-
Notifications
You must be signed in to change notification settings - Fork 13
/
val.py
241 lines (209 loc) · 11.5 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Ultralytics YOLO 🚀, GPL-3.0 license
import os
from pathlib import Path
import hydra
import numpy as np
import torch
from ultralytics.yolo.data import build_dataloader
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr, ops, yaml_load
from ultralytics.yolo.utils.checks import check_file, check_requirements
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
from ultralytics.yolo.utils.torch_utils import de_parallel
class DetectionValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
super().__init__(dataloader, save_dir, pbar, logger, args)
self.data_dict = yaml_load(check_file(self.args.data), append_filename=True) if self.args.data else None
self.is_coco = False
self.class_map = None
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots)
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for [email protected]:0.95
self.niou = self.iouv.numel()
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
for k in ["batch_idx", "cls", "bboxes"]:
batch[k] = batch[k].to(self.device)
nb, _, height, width = batch["img"].shape
batch["bboxes"] *= torch.tensor((width, height, width, height), device=self.device) # to pixels
self.lb = [torch.cat([batch["cls"], batch["bboxes"]], dim=-1)[batch["batch_idx"] == i]
for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling
return batch
def init_metrics(self, model):
head = model.model[-1] if self.training else model.model.model[-1]
val = self.data.get('val', '') # validation path
self.is_coco = isinstance(val, str) and val.endswith(f'coco{os.sep}val2017.txt') # is COCO dataset
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO
self.nc = head.nc
self.names = model.names
self.metrics.names = self.names
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
self.seen = 0
self.jdict = []
self.stats = []
def get_desc(self):
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)")
def postprocess(self, preds):
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
labels=self.lb,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det)
return preds
def update_metrics(self, preds, batch):
# Metrics
for si, pred in enumerate(preds):
idx = batch["batch_idx"] == si
cls = batch["cls"][idx]
bbox = batch["bboxes"][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch["ori_shape"][si]
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape,
ratio_pad=batch["ratio_pad"][si]) # native-space pred
# Evaluate
if nl:
tbox = ops.xywh2xyxy(bbox) # target boxes
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape,
ratio_pad=batch["ratio_pad"][si]) # native-space labels
labelsn = torch.cat((cls, tbox), 1) # native-space labels
correct_bboxes = self._process_batch(predn, labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
# Save
if self.args.save_json:
self.pred_to_json(predn, batch["im_file"][si])
# if self.args.save_txt:
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
def get_stats(self):
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
if len(stats) and stats[0].any():
self.metrics.process(*stats)
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class
return self.metrics.results_dict
def print_results(self):
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
if self.nt_per_class.sum() == 0:
self.logger.warning(
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
# Print results per class
if (self.args.verbose or not self.training) and self.nc > 1 and len(self.stats):
for i, c in enumerate(self.metrics.ap_class_index):
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
if self.args.plots:
self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values()))
def _process_batch(self, detections, labels):
"""
Return correct prediction matrix
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
iou = box_iou(labels[:, 1:], detections[:, :4])
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(self.iouv)):
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
def get_dataloader(self, dataset_path, batch_size):
# TODO: manage splits differently
# calculate stride - check if model is initialized
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32)
return create_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
stride=gs,
hyp=dict(self.args),
cache=False,
pad=0.5,
rect=True,
workers=self.args.workers,
prefix=colorstr(f'{self.args.mode}: '),
shuffle=False,
seed=self.args.seed)[0] if self.args.v5loader else \
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0]
def plot_val_samples(self, batch, ni):
plot_images(batch["img"],
batch["batch_idx"],
batch["cls"].squeeze(-1),
batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
names=self.names)
def plot_predictions(self, batch, preds, ni):
plot_images(batch["img"],
*output_to_target(preds, max_det=15),
paths=batch["im_file"],
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names) # pred
def pred_to_json(self, predn, filename):
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
box = ops.xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
def eval_json(self, stats):
if self.args.save_json and self.is_coco and len(self.jdict):
anno_json = self.data['path'] / "annotations/instances_val2017.json" # annotations
pred_json = self.save_dir / "predictions.json" # predictions
self.logger.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements('pycocotools>=2.0.6')
from pycocotools.coco import COCO # noqa
from pycocotools.cocoeval import COCOeval # noqa
for x in anno_json, pred_json:
assert x.is_file(), f"{x} file not found"
anno = COCO(str(anno_json)) # init annotations api
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
eval = COCOeval(anno, pred, 'bbox')
if self.is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
eval.evaluate()
eval.accumulate()
eval.summarize()
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
except Exception as e:
self.logger.warning(f'pycocotools unable to run: {e}')
return stats
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def val(cfg):
cfg.data = cfg.data or "coco128.yaml"
validator = DetectionValidator(args=cfg)
validator(model=cfg.model)
if __name__ == "__main__":
val()