forked from vllm-project/llm-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mixtral_moe_w8a8_fp8.py
57 lines (44 loc) · 1.68 KB
/
mixtral_moe_w8a8_fp8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from typing import List
from transformers import AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
MODEL_ID = "mistralai/Mixtral-8x7B-Instruct-v0.1"
NUM_GPUS = 2
# Adjust based off number of desired GPUs
device_map = calculate_offload_device_map(
MODEL_ID, reserve_for_hessians=True, num_gpus=NUM_GPUS, torch_dtype="auto"
)
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map=device_map, torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Dataset config parameters
DATASET_ID = "open_platypus"
MAX_SEQ_LENGTH = 2048
NUM_CALIBRATION_SAMPLES = 512
# Save location of quantized model
OUTPUT_DIR = f"{MODEL_ID.split('/')[-1]}-FP8"
SAVE_COMPRESSED = True
layers_to_ignore: List[str] = [
"lm_head",
"re:.*block_sparse_moe.gate", # does not quantize well
]
recipe = QuantizationModifier(scheme="FP8", targets="Linear", ignore=layers_to_ignore)
oneshot(
model=model,
tokenizer=tokenizer,
dataset=DATASET_ID,
recipe=recipe,
max_seq_length=MAX_SEQ_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
save_compressed=SAVE_COMPRESSED,
overwrite_output_dir=True,
output_dir=OUTPUT_DIR,
)
# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")