title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_editor | editor | bibtex_author | author | date | note | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensitivity analysis in decision circuits |
Decision circuits have been developed to perform efficient evaluation of influence diagrams [Bhattacharjya and Shachter, 2007], building on the advances in arithmetic circuits for belief network inference [Darwiche, 2003]. In the process of model building and analysis, we perform sensitivity analysis to understand how the optimal solution changes in response to changes in the model. When sequential decision problems under uncertainty are represented as decision circuits, we can exploit the efficient solution process embodied in the decision circuit and the wealth of derivative information available to compute the value of information for the uncertainties in the problem and the effects of changes to model parameters on the value and the optimal strategy. |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
bhattacharjya08a |
0 |
Sensitivity analysis in decision circuits |
34 |
42 |
34-42 |
34 |
false |
McAllester, David A. and Myllym{"a}ki, Petri |
|
Bhattacharjya, Debarun and Shachter, Ross D. |
|
2008-07-09 |
Reissued by PMLR on 30 October 2024. |
Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence |
R6 |
inproceedings |
|