llmcompressor
supports quantizing weights and activations to fp8
for memory savings and inference acceleration with vllm
fp8
compuation is supported on Nvidia GPUs with compute capability > 8.9 (Ada Lovelace, Hopper).
To get started, install:
pip install llmcompressor==0.1.0
The example includes an end-to-end script for applying the quantization algorithm.
python3 llama3_example.py
The resulting model Meta-Llama-3-8B-Instruct-FP8-Dynamic
is ready to be loaded into vLLM.
Now, we will step though the code in the example. There are three steps:
- Load model
- Apply quantization
- Evaluate accuracy in vLLM
Load the model using SparseAutoModelForCausalLM
, which wraps AutoModelForCausalLM
for saving and loading quantized models.
from llmcompressor.transformers import SparseAutoModelForCausalLM
from transformers import AutoTokenizer
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
For fp8
quantization, we can recover accuracy with simple PTQ quantization.
We recommend targeting all Linear
layers using the FP8_DYNAMIC
scheme, which uses:
- Static, per-channel quantization on the weights
- Dynamic, per-token quantization on the activations
Since simple PTQ does not require data for weight quantization and the activations are quantized dynamically, we do not need any calibration data for this quantization flow.
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Configure the simple PTQ quantization
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
# Apply the quantization algorithm.
oneshot(model=model, recipe=recipe)
# Save the model.
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
model.save_pretrained(SAVE_DIR)
tokenizer.save_pretrained(SAVE_DIR)
We have successfully created an fp8
model!
Install vllm
and lm-evaluation-harness
:
pip install vllm lm_eval==0.4.3
Load and run the model in vllm
:
from vllm import LLM
model = LLM("./Meta-Llama-3-8B-Instruct-FP8-Dynamic")
model.generate("Hello my name is")
Evaluate accuracy with lm_eval
(for example on 250 samples of gsm8k
):
Note: quantized models can be sensitive to the presence of the
bos
token.lm_eval
does not add abos
token by default, so make sure to include theadd_bos_token=True
argument when running your evaluations.
MODEL=$PWD/Meta-Llama-3-8B-Instruct-FP8-Dynamic
lm_eval \
--model vllm \
--model_args pretrained=$MODEL,add_bos_token=True \
--tasks gsm8k --num_fewshot 5 --batch_size auto --limit 250
We can see the resulting scores look good:
|Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr|
|-----|------:|----------------|-----:|-----------|---|----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.768|± |0.0268|
| | |strict-match | 5|exact_match|↑ |0.768|± |0.0268|
Please open up an issue on vllm-project/llm-compressor