxr/qP/seHClWTDqzHR1lNr8Z+w3sXlycDEIFBsrggSlUqJCWMv3bbyXFVdGikmYSkNsLFkhfQOnSkqrbyUnivpz0AZw/n3b9zBnZfnoFCxoPivzzT1rt1EKF5Lh79ZJzq2OuE/kQUS7kemDE09MTuoedih4eHjh9+jT27t2LK1euYPfu3bluIJlOZGQkZsyYAQCorKloXx35+tyRt2+bZfOJiYkYO3Ys5s6da5bt25UTJ+T/6tVNv+3mzSVQcnKS1SHly8sAiVYrsyvNnY7k44+Nbw8ebN79ERFl4vPPP0dsbCziVLylm2I9NBqpz/Dpp6avOWVG//zzD3r16oWRI0diz549lm4OWQOtVmbKVqggt//9F6hRA1i48PHOm6wIDZVC7O3aSWHb9JKTc91cIrKc6dOnIykpCT7whjvcLN0cyypTRv6mHTyY9vfTBGJiYnD9+nUWX9fz9JS0j599Bnzzjem2+957wNSpMsD1aF/XZ59JMfaOHWU1Zd26QIcO8tiSJdnf14ABwLx5shpz5conr6h87z05f6bvC/Dykv6ISpWyv28iMqlcD4yUKFECly9fRmpqKqpVq4bo6Gg0atQI0dHRCAgIMEUbyURmz56NqKgoeMITAbCz90b/WbxzxyxLFX///XdMmjQJw4cPR1hYmMm3b1f0A6qmKraenkYDvPmmrNQoXRpo0kQ6wfbtA778UvJom1ONGsDRozJD5P33JcUWEVEe27FjB3bs2AFnZ2eU15S1dHMol9q0aYOmTZsiJiYGLVq0wNKlSy3dJLIGtWtL8ddXX027L6efjYoVgS5dpMOwXz9JqzVokHTodOxo/NzJkx9fIUtEVikyMhKzZs0CAARrKtjXxMknMfF3tPnz56N48eJ47bXXTLpdm+boKAMVLiZM7e7qKvXh3N0ff6xePak18t9/kiotLAzo3VseW7w4+5MG9O3v3h2oU+fJz61RQ/6fNEmyVWS0r61bpS4KEeW5XA+MDBgwAK1atcK5c+cwduxYODk5QSkFrVaL8ePHm6CJZAr9nF7E+A/GAwC+m/8dlutWYlnqCixLzWG+YVtTuDDg4CAnoVu3TL75/v37o2nTpoiNjcUrr7wClZPZeCTvj362qzkGRvQaNABOn5bAaN++vC14Vq2aFFz7/HO5vWwZ0KOHzMYkIjKzgc790KfZCwCAkslBWKNbZ1/xQGa+/15qMezda+mWZJtWq8XatWvRuXNnJCQkoHfv3pg0aRJjEZJOoB9+kHgnOVnSlOak49PVVX5WX7tkxgyZKXv6tMRt+vQggHT6tGsn6UmIyGoNdO6Hlr4hiIqKgg+8sT1lpyEesLuYIClJ0jDduWOWzeszrGi1ue5+sw+pqXJuyc2E1tRUYMIEqRkDSDrJzZulnszBg5Kd4u5dOU+ePw+YM/NH374yYAMA77wjK1XCw9Me37sXaNVKJhww6w5Rnsv1X+Z3330XK1euRMWKFdG+fXucOnUKy5cvx/Hjx/FSTgsZkclpoUUzhyYooymFF1980dLNyXtareRbnjtXCnGZfPNa/Pzzz3Bzc8OmTZswevRopLCIVvYdOADcuyfXq1Y1776cnWWGiiVzek6ZIoV+V64EWrcGrl+3XFuIyC7c0d3FNSV/a6o6VLZwa6zIjz9KWgcbHaT28PDAypUr8c477wAAxo4di7feesuyjSLr0aqVxDuPFoHNDq1WVtfOnQu0bSvpR//6C7h4USYfAVKzrWZN+b93b2D7dtO0n4hMLlEl4qTuNACgqkMV++60//57We3WrFla7UkT0g+MLFmyBOfT16agjA0YIJMkO3XK+TbGjAHGjZMVHXEPa+fUrSuDEI0bSzqtt94CYmPlMXOfr6ZMkYkDLi7A+vUyWVJft6tuXVmVmZQEdO1qtvTvRJSxXJ/9XnzxRWzYsMEwK6106dLo0aMHgoODc904Mh2NRoMArT+aOjaBk5OTpZtjGSNGSE0Hb28gMdHkOZHLlSuHL774AgDwxRdfoF69ejh8+LBJ95HvpS9y92g9jvwofRHTe/ekcBsRkZnodDrs0+0HAJTRlIaXxnbqaJjdgwfy//ff22zBVQcHB3z99deYMWMGNBoNvv/+e+zfv9/SzaL8ZvBg6dSZNEk6rfz80h7TamWwpFMnICFBOnpyUtSWiMzuiO4YEpAAL3ihtKaUpZtjWefOyf+XLgHz5+esFtMTlChRwnC9QoUK6NixI9atW2cYMKFHrF8v///7b8638dZbUnz92LG01Y6A1JHZulUmzer7xUaPlskx5qTVSpsOHgSeeUa++/fqBcTEyGPz5skEhjt3gLNnzdsWIjKS64GRxYsXo127dggKCsKYMWNw+vRpU7SLTCgyMtLSTbA+H3wgMwX0SytNZNiwYZg/fz4KFiyIw4cPo3///gx4sqNbN+CrrwB/f8AecrB++23a9RYt5EJEZCZHjx7FfRUBRziijgNrHBlZtUrqkR0/DjRqBKxbJ5MobNAbb7yBjz76CL/88gtq52WqSCJAOnaWLJE4+8EDWV1y+bKlW0VEj3CDKxzhgHoOdaDV2PFqEUA6ybt0kfP+K69ImuVVq0w2QNKzZ0+sW7cO7du3h1IKa9euxZAhQxCnX8lAxnbsAOLjczdAUKxY2mDHrFnGAx8ODlIQ/aefZF+TJuUszWROVKki6bKef14KxeuzmRw8KKnDfH2B+vXzpi1EBADQqFwmIG7atCl27doFpZShWFfdunUxcOBAvPDCC/Dx8TFFO+1OVFQUvL29ERkZCS+vnM/oPH78OBo2bIjScaVQU1sDGo0G85PMPBpu7e7dAypUAO7fB4KDgcOHTV50++bNm3jrrbfw1ltvoUmTJibdtl1ITk6bwaGUBCyNG8tsivwmPFw64+LiMi4UR0QATHdetDWmPu6eTt0RoSIQpJXZi3YfE6QXFia1EfSr9zw9gRs30r60pqRYNv0ikTW6ckVWWdWtmxa7ARJnN2sGnDghHVR79gDFi1uunZRvMB4wzXEPdO6HBJUAV40rAMYD0Okk3dFnn8ksfgDo2RNYvtykuzl37hxmzpyJDh064Nlnn324ax10Oh0cGWOY3qhRMgCh0QCzZwP/+5+lWyT03bD6AZnq1WV1yyuvSHrXM2eAggWBIkUs10YiK2eq82KuB0YA4Pr161i6dCmWLFmCffv2yYY1Gri4uNjtKPi2bdvw5Zdf4uDBgwgPD8fKlSvRrVu3LP98bt/gwa6DoJTC+uR/cV3dQM+ePbHcxCd1m3b1qozEh4cD774rqxTMbObMmXjw4AHef/99OOhzMdOTKQU0bQrs3An8848UTbNGMTFSH4QpBInMxlY7QqwhHkjvh4Sfs70Nu3LvHjB2rMwULVlSOnP1atWSGfDPPCOpgjp3BgoXtlRLsywmJgZarRbuHHwnU9PpgFKlJK729JSCsp06yQpgDw8ZMGnTRnKp//57/pzgQnmO8QDjAbO6d0/6Br79FvjuO2DgQLlfv4rUxcXku5wzZw5++OEHLF68GOXKlTP59m1eWBiwcSPQr5/UCc0OnQ4YOlQGRQDg66+lAHpGbt2SdJENG0p6rbwSESErRQD5zG3ZAvzxB1CoELBtG1CZNQGJMmKqeMAk0WmxYsXw7rvvYs+ePVi9ejX8/f2hlEKijaYgMIXY2FjUqFEDM2bMsFgbruqu4bq6AS20mDJlisXaYZVKlJCReAD45htg82az7u7y5csYPnw4xo4di/bt2yPZxPVN8i2NBqhTR65/8YVZiuHl2tmzEshUrCg5aYmI0rGGeCBWxeK2joUcs6RQIfnyfP261ErQS00FTp6U/OMrV8qMPn9/KTBt4lzkprRy5UpUqFABPXr0wFnmrCZTO39eBkUAKWS7ZIl0XIWEyH3FiwO7dkl8xEERsnPWEA/olA6bk7ciXHfTYm2weoUKyaqRS5eAl15Ku//nn4HSpSXVpgklJydj8uTJOHjwIBo2bIhDhw6ZdPs2LzERaN4cePVVKaaeXVotMHMm8P77Mqj1zDOZP7dfP4n9xowB1q7NcZOzzdVV2jd4MPDDDzIoAsgg3bPPygpMIjIbk0So586dw8SJE1GtWjV07doVt27dAgB46FMP2KH27dtj4sSJ6N69u0X2n6gSsTNlFwCgqkNllClTxiLtsGodOkjHhlJAnz6SLsNMgoKCMHv2bBQoUAAbNmzA9OnTzbavfOfNNyU1w6ZNMtvD2jqgzp2T1F8AwECWiB5h6XhAKYXtyTuxOvlvhKYctUgbbJJWa7waxMFBOoA3bwYmTJDVIzodsHQpcNR6X1cHBweEh4fjn3/+QaVKldCvXz+c0acKI8otBwfAx0dmuO7eLTX8ABlE1PPxSUtZm5Iis3D/+y+vW0pkcZaOBwDgSOpRXNBdxH/JmxCjTxdFGfPzM06fuXSpZJvo3BlYuNBku3FycsKuXbtQu3Zt3L17F61atcKBAwdMtn2b9+CBpGwEZDVvTmg0wOefSx05/cD9o5SSx/VOncrZvnLCzU3aN3cuMHmy9FMtWiSP3bghqy+JyGxyPTBSu3ZtVKxYEePGjcOJEycAAC1atMCCBQsQHh6e6wZS9imlsDVlO2IRBy+NJ2o51LR0k6zX9OlA1aqybPKFF8y2IkGj0WDgwIH47rvvAAAfffQRZ4NkVdmyUixNnxd0zBhLt8hYhw4yoyQ2FvjkE0u3hojIyNHU47imrsMBDiilDbJ0c2xb4cLyhfqjj6RIZseOcv+//1q0WU/SpUsX7NixA506dYJOp8Ovv/6KypUr46WXXsLNm5wxTLlUtqwUVh82DGjQQDp0+vXLfAXt+PHS+dOmjQyiJCXlZWuJ7NoNXTgOpYYCABo61rfrSaw58s8/8vctNRUYMMCkqbgDAwOxadMmNGrUCA8ePEDr1q0NKertXtGiktbsyy+liHpupE9TtmGDxHJ6Go0MeH32mZyf3ngjd/vKqQ4dgL//lnRaANCihdQfISKzyfXAyOHDh6GUQvny5TFx4kSEhYXhv//+Q79+/ZjLOBsSExMRFRVldMmpqVOn4oruKrTQoqVjCBw1LOKVqQIFgBUrgKAgYORIsy/zHzhwIDp27IiEhAR0794dd+7cMev+8o3evYE5c+T6558DFlyC/hiNBmjfXgqnFyxo6dYQkY0zZTywdetWHEiVL30NHevDR+tjolYSACnUXq+e1RfGbNy4Mf766y8cOHAAXbp0gU6nw6JFi9C0aVO7TntLJvJoTueFC4Hnn8/4uaNHSzoUpSRFaqNGkpKUiB5jynggPDwcm5O3QkGhvLYsymqZTSLbnJ1l0Hf4cLk9YoT8TTNRNgMvLy+sX78eTZo0QWRkJJ599lns3r3bJNu2eW++KX01zZubZnsnTwI9ewLNmklfkF7r1jIJc/LktJWOlpCSIim1AE68JMoDue4Ffu2117Br1y6cPn0aY8aMQYkSJUzRLrszefJkeHt7Gy7ZfR1fcRlouKwe/SdcXFwwc/ZMrExazcJqT1O+vKRD6tIl7b4FC8ySGkOj0eDXX39F+fLlceXKFTz33HOsN5JVgwcDkybJ9XHjJJe1tbp0CThyxNKtICIbZKp4oI9zb7QPaQ8FhX79+mFb0g7GA6Y2dCiwd6/MHLUBtWvXxqpVq3DgwAEEBwfjo48+gosZisgSZapAgbT86QULymzdWrXMXuuPyBblNh4AJCZ42bk/ahWriXjEo2rVqjgcdQQ/Js4zQ4vtgFYLTJ0qHeeATNgbPNhkgyOenp5Yt24dmjVrhqioKKxfv94k27U527cDNWpIofTcvraXLsn20k8EKV4caNwYiIuTAZIvv8zdPkwtMlJWjFy4ADRtCsTHA7/+KvXviMjkcj0wMmvWLDRo0MAUbbFro0ePRmRkpOFyVV/IMAcqOJTHqVOn8L///c+ELcznnJ3TroeFAa+9JifjKlXSclqaiI+PD1atWgUvLy+0aNECDg4OJt1+vvbBB3LZtQvw9LR0azIWFgaUKSOF3TZtsnRriMjGmCIekJSa2xCPeFSpUgWzZs2CRqMxQ2vtnE4nhTFtTO3atXHkyBH079/f0k2h/G7LFunUebS2Xo8eMgGpeXNJRdqxI7B/v0WaSGStTNU/cDg1FDfVLXh4eGD58uUoUKCAiVtqZzQa+T76ww8yUBIQIPeZiIeHB9auXYvZs2dj/PjxJtuuzVBKVhYePSqrcz78MO2xgweNa1SdPy+DBhkJD5f+nDJlZGVI27ZpadO9vKTI+ptvyu333rOuAfpCheT8WKaMDOg0aSJp3PSDJERkUjnKsTRhwgQUL14cgwYNwoQJE5743I8//jhHDbM3Li4uuZq1p5SCDjo4aKSTvXTp0qZqmv3RaqWo2vLlssxy3ToZKDGhSpUq4fz58yicvrArPZ1GkzZDx1qlL452+jTQsqXl2kJENie38QAAXFXXEK5uwhGO7AQxlzNngJdflsKsW7aYPRWnqbm4uCA5ORlvvPEGhg0bhho1ali6SZQfXb4MrFkDZPR9sXhxYP16oFs3YM8eKTBLRAamiAeUUohQDwAAP/74I4KDg03QMgIgnfe1agE1TV/PtUCBAnjNxP0PNiM1FYiISLutz+Jx9qykr05JAQ4dkuLoL7wgWT8WLnx8cOrOHeNi6gcPys/qJ8Q6Okrtku3bgdBQ4PBhqedhbeLi5HgBWf0SGWnZNF9E+VCOBkbGjx+Phg0bYtCgQRg/fvwTZyHa68BITEwMzp8/b7h96dIlhIaGwtfXF0FBpi9+ekR3FOdTL6KxYwMEaANMvn27EhQELFsG9O8vRb/Td3SbEAdFTGDDBvlSPXWqSWfq5EqTJvKZ0ekAf39Lt4aILCyv4wEAKKEpjhCH5khBMipWrGiWfdit1FTgm29kBmNCgsw6PHVKVpjamDlz5uDHH3/EX3/9hcuXLzOtFple//4yu3Xq1Iwfd3UFfv9dVo0UL563bSPKY5aIBzQaDVo5tsAtdRu9e/c2yz7sWq1aZt28Ugr79+/HwoULMXnyZHhaa8YEU3J0lNUbGg2wcyfw4osycN6mjQx21KoF+PrK4EBsrKSYql0beOcd4+1Urw7s2CGrQd54Q7JNpM8Soqdf+WuGAS6TKFhQUrfOnQv06cP+BSIzyNHASFBQEPwf/kIGBQUxPUMGDhw4gBbpRpyHPyzSNWDAAMyfP9+k+5o6dSoOpYYCAO6p+wgAB0ZMQt+ZZKaBEUAC4gsXLqBu3brw9vY2237yhaQkmT2SmgoEBsr70qmT3F+2rAQ81qJYMUu3gIisRF7GA+phHmaNRoMyDqVMum2CDHg/9xywcqXcbtMG+PFHwAbr60VERGDcuHEAgHHjxnFQhMxDowHc3Z/8nIIF5aKnlPVMdiEyobyMB27evAlfX18AEhP4a4qadPv0iF27gI8/lsLdJs4W0L9/f5w5cwY1a9bEK6+8YtJtWy39ZJPKleX/l1+WFYjlykk2Dy8vICQEmDZNBkRGjpS0WY+u+GjYUFaEZOb8eeDqVRmMqVPHHEdiGt99B3z/vaVbQZRv5WhgJCwsLMPrlCYkJMTQQWEqXTSdDNdXqzUAgBkzZmDUqFEAgIkTJ2Ls2LEm3add089cM+PASLt27XD27Fls2rTJKFCmh86eBbp2lTovcXFp98+aBQwZAnz2GTBqFPD221LTo1EjizWViCgj5o4HAIkJdu7ciffeew8rr65EkSJFTLo/emjcOBkUcXGRL6ivvGKzHbiffvop7t+/jypVqmDw4MGWbg6R0Kfdmj8/rUOMKJ/Iq3jgxo0baN68OSpVqoSlkUvh6upq0n1SBn7/Hdi4UVaStmhhsthAo9Hg5ZdfxgcffICff/7ZfgZG0ktJkQwRgGTzSB/jvvWWpJlauFDSMv7xB9C6dda3Xbq0DGqdPGm99UsBm401iWxFrhMib9u2DaGhoY/dn5iYiLj0HZlkcn/99ReGDRsGABgzZgwHRUxNPzDi4WG2XehrwRzV584kY7NmSZ2OR/+WjBghS2lHjACef14Cpl69gLt3LdNOIiILunz5Mtq3b49du3bZZ6HOvLB5MzBxolz/4QfJLW6jX1SvXLmC7x/OPPziiy/g6JijeVJEppWYKIV29+8HGjSQDi4iypaUlBS0a9cO58+fx7Fjx3D//n1LN8k+jB4taZp27gRWrDDppvv16wcHBwfs2rULmzZtMum2bcKBA0B0tFx/dFWHRgPMni2FyqOipAbJX39lfdsODrKqxB4HnIjIINcDIyEhIRg6dGiG93t5eeV28/QES5YsAQAMHDgQE/Vf1sl0qlQBypeXvJVmUq9ePQDABx98gJ9++snks4hsXmJi2vXevYFbt2RmR1ycrCLRaICffgIqVQLCw2U2LxGRnVm3bh2io6NRvXp1TM0slz/lztWrQOHC8gW8Xz+5LznZsm3KoaioKKSkpACQ1cY3WPSarIGLi8zcbd5cOsF69QJef11qlBBRlpw6dQrHjh1DgQIFsGnTJgQGBlq6SfYhMFBSOwPAkSMm3nQgXn/9dQDAiBEjoNPpTLp9m5LRQJ+bG/DPP1KIPSVFJq9k16lTMumSiOxSrgdGAGTYmRsbG8tOXjO7cuUKAKBt27as82IORYsCR48CBQrIbaVkmebDzgRTeP/999GxY0ckJCTg1VdfxcCBAxEbG2uy7du8qVOBd9+V60uWADNmABcvApcuSR5RQFb0zJwp12fPBo4ds0xbiYgs5PLlywCAZs2awf1p+fwpZ/r1A/btA157TW6npgIBAUDjxjIof/KkZduXDVWrVsWqVavg4+ODW7duwc3NzdJNIhJ+fsCGDcAHH8jt2bMlHu/VSzquiOiJ9PFAhQoVDJkJKI8kJMj/zZqZfNPjxo2Dl5cXQkND8asZJ21apQYNgC++AIKD09JoKSV1Rb76Sm67uADz5kndN30duKxatw6oVy9tYIWI7E6OB0ZatmyJlg8LS508edJwu2XLlqhfvz6OHz/OYtJm9vzzz6NixYooV66cpZuSf6XPyfr++8CAAXLSTEoyyeYLFCiA1atXY/LkydBqtVi4cCHq16+PW7dumWT7Ns/dXQKeLVuAtm2lnggAlColRdL0QkKAHj2kMO7SpRZoKBGR5ezZswcAGA+Yk0Yj5x69Y8eAe/dkhvuECbLK9Jln5Mu7DazA6Ny5Mw4dOoQ///wTBdMXviayNCcnYPJkmQFcooSsHvnjD5kVTERPxHjAQiIiZOIeANSubfLN+/n5YcyYMQCAsWPHIt7eVtK9957x4Pi//0rh9REj0gZHXF0lJZaDg9zesQO4fl0GUfRSU4GwMLnoBQXJczZtkpRoRGR3NCqHyzq0Wq1hlUJmm+jVqxeWspMyR6KiouDt7Y3IyEhDSrKMiq/rX3uuGMkDq1ZJPYukJKBjR2D5cuOBk1zaunUrXnjhBQwcOBCTJk3ie/okSsmMwpAQyecKSDB68iTQoYPN5n0nosxldF60B0+LB+IQh43YDI1Gg7CwMAQFBVmqqfZFKTnvbN0qsxPXr09LreXiIjPdBw60aBOza/78+Th9+jQmTZoErdYki8qJckenAw4eBHbvliK7el98AbRsCdSta7m2kcUwHsg4HlBQCC1+FNeuXcOSJUvw/PPPW6qp9mfzZvmbVKpU2gCJicXHx6NJkyYYMGAAhgwZAmf9d2B7pBQwfrxMTAFkkGT48LTHU1MBb28gNlZWmVSsKGm3w8IkVitQQPoN9DHzsmXSzwMAixdLCm8isnqmigdyXG1xwIABAIAFCxagcOHC6NChg+Exd3d3VKxYEYMGDcpxwyhrvv76a9y8eRORkZGIjIxE0sOVDBqNBr1792ZAZEpduwKrVwPduwN//y3FvZYvBwoVMsnmmzdvjrNnz8LT09Mk28vXXn8dmDNHZojoU22VLi0XIiI7ch2yOqFGjRqGQZEhQ4bg9u3bACQe0Gg0CAoKQufOndGkSRM4OTlZrL35hkYDlCkjl5dflrzXf/whqRx27wZq1kx7blJS2iC+lbp06RIGDx6MlJQUHDlyBB9//DHq16/PARKyLK1WBj/SD4D8+6+k2nJ0lEHJTp0y/3kiO3IP9xAVFYUGDRqgS5cuiIiIwDvvvIOYmBgopQzxgI+PD9q1a4e2bdvye6epuLlJ9oKAADPuwg0HDhzg5ElAYrDx42WA5NNPZeVI4cJpNeDu3pV+gZMngdu35aKn1cpqkvQTiZ57TlalTJkCDBokAyn6tN15Ze5cae+XX8rKSSLKMzleMaJXqlQp1K5dG3/88Yep2kTI2oqRffv2oX79+pluY/z48Rj3sBj1nTt3MGHCBLRs2RJNmjRB4cKFzXsA+dnWrbIqIS5OTqjLlkleShOLj4/Hhx9+iI8++gg+Pj4m375Nq1xZltMOGQJ89x2wbZtcxo+Xx2/dktmEkyfLzF0isnmcIZpxPHAeF+DTsCBWrFgBf39/ABKb6fOMPyo4OBinTp3iF2tzUUoKrz7zTNp9AwfKDNIRI6QT10oHG+bPn28YHAGAIkWKoH379mjfvj3atGnDlFtkHSIi5Hdq9WqgRQtJf0J2hfFAxvHAXdxD0/ea4Z133kFAQAAiIiLg6+ub6fY6deqEv/76C4BkodDpdHDQpyGi3Pn5ZynG3qRJWmonE7t//z68vLzg6Jjjuc62TylZKfLNNzKQcfiwceaIuDhJfXr+PBAYKO9JsWIZvycpKdLHs2GD9PGEhgJ5GffExQHHjwOVKgEcsCTKElPFA7keGDly5AguX76MOnXqIDAwEABw/fp1HDx4EKVKlUL16tVzs3m7lZWBkQ0bNmDZsmXw9PSEt7c3vLy84OrqakivVbduXdSpUweAfNl9+eWXDT9fsWJFNG/eHC+88AKaNWvGGYHZdeSIFII8fx7w8QEuXwZMHJj36dMHixcvRoMGDbB+/XrW7Elv8GAprjZiBPDRRzJDJDkZOHFCZnhUry7XR48GJk2ydGuJyATYEZJ56oy5N35EQLpZigsXLkRsbCw0Go2hs+PgwYP466+/0LlzZ/z8888AAJ1Oh+rVq6Nq1aro2bMnOnfuDFcTpogkSH2EgABJ5wAA5cpJioauXSUPuZXFX2fOnMFnn32GP//8E9HR0Yb706dluXLlCtzd3eHn52epZpK9u3BBfpccHIA7d/K284osjvFAxvEAAKxI/tPQUZ6amopp06bBw8PDEA8AwIULF7B69WqMGDECQ4YMAQCcO3cOdevWRaNGjdCxY0e88MILKGSirAh2Jy5O0jfFxgJ+fpJiq3VroFUrWWVqAjt37kTv3r0xaNAgTNCnk7JXd+8CxYsDiYkygbVZs7THrl6VQYbMJpn+959MtnzzTbn94AFQp46cY8aOBSZONHfriSgXTBYPqFyqV6+ecnV1VXfv3jXcd+/ePeXq6qoaNGiQ283brcjISAVARUZGGu7rjI6GS3bt3btXDRkyRFWpUkUBMLqUKlVK7dmzx5TNtw8PHijVs6dSv/ySdt+5c0pNnKjU5s1KpabmavNHjx5Vvr6+CoCqVKmSOn/+fO7am58sWqQUoFTt2nK7Qwe5PWGC3F6xQm5rtUrt22e5dhKRyWR0XrQHT4sHshMTpKSkqPv37xtuHzlyxCge8PHxUa+99prasWOHSkxMNOlx2LVr15T64AOlfHzk3KS/BAYqNXaspVuXocTERLVp0yY1cuRIVaVKFRUWFmZ4bNKkSapUqVLq5MmTFmwh2b0qVeT3aOZMS7eE8hjjgdzHAzqdTqWkpBhu//zzz0bxgJOTk+revbv6888/VVRUlEmPI9+7eVOpl19WqmBB43M+oFSFCkrNmpXrXfz2228KgNJoNGrDhg0maLSNe+01ialWrEi7T6dTKiREqaJFlfr5Z6XeflupP/9Me/zIEekr0GqV+ueftPsPHJCYLSnp8f0kJCh19qzZDoOIssdU8UCuV4x4eXmhVKlSOHr0qNH91atXR1hYGKKionKzebv1tBkhhZ2NZ+nFpsYa3Y5LjTe67aRJy1M4986P2LlzJ/766y8sXboU8fHxuHHjhmHm39y5c3Hx4kUUK1bMkGpDKYXkh0VFh6crbPXPP/8gPDwcbm5uUEoZZqY6OTnBw8MDbdu2NSzJVQ9zm+YrShkv15w9W+pfAJIP+auvZAltDoWGhqJTp064fv06fH19sWLFCjRv3jyXjc4HwsNlOaxWC9y7B6xYAbzyiiyhDQ2V5/TtC/z2G1C1KnDoEHN1Etk4zhDNfIZo+pggO/FAqkrFO5uH499//8Wvv/6Kq1evGh5zdnbGjz/+iH4P8zUfP34cW7ZsgVIKKSkpSEpKQmJiIpKSkuDq6ornnnsOwcHBAKRexZ49e6DT6aDVauHh4QFPT094eHigYMGCKFasmH2uTImJAf78E1i1Soq1x8QAU6fK6kcboZTCCy+8gKVLl8LHxwcrV65ESEiIpZtF+VViosR1e/YAe/cC584BbdtKfblffwXeeQfw9QXOnJGZ2WQXGA9kLR4AjGOCJ8UDOqXDRwfHYfPmzVi0aBEOHz5seEyj0WDXrl1o0KABAGDz5s04ceIEAFmVoo8FEhMT4ejoiDfffNOQwuvQoUM4c+YMdDodNBoN3N3dDfGAt7c3ypQpk3+LiCcny9+tjRtlZcKePZKu6fPPgfffl+dER8vfuMaNs72C9LXXXsPcuXNRpEgRhIaGGq0ctjsREYC7u3EK7V9/lZojbm5SQ2ThQqB+fakDp9FIP87gwcBPP8l55Ngx6V/IiFJSW/a996SA+08/SS0Sc4qPl+OxspXFRNbEalJpubu7w8PDAzdu3DAs20xOTkaxYsUQGxuL2NjYp2yBMmLOgZE/dCsN1+Pj47F//340S7fksHnz5ti2bVuG7XJ1dUV8fNq2O3fujDVr1mR6HMnJyYbPxcCBA7F27VqUK1cOvr6+KFCgADw8PODr64vWrVujZcuWtl8Q9t9/pfDqmjXS4QFIh/3MmTkuvHrjxg1069YN+/fvh6OjIzZu3Gj0ftmtihXli3CXLrJc+ccf5f41a4COHWXApGJFWV47aZKk1SIim8WOENMPjABpMYFOp8PmzZuxYMEC/PXXX3jw4AG2bNliGIyfPXs2XtcP/Gdg1apV6NKlC4DH03c+at68eRg4cCAASQfx9ddfGwZPGjZsiI4dO+b/9JGJicCWLVIjQR8fbNwIXLsGdO9u8vScpnT37l106dIFu3fvhpOTE9auXYvWrVtbulmU34SFSUqTe/cef8zTU2rLDRgAHD0qdeXeey/Pm0iWwXjA9AMjgHEfwbFjx7BgwQIsW7YMV69exYMHDwz71HfIZ+bKlSsoUaIEAODtt9/Gt99+m+lzjxw5Yki9vmDBAqxatcrQR1C1alV07doVxYsXz/TnbUpUFLB2LdCoUVrh70WLgJdeAkqUkAmVPXsaT7p8gvj4eDRo0ABHjx5Fhw4d8Pfff5ux8TYmIkL6AW7fln6AQYOAkiUl9tqzRwZIACAhQSaxHjwoNeAe1twxSEqSvoZr1yRNt15goNxnrkm/N24ANWsCpUrJQA4HR4gyZKp4INeVmipWrIgjR46gT58+hpUE33zzDe7evYuaNWvmdvNkZm5ubo91sr/66quoWLEiHjx4YLhPKQVnZ2e4ubkZPbdOnTpISUlBQkICNBqN4ZKcnIykpCSjYmDh4eG4c+cO7ty581g7pk2bhvDwcBQtWhQAEB0dDU9bLDrVpo1cbt4Exo2TzvqffpI8levWATmYIRsYGIitW7eiZs2aOHPmDI4dO8aBEUBmfkycKMU30+vUSWq+BAUBU6ZIIPThh0CtWjLLkIiIHqPVatGqVSu0atUKSilcuHDBqDOibNmyeP7556GUgqOjI1xcXODs7AxnZ2ckJiaiTLq82YGBgWjZsiU0Gg1SU1MRGxuLmJgYREdH4969e4Yi8YDkOv/jjz8Mt7///ns4OTmhZcuW6NatG3r27InChQvnzYuQl1xcjM9JKSmS4/rUKeB//5NYokcP+TJ84gQQHCwTLfS2bZMCnRZ4bfz8/LBx40a89NJLWLFiBV5++WXs27fPvmerkulFRwNVqshnHQCGDJFZvZMmyWN37wJz5sgK4Yd1EojINKpVq4apU6di6tSpuHPnjlGHU+3atQ01pzQaDVxcXAwxQUpKCgqmq/lToUIFQzyglEJcXByio6MRExODiIgIo3ggNDQUK1emDc4AwLBhw1C3bl10794dw4YNs83+AT0vL+CFF4zvu38f8PaWWhjPPSeTJb78UmqQPYWbmxsWLFiAmjVr4p9//jGs0rV7kycDs2bJoEjFirIq99q1tMfT1U+Dq6usJHnmGZlcuX490K5d2uN9+wL//CPX3dykX2HHDqkzm5oKmKvwfVSUZL44d072w/eVyKxyvWJk5syZGDZsWIYpkmbMmGEo6EXZk1crRvLS/fv3ERYWhosXLyIqKgoxMTGIjY3FpUuXcO/ePaOOkQYNGuDatWto0KABqlWrhhIlShguNrXk9p9/gOefl5PbxIlSxCuHFi9ejP/++w9vv/02qlWrZsJG2qiUFJllc/cucPas3KefvTRtGjB8uCx7ffVV4OefpRDbli3mm9lBRGbFGaLmXTGSV/Rhpz5uPH36NDZu3IiYmBjcvn0ba9euxenTpw3P37NnD+o/nNm3efNmnDp1CkFBQShRogTKli0LDw+PPG2/2SQkyGzRX34B0h2/Qdu28oVd/1xPT0Cnk0GUCRMsMkASFxeH6tWr48KFC3Bzc8OXX36JoUOH5nk7KB/buVPSZgUESAo6APjjD7l/2jSJ6eLjpcMKkN+JwYOBF1+UQseULzEeMP+KEUvYs2cPQkNDERMTg8jISGzevBm7du0yTMiIiooyTNJcvnw5rl+/jhIlSqB48eIoU6aMIS24zUlIkAHfKVNkRQMgHfKffSarHJ4gJSUFLi4u0Ol0CA8PNxposkvHj0tqbZ1Obm/cCLRsCXTrJueQVq2ADRse7w8YMUJisMqVgSNH0gY8Dh6USSsNGwIjR8q5CAAiI2VAi4gsympSaQHAm2++iZkzZxp92R06dOgTl03Sk+XHgZGsSk5Oho+PD+Li4jJ8vFKlSjh58qTh9u3bt1G4cGHrrV+yeLHkFJ8yJW3ZLJne5MnAmDGSVuvWrbT7ExMlsHzvPcBcHWi3bgGHD8sMX87oIDILdoTkj4GRrDh9+jRWrlyJ//77D2vXroXLw5zRj6bv0Gq1qFSpEurVq4d69eqhT58++SMF18mTksv677+BAgVk1nzDhtLZCwCXLknKyFOn5La3t6xSHTo0x2k7c+r48eMYPHgw9uzZg7Vr16J9+/Z5un+yA0rJBKOs/G4vXQr07i3X27aVwZMqVczbPspzjAfy58BIRm7evInVq1fj9OnT+Oqrrwz3161bFwcOHDB6bsmSJQ3xwIgRI6y3byAzly/LJMpFi+R2mzZpqxWeIDAwEOHh4Thw4ABqZ2GlSb63cKGsIhw0CPj+e1kJ0rmzDHYcOSKDH4968AAoV05SNy5dKqt3iMjqWdXACABcvnwZ+/fvBwDUq1cPWq0WCxcuxJgxY0yxebtj6oDv0aDJ2qUgBZGIRAQeIBaxiEcCEpGAOMQjAP6or60LT0cPKKXwW/JSOGucUcKhGIo5FIO/tigq9usCV2d3w/ZGfNfFgkdDeaJLF8kL+tVXMrvwSZQy3cqRsDApmHfjBjBqlAyAEZHJsSPEPuOB9MJwGbdxB4lIRBzikIQko8dfdHoeLhoX+Lv443LKFaQgFZX6dIanu4/hOfkqHti2DXj7bSncCkjKiIULgbp187QZSins2LEDTZo0MXRELVy4EJ6enujWrZvtdU6R7bpzR1Zoz5olhY+9vaWg7sN6B5lSCoiNNd8EGjIpxgP2HQ8oKJzGGcQiFolIRDziEY8Ew+Oe8EQv524AAH8XfxxJPgY3uKKoQ1GUHtjecE6y2njg4EH5TjluHPCwzhsiImRlSQYpK8+fPw9fX18ULFiQ51u9hARJk5WcLKlIL12SbBLTpmX+M7/9JmlOe/TIuJ/g9Gk5R+jTzF6/LqlO27QxzzGkp9PJSpfatQFbXRlFZAZWNzACAAkJCVixYgXmz5+PzZs3QymFlJQUU23erjDweZyL1lk+U0iBk8YJno4eiFbRWJG8GjroHnt+UNEKKFGkPIL8K2Dw6M4oXrw4AgMDUaBAAQu0/iGlgPBwKdiVpacrbN26FStXrkS/fv1Qo0YN2y9Qby5Fi0ou0W+/ldkgs2YBj75WSsnKkuho+T+3UlOB6tVldq/e6tUyK4WITIodIYwH9Fy0sioiXiUgAhGI1cQiDvFo4tgQgHSELIpbjCupVwEAft4BKB1YGaUDKuOV9zuhePHiCAgIgI+Pj+13IqSmAvPmySzT27dlRuS+fVK000KuX79uqE8zduxYTJw40WJtITt14YKsHDl4UCavrFsn6ecy07GjpKpbsgTo1Svv2kk5wniA8YCePh5IVskyoVIbCwc4oIpDJQBAEeci+CbmOyQ+nEjhVcAX5YpXR3BQTQz5sBuCgoJQrFgx6/9+/cEHwA8/SM0JX18AUnx9+/btaJMXHfO27PRp4PPPpSbVwxXIOdK9u3zPnz1b3oNBg+T+kyeBYsVM09bMfPIJMH484OMjsZ61f16J8ohVDYzs2rUL8+fPx7JlyxAVFQVAOnT1RTcp+xj4PE4f+Oh5OsqsrhSVAp2jwtXUa7iRGo5buluIVjGZbsfDwwMBAQFo1KgR5s+fb7j/yy+/RHx8PDw8PFCgQAEUKFDAUEyuUKFCaNy4seG5J06cgFIKbm5ucHd3h5ubG7RaLTQaDRwcHODu7v74jmNiJBf4li2SdqloUSQlJRnVSzl06BCuXr2KQ4cOYf/+/di/fz/u3r0LAHB2dsauXbu4RDYzNWoAR4+m3f7+e0krkt7evUCDBjKD5MqV3OdkT0mRmTsP3yMAwI8/GhfIJSKTYEcI4wG9zOIBPX8Xf6xNWI+rqdcRoYuAQsahroODA/z8/FC4cGHs3bvXcO5esGABDhw4YCgu7+zsDFdXV8Pl5ZdfhqurKwBg7969uHLlCpydnQ3FZ9M/t3z58oYOl8jISCQkJECj0UCr1UKr1cLV1TXjmCG77t8H3nhDUm69/Xbut5dNO3bsQFhYGBwcHDBz5kzs2LEDAPDKK6/gxx9/zPP2EOHsWZldGxMD1KkDrF2bedzn7Q1UqiSrrb77Lm/bSdnGeIDxgN7T4gEfZx9sStyC8NSbuKu7l+FkSgDw9fVFkSJFUKRIEXzzzTeo+XBywYEDB7B27Vo4OTkZLi4uLnB1dYWLiwtCQkIQ8HAVx9WrV3HixAk4ODjA0dHR8L/+50qXLm1I9xkZGYmbN2/C0dExw1jDaNKGUvK36949XJoxAxudnbFjxw6sXLkSUVFROHv2LMqXL2+ql5QAKa4+ezbwxReAg4Pcp89OUaIEcFUm3qB8ealdUqmSedszdCgwc6Zcj4+XvgwiMtl50TGnP3j9+nUsWLAACxYswPnz5wEYF9T85ptv0KNHjxw3jCirHDWO8Hf0R5Bj2jJ5x56VcPHGCZy9GoqI6DvQuifg+vXriI2NRUxMDM6dO4ciRYoYbefrr79GeHh4hvuoUaMGQvWpKgB07doVFy5cyPC5FSpUwJkzZ4x+9uTJk/B1ccHWhARUTE3F9qAgtAVQolQpo+e+8sorRvsBADc3NwwYMADvvPMOgoODs/iq2KF586Rw3c6dQEgI0K7d48+pV0++JB88KCtKPv44d/t0dJQBmLffljojVasC/fvnbptERJRrHVzlHFCgTy2cvLQPtx9cx9Vb5+DklYzr168jIiICqampuHXrFm7dumUY6ACANWvWYPny5Zluu1+/fobrs2fPNppk8aj0xVDHjBmDmfovtul4eHjA398f69evR9myZQHI4Iy+voq+E0Y/iFKgQAG8/PLLKPywk3fr1q3YvXs3NDVrwsvZGV6LFsHLywtFIiPh6uuL8k2awP3hl4WbN2/i2rVrSElJQfny5VGoUKEsvZ6pqak4deoUDh48iP379+PEiRPYuHEjtA/ras2ZMwe//vqr4fmurq4YN24cRowYkaXtE5lchQrApk1Ahw7AxYsyiSWzgZHISOl8TErK+HEiskmuGldDPJCiUnCnmRuu3TmPSzdOAa5xuHr1KpKSknD//n3cv38fp0+fNqpzumPHDowbNy7T7f/zzz+GgZF169bhtddey/S5f/zxh6F/bM2aNXjppZcyfe4vv/xiePy/jRvhHheHRgDGDh2K39M9LygoCFeuXOHAyJOkpEgqMnd3KbLeowewfbus8hgy5PHnJyQArVtLzZeICFmpo9VKGq7//ksbFBk5UgZQnn9e0piac6Xu1KnS53D/PgdFiMwgxwMjJUuWhFLKMBhSvXp19OvXD+PHj0dcXBzeeustkzWSKLu8PQqhZoVmqFmhGQDJIaqUQkxMDMLDw3Hz5s3H0mcMGjQId+/eRUxMDGJiYhAXF4fExEQkJCSgQoUKRs8tXLgwoqKiEBcXh/j4eOh0abNPHt1uSkoKUlJScDslBd0BHADQNCkJbwGY9+CB0XMrVqwIrVaLqlWrol69eqhbty6qV69u1GFDmahVS4rVxsSk5Yi+fFnycOrTp2k0EsT06SPBxahRgJtb7vbbu7dcjhyRlCZc2kpEZDVcnd1RKzjEcFufUzwhIQH37t3D3bt3cf/+fUMHPwD06NEDFStWRFJSEpKTk5GYmGiIBxISEozOyRUrVkSzZs2QlJSEpKSkJz43MzExMTh//jw806X6OXz4MJYuXZrpz3Tt2tUwMLJ+/Xp8/vnnRo/7APgLQH0ASqOR1Y2jRmHGvXtGqa0CAgJQtWpVlCpVCvHx8fjqq68M2501axbmzZuHpKQknDt3zqizCADOnj2LihUrAgCqVq2KZ599FikpKQgMDMT48eNRrly5px47kVnVrSsdYFFRaTN6o6OBP/6QlFnpa4poNLlLs0JEVs1R44iqZeqjapn6ACQe0Ol0uHv3Lu7cuYPbt2/j9u3bRhMRK1eujNdeew3JycmGi/4cn5iYaDhfAkChQoVQs2ZNpKamIjU11dAHoP+59Om8nZ2d4ePjg5SUFEP8kF76jBIRERF4EB8PAAh0dUWrxo1Rt25dtG3bFs2aNTOKX+gRK1ZIxo4WLSSV+Zw5cgFkhW1GAyOursCXXwIvvAD8/DPg7CyrNcqXB376SQYpRo+WCZGVKsm5wzHH3apZo++v0E9mSUkB9u+XSZ/6FS1ElGM5TqWlTxtUp04d/PDDD6hevToAoGDBgoiKimIKrVyy1yXCtkgpheTkZOh0OsNAoVu6zvZ79+4hPj7e0ElSYMkSlJ44EcrREbH//guPFi0s1fT87fRpoFo1mb2xe3da0JCSApQtK6m05syRYMnUUlJk1qEp0qMQEQD7PS/a63HnZ/qJRUopxMbG4tatW7h58yYaN25s6ODYvn07QkNDjQZa4uPjERcXh9jYWEybNg1+DwtwrlixAmvWrIFOp0N0dDQiIyPx/MmT6HrnDgqlpBjNgtrerRteOnQISilcfTjrUQugIIB7AE6dOmUY7Pjwww/x2WefGX7Ww8MDtWrVQu3atVG/fn20a9fOkBaEyOL275cJMT16yOzezPz8s6Q89fAA3n0XeP/9tAk0ZBPs9bxor8dtD/S1efXnek9PT0N/wt27d5EyaBD8//oLuk8+gTa3GQ/sycGDkkoxvW+/Bd56SwYboqMzH1j47TfgpZdkNWFGhduHDJG+hC5dJJ1WXtHpgK5dgTVrZPDmt98yLhZPZAcsXmNEPzACAP7+/ujbty9eeuklNG/enAMjJsDAJx9TSk5iS5cCwcHAqVM8mZnD9OnAO+/I9V9/Bfr2TXvsm2/ky3BQkNR7eVjEziQSE4HKlWWp69mzua9jQkQA7Pe8aK/HTSaSmiophGbNkuKdgKSeHDgQ0dHRuLRiBYqPGQOf8HAsGToUrT/+2DAD9vTp0zh//jwcHR0RFBSE4OBgOHBmIlmjdeskZRYgBXF/+inz5/72GzBunKRAAYBSpWQCzcOUd2T97PW8aK/HTZAB3ClTgNdek9oXlDVKAWXKAGFhcvvVV2Uww9tbskycOCHf2zMzfz7w8styffJk4IMP5HpkpJwzEhIkZWNeTnSdPRt4/fW02zNnGt8msiOmOi/meN3dzz//jGbNJE1ReHg4pk2bhpo1ayIyMhKAfJkiogxoNGmFHc+ckZMymV76vOmPDjy98oqkFblyBXgk/YhJTJ4MbNgggyRERESW4uAAFC0qHcHvvy/3zZgBpKbCc/ZsVH/1VfjeuAGtUuhTsqRRWpCKFSuiU6dOaNeuHSpXrsxBEbJeD9PMAHh6XP3iizJx5Y8/ZIJMWBgweLB0oBERWaO6deX/n38GHqlHSk+g0chgCCCpr6ZOlRUX+r/3T/u7P3CgpNUCJH3WggVyXadLW2mydavJm/1Ej57j2JdElGs5XjGiFxYWhvnz5+OXX37BpUuXZKMPOyGDg4Nx8uTJ3LfSDnFGSD4XHQ1Ury6zDC5fltyVZFpKSTB07Jik1AJk1myhQnL/339L3tF33kl7nIislr2eF+31uMnEYmIkbcT06ZJC0sPDeGUlAPz4o0wcILJF165J7BcQkPV878ePA7VrS/pTfv5thr2eF+31uAnyt+2556Rg+JQprIeUHUpJf0uxYlILVJ9ey9tbMjxkpUbLhAmSLuu//4CCBeW+X38F+vWTfoV//gGefda8x6GXkiKDPUWLAnfuSHF4TlwhO2XxFSN6pUqVwvjx43HhwgVs3rwZ/fv3h7u7O5RSOHPmTG43T5Q/eXoCly4B4eEcFDEX/SoR/aDHkiWS1urDD+V2x46SaoGDIkRElJ+tXSspI195RdJI6gtOv/mmPNawodzWf9knskXFiwMlSmSvCG7VqoC+js6KFTIL2NRSUrgahYhyR6OR77LTp3NQJLs0GkmZ6OQkt3fskP8bN87aoAgAfPwxsHOncZz00kuy2tDBAbh40aRNfiJHR0nx9cUXsoKIgyJEuZbrgZH0mjdvjvnz5+PmzZtGqbaIiCxKp0vLrf7FF5JPlIiIKL+7dUtSQSQnSwqIRYvSHtNqgfbtgXv35Hb6FJRE9uLdd4GWLSUNqr6TLDnZ+Dk6HbBnDzBy5OMFeJ9kxw4p7F62LLB+venaTET2J30HeEqKrHyg7NMPYjRpkr2fc3VNu/7rr8ChQ1LIfdcuqf1iSbNnA507AzdvWrYdRDYq16m0yDy4VNZOHDokKxb0MxjIPP77z3h5a+fOwOrVcv3IEeDrr4Fu3eRCRFbJXs+L9nrcZCIvvSSdsxERQFQU4OUl9bW8vdOes3EjcOOGDJI4OQGxsUBgoOXaTJTXUlKMV5oMHSpF2gEZFElKkvS3gBTyPX9eZiHrv0brVykfOybPrV1bbt+5AxQpkrbdjz6SlCyUK/Z6XrTX46ZHPHgAdOki32GvXpXzOmXP3bvyd/vUKeD6dSAkRFJTZcWcOcCQIbIKZft2Wa2oFxMjg+GP1jc1pxs3JE0YIOnWli7Nu30TWZjVpNIiohyaOROoX18KeVHeSk1Nu758ucyiff11yTNKRESUXzRoIJMwOnSQ26mpxudAAGjVSvJk+/lJQepixSTFBM+JZC/SD4rcvy9pSh48kEtUlAyKeHpK4fapU2VAJCVF0qh8/rn83H//yQzkjh2loDsgKVzPnEmr5fPppzIZh4gop7y8pD5SVBRw7pylW2Ob/PxkleyPPwIvvAAEB2f9tXz+eVkFGBYmqw2vX5f7z5wBatTI3qpCU0g/z51ptYhyJBtJWInIpAID5UvVtGnyRYqrFcynVSvpFPL2lgGQsmXTHhszRgZHTp+WfOvp04wQERHZsmHDZAb72bNy+4cfpN5IZi5flnRCu3bJjNQNG6RoO5G98PWVjq6bN+V3QaOR/4sXN87tv2aN1KoDpEPtl18krq9Z03hFVoUKMhhSpIjEnMOHA9HRwBtvSOccEVF2aLUy6BoRISs8KeeCg2UV4MWLQP/+sgLkaXWqChaUlbYhIfK3v0ULSbX4zz+ynVGjJOaaPj1v4qdixWQQPzWV8RpRDnHFCJGldOsmX44A4H//48xMc9JogJUrJS1C06Zpg1KnTkkAMX++BJm//Qb8/belW0tERGQ6zs6STuu334A+fZ783E8+kfQcPj5SaPTFFx9fYUKU3/n4ABUryqBG+fIyoebRgsddugAffCDX582TuLJPH+kc0xfoPXIEaNZMUriOHCn1TABg3DiJQYmIcqJAAfmfAyO5M3o0sHmzrMLZsydtBeDTlCwpPxcUJIMjb7whEyw//VT6HX74AWjYMO9W9Hh7y6A+B0aIcoQDI0SWNHkyUKmS5CAeM8bSrcnfnJ3Trut0QKdOQOXK8qW2fv20Qaphw4C4OMu0kYiIyBzc3J4+KKJXtSqwapWcN//8E3jrLeNUDUQkJk2SXPNarcSTv/4qAyipqdLBVreuzEBes0ZSbU2dKqlbevSQdHV6hw+zg5OIsk4/MMLvrLkXFAR8/71c/+QT4MCBrP1cqVLAsmWSvmrJEuD334EPP5TB8cKFZWC8dm1OuiSyARwYIbIkZ2dg1iy5PncusHu3ZdtjL+bPl6AFAL74AlixQmbvFS8u+UKnT7dk64iIiCyrWTNJLanRSE202bMt3SIi66PRSBwfFSWTnbQPv1oPGSIzkZOT5fbKlUD79vL4K69ILR/9cw8ckJQsXbpwdRYRZY1+YOTWLcu2I7946SWgVy9Z+ffqq1n/uXr1gI8/lr/nV67Ifc8+C4SGSpaK6GipYXLnjlmaTUSmwYERIktr3hwYOFBmYw4cCMTHW7pF+V9CgvHtxETAw0MCGP1tIiIie9arV1qh6PS1uc6cAS5csEybiKyRvpNST5vuK7aLi9QXyUxKiqxk3rRJ0rAQET1NvXry/4QJXG1mChoN8OWXkpLq7l35u5xVY8YA+/alpVYEJG33xo1SjL1WLalZRURWiwMjRNbgq6+AcuWAoUMfz2FMpjdwYNr1cuWA3r3l+i+/SNqQ116zRKuIiIjyxqMTBDLz1lvA8uUyiUPvhx8kPcSaNeZpG5GtmzUL+OsvoFEjSalSp07mz23QAJgzR65/+imwZUvGz1NKBiQjIkzeXCKyMWPGAK1bSxaERwdmKWdKlZIi5teuPb0Ae3qOjhIT6V27Bpw+DTg5yYrArVuBatVM3VoiMiEOjBBZg4IFgZMnpQNCy19Ls3N3l9kgCQnAtm1pr7mDA9C1KxAQYNn2ERERmcuUKdKR8sMPT3+uRgP07Jk2aUMp4PJlIDJSCkqPHy+z3YkojVYrtex27JCOsfR17jLy4ovAoEHyu9SnDzBqFPDzz2mPh4cDxYrJZJ4KFYBdu8zbfiKybq6uwIYNQLt2lm4JpXf/PtC2rdSQ2rs3ewMsRGQx7IElshZOTmnXIyKk497eJCfLao0pU8xf6LVQIenoCQgAfvoJuHFD7lcKWL0aqF4d6N6dHT5ERJR/7NkjM011OpmMcfJk9n5eo5HaI0OHyu1PPpEJBTExpm8rka3TaICiRdNuR0YCb7whv0OP+vZboFIlSbkydarUHtTz909L7XL3LtCypRT6JSICpEbmoUOWbgXpdDLx5P59+Tu9fr3cf/euDHATkVXiwAiRtdm8WZbcDxtm6Zbkvf/+ky+C778PrFqVN/vctEmKrDVqJMtnv/1WOnmOHZO0Whs35k07iIiIzEkpKfycmiqzTRMScpY60tkZ+P57SeHh6ioptV5+Oa3QNBFlbPJkSbP10kvA/v3GjxUoAGzfLul1330XeP75tMc0GkmxdfeuxKiJibLK5IMPspcLn4jyn927gWeeMU4VTTnTq5ekN/znn5z9vJ+f9C20aQPExQHt28vf78KFgW++MWlTich0ODBCZG0+/BC4eNE+v+j4+gJubnLd1TVv9qlfEXL9uqzUSb9yBzD/yhUiIqK8Uq+edKKUKiW3Hz3nZceAATKJwdFR6pAMGGCSJhLlW15eadczSq9VqJAMinz1FTB8uPFjlSvL43/8AYwcKfd98QXQpYv52ktE1i8wUFajHTtmn/0HprZ3L9Ctm6zcy8nr6eEhNabSD24DsiKQiKwSB0aIrMmpU5LmAgBGj7ZsWyyhfn2ZXXHnTt7lTG3VSpa6pqRITuc33gBWrgTee09Wi7RunTftICIiMieNBpg3TzpRUlMBHx9JJamUnHtzok0bOWd6eXFghOhpRo+WlVr37wM1auRsGw4OwJdfAkuXyu9wjx5pjynFCT1E9iZ9ur7YWMu1Iz/46SeJaxISpF+gUSPg+PHsb8fZGVi4UP5W//CDFGTnih4iq6VRitGTNYqKioK3tzciIyPhlX52EeVfSslyy3/+kVkKK1daukX249gxWYKs0wEHDwK1alm6RUT0CHs9L9rrcZOZRUXJZIw6daSe1pYtEne0apWz7UVEAAULpt1WSgZiiMh8IiJkdrJ+5df8+fJ7/P33QIkSFm2aOdnredFej5ueQinpiE9JkQ74YsUs3SLbppRMIhk+XFbiODlJqu0hQyzdMiJ6hKnOi1wxYkYzZsxAqVKl4Orqivr162Pfvn2WbhJZs8WLZVDExUWWxgNSgHH9epnZSeZTrVractfZsy3bFiLKdxgPkNXx8pJVmuPGScqH6GipWXDjRs62l35Q5OxZydF99uyTfyYxkfENUW4ULJg2KKKU1DBZvVpStnz5JX+/rBRjAjIpjUYGSAEgJsaybckPNBpg0CDg5Emp6ZScLLVfz52zdMuIyEw4MGImS5YswfDhwzFu3DgcOnQINWrUQNu2bXH79m1LN42sUWpqWi7hYcOAsmWBmTOBihVlFUmrVsD585ZtozkkJMhst8wkJUlB9kuXcr6P48dlsGPAAKB6daBkSSmM5uYmedH1uUP1BWh/+435WYnIZBgPkNVKSQF27ZLrAQHA7dsSg+TW0KHAvn1A48ZAWJjxY9HRwJIlQO/eci4+eTL3+yOyZYmJT05/lZICbN0qtUcqVADKlJG6IqNHy6Cm3o0baYORsbGSEnbUKPO2nbKNMQGZhX5g5OpVy7bDmly8KOm5n2baNElHNmCA1HCKjpbL+fNAs2bAiBHAggVA+fLmbzMRWQRTaZlJ/fr1UbduXXz//fcAAJ1OhxIlSuDNN9/EBx988NSf51JZO5OaKoMgERFS6Ov77yWlU3publLctEMHy7TRVMLCZDbb+vWSuuOdd4BJk4yfo5R82RsxIm1AaMIE4KOP5PqpUzJgsn27fBEMCpIviqVLp83y0GvRQvaTEQ8PCXz0++zdW/Z34ACg5bgxkTWx1fMi4wGyaikpsmL1k0/k/Ne3L/Drr7nb5q1bQNu2wJEjQN260qm7bVtamp/ExLTnLlsG9Ool169ckRQgDg652z+RqaRPCacUcPcucP26rOj29JTBP70TJyTtSmysTOwB5Gc1GsDVVeJRvfbtZVDwzh0gPl5Wffj5yaV69bTfwfh4iW1v3cq4fV26AKtWyfXERPmukP6r/eTJQBbOM7bGls+LuYkJbPm4ycz69JFzebNmcs61ZUrJ5IpNm+S7eq1axn9rM3PkiPz91P/N7tIF2LBBansMGSJ/T0+fBs6ckToi+r/JFy/KpFQ9JyeJjfR/Sw8dAmrWNOkhEpFpmOq86GjCNtFDSUlJOHjwIEanK56t1WrRunVr7N69O8OfSUxMRGK6L4qRkZEA5I0mO/H774C/P9CzpwyKeHkBH38shcHffVfqYFSsKHnB80JSkgQGmeUIv3dPvhQ6Oz99W9evA3/+KbMwHh3w2bcv7ZjOngVmzQIuXEgL6ry85PEqVdKe98UXMnNDb+dO4222bAn4+sr1pk3l/7p1JZd64cJAgQKAu7ukLUv/ek6dKsfEZchEVkd/PrSl+RyMB8gmODvLyszixYGJE3MfZ7i5Scdu06bA/v1yvk2vTBlJT9G5s3R4REVJZ3Lz5vLcEiXSOpT9/KSjJyQEKFIkd+2ivKGUvJ9378p7WLJk2mMXLsjnTaMx7sDXDx74+cnt1FTgl19k8otWK0XGCxaUmDAxEfD2Nh5omDtXOr2Sk+X/2FggLk5WBpcpY7wS6pNPZLsREdL5lZoq/yckyCDEjz+mPbduXZmB7eoqsWFyctpjwcESw+p17Ahcvpzxa/Loc69ckYtecjIQHi6XuDjj38Fy5SQmb9dO9uHjI4Mqp09LAff0z12zRh4vVEji4Efj3HzCFuMBIPsxAeMByrJJk6RWpinO4aaSmip/N11d0/7u370rEyTDw4GxY9Oeu2SJ/K0/dkwmUKT/+9ivn6S9BuRvdb9+MgASECDbuX5dJnbs3i2ZHzp2lL/nN27I/7NnP54qOzQUqF1brhcsKP0UGzYA69bJQAkABAbKgEhMjPW8pkRkxGTxgCKTu379ugKgdu3aZXT/qFGjVL169TL8mXHjxikAvPDCCy+88MLLEy5Xr17Ni1O5STAe4IUXXnjhhRfzXGwpHlAq+zEB4wFeeOGFF154efolt/EAV4xYidGjR2O4vsYEZFnt/fv34eTkhKCgIFy9etXulsxGRUWhRIkSPHYeu93gsfPYeeyZU0ohOjoagYGBedQ6y2A88Dj+jvDYeez2g8fOY2c8IBgPPI6/Izx2Hrv9sOdjB+z7+LN67KaKBzgwYgZ+fn5wcHDArUfywd66dQv+/v4Z/oyLiwtcXFyM7vPx8TEsDfLy8rK7XwY9HjuP3d7w2Hns9iarx+7t7Z0HrTEdxgOmxWPnsdsbHjuP3d7k13gAyH5MwHggczx2Hru94bHb57ED9n38WTl2U8QDrC5sBs7OzqhduzY2btxouE+n02Hjxo1o2LChBVtGREREeYXxABEREQGMCYiIiKwRV4yYyfDhwzFgwADUqVMH9erVwzfffIPY2Fi8/PLLlm4aERER5RHGA0RERAQwJiAiIrI2HBgxk969e+POnTv4+OOPcfPmTTzzzDNYv349ihYtmq3tuLi4YNy4cY8to7UHPHYeu73hsfPY7Y09HDvjgdzjsfPY7Q2Pncdub+zl2E0RE9jLa5URHjuP3d7w2O3z2AH7Pv68PnaNUkrlyZ6IiIiIiIiIiIiIiIgsjDVGiIiIiIiIiIiIiIjIbnBghIiIiIiIiIiIiIiI7AYHRoiIiIiIiIiIiIiIyG5wYISIiIiIiIiIiIiIiOwGB0as2IwZM1CqVCm4urqifv362Ldvn6WblGvjx4+HRqMxulSsWNHweEJCAoYOHYpChQrBw8MDPXv2xK1bt4y2ceXKFXTs2BHu7u4oUqQIRo0ahZSUlLw+lKfatm0bOnfujMDAQGg0Gvz5559Gjyul8PHHHyMgIABubm5o3bo1zp07Z/Sc+/fvo2/fvvDy8oKPjw9eeeUVxMTEGD3n6NGjaNq0KVxdXVGiRAlMmTLF3If2VE879oEDBz72OWjXrp3Rc2zx2CdPnoy6devC09MTRYoUQbdu3XDmzBmj55jqM75lyxbUqlULLi4uKFeuHObPn2/uw3uqrBx/SEjIY+/9kCFDjJ5ji8c/a9YsVK9eHV5eXvDy8kLDhg2xbt06w+P5+X1/2rHn1/c8LzEeYDxgi+dEwH7jAcC+YwLGA4wHGA+YT36LCRgPpGE8wHggv50bGA8wHrCJeECRVVq8eLFydnZWP//8szpx4oQaPHiw8vHxUbdu3bJ003Jl3LhxqkqVKio8PNxwuXPnjuHxIUOGqBIlSqiNGzeqAwcOqAYNGqhGjRoZHk9JSVFVq1ZVrVu3VocPH1Zr165Vfn5+avTo0ZY4nCdau3atGjt2rFqxYoUCoFauXGn0+Oeff668vb3Vn3/+qY4cOaK6dOmiSpcureLj4w3PadeunapRo4bas2eP2r59uypXrpzq06eP4fHIyEhVtGhR1bdvX3X8+HH1+++/Kzc3NzVnzpy8OswMPe3YBwwYoNq1a2f0Obh//77Rc2zx2Nu2bavmzZunjh8/rkJDQ1WHDh1UUFCQiomJMTzHFJ/xixcvKnd3dzV8+HB18uRJ9d133ykHBwe1fv36PD3eR2Xl+Js3b64GDx5s9N5HRkYaHrfV41+9erX6+++/1dmzZ9WZM2fUmDFjlJOTkzp+/LhSKn+/70879vz6nucVxgOMB5SyzXOiUvYbDyhl3zEB4wHGA4wHzCM/xgSMB9IwHmA8kN/ODYwHGA/YQjzAgRErVa9ePTV06FDD7dTUVBUYGKgmT55swVbl3rhx41SNGjUyfOzBgwfKyclJLVu2zHDfqVOnFAC1e/dupZScULVarbp586bhObNmzVJeXl4qMTHRrG3PjUdP/jqdTvn7+6svv/zScN+DBw+Ui4uL+v3335VSSp08eVIBUPv37zc8Z926dUqj0ajr168rpZSaOXOmKliwoNGxv//++yo4ONjMR5R1mQU+Xbt2zfRn8sux3759WwFQW7duVUqZ7jP+3nvvqSpVqhjtq3fv3qpt27bmPqRsefT4lZKT4Ntvv53pz+Sn4y9YsKD68ccf7e59Vyrt2JWyr/fcHBgPCMYDtn9OtOd4QCn7jgkYDzAeUMq+3nNzyY8xAeMBwXiA8YA9nBsYDzAeUMr63nOm0rJCSUlJOHjwIFq3bm24T6vVonXr1ti9e7cFW2Ya586dQ2BgIMqUKYO+ffviypUrAICDBw8iOTnZ6LgrVqyIoKAgw3Hv3r0b1apVQ9GiRQ3Padu2LaKionDixIm8PZBcuHTpEm7evGl0rN7e3qhfv77Rsfr4+KBOnTqG57Ru3RparRZ79+41PKdZs2ZwdnY2PKdt27Y4c+YMIiIi8uhocmbLli0oUqQIgoOD8frrr+PevXuGx/LLsUdGRgIAfH19AZjuM757926jbeifY21/Hx49fr1FixbBz88PVatWxejRoxEXF2d4LD8cf2pqKhYvXozY2Fg0bNjQrt73R49dL7+/5+bCeIDxAJB/zomZsYd4ALDvmIDxAOMBvfz+nptTfo4JGA8wHgAYD9jDuYHxAOMBPWt6zx2z/RNkdnfv3kVqaqrRhwAAihYtitOnT1uoVaZRv359zJ8/H8HBwQgPD8cnn3yCpk2b4vjx47h58yacnZ3h4+Nj9DNFixbFzZs3AQA3b97M8HXRP2Yr9G3N6FjSH2uRIkWMHnd0dISvr6/Rc0qXLv3YNvSPFSxY0Cztz6127dqhR48eKF26NC5cuIAxY8agffv22L17NxwcHPLFset0Orzzzjto3LgxqlatamiXKT7jmT0nKioK8fHxcHNzM8chZUtGxw8AL774IkqWLInAwEAcPXoU77//Ps6cOYMVK1YAsO3jP3bsGBo2bIiEhAR4eHhg5cqVqFy5MkJDQ/P9+57ZsQP5+z03N8YDPkY/w3ggja2dEzNjD/EAYN8xAeMBxgOMB0wjv8YEjAcE4wHGA/n53AAwHmA8YL3xAAdGKE+1b9/ecL169eqoX78+SpYsiaVLl1r8DzXlnRdeeMFwvVq1aqhevTrKli2LLVu2oFWrVhZsmekMHToUx48fx44dOyzdFIvI7Pj/97//Ga5Xq1YNAQEBaNWqFS5cuICyZcvmdTNNKjg4GKGhoYiMjMTy5csxYMAAbN261dLNyhOZHXvlypXz9XtOOcd4gAD7iAcA+44JGA8wHmA8QE/CeIAAxgP2gPEA4wFrjQeYSssK+fn5wcHBAbdu3TK6/9atW/D397dQq8zDx8cHFSpUwPnz5+Hv74+kpCQ8ePDA6Dnpj9vf3z/D10X/mK3Qt/VJ77G/vz9u375t9HhKSgru37+f716PMmXKwM/PD+fPnwdg+8c+bNgwrFmzBps3b0bx4sUN95vqM57Zc7y8vKziC0Rmx5+R+vXrA4DRe2+rx+/s7Ixy5cqhdu3amDx5MmrUqIHp06fbxfue2bFnJD+95+bGeOCB0XMYD6SxpXNiduS3eACw75iA8QDjAcYDpmMvMQHjAcYDAOMBIH+dGxgPMB6w5niAAyNWyNnZGbVr18bGjRsN9+l0OmzcuNEoJ1t+EBMTgwsXLiAgIAC1a9eGk5OT0XGfOXMGV65cMRx3w4YNcezYMaOT4oYNG+Dl5WVYlmULSpcuDX9/f6NjjYqKwt69e42O9cGDBzh48KDhOZs2bYJOpzP84WjYsCG2bduG5ORkw3M2bNiA4OBgq1gqmlXXrl3DvXv3EBAQAMB2j10phWHDhmHlypXYtGnTY0t5TfUZb9iwodE29M+x9N+Hpx1/RkJDQwHA6L231eN/lE6nQ2JiYr5/3zOiP/aM5Of33NQYDzAeAGz3nJgT+SUeAOw7JmA8YIzxAOMBU7CXmIDxAOMBgPFAfjk3MB4wxnjASuOBbJdrpzyxePFi5eLioubPn69Onjyp/ve//ykfHx918+ZNSzctV0aMGKG2bNmiLl26pHbu3Klat26t/Pz81O3bt5VSSg0ZMkQFBQWpTZs2qQMHDqiGDRuqhg0bGn4+JSVFVa1aVbVp00aFhoaq9evXq8KFC6vRo0db6pAyFR0drQ4fPqwOHz6sAKivvvpKHT58WF2+fFkppdTnn3+ufHx81KpVq9TRo0dV165dVenSpVV8fLxhG+3atVM1a9ZUe/fuVTt27FDly5dXffr0MTz+4MEDVbRoUdWvXz91/PhxtXjxYuXu7q7mzJmT58eb3pOOPTo6Wo0cOVLt3r1bXbp0Sf3333+qVq1aqnz58iohIcGwDVs89tdff115e3urLVu2qPDwcMMlLi7O8BxTfMYvXryo3N3d1ahRo9SpU6fUjBkzlIODg1q/fn2eHu+jnnb858+fVxMmTFAHDhxQly5dUqtWrVJlypRRzZo1M2zDVo//gw8+UFu3blWXLl1SR48eVR988IHSaDTq33//VUrl7/f9Sceen9/zvMJ4gPGAUrZ5TlTKfuMBpew7JmA8wHiA8YB55MeYgPEA4wHGA/n33MB4gPGALcQDHBixYt99950KCgpSzs7Oql69emrPnj2WblKu9e7dWwUEBChnZ2dVrFgx1bt3b3X+/HnD4/Hx8eqNN95QBQsWVO7u7qp79+4qPDzcaBthYWGqffv2ys3NTfn5+akRI0ao5OTkvD6Up9q8ebMC8NhlwIABSimldDqd+uijj1TRokWVi4uLatWqlTpz5ozRNu7du6f69OmjPDw8lJeXl3r55ZdVdHS00XOOHDmimjRpolxcXFSxYsXU559/nleHmKknHXtcXJxq06aNKly4sHJyclIlS5ZUgwcPfiygt8Vjz+iYAah58+YZnmOqz/jmzZvVM888o5ydnVWZMmWM9mEpTzv+K1euqGbNmilfX1/l4uKiypUrp0aNGqUiIyONtmOLxz9o0CBVsmRJ5ezsrAoXLqxatWplCHqUyt/v+5OOPT+/53mJ8QDjAVs8Jyplv/GAUvYdEzAeYDzAeMB88ltMwHiA8QDjgfx7bmA8wHjAFuIBjVJKZX+dCRERERERERERERERke1hjREiIiIiIiIiIiIiIrIbHBghIiIiIiIiIiIiIiK7wYERIiIiIiIiIiIiIiKyGxwYISIiIiIiIiIiIiIiu8GBESIiIiIiIiIiIiIishscGCEiIiIiIiIiIiIiIrvBgREiIiIiIiIiIiIiIrIbHBghIiIiIiIiIiIiIiK7wYERIspXtmzZAo1GgwcPHuT5vjUaDTQaDXx8fLL0fH1bNRoNunXrZta2ERER2RPGA0RERMR4gIiehAMjRGSzQkJC8M477xjd16hRI4SHh8Pb29sibZo3bx7Onj2bpefq2/r888+buVVERET5F+MBIiIiYjxARNnFgREiylecnZ3h7+8PjUZjkf37+PigSJEiWXquvq1ubm5mbhUREZF9YTxAREREjAeI6Ek4MEJENmngwIHYunUrpk+fblhuGhYW9thS2fnz58PHxwdr1qxBcHAw3N3d0atXL8TFxWHBggUoVaoUChYsiLfeegupqamG7ScmJmLkyJEoVqwYChQogPr162PLli3ZbueRI0fQokULeHp6wsvLC7Vr18aBAwdM9CoQERHZN8YDRERExHiAiHLC0dINICLKienTp+Ps2bOoWrUqJkyYAAAoXLgwwsLCHntuXFwcvv32WyxevBjR0dHo0aMHunfvDh8fH6xduxYXL15Ez5490bhxY/Tu3RsAMGzYMJw8eRKLFy9GYGAgVq5ciXbt2uHYsWMoX758ltvZt29f1KxZE7NmzYKDgwNCQ0Ph5ORkkteAiIjI3jEeICIiIsYDRJQTHBghIpvk7e0NZ2dnuLu7w9/f/4nPTU5OxqxZs1C2bFkAQK9evfDLL7/g1q1b8PDwQOXKldGiRQts3rwZvXv3xpUrVzBv3jxcuXIFgYGBAICRI0di/fr1mDdvHiZNmpTldl65cgWjRo1CxYoVASBbQRMRERE9GeMBIiIiYjxARDnBgREiyvfc3d0NQQ8AFC1aFKVKlYKHh4fRfbdv3wYAHDt2DKmpqahQoYLRdhITE1GoUKFs7Xv48OF49dVX8csvv6B169Z47rnnjNpCREREeYPxABERETEeICI9DowQUb736NJUjUaT4X06nQ4AEBMTAwcHBxw8eBAODg5Gz0sfLGXF+PHj8eKLL+Lvv//GunXrMG7cOCxevBjdu3fPwZEQERFRTjEeICIiIsYDRKTHgREislnOzs5GBdFMpWbNmkhNTcXt27fRtGnTXG+vQoUKqFChAt5991306dMH8+bNY+BDRERkIowHiIiIiPEAEWWX1tINICLKqVKlSmHv3r0ICwvD3bt3DTM6cqtChQro27cv+vfvjxUrVuDSpUvYt28fJk+ejL///jvL24mPj8ewYcOwZcsWXL58GTt37sT+/ftRqVIlk7STiIiIGA8QERER4wEiyj4OjBCRzRo5ciQcHBxQuXJlFC5cGFeuXDHZtufNm4f+/ftjxIgRCA4ORrdu3bB//34EBQVleRsODg64d+8e+vfvjwoVKuD5559H+/bt8cknn5isnURERPaO8QARERExHiCi7NIopZSlG0FElB9oNBqsXLkS3bp1y9bPDRw4EA8ePMCff/5plnYRERFR3mE8QERERIwHiKwfV4wQEZlQnz59ULx48Sw9d/v27fDw8MCiRYvM3CoiIiLKS4wHiIiIiPEAkXXjihEiIhM5f/48AFkiW7p06ac+Pz4+HtevXwcAeHh4wN/f36ztIyIiIvNjPEBERESMB4isHwdGiIiIiIiIiIiIiIjIbjCVFhERERERERERERER2Q0OjBARERERERERERERkd3gwAgREREREREREREREdkNDowQEREREREREREREZHd4MAIERERERERERERERHZDQ6MEBERERERERERERGR3eDACBERERERERERERER2Q0OjBARERERERERERERkd3gwAgREREREREREREREdkNDowQEREREREREREREZHd4MAIERERERERERERERHZDQ6MEBERERERERERERGR3eDACBERERERERERERER2Q0OjBARERERERERERERkd3gwAgREREREREREREREdkNDowQEREREREREREREZHd4MAIEZGN6t69OwoWLIhevXpZuikArK89RERE9sLazsHW1h4iIiJ7YG3nX2trD9GjODBCRGSj3n77bSxcuNDSzTCwtvYQERHZC2s7B1tbe4iIiOyBtZ1/ra09RI/iwAiRlQkJCcE777xjF22whmPNKyEhIdBoNNBoNAgNDTXZNj09PbP8XHO/1pm1Z+DAgYZj//PPP83aBiKi/MQazpOMCUyPMQFjAiKi7LCGcyTjAdNjPMB4gCyPAyNEdi6jk+GKFSvw6aef2uR+TMnUgcLgwYMRHh6OqlWrmmybtmD69OkIDw+3dDOIiOgpGBNkjjGBaTAmICKyfowHMsd4wDQYD5C1cLR0A4jI+vj6+uar/TwqKSkJzs7Oeb5fd3d3+Pv7Z/n5zzzzDFJSUh67/99//0VgYKApm2bW9nh7e8Pb29ucTSMiIjNhTGAejAmIiMiWMB4wD8YDRJbFFSNEFhQbG4v+/fvDw8MDAQEBmDZtmtHjOp0OkydPRunSpeHm5oYaNWpg+fLlRs9Zv349mjRpAh8fHxQqVAidOnXChQsXjLYxZcoUlCtXDi4uLggKCsJnn30GQJYvbt26FdOnTzcsYwwLCzOaBTF37lwEBgZCp9MZ7bdr164YNGhQltqQlf0AMvvirbfewnvvvQdfX1/4+/tj/PjxRvuNjo5G3759UaBAAQQEBODrr79+6qyNkJAQDBs2DO+88w78/PzQtm3bp7Y7szZn9X3JiuXLl6NatWpwc3NDoUKF0Lp1a8TGxhoeDw0NxfHjxx+7mCLg+fvvv+Ht7Y1FixYByNrras72EBHZO8YEjAkYExAREeMBxgOMB4jyDgdGiCxo1KhR2Lp1K1atWoV///0XW7ZswaFDhwyPT548GQsXLsTs2bNx4sQJvPvuu3jppZewdetWw3NiY2MxfPhwHDhwABs3boRWq0X37t0NQcro0aPx+eef46OPPsLJkyfx22+/oWjRogBk+WLDhg0NyzfDw8NRokQJozY+99xzuHfvHjZv3my47/79+1i/fj369u2bpTZkZT96CxYsQIECBbB3715MmTIFEyZMwIYNGwyPDx8+HDt37sTq1auxYcMGbN++3eg1y8yCBQvg7OyMnTt3Yvbs2U9t95PanJX35WnCw8PRp08fDBo0CKdOncKWLVvQo0cPKKWyvI2c+u2339CnTx8sWrTI8B7m9HUlIiLTYEzwOMYEjAmIiOwN44HHMR5gPEBkNoqILCI6Olo5OzurpUuXGu67d++ecnNzU2+//bZKSEhQ7u7uateuXUY/98orr6g+ffpkut07d+4oAOrYsWMqKipKubi4qB9++CHT5zdv3ly9/fbbT7yva9euatCgQYbbc+bMUYGBgSo1NfWpbcjOfpo3b66aNGli9Jy6deuq999/XymlVFRUlHJyclLLli0zPP7gwQPl7u7+2LYf3U/NmjUzfTyzdmfU5py+L49u6+DBgwqACgsLe2q7MtOqVSvl5+en3NzcVLFixR5rU0b7//7775W3t7fasmWL4bGcvq7ZbQ8AtXLlyixvj4jIXjAmYEzAmICIiBgPMB5gPECUt1hjhMhCLly4gKSkJNSvX99wn6+vL4KDgwEA58+fR1xcHJ599lmjn0tKSkLNmjUNt8+dO4ePP/4Ye/fuxd27dw0zMK5cuYK4uDgkJiaiVatWuWpr3759MXjwYMycORMuLi5YtGgRXnjhBWi12qe2IbtFxKpXr250OyAgALdv3wYAXLx4EcnJyahXr57hcW9vb8Nr9iS1a9d+7L6ctDur78vT1KhRA61atUK1atXQtm1btGnTBr169ULBggWzvI3//vsvy88FZFnu7du3sXPnTtStW9dwf25e19y0h4iIBGOCjDEmYExARGRPGA9kjPEA4wEic+HACJGViomJASB5HosVK2b0mIuLi+F6586dUbJkSfzwww+GPJ9Vq1ZFUlIS3NzcTNKWzp07QymFv//+G3Xr1sX27dvx9ddfZ6kN2eXk5GR0W6PRPJa7NCcKFCjw2H05aXdW35encXBwwIYNG7Br1y78+++/+O677zB27Fjs3bsXpUuXzvJ2sqNmzZo4dOgQfv75Z9SpUwcajcYs+yEiItNiTCAYE5gOYwIiItvDeEAwHjAdxgNk71hjhMhCypYtCycnJ+zdu9dwX0REBM6ePQsAqFy5MlxcXHDlyhWUK1fO6KLPY3nv3j2cOXMGH374IVq1aoVKlSohIiLCsL3y5cvDzc0NGzduzLQdzs7OSE1NfWJbXV1d0aNHDyxatAi///47goODUatWrSy1ITv7eZoyZcrAyckJ+/fvN9wXGRlpeM2yIyvtzqjNWXlfskqj0aBx48b45JNPcPjwYTg7O2PlypXZPpasKlu2LDZv3oxVq1bhzTffNNxvyteViIiyjzFB9jEmyB3GBERE1ofxQPYxHsgdxgNk77hihMhCPDw88Morr2DUqFEoVKgQihQpgrFjxxqWnnp6emLkyJF49913odPp0KRJE0RGRmLnzp3w8vLCgAEDULBgQRQqVAhz585FQEAArly5gg8++MCwD1dXV7z//vt477334OzsjMaNG+POnTs4ceIEXnnlFQBAqVKlsHfvXoSFhcHDwwO+vr4Ztrdv377o1KkTTpw4gZdeeslw/9PaoJfV/TyJp6cnBgwYgFGjRsHX1xdFihTBuHHjoNVqsz2zISvtzqjNWXlfsmLv3r3YuHEj2rRpgyJFimDv3r24c+cOKlWqlK3jyK4KFSpg8+bNCAkJgaOjI7755huTvq5ERJR9jAkYEzAmICIixgOMBxgPEOUtDowQWdCXX36JmJgYdO7cGZ6enhgxYgQiIyMNj3/66acoXLgwJk+ejIsXL8LHxwe1atXCmDFjAABarRaLFy/GW2+9hapVqyI4OBjffvstQkJCDNv46KOP4OjoiI8//hg3btxAQEAAhgwZYnh85MiRGDBgACpXroz4+HhcunQpw7a2bNkSvr6+OHPmDF588UXD/VlpQ3b28zRfffUVhgwZgk6dOsHLywvvvfcerl69CldX12xtJyvtzqjNpUqVeur7khVeXl7Ytm0bvvnmG0RFRaFkyZKYNm0a2rdvn63jyIng4GBs2rQJISEhcHBwwLRp00z2uhIRUc4wJsg+xgS5x5iAiMi6MB7IPsYDucd4gOyVRimlLN0IIqKcio2NRbFixTBt2jTDDBdrFBISgmeeeQbffPONpZuSJeZ4XTUaDVauXIlu3bqZZHtERETpMSYwD8YERERkSxgPmAfjAcqPWGOEiGzK4cOH8fvvv+PChQs4dOgQ+vbtCwDo2rWrhVv2dDNnzoSHhweOHTtm6aY8xpyv65AhQ+Dh4ZHr7RAREaXHmMA8GBMQEZEtYTxgHowHyB5wxQgR2ZTDhw/j1VdfxZkzZ+Ds7IzatWvjq6++QrVq1SzdtCe6fv064uPjAQBBQUFwdna2cIuMmfN1vX37NqKiogAAAQEBKFCgQK63SURExJjAPBgTEBGRLWE8YB6MB8gecGCEiIiIiIiIiIiIiIjsBlNpERERERERERERERGR3eDACBERERERERERERER2Q0OjBARERERERERERERkd3gwAgREREREREREREREdkNDowQAVizZg2Cg4NRvnx5/Pjjj5ZuDlnIgwcPUKdOHTzzzDOoWrUqfvjhB0s3iSzs0qVLaNGiBSpXroxq1aohNjbW0k0iIjNiPEB6jAkoPcYDRPaF8QDpMR6g9BgP5D8apZSydCOILCklJQWVK1fG5s2b4e3tjdq1a2PXrl0oVKiQpZtGeSw1NRWJiYlwd3dHbGwsqlatigMHDvCzYMeaN2+OiRMnomnTprh//z68vLzg6Oho6WYRkRkwHqD0GBNQeowHiOwH4wFKj/EApcd4IP/hihGye/v27UOVKlVQrFgxeHh4oH379vj3338t3SyyAAcHB7i7uwMAEhMToZQCx47t14kTJ+Dk5ISmTZsCAHx9fRn0EOVjjAcoPcYEpMd4gMi+MB6g9BgPkB7jgfyJAyNk87Zt24bOnTsjMDAQGo0Gf/7552PPmTFjBkqVKgVXV1fUr18f+/btMzx248YNFCtWzHC7WLFiuH79el40nUwst58FQJbK1qhRA8WLF8eoUaPg5+eXR60nU8vt5+HcuXPw8PBA586dUatWLUyaNCkPW09E2cV4gNJjTEB6jAeI7AvjAUqP8QDpMR6gjHBghGxebGwsatSogRkzZmT4+JIlSzB8+HCMGzcOhw4dQo0aNdC2bVvcvn07j1tK5maKz4KPjw+OHDmCS5cu4bfffsOtW7fyqvlkYrn9PKSkpGD79u2YOXMmdu/ejQ0bNmDDhg15eQhElA2MByg9xgSkx3iAyL4wHqD0GA+QHuMBypAiykcAqJUrVxrdV69ePTV06FDD7dTUVBUYGKgmT56slFJq586dqlu3bobH3377bbVo0aI8aS+ZT04+C496/fXX1bJly8zZTMojOfk87Nq1S7Vp08bw+JQpU9SUKVPypL1ElDuMByg9xgSkx3iAyL4wHqD0GA+QHuMB0uOKEcrXkpKScPDgQbRu3dpwn1arRevWrbF7924AQL169XD8+HFcv34dMTExWLduHdq2bWupJpOZZOWzcOvWLURHRwMAIiMjsW3bNgQHB1ukvWReWfk81K1bF7dv30ZERAR0Oh22bduGSpUqWarJRJQLjAcoPcYEpMd4gMi+MB6g9BgPkB7jAfvFKjGUr929exepqakoWrSo0f1FixbF6dOnAQCOjo6YNm0aWrRoAZ1Oh/feew+FChWyRHPJjLLyWbh8+TL+97//GQqqvfnmm6hWrZolmktmltW/DZMmTUKzZs2glEKbNm3QqVMnSzSXiHKJ8QClx5iA9BgPENkXxgOUHuMB0mM8YL84MEIEoEuXLujSpYulm0EWVq9ePYSGhlq6GWRF2rdvj/bt21u6GUSURxgPkB5jAkqP8QCRfWE8QHqMByg9xgP5D1NpUb7m5+cHBweHx4pj3bp1C/7+/hZqFVkCPwuUHj8PRPaFv/OUHj8PpMfPApF94e88pcfPA+nxs2C/ODBC+ZqzszNq166NjRs3Gu7T6XTYuHEjGjZsaMGWUV7jZ4HS4+eByL7wd57S4+eB9PhZILIv/J2n9Ph5ID1+FuwXU2mRzYuJicH58+cNty9duoTQ0FD4+voiKCgIw4cPx4ABA1CnTh3Uq1cP33zzDWJjY/Hyyy9bsNVkDvwsUHr8PBDZF/7OU3r8PJAePwtE9oW/85QePw+kx88CZUgR2bjNmzcrAI9dBgwYYHjOd999p4KCgpSzs7OqV6+e2rNnj+UaTGbDzwKlx88DkX3h7zylx88D6fGzQGRf+DtP6fHzQHr8LFBGNEopZZYRFyIiIiIiIiIiIiIiIivDGiNERERERERERERERGQ3ODBCRERERERERERERER2gwMjRERERERERERERERkNzgwQkREREREREREREREdoMDI0REREREREREREREZDc4MEJERERERERERERERHaDAyNERERERERERERERGQ3ODBCdiExMRHjx49HYmKipZtiUXwdBF8HwddB8HUgsi/8nedroMfXQfB1EHwdiOwLf+cFXwe+Bnp8HQRfB/uiUUopSzeCyNyioqLg7e2NyMhIeHl5Wbo5FsPXQfB1EHwdBF8HIvvC33m+Bnp8HQRfB8HXgci+8Hde8HXga6DH10HwdbAvXDFC9BQzZszI9mOP3p/+9tOuP2l/T/O0n/3hhx+y9HPW0l5be30zevxp91nb58Ga25uV1zcrn43MjoGI6Eny+m9Ubv8+PenncxIPPHo7L9ubk3ggs7YxfnlcfogPLRm/EJF9sbXvLKb4TmhN7bWleCu38Uv667YQH1pDPPCk9mXlOuMBO6SI7EBkZKQCoCIjI7P9s5UqVcr2Y4/en/72064/aX9P87SfDQ4OzvB1sNb2muv1zennISftfdp91vZ5sOb2ZuX1zcpn49H7cvP3gYhsjyXPAdn5G5Wbv6dP+/mcxAOWbG9O4oHM2mapeOBp7bW2eMCa22uueIvxAJF9sZV4ICv7zG570svKd0Jraq854i1r6i/KSntzw5zxoTXEA09qX1auMx6wP44WGIshynPqYca4ZcuWwc3NLVs/GxkZid9++y1bjz16f/rbT7v+pP3lpq2ALAkEHn8drLW95np9ly1bBiD7n4ectPdp91nb58Ga25uV1zcrn41H71u+fHmO2ktEtunAgQMALHMOyM7fqNz8PX1ae3MSD1iyvTmJBzJq46P35WU88LT2Wls8YM3tNVe8pf88EJF9uHjxIgDrjweyss/ctDcr3wmtqb3miLdyGg88rb25jV8ya6+1xofWEA88rb2MB+hRrDFCdmH37t1o0qQJ6tVvAK1WAwB47IOvMr55Mzwc/gEBgALUI0+6dTMcRf0DjO9Vj98vt/0fXr+JIkXl+u1bcl2ptOuG+wDg4a/no9s3bkVaq+7eugW/IkWNf0alPefu7ZtITUlFYf8AaDRpmfTu3bkFX7+ihp+6d/c2fP2KAADu30l3/e4tFPQrmu56EUTcvY2ChYpkoZ147DV8cO82fHzT/ewjf44e3L8Nn4JF5GfSPRQZcQfePoUNG42MuAsvHz957MFdePv4AQqIfHBH7ldAVORdeHn7IerBXXh6+eJBxG34+BSBRqMxap/RFWV8Myr6Lrw8CmXwfLkRFX0fXh6+Ro9HxdyTn0l3bFEx9+FVQJ4XFXsfXu4F/8/efcc3VbVxAP9ldO8BhUJL2Uv2kLJlg0wRRBRBURCV8aKoiMoQQUUREVCcIII42CAbBET23hRKaQvde6YZ5/3jITdJd5s06Xi+n0+kubm5OTetuU/Oc85zjH5+tD0zEe5OXkjNTKLHpbcg1xub/5tMx8hOhruDZ659DeeWqkqCVujg6eAFGeh9SFUlw93ew+Rl0nJS4GZHtTXT1ClwU7oDAkjTpOb62Y3+Vbjl/f9J5HpPc73HAgLpunS4yl2Nft/C6FcgkCEy4CJzkR4XEMgUmXCSOUt70X2nR68JZCETjnACIJCFbDjBEVnIhiMcpW0KKJCBDDRAfZxPvwAXF5fcbypjrBJxdHSEt7cP6gQF5R8TlCIeAIDoR9d+4ycWFg/Q/bwxgX6bOfEABBAfSzFBSeMBn2p+j15OICE+Fj6+1aVjJD6KFwQoDvD29bNIPADx6JrvXb2AeCAOnl7VDGf56OHC4gHjxy0WDzz6OTUtAe5u3gVcj/OPB4BHMYGLYXtp4wHDIQuLCcyLByCA1JxkuNt5FD8eAJCmNo4H3PO00TrxAO1pHBNkiiw4wRECQBYMP2cjC46PYgN72CEFqaiN2jgReQK1atUCY6zyeuKJJ3D58hU0aty4bOMBADFRhm0CQGx0FKrXqCkdtbB4QL+tml8Ny8QD0gEKjgnMiQcgQDGB0f75txMmn/16pekjKG48AAikJD+KA/KLB7wexQMFXN9N7hfZR1C6eABC0LXf2Tg+8H607VE84OQlHa8k8QCQKyYoYTyg39s4HgAMMQHFANaPB6RHitFHUJx4wAEOSEEKfOCNPef2om3btmCVF88YYVWCTCZDjZo1cejoMQAC4tHnqjD6EBbSZ62QHst7X0if5/ogQRRwv9DjSD8Lw32jwIq2ATqj7bn30++Td5txm4p4nsk+gM748Uc/AwUcM/fxCzy3Al5X9+i9fPSAEPptj15XCHpMZziWFAgabYdRG1DMY+i3GZ144T/rjH7JuX+mX3s+j5Xg+LnOx7Adj45pem6G7bleF6U5Bj1fSMd59G8+24TRYwU9j46vM3pv8n+uMH4OBHRC9+jvj/7VCR0EdPT/wKN/ddBBPPpX2i7ta/qc/PYFUODx4hCPm7gFH1cfLFm+BJMmTYKDg0NJP2oYYxWAWq3G4X//RWBgHZT6Om6BeAD6bXmum3mv2daIB2CyX/4xgVXjAf17JfT/Gq6V+W2DURvKJB7Q/8IKiwny/bmYxzf6uahrOaT3zfgx09e2ajwAFB0TFPDcsogHqDmFxwQFHS8N6biF2wisHYgg1MGpuNPw9TV0rjHGKg+tVosvvlqGZ8aMRWmu4/rrWlHxAAp8bq77ea6bZRMPAAXtl/+1u6zjAcBon1L2EVgsHjC8Oeb1EeT7cwmObdQec/sILBkPSO0xp4+ggOeVJh4AYHYfQUHxgAo5uIu76NCuA/xQHYduHEaTJk1K9VnDyjdefJ0xxliVVw2+6IrOaIHHMGfae/By9MKaNWug1Wpt3TTGGGOMWYkbXNEebdEFnZGGdNSsVhONZY2QlpZm66YxxhhjzEocYI9maIpeeAL2sEfzps0RKAvA/fv3bd00ZmGcGGGMMcYAyCBDTdRAD3RHYzTC6y++Bk+lJzZt2iSNrmKMMcZY5ecJD3RCR3REe8QhHr7uvmgua4bs7GxbN40xxhhjVuIER7REC/REd+igQ72geqgnq4vY2FhbN41ZCCdGGGOMMSMyyBCA2ngCPVEXQXju6efgJffCvn37OEHCGGOMVSE+8EEXBKM1WiESD+Dl5IXvv/8earXa1k1jjDHGmJW4wAVt0Qbd0AWZyIK/nz8ayRoiOTnZ1k1jZuLECGOMMZYPOeQIQh30whPwR00M7j8Y1eS++O+//2zdNMYYY4xZiQwy+KE6uqMrmqMp/jfpf/Cy98LGjRuh0+mKPgBjjDHGKgV3uKMj2iMYjyMRSajuVR3NZE2RmZlp66axUuLECGOMMVYIJRRogProjSfgDW9079IdNWR+SE9Pt3XTGGOMMWYlMsjgD3/0RHc0QD28+OyL8FJ44vr167ZuGmOMMcasyAteCMbjaIe2iEIUvF28sX37dls3i5UCJ0YYY4yxYlBCCW94wxnOSEYKVCqVrZvEGGOMMSuTQw4veMEd7khHBuLj423dJMYYY4xZmQwyuMMNXvBCDnLw3rDZtm4SKwWlrRvAGGOMlXeJSMQN3EIa0tAQ9XE28zycnJxs3SzGGGOMWVEmMnELt/EQUQhEAB5EPUCNGjVs3SzGGGOMWZEaatxFKEJxD77wwcVLF9GyZUtbN4uVAidGGGOMsQKkIAU3cRsJSEB91ENocig8PDxs3SzGGGOMWVE2shGCOwhHBPzhjzuhd1C3bl1bN4sxxhhjVqSBFmEIwx3chTvccPT4UXTu3NnWzWJm4MQIY4wxlks6MnALtxGNaAShDq7GXkW1atVs3SzGGGOMWVEOcnAXobiHMFRDNVy5dgXNmjWzdbMYY4wxZkU66BCOCNxGCBzhiF37dqFPnz6QyWS2bhozEydGGGOMsUeykIXbCEEkHqA2aiEsPAwBAQG2bhZjjDHGrEgDDUJxD3cRCi944sTpE+jQoYOtm8UYY4wxKxIQeIAHuIUQyCHHhk0bMGLECE6IVCKcGGGMMVblqaDCHdxFGO6jBmrgxq0baNSoka2bxRhjjDEr0kKL+whHCO7ABc7Yf3g/evbsaetmMcYYY8yKBARiEIObuA0NNPhmzTd4/vnnoVAobN00ZmGcGGFVRmpKCj58fw4AAQjaJox3kDY/+q8weejRv/k8VxgfR+R9Xj73Ra7XEML4lQ3HzL3d5H5+zxWGNhqeY9qugtsgnWHe1zA5z2Ic69Gd/I9htK/RDnTf+Dj6N8H0fZfO2egETd8Pk8bSBmH8UsL0tXO1A0btkH7Odaw8P+c5+QKOU9TPuduT6+fc70u+7cjzuOlriHxf2+hfo3OW3nfpNYyOLf2ucj8mcrVJGF63gNcUj44j/X1BPGrno8ce3TfZQxgek/4rPUd/DMM947+zXEeCGmpE4gG84Y1zF86hdevWYIxVbl9+vgRu7h4wvl7k+tiC8eeG0UOP/i3seY/2yP28fI6T7zU0z3U917Z89sn/ecKkTUXFA6ZtkM4yT1uM35+yjgeM26L/KDd5760ZDxgdo8ifTZ6Ta5sF4oH83pc87cjzmOlrWDoeoKflflzkeY414gGpLfpjIG9MkF88oIMODxEFJZT4a/tfGDx4MI8IZayS2/THH7h29RpMPl/1Dxpd7wCTjzujj9bCnlfIc/O5b614wPAape8jML0kmRcPGL9CafsILBcPmL6GSWNL2kdgkXggn/bk+tma8cCjdyvXNqPjF6uPQBhet4DXFI+OIf19If94QGqP0TbTvYDSxAMCAvFIQBay8PnXn+OVV16Bg4MDWOUkE9L/BYxVXtnZ2Zg3bx5SU1Nt3RTGWDkjl8sxZswYdO3a1dZNYYxZwddff40bN27YuhmMsXKoa9euGDNmDORyua2bwhgrY7t27cKuXbts3QzGWDlUr149TJkyBS4uLrZuCitjnBhhjDHGGGOMMcYYY4wxxliVwUNhGGOMMcYYY4wxxhhjjDFWZXBihDHGGGOMMcYYY4wxxhhjVQYnRhhjjDHGGGOMMcYYY4wxVmVwYoQxxhhjjDHGGGOMMcYYY1UGJ0YYY4wxxhhjjDHGGGOMMVZlcGKEMcYYY4wxxhhjjDHGGGNVBidGGGOMMcYYY4wxxhhjjDFWZXBihDHGGGOMMcYYY4wxxhhjVQYnRsrAvHnzIJPJTG5NmjSxdbMYY4wxZmUcEzDGGGOM4wHGGGOs/FHaugGVVfPmzXHgwAHpvlLJbzVjjDFWFXFMwBhjjDGOBxhjjLHyha/EZUSpVKJGjRq2bgZjjDHGbIxjAsYYY4xxPMAYY4yVL5wYKSMhISHw9/eHo6MjgoODsXjxYgQGBha4v0qlgkqlku7rdDokJibCx8cHMpnMGk1mjDHGyi0hBNLS0uDv7w+5vGJVAi1JTMDxAGOMMVYwjgc4HmCMMcYsFQ/IhBDCgu1iAHbv3o309HQ0btwYUVFRmD9/Ph48eICrV6/Czc0t3+fMmzcP8+fPt3JLGWOMsYolIiICtWvXtnUziq2kMQHHA4wxxljROB5gjDHGmLnxACdGrCA5ORl16tTB0qVLMXHixHz3yT0iJCUlBYGBgYiIiIC7u7u1msoYY4yVS6mpqQgICEBycjI8PDxs3ZxSKyom4HiAMcYYKxjHAxwPMMYYY5aKB7iUlhV4enqiUaNGuHPnToH7ODg4wMHBIc92d3d3DnwYY4yxRyp6+YiiYgKOBxhjjLGicTzAGGOMMXPjgYpVlLOCSk9Px927d1GzZk1bN4UxxhhjNsQxAWOMMcY4HmCMMcZsjxMjZeCtt97CkSNHEBYWhv/++w8jRoyAQqHAs88+a+umMcYYY8yKOCZgjDHGGMcDjDHGWPnDpbTKQGRkJJ599lkkJCSgWrVq6Nq1K06ePIlq1arZummMMcYYsyKOCRhjjDHG8QBjjDFW/nBipAxs3LjR1k1gjDHGWDnAMQFjjDHGOB5gjDHGyh8upcUYY4wxxhhjjDHGGGOMsSqDEyOMMcYYY4wxxhhjjDHGGKsyODHCGGOMMcYYY4wxxhhjjLEqgxMjjDHGGGOMMcYYY4wxxhirMkq1+Hp4eHiJnxMYGFial2KMMcYYY4wxxhhjjDHGGLOYUiVGgoKCIJPJir2/TCaDRqMpzUsxxhhjjDHGGGOMMcYYY4xZTKkSIwAghLBkOxhjjDHGGGOMMcYYY4wxxspcqRMjbdq0webNm4vcb8SIEbh06VJpX4YxxhhjjDHGGGOMMcYYY8xiSp0YcXBwQJ06dYrcz97enmeXMMYYY4wxxhhjjDHGGGOsXChVYkSn0xV735MnT5bmJRhjjDHGGGOMMcYYY4wxxixObusGMMYYY4wxxhhjjDHGGGOMWYvFEiOnTp2y1KEYY4wxxhhjjDHGGGOMMcbKhMUSI6NGjbLUoRhjjDHGGGOMMcYYY4wxxspEidYYGT16dL7bhRBITEy0SIMYY4wxxhhjjDHGGGOMMcbKSokSIwcOHMC6devg6upqsl0IgaNHj1q0YYwxxhhjjDHGGGOMMcYYY5ZWosRIz5494ebmhu7du+d5rGXLlhZrFGOMMcYYY4wxxhhjjDHGWFkoUWJk8+bNBT62f/9+sxvDGGOMMcYYY4wxxhhjjDFWlsxafD06OtpS7WCMMcYYY4wxxhhjjDHGGCtzZiVG+vXrZ6l2MMYYY4wxxhhjjDHGGGOMlTmzEiNCCEu1gzHGGGOMMcYYY4wxxhhjrMyZlRiRyWSWagdjjDHGGGOMMcYYY4wxxliZMysxwhhjjDHGGGOMMcYYY4wxVpFwYoQxxhhjjDHGGGOMMcYYY1WGWYkRhUJhqXYwxhhjjDHGGGOMMcYYY4yVObMSIxcuXLBUOxhjjDHGGGOMMcYYY4wxxsocl9JijDHGGGOMMcYYY4wxxliVoTT3AL169SrwMScnJ7Ru3RpTp05FjRo1zH0pxhhjjDHGGGOMMcYYY4wxs5idGPnnn38gk8nyfUwIgT179mDNmjU4efIkAgICzH05xhhjjDHGGGOMMcYYY4yxUjO7lFb37t3h7OwMhUKBNm3aoE2bNlAoFHB2dkb79u3h4OCA6OhoLFiwwBLtZYwxxhhjjDHGGGOMMcYYKzWzEyNjxoyBTCbDlStXcPbsWZw9exaXL18GAEyYMAFXr16Fs7Mz9u3bZ3ZjGWOMMcYYY4wxxhhjjDHGzGF2YmTx4sWoXbs2GjduLG1r0qQJAgIC8Omnn6JevXro0qULoqOjzX0pxhhjjDHGGGOMMcYYY4wxs5i9xkh8fDwiIyPx7rvvYtSoUQCALVu24ObNm3B2dpb2M/6ZMcYYY4wxxhhjjDHGGGPMFsxOjAwePBh//vknlixZgiVLluR5TKVS4dy5c2jSpIm5L8UYY4wxxhhjjDHGGGOMMWYWsxMjq1evhkajwZYtW0y2P/XUU/j2228RFxeH999/Hy1atDD3pRhjjDHGGGOMMcYYY4wxxsxidmLE09MTmzZtQmhoKK5duwYAeOyxx1C3bl3Ex8ejdu3amD59utkNZYwxxhhjjDHGGGOMMcYYM5fZi69PmTIFAFCvXj0MGTIEQ4YMQd26dREeHo6uXbua3UDGGGOMMcYYY4wxxhhjjDFLMTsxsnr1akydOtVk282bN9GlSxeEhISYe3jGGGOMMcYYY4wxxhhjjDGLMTsx4uzsjFWrVmHatGkAgNOnT6Nbt2548OAB6tSpY3YDGWOMMcYYY4wxxhhjjDHGLMXsNUb279+PgQMHYuXKlYiKisK+ffuQlpaGVq1aYffu3ZZoY4X3ySefYPbs2Zg+fTqWLVtm6+ZUSgsDPja579C5vsn9Wb+PsWZzGGOMsTw4HrAO45iA4wHGGGPlDccD1lFYHwHHA4wxxgALzBgJDg7GP//8Ax8fH2zevBlpaWno3bs3jh07hho1aliijRXamTNnsHr1arRs2dLWTWGMMcaYjXA8wBhjjDGOBxhjjLHyo1QzRhYsWJBnW69evfDHH3/Azc0Njz/+OJYuXQoA+PDDD81rYQWWnp6O5557Dt9//z0WLlxo6+YwxhhjzAY4HmCMMcYYxwOMMcZY+VKqxMi8efMgk8nybJfJZEhPT8fixYulbVU5MfL666/jySefRJ8+fTjwYYwxxqoojgcYY4wxxvEAY4wxVr6UKjESGBiYb2KEGWzcuBHnz5/HmTNnirW/SqWCSqWS7qemppZV0xhjjDFmJRwPMMYYY4zjAcYYY6z8KVViJCwszMLNqFwiIiIwffp07N+/H46OjsV6zuLFizF//vwyblnlMtFhgvRzox49TR7jxdRYefHFlK0m99/8Zni5fF3j/Yva97Mh60zuK2q7lei1CnpdSz+3JOdU0tcq7uuWVFHtXPLMRunn3J9zxo/l93hJ3uuizqEkz829b1HtLOhY2TmZhbapPOJ4wDqM4wHANCbgeICVFxUxHihq/9yf53Jv0885c64VhSnJ9b+kxzb3tQpTkjilpNdh499FSX4PxXmt0h5Ll5ht8lhRn8e522H8/Ir+Wc7xgHUUFg8AFf/viFUOtooHcr+2JeOBitg/UNJjF/VauRkf21r9A0DhfQTm9A/k3r+k1/jCXrcoBf0eLdU/YPbi6yyvc+fOITY2Fm3btoVSqYRSqcSRI0ewfPlyKJVKaLXaPM+ZPXs2UlJSpFtERIQNWs4YY4wxS+F4gDHGGGMcDzDGGGPlU6lmjLDC9e7dG1euXDHZ9uKLL6JJkyZ45513oFAo8jzHwcEBDg4O1moiY4wxxsoYxwOMMcYY43iAMcYYK584MVIG3Nzc8Nhjj5lsc3FxgY+PT57tjDHGGKucOB5gjDHGGMcDjDHGWPnEpbQYY4wxxhhjjDHGGGOMMVZlyIQQwtaNYHmlpqbCw8MDKSkpcHd3t3VzyoVXnV4xuf9t1vc2agljjDFrq6rXxap63oXheIAxxqquqnpdrKrnXRiOBxhjrOqy1HXRYjNGTp06ZalDMcYYY4wxxhhjjDHGGGOMlQmLrTEyatQohIeHW+pwjJVKcnIyYmJipFtKSgqys7Mxbtw4eHh4AAD279+PI0eOQKfTQaFQQKlUmtyef/55+Pn5AQAuXryIc+fOQaFQwN7eHo6OjtJNqVSiVatW0nHj4uIQFRUFOzs7k5u9vT0UCgVcXV1hZ2cHANDqb0mWAAEAAElEQVRoNNBoNFAqlVAoFJDJZLZ5wxhjjLFKKCsrS4oFmjVrBjc3NwB0XT9w4ADUajU0Gg20Wi20Wi2EEJDL5Rg7diyaNGkCALh+/Tr+/vtvKJVK2Nvbm9xkMhmCg4MRGBgIAEhISMDNmzfh4uICBwcH6fqvjwXc3Nx4EV3GGGPMyrRaLRITExEXF4eMjAx06NBBemz79u0IDw/PEw/IZDIolUrMnDlT2nf37t2IiIgw6T9QKBTSdf7JJ5+EQqEAANy+fRtJSUkm+ymVSmnf2rVrQy6nMcrZ2dnQarWQy+Wws7PjvgHGGLOyEiVGRo8ene92IQQSExMt0iDGSmPHjh34+OOPC5y51K9fPymB8c8//2DRokUFHqtXr15SYuTvv//GnDlzCtz32LFj6Nq1KwBgw4YNmDFjRoH77tu3D3379gUArFmzBq+8Ypj6K5PJIJfLIZfLoVAosGHDBowYMQIAsGvXLsyZMwdyuVzaTx9gKRQKvP/++9JxT548iU8++STPvvogbMKECejWrRsA4ObNm/jmm29M9jU+9qBBgxAcHAwAiI6OxtatW00SQ/qOIblcjkaNGqFu3boAgJSUFJw4cSLf90Aul6NevXpo0KABAEClUuHGjRsmnUdKpRIODg5wdHSEk5MTlEqL5W8ZY4xVYjqdDvv378eqVauwc+dO6HQ6AMCRI0fQvXt3AMCJEycwa9asAo/Rvn17KTFy7ty5QvfdsGGDlBg5duyYdN3Oz/fff4+XX34ZAHDgwAEMHTrU5FpqfM2eN28eJkyYAAC4cuUKZsyYAQcHBzg4OEgdJvpr9tixYzFkyBAAQFhYmBQD6K/tejKZDP369cPgwYMB0ECSffv2mbRRf1yZTIZGjRpJCwLn5OTgypUrcHR0lK7P7u7ucHV1lTp2GGOMsfIkNDQUK1aswE8//YSUlBQAQPXq1RETEyPts2zZMhw+fDjf5zs4OJgkRvSxRUHUarX089y5c7Fx48YC901KSoKnpycA4PXXX8dPP/1k8rj+e7FcLkdISAhq1KgBAPjoo4/w66+/SoM0jb/HKxQK/PHHH6hVqxYA4Mcff8Rff/0FhUIh7Wd8+/LLL1GnTh0AwF9//YU///yzwKTMvHnz0LBhQwDAoUOHsGXLFqmPIXfy5/nnn5eOe+bMGezevRtCCOgr+OtjFLlcjtGjR0v9AtevX8d///2HatWqwdfXFz4+PrC3t5eO7e3tDScnJwBAfqsBcDKJMVZaJepxPHDgANatWwdXV1eT7UIIHD161KINY6wkzp8/LyVFPDw8UL16dVSvXh1eXl5wcnKSLqIAEBwcjGnTpkEmk0Gn00Gj0ZiMHPXx8ZH2bdCgAQYPHgytVoucnByoVCpkZ2cjKysLGo0Gzs7O0r6Ojo7w8/ODWq02uWm12jzt1Wg0JveFENIoFbVaDXt7e+mxxMREXLp0qcBzj4+Pl35++PAhtm3bVuC+nTt3lhIjYWFhWL58eYH7VqtWTUqM3LlzB1OmTClw30WLFmH27NnSvgMHDixw3zlz5mDhwoUAgPv376NNmzYF7jtt2jR89dVXAIDIyEg0btwYcrncJEHj4OAAe3t7PP3003jvvfcAABkZGRg3bhwcHBwgk8kghIBOp5OCqB49euD1118HQMmZl156CQBgb28Pd3d3eHh4wN3dHdWqVUOzZs1MRhYxxhgrX7RaLVauXInly5fj7t270nYHBwf4+fkhJydH2takSROMGzdOGpWp/8IN0LVYn+QHgLp162LcuHHS9TwnJ0e6CSGkQRQAXT8aNGiAjIwMqFQqk/2FENKMUYBms+hv+THeHhcXh0OHDhV47m3btpUSI7GxsVi9enWB+3p7e0uJkYiICDzzzDMF7jtr1ix89tlnACi2aN++fb77ubm5Ydq0adJ1PS4uDp07dzbpBFEoFNI1e9iwYdKAk6ysLDz33HPSQA/9yFtPT094enqidevWGD58OABKeq1fv94keSOXy+Hi4gI3Nzf4+/tLnTaMMcaqrlOnTmHx4sXYvn27SQe6l5cXfH19pRkhANCzZ0/4+vqaDDrUf3fMPTgvODgYCoVC+s5u3IegVqulWAKg79F169aV+gKM983JyTGJCfSDOIzp4w4AJgMQHj58iNu3bxd47sbxzs2bN7Fnz54C912wYIH087Vr1/DHH38UuO+0adOkn8+dO4cVK1YUuG/nzp1NEiNz584tcN9WrVpJiZEzZ86YDBzN7c8//8TTTz8NgBI5uQdte3h4ICgoCEFBQZg6dSp69+4NgPom9uzZgxo1asDf3x/+/v7w8fGR+l+cnZ2lGb36Ph+eucNY1VKixEjPnj3h5uYmjboz1rJlS4s1ijEAGGc31uT+OvUG6WetVovMzEwpMTFlyhQIITBlyhSTjor8DB48WOoYKMro0aMLnCmV2+TJkzF58uQ823U6HbRarUmwNHHiRDz33HNSSS2dTifdNBoNqlWrJu3bu3dv7N27V+rc1wdj+iCrU6dO0r5t2rTBt99+K3VIGCd+1Go12rVrJ+1br149vPfee9J+xq+v1WrRqlUraV8vLy8MHz5cSgypVCqoVCrpucbvuYuLC9q0aZMnkNDvW7NmTZNtNWvWRE5OjklgqQ8EHR0dpX31v3MASE9Pz/M+65M4ACVGtmzZkt+vCQDg5OQkJUa0Wi02bNhQ4L7Dhg3D1q1bAVCw6ezsLI3KcXFxgaurK1xdXeHk5IRevXrh008/lc4tODhYOh+5XG5ShqVjx4745JNPpNdZvXo1FAoF3NzcpJu7uzvc3NxQrVo1qQwMY4xVNYXFAwCwfv16TJ8+HQB9MZ4wYQImT56MJk2a5LkWPfHEE3jiiSeK9bpdu3aVZoUWZdCgQRg0aFC+j+Xu9OjTpw/u3buH7OxsKXGi/4Ku0WikDgUAaNasGTZs2CDtq79W6/c3bl+tWrUwf/586bHcbejZs6d038XFxeS+vg36a3X9+vVNnlu7dm3p+q8fHAIAaWlpJtfknJwc3Llzp8D3qXXr1tLP2dnZhV6rn332WSkxolar8cILLxS475AhQ7B9+3bp/uOPPw5nZ2e4uLhI/yoUCuTk5KB169Ymo4BHjRolnWPDhg3RoEED1KtXD15eXvDw8DAZrMIYY8y2jGOC3PGATqfDu+++i3/++QcA0L9/f0yfPh19+vQxSUboffjhh8V+Xf0AvOJYvnx5oQMQja1evRorVqyQBkjqb/o+AuNBm7NmzcLYsWORlZUFrVZr8h0+94CNMWPGoEWLFtJxjK/xAODv7y/tO3DgQHh7e0vHMiaEMIlLgoOD8f7775sMAtX3H2g0GpPv+s2bN8fkyZOlWSrGbdBqtQgICJD2DQoKwpNPPon4+HjEx8cjISFBeh/0Jcj1jBNAeikpKbh06RIuXbqE5557Ttp+4cIFTJ06tcD3f/369Rg7lv6mdu7cKcUdAKSyqD4+PqhevTreeecdKTlz9epVLFu2DEIIKT7Sx2pqtRrTp0+XjnXt2jW8+eabsLe3N+nv0MdqU6ZMkdoQFRWFBQsWwNfXFzVq1EBAQIB08/Hx4WQNY2VAJvKbh8ZsLjU1FR4eHkhJSYG7u7utm2MTBXWECCHwxhtv4MyZM9ixY0eRiRBW8eh0OqhUKshkMik5otFoEBkZCY1GY5Kgyc7OhlqtRq1ataSyHxkZGVi3bh2ys7OluvHGZUWaNGmCPn36AKDOlpUrV0IIAZVKhbS0NKSkpCAlJQUxMTHo2bOnFAhnZ2ebzD7K7amnnsKmTZuk+wqFIt9RQAB1ou3atUu67+LiIiV+cmvXrh3Onj0r3f/www/h5OSEoKAgBAYGwtHRUUrWuLm5mYx4vnXrlsl74OjoCA8PD7i6unJgxSqUqnpdrKrnbayoxIgQAu+//z7c3d3xxhtvwMXFxZrNq3L018vU1FSkpqbCyclJKt2hUqlw9uxZ6foik8lMrtu1a9eWkiPZ2dn4+eefTQZ95OTkIDk5GcnJyejQoYM0o1OlUmHo0KF5OlUyMzORlpaGvn37Sp1QGRkZeWa3G8udRHFwcMi3kwWgUqx79+6V7v/666+oU6cOWrVqVWX/f2TM1qrqdbGqnnduhSVGALq2fP7553j66ael0piscsnOzkZqaqpJwiU+Ph5hYWEICwvDoEGDpGTOf//9hy+//BLR0dF48OABHj58CJVKJR1r3bp1eP755wEAmzdvxsiRIwt83TVr1mD8+PEAaM2ZggbEAMBXX30lzbQ5fPgwevXqVeC+n376Kd5++20AVBrdeMCnMXt7e7z33nvSLJz4+HicOXNGKqtmnCjTarVo3ry51C+QlJSEY8eOwcnJCc7OzvD09IS3tze8vb15DTxWYVnqumhW8f7o6Gip3iFj1vL+++9j1apVkMlkOHHihElWn1UOcrk8TwJCqVQiKCioWM93cXHBq6++Wqx97ezsCl0bxpiDgwMePHggzazJzMxEeno60tPTkZmZmSdJt23bNqk0iBBCKquSnZ1tsq8QAsOHD0dqairS09ORmpqKtLQ0qdPJeDSNEAJLlixBdnZ2vm3s27evSd34xx9/XKqra0wul6Nbt27SiCoAePnllxEdHS2NKlIoFPD19UW1atXQoEEDkxlRly9fhk6nk+rK2tnZwd3dHZ6envmOyGKMsbIik8nw8ccf27oZVYZ+0IKjoyOqV69u8piDgwO6dOlSrOM4OjoWWqYz93GNExSFsbOzw8GDB6WFdjMyMpCZmQmtVgsHBwepbIfeypUroVKpcP/+fYSEhODOnTsICwtDenq6tD4dQB0xEyZMgFarhUwmQ+PGjdG+fXu0b98ezs7OaNasWbHPnTHGmOUkJibC29sbAF1b3n//fRu3iJUlfQxirFq1amjatGmefTt37ozOnTtL9/UzPIzXd9UbOnQoUlJSpJJnarUaKpUKCQkJiI2NNZn12qhRI3z88cdSTKRfC87BwQF2dnZo27attG+TJk2wdu1aqFQqKJVKaX1Vfbku/eBOAKhRowY+/PBDxMfHIyoqChEREYiIiEBMTAxycnKkgSgAlZMvbnLm+vXrGDZsWL77ubm54f3335eSMyqVCtHR0QgICOC15FiVYFZipF+/frh8+bKl2sJYkT777DNp4fRVq1ZxUoRZlUwmM5l2XJTilmyTyWRYv359gY8bL+anVqvxzjvvSCNiIiIipPIqWq1WWshPz8fHR5q5otVqpRIoOp0uT6CzdetWJCQk5NuGdu3amSRGhg8fjnv37uW7b6tWrXDx4kXp/uLFi6FWq9G4cWM0adIEjRo1gpOTkzTrx7jjiTHGiuPo0aP45ptv8NNPPxU6k49VPfb29oWOzMzt5Zdfzne7fgaLXnJyMgYNGoSLFy8iIiICN2/exM2bN/Hrr78CAKZOnSolRnJycrB06VK89tprJiPY1Go10tLSpA48xhhj5gkPD0fXrl0xduxYLF68mGfEs0LJZLIC40alUpnvqPPcAyoAoH79+sUur1azZs1Cy4EaCwoKwvz58/NsV6lUePDgAby8vKRtrq6uaNeunVTKTKFQSFUyFAqFSXl2R0dHdOzYEVlZWcjMzERycjKSkpKg0+mQlpZmct4XLlxAcHAwnJ2d0bhxYwwdOhQffPCBSRKJscrErMQIV+Fi1rRz50688847AIBPPvmk2DMCGKvojGdg2NvbY968ecV+rvFCxAB9bmdlZSE5OTlPma+lS5dKI2FlMhnUajXi4+MRFxdnUi8WoHVnsrOzpbqvOTk5yMjIkNpobPXq1bh//750XyaTwc7ODjk5OejatSuOHTsmPda8eXPExMRAqVRK7QCoM6lp06Y4evSotG+zZs1w+/ZtuLu7o1atWvD390etWrXg7e2N2rVrm8wE+u233xAfHw+5XI5q1aqhevXqqF69Ojw9PeHo6MidVIxVIFFRURg+fDiSkpLQsGFDkwVEGbMUhUJh0nlSo0YNqQRXbGwszp49izNnzuDChQtSyQq9lStXYvbs2fjyyy/x+uuv48GDBzh//rw0oMy4jMfYsWNx4MABuLu7w93dHY899hi6dOmCzp07o3nz5jxakzHGCpCTk4MhQ4YgIiICW7duxezZs3nAFauUHBwcUK9ePZNtnTt3Nim3XZh27drh1KlTJtt0Oh1SU1Px8OFDkyTKw4cPYW9vj8zMTFy4cAEXLlzApUuXsGHDBqsNRsrJyUFSUpKU9NGvYaNSqZCTk4PGjRtLpXNv376NK1euwNnZWVqj1cPDA9WrV+fBU6xYzFpjpGXLljxjpIxUxRqiM12mmdzXwdBpqxIqbPf6Gw8fPsTUqVOLvZgZY8x6NBoNUlJSoFKpTGbWfPLJJ7h9+zZu3bqFGzduICkpSXqsRYsWJteRatWqIT4+Pt/jN2/eHFevXpXuN27cGLdv38533yZNmuDGjRvS/WbNmpncNxYUFGQy+2Xw4MG4ffs2PDw84OTkJE2PdnV1Rd26daVp0wAFbbwwr3VUxesiUHXP2zgmMI4HACByYDQ2bdqENm3a4Pjx4/ylh5U7e/fuxbRp0/K9Rrm4uJgsWN+3b18cOHAg3+N4e3sjKipKus6EhIQgKSlJKgESFBTEiX1W5VTV62JVPe/C+gi836mOuXPnwtfXF+fPnzcpP8wYKz2NRoN79+7h0KFDmD59OlQqFTp37ozt27fDx8enVMd8+PAhwsPDpXLhqampSEhIQFxcHOLj4/Hxxx9LgzHffvttLFmypMBjnTx5Eo8//jgA4PPPP8esWbPy3c/V1RVbtmyR1pc9c+YMdu7cCV9fX3h7e8PLywuenp7QaDRIT09Hp06dpLjq5s2bOHnyJJRKJXx8fKSbm5sb5HI53N3duR/AxsrFGiOMWct/6pN4+PAhGjZsiE8//dTWzWGM5UMfNOT27rvvSj/rF8fLzMyEh4cH3NzcTPa9ePEikpOTodVqpQV2AZqFkntB5aNHj0Kr1SI5ORkPHjyQFtRLTk42mWYMAAMGDEDLli2h0WgQFxeH2NhYxMTEIDU1NU9AExoaipCQkHzPsVatWlI5PwDo2bMnkpKSMGvWLDz//PMcHDFWxu5o7mLXpj1QKBT4+eefOSnCyqX+/fvjypUr+Oabb3DkyBE0btwYbdu2Rbt27RAYGGiy7y+//IKEhASpg+DMmTM4fvw4Tp06BT8/P5Pryvjx43HixAnpvqOjI8aOHYspU6agffv2Vjs/xhiztXhdAlYt/A4AsHz5ck6KMGZBSqUSDRs2RMOGDdGsWTMMHToU//33HwYOHIhTp06VqmTdm2++iY0bNxb4+OTJk6XEiH4tFaVSCY1GI+0jk8nylA4PCAhAy5YtkZaWhsTERJP1VdPT0xEaGird37VrV6EzzQcMGIDdu3cDoEEuha1F6+fnh+jo6AIfZxUHJ0ZYhdBW2Rpuj3tg0aJF3AnCWAUmk8lMpurmVqtWLZNF5QqjX8De398fzZo1K3TfpUuXFvhY7pJimzdvRnx8PJKTk5GVlQWVSoXs7GykpqbmKWkSExOD0NBQTJw4EbNmzUL//v0xcOBA9O/fP8+ixIwx86TrMnAw5zAA4J133kGrVq1s3CLGCmZvb4/p06dj+vTphe5Xs2ZNk3KVQ4YMAUCjNR8+fChtF0IgIyMDQUFB0Ol0SE9PR2JiIn766Sf89NNPGDJkiFTqS78/19pnjFVGGqHBHtV+qIUaQ4cOxZgxY2zdJMYqrW7duuH48eOYMWMGli1bVurYomvXroUmRlatWiXNAhkxYgQWLlxokuQAKLZJSkrCDz/8IO3bs2fPQj8Djh07hkmTJgGgahWFMR4cWVSyNXfbWMVlVmKEF99h1uIh98CxY8f4Cx5jzOJyJzuaNGlS7OeeOnUKa9euxRdffIGoqCj89ttv+O233yCTyfDWW2/hs88+A0CB09atW+Hq6go3Nze4uLjA2dkZTk5OcHJygre3d57ZM4wxAyEE9uccRDZUaNu2LebOnWvrJjFWppRKpcnsEplMhkuXLkn3hRA4fvw4vvnmG/z1118micK4uDjUrVsX1apVg4eHBzw9PeHl5QU/Pz/UqFEDPXv2RM+ePQHQGl5hYWHSvhxrM8bKu//UJ5EgElC9enV8//33/LnFWBlr1qwZ9u3bZ7Jt0aJFeOqpp4r93Xn48OG4efMmoqKipFtcXJxUXtS48oRMJjMpry2Xy6FQKKBWqwHAZLC0Umnara1QKGBnZwdvb2/4+Pigbt260mMjRozAvHnzpLVI9N/L1Wo1MjIyTOKuYcOGYdmyZVAqlVIc5enpCRcXF8hkMl7PqBIxKzFy4cIFS7WDsTyEEIgT8agup9HlHPAwxsobX19fvPnmm5g+fTpOnTqFv//+G7t378aFCxdMynmFh4djwoQJBR7nrbfekuqohoeHY9KkSVi8eDHatGlT1qfAWIWQKlIRp4uHEkqsX7+ey9axKk8mk6Fr167o2rUrli1bZpLkv3LlCjIyMpCRkZHvc3NycqTESFhYGBo1agQAcHZ2hr+/P/z9/eHl5QVXV1cMHToUo0ePLvPzYYyx4qourw572OPHH3/kGdqM2cDhw4cxZ84cfPjhh5gxYwYWLFgAZ2fnQp9Tq1YtfP3113m2Z2dnIyEhwWTgvZ+fH65cuQJPT094eHjA1dUVMpkMWq0WWVlZJn2D3t7eyMzMhFKphEKhyDPo0ZhcLi/24CqFQlHkrF9WOXApLVZuxOWYLrg8dMMIjB49GnPmzMHChQtt1CrGGCuaUqlEly5d0KVLF3z88ceIjY01CcocHBzQv39/pKenS7esrCzp5urqKu2bmpqKvXv3Yt++fXjhhRewcOFC1K5d2xanxZjNGMcE69QbAACfxHyOc+fOlWhWF2NVQe4Sld27d8etW7ekWtspKSlITExEdHQ0oqOj0aVLF2nfrKwsuLm5IS0tDZmZmbhz5w7u3LkjPR4UFGSSGOESXYwxa8rdR6CPCZKSkvKsKcgYsw5/f38MHToU27dvxxdffIFt27bhxx9/RPfu3Ut8LEdHxzyltO3t7fHYY4/l2VehUJh8bwZooAiX22fmMDsxog+2q1WrBicnJ2zatAlHjx5Fq1at8NJLL1mijawK0got3nrrLQB5p8Yxxpi1ZGVl4cCBA9i6dStOnz6NTz/9FIMGDQIAXLp0Cd999x18fHzg4+MDPz8/1KlTB3Xq1EGNGjVMEiM1atTA119/jRo1akgjXgDqYMrOzjb5nNOvwxIXF4e1a9di06ZNOH/+PBo2bGjdk2esnPHz85P+/2OMFUypVEqzQIrSsmVLpKamIisrCw8fPpRuKSkpSEtLk2p4b9q0CeHh4YiIiCh03S7GGLMGToowVnZ2796N2NhYqNVqqNVq5OTkSDd7e3vMmjUL27Ztw65duzB48GDcuXMHPXr0wLZt2zB06FBbN5+xEjG7x3ny5Mn4888/cfr0aTx8+BCjRo2SOnzi4+Px9ttvm91IVvVEiEiEh4ejRo0a/DfEqhSVSoXIyEjY29vD0dERDg4OcHJygp2dHQDg2rVr+Pvvv5GZmSndjAOVCRMmoG/fvgCAy5cvY+7cucjOzpZurq6uCAoKQp06dTBgwAC0b98eAJCeno7Q0FDI5XLIZDLIZDLY29vD19e32DXHhRBS3c/SlrnR6XRITk6GSqWSzikhIQEXLlxAcHAwWrduDQA4c+YMevXqBbVaDXd3d9SpUweBgYEICAhAeno6nnnmGel9uH79OkaNGgVHR0c4OTlJ9dY9PDyg0+kwYsQI9O/fHwAQGhqKsWPHwsPDA3K5HMeOHTMpRaJSqaSfr127hlWrVuV7HkqlEjt27MCAAQMAAAcOHMDIkSMBUE1UT09PZGZmIj09HVqtFps3b8aIESMAUAmUuLg4k+NpNJpSvZ+MVXRZgpKTvXv35lHqjFmQRqNBWloa0tPToVAo4O/vj/r16yMoKAg//PADFAoFatasifj4ePzvf//DsmXLANB3P8YYszad0OGY7jjWrFmDsWPHcklNxgohhIBGo5H6EAAgISEBarUaQghERkYiNDQUoaGhuH37NjQaDdatWyft+8EHH+DcuXP5HrtatWqYNWsWAODJJ59Eu3btpH21Wm0ZnhVjZcPsxMi5c+fg6emJdu3a4euvv4ZMJkO/fv2wd+9erF27lju1Wanc0oUAAF599dUiaxUyVtGlpaXh77//xpYtW7Br1y5pATK9P/74A6NGjQIA3Lp1q9DPVePpq7Gxsdi6dWuB+7q5uUmJkXPnzkn1xnOzs7PD4sWL8eabbwIATpw4gaFDh0Kr1UKn00Gn00Gr1SI7Oxs6nQ6ffvqp1MabN2+ia9eucHd3lxYs8/T0hJ2dHbKzszFmzBiMGTMGAHD69Gl07ty5wIBq3rx5UmJEJpNJ71NcXBzi4uJw9uxZad+6detKiZGUlBRcv369wPfB399fSozEx8fj1KlTJo8HBARg+PDh6NOnD4KDg6XtzZo1w/vvv4/ExEQkJCTg4cOHuH//PiIjI6HRaEwWjMvIyICrq6tJCS1jmZmZ0s8+Pj5S3fhu3bqhc+fO8PT0LLD9jFVmt3V30LdvX4wbNw6//PKLrZvDmNWoVCqoVCq4u7ubfayEhAS89dZbiIyMxMOHD/HgwQOkpKRIj48YMQKbN28GQPW3X3vtNeh0ujzHeeutt7Bo0SKz28MYYyX1UEQhQkTizTffxDPPPGPr5rBKKiEhAcnJydItJSUFQgjI5XJ4eXmZfF9esmQJUlJS4OzsLN3s7e2lfYcMGSLtu27dOsTHx0On00EIASEEACoN5enpaVJt58svv0RYWBjS09ORlpYmDWLIzMyEp6cnDh48KO3bv39/nDx50uS4Qgjk5OTAy8vLZLDds88+i/379+d73g4ODvjpp5+kREpwcDCqVasGOzs72NnZwd7eHvb29rCzszNZJB0AfvrpJ8hkMgQEBPB3VlYhmZ0YefjwoTRV+8qVK2jTpg12796Npk2bIjw83OwGsqonUSQhDnFQKpWYNGmSrZvDqiidTifNnDAWGhqKgwcP4tSpU4iNjUVCQgISEhKQmZmJ6dOnS8mDW7du4ZlnnkF2djZUKhXkcjkcHR3h6OgIe3t7TJgwQRp1eejQISk5AFCdTZ1Oh5ycHAD0OavXvHlzvPDCC1Lw5eTkJB3T3t7epG5448aN8c0330j7ODo6IiUlBWFhYQgLC5OSIgCNKvHz8zMJqrKzs5GRkQG1Wp0nQWnc6Z9bdna29HNycrL0Ht27dy/Pvi1atJB+9vb2lpIiCoVCOidXV1e0bNkSDRo0kPZ97LHHcOfOHdjZ2SExMRHh4eFSUsLV1dUkaG3WrBkOHToknU9qaipSUlKQnJwMmUxmsm+DBg2wdetWpKSkIDMzEx06dEDbtm3zHaneunVrKVFjTKPRICoqymSK/7hx4zBu3DhkZGQgJiYGycnJcHFxgZubG1xdXeHi4iLt27dvXympw1hVphVahAha6+DJJ5+0cWsYs46BAwfiyJEjUgK9efPmGDhwIAYNGoQOHTqY1NYeNGgQsrKyIJfLIZfLoVarpRmX/fv3l5IY7u7u2Lhxo8n1Wc/e3t7kGieTyfDss88iNTVVmpmqUCgwc+ZMaWYjY4xZ2y1xGwAwceJEXk+gItDpgLt3gdBQuvXoATRrRo/dvAksXkz7aDR0U6vpplIBkyYhZ/hwPHz4EJGRkXjw4AE8PT2lgWxCCEyZMgU5OTlSmaeMjAykpKQgNTUV7dq1w08//SQ1pXr16tK1TH/TXzc7dOiA7du3S/s2bNgQSUlJ+Z5Su3btTAbiff3114iIiMh332bNmpkkRj7++GPcunUr332DgoJMEiO//vorzp8/n+++udcU03+3zY9x1YPc/P39UbduXdSrVw/169dH69atpWQNgHwXSS9Iy5Yti70vY+WR2YkRe3t7qexJSEgIhg8fLm03rq/OWH5muLwh/eznQB/yl1SXAQAjR45EzZo1bdKuCuvyZeDiReDGDQo4HjwAunQBvvzS1i0rMaHTQX3iBOwPHADq1UNC+/b45KefkJmZKa3n4OfnB19fXzg5OaFmzZoIDAwEQJ3xf/75Jx4+fIjU1FRkZ2cjKysL2dnZyMnJQd++faWkRE5ODl5++WW4uroiJycH9+/fR1hYmJTYffHFF/Htt98CAA4fPoxevXoV2GbjUf8ajQaXLl0qcN+uXbtKP/fr1w+tW7dG//79MWLECHTo0AFyuRw6nQ4qlcpkCmzjxo2xdu3aYr2HAQEBePXVV4u1b8+ePREdHZ1ne3Z2NuLj4006Ylq1aoWrV69CqVRKQaVx4se4k79Vq1a4du2aycibpKQkaLVaODo6om3bttK+QUFBePDgAXx9fYucHu/o6Ij69esDAAIDA/NNUOh5eHjgiSeeKNb74O3tjWHDhhVr34IolUoEBATk+5iLiwvq1atn1vEZq4yM4wGAYoIbmlvI1mbD398fTz31lI1axljJaLVaKBSKfB/LyspCfHw8MjIykJmZieTkZPz777/44IMPpOSEWq02mVV47do1XLt2DZ9//jkGDRqEXbt2SY8dPXq0wI4PtVotJUbs7OywYsUK2NnZwd/fH7Vq1UL16tXh5uaW7/X2119/LfX5M8aYOfKLBxJ1SYjS0PeUKVOm2KJZrCipqcDx48DJk8CJE8CpU7RNb/lyQ2IkJgYoZBbwhrg4jH/uOWg0GtQGMA3AkSeeQP9atYDYWMhiY5H44484qtEgJp/n504eaDSaAq+ViYmJJvfd3d2hVqulKgfu7u7S9/LGjRub7Dtx4kTEx8cjOzsbmZmZ0oBCrVaLOnXqmOw7ePBgtGvXTipbrafVauHr62uy7/jx49G/f3+4ublJg+j0A+nc3NxM36sNG6RBmPpBnTKZDHZ2dibfyQFg3759ACixxOVpGTMwOzHStGlTnDp1Cn5+fsjIyJAW6IuMjETt2rXNbiCrWnRCh/tayrq//vrrNm5NBZKZCUyeDOT3RbZGDdP7GzcCQ4cC5bhE2b179/Bft2547sEDaZsPgAsADhbwnFdeeQXfffcdACA1NbXQ2UZeXl5SYiQ9Pd2knmZuxh0GHTt2hIuLC9q0aYOePXsiMDAQ3t7e8PHxgaurq0kiLygoCHv37pXWCdHpdNLskezsbJOFtJ2cnHDhwoU8ry2Xy20+IsrR0THPZ7mzszOaN29erOc7OTmhmT4ILoJSqYS/v3+J28gYq3yEEDivvgiAymoaJ4gZK080Gg1OnTqFPXv2YM+ePTh37hw8PDzw119/oXfv3gCA5cuXY/HixfkOQABopqC+VON3330HmUwGLy8vaDQaHDhwALt378bu3btx8eJFk+etW7cOarVaKmupVCphb28PBweHPB0iEydOtPzJM8aYFVxQ02Czeoog1K1b18atqaJ0OuD774EzZwBPT8DLC2jTBhg0iB6/ft3ws56jI9CgAVCvHmD8fbJePeCzzwCFAlAqpdu633/H7kOHcPHyZWhA38M/dHLCKykpwOHDgFGlgT8e/fvnpEmIat4cLi4u8PDwgLu7O2rVqmXSjIsXL0Kj0UCr1Uo3IQR0Ol2e79r6NTeLY+7cucXaDwA+//zzYu87bdq0Yu+rHxhaEpwUYcyU2YmR999/H0899RRSU1NRv359jBs3DidPnkRSUpI0e4Sx4pLL5BjvNBY3NLdMRtSzQggB9OtHIzTkcqBbNxqN0bQpUKsWYDwC4cAB4NlngaAg4JtvgEcLQ5cXGRkZ+OuvvzBt2jR8kM+U0FEjRyK4aVMkJCQgJiYG0dHRSExMRFZWFvz8/KT9atasiSeffBK1atWCp6entOi2g4MD7O3tTTr17e3t8dlnnyEjIwNyuVxamLxOnTrSaAs9FxcXJCQkwMHBochzcXFxQb9+/cx8RxhjrGoK1d5DtC4GSnBZTVY+bd++HS+++CLS09Ol0pd6ycnJ8PDwkO7LZDIpKWJvbw8XFxepJGa7du1M1hHJPatQvxaXfhapMS5txRir7FJ1abiiuQoAaGvXxsatqaJSUoAXXgCMSk4BAMaPNyRDmjUDmjQB2rcHgoPp1qIFJT1yCwgAHi3erZeVlYUf1q/Hv3I5XnjhBayfNg2tW7eG7MABYNEi4NgxSshUrw74+QFJSUBiIkatWAHov6+vWUNluTp0MDl2SZIHXPWGsarH7MTIoEGDEBkZifDwcDRv3hwODg5o3rw5QkJC8izKw1hx2Mvs0cquBWeyAbrgp6dT8FAQmQyYPh24cwf4/Xeq31mYgAAgLAwYOBBo2ZKSKTk5dLt6FdB3+n/yCXD+PAUf1asD/v5A27YU4Fhw5O6NGzewbds27Nu3D//++y/UajUAYEtwMMZNnQo/X1/g2jVg1ChMzjX6oyB2dnbYuXNnsfZ1dXXFrFyBWWGKkxRhjDFmntPqcwCANnatTBLfjNmSWq02GTChL8Hh5eWFfv36YcCAAejRoweysrJMEhwjR45E586dUadOHfj4+JQqxi0Ps0gZY8zazqkvQAsdAuS1ESjniiRWd+MGMHw4cPs29RNMnUrbk5OBzp0N+7m7076l5OTkhIMHD+LYsWOmJZD79qWbENTvYSw729AvIQTwwQdAZCT1b/j5USLF0xPw9qaEzbx5hufqS17L5YCHBw0oLaAMJmOscitVYmT58uWoWbMmRo0aBQDw9fU1qYunr4UHAH/++SeioqJKNB2MVR1xOYYFnL+IWAY/P7+qmxDR6WjWR7duhm0ffACsXEkjMEaPppujI5XMcnAA3n6b9hs1imZ/GNecFAKIjaWgQK9PH5rmOncu8NVXtCaJMeM60+fOAX/9lbedjo6UINmxg4IMAJg5E7h3D2jUyHDr0IH2NZKZmYkHDx4gICAAjo8e27hxIxYsWCDtU6dOHUycOBGzZ8+GUj/CpDQLUet0QHg4JXuuXgXeesswYiUmhs7VaHFsxhhjtmMcD+SIHHg28ULs7Thsu7/Dhq1iBRKCyngCQK6STVZ5bRvEips2bcLcuXPxxx9/oFmzZujZsyeuXbsGFxcX1K5du8B1RQBa5JRLRTLGWNGM4wEAWLzrUyxduhQzZszAgHJW7aBK+PFHSooEBACbNuWZjWGO7OxsfPvtt3jjjTegVCqhVCoLXhcyv+u+cV+DSgU89xywcycNqoyKopue0VqgAKjPJS3NcN/Ojqpq1K9PCZ8PPjA8lpFh/ViHMWY1MiGEKOmT5HI5goODcfz48SL3DQ4OxunTp6HVakvVwKoqNTUVHh4eSElJMZleX9k8ZzcGANUSP1P3PJydnbFx40Y0bdrUxi2zIiGArVtpBMPly7RYWadO9NgXX1CHfn6qVaPF1QuavTFvHjB/PrBggemFXe/OHUqSODhQksDenhZq1/vnH2pPbCzdwsKopmhyMiUUEhIMAcqgQcDu3aan5euLu337Yo2TE3aeO4fw8HAkJSUBADZv3iyVfzh79iwWLFiA/v37o1+/fmjQoEHpkmM5OcAPP1C7b92iAC472/D4zZuAfsG0WbOApUuBjh2BCRMoiDJaXJwxVv5UletiblXlvPXxgN6vOb/h+vXrxV7PiFlBaipdO1evprhAp6Pr6WefGfbRaEzLZsTGAmo1ULMmjcosDrWa4o3Dh2nx1meeoes0AMTFAY8/DgwZAjz1FNC1q1VGeN69exdt27ZFamoqZs+eLS1qzhizvqpyXcytqpx37nhgvXqjjVpSBel0wJEjVLFiyBDaplYD774LvPMOVZEoBa1Wi3ObNiHp3DlkdOwIdw8PyOVyvPXWW7hw4QLmzJmDhQsXWu48oqJoIGRyMlXgiI8HfHwobtBr1IgSI1ot7feoagUAKlO+dy/9rNNRifJ69Wi2zIABxY9nGGNlylLXxVKX0oqIiDAZ5V2QyMjI0r4Eq0KiRDTu3LkDDw+PUi0gVaG98QawahX97OZGCQt9YmTmTGDiRKrn+ccfwL591OnQuzfV+Swor5mUREkRAPjwQ+o4yD36okEDuhWkZ0+6GRMCmZcv4/6xYzi5Zg1u376N27dvw+3WLYwbPhy9AwKAW7eQc/Ys7OPj0eC33/AqgEUA9C11cXHBxYsXpcRI+/btsT13vdLSGDYM2LPHdJu9PSVDjBZqAwCEhlKQc/Ik3T79lGaVlOMF6RljrCqRyWScFClPcnKAVq1okIQx/WjLGzdoYMIPP9CMU8B0cEePHvR4UcLDKca5c8ewzc/PkBjZsYNmqC5fTrfHHgM2bwYaNjTj5AqWnp6OU6dO4Y033kBqaio6d+6M+fr4ijHGGKtMXn2VFlgHgMWLgV69qFLEF1+U6DBarRYPHjyQ+nV0cXHo+MwzAIBZAIyXIff19bX82rI1a9KtMLdvGzeYBpzevUv9BMZLApw/D4SE0P579tCMmQ8/pOSJcbUNxliFVerEyIMHD4r1xUAIUXVLI7FiCxX3AADjx4+HS1WapnjhgiH4ePddGnmpL08F0IwMT09KgrzwAo3W1GhM98mPXE7BQFQUXbBzlbQqTE5ODkJCQnD79m0EBgaiXbt2AIBr165hxIgRuHPnDvKbaBYwdix6f/QRACAhIgJvBAbiHXt7JDZtir8+/BBNmjRBLT8/uM+eDVnLltS5UqeO5cphtG1LHS+ZmTSatEkTOn5+C75t2kT1R197jTpZEhPz348xxphVpYk0OIHXUSh3hDAdITlyJC262rs38O+/wNChNCijVStDqSvjBck1mrwlsNaupdmmL75Ixxk9GrhyhZIinp60rVs307XTnn2WOiy2bKHb1as0+/O332gUZwnl5OTg+PHjOHr0KLp06YI+ffoAAE6cOIHJkyfj2rVr0Ol0AICaNWti48aNJmuMMMYYKxvJIhkR4gHu3buHunXr2ro55vnnHxo0EBdH18qkJJqloL827thhqF6wZw9VdQgIoAF+DRsC1lpfyvj6Nns2/eviAl3Llgj94gtEZGdTqSu1GrCzw7Vr13D//n1kZGQgPT0dCQkJ+Pfff/HPP//Ax8cHd+/epcM6OCDV0RHnPDxQ29kZj7m4IDU1Fa1bt8aqVatQq5jriJYZhQIIDKRb7sGk7dtTYmTVKhr8ceYMzabx9ARGjKDS5k2a2KTZjDHLKFUprZ49e5Y42XH48OGSvkyVVpWmyuaIHGzRbocWWpw9e1bqiC93LFnTOiqKZops3kz3O3akchGWlJBA/6pUEDVrIj09HYmJibCzs5PqXCclJWHx4sWIj49HXFwcQkJCcOfOHan03dSpU7F8+fJHh0uQ1hLy8/PDY489hsaNG6NRo0Zo1KgRWrRogdq1aUE8IQQePHiAWrVqQabVGpIOBw6Yrhfi6kqjPVu1olkyvXsXvtC8EEBWFt1cXPImfLRaGs3x8CHdoqIo0PHwoAXh6tY11EVNSKDgJzOTRp3qF5LTv05UFAV9fn4lSiwxxspGVbku5lZVzltfOmOvZj9SkYa/9/8tdVKzciI6mhIid+5QiSyABl8IQdfLTp1ohmu1avSYRkMzQG7coORG7pKVkybR4JD336eOn/HjaXudOpRsqV0bWq0W9+7dw/Xr13Hjxg3ExMTA0dGRSllFRVF7TpyAkMshW7wY6hkzcOr0aezfvx/3799H165d8fLLLwMAVCoV9u7di9TUVCQkJODo0aPYv38/0h7Nepk7dy7mPVqY9datW2jyqKOjVq1a6N27Nz777DP4Ga/bxhiziapyXcytqpy3Ph44pz2PWyIEo0aNwh9//GHjVhXh4kXg66+pDFVaGn2/jI01JDSeeYaqPxQkKYk62gHgpZeAn382PCaT0XUxOJhmdHTrZpE+CbVajfT0dGRkZEjf4SEE9n3+ObL+/hu1QkLQOCYGbhoNMgC4A1Da2yMzMxOKMWOAf/7BbSFwIiEBtwGEALgJ4Mqj43t4eODOnTuGtYg1GqrYUJFnWdy/TyVF//zTsH7JhQtA69b0s0pFZcoZY1Zh01Ja/xRnKjxjxeBt54XrmpvQarVo2rQp2rZta+sm5RUSQiMHUlLooteuHc1O6N6dFugqDTc34OhRCmqeeca0Prexs2epc+CVVwpd8Mt4ZlZsbCzGjBmD5ORk6ZaSkiKNeJwyZQpWPSrdJYTAkiVL8mmeG5o0aYI6depI23x8fHDo0CE0a9asyI4BmUxmCLCMZ2IEBgIzZgAHD9KaH+nphnJWq1fTgvDTptG+W7dSCQ6tloLLjAz6V5/L/esv6hABKMjS6SgYadas4IYNHkwjcgA6rloNtGwJTJli2GfTJgo6440W/vP0BGrUoE6duXPpOIwxxizG284LSbokJGgSIYccLVu2tHWTSufmTVob49Yt+jk8nGpT9+4N9OlDCQB9h8bSpXSNr1kTqFWLbsHBVPe6PKpRg87tyBGa7XH4MA1CAKic5YYNpiUplUqqyV2vHgCKT+Lj46HT6aBQKFDN1RW+AOIuXUJIx47oPGcOcOkSsHQpXl24EMeOHcPdu3ehUqlMmuHn50eJkZo1gcOHsb1OHQyNicFfX32FlxYulBIdAKDRaKTESGZmJoYNG5bntKpXr45+/fqhk76MKYCGDRti69at6NChQ95F03NyqJ2nTgGnT1Ps4uVFj/32G7BsmWHtNjs76hjz9qaZLhMnGtY7i4igwRxt2hQ9E5gxxqoIbzsv6IQO4Roqyf7CCy/YuEUFUKlooe/ly+l7fW6ZmYbESI8edO2vWZOuF15e9P3Szo62G187g4NpEGBYGMUSSUn0c1gY8Pvv9G9AAH2PXbMGePAAIi4O6vr1kfXYY0ivXx9ZQqBevXqQP5rpuXv3bhw9ehSXL1/G1atXERMTI11bZTIZ1Go1FAoFIJPhp3Pn8Puj/j45gMYAAgE4ubigYcOGSE5Ohk9ICBAfj0YAckcsEUFBiP/+e7R84gk6pl5lqM5Qpw5d85cuBY4fp0GfrVoZHp88mfpv+valuK9HD+r3YYyVa5Xg04lVdLe0VN/xhRdesH3ZNSGAa9eoI2PQINpWty4FHunp1IHx77+G/Vu2pHJMkyfT/cxMClYUCurgcHGhYEcIWsCrf3+67+oK/PQTdRbkV0NdowEWLaKF07Va4I8/kL5xIy6GhyMiIgKpqalISUlBUlIS/vvvP3Tv3h0fPSpjpVQqC5yhZW9vD41GI9339PTEzJkz4evrCx8fH9StWxfNmjWDv79/vr+LJ3JPLS2pRo2AL7+kn9VqSjpduUJTi0+coLVQ9NLTqc5nQTIzDT9/9RUlStavp+SLiwvg70/BpxCU1EpJMU2a+PpSJ8V335kGar6+lBRRKOiWk0NTnZOT6XH9vwCNEPn1V2DhQutNcWaMsUrq5qN4IFAegOqlXODTqlJTKYnfrRvFCgCVy3jtNdP9btwwzBD94w9g1Cj6OTKSykEZk8tpMMSCBaVe5LRM2dvTF/6+fen6eucOki5cwK1atRC+cyfCH8UpDx48gEKhwO+//y49dciQITh9+rR0fxKA1QD+3bEDE//9F4mJidJjoaGhuH79OgDA0dERTZo0QdOmTREQEIBq+hkpALKFwGQAPwPY+fAhNAC8vb3xfuPG6K7V4qF+AAUAd3d3dOzYER4eHnB3d0eLFi3w5JNPom3btlLnkZ5cLs83iYL9+2lmi36kKAA8/zzVGgco2WF0jnkMHGhIjOzYAbz+Ov3tXLxIM1sZY4whXBeBLGTBCY7o37+/rZuTv5UrgTffpJ+VShqw99JLNIjAxcUwAwSguCB3bFAA1Qsv4E7nzrh//z7C799Hwq1bwLVraHfrFvp37QrZo+oKEydNwjdr1sAegAyA/aObE4AzAGodOgSnR9/d165da3I9NqZUKpGUlCTN7Bg0aBBq164Nf39/+Pv7o3bt2mjQoAH8/PwM/QPHjtH39JAQw/obt28DFy8iIDAQAU88Qd+jKyuFggbJdu9u2JaTQ7Nmk5KoP2nZMtpPnwxr1850JlBcHPU72Lr/izHGiRFmW+kiHQ90NNrwOf3CmtaWk0MX95076WIWGkoXsMhI6qBQKmk0gFZLnfjnz9OX3pMngcuXaT+9c+dML5D29nTBy8qii+RvvwFjaHowhgwpuE3TpxsWZAeAEyfwX1AQ+hdQ+S4pKUlKjHh4eGDDhg3w9PSEp6cnvLy84OHhAU9PTzg6OpokPORyOb4o4WJqFmNnR4mKZs1o1kxu/fvTSAy5nEbRuLgYbk5OhmRGejolkeLjacTG6tWG97gwcjmNdF2+nEp5fPcdbevQgUZ6NG9OU2GTk6kDJDqafo/6USEaDTBuHAU+Z8/SyNlcHSuMMcaKRyu00kCJJsrGNm5NEdRqYMUKYN48So6sXk1loQBK8A8eTJ3fjRsDtWtT3HDgQN4BAC+8QDNPY2IMi37++y8d788/qWRD7vJT5Yhao8Gzs2dj06ZN+T7u4uJiMqO1WrVq8Pb2hlKphEajQfaj0phPyGRY7OAAERoK2aPZJe+//z7eeustNGjQAHXq1DEddWrE0dERDx4+xNmzZzHo0iW0adMGbdq0gaJTJ+DsWbT75Rea9evpCYVCgVPmlC1dscJQdtPbm9Yze/xxQ1IMoI6xJk3obyQnh25ZWVS+MyEBqF/fsK+7O3Wc3btHccwnn5S+bYwxVonc1N4CADRUNLD9uk5C0KCHVasoEa5Pmg8ZAnz+OSVDpkyhQZFmUqlUaNKkCcLCwvJ9PPOHH6RV2FRqNX4FoAaQBOAxAI8DqAagC4Dsn36S1st48skn4eXlhZYtW6JFixYICAiAm5sbXF1dYZ+rtFWxZui4uVElDX0JKb179wyDC6sae3sqNXrwIMV8Bw9SXBcZSTcPD9P927enWcQvv0yL3JfHwTCMVRGcGGE25QIXDLMfjAhdJAIKW1vC0oQA1q2jkZ7791Pnup6DA2X0k5JoRgEAtGhB/7ZuTZ3hAH3B3bWLvhQbP9fHh6bWpqfTF2J9mQlXV+pAKYYMmQxS4azHHwfGjoVs/nz4OzqiUaNG8PT0hLu7O9zd3dG0aVMMHDhQeq5CocCzzz5b0nek/KlWzVCnvDCurpSoeu456nR69lkambtiReEBRmYmjdRcs4bu9+tHC786O9PvX08/3Tl3iS6lEvj0U0rCHD1Kx3nppZKeJWOMMQB3tHeRLjLgBCfUldcp+gmWoNMBiYmUmNBoaD0pJye6eXmZzibU6aikxYkTNPPx6lXa3qgRDYDQe+wxQ8lGvYEDgTlzgOxs0zWr8utUOHYM+N//6DqkT4rk5ND6HQ0aUNtkMrrZ2VEHvT4ZY2V2dnZSPd+AgADUqVMHgYGBqF27NmrVqoVatWqZJEZ27NhhOhs1PBxo3x6ecXGYHB1NAyJu3wZkMnQ3HmRSBLlcjo4dO6Jjx46GjcOH06CFrVvpd7Z0KZUyCw2l91Jv4ECK2fQJi8xMuslk1KH0xhv08+rVhqTIpEk0EjS/maL165smP3bvppikQQNqg96XX9Lvrn17w+AbxhhjSNGl4I42FADQTGmjRa3VaqoM8M8/NMr/5k3anpRkSIw0bGgYSGkhCoVCKn8N0EzLwMBABAQEwM/PD3KjhMOSJUuQtWABHBwcYGdnBycnJzg5OtLMxfffh6NRqehxgYEYt3UrxSANG9IammXBeKCATgcsWULtmTrVMFuyMvP2plnBxjODo6Pp78Y4ZkhNpcfCwymBAlAlkqefpkXvK0PZMcYqkFItvs7KXlVZXG2qs+GC/XXmN9Z9ceOFzfz8qHTWkCFUHsLcEZpC0JoY+hGCcjl1rBey2Fhqair27t2LP/74A1u3bMEbMhmWKpWQbdkCDBiAlORkeBhPyWWmNBrgo49o1KVGQx1VK1dSskMvMhLYs4c6rfbvp1GccjmN9pkxw1D2LCWFZqBkZVFQJwT96+ZGo3uNRy598QWtheLjQ4GyszMwYADw5JPWfgcYq9SqynUxt6py3rUU/nioi8Ljyg7oYNfOsjFBXBx98UxMNC1l0bUrzUzMj0JB13H9IpotWhiSIQB95n/yCcUSlp4tqNPR9Ue/ttj16/mX3dR77TW63gHUmfPaa3QdkstpBsrx49TB8+yz1MFvxsKgV69ehY+PD2rWrAkASE5Oxv3799HKuMZ2SWRmUvLi558pEfHee7Rdp6PyUuasPXfkCI3ivXHDsC0oiJIj+uu9mxv9nvPTvj1w5gzt9/zztIbKrFk0KKKo0hehoRRX6JNkPXpQBxtASRB3d9OSoFevFv47ZoxJqsp1Mbeqct7t7drinOYCAuUBGOrwZNn1EQhBn/FnzxpiAyFooMHhw3Qd1nN1pevAlCnUgV2Gzp8/j23btmHu3Ll5yjyW2vTpVCUBoOtX16605tWoUabrm1jS8uX0unq9etGghcxMisfGjKE1tgCKU957j76/16tHAwwaNqRKHLaeMVRWbt2iqhUHD1K8ozd2LPDLL1Vz1g1jJWSp6yInRsqpyhr4vOr0isn9b7O+t96LR0dTh7l+UfC4OOCbbygh0ratTcoghYWFYfv27di5cyf++ecfqNVq6bFOnTphzSefoHGPHlZvV4V24QIwYQKVObOzo7qn+kXkPTxMZ+0EBVEnkb42OEBBWgE1WAHQyA7j2U1qNZXXMu54+eADqg8PUIfLunWUoOHFVRkrtcp6XSxKZT1v43ggQ2Rgfc5GAMD9+/ctN4P0zBmaPbhxI826cHSkz2T99X74cGDbNvpstrenGR36m7c3DWzQGzWKZol26ECd3DNmWO8zPS2NOvlDQuiaIwTdcnKoc6FbNyrhBACHDtGCnwVZv56+dBdBq9VCLpdDFhsL3fTpiL1+HTH370OVmgpPDw80fPNNyGbMyLuoqEZD7dUvRl4SQhgSDr/9Ru0cPZo6CEqbzMnJocEPH31Ev9d27YC//6YZpTod/Y3cvm0o/+HsTLeUFCqrqp8l/Gi9N4wZU3BSJCaGYo+jR2mUrEpFoz4nTaLOHX3Z0PR0ihMuXKD9Bw6k38vdu9ROBweKTfTGjaPHHB2pTfrjcV1yVkVV1utiUSrreefuH/B90w9fffUVfv75Zzz99NOWf8HMTIoLVq2iMtj+/lTOUq9nT7rmenlRAmHAAEqKVOT3/PJlmr24cyeds567O11rFy40VMqwFJ2OBiR+8w3FT7m7HX/80VBtYfduw/quxpo3B7791rQMaWUUF0frpU6bRnHUwYOUSGKMFapcJUbi4+Px9ddf4+TJk6hTpw6mTZuG8+fPo2fPnggMDDT38FVSVQh89uccxNNvjcL//vc/1KhRw/IvlpVFmfi9e+n277/UAb5jh82+TBqXlACAH374Aa+8YnhPGjVqhCFDhmDcuHGlH31pCZmZwL59FCx16JC346O8y8mhmSNOTsA77xi2+/tTUmPIELq1bJn3b+G11yiA069nIpcbOtHS06k0mosLBXuvv06BWrduNOI1I4Peu549DR1Tf/xBnSHu7lRKZdo001IqjLFiqazXxaJU1vPO3REy6+q7OHr0KF588UXzDhwTQ+tz/PILdXrrtWpFgyCWLzfMCk1JoetE7tmcWi2VPTAukRUXR+tBlMORi4mJibh8+TJUKhWaKhQI3LOHOv+VSqBLF7rZ2dFaJ598ghy1Gjdu3MCtW7ekW3JyMnbu3EnXsbg4DJ02DTt27ICTXI54nQ75jif19aVrrT6OOXaMylqmptJ737Bh6U9q7lzqqNHpqJzV11+X/lgA/T4zMgyDYyxB/xVKH0f88gstzK7Xuze1u2nToo+1ZQsN6khNpdGyd+8aHss9WwmgBM+bb1Isc/ky1TW/c4fKhZWgDFm5lpND8btCQaOKH81SYqyyXheLUlnPO7+BkxkZGbC3t7fc+iK3b1Pn+5EjNIAgJYW2OzhQwltfWhmg65eLC60XZeP1I3NychAZGYl6j9bfsojISLpe/fADDQoIDKSBF/b2hioJlp6tcP8+vd6VK4Yy1aNGAcHB9Hh0NP1uYmJoxmVoKM0iSUykx/fsoXKbld3mzRSvTJxo65YwViFY7LoozHTv3j3h7+8v5HK5kMvlIjg4WBw7dkzIZDIxa9Yscw9fZaWkpAgAIiUlxdZNsajJji+LyY4vizH2owUAIZfLRUREROkOlpoqxHffCfHFF6bbBw4UwslJP57S9NaxoxDJyeafSAnodDpx+vRpMWvWLFG3bl2xefNm6bG7d++KPn36iCVLloibN29atV2F6tHD8J7VrGn196zMqNUFPxYeTn87f/0lRGZm0cdat47eH7lciH/+KXi/bduEeOwxw/v5+ONC5OSUvO2MVXGV9bpYlMp63vp4QH+zmKefNnze2tsLMW6cEKdOWe745cyNGzeEg4ODACDdPvnkkwL31+l0omXLlmI4IHYA4iNAjATECJlM6MaPF8LLS4gmTcTIfv2k440DxBR3d/HbyJEi7uefhfjxRyEaNqT3eOlSOvBbb9H1UP/eN2okxPLlQiQllf7kduwwHO+tt4TIzi79scrCypVC/PyzELGxdP/gQbre9+kjxJ9/CqHTFe84Bw4YzrNLF3qusaNHhdi6VYjffhPi1VeFcHTMP8YFhHBxESIx0aKnaTODB5ue24kTtm4RKycq63WxKJX1vC0eD0RGCrF2reGzWQgh5s41/TypV0+IJUuEiI83//XKQGRkpOjVq5cAILp06VI2L6LV0nVr927DtuhoIWQyIVxdhaheXYigICE6dTL/el4aCQlCvPKKEG3aGL7DJyUJsX27EGfP0uOVVXq6rVvAWIVgqeui2av6vP3224iKikLt2rURGRkJAOjatSvc3d2xf/9+cw/PKqlQ3T0AQO/evVG7NKP3rl2jshG3blF5pJkzDY9pNIaaoC4uNHp/wAAaZdCgQZnPFtHpdDhx4gT+++8/6RYbGys9PmvWLAwZMgRKpRL16tUrn/+fGJcH8fWtPDUuC1vI7LPPaCTR7t20eO7MmTS1uKDyHWPH0r4bNtDMkQsX8h9JPHQo1apdt45Kr5w6RSNs5861yCkxxhgzsnYtfW63bUulL6pXt3WLypSjoyNUKpXJNu9CSnwlJyfj8uXLGA9g8KMbAOoqWruWfnZxwZq5c7Fq3TpoNBpotVrUqFHDdOTuCy/Q9U+/jpevL40ybd6c1kS5fZtmSL7/vmGmJUAzKNu1K97sycGDqSzlhx9SOaw9e+haPXBgcd+esqVW02yWX34xlL24cqXkxzGOMxYtyjvjo1s3msWUnk7v34IFNLM1vziiYcNC17OrUHKXY9P/DTHGKiW10CBVpOSpsFBsQtCaDTNmUF/Apk3AU0/RY3370newHj3o9vjjNp8NYuzSpUs4ceIEjh8/jn///RdhYWHSYw0aNCibF5XL85Zrioig9zE9nW4AEBYGnDxJVRg+/ZQWUrcGb2/gu+/od6n/Dn/lCn231qtTh2IK/e3xx2l2b0WmL6m1c6d566wxxorN7FJa3t7eUCqVuHfvHtzc3NCpUyf8999/aNWqFcLDw5GUlGSptlYplX2q7GbVVsSJeKxevRqTJk0q2UF+/52mF2ZkALVqUcCzbJkhuAkNpX99fakEVBklQoQQiIyMxMWLF5GdnY1Ro0ZJ2728vJCin6ILwNnZGYMHD8aoUaMwcOBAuJT3L3caDZVzSEgoOJmUk0PTb+vWrRxfwsPC6O/oxx8NgaCvL5UFefFFKsOSW2Ii0KgRvU9ffkmBeGE2bqTFb2UyCvReftnCJ8FY5VVZr4tFqaznrY8HzqjPIlEk4dej69GlS5eSH0itpo7pF18sV50c1pSZmYkTJ07AwcEBdevWRa1atQrcNyQkBI0aNcLjzs44uWQJJfUvXqRr/oABFFN17VryARHZ2VSqq3NnKlHy66+0TkbjxlTaTK9mTSqZUbcurcPx1FNFx2nbt9P1Mi6Orrm3bhkei44G/PxsUyI1KYlKc2Vm0kK9PXuW/ljjx9Pfcd26VG7k3DkqAXvhAr1OejoNBLpzx1DiLS2NysJFRdF+ANVoryxrj+h0dI76v6vSrjPDKp3Kel0sSmU9b308cFcbigPqQ+jbty/27dtXsoMkJ9P6S/rrTZs2tGbTk09atrGlkJKSgpCQEISEhODBgweIjo5GTEwMvv32W6lP4LnnnsOGDRuk58jlcnTs2BGzZ8/GkCFDSpcoKg2tlq61+vLQmZlUWmz1airpuHOnbd/TY8eA//2P1oSJjs77+LJlhgXfVSq6VaT/V44codLvOTnUr/Dll7ZuEWPlWrkppeXo6ChatGghhBBCJpOJ4OBgIYQQ9erVE05OTuYevsqqrFNln5aPEINk/aXyDNHR0cV/skYjxIwZhimwvXqZTpG1MK1Wa3L/s88+Ey+99JIYPny46Natm/Dx8ZHOo0GDBib7jhw5UgwfPlwsWbJEHD9+XGSXt/IPlnDhgqGUVN26VPLgo4+E2L+/YpfeSkoS4rPPhKhd2/C35uVVcAmP776jfZycqHTIL78YHrtxQ4jWrYUYMIC263RCjBxJ+48ZY3qcL78UIiysrM6KsQqvsl4Xi1JZz/tp+QgxUjZcOMNZABBbtmwp+UEePhSiWzf6TF20yOJtrIzu378vJk6cKF555ZWyfzGdToi0NNNtq1YJUauW4fravbsQx44VXXYqJkaIiROF+N//DNvS0+lYAwYIYatypK++aohJc8WNQgiKHcLDiz5OYiKVLi2oRJb+Nnu25c+BsQqmsl4Xi1JZz/tp+QjxtHyECEBtAaDk5dhPnRKiTh36jFQq6Xtcfp/HZSQ7O1vExsaKkJAQoVKppO1z584V1atXNyl1aXy7c+eOtO+KFStEv379xNy5c8W+fftEamqq1dpfLDodlTPUaGzdEoOkJCEOHRLi88/pe3WDBkL895/h8d9+o9KTo0dTaWtbtz0hQYjvvxfi/v38H790SQh3d/o7Hj7c9u1lrAKw1HXR7MRI8+bNhVwuF+vWrRMymUy0bdtWLF++XMhkMtGqVStzD18hrVq1SrRo0UK4ubkJNzc30alTJ/H333+X6BiVOfBpJWshAAhf+JTsyW+/bfhi+O67ha8XUQpXrlwRP/zwg5g0aZJo3bq1aNq0qcnjwcHBeQIahUIhWrRoISZMmJAnkVLp7d1LtawL+vL+00+GfSMihJg3j+qFx8TYrs0loVYLsWsX1aufObPg/TQaWrtGf96LFxse27/f9D358UcK4mbOpMBI7/hxQzD/4ovUSfT33/QeLlokxJ49ZXaajFUUFfW6aG5MUFHPuyhPy0eIXrKedC2FQmQWZ20nY0ePClGjBn12ursLYbR+Fyvn0tOF+PBD07UyOnUS4tq1kh1n714h7Ozo+XZ2QsyaJURWVtm0uSC3bxvOY8EC08dWrKAa7YAQzz4rxIMHhR/r0CF6jq8vdYp8/jnFA7dvU+xUGQfZMFYKFfW6yPFA/p6WjxAjZEOFEkoBQJw8ebL4Tw4JEcLT07BuSBmvKfb777+LF154QTzxxBOifv36wtHR0aRv4OrVq9K+8+fPl7b7+fmJrl27iueee068+eab4rPPPhOxBQ3w1OmE+PVXIV54QYjXXxfivfco2fPrr7S2hoX7QErl9Om817zyZvJk0+/h7doJUZK/LUs6cUKIwEDD+nczZhgG+Go0dO3XJ0W6di3eeqeMsfKTGFm2bJmQyWTS4uvGt6+++srcw1dI27dvF7t27RK3b98Wt27dEu+9956ws7MzuVAWpTIHPj7wFgBEK1nL4j9RpxNi/nxaDGztWou3a+nSpfkmPYxHffzwww/i448/Ft98843YuHGjOHPmjMiy9hfw8iIhQQiVin4vUVHUQbVsGX3xr1uXLup//WXY/7ffDEGJQkGjPvfutX4HRmkZj2T97TcKVI1HeyQkUNLnyBEawawXH08JDv2IUoWCnp/bhQumC7TnvhkvisdYFVVRr4vmxgQV9byL8rR8hGiEhgKAqI1aJXtyTIwQDg6Gz8hbt8qmkZVMTEyMyQhVm7t/nxZWdXAQwtnZdBHcgweFOHOm6A6gK1cMyQeAFti1tp9/pteWyYQYN85wHp98Ynot9/IS4vr1wo+l1RZ/0XbGqqiKel3keCB/T8tHiM6yTgKAcIJTyQYb/v03XT86dRLCCu/LvHnzCpwB4urqKk6fPi3te//+fXH27NmS/742bix85uDIkRY+qxKKiKDOfUCI554T4vx5q87QKTadjhJJM2cK4eFhuE6/917BsUV2Ns1AzcmxXDsiIgwxq5ubIYlXqxYlRT74wHSQSGKi5V6bsUqu3CRGdDqdmDJlipDL5UImk0lJksmTJ5t76ErFy8tL/PDDD8Xev7IGPiNlw0UD1BcOcBCDZANKfoCivlCW0i+//GIS2KxcuVKEhYUJHX85zeuNNygY2rSp4H3i42lEqN6xY9RZ0LSpaWDn5EQlMG7fLvt2W4JGY0j82NkJ0bixED170vTdBQvylgzR0+loJog+IDOeLaLVUoCrVOYf/AYFcScJY6JyXRdLEhNUpvM2NlI2XDiBRlp2knUs2ZOTk2lUvf5zsmPHgj9/mVCr1WLFihXC09NTdOnSpfzFNlFRNLjAWIsWhk6EQYNotOypUzRQwHhEcFiY6TVz+vSiXy8zU4h164TYupUGeVjCzJn0+gEBhpkdiYlCbNhAI1RbtzZ0hsTFWeY1GauiKtN1keMBSozURi0BQDRA/ZIf4NIl04FpZeTBgwdiy5YtYtGiReLXX38VR44cEXfv3hVJSUlCY8myR4cO0Xdk42vb889T6clRo0xLStrKwoWm7fPxoe+zK1eWz+oQ0dE0sNG4ioPemTNCjBhB3+sVCnq8Tp2Sz2ItSGKiYVZT587Uh/LLL0LMmUN9C4sW0WP163P5LMZKqNwkRvTu3bsn/vzzT/Hnn3+K0NBQSx22wtNoNOK3334T9vb24lohH67Z2dkiJSVFukVERFTawEdfV/xp+YiinxAaarXOjk2bNgk3Nzfh5eXFf8OF0Zc0GzasdM8/doySBP7+hkSB8SjRTz8Vok8fSja88QaV4Pr1V5pVUR5mmJw+LUSPHvknMYKDCw5otFrDzJHGjU0TR/XqGYKlNWuohFdwMG07d84qp8VYeVcZOgSKExNUlXigq6yzACDsYCdGyIaW/AAREUJMnUpljPr2tXwDKwGtVivWr18vGjRoIA38aNOmjYgpj50WxtRqIYYONYzwzH0bO9awb1ISJSOaNxeid29a26swBw8aatEDlGCbMUOIixfNb/eZMzR6OT+xsYZrfdu2pgMeNBohDh8WYsoUWqts2TLz28JYJcbxQMU97/wMkQ0ScsgFANFb9kTRT9DprN75vmnTJuHi4iIGDBhgncEFDx/STIKnnxZi/fqyf73SOHeOEgqurqbX6A8/tHXLCrZxI7V3+3bDtrVrTduvT454eFDMYAlnz9Lxnnwyb1nMrCzT7/vr11N1jbFjaXAFY6xAlooHZEIIUbpl28nRo0fh7u6O1q1bm2xXqVTQarVwdnY25/AV1pUrVxAcHIzs7Gy4urpiw4YNGDRoUIH7z5s3D/Pnz8+zPSUlBe7u7mXZ1DL1mtMkk/ursr4r/pOTkoD27QEPD2DnTsDf38Kty+v27dt4+PAhevbsWeavVWFduwY89higVAL79wOlfa+EoGNduACMG2fY3qsXcPhw/s+Ry4GEBMDTs3SvaSlCAKGhQEQEEBUFREYCn34KLFoETJpU+PPefRf47jsgMRGQyWj7b78BLVrQ+2q874ULQNu2hm1pacCPPwJNmgD9+xuez1gVkJqaCg8Pjwp5XSxJTFBV4oGYQQnYvHkz3njjDXz99delP3BMDJCSAjRqZGYLK6akpCQcOnQIDRo0QKtWrQAA2dnZWLp0KX777TdcvXoVAFCtWjXMmzcPkydPhkKhsGWTi0+rBS5fBv75h27//gu4ugJjxtA1tzBnz1Is4egIVK8OPPOMYXuHDkCtWnT86GjDc7p0AdatA+rWzdsOmYxiEHPcuAEEBwOdOwN//03bTp4Ehg+nv2NjW7cCw4aZ93qMVVIcD1S88zaWOx5o+WVbTJkyBW3btsXZs2chK+r7zaefAkuXAtu3A48/XoYtNQgJCUHz5s2hVquxY8cODB482CqvWyGo1YZr7t69wKZNgK8vPXbpEhAQAHh727aNxu7fp36MWrXo/oULwJEjQPPmdLO3B0aMoJijYUPqr7CzM/91r18H6tcHHBwK3+/114FVqwz3f/wReOkl81+fsUrIUvGA2YkRuVyO4OBgHD9+3GR7cHAwzpw5A41GY87hK6ycnByEh4cjJSUFf/31F3744QccOXIEzZo1y3d/lUoFlUol3U9NTUVAQEClCnxidLF4ffc0PPHEE0UHPELQF8Xt24GgIOD0aaBaNdN9YmNpe8uWQGCgxdsOAIcPH8aVK1cwbdq0Mjl+hdW3L3DgAHUSzJ1Lnf329pY59vHjlHRISADi46mz4OZNCkocHCgRoTdrFnVYdOgAtGtn246xxETToE+IghMXN29SW0vSyfLgAdCxI/DwId3v1g345BPqYGGsCqjIHSEliQmqQjwAAO1WPI4VK1Zg3bp1eMw4KWyOzExgyxbguecsc7xyJCIiAj/++CMSExORnp6OjIwMhIWF4ezZs9DpdJg2bRq++uorAEBoaCjq168PAPDw8MCsWbMwffp0uLq62vIUrCMykmKDjRsN2xo0AEJCDPe3bgX69aO4Zd8+YM0a2ubpSR0mTk4UY378MXX2XLxInSLz5gFvvEEdKqV17x7FNh060P2kJMDPjxI+I0YA2dnAhg10/8QJ0wETjDEAHA9UxPM2ljseWJHxLQ4cOACZTIa+ffsW/uQjR2gQnU5HncdTppRhS029++67+PTTT9GkSRNcvXq1fA0yCA0FTp0Crl6lZMTw4cDLL9NjKSn0ndPNzfrt6tGDrmsHD9J1raLIzgamT6eb/v/Njz4C/vgDcHam+MHenmIDLy+gTRtgwgQaiGGuPXuAc+coblm7FlAogF27aFAkY8xEuUqMdOrUCf/995/J9pYtW+LatWvQarXmHL7S6NOnD+rXr4/Vq1cXa/+KHPAZMw58/s7Zi/u6cCxatAizZ88u/Il//gmMHk0XmxMnqNPbWFwcZfBTUuiidPo08GikpKWEh4ejefPmSE9Px5YtWzB8+HCLHr9Cy8igzoE1a+i+gwPNgnjhhbJ7TSGA5GQKPgDqAKtendqi16UL8OabwJAh5nVcmCs+Hhg0iDrnXn/dMm0Rgjpybt2i5JA+6XzsGNC1q/nHZ6ycqyzXRaBkMUFlOW+zZpAWR0SEYZDEuXOms+0qgfDwcNSvXz/fAUdNmzbFhAkT8PbbbwMA7t27h7fffhvNmzfH9OnT4aW/blZ2OTk0mMZ4AAVAiYeVKyl+aNs2/1mnUVE0o6N1a2D1ahr5un9/3v0++ABYsMCy7T57lmJYOzsaedu/Pw2C8PSkGSWMMROV5boIcDwAlCAeEAKoVw8IC6NqA2vXWnX2fGpqKgIDA5GSkoKtW7diWHmZ1Xf8eN7vggsXAu7uNMj0wAGaCRkaat12JSfTwISEBOq3WbgQePpp82df2srLL9PsjYLcv2/ZwbpCUN/Kr79SMmbdOuCppyx3fMYqAUtdF0vdW9erVy/p5+vXr5vcz8jIwNWrV+Fp63I35YhOpzMZ8VHVaIQGkboHAFC8qad+fvSvWk3lg3JzcABq16bEiKNjmZRWCggIwPPPP49vv/0Wv/zyCydGjLm4AD//DDzxBPDWW3R/5MiyfU2ZzJAUASjZ8PPPwKFDNDLm7FkKDI8fpym7c+cCEyeWbZsKsnAhcOYM3dasAb75BujUybxjymQUEH38MbBiBW3z9AR8fMxtLWPMyqp6TGAxGRk0enTfPhrFB9B1IvcM0womNTUVP//8M27cuIFvv/0WABAYGIhPP/0UiYmJcHFxgYuLC3x8fNCjRw/Url3b5Pl169bFn3/+aYum25adHXW+5E6MxMRQZwxAfyejRtHPV65Q2Y8WLWigxebNNLAiM5NGfy5cCNSpQ8cdM4aeoy8PYknt25uew59/AllZFOMwxio1jgdKQCajPoKwMJqpb2VxcXHIeDQgr7olZgZYSn7fBd9/3/R+kyaFVzMoC56ewO7dwODBNPvhmWdoFuSoUXStbd26YpWFfvttigUyM6mPKieH/n34kAYuBgQY9l29mmbLNGlS+teTySgREx9Ps0hefRXo04cSXioV8MMPNEvFxcXsU2Osyiv14iQymZDL5UIulwuZTJbvbdSoUWYtgFJRvfvuu+LIkSPi3r174vLly+Ldd98VMplM7Nu3r9jHqAyLygkhxBTHV8QUx1fEELtBAoDw9/cv/oJlr7xCC1/VqSNEfu9DTo4QGRlCZGZatM3Gzp07JwAIZ2dnkVmGr1Oh6XRCJCcb7mu1QkyeLMSVK9Ztx8OHQrz7rhA+PvR3s3SpdV/fmFYrxOrVQnh5GRaYf+89yxx76VIhnJyEmDZNiLg4yxyTsQqgol4XzY0JKup556aPByY6jBe97XqK6Ojo0h9MrRZi/Hgh7OxMF8xs1EiI27ct1mZrCwkJEVOnThWurq7SYuk3b960dbMqFp1OiPPnhZg9W4hXXxXiiSeE6NFDiK5dhWjY0DQ2+fzz/Bd3b9VKiE2bDPtFRQnh4iLEgAG0UHpZuXCh7I7NWCVSUa+LHA8QfTwwxfEVUV9eV7zxxhsiIiKieE++ckUIe3v6rP7++7JtaC4TJkwQAMSAAQOs+rrFkpMjxOHDQsycKUSDBkIMHUrXvi++sH1clJoqxPz5Qri5Ga6zMpkQsbG2bVdZOXCAzs/FRYhffzX/eGo1/V4PHTJsCwmh93HGDPOPz1gFZvPF11988UUAwNq1a1GtWjWTRcOcnZ3RpEkTvPTSS3Ap5xnMy5cvl/g5zZo1g7KQ0jgTJ07EwYMHERUVBQ8PD7Rs2RLvvPNO0TUzjVSWqbIj5SMAAFfFNdxGCMaPH481+vJLRUlLo9IC9+7RyP8ffii7hhZACIE6deogIiIC27dvx5AhQ6zeBpuIiaE6mo0bA0OH0ojJ4vr2W6r36uMDHD1qqMtpLdnZNCJ0yBDDDJM9e2j2xptv0lRUa4mNpdEla9fS/fXrgbFjzTtmejqNEuGZIqyKKevrYlnEA4D5MUFliwceiiicxCk0aNAAIcbrPpREYiLw7LM0UyQoiEoP9e0LDBxo3c94Czl79iw+/fRTbNq0CfqwvGnTppg2bRrGjRtX7mPpCmvbNipRceUKjUDu1YtmwT7xhOko1v37ga++omt5WV17d+6kuGXSJJplWlFLjTBmBRwPVI54QCVU2IXdAIDo6Gj46StGFGXJEvp+5epKVQPq1Surpkp0Oh2efvppbNmyBSdPnsTjVlr0vVT03XvlbTZGYiKt57VjB32fNS5XOWcOld0aM4bW+arIoqLo+/4//9D9F14Ali61bPygjxmcnCh+KU8zmBizonKzxkhQUBDatWuHTZs2mXMYm5HL5ZDJZCju2yCXy3H79m3UK+MLcGULfA6Kw0hBCtavX4+xJekY/vdf4LXX6MtomzZl1MrCTZs2DV9//TUmTpyIH2yQnLGJMWOA33833G/Viqa9vvUWlTErTHQ0MGwYrftSqxb9DoOCyrS5hVKrgZYtacFzf3/DVGIhKEBZsKDo5M3OnbT4WrduwPLlNIW1JObOpddxdaXa97ZcJJ6xCqqsr4scD5QtfTxwUVxCKO7htddew8qVK0t/QCGoQ6RVq/L35b8EtmzZgqeMakYPHDgQM2bMQN++fSGrwOdVKioV/U47drT+a1u7xIixO3eonFZKCq1Lpi+XeeECxQ4qFSVKZDIqIzt3LlCjhm3aygonBJWO2bmTFkHeuJFiT4Di0OhooGdPmzaxMuB4oHLEAxEiEmdwFq1atcLFixeLfwCtlhLZPj60xmVZlDgswO3bt9GoMnyPi4igBb0PHKDv6k5ONNikYUPrvL7xNffBAxqEqdXSGh1ff00DMysyrZau3x99ROfq6wssW0YJE0vEGkIAjz9OAz/ffRdYvNj8YzJWAdl8jRG9sLAwqFQqHD58GA8fPsyz2PoLZbkYs4WcOnUK1YpRj1oIgccee8wKLapcskQ2UpACgBaYK5GuXYGLF206cm7YsGH4+uuvsWPHDpu1warCww1JkVataCRlZibVKhUib83S3GrUAP7+m+pqXrsGBAdTnU1bBThKJTBvHvDOO7Qo2sOHpo9fukQLrhY0yuvWLWq7ELRonUoF/PZbydrw4Yc0e0YmA9zcSnUajLGyx/FA2RJCIAaxAIB+/fqZdzCZjOpTV3ADBgyAv78/evfujbfffrtq/11NnAgcOwbMnk21tK3JlkmoN96gpEjbtjSqVG/9ehpdm9uZM7SuGit/fvmFar7rvfceDaw5dYpmUwMUQ+rXrGHlFscDZS8GMQBKEQ8oFNSp7+Ji9c/uSpMUadKEvt8b8/KitUBq1Sr72bfGvzdnZ1rTa+VK6ocYNoxmBH3yScUd+KJQAPPn04zmSZOoT+T55ykRZYn1w2Qy6pMZNowGU0yYQJU+GGOlYnZiJCQkBH369EFkZGSex2QyWblPjPTo0QMNGjQo9kLx3bt3h1NFn95nZdGIBgB4w7t0C5WlpQEeHhZuVfG1a9cOcrkcOTk5yMnJgb29vc3aYhUeHkDdujTC7d9/acGvS5eobEmuBV4L5ONDo0769KGkw7BhQOfOtICYOYuQlYZMRou9DRtGi6xmZtI2tRr46ScKugqb+u7lRe9JcjLdL81oMIUC2LKFkiIKBW3Tt4M/TxgrFzgeKHuJSEQGMqCAAr169SrdQYSgDpHDh4EvvrBsA23AyckJISEhcK6AJcAs7vHHgRdfBHQ6W7fEuho2pPjkxg1KenTpQtsXLqRSoGPHAjVrAtOmUfkRLq1WftWpQ7FeWhrdX7vWUE5VLzDQ+u1iJcLxQNnTCA0egAarDS3N4DknJ6t3mv/33384cuQIZs+ebdXXtThXV1oo/NYt0+2BgUBWFlU2+Owz+u5sDV5eNOth6lRKJixZQq+fkUGVGipyacnOnYHz5+l85s83nTF46hQNgBgyhLbb2ZXs2EOGUDWLY8dogfuTJ7nUNmOlZHYprZEjR2LLli35H1wmyzODhBVPZZoqK4RAEpKhgw5HxNGSHeD6dfqiPH06TUe0wYVR/79IlSppkZhIa3Xop/8DNHMnv5IlarVhdEnuBFZ2Ns3W+OILwN6epsoW80uGTRw8SLNC9KW2Hn+cRiSfPEl/e2fP0ijWov4O1WpKgBS23yuv0HE3bgSaN7foaTBWGVWW62JJVZbzHikfgfPiAsJwH4EIwH0RXroDRURQ8l6rpc/Q8lznuxi2bduGjz76CAcOHCh2JxyrZHJyqANqzx66//AhJUJy+/hjmm2wcCEwfLjp840H7WRk0AjcqhS3lifp6TRz5NIl+h5z/TrVf58yhUb1VuDP8fKislwXS6qynPdI+QjcF/dxDhfgChek6tJK/j376aepE3jhQqAYM3vMFRoaikaNGkGr1WLfvn0lWju2XMrJoQGCCxcCGg2tLwrQYMFGjWht1+Bg27Ttu+/o+7YQtD5H7uRyRXX3LlC/vuH+okW0tgpAyaEhQ4CXXqKqG8UVG0txcFgYHeujj+jan5RE75+3t0VPgbHyptysMVK9enUkJydj9+7d6Nu3L9q0aYO3334bU6dOxcaNG0s/IrCKq6iBzyTHiSb3v8v+sfQHE4IWUt27l74w5ldOgNnGv/9SkHLhAtVQVqnoQv5jAb/vqChKKhgvXr9pE5WoKunoiLJy7hwFIhkZhm3OznR+desW/lwhgMuXaRG5AweobJazMwU8L7+cN0ESFwe0aEFBqKMj1RydNIk7MRgrREW9Lpqrop537njg06jPERgYiPT0dBw5cgTdu3cv/cFffBFYswYYNIhq+VfQz06VSoWmTZvi3r17eOqpp/DXX39VrUEY5khIoN99166mHQ3lXUYGdUh5eZluz8wE+vUDjh+nUaUfflj4cYQANmygWOzUKRp44upKj02fDvzxB5XwePZZoG/fij3ilrFcKup10VwV+byNY4LVWT+gU6dOOH36NBYtWlTyGRgHD1JVAoWCvn8VtVakhbzxxhtYuXIlgoKCcP369coxSyg7G4iMpNkjjRrRuqDl4bv5+vX0HfrXX4GRI23dmrJx7Bgl0bdto74Bvb17KR7ILSuLkit37tAtMRGYMYOSI50708CJJ5+kfdeto3V616ypvO8fYyhHiRF7e3s0bdoUly5dgkKhQIcOHXDy5Em0bNkS1atXx4EDB8w5vFUJIfDXX3/h8OHDiI2NhS7XVP7NmzdbrS0VNfDJryPEK/eXv+L67TcqH2BnR6OtnJyo9rJSSTMXRo4seiFwCxFCcGeF3ubNVJpKozFs8/WlC3RxS5599BF96R8zhgIefXkpW9qwgWZvyGR0u3aNzql/f1pIs7Dff79+lBTJT48ewKFDeTslYmKA8eMp+AFo1M6LL1rmXBirhKx5XeR4wHy544Fhm57CyJEj0bhxY1y8eNG8a2pICJVl1OloPYqPP66wyZEzZ86gS5cuUKvVWL58OaZOnWrrJpVvFy/SoIMdO6hDx94e+Ocf241sLa7792kQxA8/UPz0zjt0M+5YS0mhGuu9exc+E0qtBt58kxao1du9GxgwgH5u04beJ72gIOpgevllwM/PgifFLObff6lzrH17irEB+j0HB1Nn5fTpFX52nCVxPFCx4gHANCZYmfYtPv74Y3z//fc4f/48/EryuZSVRf0AISG0PtPy5dT5e/UqMHdumc7IysjIQOPGjfHgwQN89NFHeL+odTcrg5gYSj517Wr98s/62ZP6+O6XX6i09WuvFV4Gu6LRamlQxNKldB2oUYPec+OZUIcPA089ZSjtDVBZzQ0baKDp5cs04CIggB77/HNg1iz6+e23KU6uTO8ZY49Y6rpo9vAhNzc3KUBwdXXFzZs3cerUKYSHh+PEiRPmHt6qZsyYgXHjxuHevXtwdXWFh4eHyY2VTKIuEf7+/pg5cyZKnH8TApg5k35+7z2gQQMa8bZ0KdVofO45q3QiCyGwdetWtGjRAr1798bOnTvL/DXLtYQEGn2oT4ps2EDJg5gYSlK98w4QHV30cdq2pYTXxo30+ywPxo4Ftm+ngGTrVqph7+BAiYtvvy38uX370gyRQYOAL7+k8gnLltHozR498h+p6edHi9S//DLdt8RCbIwxi+B4wPKefPJJ3Lt3D2vWrDF/oEHDhrTYJAAsXkxrWlVQHTp0wOeffw4AeOutt5BhPGuRmbp+HejQAfjzT0qKAJQg69DBtu0qSlYWleVctozKLGVn06yQt94y3c/Dg2LegjrAt26lkdH+/oakyHvv0dok/fsb9jt5kkZUv/EGlS8NC6NFWlu3Ll6Mxqxr82aqE//55zRgaNky4PffKZ48d44GigUH08xrZnUcD1ienZ0d5s2bh/v375csKQIAq1dTUqRmTRpo98cfVLVg6VJKGJchFxcXzJ07FwCwaNEiZOuvQ5VZmzY0AHD0aOu/tr+/ISmSnEy/3+nTgXbtgP/+s357yopCAXTvTp/1TZtSv8qDB/TY9es0GLhXL0NSpH176nvYt4+SIgDQsqUhKQLQTBL9/w+ffUYxAGOsQGanDQMCAhAaGgqtVosWLVrgxIkT6Ny5MwCgblHlZ8qZdevWYfPmzRg0aJCtm1IpPBTRyM7Oxs2bN0veCSKT0cUwOpq+UAL0gX/jhmGfdu0s19h8HDp0CO+99x5OnToFAIiJiUGjRo3K9DXLPVdX6oS4fJnuT5lCyYD+/YGvvqLSWufP04W6sN/5k0/SqMhJk+h5M2dabfZPsTVqRKMrli2jAKQwr71Ga4YY14dv2dJQ/7YgGRnAvXv0My+Wxli5wfFA2ahZsyZq5rd2QmnoE85KJVC7tmWOaSOjR4/G9OnToVaroVarbd2c8svHh9bkunSJ7g8eTKWkyvsoSDs7SuadOUN/t6NGUfmvklz34+Ko1rp+Ue/q1YFVq/IvkeHgQJ0ovXpRh8hff9HC7dHR1An/2muWOS9mGbm/L//vf3n3qVGDbszqOB4oO8rSfHbrY4isLBpIaVxKsUEDyzSsABkZGVi1ahUAoGHDhrA3Xtupspo8ma4dtp5t6OZG66HMnk39EF260ODCzz7LW5qyonJyoqT4L7/QQAaAkib6WWk9elAJUX3ZTGPHjtFMKv2IeaWSku1Nm9L7tHIlvXeczGUsX2bPGBk/fjx69+6NkJAQzJkzB3Z2dhBCQC6XY968eRZoovV4eHigXr16tm5GpRGriwUAKVFWYvPn07/LlwPh4TQ7ITWVyhJlZZXZqBC1Wo3nn38evXv3xqlTp+Ds7Iz33nsPISEhnBhxcKCRiN9/T1/QUlJodMOECZQU8fWlEZDFSYRNmEDJr5gYGv1ZHs2cScFXfqNRNRoasaTT0VRW46SIEPQ+6NcQKci5czQ11tGRprkyxsoFjgcsy8yqrfkd0HDd+OQT6iyvwP57NPLxscce4wXYC+PnRyWiQkOpJNXrr1eMhUWVSprBMXgwxUcvv0wDL/Qzo4ujWjWaWTptGpXufPCgeHXDnZyAcePo9UeNok4uvVwlgZiNtGlDZbMOH6bf76RJQM+eVBptxAiKD69dq/AJ4IqK4wHLyhSZOHjwIFJTU0t3gKefBh57jEbPL1hAg9eSkqgcUe5ZeBa2c+dOXLx4EdWrV8e2bdsgrwprN82dS53qtu7XUyjo+nXrlqFqyA8/UMf/779TXFgZtGgBLFliuN+4Mc2GunSJyobmlxS5cIGuFx07Ur9ZZKThsZdeohg5PZ0GcTLG8mX2GiO53bt3DxcuXEDz5s3RuHFjSx66zK1duxZ79uzBTz/9ZPPFtCpqDdHRiqeln//W7UEGMrBv3z707du35AcTgjLjp09T5twKUzhVKhWeeeYZbNu2DUqlEq+++irmzJmDGjxKKy+tlhb83LaNRi/UqkXrZOT+4hYaSouy9+tH00SNkyYff0xTO9u3p99zea8Rv2QJjcSYOJFmL+mnrd6/b2h7WhoFkV9+SaMy7t0rfCTLzz9TwNKxo3XOgbEKyprXRY4HzGccD5zRnYNve1/Mnz/fcqNuhaDZiZVgYek333wTS5cuxauvvopvvvnG1s1hlnLvHjBnDnVq791LyY1Tp2iRVFvLzqa4o1Ur4NVXqU3lPQZj7BGOBypWPAAYYoK7IhTnxQX06dMH+wtan7Eoe/dSR3Dt2vR9LL/O4jKyc+dOuLu7o3v37lZ7TZaPY8coiXzzJl27rlyp8INkSu3sWSqpFRVl2NapEyWQXn6Z1uCZOBEIDKQ+Cz0h+LrPKjxLXRctPve8bt26UgmtGzduoGnTppZ+iTIzevRo/Pbbb6hevTqCgoJgZ2dn8vj58+dt1LKKJ1tkIwMZkMlk6FjaDl+ZjGYm2NvnnWZeRjQaDRISEuDo6IjNmzdj4MCBVnndCkmhoC/SnTsDn36a/z7HjwPDhtHaJIsWUQLk7bdp1CJAAc1HH9EFfft22re8ioigBeOzs6m8ln4qd9269LcaH0/bV6401ABdsoSSInFxwIEDdJ5nz9LCmvpSFsZr5SQmUu3Us2cpkJk82arBPmOMcDxgWfGIR9jZMMuOrpTJTNdVqMBeffVVNGrUCI899pitm1I5paTQKOOoKOosmDfPdBBHfDyVm3ruOSrXURIaDbB+PZUaadoUGDKEZjd//DGVCnV2ppm1+gE2xkkR/SLs164BmZl002ppzTP9oqllZd066ki6cgX49VfqUJo8GRg/vkwXL2YWcO0albKtVYtur79ute9JVRHHA5aVKBIBAJ06dSr9Qfr3p8F4Tz1l9e9JgwcPturrsQJ060YzSD/5hL53V9WkCED9K5cv03V90yZaf+XkSbr99Rf9vzJjBvXd6EVEAM8/T3GKvmwXY1WY2YmRpKQkuLu7Q2H0P9q5c+fw8ccfY8eOHRWqVvL48eNx7tw5PP/88/Dz8zN/cdAqLAEJAICmTZuatzCdlWcdubi4YNeuXbh27RqCg4Ot+tqVTmYmrSWSkgLUqUNlpc6epfIn+sRItWpUSmL7dvq5PPPzozqm8+fT6JSbN2l727b071NP0egVgNYn+eADCjiOHweGD6eOF72aNfOv8f3KK4Y6om+9Rc/V32eMWQ3HA5aTLbKRjnQAKP1ACWNCAEeP0udoBS5vqVarMX/+fMyePRsNGzZEw4YNbd2kyuu992hwAkCdytu3Aw8fGtYm6diRZnecO0cDckpi7lwa+KG3eDF1SuzYQfe7dSt4bYjFi6lERm69e5esDaXx8ss0W2T1akrcXLtGZZw+/JD+nT69YpQpq2oiI6mMkLHvv6dOLk5olQmOByxHCIF40PchsxIjgOnAsjL20UcfYfz48XB2doavr6/VXpcVwcGBrsGMypn/7390i4qiARsffkiDH+ztqZJFZqZh/3feoVh60iSq2sFYFVfqxEhYWBiGDh2Ka9euwdPTEz///DM6d+6MV155Bdu3b7dkG61m165d2Lt3L7p27WrrplR4keIBAKBPnz7mHUgIKjU0alTJR/GVkpubG1pz5tx8Tk602OjZs0BsLI3q2LiRkiXGPvyQkg36EVhaLSURbL3IW2729sDUqbT46aJFNDMkIIBGVwK04N+xYxSk7dxJ5/7LL5TsyMmhDoaxY2lUR0FJt9yLBrZrV7bnxBjLF8cDlvMAFA+0a9cO3pboaJ05k2bnTZpEnboV0IMHD/DMM8/g+PHj6NWrF3r16mXrJlVunTtTYuT2bbrfu7fpgu19+lDMUpqOuvbtaVaIvsOhQweaWapPjNSsCTRpkvd5+/cbOnSee44GUDg7Uwe3Pq4AKHaKiaE2Go/2NJdMRgmhjh2BL76gWSMrV9KgjwULaP0SToyUP87Oebf17El/v6xMcDxgOSlIRToyYG9vb/77ee0afTZa4fp59+5dtG7dGuPGjcNXX31V5q/HSmHTJrpeDhtG1+WqrGZNGmA5aBBVo6hendYlq1OHBkR07kwJE4D6KxhjpU+MvP3227h69SoAmjUyceJENGvWDMcejZi2t7fHCy+8YJlWWklAQECFq9dZXvnKfJAm0jFmzBjzDrR3L9VEnDePFrp2cLBI+wpy9+5dTJkyBdWrV8evv/5apq9V6clkwN9/0xe2tm1p9k9+ozpyL07+1Vc0quHEifK50KSHB5UOy10+bMUKqnPboAEFHitWUCIFoNkkv/xCi7QXZsEC+nKrUNAIU14kjTGb4HjAciIELQJpdjygN3QoJUY2bKAO3QpWbvDQoUN49tlnERsbC3d3dyiVZk/eZkV57jng2WdpgV5v77w1tb/7rvTHHjECyMgw3darF82CnT6dEg6//gocOULrrOmlp1Mn99ixBb++TkflrU6fpnho/Hiqqx8XB4SH0+CMp54y7D9mDLXnmWdKdg6ensAbb9BM1s2b6fVatizZMZh1eHpSR5eLCw0o4tkLZY7jAcuJEBEAgEGDBplXUUII+sz65x+KA2bOtEwDC/Diiy9i7dq1+Pnnn7Fo0SK4FPV9jlnfxo1UNsrFhfod/v2XFjIvbJ3Pyq5ZM8PPZ8/S4NPz5+kGAD4+hlmrWi1w5kzpBogwVgmUutjzsWPHIJPJMG7cOIwbNw4JCQn4999/4eDggJkzZ+LevXv4zpwvGjbwxRdf4O2330ZYWJitm1JhuSqd4ap0Riu7FhhuP9i8clQ6HS3MDVBt6DJOigCU5Dtw4ADWr1+PgwcPlvnrVXrVqtEX7O++o1kTRdHpqD5mZCTNLElNLfs2WoqzMy0E/MsvNLtk8GAaoTFnDpUPKyiIPnUKGD0auHWL/sbnzaMyXPklRXQ6YPduen8YY2WG4wHzuSqdIVMAcY/KZowePdoyB+7ZkxLQ6en02VpBXLp0Ca+88gr69u2L2NhYtGrVCufOneMFXK1FLqdOAGt0JMtktO7Dvn10/9lnqSPP2IgR1DmxfHnBx8nIoBkdXl503f/4YyrN9dRTVC98zRrT/TdvpuTI/Pl5X6845HKKtz/7zLDt/n0a6MHKB7mc/h7s7TkpYiUcD1iGi8JJmkFq9kCJLVsoKeLoSLPbylj37t1Rv359pKWlYdOmTWX+eqwENBq6Tv33H913dKQZET160GzNPXts277yYtgwGlDx++80aKN3bxpgpK/QMW8evW8LFlB/A2NVjEyI0kTOgJ2dHerXr4+bj+rsN27cGHfu3MHu3bvRr18/izbSWry8vJCZmQmNRgNnZ+c8i6slJiZarS2pqanw8PBASkpKhRql8pKD6Syhn1S/lP5g69fTGg0uLkBoKHUyW8HUqVOxYsUKNGzYEJcuXYITT0+3rrAwKjUVHU2lI3btoi+AFVFCAnXEFKZdO+occXamUaD5lUkAKLH04osUxAQEULmLgvZlrBKy5nWR4wHzveTwAq5pb+C09iyqy6ohRhdruYN/8gkwezZdK/RfhsuxRYsWYc6cOdL9F198EStXruT4oirIyjKUObp1i5Il+tmkxZWdTeui/PQTlY+pVYvigM6dqZ643oQJwNq19PNrr1HSxZzyW2lptChraCh1mnAtd1ZOcDxQseIBABhuNwTbNDuhhALJ6Smln3WhUgFNm9K6UO+/D3z0kWUbWoCFCxfigw8+QI8ePfDPP/9Y5TVZIRYtAr79lkpEFdaRf/gwDahheeXkGEqZv/468M039PPAgTRQtag+DMbKAUtdF0s9f1+r1ZrUitb/XFGTIgDw5Zdf8oJqZlIJFW7qbqO5vBmUMjO+jGm1htki771ntaQIAPzvf//DihUrEBISghUrVmDWrFlWe20GICiIkiHdu1NN8FdeoVGRFfH/zaICipQUw3TWzExaQHP69Pz3/fprSooAVIN8zZr8F3BnjJmN4wHL8JF5o648CP6yAhafLq0JEyg2OHGCakqX83XB+vXrhzlz5qBXr16YP38+16qvSvRJkbQ0qnuenk5reTz9NI1o7dyZBlEEBhqeExNjmBUA0AjY0aPpVpg1a+g1pk0DVq2ieMqcGNbNzTCDZN48oG9fai9jVQjHA5bhLffCU3bDkCSSzCtF9f33lBTx96cFpK1k/Pjx+PDDD3HkyBFERUWhZs2aVnttlotORzMqIyLyf/yZZ4DFi4GrVzkpUpjRo2mNEa0W+PxzKje6cSNVp5gyBfjjD1u3kDGrMauw8YULF1CvXj0AQFRUFABI9wFAJpPh7t275ryEVU2YMKHAx7KysqzXkAosXBeJ89qLiNHFop9d79If6PBhmjng6Wk6Gq6MHT58GM8//zwAWienY8eOVnttZqRtWyqRMmQIlaZSqeiLuXHHQWXg4kK1PK9coYVgH3+84H1zL8TeqFHZto2xKozjAcuoIfdDDblfGRy4Bq25EBGRd32Hcqh9+/aYPn06vv32W/z000/w8PBAixYtbN0sZk2OjlS6Yts2mjny8cd0kz+qahwdTeVH792j/Tp0oMEQJZ3x8cYb9O//2TvrsCizL45/36EbQRQDFCwsbDEwMdfuWNdeu2uNtVf9rd2x5upaa3d3Y7uoKCCIUoJKx8DM/f1xHIZBVGAa7ud55pl5Y+49Q8x73nvO+Z7Ro0l7f/RoeS+3mBjg6VMKJj59SgEYU1MK3piakgyXVwbf/cED8sEAktsoVUqpHwGHo49wf0B12AjWsBGUrHTZto2ep07VaI+xYsWKQSQSQSKRQCKRaGxeThaIRHT97NmTkhAvXKCEGTMzkpRs1YrOc3GRv4cx/UyyVCcNGlCTdoD6u8owNuYBJU6+I9c9RgBALBYjKCgIQUFBSElJAWMsfVv20CfGjBmT5f6EhAT89NNPGrZGP3krfQsAKCRyUG4g2Y1Yz57ybDsNsG7dOoSGhqJcuXK4d+8eGjVqpLG5OZlo3VrekHT/frqBz2sYGgK3bgFhYSRV8b2GZ40bUyXNjh3UXK5ZM01ZyeHkO7g/oAfI5Etk+sh+fqQzraMEBgYiJSUF27dvh7u7O1q3bo1Lly4hl4q2HH3DyAg4epT+RrdsAX75hZI9pFIKfty/T+f5+1M/kX//BQYPzp3W99ChJLUVEUHZnzKWLqUqlbFjaXHx1Cng0CFqDr9li6K/vXMnVe6Gh1MDW29v+f/aj3j5EoiKyrndHI4Owv0BHeK//4DHj+n7tFcvjU4dGRkJiUQCQRBQOLvfhRz1UrkyVQ7VrEkJlFevyoMiMsRiSi60saGKCI6ciROBkycp2UjWqH7GDPJTuCoFJ5+R64qRhg0b5rmy0lOnTqFAgQKYO3du+r6EhAS0yvwFy0lniOmg9NdiJkaEUSQgBnY93Y2KFSvmfmCJhBaN+/VTgZXZ56+//oKLiwvmzJmjXJkvRzUMHAi4u5Mmd61a8v1PntB+kVKxXd1AJCK5iuzwvRswiYSyQY2Msj8eh8PJEu4P5I6MPkHNFXXQoEEDVKpUSfX+ImPUZyk8nPovtG8PnDhBTdn9/OTnpabK9ZO1zNGjR3Hnzh2sWLEChw8fxtmzZ3H27FnUrFkTq1atQj0uUZQ/cHYGBg2iB0D66JaWtGgDkFzV/v1At26UCGFpSb1CcvI/ZGREUnPDh1NllYyqVWn+qlWBKlXotVhMfVAkEurZI+PmTdrfujUFV7Kr27xvHy1YFilCi5hco5yj53B/IHdk9Ae80x7AtX0pTJo0Sblr3YcPJP1TsSJQsKAKrMw+hQoVQmRkJCIiIr7qM8PRMhUr0iMjjFHPjE6dKAExLo78Q64GokibNkBAAKlzGBlptAqLw9Elct18PS8SEBCABg0aYMqUKRg3bhzi4uLQsmVLGBoa4syZMxpdKNeX5moZnR5/SQCupF2Dm5sbXrx4ofxCSFQU3VCpMQD37Nkz/Pvvv5g/f36eC/TlWfz86Ia+Zk1g+3Yu7SDj9m2gfn2Sw1i/nhq1czh5CE1eF7k/kDtkPkEsi8N+8QGIRCJERESgoDoWMGJiqO/B2rVAWhrt69tX3nw6NZUy4Bo1okXiEiVUb0MuCQgIwIoVK7Bt2zYkJSWhQ4cOOHr0qLbN4ugS//xDf8+MAUuWyOUusgtjlFnt4kJZoLJ92fF1GSN/ol494H//o0Sl7ODtTVUmKSm03aOHYsWKjHPn6NnTkyRFOZwcwv0B/fEHGGPYK/4XCUjA8ePH0a5dO+UGZowWuXX88+dbXr8GLl0iqdPXr+l3tW+f/DqkKe7coWuYgQEF/gFqKP5FMp3D4eQNtN58PS9SqlQpnD17Fk2aNIFIJMLevXthYmKCU6dO8eqBbBAoDQIAdO3aVTVBBjVngjDG0KVLF/j7++PcuXPw9vbmwRF94OVLqrK4cYOyPm7cACpU0LZV2kEqBVq2pCxpsZj2JSdTw/p27TSeTcXh5BW4P6AcQRKStGrUqJF6giIAMGyYfNG1TRuSCSpXTn78/Hnq5fDqFfWsuntXZ3ozlSpVCmvXrsXs2bMxc+ZMTJs2TdsmcXSNPn0oQWj8eGqgfvIkcPFi9oMUgkD92jLvy+57b9/Omb0A4OZGsp8JCVRxsn8/SXVkrPgFKIv32DGSPDlzJufzcDgahPsDyhHJIpGABFhZWaF58+bKDygIWgmKpKSkwMTEROPz6hWhoVS5IUtWAbQTFAEoGFK/PklWy3j5UvN2cDgcvSAP6NCoFnd3d5w8eRLTp0+Hubm5xjNB9BUJk+C9NAQA0LFjR+UHTE2V6y2rCUEQ0LRpUwDAgwcP0KdPHyToQRPXfE/79oCPD1WMfPpEgYG82H8kO8yeTQslGzfKmxECtDhoa6s1szicvAD3B3JPsDQYgIr8gayIjpYHRXbvpkVjNzfFhd82bYDr10k26PNn2pb1JdERHBwcsHHjRpTQoWoWjg4xZgxJbolEJLWVMSiyZQvw4gVlT+sK1tb0vyjLyLWwILmuzLi60vO7d5qzjcNRAu4P5J63Uvo/b926NUxNTZUf0MeHZDQ1SFxcHMqWLYvJkyfztYLvUaAAVQ1mRFYhqElSU4F79ygp5sULqrisWxdo21bztnA4HL0g31eMVKtWLcsqARMTE4SGhqJ+/frp+x49eqRJ0/SKSBaFNKShaNGiqJ45Qy2nRERQ/4joaNKEtLNTiY1ZsXHjRpQtWxa//fYb9uzZA19fXxw/fhzFihVT25wcFVCyJHD2LMkw+PqSjvahQ2qVXdNJpkwhB/TAASA+nrI0CxQA5s3LflYph8MBwP0BVZHCUhDOKFjdVhM3od8LvjRoQNcKDw9qaj11KvDXX+q3KYfcv38f586dQ5UqVZSXGeHkHUQiCoDMm0dyJDICA6kyFCC5uG3bKFlEFzAwoIoQAJg5M+uG7S1bAitW6Ez/Hw4nM9wfUB3BXwIjKrm2jR5N8pmzZ5OUpoZYunQpgoODcfToUSxYsEBj8+odZmaUsHfjBklAnjxJcqaaZuBAkqO8dw/491+yhcPhcL5Dvl85U1s2Yz5BJFDRUVGDIugj6oUh+4YrL0dVuDA1bfzwAdizBxg1SgWWZo0gCJg4cSJq166NLl264NGjR/Dw8MCJEydQrVo1tc3LUQH29sDevSTRcOQIOT49emjbKs1iZUWNWlVRms7h5HO4P6A8IkGEEGkoGBgqVKgAV1lmuCqIjgbevyeZBltbCngYGwPm5t9/X+HCdIPcoAEtMg8aRIESHeLWrVuYOXMmevXqxQMjnK8pWlRxOy6OrvvXr1OD8zp1KAgxfbp2gg3+/pScUbUqJahcuwasWQOMG6d4HmN0bghVmPPACEdX4f6A8ogEEeJZPD6xTxAgqKZZfb16FBjZsQOYNYuCx2omNDQUS5cuBQAsWrQIxsbGap9TrxEEStpr2JCkq2S9QBkDDh+mCo5hwwAHB/XZMH48rREcOECPbt2+f350NElv2durzyYOh6PT5PvAyOzZs7VtQp7BQrBAgwYNVDPYwIHA2LHUXFuNgREZDRo0wL1799CmTRu8fPkS/v7+PDCiD1StCsyYAcydS45PfguMcDgclcH9AdXwVkIyWiqtFklJocCGjw9JBfbvDwwdmn3dak9PamS9cyctHl+6pDrbVEBMTAwA6HwzXY6O4O5OPXQ+fgRGjKDEkDlzKDt3927N9tJJSKB+b58/k2RKixYk+/X771+fGxenaBuvbOXoKNwfUA0yf6CwUEg1/cY6dqTvl7dvgStXAC8v5cf8AbNnz0ZiYiLq1q2LLl26qH2+PEX58vT85g0FQy5coO3Fiyl43r+/euatXp18vfnzSVWiYcOsqxcBkm5v0ICSDQMDAUtL9djE4XB0Gt5jhKOb9O5NmWSPHlFmgQZwcXHB7du3sXfvXnT7UWYBR3eYPh3YtYsWBjgcDoejNRhjCJeqQUZr/34KigDUTH3aNEqgyEhSEmX9favnwuLFJD+0e7fq7FKSyMhITJs2DatXrwYA2PLeUJycYG9P/xt791KQ8MEDoHVrynzVFJcvU1AEoCDN94iPV9zmjYw5nDyNmWCGwkIhlDDIotdQrgY0A3r1ote7dqlmzO9w/vx5bPvSw3HJkiXKq2LkV3r0oKCIsTFV/cbHA+rurfb770CVKpRAMGzYt33Dnj0p+SYqCnjyRL02cTgcnUXpVB1Z8+qsMDMzQ9WqVTF69Gg4OjoqO5VasLOzw+vXr7OdxeDs7IwbN27wRpkZeJH2EoHSIJQ3cFPdoAULAk2bUvbZ+fNAhQqqG/s7vHnzhv9u9Q1jY3mjT4Ca65qYUNNPDofDySbcH1AeQRDQ06QbIqQRqFu3ruoGLl2astK9vWnbyIiaqctgDOjUiXwGQ0PyIRwcgOLF6ea7RAmgXTud6i+SlpaGJk2a4Pnz5wCAkiVLopdswYfDyQk9e1JVVI8ewG+/UZ8PTVG9OmVxv3v348a2hQsDHTqQj3btGmXycjg6CPcHVIOrgQtcDVzAvrUonRu6dQM2bqT1AcbU1l/y+fPn6NatG6RSKQYOHKjQV4aTQxo0oMC9WEyN0J2dgSZN1DunsTHw998kuX30KAXS+vb9+rzu3YE//yT1iXLl1GsTh8PRWZQOjFy9evWb0XPGGM6ePYsdO3bg7t27cHJyUnY6lRMdHY0zZ87AxsYmW+d//PgREk1mYukBgdIgvJeGoLhIxQ3LvbxokePixa91itXAw4cP0axZM0gkEly7do1LaekjjAG//AIEBFB/murVtW0Rh8PRE7g/oBoMBAMUNSgKQ1XK5NSrR000e/QAkpOBpUuBMmXkxwWBvvPd3al/QXg4Pf77T36OszNlKuoIO3fuxPPnz2Fvb4/Nmzejffv2MNDkgjYnb1G8ODW8zai5f/QoVXP06aO+fh7FilGft+xgYEA2JSXRohX/e+foKNwfUC0qrbSoVw8wNQXCwqiHhZqSJyMjIyEIAho0aID169erZY58w9KlVCWyeTOwbx/1iAOAtDRAKqXrgTqoUoVkJmfMAKZOJR8yc6XiokUUFOG9YzicfI3Sd60NGzbEw4cPkZKSAnd3dwDAs2fPYGJigvLly8PHxwfh4eGYN28eNm/erLTB6qBfv37aNkGvGGb2a/rrcY8nYlP5LRAEAbteqlieolkzer52jUoc1Vhyf//+fbRo0QLR0dGoV68eSskahXH0i/fvgadPaWGsTh1ydsaP10hzPg6Ho/9wfyBnZPQHJEyKtTHrYaJOeZydOxV9gQ8fgEKF6LWdHTV2joqiR0QEZbG/fQsEBwOVK6vPrlzQtGlT9O/fH1WqVEGnTp20bQ4nL5DR1wkNJbm5z5+BefNoUah/f92QrzIz07YFHM4P4f5AzsjoDwBA07+bw8vLC/aqbmhtakoVCBcuUL8wNQVGGjdujDt37sDBwUG9fk1+QCQCNm2iyt6iRSkYkpws98suXQJKllTP3FOmkC84fvy3r388KMLh5HuUXi3s2bMnBEHAf//9hwcPHuDBgwd49uwZAKB///7w8fGBubk5zp8/r7Sx6kAqleb44erqqm2zdYYVK1YAANq1a4fSpUurdvAqVYBZs0g6Q40Oyd27d9GsWTNER0ejfv36OHv2LG+AGhVFpa7qaFD7zz+k9RkWpvqxnZwoMNKxI5CaSp+hd+9v64rqG69fU2PTuXPzzmficHQE7g8oR4A0ACVLlsSGDRvUN0lGX+DZM8DNDViwQP59aGpKmfNVqwItWwKDB1Pzzb//1rnASMmSJbF9+3aM00BFLCcfYmdHvXgKFQKCgsjvKl0a2LCBFqQ4HM434f6AcsRIY9CzZ0+UKFECUVFRqp9g/Hjg+HGVy/ExxhAdHZ2+Xb58edU0jedQZW/r1rS+IxJR9eCbN/Ro0oSCF+rA0JCue2XLyvepay4Oh6O3KB0YWbRoEYoXL45yGTT53Nzc4OTkhD///BOurq6oX78+wsPDlZ2Ko2OImRg7d+4EAEycOFH1E4hEtABcvrzqx/5CaGgo2rRpg9jYWDRs2BBnz56FlZWV2ubTG/74A1i2jDTc/f1VN+7jxyR1tWkTZS+qA3t74PBh0p81NKTGpL/8QtIN+s7QoZQhNWcOcPWqtq3hcDicdJ6nvUB4eDhiYmLUP1laGtClC2XDnzpFutUcDkeOqSkweTIQGAisWkWSV+/fU4P04sWBY8e0bSGHw8mjPJe8BGMMjRs3Vk9goXVr6humSslOkOpJ2bJlsW/fPpWOy8mCo0flr4OC6HqlCc6doySBXbs0Mx+Hw9ELlA6MREVF4dWrV5g6dSoePnyIhw8f4vfff4evry8+fvyYfp65ubmyU3F0jPfSECQnJ6NMmTJo0KCB6ieQSNSaFc8Yw6BBg/Dp0ydUr14dp0+fhqWlpdrm0yvatwdWrgQaNQKKFFHduKVKAS4ulMmrziZ2gkBBhM2bScN6924gL5TEt2lDVTFlygCVKmnbGg6HwwEAJLAEfGCkxz1gwAD1T7h7NwXtCxYETp7UDXmgbBIREYEJEyZg79692jaFkx8wNwfGjKHea2vXUq+djx8Ve/RwOByOimCMIUj6FgAwePBg9UyipmQIQRAQGRmJgQMHqrZhPOdrWrUCChSg17a2QOfOmplXlkzTrx9w965m5uRwODqP0oGRtm3bgjGGJUuWoHbt2qhduzYWLVqUfiwlJQUPHz6Em5ub0sZydIu3kmAAJKOl0qZqMv79l27g/vhD9WMDiI+Ph1QqhYmJCf755x9YWFioZR69pGlTYOxYyqpQ5c/F2ppuzs+eBYYMUd2436J/f+D8edItnTVL/fOpm0mTSC//1SvAwUHb1nA4HA4AIFhCsgS1a9dG4cKF1TtZWhrJZwH0nWhnp975VIy3tzdWrFiBhQsXatsUTn7CxAQYOZJ8sGvXFHX5790jzXcOh8NRkmgWjTgWBxMTEzST9QtVJYyRLFLduiTDpELc3NxgaGiIpKQkvONyS+pl4ECqYrx8maStuneXN2NXJytX0lyMUS9SDofDgQoCI5s2bUKnTp3AGFN4dO7cGRs3bkRkZCR+//13LJDdxHL0HimTQsqkKCYqivbt26uvaej583TBjI1Vy/BWVlY4e/YsvL29UV6Ncl15ArEY+O8/QBUSKeoIon2Ppk2pN0fGCou0NM3aoEoEQfM/Qw6Hw8kCmT8gyw5t27at+ifdtw/w8yPZxJEj1T+finn06BEAoHr16lq2hJMvMTQEGjaUb1+6RBW83boBCQnasys3xMUBN25wKT0ORweQ+QOBEvIHmjRpoh4lBl9fShJ7/Fi1qgYAjI2NUaVKFQDAlStXVDo2JwvMzam/iKUlBblsbSmZccECICJCPXOKRMC8eXQvffw48PKleubhcDh6hdKBEVtbWxw6dAj+/v44duwYjh07hoCAABw8eBC2trYoXrw4xo4di6ZNm6rCXo4OUdqgFI4dOwZPT0/VD84Y9VIAgObNVT8+AIlEAkEQ4O7urpbx8xTLlwPu7uSwlCgBtG1LToW+9A4yMpK/vnyZ+tb4+WnPHg6Hw8kjpLE0hEhDAVAFqVqRSORVpJMm0c20nvHw4UMAQI0aNbRsCYcD4MMHkhw9fJjkUyMjc/b+Y8cALy96BAerx8asuHoVqFiRgjxOTqRPHxKiufk5HE6WBEvlihJqQbY+0KABYGam8uF/+uknAMCZM2dUPna+49Mn6iWSneD10aMUnH/3Dvj9d/pe792bqhxVTblyQMeO9HrpUtWPz+Fw9A6lAyMyXF1d0a5dO7Rr1w4uLi6qGlajNG3aFHPnzv1q/+fPn3lgR9MEBNANjokJoOLAy8uXLzFy5EgsXLgQe/bs4Rqi2WHqVGqYDtCN76lTwOzZQM2a+pVpwRgwYwZp03fuDKSmatsiDoejg3B/IPuEScMggQQWsFB/osGNGyQlWL++XlaLAMDz588BAKn8+sPRBXr1Aq5coX49Dx8Crq4UdMxOkOHOHVpcunyZHmPHqt1cALTI9vPPFMgRiSi4s3QpVb1wOCqG+wPZR8zE+MAouKq2CtKrV+lZTYmTssDIkSNHsHv3brXMkW/YtIl6wu3Z8+NzvySN4KefgDp16B59717qe6oOea0pU+h51y4eVOdwOMoHRqRSKbZu3YrevXvDy8sLTZs2TX94eXmpwkaNcfXqVaxduxYdO3ZEQoZycrFYjGvXrmnRMt0jUBKEGBarvqDC69f07Oam8mwQFxcXPHnyBLNmzcLPP/+MTp06ISwsTKVz5EmGDKHMj+vXqYFnuXLkSDRoIHdmdB1BoIwUe3vAxwdYt07bFnE4HB2E+wPZx0KwQCWDCnAzKKeefmMZqVIF2LGDeiRYWal3LjXRvXt3AMBvv/2Go0ePatcYDgcA6tWjwEblykB8PLBsGeDiAmzfLj/nzRtg61ZgyRJKlpk7FyhVit4jo3ZtzdhrbEx+58SJVMEso2tXzczPyVdwfyD7GAvG6G3cEy0Mm8HZ2Vk9k8jWCKpWVcvwtWvXRufOnSEWizFhwgTEqEJGOr8yYgQFObKzJtihAwVS1q2joPuDB0CnTlTNKFJZLrecOnVoDUMQgNu3VT8+h8PRK5T+lpkwYQKGDBmC/fv348qVK7h69arCQ9+4ePEiwsPDUadOHQQFBWnbHJ1EzMS4lHYF/4oP4v379+qZJDCQntVQfWRqaoqrV69i7ty5MDIywrFjx1CxYkXs2rWLV4/8iKQkYP9+YPBg4NYtqhiRSBSlqnSdwoXlzdZmz5b/rXE4HE4GuD+QPexEdqhrWAfVDauqf7ICBYB+/Uj6B6BMvwEDKKswpxJAWmLBggXo378/JBIJ+vfvj+joaG2bxOFQgOPpU6oIbtiQsnUtLOTH794l32/KFODPP4E5c4D162n/kSNAaChVmmgKR0egaFGy2dCQgjYTJiieI5VSpTCHoyTcH8g+5oIZShioKSjCmFrXCABAJBLh33//xYwZM3Do0CHY2NioZZ58gY0NBbCdnH58bvfulIRZsiRt16hBQZFy5dRn34YN9PfEqw05nHyPobID7N27F4wxFC1aFC4uLjA0VHpIrVKkSBFcu3YNAwYMQK1atXDgwIF835h7kqViaXwkiwIDg7VgDafsXOhyg8zplF0cVYyRkRFmzZqFTp06oX///nj06BH69u2Lixcv4q+//oKJiYla5tVrpFIqW37xgoIhGzZQ087AQOo/AlDg5M8/ybmpUEE180ZFUYWHspnIMTG0eNa2LTBoELB5M3D/PlC9Ot1Qd+6sGns5HE6egPsDX5PZHzAStBwUP3AAOHGCqkgAoEcPYONG6oelo4hEImzevBlSqRT9+/eHrQ7bytFxLl0CvL0piCEW0/OQIVTJkRsEgWRMfvqJfD1HR/mxUqVov709kJZG/tTSpcDQoXKtdk1TqBBw+jRVL2eW1YmJAapVo6rz9etJdovDySXcH/garfgDUVFAYiJ9V6mrIgWAgYEB/pD1M/vC06dPUa5cOZiamqpt3jwNY9Sz9P59unYUL56z91+6BLx/T8kxWREURJXE9vbZH7NixZzZwOFw8ixKV4xIJBIUL14cAQEBuHHjBq5cuaLw0CdkEhAmJibYs2cPxo4di1atWmH9+vU5GmfRokWoVasWrKysUKhQIXTs2BGvXr1Sh8la4Y2UMjWKiYqqbxInJyrtV7NeeeXKlXHv3j0sWLAABgYG2LlzJ/bu3avWOfUWkYgcGUGghaft2wFra5I2kXH6NMkrVKxImYXKZOqdPQs0bQo4ONANrTLVSZ8+0VjDh5PUw8uXwKFDgIcHEB0NdOkCPHmS+/E5HE6egvsD2SNQEoRASZD2qi0nTqSmy7Lr0P79lGX4+LF27MkmhoaG+Pvvv9GkSRNtm8LRJZKTgb/+Avz8vn9eUhIleDRrBkyfTtWvCxaQBImDg2psqVABsLOTb3t4UDXJzp2kGe/hQY1ys+i9oFEqVMi614CNDdCzJwV4GjemgFF8vMbN4+g/qvIHgLztE3ySfsZx8Uk8SnuiPp8gOZkS2Vq0oD6kGuLWrVvw9PRE586dkZKSorF51calS1Rtp0nmzaOqwv376fqR1fy+viTX7eOjuN/bm37nv/5KVYqZWbKEgvdlylAvutzw9CkF3TITEEB/cydP5m5cDoejFygdGOnZsyeSkpLyRBPJzBfx33//Hbt378ayZctyNM61a9cwcuRI3L17FxcuXEBqaipatGihoEuqr8RIY/FKQtqebgZqLG0cM4akmgYMUN8cXzA0NMT06dNx5swZjBw5Ev2+lYnAAVq3JvkEABg4kAIW69dT40uAsvdkes9bt5IDlBvnOCCA5pIFV2/c+FoiISesXAk8ekSvw8JoLCcnGve336iJr5q0ajkcjv7B/YEfI2VS3Ey7jTOp5/Ba+oOFXHXRqBGweDEFtr29gWLFqBeCnl3H3717h6SkJG2bwdE2e/eSrvqCBd8/b+tWYNs2et2yJVVtjB4NrFhBCSsA+V6jRtG5qv6+EQT6vwPo/01X5aqmTAF++YVeb94MrFqlXXs4eomq/AEgb/sED9Me4b00BBHSCPX1G3NyosS2s2fVM/43SE1NhUQiwZkzZ7A9Y+8lfSQ0lCpt9+5VT1PzrAgKkq8fyGwYMeLr8+bMoWvZb7+ROoWMWrUoOJGaSs8ZZbAfPKDveqkU+PxZ/p2fE4YMoXWAXr0o+JaRyZNJLrJdO1pD4HA4eRKlda8sLS0RGxuLqlWron379l9JAsyaNUvZKTRGYGAgHDJlWnXp0gVubm548OBBtsc5m+livWPHDhQqVAgPHz5Ew4YNVWKrtvBJewEGhmKioigicvzxG/SI5s2bo3lWWWccRX7/nW6E//6bGrFfvw7MmgWEh1MTswYN6IZ90CAqmTUwIHmtnDjJzs6U9ZuxqXv16rm3+aefqNpFtvD0pfktjIyA//1Pd2/qORyOVuD+wI8JlrxDHIuDCYxRSuSqbXPoxnnIEMqez06jTx1hxowZWLx4MdasWYNhw4Zp2xyONmnalBqIX7/+4/NsbSngMWMG+V2Z+esvqiABKBnk55+B/v2pElsVUjANG1KT9sGD5f7d5Mm0MCUWUxXX4MFUuaENJBLg6FHA0pK2jYwAXqHFyQWq8geAvOsTJLEkBEjfAABqGCpxv6ajNG7cGEWLFkVAQACKFlWjYoYmKFyY7ssTEtTT1DwrihWja8+zZ/J9nTp9fd748RSEOH2aXq9aRdcXQQC2bCHFh+fPqXrk5k36LKVKkXzWx480Ro0aObeve3eqhjx+nBI8M147evUi//LJE6BgwZyPzeFw9AKBKVnrKBKJIAgCGGNZZgdIMkZ78yn+/v4oU6YM/vvvP1SqVCnLc1JSUhRKM2NjY+Hk5ISYmBhYy7K/tIRMQ1TKpNiStANxLB7NjbxQxqA01iVtVP2Ex47RTV7GEn4NEx0djXfv3qFy5cpas0HnCQ4mfff9+4FKleTZizI2biTpKgCYOhVYuDBnwZGoKMoGtrIiB2jaNLqZDw2lhps5zUZ6+JAyjf77T75odvo0ZVPKZME4HI7OEhsbCxsbG524LuaWvOIPAMCJ5DN4LfFDJYOKaGjkCQDq8QlyikyG0dhY25Zki9WrV2Ps2LEoVaoUXr16BQNZY3kO53s8fw68evXt/miJicDq1VQp8eaN4rFixWgRqGlT1drk6AhERMi3raxI+mTsWLX2A8iS1q0Vs8r37KEFLk6eIC/4A8CPfQJ98QcepT7BFfF1FBTs0d2kKwA1+AMvX1I/IS8v5ftO5hDZ78nIyAgfP36ElZWVRufPE7x7R2oTmzdTUOZb/T327ycZRICSGidOlB8LCQE8PakCpVo1UpawsaH7+IED6ZxXryioMX8+BV9atMiefVeuAO3bk+RinTokHanFtSgOh5M9VOUPKB0YKVmy5HfLJQMzlrrlQ6RSKdq3b4/o6GjcvHnzm+fNmTMHc7PQ6dUFx+dXU7rQREujcTz1FCwKWCA0NFQ9zcfev6eG68bGdCPnqPmqlPPnz6N9+/YoX748Huu4TrnOkJpK2XiZWbeOpBycnEgzO6d6sBERFLAwM6Nmn/37k7Z1iRLAvXuUKZJbAgKAmjWpx8icOZRlzOFwdBZ9XwjJS/5AMkvGHvF+SCHFo0ePUK1aNa3aBcY0vlCiKhISElCiRAl8/PgR+/fvR3dZRSOHkxPev6dFHHNzxf1SKS34bN5MySBxcbT//n3ygQAKopiZKf8/tHw5yZAwRjItz5/TfgMDOjZmjHLj54QdO+RyvMuXU/ZxZkJCaDFt8WLFfnkcnUff/QEgez6BPvgDjDEcST2GT+wz1qxZg1GjRqlnwn79KKA7ebJcyk9DrFu3DqNGjULjxo31roeuThMXR1UrFhaK+5ctIzluADh8WLG6xM+PgiMfPlAC5dmztL4gkdA17NMnqmj09aW1iWfPADe37Nnj7U1B9U+faOwrV358XYyKItWMbyQ7cTgc9aIqf0Dp+rmgoCAEBgZ+85HfGTlyJHx8fLBv377vnjdt2jTExMSkP969e6chC7OPrcgWvY174Pz58+oJigDApk10YfPw0EpQBABq1qwJxhiePHmCR7K+FJzvIwuK+PuT0ypj5EjKWFy4UB4USUujYER2KFyYbtYlEqBvXwqKAIChIfUzkZEbjdSRI8mOOnWoGiUj0dHAwYOUncThcDgqIC/5A/6SAEghRbVq1bQfFDl2jDLf377Vrh25xMLCIn0h6c8//9ReI3uO/vL6NVCvHtClC8lYZUQkogzrffuAmBggMpISS2TZuoyRjEj79hQoUIYJE6gZ/IwZVJ17+jQtUDEGaLphcb9+JJ/6/r08KHL1KnD+vPycadNou0YNykrOqvEuh6MmsuMT6IM/EMU+4hP7DBMTE/z888/qmSQykr7DAJIb1DAyCbRWrVppfO48S3Q0UK4cPTL7bxMmUGIlQD20ZDJZADVYP3uWEifLlqU1CEGgtYG4OKoQ8fWlcwcPpvGzS+3awLVrtGZx7Rr1u/0e16+TPZUrU89VDoejt2hIWDB/MmrUKJw8eRJXrlxB8eLFv3uuiYkJrK2tFR66iKFgiJqyDDN1cPAgPd+4AZw8qdh4S0PY2dmh05fMhB07dmh8fr3Fz49utAcOBC5elO8fPRro00e+/fffitvZ4dw5yj4EKDhy7Jg8gyMykm5qz5zJ/ngfPtCYAJXMTp9OsmAyTp8GunWjG3oOh8NRkrzmD/hLAwAAgwYN0rIlAJYsoQXPDRu0bUmuGfAls/3Ro0d48eKFlq3h6B0fP9Lj7FmqDPkWgkAa6bVrU9IJQAkgFy6Qz12zJmXnqiI4JwiUeXv1KkmbTJ6s/Jg5nd/UlGTDAAoYtWlDzeq9vWnfokW0yCqRUFVJq1bkG8r60XE4aiK7PoF++AP+AIDOnTujQIEC6pnk5El50PfcOcrQ1yD37t2DgYEBPD09NTpvnubECWpmHhJC38UZEQSqGmnRggIeGZMuAZLReviQEmozyo9u2EC9QACqily/PueVkJUqUTKmsfHXiQaZGTxYnuw5bhxJhHE4HL0kV4GRefPmYduXfgLz5s377iM/whjDqFGjcOTIEVy+fBkuLi7aNklpJExDAYpffqELmEQCtGtHUfjt2zUzdwYafGlkGaJs9lx+okwZoEcP+t117Zp1tUVCAjBvHul23riR/bGrVSOtaoDKWzPqkv75JzlBbdtmf2HMwUGure3jQ85XxoytyEh6zgP/uxwOR3vkRX8gjaUhFakAgK5ayNz8CpmkoqGhdu1QgrVr1wIAXFxcUKpUKS1bw9E76tYFZs2i1ydO5Oy9FSoAjx8D5cvTYmOXLkDHjqQHrwoEAShdWjVjKYOxsdzva9mSKkmKFaOkmFOnKPv4xg0KjhQoAGQhX8ThKEte9AmKCkVRSuSKfv36qW+Spk0BWQBp1izqWdSnDyW6aYDly5cjODgY9evX18h8+YKMvk6jRl8fNzam7+bQUGDEiK+Ply4tD3qkppIkdoMG8vWCWrWojyhAyhIPH2a/cnHWLGrE/qM+XL/8In/9009fS4JxOBz9geUCQRBYvXr10l+LRKJvPvIjw4cPZzY2Nuzq1assLCws/ZGYmJjtMWJiYhgAFhMTo0ZLs8dgkwHMTVSO2Qg2zMuwifonDAhgbNIkxgoUYAxgbPp0xqRS9c+bgb179zIArHHjxhqdV+9JTmbM05N+b8WL0+8yM0OH0vGmTXM29rp19D5LS8aCguT7U1IY69+fjgGMDR/O2IcPPx4vNZWxs2cZW7OGsXHjGNu+XX6saVMaa/HinNnI4XDUhi5dF7NLXvQHZI9ext21bQ6xaxd9X1eooG1LckVaWhpr0KABA8BOnTqlbXM4+oJEwtjo0YwNHMjY58+MvXxJ/weGhoyFh+d8vMRExmbMoPfLfK3165X3v58/Z+zPPxmLilJuHFUQHc1YxYr0+apWZSwuTn7s2TPGBg0i3xVgbMMG+TEN34NwfowuXRdzgrI+gS597oz+wGCTAeqfMCWFsT17GKtXj/5Hq1Rh7O1b9c/LUQ9SKd2Lh4bKv2MfPmTs3bucj/Xrr/Q30agRY/fuMWZrK18XeP2arpUAYwULMjZ5MmN+fjkb39eXMX//rI/5+DAWGclYUlLO7eZwOEqjqutirpqvlyxZEjVq1MChQ4d48/Us+NbPY/v27ejfv3+2xtClpnKDTQZgv/gg4hGPlobNcDb1gmYmTkwEHj2iBlsa5vz582jZsiXc3d3x9OlTjc+v10RFkQTVy5eU0XPtGlCypPx4cDBleaSm0rHsylVJpZQJIhZTRmTGHjSMURnujBm0bW4ODBtGjduKFMmZ/ZGRNLZUCrx5w6tGOBwdQZeui9klr/kDsmarMjYnb9OSJRn4/Jl6TqWlkWRP2bLatijHSKVSXLhwAS1bttS2KRx9YedO6qMBkIb6yZOUvXr3LjUmzq101fPnwJAhwO3blNH79OnXWbBSKflyBgakxW5tTbJVmfn0iXqfvHoFdO4MHDoEPHgAbNtG/U6SkuhhYUGyWz17qj/jNiiI+hh++EB9VQ4fVpRiYYz06QsVAuztad/mzfTzXbECcHVVr32cbKFL18WcoKxPoEufW6v+wP37VO2mhQz9tLQ0GOpxharOsno1MHYs9cVq2RIYMADo0IEqR37EgwdA48akTHHgAPmBlpZAQABVANau/bVE5Pr1wPDhPx47IIDWKgwNqadIiRK5+ngcDkc9aLX5elBQEA4dOgQA+Pvvv3HkyJGvmq6/fPkSz58/z7Vh+gxjLMtHdhdBdI1oFoN4xMMABnAUabAhurm5YlAkOVljJbN2dnYAgE+fPmlkvjxFwYLA5ct0ox4cTI7K+/fy487OgEyXfs6c7I8rEgH795NetWOmv0NBoD4hZ8+SRnZiIulF79qVc/uPHKGb/ho1eFCEw+EoRV7zB6RMqjlpzexSoADQpAm9ztgrSk/w9vbG/fv3UbVqVd54nZM9YmOB336j16amFHg4flzuW23dmvs+IRUrkqTUihXU2y3jwmNiIvWQq1WL/CNnZ5KyW7bs63GSk2lR69UrksBZuRKYOROoU4dkT/fsIX/r7FkKmIwcSb6XuilZkvrUmZjQz2z+fMXjgkCyYrKgiFhMEi3HjwNVq1IghcPJJXnNJwiUBOGT9JPmr121ail+N715o/YpHz16hBYtWqB3795qnyvfcegQMH48vZZKqW9o9+70PT19+o/fX7MmMHEivZ4xg4Jmrq6AlxfJcDEG9OoFHD1KQXhBANzd5e+/eZOkubPqbWthQfJcwcEkrZVxTYPD4eQZlG6+3qRJE4wcOTLL/drOZOCohpcS6hVRRHCEkWCkHSPCwmiBvUsXygpVMyVKlMC8efMwc+ZMtc+VJ3F0pOBImTKUtfEl0JTOtGmAkRFw5Qrwxx/ZH7d4cUVHOLNzImuqeeYMaX1mJxMkM1eu0LOZmWoakHI4HE4eIVAahH/Ee3E99aa2TVGkUyd6XrSImlDrEVOnTkWdOnXg6OgICwsL9OrViwdION/n8GHqB2JkRJUdCxbQolKPHuQjhYUpt3gjElEj2Vq15PtWrqSxmzenam5DQ1q0AuTPAM07YwYtIN28CdjYkE/2/Dll9f70E/WhW76cAiQ7dlBwols34H//00xT5Tp1gI0b6bWl5ffPNTYGLl2iRK24OLoPmTNHM0EcDkeHiWNxuJx2FYdTj+Ez+6wdIxgDFi6ke81r19Q6laGhIS5cuIADBw5gX8a+lBzlmTmTKh2HDwf8/GidQJYEWaBA9saYOJGSM1+/pusXYxTMt7KiqsblyylYf/o0BdLq1JG/d/duYOrUrNckHB3pGlCqFL2vb1++PsDh5EWUEuJi1GOkbt26X+2vXLlyvu0xogp0RUM0OjqaGcKQAWCtjVpqRkM0K/z9GbOyIn3ImTO1YwMn54SGkm51VixbRr9PCwvGgoNpX0oKY7GxPx43LY360BgbM3b//o/PT00ljevsaPhevEh/a/v2/fhcDoejMXTluqhpdOlzFxIcGABW3aCq9vyBrEhMpP5W8+Zp25Ic06NHD1a8eHEmCAIDwACws2fPatssji4THMyYg4NcQ10ikR/buJGx27dVO9+pU4yJRDRXsWLU1y0khI5JpeSTMUbPNWvK7bK1Zez6dToms9HXV3HswEDGRo5kzNSU3vPbb6q1/VtIpYzNmqXYZ2TTJvItDxygn3HG3iJiMWPjx8s/W5cu2fNXOWpBl66LmkSXPndlg4oMACsmFNWePyCVyvtMFium9l5GQ4cOZQCYgYEBO3TokFrnylcEBTEWHy+/ljBG9+6vXinu+xH//suYINDfw6xZ8nHu3fv++9aupfeIRIzdupX1OQEBjJmY0HnHjmXfJg6Ho1ZUdV3MdcVI06ZN0bRpUwDAixcv0rebNm0KDw8P+Pj4wMbGRqmgDUf77NixA2lIg61gi6JCDns1qJJSpeTZXfPnU3m/BlmyZAkuXbqk0TnzBEWKUOWFjHfv5K8nTACWLiUZBScn2nfnDmV1NG4M+Pt/e1yRiEpaxWKgTx/SFP0ew4aR7ESHDj8+18uL9ER79Pj+eRwOh5OPuH//Pj6wSIgggptBOW2bo4iZGWX0/f67fF9EBPUf0XH27duHd+/eISkpCSNGjAAALF68WMtWcXQaJyeSdmrXDihWDLh1i5brV6wgCZG6deXnxscrP1+zZsCpU5Qt++4dsH07ULQoHRMEeY8OAwNgyhSqLClblvqdNGhAx0RfbjnLffnuePmSeqSULg2sW0fSW7Vrf913Tl2VGYIAzJ2rWDGyezf5pd26kUyYvT3Jrfz0E0l9tW1L/VGMjEj6pWJFjVSxczi6RkJCAl5J/AAAFQ0qaM8QQQDWrKHvm5AQ6o+kxmz+9evXo3///pBIJOjZsydOnjyptrnyFSVK0HXDwID6QF25QlWJZcvKry9RUbT+8731mG7d6HoCUG+ojx9pHCsrYPRowMcn6/eNHAn8/DNdb/r0IbnKzLi6yuW+Jk+mXqkcDifvkNuIiiAITCQSMZFIxARByPLRrVs3paI2+RltZoR0E3Vh3URdWFehM7OEBQPANmzYoHE7smTiRIrUGxszduOGRqbct28fA8DMzc2Zt7e3RubMcyQlMTZoEGPW1lT98y3++UeejWdhQZmPGTP2MvLxI2NFitC5vXp9+zzGKGPRwoLOtbFhbOhQxu7c+f57ZLx/z9iqVT8+j8PhqBVdypTUJLrgD3QTdWEl4MwAsD59+mjcjhwTH89YtWqMGRgwVr8+Y3PnZq+6UMu8ffuWGRgYMADsvh7Yy9EB4uPp+dw5uf8k+664fJmxwoUZO3JE9fM+fcrYo0eK1Soy4uIUs3xDQ6kimDHyqWR2yh7NmjF26dLXPtm//zJmb89Y69aMRUer/jNkZu9exoYNk393ZLSxa1fGzp+n827eZKx0aap0yUhysvpt5DDGuD+gbX+gulCNAWClSpVikqy+AzTNgweMGRnR/+rmzWqdKi0tjfXs2ZMBYMbGxuzcuXNqnS9f8fw5fedbW1O1SEYWLaLfb/v2Px5n3Tqq8JDRpAm918qKrotZER3NWMmSdF7fvlmfExMjr9b866/sfSYOh6NWtF4x0q9fP/Tt2xeMMTg4OKBfv37pj+HDh2PVqlXYvn27snEbjhYRBAEeQm0MGjQIffr00bY5xOLFpCUuFgMdO5IOpZrp2LEjWrRogcTERLRt2xaBgYFqnzPPYWAA+PpSBkaPHkBKStbn/fwzZSQ2bkyVHcOGUYZeVprxdnbAvn2UCbJ3L2VKfosGDUjjumRJICYG2LSJMiorVQKePv32+2JiSGN77Fjg779z8ok5HA4nz5DMkvEO1LNgzJgxWrYmG/j6Uga6RELZ9LNn03f5oEHkP+gozs7O6NWrF2rVqoVUno3IyQ6yvmuPH8v3yTJmT5ygyql+/VTvLzdvDlSvTv5d4cJAxsxpS0t5lu+pU1RdYmJCmd0Zq7o6daK+cBcuUE8SQaD9jFFVcffu5P+dOUOVJOruP9KzJ/U9efSI/NX//qOq5i1byO7mzem8+vXpO2bRIvl779+n6vbLl9VrI4ejZRhj8GcBAIBRo0ZBJFK6Za3y1KhBvZYAumd79UptUxkYGGDnzp3o1KkTxGIxxo0bhzReOaYaSpcGypen79+OHamvU3AwEBkJtGhB51y+/GM/bsQIqvCQIVMaiYujfqT793/9Hhsb4J9/qLpx505qxp6R9+9J1WLFCmDAALqucjicvIOyEZoSJUqwzp07KzsMJxO6khHSTdRF4/P/kIQEuYZxkyYamTI2NpZVrVqVAWDNmjXTyJx5juBgxuzs6Pf2v/99/1yJhHqQGBvT+VWqyPWsM7N6NZ0jCD/uCyKRUFZinz6MmZnR+35U2TZ7tryC5ePH75/L4XDUBs8Q1Z4/4C5UYgCYh4eHxm1QisBAyurr3Fme+b1nj7at+i4JCQlMmp1qRg4nI2PGyP/Gq1alfWIxYyVK0L7M1Q3KkrnqQxDk1SsZ+flnxfOePKGqER+fb4998yZ9hvbtGevXT/7eadNU+xlyQ0ICY1lVj8sykl1cNG9TPoT7A9rzB5oIjRkAZmFhwaI1UcmVXSQSxry86P/Q1ZXUCtRISkoKGzFiBHv79q1a58l3hIUxVrQo/R6rV6deVTY21PupUCF5RYesCjG7JCbS3wVA6xHfqnSaNYvOmTCBtj98YOzsWXoPh8PRObReMSIjKCgIhw4dUnYYDif7mJtTFpyXF+lHyrh8GZg5E0hMVPmUVlZWOHToEAwNDXHx4kV4e3urfI48j5MTsHw5vV6yhLI2voVIRNmCly5RBsfTp8C5c1mfO2oUMHQo3Tb37avYxySrcZs2BXbtAt6+BWbNotffY9YsoEoVqmBZvFit2rUcDoeji7xnoQCoWlivKFkS+PVXYPhw2jYxAerU0apJP8Lc3ByCLHOew8kuvXtTtUO5csD06bRvzx7ydQQB6NxZtfPNmAE0aUIZtCVKAH/8Qf55ZoYOJZ8PIL+ubFnqi1Kx4rfHrl6dKk1WrQKSkmifubnqP0NOYQwYOJAqRjZsIL36nTspQ/3GDTqnZ0/t2sjhqJkkJMEYxujYsaNu9ZMVieierlw5unczNaX9aqrmMDY2xrp16+Ds7Jy+b/r06fj777/B+L1i7nF0BI4epcrDR4+A6Gi6xlStSusIBgb0vduqFR3LDpGRdA1584a2R4yQ973KzMyZ1M+2Zk3aPnmS+kxlrECRIZVSX1IOh6P3CEwF39xisRi3bt1CaGgoJBKJwrG+ffsqO3y+JDY2FjY2NoiJiYG1tbVG5+5u0BXhLByhLAwlBGdckl7R6Py5ZuBAagjZqRNw8OC3L3hK0L9/f/z999/o2LEjjhw5ovLx8zxpaVQi6+8PtGkDHDlCTSy/h58flbxmlF/IjERCEileXsAvv+TePsbkUg4Z2bOHZL4A+eKDhv8vOZz8jjavi9pE2/4AACSyRIQgFKdDzqBIkSIatUElSKXUWDkqSt48U8eJiopCeHg4KlWqpG1TOPqEzI958YIWdpKSqMn4rFmK5yUnU4KKg4N27Mwut24BXbuSFErjxtq1JSWFGvMePJj18Z496XtGF6SF8jjcH9CePwAAUibFpsjNsLe316gN2SIlhZIgZCxeTNLLs2aRPJOaePDgAWrVqgUA8PT0xPr161G5cmW1zZfnuXkTmDOHfmfDhpF0NkDyht26AfHxQIUKwLVrQMGC3x+rcWM6DwC2baP1ggwBLdy+TYEPR8ev3ztpErBsGfmOsgRPAAgMpLWMqChKQDAzU+LDcjic3KKq66LSgRE/Pz80a9YM79+//3pwQeCai7lEm47Pz0Y9cVtyF0HsLdyEcngp9dXo/Lnmn3/k+uFTpypq/6oIX19fVKhQAYIgIDAwUCFLhJNNbt0ineakJMrk/euvnL0/JQV48IAy9lSFRAJMmUJOzezZXwdrGKO/p1mz6NxSpYA7d3R/QYHDyUPwhRDt+AMZ2Z26T6Pz51dOnjyJdu3aoXr16nj48KG2zeHoI6NHA2vXAs2aUcVtxsX62FiqnPL3Bw4cADp00J6d2SEpSXcWnRgDFi6k3i07dlAWc/Xq9PPs2lW+eMdRK9wf4P5AtnF3p35BAFW6zZunluBlamoqVqxYgblz5yIxMREGBgYYPXo05s6dm6/+RjXC06dUxWFvD5w+DRQv/v3z370DbG2pN5SZGVC5MlWcnDxJFSiVKwNhYcCzZ9QTKyMdOwLHjlHvrhEj5PvT0qgnytu3wMaNVB3J4XA0jqqui0pfFaZOnYp3796BMZblg6N/pLE0hHyRzXASFdOyNTmgTx9g61Z6/b//0Q2LinFzc8PKlSvx5MkTHhTJLfXrU7adoyMFRnJCRARQrRoFVr5XupqURBnC2eX8ecoCWbCA7BowALh3T35cEEia4vp1yjCpUePH2SkcDoeTB5AwyY9P0lViY0kGUc/80erVqwMAnjx5gpiYGC1bw9EIz57RwrqDA2Wz3rql3Hi2tuTPjB799SLgiBHAy5dAaio1OL90Sbm51I2uBEUA8gdnzKAGvNHR5BeuXEnVIjwowsnjJLJE/VvfuXJFXim6YAFJ8qlBdtvIyAhTpkyBr68vunTpAolEgpUrV6JixYp4/PixyufTCoxRE3RPT/KvtEWVKlQBcuPGj4MiAMl5W1kBtWoB69fTPnNzCoqkpAAhIcDHjySjlRl/f3ouVUpxv6Gh/O9q2TJKnORwOHqL0oGRGzduwNDQEBcuXAAAVKtWDXv37kXBggXT93H0iwD2BqlIhRnMYA8dLJH9Hn36yCWXxo/P2eJ4NhkzZgwvjVWWn36iwMaXkuNsU6gQ3egnJdFNqEx7OiPz5pGTNH9+9sdt3RpYupQWJD59oqBavXrk6GSkXj3gyROqcuEa8BwOJ4/ziX3CSckZRLIobZuSO/79FyhThhZCEhK0bU22KVq0KMqUKQOpVIotW7Zo2xyOJujbFzh0iGQ5Ll+mIIkyzJ9Piz1t2igGBt+9I1mZhg3pf0MspoV+Ts4wMOCSWZx8RRpLw2nJORyVnMAn9knb5mQfe3tKftu5kyS2jh37cX9JJXBycsLBgwdx9uxZAMD79+8xYcIEtc2nUQIDgQsXKHB//Lh2bSldmvqQyoiMzN77ZHbL1iBMTKinFUAyW2vXKp4fEUHPWSVkDhoEFChAst/HjmXfdg6Ho3Mo7dFFR0ejfPny8PLygiAIMDIyQo8ePeDo6IiFCxeqwkaOBmGMwV9KjakqispDJOih0z9rFt2wREfLL2Zq4vnz51/11eFkk4xNOiMishfEEgRyWuzsSE5r+PCvM4GLFKHgxpw5wN9/Z9+eiROpjPbKFaBHD7Jn8mTg1SvF8woUkDtiEgmdz+FwOHkQf2kAEpCA11I/bZuSO1q3pu/po0epT9TVqyTB8O4dLQjrMEO/yDJMmjQJ7du3x6vM1yJO3mLsWMXtYcOUH1Mkokfz5hQoiY4mmRAfH6qsfvuWzuvRQ/m5OBxOniaYvYMYYogggi1stW1Ozvn5Z/n9W9myap+uZcuW8PX1xfjx49GiRQu1z6cRSpakCsMtWyjJUReQSikpsmRJSl78EQMH0vPs2dS7CgDq1iVlCICqLFevlp/fvTs9jxwJPH+uOJalpfxavWJFbj8Bh8PRAZRe9baysoL0y4KmpaUlfH19ce/ePQQHB+POnTtKG8jRLHfu3EEMYmAAA5QUSmjbnNxhZCQvqwwKUts0s2bNgru7OzZu3Ki2OfIFCxdSw7M9e7J3fsmS1IxdJKLAR+bMjl9/BX77jV4PHgxcvJh9WwwMqEHbvn1A+/YUdMnYaC0jiYnU2NTLi4I0HA6Hk4eIi4tDEAsGAJQWlfrB2TpKsWLAkSOAsTFl8zVpQj0BnJ0piK7m5AllGDNmDMaNGwcDAwOcOHEClSpVwg41SIRydIQBA0hm9MoVYMOGr5ul55bz52kha9YswMWF5Efc3KiCysIC6NQJGDdONXNxOJw8S8CXxMnSIlf9TJx8/Bj48IEWs1XZp/I7lCtXDsuXL8e0adM0Mp/aEYmApk2pUsLOTtvWEIIAPHpE9+Xduv3Yr5szhyoyxWKgd29KSkhNBf74g3rUArRPFhxZupQSMfv0ASpW/Hq8UaNo7enmTeD+fZV+NA6HozmUbr5etWpVvHnzBp8/f0ajRo0UgiEuLi7wl+nycXKEJpur/WLUO/31bcldvGGBGDBgALZt26bWedXKwYO0EOLpqbYL9/r16zFy5EjY2Njg1atXKFy4sFrmyfP873/AtGm0UPXqFWBqmr33LV9OVR4GBsDixSSdJpO3kkopM2jfPsoO8vbOeXbQgwfU0G30aKoSyYpffgH++YcyTW7e5LIKHI4a4c1WNesP+En9cU96H2XLloWvry8EfZYPPHUK+PNPklr4/Jmeu3QhqS0dx9fXF1OmTMG5c+fw8uVLuLq6atskjj4hkZBPPH8+ZbtaWlLlVI0alDyUsQqWw9ETuD+gmc8t8wmiWQxOSk7DwMAA7969Q5EiRdQ+t8pJSwPu3qXvvT59tG0NR1lSU4HkZOodEhVFyYpv3wLu7pRg8L31H4mEkgUWLqQeVg8fAuXLU0Lk77/Tfnd3Wj8wMaH3SKXy+3yxmP6OZGsLffuSPNvkybQmweFwNIbONF/v168fvLy84OfnhxkzZsDIyAiMMYhEIsyZM0fZ4TkaxlawQYkSJTBkyBBtm6IcXbtSxr8asxmGDh2K6tWrIyYmBlOmTFHbPHmesWOpwic4WLF09UeMH08ZKxIJ9QRJSZEfE4mA7dspYBETQ38LOW1gW7MmOU3fCooAtNBmYQHcuQPs3p2z8TkcDkeH8ZOSnvKQIUP0OygCUJ+F69ep4XR4ON3U/vWX/Pj791RtqIPSmG5ubjh+/DgPinByh4EBSWU9fEgVU/HxJDHn50cVuDwowuFwfoCflBJd27dvr59BEYCaZXt6aiQo8unTJ3Tq1Alnz57Vv2b1+sDnz9SA3cmJqjQKFiSFCEdH4NkzusbFxX37/QYGwIIFJLO6bRsFRQBKsPzjD2DjRmrsLguKAPKgyIMHdO1s21YuAz59Os3/55/q+LQcDkcDKB0YGT9+PI4cOQI3Nze0bt0aL1++xMGDB+Hj44M+PBqvd1QQlUdAQAA8PDy0bYrOY2BggFWrVgEAdu3ahZSMC/Oc7GNmRk4IQIGIa9ey9z5BADZvBtavp6zfzJUmpqbA4cMUdHn1Sjntz5gYuQ5pRooWBWbOpNfTpmXdDJ7D4XD0jI/sIz7hE4yMjNC3b19tm6N6DAwAW1v59rhxpJl944a2LPohrq6uCA4ORtz3bvY5nG9hYkKLQNWqUcXUlx42HA6H8z3SWBoCWSAA4Ndff9WyNfrBhg0bcPToUUyVSTNxVMuePZToEhMjr9AoXZoaw9vZUaVH9+5UVfI9OnQAevaUb9+7RwGVoUOBb2Weu7nR/b6fH/UXkUppn5eXonIFh8PRK5QOjPTu3RsXLlxIj4a7uLigc+fOKFeunNLGcbSDgYGB/meHSiTAuXOk+6jGBqtpaWkAAEdHRxgbG6ttnjzPL79QVUdKCtCuHWmFZgdBIN1PN7esjzs6UtBk8WIqjc0NYjE5Tr17A507U3VKeLj8+LhxFHwJCSHd1dDQ3M3D4XA4OsKrL83Wu3fvDgcHBy1bowHevaPnT5+0a8cPGDlyJJycnHDkyBFtm8LRR6ytqeeOoSEtAMn+7jkcDucbhLIwiJEKV1dX/W4i/vw59Z5Us9RRTEwMli1bBgCYMmWK/q+p6CIZ/w7bt5e/rlQJOHsWMDen502bsj/ms2dA8+ZAgwZURQzQetKKFcCMGfLzLC0pKVMkogRNmXqFjIAAUp34+DF3n43D4WgFpQMj+/btQ6tWreDs7Izp06fD19dXFXZxNEwki8JbaTCkLA9FuPv2BdatI/kMNXHlyhUAQOPGjbnjk1uSk6lh2r59QKNGlKnRsWPOqy8CA6lB2suXivvr1iXNT0PD3NlnZETyEwAtKAwYQE17a9YkCS0TE+ozUqAAaddOmJC7eTgcDkdHcBKKo7BQCKNHj9a2KZrBzIyevyQ76CKvXr3CyZMnERsbi4pZNQDlcLJDiRLA/v2kj+7kRAkpiYnatorD4egoziIntDJogXXr1sHAwEDb5uSeZ8+ArVuBNWvUeq1fs2YNPn/+DDc3N/To0UNt8+RrypShYIRE8rU0Wq1a1FfryBFg5MjsjykWU0Dl2TPAwwN48gS4fZvu6xctAm7dkp/bqxfd+xsYUMJk//7yKpGxY4HHjylxk8uocTh6g9KBkfr16wMAQkJC8Oeff6JixYqoU6cONm7ciOjoaGWH52gASwMLvGAvcEN6C754pW1zVIOBAVUeAMCJE2qb5ubNmwCAJrKFc07OiI8HqlcHXFwos+L4cdqeMCHnjcwnTaIAyPd6fSQmAhs25MxREQRg9mzSFJ05kwIiAOl1t2xJ5bqNGpHG6U8/kcPN4XA4eoiVoSWsDC1RwdgNnU065B9ZTVngXEcDIwkJCfjll18AAG3btkVZWcNPDic3dO4MyCrBTp+mXml2dpRNzRdyOBzOF2Q+gYtRCbRq1Urb5ihH586AvT1VA5w5o5YpYmJisHz5cgDArFmz9DuQpOuIRPTIKjG1dWtKssxJ0mrNmpTgWKECqT80bUp/L/360XWxSxdKwpTRqxcldRoaUpBk/37aP2cO7TtwgCS/OByOXqB0YOTGjRsIDg7GsmXLUKtWLTDG4O3tjZEjR6Jo0aKqsJGjZl5J/fBOGgIBAtwM8tDNtiwwcvy42m70Tp06hatXr6JDhw5qGV8viYggDeuVK3987vTpVOERFQVMnUoyDw8ekDxVxoZn2aFLF3reuJHKart3J2fm1CnaL5GQkzNiRO7KqGvUAObNowBIeDhVkcTFUWYJAJQqRXPlB9kZDoeTJ5Ew3Ws+rhFkixc62HxdIpGgR48euH//Puzt7dMlOjj5kMePgfHjKau1YEHA1RVYuFA5HzcsjJ4/f6Zs6rNnVWOrKkhLIxmT7Pae43A4KiM+Ph6R0khtm6E6TEwosx/ImcRSDpBVi5QuXRrdu3dXyxycHBIdrRjQ+B4lS1JliIcHXRNbtqTES3d3Wt9o3VpRcrVrV3mv0b/+oueaNalnKkAVK2/fquqTcDgcNaJ0YAQAihUrhvHjx+Pu3bs4fvw4HB0dwRjjzaj1gLS0NNxJvQcAqGVYAzYiGy1bpEKaNaMG3EFBtJitBkxNTdGoUSMUKlRILePrJceOkTTDjh3fX2SSSCiIIWP3bpLPYix3N/lt2gBWVlR5cuIEZWrs3EkZI0FBtPDVrRudO2eOcgsJhQtTwO3YMcqwzExQEFWZZCc4xOFwODrChdTL8E59AElektXMDlZW9Lx//4+bdWqY//77D6e+BPh79+6NUqVKAQB8fHxQqVIlvMwsH8nJu0yZAhQqRL7Sx4+02DNjBkl+5Jbhw2nhaNQo2p44kXw4XeDCBdJ7X7BA25ZwOPmOjRs34rD4GF6k5aFrzJAh9HzqFEktqRhZ/6+KFSvyahFd4Px5Slxs0QKIzGaQz9aW/j7c3Ki6qH174H//o2OvXtH6QkbGjqX7fVkiJgBMm0bBlZgYSqT091fFp+FwOGpEJYERPz8//PHHH6hcuTI6dOiAiIgIAIClpaUqhueokcuXLyMZyTCFKaoZVNG2OarFwoIi+YDiArwaOH/+PCQ6mGmqFTp1IudgyhR5Fm5WGBgoNk+rX5903tetA7y8gJz2K7KxoRLYnTupGdratVQ1tG8fZYAAcrmUGjVyVl6bFZaWig3foqPljdd/+42qS7gkBYfD0ROio6PxVhqMh5LHiGHR2jZHs0ycSIkUDx7oXENqd3d39OrVCwBVj8j6mVlYWOD58+cYNmwYGL/W5A8OHQLKlVPc17YtoEzPGUEg/2nePEr6ePlS7c2Js03DhqQlr4YFTA6H83327NkDKRgY8tD1pWxZYMwYet27N/BFEltVzJ8/Hx07dsThw4dVOi4nl1StSmoU/v50z57dflr29vKgSqlSpGoBUF+ujPf+AF0/x46lSk4ZhoaUaOPqSgkMTZsCISEq+UgcDkc9KB0YqVGjBtzc3DB79mw8f/4cAPVb+PvvvxEmK8/m6Cz79u0DAJQycIFIUEmcTLcYMYKe9+5VLH1UIaNHj0bLli2xdOlStYyvdzg4UM+Q3r1/fO68eeRQzJ9P1RdPnwK//w5cuQJcvUqBhZcvs6/7XqEC8MsvVMUxciRVdcgktgDg33/pWdXlzQEBQOPG5DC1aEFN2QH6OQBAcDAQG6vaOTkcDkeFHDlyBFJIYScUgJ3ITtvmaJa6dYGjR0lCwdVV29YoIBKJsHv3bmzduhWpqanpgRFZNur169exX6ZtzcnbWFuTTr6sspYxqpA1NlZ+7AIF5FWuf/xBmbEZ0Ubyj4UF+YgWFpqfm8PJx7x69QqPHz+GCAJcDXTrmqg0y5ZRQDk5GVi/XqVD//TTTzhy5AhEX/pkJiQkoEOHDvDx8VHpPJzvkDFRpFAh6idToAAlTw4Zkv2kRScnCpydOAH07UvrGxcu0DXp2rWsx0lLA3btokbsJUqQT1muHAX4ecI4h6PbMCURBIEJgsDKlSvHFixYwIKDg5UdksMYi4mJYQBYTEyMysfuY9iL9THsxXoZdGdGMGIA2NWrV1U+j04glTJWtSpjbm6MPXqklim2bdvGADAzMzMWFBSkljnyNPHx9Hz3LmO2tnSrX78+Y2lpjI0fT9vt29PvUhlu3ZIvJbx/r7zdGbl2jbF69TIuVdDjn38Y69yZXpcqxdinT6qdl8PJR6jzuqjLqPtzy3yCIoIjA8D++OMPtcyjd9y4wVhqqrat+C7z5s1jAFixYsVYXFycts3h6DtSKWOtWzPm5ER///HxjG3ZwpinJ2MiEWOrV2vbQg6HMcb9AXX7A+6iygwAa926tVrm0ToJCYwtXMiYWKzWaaZPn84AMFNTU/bXX38xqbL3spzvI5Ew1qgRY7Nny9cXGKP7dAMDuh/fuDF3Y8vu4Tt0oHGmTlU8LpUy1rgxHVu3Tr4/JISx5OTczcnhcH6Iqq6LSpcIDB06FHfu3IGvry+mT58OJycnZYfkaIhkpKCgYA9nZ2d4enpq2xz1IAjUSPLFC2oIrgb69++Phg0bIikpCePHj1fLHHkaCwvKqGjWjOSo6tUjKa65c6npJkCVH8eP534OxoAOHeh1zZpAsWJKm61Aw4b0Gfz9qQqmYkXaN2ECICunDgigjBMuecLhcHSMZJaMcEYyqD169NCyNTrA7dtUBdismdqqTVXBpEmTULJkSYSEhGDhwoXaNoejbWJiyAfp0IEqnwICcvZ+QQC2bSOf2dOTKl2HDqWsWamUGr/zRugcTp6GMYYgKTWM7tmzp5atURPm5tQHwsiItpOTs9+DIgeMGTMGLVu2RHJyMoYMGYKePXsiVcf6mOUJQkKAuDiqDrl2jdYQypUjBQqA7sllfULGjCHZ1JxSoABw8iQpXAA03rlz8uOCQBWdAElqy/6eihYFTEzk5x0/TtdTDoejU+QqMDJv3jxs27YNAODo6Ihz585h3rx5WT44uouFYA4vgyZ49epV3m4QVriw8v0kvoMgCFj8RY/5yJEjSNGVppX6xMKFQHw86XieP09a74sWKZ6zfXvuxxcE4OJFWixYvlw5W79HqVLAzJmAjw85ZjNnkmzXX3/R8ZMnAT8/9c3P4XA4uSCAvQEDQ82aNVG6dGltm6N9IiNJI/raNeDvv7VtzTcxMzPDsmXLAAAbNmzQsjUcrfPvv8Ds2bTwEhhIvkhOcXSUS34UKUKStP/7H9CxI8lpcdlYDidPE4koxCIWIojQsWNHbZujGcaNA5o3Bz5/VumwhQsXxunTp7F48WIYGhri33//xcGDB1U6R74nLY1kq8qUIdmrAwdoOySE7vu/SP1j4kS6jonFX68xZJdduxS3M/ewHTmSEnHj4ylIEheneHzqVLJp/nyeKMnh6BiGuXnTnDlzULduXQwcOBBz585N1zvOilmzZuXaOI5mMDU11bYJmkEqpYunKrSYM/Hqixazm5sbjNUwfp5n0CDg9GnKbnz5kqo6xoyhHh2//05ZkLIsjNxSpQppyAN0cy8LBjIGJCSoR/tz5EjA1pb6ngBA5coUPOFwOBwdIY2l4aWUrmGjRo3SsjU6QqVKgCyr08tLu7b8gEaNGgEAoqOjkZaWBkPDXLn2nLxA27akgx4ZSRmyTZooP+bq1fQs6xvn7q78mBwOR2d5JX0NAHAVXGBtba1lazRAbCxVAYSHA23aUB8JFfY1EolEmDx5Mp4+fYrdu3fj/fv3KhubA0piWbwYmDwZ2LSJfofPnwOtWwM3bgDt2gH37tG1cccOCkrMn5+7uUaOlPcrtbCgKsqMiETA1q3UbP3mTeCnn2h9w8qKjhcvTs9z5tB1etUq+XoEh8PRKrmqGHF2doajo2P66+89OLqJvzQACSxB22ZojjFjqAph3Tq1DL9nzx4AQO/evb8bKOR8g86dqaR582agRg3at2wZMGwYsGQJ0KoV8PPPqpmLMRpvzBiq3mjbFujWTT1lrXFxQMaFxsWLuQPE4XB0CimkcBFKwgbW6C1b/MzvLF1K14TWrXV+Idja2hqNGzdGhw4dIBaLtW0OR5sUKQLs2UNVstevk18VHq78uBIJVfMC9D/B4XDyLB6i2qgmqoKKovLaNkUzWFvT91uBAsCdO0CnToAa1B9sbW0BALGxsSofO98zYQIFRgC672YMOHKEkhEDA+W/Uxsb8u/MzOTvzUnlRsOGNF5EBFUUN2z49TnVqsmbtMuCI7LKkVGjSCZcEGhNqlMnSs7kcDhaJ1dpZUFBQVm+5ugug0z6p78ecG4wvLy8YGpqioCc6g/rK6amlP359q3Kh05NTUVYWBgAoFevXiofP9+QlT66oSHw66/0UBX79pGs1s2bQMuWwOXLpC27ciU5VqrE2pqqVAICKAO5dm3g2TPSPh0wgIIyHA6Ho0Ey+gMAsD+NZB0kEkneltXMLuHhcunG337Tri3ZwMjICFdkOtocTrNmlI06ezawfj35IA8e0CJRr160+JdTxGIKsly7BtSpo2qLORyOlsjsD+xK3aMdQ7RN5cqU2d+sGS1q9+oF7N8v70GiApydneHm5pYeIOGomFmz6HcWFETXwKVLScK6Th3A15fuxStUkJ/PGEleh4ZSlUd2E1tLlqTnQoXoef164O5dCnTIKkNq1qS1hmbNgFevaI5y5ejYuHGAkxPQpw9JfzVpQv1w7eyU/xlwOJxco3Tz9evXr+PJkydf7U9JSUFiYqKyw3NUjIRJ0qUyBg8ejKJFi2rZIg1RogQ9BwerfGgjIyM8efIEvr6+XJtdVcTEKDY0UxWxsaQxCgAzZlC57cqVtD11KvDwoernbNyYpMI8PCgTqUEDasjetSvw6JHq5+NwOJxswjJkyvGgCEhu8+efKbOwTp2sswE5HF1nxgzqrwfQgkyxYiQBcuJE7sYzMyPf6fhxSljhcDh5jmgWDYlEom0ztEedOiSpZWxMgeQ+fVTaB2LKlCl4+fIlJsruQzkkaVW2rGr6b5qbU5ACoHv7x48BNze6bnl7KwZFADq+aBElwmSVnJkdAgLo2rprF60jZEQWHLl8WR4UkdGlC3DpEmBvD9y/T71P0tJyZwOHw1EJSgdGGjdujJEjR2a5P1/oUuoZ/tIAvHz5Eg4ODpifW31FfUQm66aGwAhADdjLZb7ocXLH3btA+fKqr94ASGv0S3UPbG3J4TUyInmr1FTgn39UP2dGFi2i4AxAC28yB47D4XA0zGfpZ5xMO4OH6ggI6yvJyUCLFhTI3rIl+xmEOkB4eDi8vb21bQZHFzAwoAppWc87xigjWtn7Mn9/1UhzcTgcnSKNSXAm9Rw8PDwQGhqqbXO0h5cXIGuO/u+/8sbdHNUTEwOsXUv35bkNTGSmdWuge3eSfxw7lq59DRsCrq7ycwID6bl6dbnE+uzZubu2nT4tf71379eBtJo1STFCxufP8tf16gFXr1ISw4ABPOmAw9EySgdGAMWMQxkJCQlZ7udoDymT4j+JDwBg+vTp+auUU5Y5FxGhtimuXLmCO3fuqG38fMODB+QkqaNHUbNm1IQNAEaPpiZpgwaRA1WtGvUdUSd9+ihut2mj3vk4HA7nGzyT+iCSReJ///uftk3RHSwtST7rzh2gYkVtW5Ntrl69ilKlSqFnz574nPHGm5N/MTGhxq4yKZiAAGDoUODNm9yN9+EDyY/WrUuyJBwOJ8/gL/VHEpLx4cMHODg4aNsc7dKuHd2H/u9/VHHAUQ82NlQp4uX1dbWFMixfTgkuy5Z9ndxy4QJVbyxYQEGMYcMoEUYiAQ4dyvlcPXqQ7NqAAZT8+L1kmuPHARcXqkqSUakSBWoGDMj53BwOR6XkOjDStGlTNG3aFADw4sWL9O2mTZvCw8MDPj4+sLGxUZmhHOUJkgYjFnGws7PD4MGDtW2OZnF0pOeICJWWxcrYs2cPmjZtil9++YVLyCmLLLhUt67qxzYxIb3tRYsoKAKQRMSSJVRm6+Ki+jkz0r079Rfp14+azHfooN75OBwOJwviWTzeSClr7jc96KOhcfSoUgQAatWqBRsbGwQGBqJu3br5p38c5/sMGwbcu0eLe4mJFNzo2jV3fnB8PP1fBAVRpuvx49SzbexYYPp0xXOvXAGiolTyETgcjnrJmDg5adIkGKmwr4be4uhISRIqzOLfs2cPKlSowKW0MiLrxalK1Y1ixUiOu1atr4/dvUsKEb//TteutDQKbgB0PcsphQoBe/YA27ZR4sH3uHiRqmR++YVkvGRkbAQfFQX4+OTcDg6HozS5/ra/evUqBEGAIAiIjY3F1atXvzqnWbNmytjGUYIJFoqZ787mTjgTRz0bRo8eDUtLS22YpT1kgZHUVODjR6BgQZUO36ZNGxQvXhwBAQGYMWMGVqxYodLx8xWywIi6GnyKRJSZ0qYNNTpLTgZKlVLPXJkRBGoOBwBSKdkSFERN13r1ouwZDofDUSGZ/YESFs44nXgWDAyuhi6oWbOmlizTMS5doizRDh3kDTT1BAsLC5w7dw5t2rTBq1ev4OHhgWPHjqF+/fraNo2jbapVo/5p8+ZRUkZqau4Cf66u5J+1a0fBloyJHUWLUgaubNzBg4GEBODWLc35VxwO54dk5Q/4iJ8jLjUe5oIZBg0apCXLdISrV4FGjdSSHPHx40e8fPkSlStXVvnYeRbZvbIy3LxJslnm5tRs3caGgiJr1lBSpKzS4+ZNenh6qsb2zCxbBjx7Bly7RmscixZRI3bZ53v5EmjVil7fvy9v7s7hcDRCrr9p+vXrh759+4IxBgcHB/Tr1y/9MXz4cKxatQrbt29Xpa0cJZBAglJGrrASrDB69Ghtm6N5jI1Jd7JrV0AsVvnwNjY2+OuvvwAAq1atwvnz51U+R74gOFiu/enhod65KlemrBJt3bSLRJQ9UrUqMHw4SVQkJWnHFg6Hk2+Ik8bjUQplqzUw5Qvn6SxZQpl8K1dq25JcUblyZdy7dw81a9bEx48f0bRpU+zfv1/bZnF0AXNzkoUpXx5wd8/9OA4O1Ei2a1fqY1KzJkmQLlsmr0KRSsmXiYggv4b3JOFwdBYpk+JG8i0AgIdJbVhYWGjZIi1y4gTQpAklzkmlKh9e1tje29sbUjWMn+f46y/AwoKuL7ll0yYKdP36q/waNWYMcOAABUju3aPft+zYjBnK2/0tjIyAw4dpPrEYmDgRaN5cfo0sWhQwNaW1kI4dqRcph8PRGLkOjGzfvh3bt2+Hs7MzPD0907e3b9+OdevWYfTo0fn74qpjGAqGaG7mhfE2o2Fvb69tc7TD6dN0ISxaVC3Dt27dGgMGDABjDK1bt8akSZO4rFZOuXZN/nrbNu3ZoSnmz6eyWoCcsywq7zgcDkeVXEi6iFSkoZhBUbgYltS2ObqDrHG5nx/JK+ghRYoUwdWrV9GpUyeIxWL0798fwcHB2jaLk5cwNydfWiymrNZVq4CePeVZryIRVai4uFBfk59+AmJjtWszh8PJkofixwiXRMAExqhtks+rR//9l54fPwZev1b58GZfJJOCgoLg5uaGVatWIUZ2D8j5mhEjSNVh0qTcj+HmRtUge/YAW7fK93ftCvz3H/U3kSUl1qsHHDminM0/ws6OAnAbN9K19PJloH59kqq0saFjhoZUnXn7tnpt4XA4CijdfP3YsWPo168fQkND0/eFhITg+PHjePbsmbLDc1SMgWCgbRN0g507gWnTVF49snr1avTu3RtSqRTLli2Dp6cnzwrJCR06UGUPQBUdeZ3x4+WvHRyAhg21ZwuHw8nzREoj8VT8HwCgjXlrCHrWS0OtLF1Ki7q7dlG2Xlycti3KFRYWFjh48CCaNGmCbt26cb14jnr4nrxJkSLA+fPk1zx+DHTqxLNfORwdJCCV+lE1NWsCc5G5lq3RMr/9BhQvThn8NWrQdmSkyob/+eefMX78eFhbW8PPzw/jxo1DmTJlEKenvoba2bWLEgb37Mn9GI0aAQsX0uuxY4Hnz+XHnJzoOjVoEDBnDsmp2tkpY3H2EATqR/LoEalWtG4NyCTuU1MpMcfYmOS/OByOxlA6MDJkyBD06NEDJiYm6fvMzMzQo0cPDP1REyKO2klmyTiYfARBqW+1bYru8PEjMHo0yQr07KnSZuyWlpbYvXs3Tp48ieLFi2Po0KEQKauNmZ+wtqbKnkePKItDRnKy9mxSJx07UgPTsDByyHiVHYfDUSMFhYLoZN4e9U3qopiheqon9ZaBA0nmwNQUOHWK9J3btKFMPj1DJBLh7Nmz2LlzJ4oUKaJtczj5gcy+dOnSwJkztOBz+TIFR/gCIIejU/Sw6IZeFt1Ry6SGtk3RPpUqUbVbkyZAYiKweDFQsiRV96sAS0tLLF++HCEhIVi/fj0qVKiA3377DVZ61tNMY/TqRYGNXr2UG2fSJKBpU/qdNmkCPHkiPyYSAVu2ALNnk++nScqVo2bwS5bI961eTc8tWvC+oxyOhhEYU25V2NraGiVLlvyqOsTd3R1BQUGI5eXTuSI2NhY2NjaIiYmBtbX1D88fZNJfYXtryg4AwNixY7F69Wq4u7vj8ePHfJFexuHDFBRJTQV27KCGlComLi4OFhYW6T/z27dvQyQSoY66mornRRijjJ3Nm6mJZ4UK2raIw+FoiZxeF/MKqvIHONnk9m2gTx/qd+XqCvj7yxuxjhwJSCTUG6pNG8o45HDyOy1bko/WrBk1Z2/TBnB0pGOXLtG+EiXof6tAAe3ayskTcH8g+587o0/A/YFswBgl6c2ZAzx4APz+u8qCI4rTMDDG0tcJbt68iePHj2P+/PkKCcecL6SmAiEhFKzKKZGRdJ16/JgCDqdPk3RWVqSlkdRV1arqa8SeFRIJyWgBJPuVlgYsWACULUsSX7KqEg6Ho4Cq/AGlV8nT0tIQHh6OtAx6zKmpqQgPD09vMpUfuX79Otq1a4eiRYtCEAQcPXpU4zb4+vpi3bp1AIDly5fzoEhGOncG5s6l12PGAO/eqXwKKyur9J/558+f0bNnT3h6euLPP/9U+Vx5FkGgRanoaHkWha4RG0sSYEZG1CeEw+FwMqAL/kBycjLi9bDyQSvUq0e9EZ49o5tjWVCEMZJ02LQJGD4ccHam5tObN2vX3h/w5s0bdO3aFX/88Ue+9ss5aiI8nORIEhKAY8eAwYNJSmv0aDru5UVyKKdP86AIJ9+jC/4AAOzcuZP3t/gWgkDBXW9v6vmQUfb43DmqYHj/XgXTCOnrBKmpqRg0aBCWLFmCFi1aIDo6Wunx8xSMUdWhi0vupLUcHOT9PGJigJs3v33u1Kl0/WreHHj5Mvc255TISKBaNQr8rFpFclvBwcDFi7TOoKe97zgcfUHplXI3Nzd8/PgRvXr1wp07d3Dnzh306dMHUVFRcHNzU4WNeklCQgKqVKmSHpjQNFKpFEOGDIFEIkG7du3glVGWiENMngx4eNDCdo8eKu83khGRSARPT09IJBJMnToVZ86cUdtceY6xY+n5r7+Affu0a0tWnDhBclhpaVSOy+FwOBnQtj8AAHPmzEHZsmVx6NAhrdmgVwgC9blq3ly+TyoF1q8Hpk+nLEJBINmNIUPUklyhKvbv349Dhw5h5syZKF++PHbt2qWQzMThKEV4OD07O1PCkUwXfcMG+Tm1a9OCloyLF4EPHzRnI4ejI+iCP3D8+HH069cP5cuX5wkT30MQgLZtFftO/Pkn3YvWqQO8eKGyqYyMjLBkyRJYW1vj+vXraN68OT5//qyy8fWe9+9J4hSQ9wzJKba2FMTfto3WgLKCMXmyS3IycPBg7ubKDY6O5FMGBAD9+wP29sCECXTs8mWSGedwOGpD6cDI4MGDwRjD4cOH4enpCU9PTxw8eBCCIODXX39VhY16SevWrfHHH3+gU6dOWpl/4cKFuHHjBiwsLLBq1Sqt2KDzGBoCu3dTSeWdO9++SKoAGxsb7N69G2O/LPIPHz4cnz59Utt8eYqGDYERI8hZ+eUXuWOkK3TuTJklx4+TzAqHw+FkQNv+wMWLF7F48WKEhYXBUFamz8k5BgaUKbpgAXDjBi0IV61Kxy5c0Kpp32Py5MmYM2cO7Ozs4Ofnh759+6J8+fLYuXMnryDhKE/lyrRo8/YtMGsWLewUKgQMG5b1+evXk356tWoUIOFw8hHa9gfev3+PQYMGAQD69OkDSy7PkzOWLwfKlydJpwYNqEeEimjfvj2uXbsGe3t7PHjwAM2aNeNrBTKKFwcqVqTXAwbkfhxzc3q/rBL43TuqIJEhCCThXbgw9QDp2zf3c+UGQaC+JyNGkGKGTJLSxYWumRwOR20oHRgZMWIERn5ZDJRpJQLAqFGjMOxbTjHnK1JSUhAbG6vwyC0h0lDMmjULALBmzRq4ZMzS4ihSqhSwaxe9ZkyljdgzIwgC/vjjD7i6uuLt27fo2bMnz9rMDoIArFkD9O5NVRldu5JOta5gZkYyX+3ayRfJOBwOJ5eo0h9IYAno1asXGGMYNGgQOnTooEJL8zmFCtH3vkzyUUcxNDTE7NmzERQUhEWLFsHe3h7+/v7o168fOnXqBLEaq2U5+QADA2pom5GICGDt2qzPb9qUFpxCQ6kia/JktVZsczj6jCr9ASmTonv37oiKikLVqlUxb948FVqaT6halRIjPDyAT59IKvDcORUOXxVXrlyBg4MDHj16BC8vL0RFRalsfL1FEAAfH1qnmThRNWPGxACtWpG8VmCgfP+0aXR9evmSemNpAxMTStydMoW2Z80iyW4Oh6M2lG6+LuPt27e4f/8+AKBWrVoooa0vEh1EEAQcOXIEHTt2/OY5c+bMwVxZz4sMZGwis7CqvMeCQQELhfN+uzIo/fWIESOwYcMGDBw4EFu3blXS+nzCs2eAu7t8+/lzoEwZwNhY5VP9999/qFOnDhITEzFp0iQsWbJE5XPkSVJTgS5dSLqqaFHA1xewstK2VVkjlVITNe7EcDgqIy80W1WHPwAo+gQyfyA1NRWNGzfG7du3UbVqVdy+fRtmZmYq+BScdCIjKbvP3l7blmSb+Ph4rF27FnPmzEG/fv2wceNGCLLsSQ5HEyQmkkTIpk20Xb06cPIk9SbhcLIB9wey5w8Acp9gwoQJWLFiBWxsbPDw4UOUKlVKyU+Qj4mPp3vS8+fpXm/nTqBnT5UN//z5czRt2hQfPnzAr7/+ir/++ktlY+sNYWFUodOzJ1CjhvLjSaXkr8l48YKC86Gh1IPk6NFvN2TXBpGRlBjq5ERVLoaGJEFZsKDi5+Bw8jk603xdRokSJdC1a1d07dqVB0VywbRp0xATE5P+eKeEXvW6devw999/Y+23srU4X5MxKJKQQBfK0qWp4VpCgkqnqly5Mnbs2AEAuH//Ps/WzC5GRtRwrUYN4H//092gSFwc/T2VKEE6oRwOh5MDVOUPTJ06Fbdv34aNjQ0OHjzIgyLqwMFBUX9cD7C0tMTUqVPh7e2NtWvX8qAIR70EBwMDBwJXrsj3mZsDGzfSQpS9PWmnN23K+45wOJlQlT9w6NAhrFixAgDw999/86CIslhaUqJez56UuLdtm0pVJypWrIirV6+ic+fOWLZsmcrG1SsGDQKWLgVq1gSOHZPv//xZsa9bauq3f/bJyVSVKAhUhfFFUQUAUKEC4O1NElWRkbT24+enns+SGxwcgHnzgF9/pcrMceNI4qtTJ7UqnHA4+RWVBEbEYjGuXLmC3bt3Y+fOnQoPTvYwMTGBtbW1wiO3CIKAvn378kWQ3PLqFV1w3r0DVq6kGzcV061bN5w4cQIXLlyAsRqqUvIslpbkxPzyi7Yt+Ta3blHFUVgYcPiwtq3hcDh6hir8gZs3b2L58uUAgB07dvBFEHUgFgMzZ1IChR7i7u4OIyMjHDhwAMnJydo2h5NXOXiQ+orIGtpmpEMH8umcnKgKeN8+zdvH4egwqvAHpFJpusT25MmTuaSmqjA2pl6lS5YAhw7J+1aoiPLly+PQoUOw0tVEQHWSlkbVODL+/JOeExOBNm3o2pGURE3ZPT3pGpMV9+9TcEU25sKFQEqK/HixYiSN5uxMYx8/rp7PoywREYCsZ/Dx45RwwOFwVIrSXTj9/PzQrFkzvH///qtjsgV6jvq5fPky9u3bh//973+w07PsRZ2jenXSC69ShTL+g4LUMk3btm3VMm6eJ2P5aHg4OT3t2mnPnsw0aUI39yYmQJ062raGw+HkQypUqIBBgwZBJBJ9V6aDk0sePQL69wf++4+2Bw2iJtR6xsWLF9G9e3eULVsWz549g4mJibZN4uQ1Bg4kLXfZok5mXF2B06cpU1dLDak5nLyMSCTCjRs3sHLlSsycOVPb5uQtRCJg0iS1TyMWi3H27Fm0adMGBgYGap9P6xgaAlu20OtDh4AFC6gypFs34M4doEABICQEOHOGguuPHpEP1rCh4jiensD8+ZTE4uEBNG5M9+cZsbCgfh4AXY90kcKF6fPJfE5nZ+3aw+HkQZQOjEydOlUp2ae8Snx8PPwzNOMMDAzEkydPYGdnB2cVf5kFRfthXrsxSExMhCAI2CTT7OXkHgsLavY9fz5lI6iRtLQ0CIKQPxwdVRISQoGHiAjg2jWgbl1tW0SYmAA9emjbCg6HoyNo0h+QYWdnhy1btkAqlapl/HzNmjVUJSKRkNbzhg16GRSRSCSYMGECAKBVq1Y8KMJRD7a2Pz6nUiV6cDh5HE36A4yxdKlEOzs73mxd3SQkAOvWUe8RFVbpMsZQpUoV+Pr64syZM2jVqpXKxtZp+vdXfJ46lYLoZmbUk6p0aWDUKAqU7N1LQZMHD6gCUYYgAL//DowZQ+/Lqvfnx4/U2B3Q3YRGQQAuXwasrSkYxyVQORzVw5TEwcGBGRkZsYsXLzJBEFj16tXZvn37mIODA7t06ZKyw+stV65cYQC+evTr1y9b74+JiWEAWExMzHfPu3fvHrOysmIAWMuWLVlycrIKrOcwxhjbtIkxgLE2bdQ2RYMGDZihoSG7c+eO2ubQa2JiGBszhrGOHRlr1Igxd3fGKlZk7PZtxiQSxrp2pd9R0aKMhYVp21oOh6NGsntd1DU05Q9ERESw2bNns7S0NBVYzcmS48cZEwS67nTrxtiHD9q2KNds2rSJAWAFChRgHz9+1LY5HA4RFsbY778zlpCgbUs4Ogz3B77/uVNTU1mXLl3Y8uXLVWA1J1v07Em+QTZ/lzlhzJgxDADr1q2bysfWC6RSxooXp5/vP/8oHktIYKxKFTrm7s5YaGjOxo6MZGzOHMZ+/lll5nI4HM2hKn9AYEy57j3GxsYoX748nj59CgMDA9SqVQt3796Fu7s7ChUqhIsXLyozfL4lNjYWNjY2iImJ+aae6IsXL1C/fn1ER0ejcePGOHXqFMzNzTVsaR7mzBngp5+A2rWBe/fUMkWjRo1w/fp17Nq1C3369FHLHHrNokXA9Olf73d1pewOiYRKY1+8oHLZy5ezzgbhcDh6T3aui3mR7Hzu+Ph41K9fH8+ePcP48ePT+4twVIi/P1CjBhAbCwwf/m1Naz0gNjYWpUuXRmRkJFatWoUxY8Zo2yQOh7TfS5emSu0aNUhCpUQJbVvF0UG4P/D9z92vXz/s3LkTxsbG8PX1hYuLiwatzKd4e9M9qUgEPH4MuLurbOgnT56gWrVqMDIywsuXL/Nf37jXr4Fy5ahSIj4eyLzeFRhI1R4fPpDM1MWLQJky2rGVw+FoFFX5A0o3X7eyskqXarC0tISvry/u3buH4OBg3LlzR9nhOd9h9erViI6OhoeHB44fP86DIqqmVCmSRdq1S21TlC9fHgAwb948vHjxQm3z6C3Pnslf9+hBwSoAePOGAiOWlsCRI1RaevMmsHGjduzkcDgcLXL06FE8e/YMhQoVwrBhw7RtTt7k9Gm6Iff0BFau1LY1SvHs2TNERkYCAN6/f4+0tDQtW8ThgHzuf/4B7O2Bhw+BqlWBw4e1bRWHo1cEBgZi586dEIlEOHDgAA+KaIratWlRXiqlpuwqpGrVqmjevDlSU1Mxbdo0lY6tFwQE0DNjQFzc18ddXIDbtykYEhwM5MYPTkqiBu0cDidfonRgxMnJCW/fvoVEIkHlypURFxeHevXqIS4uDkWKFFGFjZxv8ObNGwDAsGHDYGVlpWVr8iBlywJ379KzjLdvVTrFlClTULRoUfj5+aFWrVrYrWJHSu+ZPRvw8qLX+/dTo/WwMOCvvwA3N9pftizw55/y8z9+1I6tHA6HoyUCvtw0tm/fHmUzXrM4qqNfP7oOXb8OGBvTDXr37sDcuRSY16N+LvXq1UuvElm7dm363w+Ho3UaNSKdeA8PIDqa9PrbtAE2bQKiorRtHYej88i+z8uVK4f27dtr2Zp8hqynUq1aKh966dKlEAQBBw4cyH/Jx82aAS1a0M+3UCH5/pMnKSACUELrlSvkl23blrPxg4KA+vWpHwmHw8mXKB0Y6devH7y8vODn54cZM2bAyMgIjDGIRCLMmTNHBSZyvkWhLxeGErzMXH1UrSp/fewYZSKoUD7D1dUVjx8/hpeXFxITE9GnTx8MGzYMycnJKptDr3Fzo5/7778DNjZAnz6AoyPw669AxmDg4MHU/PbzZ5Lf4nA4nHyErOKQ+wNqxMYG6NpV3vQyMBA4cACYMwdo0IAkfyZPJgkN5VRq1Y5IJMKqVauwf/9+bN68GeXKldO2SRyOnJIlgRs3gClTaPv0acoADgrSplUcjl7w/PlzANwf0DjJySTtDFD1iIpxd3fHgAEDAACTJk2Ckmr4+oWREV0HLl+W+2A3bgCdOwOtWsmDI8WKUQKL7G8/NTV74z94QL7bn38CBw+q3n4Oh6PzKN1jJDOBgYF4/PgxKlasyG+0lCC7WmlBQUEoXLgwzMzMNGhdPmXKFGDJEnq9ZAkwaZLKhpZIJJg/fz7mzZuHevXq4eTJk7CVZZ1wiLg4xWBIdDQtVMkcpMuXgePHqWqkQAGtmMjhcNQH1xTP+nPHxsbC0dERSUlJuHfvHmqr4YackwWfPgH//gtcu0Y37LGx8mM1awIrVpDslh7x5MkTREREoGXLlto2hcMhnj8Hjh4F7twhH0/0Jafvxg1KXuIV8/kS7g98+3PXqlULDx48wPLlyzF+/HgNW5iPefCAKkXs7YHISPn9qQoJCQlBmTJl0LRpU+zZsydf/e1/RWIi0LYtVYlYWQFnzwL16smPMwYUL05VJtWrU4+S8HCS5QoIAAwMgPPnAScnOn/yZGDpUsDCgnrLVqyolY/F4XByhqr8AZUERqKiorBmzRrcvXsXJUqUwJgxY/Do0SM0btwYzs7Oyg6fL8nuL/jRo0f49OkTYmJiEBMTA7FYDAAQBAE1a9ZEjRo1NGVy3ocxqlxYuJC2Z82iTFEVOj63bt1CtWrVeL+YH7FrFzB6NLBnD/DTT9q2hsPhaAC+EJL15966dSsGDx4MOzs7REVFQRAE7Nu3D9HR0QDIHxAEAc7OzmjcuDFMTU01/AnyAcnJFBzZu5ekHZKTqTdCp07atizbvH//HrVr18aHDx+wePFijBw5EiYmJto2i8P5moAACooUKkS957h8YL6D+wNZf24fHx9UqVIF9vb2eP78OSwsLHDkyBHEx8eDMZbuDxQoUABeXl6ws7PTwqfIoxw/TsoGHh7AhQtqm+bt27e8GkhG5uDI5cuUmAKQ9HbRot9+79atQP/+8mB7WhpVn1y6RAoh3t5yaTRNcfIk9UgZPlwtgTUOJy+iM4GRoKAg1K9fH+Hh4QAADw8PLF68GA0bNsSkSZOwePFiZYbPt2TnF/z+/Xu4uLh8s2nmnDlzMHv2bABAUlISLl68iEaNGuUrB1ItLFgg16Ds0oUurDY2apnq3LlzaNGiBQR+cVSkdGm6Me7enUpmk5Ko/0jDhnScMeDcOaBlS+5YcDh5BL4QkvXnnjBhAg4dOoSdO3eiUaNGAIDixYsjJCTkq3MtLCzQsWNH7Nq1i19X1MWHD8DOncDEifLrz6pV1Lh92DDKJtVBxGIxBg4cmN7rzN7eHq1atcJPP/2Eli1bwl5H7ebkQx48IFm7t2/lfiAnX8H9gaw/97///ouDBw9i7NixqF+/PiIjI9OltzNjYGCAIUOGYL0KJaLzPVIpEBNDygU+PnS/qsZkFFmwK1+TkEBJktev033/2bPyY2FhJJH16BHg50eBklKl6FGrFmBpqThWZCQFVoKDqafJmTPywIkmiIgArK0puYarX3A42UJV/oChsoZMmTIFYWFhKF68ON6/fw8A8PT0hLW1NS6oMVrOAS5fvoxixYrBysoKNjY2sLGxgampKRhjYIzBTdac+su57du3h0gkQpUqVdCgQQM0atQIrVu35jJcOWXGDLpYjRsHHDoEPH0KPHxIFzIVMm/ePMyePRtjxozBypUrueOTkSpVKDBSpQrJmZQoQVkjYWFAwYLUqPPsWWDfPqBHD21by+FwOGrj999/R9u2bdODIgDQpk0bREZGAqAbZ6lUiocPHyIkJAQxMTEK15MJEyagUqVKaNeuHRwcHDRuf56jUCFFqc2kJOCPP6hx9IIFQN++QK9e1OjTUGk3XGUYGxtj586d8PT0xB9//IGQkBDs3r0bu3fvhiAI+Pfff9G1a1cAQEpKCoyNjblfwtEONWuSf1e3Lvl6YjFgbKxtqzgcrdOlSxfUq1cPxYsXBwDY2NjAy8sLVlZWEAQhvS+Fv78/fHx8UKRIkfT3fvjwAcOHD0eDBg3Qpk0blClTRiufQa8RiWiNQCqlRfq4OLonbdaMHiqs9Pj06RMGDhyIAQMGoEOHDiobV++wsAD++ov6kl64QP3fXFzoWJEigIPD99UlIiLoPXXq0LnHj5Mk1/nzJJ3+22+a+RwAVah8/kz9VDkcjmZhSlKgQAHm4ODA4uPjmSAIrG7duowxxtzd3Zmtra2yw+dbYmJiGAAWExOjkvH27t3LXF1dGQCFh7W1NRs8eDDz9/dXyTz5inv3GCtRgrExY+T7Pn5kzNubsZQUpYffsWNH+u+pf//+LDk5Wekx8wxr1jAGMNasGW3XrEnbmzbR9pw5tG1vz1h4uPbs5HA4KkPV10V9QVWfWyqVsgcPHrD79++n73v79m36dcbQ0JC1b9+eHTp0iKWo4BrG+YJYzNg//zBWrRpdl2QPe3vG+vZl7ORJbVv4Fampqez69ets6tSpzN3dnQFgT58+TT++bt061rlzZ5aQkKBFKzn5GomEscKF6X/p9GltW8PRMNwfUP5zv3nzhoWFhaVvHz58WGGNoG7dumzDhg3s06dPSs+V7wgKYqx4ccVrPsBYqVKMjRrF2O3bSk8xd+5cBoDZ2tqywMBA5W3Wd1q0oJ/xqlWK+0eOZKx9e8YCAxk7dYqx//6TH3v1irFixcgfy/gz3L6dsVq1GHvzRgOGczgcZVDVdVFpKS0zMzOUKVMGz549g0gkQp06dXD79m2UKlUKYWFhSExMVGb4fIu6SoRDQkJw8+ZN3LhxAydPnsTbt28BAC9fvkyvMLl9+zaSk5NRrFix9GxAxhhSU1ORlpaGqlWrpo8XHh4OqVQKMzOz9EoVqVQKIyMjWFpawlCHsiHVwqdPVIYpy1Tbuxfo3ZuyF8aOBaZOVaox5JYtWzBs2DBIJBJ4enri8OHDPKMXoGaclSoBZmaUWbFiBTBtGpW9njsHpKYCtWsDT56Q3NnBg9q2mMPhKAmXzlD95w4NDcXatWtx/vx5PHz4MH2/ra0tPDw8MHnyZHh5eQEAoqOj8eHDBzDGkJaWBrFYjJSUFIjFYpiamqJs2bKw/aLHnJKSgvj4eEilUohEIlhaWvJ+FYxRo/bt20lH+tMn2j9oELBli3Zt+wGhoaEoXLgwDAwMwBhD7969sW/fPtSuXRsnTpz4plQLh6MSpFLg1StqiOvnR5nYDRsCY8YAa9YA7u5UuZ3X7zk46XB/QPWfOyAgAAcOHMCVK1dw6dIlSCQSAFRNWKtWLWzcuBGVKlUCAERERCAmJgYAIJFI0n2BlJQUGBoaolq1aun9zBITE5GUlASpVApBEGBubg4zM7O8X3EolQJ371JV28WL1LPiy88UEyYAy5bRa4mE+lvk0EcSi8Vo0KABvL294eHhgevXr8M4P1fOPX1KP8vq1eX7Hjyg9QDG6Nnbm5Qk9u2j48nJQIMGdF61asCdO/R7YIzGynxNCQkh5ZBr12jNp04dzX0+DoeTJSq7LioboalYsSITiURs165dTBAEVr16dbZ69WomCAKrUqWKssPnWzSRCSORSNiVK1fYnDlzFPa3bdv2q8oS2cPMzEzh3A4dOnzzXAAKVQ7Lli1jP//8M5s9ezZbtWoV27JlC9u3bx87f/48i4+PV9vn1CgbNzJmZyfPDClUiLF9+5Qa8ty5c8za2poBYCVLlmRBQUEqMlaPkUrpZwswduwYYxs20GsDA8YiIuicJ09oG6AMEQ6Ho9fwDFH1fu7nz5+zKVOmsKJFi6Zfw48dO5Z+fMOGDd+93h8+fDj93O3bt3913MjIiBUoUIC5urqyI0eOpJ/r7+/PNm3axHbv3s2OHz/OImTf4XmZ1FTGrl1jbOJE+TWLMcpYfPdOa2Zllxs3bjA7OzsGgLm4uPBsVY56iI1lrFu3r7OuAcYaN2bMz0/uc69erW1rORqE+wPq/dxhYWFs6dKlrHLlyunX8JCQkPTjQ4YM+a4/kPGaMGbMmK+Oi0QiZm1tzZycnJiPj0/6ubdu3WIbNmxgO3fuZIcPH2avX79W6+fUKDExjB09ytiAAaQ6IePCBcasrWl/Dq//gYGBzNbWlgFgkydPVrHBek5aGmM1atD14eefaV1AtlaQcS0lOJixggXp2LRpWY917hxjM2cyZm4uvwbVrq1e++PjGevQgbEpU9Q7D4ej56jquqh0YGTlypVMEAQmEom+eqzKXMrGyTbadPiGDx/O66bZiwAATIVJREFUXFxcmK2tbfrDxsaGOTg4sBIlSiic2759eyYSibJ0ioyMjBTO/VHA5Z0eLAZkC6mUsSNHGCtTRn7xnDOH9ueSFy9eMEdHRwaALV++XHW26jO//JL1zTJAzgRjjI0fT9sFCyqWyHI4HL2DL4Ro5nOnpaUxb29vtm7dOhYZGZm+f+vWren+gL29PStatChzcXFh5cqVYyVKlGBXrlxJPzejFGRWj4wBl3/++UfhmCAIzNPTky1btowFBARo5DPrDG3bMiYIjDVsSJKR798zFhpKCyd37iieKxZrx8Yv+Pr6pku0NmzYkEkkEq3aw8mDXLnCmJOT3LcrXZqxOnXk2/v3M7Z1K2MmJoz5+mrbWo4G4f6AZj63VCplvr6+bO/evQr7x40bl75GUKBAAebo6MhKlCjBypYty1xcXFhUVFT6uWPHjv2uPxAcHJx+7sSJE786XqFCBTZjxgz24MGDvHmdmTBB/p1macnYwoWMJSZm++0HDx5kAJiFhQWTKrHWkKe4fl0eVLexYSwsjLG4OHoNMHbggOL5hw/TfkNDktfKyKxZimsMssRMgJJc1MXdu4zNnctYv34qkWjncPIqOiOlxRjDyJEjsWnTpvSGXoIgYMiQIdiwYYMyQ+dr9KlEmH2R1RAEIf2RmpqKhIQE2NnZpZ937tw5PHnyBAEBAYiNjUV8fDwSEhIQGBgIY2NjvHr1Kr2sdujQoRCLxahbty4qV64MJycnFClSBAYGBtr6mDlHLAZ+/50adwEk59SlS66HGz9+PA4dOoRt27ahWbNmKjJSjwkLowa3KSkkoWBrS9JZAP3MJ02ihuwNGgCPHlEjtZs3gbxeus3h5FH06bqoSvTxc0ulUjDGIAgCJBIJEhISEB8fj7i4OHz69Alubm6wt7cHAFy+fBmrVq1CfHw8Pnz4AB8fH4WxLl68mC7n9f79eyQnJ6N48eLpMh15hoQEatJ67VrWxzPKQkqlQMGCgKsryTp07KiVa1tgYCAqV66MhIQEeHh4YNGiRWjSpInG7eDkURgj6blBg4CyZYEXL2hfz57Au3fA1auAqSn5gDVryt+3dy/QujX5hZw8iT5eF1WBPn7ujP4AYwyJiYmIi4tDfHw8Pn/+jBo1aqRLb2/fvh0nTpxAfHw8YmJi8OjRI6SlpaWPFRkZiYIFCwIAXr9+DYlEAicnJ1haWmrls6kEqRS4dYvkt2/fpn1OTsAffwB9+lBD9++QlJQEc3NzANSQvUCBAuq2WLd58QKoVYvWAABg7Vpg5EiS3P7f/8hvev6crh0ZadsWOHUKaN8eOHZMvn/bNuDXX4GKFYGZM4GuXclfu379+03dlUUqJYm11FSSaOdwOFmiquui0oERGUFBQXjw4AEAoEaNGnBxcVHFsPkWfXR8cgtjDJGRkeka1VKpFHZ2dunapTIMDAxQtGhRNGzYEP/88482TM0d06YBu3YBGzYA7dopPZzMueR8ISWF9EA3bABGjKB9UVHAl0U3vHsHdOsGbNoEVKmiHhsYIydJnx1zDkfHyU/XxYzkt88dHByMo0eP4siRI7h58yY+fPiQfqM/duxYrF69GgBQqFAhlC1bFrVq1ULt2rVRu3ZtuLi46P/1MTgYOHyYgiC3btGiSOnStNC7ciWd8/o1UK6c/D1NmtAxd3eNm7t3714MGjQISUlJWLNmDUaNGqVxGzh5nJAQICJCrh3PGC16ZbVYJAuS2NlR0HDEiK8XwDh6T367LsrIb587Ojoap06dwpEjRxAQEIDHjx+nH2vWrBkuXboEALCxsYGrqytq1qyZ7hO4u7vrlz8glQJ79tD3VnAw7evYEThy5Idvtbe3x6dPn+Dj44OKFSuq105dRyqlYPqOHUCNGtSb6s0b6k0qFlPQo337r9/38iVQuTL1Frl0CWjaVH4sJgawtubJlRyODqIzgZHXr19j69atePHiBQCgQoUKGDBgQHojb07uyG+OT0bS0tJw9uxZ3L17F3fv3oWfnx9CQkLSm8C1bt0ap0+fTj/fy8sLzs7O8PT0RP369VG2bFmIfpBdoVGSkugizaP96qVvXwpAzZoFzJ2reIwx9TkzKSlA587A5cvk0HbqpJ55OJx8Tn69LubXzw1QJqSZmVn69qhRo7Bt2zYkJSVlef6bN2/SE3M+fPgAGxsb/W76Hh0NmJl93ZSVMVos3rSJKiRTUiiAMnQo8OefgJWVRs0MDw/HunXrMGPGjPRKnsePH6Nw4cIoWrSoRm3h5HNu3waGDKGMYIAa6t6+zYMjeYz8el3Mr58bUEwMZIzB09MTPj4+iI2N/epcBwcHREREpJ///PlzODs7w0rD18ZckZQErF4NLFxICQ8DBtB+iYSu81ncz+7YsQOmpqZo2bIlrxgB6Gd19SpVjpiZUVDdx4cSTE6d+vaawLhx9POfNw8oXPjr48nJ5I/J3i+VAuHhgKb8nMRE4Et1EIfDIXQiMLJ161aMGDFCocQRoMz+TZs2YYDsi5yTY/Kz45MVEokE4eHhePv2LQwNDVG7dm0AJKvh5OSkcK6FhQWqVKkCLy8vNG3aFBUqVEDBggV1J1iSw0X6+Ph4XL9+Ha1bt9avzBdNU6YM4O8PHD1KjkuPHlmfd/MmZR4qIWumQK9ewL599NrcHPD2pnJbDoejUvLrdTG/fu5vwRjDp0+fEBwcDB8fH3h7e8Pb2xuRkZEICAhIv0526tQJJ0+eRIUKFeDp6YlWrVqhWrVqcHR0TJftyBMEBQFTpgAHDtC2qyvd+GsxQSk5ORlWVlZIS0vD4cOH0YknDHA0iUQC/P03/V98/AiMHg2sWvV933vNGvofWr+eMos5Ok1+vS7m18/9PWJjY/H+/Xv4+vri/v378Pb2RuHChbFnzx4A5DM4OTkhNDQUZcuWRd26ddG+fXt4enqiYMGCuntv/fEjYGMDyPyVzZspAe/8ecDIKP20+Ph4/ZYS0wSySpxr1wBn52+f96M1muHDaR1hyRLysfr0od/T48fqD74fO0YVRF260LVKV/9uORwNo/XAyOPHj+Hh4fFVUESGkZER7t27h6pVq+bauPwMd3yyR1JSEq5evYqbN2/i5s2buH//fpaZpEZGRihWrBiKFi0KR0dHFClSBJUrV8bQoUPTz7lz5w4EQYClpSUsLCxgYWEBExOT9IdKHKcdO0j7+ORJBacmI4mJiXj8+HG6c3fmzBlER0fDzs4Op0+fhoeHh/J25EWKFKGsDRnnzgEtWiie8+gRULcuabMHBgLGxsrNKRaTfFZqqnyfrL8Jh8NRKfn1uphfP3dOkUqlCgkQ5cuXh6+v71fniUQiODo6omjRonBwcEDBggVRsGBBLFq0KL265OHDhwgNDYWxsXH6w9TUNP1RsmTJ9J5n8fHxkEgkMDY2homJifaSMK5coczSKlXIz9BwVuHnz58hFothaGiIefPmpUuetWnTBidPntSoLRwOAPK1ZRK2Y8YAK1Z8W69fEKiyu3NnYOdOzdnIyRX59bqYXz+3Mnz69AlVq1bFu3fvvjpmamoKJycnFC9eHIULF0ahQoVQqFAh9OnTByVKlABAFZFBQUEwMjJKf5iYmMDU1BQmJiawtraG0Zd7eqlUCgCq9wMYA4oVA8LCwC5fxrtSpXDz5k3s3bsXV65cQXBwsEJfV04WJCfnLHiRlERVJ61by/d5epLEaYsWwIMHwKdPtA5w4QJQp47KTVage3d5AkxsrMYrgzkcXUXrgZGBAwdix44dKFmyJFauXIkGDRpAKpXi+vXrmDBhAoKDg9G/f39s3bo118blZ7jjkzvS0tLg5+cHb29vXL9+HZcuXUJwcDCy+jP38PDA3bt307ednZ2zdJoAoHLlynj27Fn6dq1atRASEgIzMzOYm5vDzMwMIpEIgiCgZMmS2Lt3b/q5w4cPR3BwMAoBWHfhAsxTU3GqYkVscnWFra0tdma4Aatduzbu37//1fylS5fGlClTMHjwYN3NbNE227dTc7WkJHIe16//WkNULAZcXIDQUMom7NtX+XllzdwA0rT29QUcHJQfl8PhKJBfr4v59XMrC2MM7969w8OHD3H06FEEBgbi9u3b6bKcmUlNTU2vJOnVqxf2ySoBsyA6Oho2NjYAgAEDBmDHjh3pxwwMDBSCKA8fPkThL5IMCxYswP79+yESidIfpqamKFSoEBwdHTFz5kwUKVIEAHD37l34+PikL8DIHubm5rCwsICbm1u6bFVYWBjCwsJgkJAAy0KFYG1nB2tra7XIiIWGhuLBgwd48eIFpk6dmr6/b9++2LVrl8K5derUwd69e1GyZEmV28HhZIs1aygoIgjULNfTM+vz/P0pmJiaCnxZEOXoLvn1uphfP7cqiIiIwKNHj3Dy5Ek8e/YMN2/e/Oa5165dQ8OGDQEAa9aswZgxY7557pkzZ9CqVSsAwObNmzFkyBAAgKGhIQwMDGBoaJgeUNm+fTvatGkDADhy5AjGjRsHQ0PDr5IwzMzM8Ntvv8HLywsA8OzZM5i3aoXSYWH41cYGWzL1Yd23bx96fEspgSOHMerZ0qwZ8PQpYGAA1Kv39XnJydSM/fJlSmqVrRecOaPYcL1mTaowtLIC/viD+pCoi9evKXj/7JlisIbDyeeo6rqYay2B27dvQyQS4eDBg6gua4YHki5wcnKCh4cHbt26lWvDOJzcYGhoiPLly6N8+fLo168fAEAsFiMsLAwhISHpiwfh4eGwlzXn/oKTkxMMDQ0RHx+P+Ph4hcqTzIsLUVFRCAsLy9KGz58/K2zfuHEDz79oHccAOAygzfPnWPP8OS5l0qSUZaAWKVIkvXlc3bp10bhxY92RAtNVBgygJuvPngFVq2adLWtsTDfIU6cCS5cCv/yifCnq3LnAzJlU4mxnx4MiHA6HowMIggBnZ2c4OzunSzlJJBJ8+PAB79+/R3h4OKKiohAVFYXPnz8ryGuVKFECtWvXRmpqKsRiMVJSUpCSkoLk5GQkJyenByQAeYaoDIlEgoSEBCQkJABAeiYpQPKf//333zdtnjZtWvrr/fv3Y6Ws2XoWPH/+HBUqVAAArFy5EosXL/7qnJ2CgFqCgGK1asGqfHlg+HAsunQJixcvhkQiQenSpVG5cmVUrlwZJUuWRFJSEjp16pQuy3HhwgVcu3YNYrEYvr6+ePDggYLv069fv/RATsafQ6FChfDnn3+iX79+PJmDo11Gjwbs7YHPn+VBEYkECAsDiheXn1e6tHbs43A4GqFw4cJo3bo1Wn9ZVBaLxQgJCUFwcDDev3+PDx8+pD+KZ/huMDExgYuLC1JTU9MfMn9AIpEorBFkvA6mpaUhLS0NKSkp6fsyJmYkJiYiWNZkPQsGDhyY/trPzw8GYWEoDUAUEwNDQ0NUrlwZrVq1wi+//ILy5csr9bPJ09y7R/f8Li5AuXLA4MHyYy1bAmfPfv0eExM699IlWl8wMSGJ7tatgREjKPlyyBBg9my6diQlUbP2jh3V9znKlqXnYsXk+yQSCu5wOBylyXXFiLW1NWxtbb/5he7s7IyYmBjEZIpoc7IHzwhRL0sHHlLYnrTt634TjDGIxWIkJydDKpUqNDPz8/NDQkICEhMTsXPxJaSmicEgBbMwhrGRKcq6UrBw4rzmOH78OKKiopCcnIyzex5isP9NtI94jWgjM8xuNQLOVVumj/vziMowMjKCvb09lo0+/t3PMHJlW4XtdX9cVjwhTe6cTZyvKCm1bOk1xXMlmb4GDDIsZJhlkvxKSFXYNC+lWLprYq0YRPp8W/4dYV2zmMKx2LfRCtumdmYK24YmirHb+Ig4+YZYcTHKvmIhhW3jmM9oPbEPQqvXh/eI6XApTAs9hjHRqO1VA8YpSTg8bhWCK9aBZTHF/zGRoWIQyi7TZypZWF6+WrWk4udf888jhW3xJ0VpN/NMc6V8lh8fN7i2wrFly64rbCv8XgC41pHrpHaqo5jh+Cjwo8L2tYv+Cts2JRWb88UEyQN6lWsXVzj26mWkwnZaUmqmbUVJRdsMfxMW5op/P58/JChsJ39KVNi2drJJf50Sl6JwLDXT3173Too64Hs231PYNnKwSH9tkOlvycRGsZw6JTqTBF+mxbz6GX7WN2+/VTgmTVP8WzSyUJRoG96lcvrrqz6KAVWfZ+EK246Zfi8fI+MVts2s5XbbZJrHQKRos4eb4v/EaW/Firja5eRBvJfvohWOZRoKHT2+nUG7bu9jhW23iooNCwOCFIPFNnaKQcuMbkhhW8XvAP+38vcmJcZjbA+PfHdd5P6AcmS+lk5c0z5Hx3+EVCpND6CsGH8MaZJUpEnTkJYmRq9J9eDu7p6e9ODr64t3796BMYYDa2+DgUGcmoz4xGhUbFgIM2fOhPEXicctW7bg2LFj6UGZwBehSJWIkZomhliSgrHdlsDWiv6Hr3gfws3np8CYFCmpSUhJTcZCANMyG2tujh29e2PAli3f/DxTuqyBgw0lbZx5sBuXnx1WOC4SiVC+fHl4eHjA0dYLdrby/3eWIIaUSSEIAkSCCLBU/I4yK6uYkGJZUP4d3beJ4sL02j2K3yslyii+t12t7+iE/4C9N94obPdq4JrrsY7eU7weZPyuPHQnSOFYl7olcz0PJxskJQEJCSSX+j3OnqWs3+bNgd9/Bxo00Ix9HJWRX6+L+fVzq5KM13xl/YG0tLT06k+A+mvJ5DUlEkl6cEQWUHF2dk7/vc0b/A8+xkZAKpVAIk1DWmIKJJJUpEpS0WJgFXh6eqZXWz5//hwpP/+M6k+fInj4cOxhTWBkKL83ZSnygItQ0lbxM0xvovgZN95R2K7VwEVhu2FFR/m5cy8qHDOroJj8l/n+LzVS8R6vWIb7yZ6ZrrPLFiiuW4gKWShsj/9VLh1+yzdC4djjR6GKdiQr3h9KwuT3TiVf30OXndNpw9ISiI+Hf/1WKH3rLJKs7fDv4bsK93xRlwLoBZOi+ZnVcH9yFlKRAU4M/gP+VRrB2MoYpvHRSLYqAI8Lu1B750p8dCmHw6sOISVOrGCHOF5xu3iGtYqIQMV7I4vCin1iBjYvq7C9fNNdhe22r0/D9a+V8Bs3A6fNFdcPJk5T/J1n9kUiw+TrKcmZ1ilMbBXvjy0LKt6zfcpkt5DhhjE10327oaXi+olRpjUlq8KKv/OMfHj+QWG7qLuj4nF/xXWOtJjk9Nel6ynes4Zkslmcyc5CmXzTmEjFtYmMWNor3qdmvvfOlCsFwwxrNzGZ1jwMjA0zbSsGucTxcjtFBoprUxXLKPo5T54ori8UzfQ9UDDD+kFYJjviMq2v1C6vuH4QHa/48/IsL/f7Lz4NUTgW+D5WYdsh09+PbYa1i9BMdjR2V0wYf+inuP70LtN6wohuVQDoQMVIYmIiKn2nOV2xYsUQGhr6zeMcjq4jCEJ6f5HMlClTJv31Haco+YECZl+d2z6DnFPSy+MIrNwKkf9OhsOntxjjewtHMwRGHB0dv3o/J3c4376EAkF+KBDkh7eezYHm5CSk2djiuWd7VLu0H7VPbce78rVUOzFjaLxjESw/fcDpMV9n8HI4HA4n7yASidJ9BQszRYe8WrVqCttubm5w+9IU/b8TyQrHJs5XXIAZPHgwBmfIbMyY0CFYKN5cNqnaCU2qyhucSw0ZJEkxWPPpHUziPmDAz9VgtHs3cPky+u7fj5jWUxFq54SIT+/gVsMQlffvh0tYGBZVq0YBjS+UKFQOo0ePhqGhIZydnVGrVi1UrVoVFhZ0M7ts/iUFOwRBgIHAsxc5WuDVK2qGCwB//QX8+uu3z713jyRVzp+nR+/eJMeqbN85DoeTr8hYaQogXfIyO1iYWSv4DCzD4mSfPooJmxUrVgS8vICnT+FsYQGjZNXLZOZVgl2rUxP7mBggPh4RZd1xbeRcuN65ALPYTzCPCkeiQ5Gv3yiIcKH1GIhMRKh07zTabJuNg6NWILJGHSRbFYAoLRUVT+4GAPzXsZ9Gm6E7+d5HmVV/QGAMbgunw6f/YgSXrv7jN3I4nG+Sa20eqVSKx48fw9XVNcvH48ePs+zrwOHkd9IMTXCmxXgAQCm/uzAUf90snqM8RknyrJWCrxWlSx436wmJgSGK+z1B5etHVTtvMkW/Q8tVhc2HkB+czeFwOByOahGJDGBkYQexUxXEVWgOo4EDgRMngIYNIYqLQ5+7/6CwTRG0NLfF1H370MbPDxXi47GrUyfYW8sTNCo418Tq1auxfPlyjBs3DvXr108PinA4OsWZM/LXP+pvOXs29RQZOpSase/ZA8yfr177OBwORxlkvbp274ZZEldkyS5SQyPgi5wqTE1xddR8pJmYIcWSglJmHyO//WZBhPM/T4V/ZU8YponRef0kFHlF1axmcdGw+ETvTTXNQr5bjZR84Q3hyzqrIJWipN/X/Wk5HE7OyHXFCEDajEFBQd88znWFOZysibHOID0h4tmV6sC/RSf4t+iE0mcP4VW7XsgouhFbsChudxyGKlcPIdX46yofZUg1s8D1PpMgNTCk7JHPyT9+E4fD4XA46sTcHDh+HOjZE6dsW4GJDFDpxUVaIM54Doejj4wcST3eRKKsm+lmplQpYONG0oXv0QNYuBBo0waoU0f9tnI4HE5OGTgQ2LABMDaGsTgJSWY2P34Ph1i+HKhbF2jYENEv02AV/g5msZ8hMTTCZ9dy330rMzDEqYHz0WHTFDi+fQmJEVXrJBRwwH/t+6Dy8X/QYM0sRJWqgBSzH8g4qogHzXqh4osbMH//FvGuZXC/QXeNzMvh5GVyHRhp2LAhD3xwOLkk1dAEW/tsgKG5CBIDox+/gZNjxF8yQV50HQAAsPT1QblZExE0bDxgXhGPm/XEo+a9wAwMYfm9gXKB1IjLMXA4HA5HR/D3BwYNAvr3B86cQeQXHfWrngNRuWUl4PJl4NkzoECB/7d35+FRVecfwL+TZSYJWSYQkhAgJAESlkAUMBg2taQstiogikgVqMWiULUsItoK2laotlb0h6hVsVrLogW0IggCAZQAguz7EohAFhJIJstkmzm/Pw6ZmXPJvmfm+3meeTJ37rl3zpk7mfvee+49b9XrIWqpPD2BSZNqv9yDD8oOw08/BZ5/Hvj2W9m5QkTUkrRpI++MCwlB7txNzV2b1iUwUCZLB4ATRxF6Qt71cbVrb1j11Q9LVqY34IvfvoqArMvIi7Inut87ZTZCTh5C8Okj6LV+BXaO/12jVF/L7N8Wuz/bDKuXN9zz82DemV79QkRUpTonX6fGxeRqRLXznx3nlOmHh3VVC4waBXzzDdCuHXD6NNDWniD8kyQ1Mfkjd6pJYLX+94M9obz2F/TeeDUh7MYDl5Rpg4d6h5DjT3BhiUWZV6pJ6q3Vzs8ezBWXqssG+qmB3nVtInOLWnE/b3s/ubZNJk2y9VhNwvkCTdK7tGz7MGba94mPURN6aROAxXY22p5vPazmqfLVJHKP76YmAdx3LkuZtjo0pGOQ2v3V0Vi7O4VOpdlvW/cxqPXQe6gnUUL8aza+cEPLK1aTIPoZ6n5TaJFF/e55aZK+ncu0J+5r66e2N9C76s7eVM02D3dIxn7yijo8QI8w+xVxrrpfdNV2UwMpLZVX0O/bJ08e79kDaHKfIDYWOHYM2LwZSEys81v9pPnfXv33nWoBzT4OXg6/Ue3VIbpmPzVYmf77y2o+k9kvDlem3/hwr+35M79WE5Hu0SRwzNfs07p3tP/OhLer3VBhP6aoCUD7RbarpKRz2nxQHTL057d0bKaa1MP160CfPsCbbwLjxlVerrQU2LoVl66bUXjHz2wvR3eo4nf5yBFg3jygc2fg5ZeBkJDKy2okHVWTqd4ZW8E4+C7KVfeLrtpuqoTZDHg37MgHLuHxx4F//hN49lngr3+t2zrOnJHnEvLzgVWrgDlzcEGTyDwiSI0ndp2yJxQfpDkeXvVdirqsJhn7pSw1sX2hwzFfoK8BAScOI/Dwfly8/1cICFDfV3ste+8u9uN4o+aYLTNPHenCTbNwkG/lHUnaNvTqYlSm+3RWL75Zt+eiMq09v+DIW3NMqz2Od9xfaveVZ9LVhODWak5/X7pq/6wH91bz/17XJCLvEFDz/7/rmtgz26R+1t1C/NTyhSW254E+6kW3KVfzlenI9ur3ZfsxNX6Ii7LfzaTd5tp1hWg+25SMPGW6dyej7fnpNPWzzdecE9LGxBkObdaW7Rqstl/LrDkvZrmR6d5kMqFj+3bNl3ydiBoAA5qmceyY7BQBgOxsYOFCeQAMACUliPj2S1zv2hO5kd2brYpEREQN7pVXgAPy6kiUlsqr6g8dkp0k5caPl50l5WOYE7mSwEBg+3YgKsr+2gcfyMTsAGC1AkVFwPffA9evo13/eKVjRJGfD5SU2C++8fa25z/5739lPpMRIxqvLUTk/CwWmRdp9eqb9+dUvQUL5DCKvXoBGRmAXl+7O2Y3bJBDMA4aJPO3Pfts49W1BtwLCzBkyr3QWa3QX7+GzNnzm7U+RK0R7xUmai779skd8qpVzV0T53dETb6O3bvtz59+GkP/Mhu3//0F6Cyaq1mJiIhas7Nn5Unfhx6S0ydOyBMBjhYuBD75BOjWDVi3Tt5B8tJL8oQwkSvo2tV+WW1urrzLY/Vq+fj8c+Crr+SdJSEhKI7tK09MAvBb97kcig4A0tKAO+4A7r1XdqSUr/f//g+Ii5MX5owZIztYiIjqKj9f3ulw4oR8UO107Chjor59ZQdT27bytzs/v/plASAsTF5o8s03wMSJ8jkAndmMoBnTYNi9qxErfzPvjCvQ3YjXgvZx/0JUF7xjhKi5fPEFcOEC8JvfALfcAsRUnfyL6mHsWCA6Wh6oTpgA3HOPfd78+Sj55N8IPnYAPVd/gOMTH2++ehIRETWkjz+WB+3ffSenn3kG6NSp8vLffSfvsjx2TJ4gfv31JqkmUYvRpg3w/vtAaqrMN1L+6NkTGDIEmZlymI02WzYhdMZvAF9f4L33gOeeAy5eBIKCgJQUWV6nk4nhp02Tw3StXw/88pfyimMmeieiuggIkCf3z50D8vKqL0+Vu3pjqM0dO4DZs4F3361+mbg4eQfg2LHy76RJwIoVCFjyN/iuXgGfr79C1htLgcceady635Af2R3Jb69AqZ8/LF7e4P1DRLXHjhGi5rJggTwBkZQEPPwwsHcv4O5e7WJUBwaDTK7ZqZM84C0nBBAejn1PPo9Brz2PW5a/gUuDEwFUnWOEiIioVdDp5DARmzbJK0yrG0973jwgPBx4+mngH/+Q+81Zs5qmrkQtgYeHvLOjGoWDh8GcMAQ+u3bKq4YBoHt32enR9Uaeu8JC2bkYECDvPhkxQt4xkpAgO0nuvrvx2kFEzqv8eLagoOpyVLVVq4Df/hYYPlx2cN9zj+y8rs7dd8tOkXHjgM8+A/r3R+5Ts2HYvQve3+9E8G8eBQ7uBf72N3keopFl32bPy2Zs9Hcjcj5Mvt5CMbmai0hLk8Np5eTInBe/+11z18h1/PWvcniDZcuAX/xCBjgbN8oxR7/99uZMZQ6O/pRje+5tUDuzTl9Sk0drE3MP7xtW6Xp3Hk9Xpm/TJGbbfUId/sTokADtFk3Csis5agK4LE2CrzJNcu1uDkmu/euRtBtQk5x11iQD0ybx1nJMcp5tUhOcaRPVXXNISgYA7m7qNst2SDgfpamHlkmTAMzfq+bX22QVqPUMaqNJfO9QT+0Ot60mmVp9VFePlkKboLmzQ/L1qrjqftFV203N7LXX7ONm/+c/9hO/VdAm3ry0/pQyPXvRKGX6b9PW2J7r4tSk1LNnqsnX/+8/B5Tp4rPXlGl9V/v44AZ/L2Wej5/6W5iXrf4GmR2Smoo89Xc0sK+axNNSqg656eevrvuhofY8FW9/dkiZ9+QDccr09yfVffrgHjVPzL1mt5q0dNztXWq8rNZ5TeJN7f7yg2/s2/GxkbW7uzlDE3uEaLZNXW06oCZ9H3FrMyV9z82VQ7AcOiTHm//iC3nHCCAveHrkEeD0aTm9aRMwYAAwfTqwbZu8u6Q8z2BBAeDjo8SeJy6r8WTPjgEgyVX3i67abqrAoEFAcjKwdm2NOnKpGrNnA6+/DhEcjKKDh4D27QEA2w6pSazDg+37xytZBQhbtxKxL8+B1cMT2z5YB1NUDHq99zfEfPIOAOB6z7744ZW3YQ7rjOwc+/4wJlz9Pdd7qOcTbusWpEx/pzkHUOqQiLq9Jll2vlk9PvbUrNvgaZ/uqEkQn5mjxkcxHdR6puWq5xfaOBwvX8lWO+m0CdN1mnMrfl7q/CsOx4ftNLGCRXPewqo5oD6SYo8J/bzV9Q7tpSZQb0hFmnppz3M4Jgz31pwTupClfl4Rmm1R6BBv+njy4unKPuuG2i8yxwhRc+rQQSZGBYAXXgCuXGne+riKHTvkkAeXLsmxoA8dApYuBby85FjRq1c3dw2JiIiaz5w58q4RAJg8WV44QESqgAAZU37xBbBli71T5L335InL8k6Rhx4CBg+WCX5XrZLDdJV3ily7JssuWNA8bSCi1qf8jpGa5sWgqv3lL0Dv3tBlZkL/u5k1XuzKfROQcddIuJWVotvq5RAeHjj25HPY9doHKPEPQOCJwxj09KNwKy6qfmVE1GzYMULU3B5/HIiPl2OETp8uh3eixrV9u/25EHI6KkreLQIwMSYREbk2nU4OAfTAAzJHSVaWfZ7JZEs2SuTy/P3lRTZeDle4fv65LUE74uKAP/xB3hFSzrHsxo3A4cMyCfCXXzZNnYmodQsPl3/fegsoKam6LFXPy0t2aANwW7MGsFqrWeAGnQ7H//AqTj/9An58brHt5fQhw5H0r/UoDmwHnys/wXjySGPUmogaCDtGiJqbuzvwwQdyDHCrFTCbq1+G6mfq1Iqn33gDePJJYMqUpq4RERFRy+LmBvzrX3L8bcdcCO+8AwwZIu+6JKKbffyxHB7X2xs4cwYIqWKYtIcfBn7/e/l86lTgp5+apo5E1Hq9+CLQti0wdGhz18R5xMejKHk3ig8eqr6sg9LAdrgw+QkIDzmEk660BO5FZpjDOmPXm//Ghm8O4FrcbY1RYyJqIOwYIWoJYmOBffuA//1PvaKMGkenTjI55u7dQFKSvNoPkEkzly4F+vVr1uoRERE1mm3bgLvukjkQquPtLTtC2t7IYyWEzJWwdy/Qv796ByYRSaGhMnfghQsyMW9QUNXlFy+W+UeuXZPDbm3eDP25M7bZ7tey5ZB2XbvKvHjZ2Y1bfyJq2bp0AU6dksm99Q2Xr9CleXhADBgA0auXvDCkLqxWDPjTHAx56lfwzM2BKboXynz9GraeRNTgmHy9hWJyNRcnhLx7xN0FEy3997+y42LgwKZ7z2PHgJgY4MaVHkhPl4FmVJS8g6QKhy6qCWDjurStpGTFHJOpFRaVKfO0yUSrShCeokme2kGT0PrUpRxluq2fmtTM1yEBmjZZmkmT5PySJllYv8h2ynSmJnmto2t56hirPcLUpG4XHRK3dWmnJiHTqi7hmaOr+Wqd2vu2zMTk1anN59NS1Wa7OXLV/aKrtpsaSXo60KePHBorPFzm2DIaa7eO8+eBcePksu7ucn/59NNK4uia+Pt8e96ShCnqBQnJ/9FcsZmj2a9oD18M9njJb1iEMsu05oQyHfuUGl8c23rePpGrvo9372Bl2nxdTUwKi1oPd4f9p3d7dT+cv+m8Mo0Ydd8Jvfpb2K2fPQZw03y0V3PUfamHJqmn48cz+WfdUJU33lc7yDr2bK9MPzA40vZ8/3n1hHz/KLUNWw+rufJ+1jes0vfdcSxdmR7Wu+YJUj/YeFKZfmxUjxovW1+7T2cq07dHB1dSsgJCyHwksbFAN3W7fPGfrRj9+H3QF8h4rrBXH5z43zYAgK6kBP36dbXfVd69O7B+vfx7w48p9m2jjcuq8+Gm08r0r0dEV1r2TLpJmTaXWJTpvuGBtXpvR1/uTVWm740Pr7Ccq+4XXbXdVAOlpTLfSGDd//+odnLM6nG50dsTOHsWuO02ICcH1t69UbL+a3leA8C2g5dtcdLQWHV/t/nHy8r02Nu71Lge2QXqcXq7NnXvKEvVJFD30ZwTyDKpsYfeISl4VHtfZV5dj/dqwjExOaAmdr+uOeYvLFbPr3QLqbqjyuRQ3kMTfDVXEvTG/CxbOyZfJ3JWOTnAxInAyy83d02a3t69wPjxwO23AwcONM17njkDJCQA998PFBYCmzcDERHA3/8OzJghx30mIiJyBo8/bs8XkppqH8KnNqKigF275BBAFotcxz/+0bD1JHJG77wDjB0rOzRS1U6A/I5dsP2V93AlfhhyIrqjKMrecSL0eplLYMUK2aF55oy8gGjz5qZuARG1NKmpwJ133jxUNNXeW2/JYcrOnq3b8t26ATt2AGFhcDt2DIbo7jC08YG+W1dE/WtZw9aViBoMO0aIWpr77wdWrXLN4SmuXrU///HHpnnPH36Qie+//lpeifftt0Cxw5UGZ85UviwREVFrIQRw/LhMqt6/v3wtOblu6/LxAf79b+CPf5TTs2cDS5Y0TD2JnNUhhzuhTp68aXZmXDy2vfoh1n+0ASlL/qnOfOwxOczWnj1AfDxw/TowciTw3HONXGkiatEyMuTFCv/7X82ThlPFPv4Y+NOfgDFj6n4uok8fYNcuWGNioCspga64GG4XLsC9ML/6ZYmoWbBjhKgluXZN5hoB5N0KrmbECNk58dVXcizlpjBuHBAZCZSVyeTrL74ITJ8OhIUBc+bIOhEREbV2Oh1w9Chwzz3AkSNy+s0367e+l14CZs2S08x7QFS1xYuBc+fkMFg//3nd1hEaKvPjTZt285ByROR6evWSf61W+3B7VDfvvy9zQh07Jjug588HioqqX06rSxeUbPwGlsREWMaPR8mHH+LstDrcoUtETYIdI0QtyV/+AphMQN++8s4RV+PpCXh5ycSSHh7Vl28IXl5yfHQAeO01IDcXWLZMjqH+2muAHxOmERGRk/DykkM9fPedvMNjxAg5dMTdd980tE+N6HRyH7pxo+wkIaLKGY1yKLq77651Th6Ftzfw3nvApk3As8/aXm6zfy+CPv5ADnFHRK7Bx8f+e5KX17x1ae3i4mSnyIQJ8nd08WL5Wl3uHuncGaUbv0HpylWwPjoZwtOz+mWIqFkw+XojWrp0KV577TWkp6cjLi4Ob731FuLj42u0LJOruaADB2SyLosF2LABGDVKXglWVCQPgKjBXNAkDz9/OQf9J9+HgEP7cf6JOWj3+ivK/AAvNZBxTDzZPbR2/5/mMvUWZ8fj4gJN8vWLmWpwq02onpppvyV3YHc1WaqWts3ummRi+Q4J5Kya3YKXXk001jVY7SyqTUIwbdkyzbSvvvIOMW2iNTdtNloNx3pkFaiJ2ILaqMnXczWJ7Ys17xWsSVZf1bLa70tDMpfZ63U1V72CKbyVJmN3VNV3qTXvFxkPUIu1bp3MeQDInAU7dgD6uifuBAAUFMiTCS+8IDtiauDIT9eV6T6dq04gq/2tyMyp/CpZbbJQ7ZGP4/4wed+lKt+3ULMvNUa2VaZzTqiJuR117N9Rmb6eoQ6roV233s++nwqJUD+P65qy+RdzlWm/CKN9vZma/b+3up8tOa9+9voo9b1K8+2JXYUmTvHpqP4mFV1Xt4OnJglsoEP5nCtqEm8tiyapt5tD0lNjmPq+Bbnq++b/pH4egdGVx0jXT15VprsMULdTxkX18wnpon4+l07at7nBX/2+t2mnxm0lms+v1CFprlegGutrIxwPTWxl0nx/Jo/tDa/En8F9507k9OmHo39YjPzuPQEARZrPMiNdjS97dgtSpk+n5tie556/pszzCzcq032i1WUPHkm3Pb9rkJpA2E3TGbTl+wvKtDFETd4bH2Pfbt8mX7Q9Nxfm4/cPJ7Ta/WJdYwLGA1Qpf3/ZKXLmjLz4gepv3TrgySeBtDQgIADYvx/o2rXGi5/NqLyTKkizrzB6N96xY1XHVtrzA9rjcu2+I7azsdL3ydDEWgGa/X9LSRierqlnqH/N4tTmVN15jOo4fgdKNOc49JqE8trtpP3+OMrXnAOpbb3qo7xeJpMJIW0DmXy9pVq1ahVmzZqFBQsW4Mcff0RcXBxGjhyJzMzKD5jIxU2fLjtFHnhAdoocOwbccYfcEf/pT0BpafXrcEZWa/2GChBC3v3x6adyaKxp0xD026kIfmQCgh8aJ4fQ0ulw+YFHAQBha//D8VmJqMEwHqAWq6xM7hfL7dljzxlSH5MnA3/+s314TK2rV4EPPpBDel24UP/3I3JybiUlCNuzHbctWYj41/+I6LUfI+zYD/AyOXRaZGXBbc8eAIDxyI8YMmEEwr76bzPVmCrDmIAahe+NTsXc3KrLuZKSkurLAMCKFcAjj8hzBdccflN/+UuZ93XwYGD8eDn0NhE5pSYaq8b1vP7665g2bRqmTp0KAHjnnXewfv16fPjhh3iOSfJIq7RUJkQF5BBa8+bJ5KhlN64se/FF4L//lQnB+vZtvno2BCGAU6fksBsbN8qgY+bMm8tlZMgTNB9+KK/OeOklmXSyfB2nTwM7dwJXrgDh4XJogshI2anRxeEKtZ//HNiyRVl1+fVoVi8v25BdmSN+iS7/XAJDViaKrVbAjf3GRFR/jAeoxfLwALZtk3d3HDki96l799Z/vU8+CXz7rVzfU08B//ynvJL188+BTz4Btm+3X4AwfToQESGfc99LrYXFIr+rFQ2HJQTcLDJ+11nKAOjgXlKEMm/7XZ1xq96FX/olGK5lw5BvQom3D0qDglAcEAhTh3CcuvdhAIB7cRGGvDoPnfbugKe54Ka3utQ7Hl/+8T05oddDpzkRGJS8HVd+6YJD87ZgjAmoUURFyTsb/vxnYO3a5q5N/ZWWAocPyw6fsLCaDW1dWiqH5S43Z468y2POHODee+VvdlqaPA8REWHv6IiIAP79b/lwd5cdIRaLHM2jsFDWo3dvxidETowdI42gpKQE+/fvx/z5822vubm5ITExEcnJyc1YM2qxPD3l1ZORkfIkwu7d8vV775WJv15/XSZMbc1jBh87Jq+6WLVKdmqUs1jsHSPXr8uTNGfPysCufJzU06fVq04fewxYvrzi93FzA/Lz7cOPRUfLoUFuvVUOExISgmvCE9Y2PhC+9lv2rQYvHPvr27D4tEGvpspvQkROjfEAtXidOwPDhgFvvw0YDDLeqK+f/Qz47DNg5EiZyPT99+UY6IWF9jL9+gHjxgG33CKnhUCXxyahpEsESsIjgLZt5Enn4GDgzjvlX3IdQsAvKw2+1zMhdG4oauOH0oBAFPv4wr20BHqTFSX+RlvxwNSz0FkscLOUwbPYjNKfsuBZUgTh5o4C/7Yoir7LVjbsx13wysmCIS8XbmVlKEo3wc1qgUdpCcxt/HFtwDO2sv3+Oh+4koEyvQF6cz7aXLsKv9wseOVkwxTRDZs+3WwrO/HlR9E2PRUeJUXQae50zoqOxdfv2E9Wdv92HYyXL1TY9NxOkbaOEYvBC4Epp+FpLkBhUAguDRqOEl9/GC+cht/Z08gOdxgyJyAAJc+/AOHvj9NFHigJMCL79mF1+PCpsTAmoEazZAlw333yYoOWLiVFdk6MGmV/7fhxICREdkasXg2sWQNkZ8t5v/qVvKgCkBdHLlsmj+vDwoDLl4FLl+S5gnfekRddxsbKocjL7wAZNw7o0EGeHyg/tzB9ulwPIIcynzcPWL9enm/ZscNeLz8/IDMT6NOn8T8XImo2PPvXCLKysmCxWBASEqK8HhISgpMnT1a4THFxMYqL7WPH5d64DdJkqnr8XXIi5cHBtGnyLohXXwVGj5avPfSQvPKya1eZnB2QiVNvv71mScqvXJE7+StXgJgYedVDePjNVz5cuiQ7ZfbulR0ZoaGyfM+estMmNtZe9tlngZMn5RUqXbsCgYHyDheLRQYRDz5oLzt+PLDZfvAIT09gyBAgMVE+ytv0wgv2IAWQQc/ChTIh7MiR9nI9esgx0AcMkO9/6RJw8aIs5+Ehr3zt0cNez4ULlXHOL2c7XHWXZ0JBvgySCjpHALj5/05Xoo77mZ9nn29Sh4+uVlU5Rgo1Y0/n56njR+d5qPML8u3tMJmqHtMxL08zxrjmKseCospzjJRqcoyYvNT52rEnS+qRY8TagDlGHOuRpxmbU29RPy+TZoxM7fibXqLy27G1y2q/Lw3JMcdIXp46RqrJsxV3nN5Q1Xep/P+yNaVGYzxArcLIkcAf/gC0b6/GGfUxcKA80bB4sZwuLJTrnjRJxgSOd3aaTLBu3ghs+QZ6AHoAN9VgxgzglRv5v4qKUJSeIU90WCxAbi7MlzKgMxfBGhAAS/tgwMv+G5+fp/7+35xjxP7cXKjud7WKzIXKtLlAHUO7qOjmq/rLFRao442bC9WyReZC6CxlaJObBc/SYnh5WOFRJvc9Xlf9IXRuKDG2RUGHjjAXFgJWK9pcvwqrhwdEthlWNzd4lJZAX1wIn3w3lPj4IS+0E4rMBXArKUbsrv9BX1gIQ5kZenM+PEqKoROAtaAYaR174HD8PQAAS6EnElYvRZmnHmVe3iiGJ8o8DXCzlMHdXART21Ccjx0MANAVuqHH1rXwLDbDYMqBPjsbXvk58C7IhVd+LjKj+yJp6vO2Nt4z5UG4lcpYxuqwPxM6HbIieyLpsRfkeq0WPPzsGLhXMrRpelw8tv/lXdv0z//wa3ibrldYNjOsK74Zcptt+tZFsyote7VDFC4VPGab9t69HW0y05QyJTce1z08UViQhyKz/M6Yi8wwF1ec68aScRnmgjyUFMs2708cA3ezGYXefij28YNnsRm+ZQUwmHJg0RtgLsi35RjZ9utZKG3ji9yYPoBD3GPKLJBf5hvfWZPJBMyaDQA4ffxGno/SUqC09Ka8adrveUG+odL5RZo7VTwK1TitqmUd42Xg5hwj2nroC9R/zrw8Q4Vli27877SmeACofUzAeIBqrHt32algMDTMPrwmrFZ5biE9XXYeZGXJIanK/88XLZLH/waDvDiiTRt5vH7woDxvcOaM/Q6PiRPlnRmOAgLke7Rta2/TxYsyHqjM3/4GvPmmfL57N/Dee/LijLQbv+M6nTynUVCgfk7PPy8fFy4AW7fKCyz79ZOfq5tbnT7TvLzKc4zooR5XupU2XY4R5fhYc35Ae1xerMkxYjJVfoyfp8ndobOo8VFV5weakraePqjhkGvNqLrzGNWpTY4R7XaqKsdIgeYcSG3rVR/l9cprqPMDghrc5cuXBQCxa9cu5fW5c+eK+Pj4CpdZsGCBAMAHH3zwwQcffFTx+Omnn5piV94gGA/wwQcffPDBR+M8WlM8IETtYwLGA3zwwQcffPBR/aO+8QDvGGkEQUFBcHd3R0ZGhvJ6RkYGQkNDK1xm/vz5mDVrlm3aarXi2rVr8PT0RHh4OH766Sf4+/s3ar1bGpPJhM6dO7PtbLvLYNvZdra9ckII5OXlISwsrIlqV3+MBxoG/0fYdrbddbDtbLszxgNA7WMCxgM34/8I2862uw5Xbjvg2u2vadsbKh5gx0gj0Ov16N+/P7Zs2YIxY8YAkIHMli1bMLOiJNMADAYDDAb11iOj0Wi7Vdbf39/l/hnKse1su6th29l2V1PTtgcEBDRBbRoO44GGxbaz7a6GbWfbXY2zxgNA7WMCxgOVY9vZdlfDtrtm2wHXbn9N2t4Q8QA7RhrJrFmzMHnyZAwYMADx8fF44403UFBQgKlTpzZ31YiIiKiJMB4gIiIigDEBERFRS8OOkUYyYcIEXL16FS+++CLS09Nxyy23YOPGjTclWyMiIiLnxXiAiIiIAMYERERELQ07RhrRzJkzKx0qo6YMBgMWLFhw0220roBtZ9tdDdvOtrsaV2k744H6YdvZdlfDtrPtrsaV2l7fmMCVPisttp1tdzVsu2u2HXDt9jd123VCCNEk70RERERERERERERERNTM3Jq7AkRERERERERERERERE2FHSNEREREREREREREROQy2DFCREREREREREREREQugx0jRERERERERERERETkMtgx0oItXboUERER8PLywsCBA7F3797mrlK9LVy4EDqdTnn06NHDNr+oqAgzZsxAu3bt4Ovri/vvvx8ZGRnKOlJTU/GLX/wCPj4+CA4Oxty5c1FWVtbUTanWjh07cM899yAsLAw6nQ7r1q1T5gsh8OKLL6JDhw7w9vZGYmIizpw5o5S5du0aJk2aBH9/fxiNRjz22GPIz89Xyhw+fBhDhw6Fl5cXOnfujFdffbWxm1at6to+ZcqUm74Ho0aNUsq0xrYvWrQIt912G/z8/BAcHIwxY8bg1KlTSpmG+o4nJSWhX79+MBgM6NatGz766KPGbl61atL+O++886ZtP336dKVMa2z/smXL0LdvX/j7+8Pf3x8JCQnYsGGDbb4zb/fq2u6s27wpMR5gPNAa94mA68YDgGvHBIwHGA8wHmg8zhYTMB6wYzzAeMDZ9g2MBxgPtIp4QFCLtHLlSqHX68WHH34ojh07JqZNmyaMRqPIyMho7qrVy4IFC0Tv3r1FWlqa7XH16lXb/OnTp4vOnTuLLVu2iH379onbb79dDBo0yDa/rKxMxMbGisTERHHgwAHx9ddfi6CgIDF//vzmaE6Vvv76a/HCCy+INWvWCABi7dq1yvzFixeLgIAAsW7dOnHo0CFx7733isjISGE2m21lRo0aJeLi4sTu3bvFzp07Rbdu3cTEiRNt83Nzc0VISIiYNGmSOHr0qFixYoXw9vYW7777blM1s0LVtX3y5Mli1KhRyvfg2rVrSpnW2PaRI0eK5cuXi6NHj4qDBw+Ku+++W4SHh4v8/HxbmYb4jp8/f174+PiIWbNmiePHj4u33npLuLu7i40bNzZpe7Vq0v477rhDTJs2Tdn2ubm5tvmttf1ffvmlWL9+vTh9+rQ4deqUeP7554Wnp6c4evSoEMK5t3t1bXfWbd5UGA8wHhCide4ThXDdeEAI144JGA8wHmA80DicMSZgPGDHeIDxgLPtGxgPMB5oDfEAO0ZaqPj4eDFjxgzbtMViEWFhYWLRokXNWKv6W7BggYiLi6twXk5OjvD09BSfffaZ7bUTJ04IACI5OVkIIXeobm5uIj093VZm2bJlwt/fXxQXFzdq3etDu/O3Wq0iNDRUvPbaa7bXcnJyhMFgECtWrBBCCHH8+HEBQPzwww+2Mhs2bBA6nU5cvnxZCCHE22+/LQIDA5W2z5s3T8TExDRyi2qussDnvvvuq3QZZ2l7ZmamACC2b98uhGi47/izzz4revfurbzXhAkTxMiRIxu7SbWibb8Qcif49NNPV7qMM7U/MDBQvP/++y633YWwt10I19rmjYHxgMR4oPXvE105HhDCtWMCxgOMB4RwrW3eWJwxJmA8IDEeYDzgCvsGxgOMB4RoeducQ2m1QCUlJdi/fz8SExNtr7m5uSExMRHJycnNWLOGcebMGYSFhSEqKgqTJk1CamoqAGD//v0oLS1V2t2jRw+Eh4fb2p2cnIw+ffogJCTEVmbkyJEwmUw4duxY0zakHlJSUpCenq60NSAgAAMHDlTaajQaMWDAAFuZxMREuLm5Yc+ePbYyw4YNg16vt5UZOXIkTp06hevXrzdRa+omKSkJwcHBiImJwRNPPIHs7GzbPGdpe25uLgCgbdu2ABruO56cnKyso7xMS/t90La/3KeffoqgoCDExsZi/vz5KCwstM1zhvZbLBasXLkSBQUFSEhIcKntrm17OWff5o2F8QDjAcB59omVcYV4AHDtmIDxAOOBcs6+zRuTM8cEjAcYDwCMB1xh38B4gPFAuZa0zT1qvQQ1uqysLFgsFuVLAAAhISE4efJkM9WqYQwcOBAfffQRYmJikJaWhpdeeglDhw7F0aNHkZ6eDr1eD6PRqCwTEhKC9PR0AEB6enqFn0v5vNaivK4VtcWxrcHBwcp8Dw8PtG3bVikTGRl50zrK5wUGBjZK/etr1KhRGDduHCIjI3Hu3Dk8//zzGD16NJKTk+Hu7u4UbbdarXjmmWcwePBgxMbG2urVEN/xysqYTCaYzWZ4e3s3RpNqpaL2A8DDDz+MLl26ICwsDIcPH8a8efNw6tQprFmzBkDrbv+RI0eQkJCAoqIi+Pr6Yu3atejVqxcOHjzo9Nu9srYDzr3NGxvjAaOyDOMBu9a2T6yMK8QDgGvHBIwHGA8wHmgYzhoTMB6QGA8wHnDmfQPAeIDxQMuNB9gxQk1q9OjRtud9+/bFwIED0aVLF6xevbrZf6ip6Tz00EO253369EHfvn3RtWtXJCUlYfjw4c1Ys4YzY8YMHD16FN99911zV6VZVNb+xx9/3Pa8T58+6NChA4YPH45z586ha9euTV3NBhUTE4ODBw8iNzcXn3/+OSZPnozt27c3d7WaRGVt79Wrl1Nvc6o7xgMEuEY8ALh2TMB4gPEA4wGqCuMBAhgPuALGA4wHWmo8wKG0WqCgoCC4u7sjIyNDeT0jIwOhoaHNVKvGYTQaER0djbNnzyI0NBQlJSXIyclRyji2OzQ0tMLPpXxea1Fe16q2cWhoKDIzM5X5ZWVluHbtmtN9HlFRUQgKCsLZs2cBtP62z5w5E1999RW2bduGTp062V5vqO94ZWX8/f1bxAFEZe2vyMCBAwFA2fattf16vR7dunVD//79sWjRIsTFxWHJkiUusd0ra3tFnGmbNzbGAzlKGcYDdq1pn1gbzhYPAK4dEzAeYDzAeKDhuEpMwHiA8QDAeABwrn0D4wHGAy05HmDHSAuk1+vRv39/bNmyxfaa1WrFli1blDHZnEF+fj7OnTuHDh06oH///vD09FTaferUKaSmptranZCQgCNHjig7xc2bN8Pf3992W1ZrEBkZidDQUKWtJpMJe/bsUdqak5OD/fv328ps3boVVqvV9sORkJCAHTt2oLS01FZm8+bNiImJaRG3itbUpUuXkJ2djQ4dOgBovW0XQmDmzJlYu3Yttm7detOtvA31HU9ISFDWUV6muX8fqmt/RQ4ePAgAyrZvre3XslqtKC4udvrtXpHytlfEmbd5Q2M8wHgAaL37xLpwlngAcO2YgPGAivEA44GG4CoxAeMBxgMA4wFn2TcwHlAxHmih8UCt07VTk1i5cqUwGAzio48+EsePHxePP/64MBqNIj09vbmrVi+zZ88WSUlJIiUlRXz//fciMTFRBAUFiczMTCGEENOnTxfh4eFi69atYt++fSIhIUEkJCTYli8rKxOxsbFixIgR4uDBg2Ljxo2iffv2Yv78+c3VpErl5eWJAwcOiAMHDggA4vXXXxcHDhwQFy9eFEIIsXjxYmE0GsUXX3whDh8+LO677z4RGRkpzGazbR2jRo0St956q9izZ4/47rvvRPfu3cXEiRNt83NyckRISIh45JFHxNGjR8XKlSuFj4+PePfdd5u8vY6qanteXp6YM2eOSE5OFikpKeLbb78V/fr1E927dxdFRUW2dbTGtj/xxBMiICBAJCUlibS0NNujsLDQVqYhvuPnz58XPj4+Yu7cueLEiRNi6dKlwt3dXWzcuLFJ26tVXfvPnj0rXn75ZbFv3z6RkpIivvjiCxEVFSWGDRtmW0drbf9zzz0ntm/fLlJSUsThw4fFc889J3Q6ndi0aZMQwrm3e1Vtd+Zt3lQYDzAeEKJ17hOFcN14QAjXjgkYDzAeYDzQOJwxJmA8wHiA8YDz7hsYDzAeaA3xADtGWrC33npLhIeHC71eL+Lj48Xu3bubu0r1NmHCBNGhQweh1+tFx44dxYQJE8TZs2dt881ms3jyySdFYGCg8PHxEWPHjhVpaWnKOi5cuCBGjx4tvL29RVBQkJg9e7YoLS1t6qZUa9u2bQLATY/JkycLIYSwWq3ij3/8owgJCREGg0EMHz5cnDp1SllHdna2mDhxovD19RX+/v5i6tSpIi8vTylz6NAhMWTIEGEwGETHjh3F4sWLm6qJlaqq7YWFhWLEiBGiffv2wtPTU3Tp0kVMmzbtpoC+Nba9ojYDEMuXL7eVaajv+LZt28Qtt9wi9Hq9iIqKUt6juVTX/tTUVDFs2DDRtm1bYTAYRLdu3cTcuXNFbm6usp7W2P5f//rXokuXLkKv14v27duL4cOH24IeIZx7u1fVdmfe5k2J8QDjgda4TxTCdeMBIVw7JmA8wHiA8UDjcbaYgPEA4wHGA867b2A8wHigNcQDOiGEqP19JkRERERERERERERERK0Pc4wQEREREREREREREZHLYMcIERERERERERERERG5DHaMEBERERERERERERGRy2DHCBERERERERERERERuQx2jBARERERERERERERkctgxwgREREREREREREREbkMdowQEREREREREREREZHLYMcIETmVpKQk6HQ65OTkNPl763Q66HQ6GI3GGpUvr6tOp8OYMWMatW5ERESuhPEAERERMR4goqqwY4SIWq0777wTzzzzjPLaoEGDkJaWhoCAgGap0/Lly3H69OkalS2v64MPPtjItSIiInJejAeIiIiI8QAR1RY7RojIqej1eoSGhkKn0zXL+xuNRgQHB9eobHldvb29G7lWREREroXxABERETEeIKKqsGOEiFqlKVOmYPv27ViyZIntdtMLFy7cdKvsRx99BKPRiK+++goxMTHw8fHB+PHjUVhYiH/961+IiIhAYGAgnnrqKVgsFtv6i4uLMWfOHHTs2BFt2rTBwIEDkZSUVOt6Hjp0CHfddRf8/Pzg7++P/v37Y9++fQ30KRAREbk2xgNERETEeICI6sKjuStARFQXS5YswenTpxEbG4uXX34ZANC+fXtcuHDhprKFhYV48803sXLlSuTl5WHcuHEYO3YsjEYjvv76a5w/fx73338/Bg8ejAkTJgAAZs6ciePHj2PlypUICwvD2rVrMWrUKBw5cgTdu3evcT0nTZqEW2+9FcuWLYO7uzsOHjwIT0/PBvkMiIiIXB3jASIiImI8QER1wY4RImqVAgICoNfr4ePjg9DQ0CrLlpaWYtmyZejatSsAYPz48fjkk0+QkZEBX19f9OrVC3fddRe2bduGCRMmIDU1FcuXL0dqairCwsIAAHPmzMHGjRuxfPlyvPLKKzWuZ2pqKubOnYsePXoAQK2CJiIiIqoa4wEiIiJiPEBEdcGOESJyej4+PragBwBCQkIQEREBX19f5bXMzEwAwJEjR2CxWBAdHa2sp7i4GO3atavVe8+aNQu/+c1v8MknnyAxMREPPPCAUhciIiJqGowHiIiIiPEAEZVjxwgROT3trak6na7C16xWKwAgPz8f7u7u2L9/P9zd3ZVyjsFSTSxcuBAPP/ww1q9fjw0bNmDBggVYuXIlxo4dW4eWEBERUV0xHiAiIiLGA0RUjh0jRNRq6fV6JSFaQ7n11lthsViQmZmJoUOH1nt90dHRiI6Oxu9//3tMnDgRy5cvZ+BDRETUQBgPEBEREeMBIqott+auABFRXUVERGDPnj24cOECsrKybFd01Fd0dDQmTZqERx99FGvWrEFKSgr27t2LRYsWYf369TVej9lsxsyZM5GUlISLFy/i+++/xw8//ICePXs2SD2JiIiI8QARERExHiCi2mPHCBG1WnPmzIG7uzt69eqF9u3bIzU1tcHWvXz5cjz66KOYPXs2YmJiMGbMGPzwww8IDw+v8Trc3d2RnZ2NRx99FNHR0XjwwQcxevRovPTSSw1WTyIiIlfHeICIiIgYDxBRbemEEKK5K0FE5Ax0Oh3Wrl2LMWPG1Gq5KVOmICcnB+vWrWuUehEREVHTYTxAREREjAeIWj7eMUJE1IAmTpyITp061ajszp074evri08//bSRa0VERERNifEAERERMR4gatl4xwgRUQM5e/YsAHmLbGRkZLXlzWYzLl++DADw9fVFaGhoo9aPiIiIGh/jASIiImI8QNTysWOEiIiIiIiIiIiIiIhcBofSIiIiIiIiIiIiIiIil8GOESIiIiIiIiIiIiIichnsGCEiIiIiIiIiIiIiIpfBjhEiIiIiIiIiIiIiInIZ7BghIiIiIiIiIiIiIiKXwY4RIiIiIiIiIiIiIiJyGewYISIiIiIiIiIiIiIil8GOESIiIiIiIiIiIiIichnsGCEiIiIiIiIiIiIiIpfx/35tP9nUxhnqAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig13_aerosol_rates.pdf" + ], + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-15T02:55:34.534019\n image/svg+xml\n \n \n Matplotlib v3.10.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig3_breakup-only.pdf
\")…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f99307998b4e4a3ea0dfe88814b1b823" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 5 }, { "cell_type": "code", - "execution_count": null, "metadata": { "pycharm": { "name": "#%%\n" + }, + "ExecuteTime": { + "end_time": "2024-12-15T05:19:25.550567Z", + "start_time": "2024-12-15T01:55:34.739021Z" } }, - "outputs": [], "source": [ "title = \"fig5_coalescence-breakup\"\n", "c = 0.5e-6 / si.s\n", @@ -176,7 +221,40 @@ " n_realisations=n_realisations,\n", ")\n", "show_plot(f'{title}.pdf')" - ] + ], + "outputs": [ + { + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(HTML(value=\"./fig5_coalescence-breakup…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "79bf208b99db426b855869703785c039" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 6 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-15T05:19:25.628796Z", + "start_time": "2024-12-15T05:19:25.627584Z" + } + }, + "cell_type": "code", + "source": "", + "outputs": [], + "execution_count": 7 } ], "metadata": { diff --git a/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb b/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb index 8a2eb360d..45cdd20e4 100644 --- a/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb +++ b/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb @@ -5,8 +5,8 @@ "metadata": {}, "source": [ "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb)\n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb)\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb)" + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/deJong_Mackay_et_al_2023/figs_6_7_8.ipynb)" ] }, { @@ -17,24 +17,29 @@ ] }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-10T19:29:15.893402Z", + "start_time": "2024-12-10T19:29:15.884853Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PySDM-examples')" - ] + ], + "outputs": [], + "execution_count": 1 }, { "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-11-08T22:12:27.406457Z", - "start_time": "2024-11-08T22:12:24.834171Z" + "end_time": "2024-12-10T19:29:18.636725Z", + "start_time": "2024-12-10T19:29:15.904933Z" } }, "cell_type": "code", @@ -56,8 +61,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2024-11-08T22:12:39.297393Z", - "start_time": "2024-11-08T22:12:27.412220Z" + "end_time": "2024-12-10T19:29:39.985588Z", + "start_time": "2024-12-10T19:29:18.786822Z" } }, "source": [ @@ -123,9 +128,9 @@ "output_type": "stream", "text": [ "finished Ec=1.0\n", - "[[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n", - " [9.9902043e+05 0.0000000e+00 9.9902043e+05 0.0000000e+00]\n", - " [9.6550000e+02 0.0000000e+00 9.6550000e+02 0.0000000e+00]]\n" + "[[ 0. 0. 0. 0. ]\n", + " [998971.28 0. 998971.28 0. ]\n", + " [ 1013.43 0. 1013.43 0. ]]\n" ] }, { @@ -134,8 +139,8 @@ "text": [ "finished Ec=0.9\n", "[[ 0. 0. 0. 0. ]\n", - " [2394848.31 0. 2153710.07 229506.19]\n", - " [ 226815.31 0. 204567.39 21139.47]]\n" + " [2351083.68 0. 2117998.12 222207.12]\n", + " [ 216970.64 0. 195200.09 20488.63]]\n" ] }, { @@ -144,8 +149,8 @@ "text": [ "finished Ec=0.8\n", "[[ 0. 0. 0. 0. ]\n", - " [6276100.65 0. 5014974.13 1191209.23]\n", - " [9631018.08 0. 7738442.9 1790622.94]]\n" + " [6376614.05 0. 5102963.73 1206902.97]\n", + " [9931776.88 0. 7885179.78 1917788.48]]\n" ] }, { @@ -154,8 +159,8 @@ "text": [ "finished Ec=0.7\n", "[[ 0. 0. 0. 0. ]\n", - " [11626340.35 0. 8149555.55 3318135.74]\n", - " [33648189.08 0. 23616345.25 9949316.25]]\n" + " [11635359.67 0. 8154591.14 3327335.79]\n", + " [34663858.8 0. 24281504.96 10237258.62]]\n" ] }, { @@ -164,8 +169,8 @@ "text": [ "finished Straub\n", "[[ 0. 0. 0. 0. ]\n", - " [1013860.91 0. 1011111.41 2605.15]\n", - " [ 9371.38 0. 8063.28 1215.56]]\n" + " [1015141.72 0. 1012161.81 2780.09]\n", + " [ 9211.03 0. 7912.68 1202.23]]\n" ] }, { @@ -173,7 +178,7 @@ "text/plain": [ "
" ], - "image/svg+xml": "\n\n\n \n \n \n \n 2024-11-08T23:12:39.250459\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:29:39.886700\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, "metadata": {}, "output_type": "display_data" @@ -186,7 +191,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "8607a7fcd48d4a28879deac998c42ce0" + "model_id": "1384aedff2f840cf870fa337fdaff326" } }, "metadata": {}, @@ -206,8 +211,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2024-11-08T22:12:52.072908Z", - "start_time": "2024-11-08T22:12:39.310093Z" + "end_time": "2024-12-10T19:30:05.579394Z", + "start_time": "2024-12-10T19:29:39.997536Z" } }, "source": [ @@ -302,8 +307,8 @@ "output_type": "stream", "text": [ "finished nf=1\n", - "[[ 0. 0. 0. 0. ]\n", - " [833119.55 0. 791396.6 41722.95]]\n" + "[[ 0. 0. 0. 0. ]\n", + " [833103.35 0. 792001.08333333 41102.26666667]]\n" ] }, { @@ -312,7 +317,7 @@ "text": [ "finished nf=4\n", "[[ 0. 0. 0. 0. ]\n", - " [966385.79166667 0. 920435.95 45609.14166667]]\n" + " [973282.24166667 0. 924764.89166667 47907.16666667]]\n" ] }, { @@ -321,7 +326,7 @@ "text": [ "finished nf=16\n", "[[ 0. 0. 0. 0. ]\n", - " [1990583.95 0. 1892386.73333333 87708.98333333]]\n" + " [2045663.46666667 0. 1942552.825 90445.5 ]]\n" ] }, { @@ -330,7 +335,7 @@ "text": [ "finished nf=64\n", "[[ 0. 0. 0. 0. ]\n", - " [23765394.51666667 0. 22581542.35833333 667356.15 ]]\n" + " [23590744.20833333 0. 22456173.86666667 653528.13333333]]\n" ] }, { @@ -338,7 +343,7 @@ "output_type": "stream", "text": [ "4.768389119586232e-13 [[ 0. 0. 0. 0. ]\n", - " [912937.25833333 0. 869170.75833333 41536.86666667]]\n" + " [919038.68333333 0. 876605.325 39519.39166667]]\n" ] }, { @@ -346,7 +351,7 @@ "output_type": "stream", "text": [ "1.192097279896558e-13 [[ 0. 0. 0. 0. ]\n", - " [1239708.675 0. 1180794.26666667 47957.78333333]]\n" + " [1231335.35 0. 1178624.14166667 46321.64166667]]\n" ] }, { @@ -354,7 +359,7 @@ "output_type": "stream", "text": [ "2.980243199741395e-14 [[ 0. 0. 0. 0. ]\n", - " [2575278.65 0. 2448901.90833333 86842.45833333]]\n" + " [2642596.46666667 0. 2523742.5 82857.95 ]]\n" ] }, { @@ -362,7 +367,7 @@ "text/plain": [ "
" ], - "image/svg+xml": "\n\n\n \n \n \n \n 2024-11-08T23:12:52.011068\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:30:05.367196\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, "metadata": {}, "output_type": "display_data" @@ -375,7 +380,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "704097d59f304dc7b83caee5143672a8" + "model_id": "f301c288b8b046c8bba68d36b3765911" } }, "metadata": {}, @@ -395,8 +400,8 @@ "cell_type": "code", "metadata": { "ExecuteTime": { - "end_time": "2024-11-08T22:13:00.021731Z", - "start_time": "2024-11-08T22:12:52.083917Z" + "end_time": "2024-12-10T19:30:22.270775Z", + "start_time": "2024-12-10T19:30:05.642282Z" } }, "source": [ @@ -441,7 +446,7 @@ "text/plain": [ "
" ], - "image/svg+xml": "\n\n\n \n \n \n \n 2024-11-08T23:12:59.989867\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-10T20:30:22.205336\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, "metadata": {}, "output_type": "display_data" @@ -454,7 +459,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "ef187d994d1b4316a79c41802fe5d79c" + "model_id": "72fa2406022c43d7a084bf04eb6a48d4" } }, "metadata": {}, diff --git a/examples/PySDM_examples/seeding/hello_world.ipynb b/examples/PySDM_examples/seeding/hello_world.ipynb index 820850f22..0c800452c 100644 --- a/examples/PySDM_examples/seeding/hello_world.ipynb +++ b/examples/PySDM_examples/seeding/hello_world.ipynb @@ -1,251 +1,167 @@ { + "metadata": { + "kernelspec": { + "name": "python3", + "display_name": "Python 3 (ipykernel)", + "language": "python" + }, + "language_info": { + "name": "python", + "version": "3.10.14", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + }, + "vscode": { + "interpreter": { + "hash": "b14f34a08619f4a218d80d7380beed3f0c712c89ff93e7183219752d640ed427" + } + } + }, + "nbformat_minor": 5, + "nbformat": 4, "cells": [ { - "metadata": {}, + "id": "b762c49560c8d6cf", "cell_type": "markdown", "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/hello_world.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/seeding/hello_world.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/hello_world.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/hello_world.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/seeding/hello_world.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/hello_world.ipynb)" ], - "id": "b762c49560c8d6cf" + "metadata": {} }, { - "metadata": {}, + "id": "45491a3c0a12c30a", "cell_type": "markdown", "source": "TODO #1417", - "id": "45491a3c0a12c30a" + "metadata": {} }, { - "metadata": {}, + "id": "70162914d9301075", "cell_type": "code", + "source": "import sys\nif 'google.colab' in sys.modules:\n !pip --quiet install open-atmos-jupyter-utils\n from open_atmos_jupyter_utils import pip_install_on_colab\n pip_install_on_colab('PySDM-examples')", + "metadata": { + "trusted": true + }, "outputs": [], - "execution_count": null, - "source": [ - "import sys\n", - "if 'google.colab' in sys.modules:\n", - " !pip --quiet install open-atmos-jupyter-utils\n", - " from open_atmos_jupyter_utils import pip_install_on_colab\n", - " pip_install_on_colab('PySDM-examples')" - ], - "id": "70162914d9301075" + "execution_count": 1 }, { - "cell_type": "code", - "execution_count": 1, "id": "b1c0a002-7f76-4a4c-9e77-6aae747d7fab", + "cell_type": "code", + "source": "import numpy as np\nfrom matplotlib import pyplot\nfrom PySDM import Formulae\nfrom PySDM.physics import in_unit, si\nfrom open_atmos_jupyter_utils import show_plot\nfrom PySDM_examples.seeding import Settings, Simulation", "metadata": { "ExecuteTime": { "end_time": "2024-08-20T22:17:43.753049Z", "start_time": "2024-08-20T22:17:40.315223Z" - } + }, + "trusted": true }, "outputs": [], - "source": [ - "import numpy as np\n", - "from matplotlib import pyplot\n", - "from PySDM import Formulae\n", - "from PySDM.physics import in_unit, si\n", - "from open_atmos_jupyter_utils import show_plot\n", - "from PySDM_examples.seeding import Settings, Simulation" - ] + "execution_count": 2 }, { - "cell_type": "code", - "execution_count": 2, "id": "1695dd83-b78b-46f3-a50c-47cc601c5920", + "cell_type": "code", + "source": "n_sd_initial = 100\nn_sd_seeding = 100\nrain_water_radius_threshold = .1 * si.mm\nformulae = Formulae(seed=100)\n\nsimulations = {\n case: Simulation(\n Settings(\n n_sd_initial=n_sd_initial,\n n_sd_seeding=n_sd_seeding,\n rain_water_radius_threshold=rain_water_radius_threshold,\n super_droplet_injection_rate={\n 'seeding': lambda time: 1 if 5 * si.min < time < 10 * si.min else 0,\n 'no seeding': lambda _: 0,\n }[case],\n formulae=formulae,\n )\n )\n for case in ('seeding', 'no seeding')\n} ", "metadata": { "ExecuteTime": { "end_time": "2024-08-20T22:18:08.299964Z", "start_time": "2024-08-20T22:17:43.765032Z" - } + }, + "trusted": true }, "outputs": [], - "source": [ - "n_sd_initial = 100\n", - "n_sd_seeding = 100\n", - "rain_water_radius_threshold = .1 * si.mm\n", - "formulae = Formulae(seed=100)\n", - "\n", - "simulations = {\n", - " case: Simulation(\n", - " Settings(\n", - " n_sd_initial=n_sd_initial,\n", - " n_sd_seeding=n_sd_seeding,\n", - " rain_water_radius_threshold=rain_water_radius_threshold,\n", - " super_droplet_injection_rate={\n", - " 'seeding': lambda time: 1 if 5 * si.min < time < 10 * si.min else 0,\n", - " 'no seeding': lambda _: 0,\n", - " }[case],\n", - " formulae=formulae,\n", - " )\n", - " )\n", - " for case in ('seeding', 'no seeding')\n", - "} " - ] + "execution_count": 3 }, { - "cell_type": "code", - "execution_count": 3, "id": "af543973-a177-4fe9-9ae5-b0fb8511323e", + "cell_type": "code", + "source": "outputs = {case: simulations[case].run() for case in simulations}", "metadata": { "ExecuteTime": { "end_time": "2024-08-20T22:19:04.834137Z", "start_time": "2024-08-20T22:18:08.367114Z" - } + }, + "trusted": true }, "outputs": [], - "source": [ - "outputs = {case: simulations[case].run() for case in simulations}" - ] + "execution_count": 4 }, { - "cell_type": "code", - "execution_count": 4, "id": "45bbaff8-d6ea-4685-a10b-2c4af167b89a", + "cell_type": "code", + "source": "for case, output in outputs.items():\n time = output['products']['time']\n water_mass = output['attributes']['water mass']\n \n fig, axs = pyplot.subplot_mosaic(\n [['a', 'b', 'c']],\n sharey=True,\n figsize=(12, 4),\n tight_layout=True\n )\n \n for drop_id in range(water_mass.shape[1]):\n axs['a'].plot(\n in_unit(water_mass[:, drop_id], si.ng),\n in_unit(time, si.min),\n color=\"navy\" if np.isfinite(water_mass[0, drop_id]) else \"red\",\n linewidth=0.333,\n )\n axs['a'].set_ylabel(\"time [min]\")\n axs['a'].set_xlabel(\"drop mass [ng]\")\n axs['a'].grid()\n axs['a'].set_xscale(\"log\")\n axs['a'].set_xlim(1e-6, 1e8)\n\n axs['b'].plot(\n output['products']['sd_count'],\n in_unit(time, si.min),\n marker='.',\n color='green',\n )\n axs['b'].set_xlabel(\"super droplet count\")\n axs['b'].grid()\n axs['b'].set_xlim(95, 125)\n\n axs['c'].plot(\n in_unit(output['products']['rain water mixing ratio'], si.g/si.kg),\n in_unit(time, si.min),\n marker='.',\n color='green', \n )\n axs['c'].set_xlabel(f\"rain water mixing ratio [g/kg] (radius > {in_unit(rain_water_radius_threshold, si.mm)} mm)\")\n axs['c'].grid()\n axs['c'].set_xlim(0, 3)\n\n fig.suptitle(case)\n show_plot(f\"hello_world_{case.replace(' ', '_')}.pdf\")", "metadata": { "ExecuteTime": { "end_time": "2024-08-20T22:19:14.817471Z", "start_time": "2024-08-20T22:19:04.867861Z" - } + }, + "trusted": true }, "outputs": [ { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2024-08-21T00:19:08.618644\n image/svg+xml\n \n \n Matplotlib v3.8.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-09T12:58:04.982652\n image/svg+xml\n \n \n Matplotlib v3.9.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { + "output_type": "display_data", "data": { + "text/plain": "HBox(children=(HTML(value=\"./hello_world_seeding.pdf./hello_world_seeding.pdf\n\n\n \n \n \n \n 2024-08-21T00:19:14.420028\n image/svg+xml\n \n \n Matplotlib v3.8.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-09T12:58:11.781299\n image/svg+xml\n \n \n Matplotlib v3.9.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { + "output_type": "display_data", "data": { + "text/plain": "HBox(children=(HTML(value=\"./hello_world_no_seeding.pdf…", "application/vnd.jupyter.widget-view+json": { - "model_id": "e1257a7fbd6d41dcb5887fb3e4fca118", "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(HTML(value=\"./hello_world_no_seeding.pdf…" - ] + "version_minor": 0, + "model_id": "34b4c0c71c8b4094b93e780d2a928b35" + } }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], - "source": [ - "for case, output in outputs.items():\n", - " time = output['products']['time']\n", - " water_mass = output['attributes']['water mass']\n", - " \n", - " fig, axs = pyplot.subplot_mosaic(\n", - " [['a', 'b', 'c']],\n", - " sharey=True,\n", - " figsize=(12, 4),\n", - " tight_layout=True\n", - " )\n", - " \n", - " for drop_id in range(water_mass.shape[1]):\n", - " axs['a'].plot(\n", - " in_unit(water_mass[:, drop_id], si.ng),\n", - " in_unit(time, si.min),\n", - " color=\"navy\" if np.isfinite(water_mass[0, drop_id]) else \"red\",\n", - " linewidth=0.333,\n", - " )\n", - " axs['a'].set_ylabel(\"time [min]\")\n", - " axs['a'].set_xlabel(\"drop mass [ng]\")\n", - " axs['a'].grid()\n", - " axs['a'].set_xscale(\"log\")\n", - " axs['a'].set_xlim(1e-6, 1e8)\n", - "\n", - " axs['b'].plot(\n", - " output['products']['sd_count'],\n", - " in_unit(time, si.min),\n", - " marker='.',\n", - " color='green',\n", - " )\n", - " axs['b'].set_xlabel(\"super droplet count\")\n", - " axs['b'].grid()\n", - " axs['b'].set_xlim(95, 125)\n", - "\n", - " axs['c'].plot(\n", - " in_unit(output['products']['rain water mixing ratio'], si.g/si.kg),\n", - " in_unit(time, si.min),\n", - " marker='.',\n", - " color='green', \n", - " )\n", - " axs['c'].set_xlabel(f\"rain water mixing ratio [g/kg] (radius > {in_unit(rain_water_radius_threshold, si.mm)} mm)\")\n", - " axs['c'].grid()\n", - " axs['c'].set_xlim(0, 3)\n", - "\n", - " fig.suptitle(case)\n", - " show_plot(f\"hello_world_{case.replace(' ', '_')}.pdf\")" - ] + "execution_count": 5 }, { - "cell_type": "code", - "execution_count": null, "id": "a4742eaf-dccb-48b7-9138-74ae5c579cd8", + "cell_type": "code", + "source": "", "metadata": { "ExecuteTime": { "end_time": "2024-08-20T22:19:14.881814Z", "start_time": "2024-08-20T22:19:14.872933Z" - } + }, + "trusted": true }, "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.10.9 ('pysdm')", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - }, - "vscode": { - "interpreter": { - "hash": "b14f34a08619f4a218d80d7380beed3f0c712c89ff93e7183219752d640ed427" - } + "execution_count": null } - }, - "nbformat": 4, - "nbformat_minor": 5 + ] } diff --git a/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb b/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb index 4813cbf6c..b8ac41c91 100644 --- a/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb +++ b/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb @@ -1,191 +1,119 @@ { + "metadata": { + "kernelspec": { + "name": "python3", + "display_name": "Python 3 (ipykernel)", + "language": "python" + }, + "language_info": { + "name": "python", + "version": "3.10.14", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + }, + "vscode": { + "interpreter": { + "hash": "b14f34a08619f4a218d80d7380beed3f0c712c89ff93e7183219752d640ed427" + } + } + }, + "nbformat_minor": 4, + "nbformat": 4, "cells": [ { - "metadata": {}, "cell_type": "markdown", "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=examples/PySDM_examples/seeding/seeding_no_collisions.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb)" - ] + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/examples/PySDM_examples/seeding/seeding_no_collisions.ipynb)" + ], + "metadata": {} }, { - "metadata": {}, "cell_type": "markdown", - "source": "TODO #1417" + "source": "TODO #1417", + "metadata": {} }, { - "metadata": {}, "cell_type": "code", + "source": "import sys\nif 'google.colab' in sys.modules:\n !pip --quiet install open-atmos-jupyter-utils\n from open_atmos_jupyter_utils import pip_install_on_colab\n pip_install_on_colab('PySDM-examples')", + "metadata": { + "trusted": true + }, "outputs": [], - "execution_count": null, - "source": [ - "import sys\n", - "if 'google.colab' in sys.modules:\n", - " !pip --quiet install open-atmos-jupyter-utils\n", - " from open_atmos_jupyter_utils import pip_install_on_colab\n", - " pip_install_on_colab('PySDM-examples')" - ] + "execution_count": 1 }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, + "source": "import numpy as np\nfrom matplotlib import pyplot\nfrom PySDM import Formulae\nfrom PySDM.physics import in_unit, si\nfrom open_atmos_jupyter_utils import show_plot\nfrom PySDM_examples.seeding import Settings, Simulation", + "metadata": { + "trusted": true + }, "outputs": [], - "source": [ - "import numpy as np\n", - "from matplotlib import pyplot\n", - "from PySDM import Formulae\n", - "from PySDM.physics import in_unit, si\n", - "from open_atmos_jupyter_utils import show_plot\n", - "from PySDM_examples.seeding import Settings, Simulation" - ] + "execution_count": 2 }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, + "source": "n_sd_initial = 100\nn_sd_seeding = 100\nformulae = Formulae(seed=100)\n\nsimulations = {\n case: Simulation(\n Settings(\n n_sd_initial=n_sd_initial,\n n_sd_seeding=n_sd_seeding,\n rain_water_radius_threshold=0 * si.mm,\n super_droplet_injection_rate={\n 'seeding': lambda time: 1 if 15 * si.min < time < 20 * si.min else 0,\n 'no seeding': lambda _: 0,\n }[case],\n formulae=formulae,\n enable_collisions=False,\n )\n )\n for case in ('seeding', 'no seeding')\n} ", + "metadata": { + "trusted": true + }, "outputs": [], - "source": [ - "n_sd_initial = 100\n", - "n_sd_seeding = 100\n", - "formulae = Formulae(seed=100)\n", - "\n", - "simulations = {\n", - " case: Simulation(\n", - " Settings(\n", - " n_sd_initial=n_sd_initial,\n", - " n_sd_seeding=n_sd_seeding,\n", - " rain_water_radius_threshold=0 * si.mm,\n", - " super_droplet_injection_rate={\n", - " 'seeding': lambda time: 1 if 15 * si.min < time < 20 * si.min else 0,\n", - " 'no seeding': lambda _: 0,\n", - " }[case],\n", - " formulae=formulae,\n", - " enable_collisions=False,\n", - " )\n", - " )\n", - " for case in ('seeding', 'no seeding')\n", - "} " - ] + "execution_count": 3 }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, + "source": "outputs = {case: simulations[case].run() for case in simulations}", + "metadata": { + "trusted": true + }, "outputs": [], - "source": [ - "outputs = {case: simulations[case].run() for case in simulations}" - ] + "execution_count": 4 }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, + "source": "fig, axs = pyplot.subplot_mosaic(\n [['a', 'b', 'c']],\n sharey=True,\n figsize=(12, 4),\n tight_layout=True\n )\n\nfor case, output in outputs.items():\n time = output['products']['time']\n idx = np.where(time > 10 * si.min)[0]\n\n axs['a'].plot(\n output['products']['sd_count'][idx],\n in_unit(time[idx], si.min),\n marker='.',\n label=case,\n )\n axs['a'].set_xlabel(\"super droplet count\")\n axs['a'].set_ylabel(\"height [m]\")\n axs['a'].axhspan(15, 20, color=\"grey\", alpha=0.2)\n\n axs['b'].plot(\n output['products']['r_eff'][idx],\n in_unit(time[idx], si.min),\n marker='.',\n )\n axs['b'].set_xlabel(\"r_eff [um]\")\n axs['b'].axhspan(15, 20, color=\"grey\", alpha=0.2)\n\n axs['c'].plot(\n output['products']['n_drop'][idx],\n in_unit(time[idx], si.min),\n marker='.',\n )\n axs['c'].set_xlabel(\"n_drop [cm-3]\")\n axs['c'].axhspan(15, 20, color=\"grey\", alpha=0.2)\n\naxs['a'].legend()\nfig.suptitle(\"parcel with no collisions\")\nshow_plot(\"seeding_no_collisions.pdf\")", + "metadata": { + "trusted": true + }, "outputs": [ { + "output_type": "display_data", "data": { - "image/svg+xml": "\n\n\n \n \n \n \n 2024-09-12T10:23:28.539364\n image/svg+xml\n \n \n Matplotlib v3.5.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" + "text/plain": "
", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-12-09T12:57:14.320047\n image/svg+xml\n \n \n Matplotlib v3.9.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n" }, - "output_type": "display_data" + "metadata": {} }, { + "output_type": "display_data", "data": { + "text/plain": "HBox(children=(HTML(value=\"./seeding_no_collisions.pdf./seeding_no_collisions.pdf
\")" - ] + "version_minor": 0, + "model_id": "e88a10c0775749ef8dd99a174df2878c" + } }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], - "source": [ - "fig, axs = pyplot.subplot_mosaic(\n", - " [['a', 'b', 'c']],\n", - " sharey=True,\n", - " figsize=(12, 4),\n", - " tight_layout=True\n", - " )\n", - "\n", - "for case, output in outputs.items():\n", - " time = output['products']['time']\n", - " idx = np.where(time > 10 * si.min)[0]\n", - "\n", - " axs['a'].plot(\n", - " output['products']['sd_count'][idx],\n", - " in_unit(time[idx], si.min),\n", - " marker='.',\n", - " label=case,\n", - " )\n", - " axs['a'].set_xlabel(\"super droplet count\")\n", - " axs['a'].set_ylabel(\"height [m]\")\n", - " axs['a'].axhspan(15, 20, color=\"grey\", alpha=0.2)\n", - "\n", - " axs['b'].plot(\n", - " output['products']['r_eff'][idx],\n", - " in_unit(time[idx], si.min),\n", - " marker='.',\n", - " )\n", - " axs['b'].set_xlabel(\"r_eff [um]\")\n", - " axs['b'].axhspan(15, 20, color=\"grey\", alpha=0.2)\n", - "\n", - " axs['c'].plot(\n", - " output['products']['n_drop'][idx],\n", - " in_unit(time[idx], si.min),\n", - " marker='.',\n", - " )\n", - " axs['c'].set_xlabel(\"n_drop [cm-3]\")\n", - " axs['c'].axhspan(15, 20, color=\"grey\", alpha=0.2)\n", - "\n", - "axs['a'].legend()\n", - "fig.suptitle(\"parcel with no collisions\")\n", - "show_plot(\"seeding_no_collisions.pdf\")" - ] + "execution_count": 5 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.10.9 ('pysdm')", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 + "source": "", + "metadata": { + "trusted": true }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.9" - }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "b14f34a08619f4a218d80d7380beed3f0c712c89ff93e7183219752d640ed427" - } + "outputs": [], + "execution_count": null } - }, - "nbformat": 4, - "nbformat_minor": 2 + ] } diff --git a/tests/devops_tests b/tests/devops_tests index 231c989f1..8eb4d96a1 160000 --- a/tests/devops_tests +++ b/tests/devops_tests @@ -1 +1 @@ -Subproject commit 231c989f109a1da47ad77f240db7a6b693983377 +Subproject commit 8eb4d96a1ea8afa09a409a99dccbd0ddd48f80a7 diff --git a/tutorials/collisions/collisions_playground.ipynb b/tutorials/collisions/collisions_playground.ipynb index 4bda54f18..8843d6fd8 100644 --- a/tutorials/collisions/collisions_playground.ipynb +++ b/tutorials/collisions/collisions_playground.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/tree/main/tutorials/collisions/collisions_playground.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/tutorials/collisions/collisions_playground.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/tutorials/collisions/collisions_playground.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/tutorials/collisions/collisions_playground.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/tutorials/collisions/collisions_playground.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/tutorials/collisions/collisions_playground.ipynb)" ] }, { @@ -21,8 +21,26 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-05T22:12:53.537976Z", + "start_time": "2024-12-05T22:12:53.509740Z" + } + }, + "source": [ + "import sys\n", + "if 'google.colab' in sys.modules:\n", + " !pip --quiet install open-atmos-jupyter-utils\n", + " from open_atmos_jupyter_utils import pip_install_on_colab\n", + " pip_install_on_colab('PySDM-examples')" + ], + "outputs": [], + "execution_count": 5 + }, + { "metadata": {}, + "cell_type": "markdown", "source": [ "## Collision/coalescence \n", "\n", @@ -40,8 +58,8 @@ ] }, { - "cell_type": "markdown", "metadata": {}, + "cell_type": "markdown", "source": [ "## PySDM box model widget\n", "\n", @@ -52,32 +70,12 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:50:29.614596281Z", - "start_time": "2023-10-16T10:50:29.474658084Z" + "end_time": "2024-12-05T22:12:53.555929Z", + "start_time": "2024-12-05T22:12:53.542388Z" } }, - "outputs": [], - "source": [ - "import sys\n", - "if 'google.colab' in sys.modules:\n", - " !pip --quiet install \"open_atmos_jupyter_utils\"\n", - " from open_atmos_jupyter_utils import pip_install_on_colab\n", - " pip_install_on_colab('PySDM-examples')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2023-10-16T10:50:34.479445450Z", - "start_time": "2023-10-16T10:50:29.475070307Z" - } - }, - "outputs": [], "source": [ "from numpy import errstate\n", "import os\n", @@ -92,18 +90,18 @@ "from PySDM_examples.Shima_et_al_2009.tutorial_plotter import SpectrumPlotter\n", "from PySDM_examples.Shima_et_al_2009.tutorial_settings import Settings\n", "from PySDM_examples.Shima_et_al_2009.tutorial_example import run" - ] + ], + "outputs": [], + "execution_count": 6 }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:50:34.608979949Z", - "start_time": "2023-10-16T10:50:34.508186707Z" + "end_time": "2024-12-05T22:12:53.589430Z", + "start_time": "2024-12-05T22:12:53.577604Z" } }, - "outputs": [], "source": [ "def demo(*, _freezer, _n, _b, _r, _smooth):\n", " frm = Formulae()\n", @@ -128,7 +126,9 @@ " for step, state in states.items():\n", " plotter.plot(state, step * settings.dt)\n", " plotter.show()" - ] + ], + "outputs": [], + "execution_count": 7 }, { "cell_type": "markdown", @@ -146,17 +146,15 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { - "ExecuteTime": { - "end_time": "2023-10-16T10:50:54.426815690Z", - "start_time": "2023-10-16T10:50:34.522224837Z" - }, "pycharm": { "is_executing": true + }, + "ExecuteTime": { + "end_time": "2024-12-05T22:12:55.865731Z", + "start_time": "2024-12-05T22:12:53.596622Z" } }, - "outputs": [], "source": [ "style = {'description_width': 'initial'}\n", "n_SD = widgets.IntSlider(value=12, min=6, max=18, step=1, \n", @@ -177,7 +175,66 @@ "\n", "if 'CI' not in os.environ:\n", " widgets.display(sliders, boxes, progbar, widgets.interactive_output(demo, inputs))" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "HBox(children=(IntSlider(value=12, continuous_update=False, description='log2(nSD)', max=18, min=6, style=Slid…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "bdfd1e87e43745bebed2fee0a1bc4c5f" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "HBox(children=(Checkbox(value=True, description='smooth plot'),))" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "76294dfff7c94e12a6c7bc50d74b2b70" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "IntProgress(value=100, description='%')" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "a698fc09aef847e28bf5b94321de4d19" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Output()" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c2a987c930ec456ba119b36c4661d99b" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 8 }, { "cell_type": "markdown", @@ -201,15 +258,15 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:50:54.440313749Z", - "start_time": "2023-10-16T10:50:54.426253375Z" + "end_time": "2024-12-05T22:12:55.882614Z", + "start_time": "2024-12-05T22:12:55.881190Z" } }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": { diff --git a/tutorials/condensation/condensation_playground.ipynb b/tutorials/condensation/condensation_playground.ipynb index 7aab243d8..b4fc795fd 100644 --- a/tutorials/condensation/condensation_playground.ipynb +++ b/tutorials/condensation/condensation_playground.ipynb @@ -4,9 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/tree/main/tutorials/condensation/condensation_playground.ipynb) \n", - "[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/tutorials/condensation/condensation_playground.ipynb) \n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/tutorials/condensation/condensation_playground.ipynb)" + "[![preview notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PySDM/blob/main/tutorials/condensation/condensation_playground.ipynb)\n", + "[![launch on mybinder.org](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/tutorials/condensation/condensation_playground.ipynb)\n", + "[![launch on Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PySDM/blob/main/tutorials/condensation/condensation_playground.ipynb)" ] }, { @@ -21,8 +21,26 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "metadata": { + "ExecuteTime": { + "end_time": "2024-12-05T22:12:49.536268Z", + "start_time": "2024-12-05T22:12:49.462790Z" + } + }, + "source": [ + "import sys\n", + "if 'google.colab' in sys.modules:\n", + " !pip --quiet install open-atmos-jupyter-utils\n", + " from open_atmos_jupyter_utils import pip_install_on_colab\n", + " pip_install_on_colab('PySDM-examples')" + ], + "outputs": [], + "execution_count": 6 + }, + { "metadata": {}, + "cell_type": "markdown", "source": [ "## Droplet activation \n", "(for more info read Ch. 6 of Lohmann's _An Introduction to Clouds_)\n", @@ -70,8 +88,8 @@ ] }, { - "cell_type": "markdown", "metadata": {}, + "cell_type": "markdown", "source": [ "## PySDM parcel model widget\n", "\n", @@ -86,33 +104,12 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:48:42.215442231Z", - "start_time": "2023-10-16T10:48:42.165173760Z" + "end_time": "2024-12-05T22:12:49.555609Z", + "start_time": "2024-12-05T22:12:49.539541Z" } }, - "outputs": [], - "source": [ - "# import PySDM library on google colab\n", - "import sys\n", - "if 'google.colab' in sys.modules:\n", - " !pip --quiet install \"open-atmos-jupyter-utils\"\n", - " from open_atmos_jupyter_utils import pip_install_on_colab\n", - " pip_install_on_colab('PySDM-examples')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2023-10-16T10:48:46.446157420Z", - "start_time": "2023-10-16T10:48:42.168839122Z" - } - }, - "outputs": [], "source": [ "# import functions for creating interactive widget\n", "from PySDM_examples.utils import widgets\n", @@ -133,33 +130,33 @@ "from PySDM_examples.Pyrcel.tutorial_settings import Settings\n", "from PySDM_examples.Pyrcel.tutorial_simulation import Simulation\n", "from PySDM_examples.Pyrcel.profile_plotter import ProfilePlotter" - ] + ], + "outputs": [], + "execution_count": 7 }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:48:46.455145740Z", - "start_time": "2023-10-16T10:48:46.451616736Z" + "end_time": "2024-12-05T22:12:49.578330Z", + "start_time": "2024-12-05T22:12:49.570662Z" } }, - "outputs": [], "source": [ "# create progress bar for widget\n", "progbar = widgets.IntProgress(min=0, max=100, description='%')" - ] + ], + "outputs": [], + "execution_count": 8 }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:48:46.504641095Z", - "start_time": "2023-10-16T10:48:46.458931372Z" + "end_time": "2024-12-05T22:12:49.611693Z", + "start_time": "2024-12-05T22:12:49.590408Z" } }, - "outputs": [], "source": [ "# create initial aerosol distribution\n", "# run cloud parcel model\n", @@ -219,7 +216,9 @@ " plotter = ProfilePlotter(settings)\n", " plotter.plot(output)\n", " plotter.show()\n" - ] + ], + "outputs": [], + "execution_count": 9 }, { "cell_type": "markdown", @@ -237,14 +236,12 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:49:25.298263790Z", - "start_time": "2023-10-16T10:48:46.504445432Z" + "end_time": "2024-12-05T22:12:50.998538Z", + "start_time": "2024-12-05T22:12:49.617815Z" } }, - "outputs": [], "source": [ "# create widget\n", "# use to explore how the hygroscopicity, number concentration, and mean radius\n", @@ -264,7 +261,52 @@ "\n", "if 'CI' not in os.environ:\n", " widgets.display(sliders, progbar, widgets.interactive_output(demo, inputs))" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "HBox(children=(FloatSlider(value=1.2, continuous_update=False, description='κ2', max=1.4, min=0.2, readout_for…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "30b27016ee6e4cc899ff26f5c839a6f4" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "IntProgress(value=0, description='%')" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "0aef56e6f37248629a801f5f4359faf3" + } + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Output()" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "963e68f9428b46899daf7e02a322a2d3" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 10 }, { "cell_type": "markdown", @@ -293,15 +335,15 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2023-10-16T10:49:25.298929952Z", - "start_time": "2023-10-16T10:49:25.296187349Z" + "end_time": "2024-12-05T22:12:51.009554Z", + "start_time": "2024-12-05T22:12:51.007929Z" } }, + "source": [], "outputs": [], - "source": [] + "execution_count": null } ], "metadata": {