-
Notifications
You must be signed in to change notification settings - Fork 2
/
picoPng.cpp
488 lines (487 loc) · 28.9 KB
/
picoPng.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#include <vector>
namespace NeroEngine{
int decodePNG(std::vector<unsigned char>& out_image, unsigned long& image_width, unsigned long& image_height, const unsigned char* in_png, size_t in_size, bool convert_to_rgba32)
{
static const unsigned long LENBASE[29] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258 };
static const unsigned long LENEXTRA[29] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
static const unsigned long DISTBASE[30] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 };
static const unsigned long DISTEXTRA[30] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 };
static const unsigned long CLCL[19] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; //code length code lengths
struct Zlib //nested functions for zlib decompression
{
static unsigned long readBitFromStream(size_t& bitp, const unsigned char* bits) { unsigned long result = (bits[bitp >> 3] >> (bitp & 0x7)) & 1; bitp++; return result; }
static unsigned long readBitsFromStream(size_t& bitp, const unsigned char* bits, size_t nbits)
{
unsigned long result = 0;
for (size_t i = 0; i < nbits; i++) result += (readBitFromStream(bitp, bits)) << i;
return result;
}
struct HuffmanTree
{
int makeFromLengths(const std::vector<unsigned long>& bitlen, unsigned long maxbitlen)
{ //make tree given the lengths
unsigned long numcodes = (unsigned long)(bitlen.size()), treepos = 0, nodefilled = 0;
std::vector<unsigned long> tree1d(numcodes), blcount(maxbitlen + 1, 0), nextcode(maxbitlen + 1, 0);
for (unsigned long bits = 0; bits < numcodes; bits++) blcount[bitlen[bits]]++; //count number of instances of each code length
for (unsigned long bits = 1; bits <= maxbitlen; bits++) nextcode[bits] = (nextcode[bits - 1] + blcount[bits - 1]) << 1;
for (unsigned long n = 0; n < numcodes; n++) if (bitlen[n] != 0) tree1d[n] = nextcode[bitlen[n]]++; //generate all the codes
tree2d.clear(); tree2d.resize(numcodes * 2, 32767); //32767 here means the tree2d isn't filled there yet
for (unsigned long n = 0; n < numcodes; n++) //the codes
for (unsigned long i = 0; i < bitlen[n]; i++) //the bits for this code
{
unsigned long bit = (tree1d[n] >> (bitlen[n] - i - 1)) & 1;
if (treepos > numcodes - 2) return 55;
if (tree2d[2 * treepos + bit] == 32767) //not yet filled in
{
if (i + 1 == bitlen[n]) { tree2d[2 * treepos + bit] = n; treepos = 0; } //last bit
else { tree2d[2 * treepos + bit] = ++nodefilled + numcodes; treepos = nodefilled; } //addresses are encoded as values > numcodes
}
else treepos = tree2d[2 * treepos + bit] - numcodes; //subtract numcodes from address to get address value
}
return 0;
}
int decode(bool& decoded, unsigned long& result, size_t& treepos, unsigned long bit) const
{ //Decodes a symbol from the tree
unsigned long numcodes = (unsigned long)tree2d.size() / 2;
if (treepos >= numcodes) return 11; //error: you appeared outside the codetree
result = tree2d[2 * treepos + bit];
decoded = (result < numcodes);
treepos = decoded ? 0 : result - numcodes;
return 0;
}
std::vector<unsigned long> tree2d; //2D representation of a huffman tree: The one dimension is "0" or "1", the other contains all nodes and leaves of the tree.
};
struct Inflator
{
int error;
void inflate(std::vector<unsigned char>& out, const std::vector<unsigned char>& in, size_t inpos = 0)
{
size_t bp = 0, pos = 0; //bit pointer and byte pointer
error = 0;
unsigned long BFINAL = 0;
while (!BFINAL && !error)
{
if (bp >> 3 >= in.size()) { error = 52; return; } //error, bit pointer will jump past memory
BFINAL = readBitFromStream(bp, &in[inpos]);
unsigned long BTYPE = readBitFromStream(bp, &in[inpos]); BTYPE += 2 * readBitFromStream(bp, &in[inpos]);
if (BTYPE == 3) { error = 20; return; } //error: invalid BTYPE
else if (BTYPE == 0) inflateNoCompression(out, &in[inpos], bp, pos, in.size());
else inflateHuffmanBlock(out, &in[inpos], bp, pos, in.size(), BTYPE);
}
if (!error) out.resize(pos); //Only now we know the true size of out, resize it to that
}
void generateFixedTrees(HuffmanTree& tree, HuffmanTree& treeD) //get the tree of a deflated block with fixed tree
{
std::vector<unsigned long> bitlen(288, 8), bitlenD(32, 5);;
for (size_t i = 144; i <= 255; i++) bitlen[i] = 9;
for (size_t i = 256; i <= 279; i++) bitlen[i] = 7;
tree.makeFromLengths(bitlen, 15);
treeD.makeFromLengths(bitlenD, 15);
}
HuffmanTree codetree, codetreeD, codelengthcodetree; //the code tree for Huffman codes, dist codes, and code length codes
unsigned long huffmanDecodeSymbol(const unsigned char* in, size_t& bp, const HuffmanTree& codetree, size_t inlength)
{ //decode a single symbol from given list of bits with given code tree. return value is the symbol
bool decoded; unsigned long ct;
for (size_t treepos = 0;;)
{
if ((bp & 0x07) == 0 && (bp >> 3) > inlength) { error = 10; return 0; } //error: end reached without endcode
error = codetree.decode(decoded, ct, treepos, readBitFromStream(bp, in)); if (error) return 0; //stop, an error happened
if (decoded) return ct;
}
}
void getTreeInflateDynamic(HuffmanTree& tree, HuffmanTree& treeD, const unsigned char* in, size_t& bp, size_t inlength)
{ //get the tree of a deflated block with dynamic tree, the tree itself is also Huffman compressed with a known tree
std::vector<unsigned long> bitlen(288, 0), bitlenD(32, 0);
if (bp >> 3 >= inlength - 2) { error = 49; return; } //the bit pointer is or will go past the memory
size_t HLIT = readBitsFromStream(bp, in, 5) + 257; //number of literal/length codes + 257
size_t HDIST = readBitsFromStream(bp, in, 5) + 1; //number of dist codes + 1
size_t HCLEN = readBitsFromStream(bp, in, 4) + 4; //number of code length codes + 4
std::vector<unsigned long> codelengthcode(19); //lengths of tree to decode the lengths of the dynamic tree
for (size_t i = 0; i < 19; i++) codelengthcode[CLCL[i]] = (i < HCLEN) ? readBitsFromStream(bp, in, 3) : 0;
error = codelengthcodetree.makeFromLengths(codelengthcode, 7); if (error) return;
size_t i = 0, replength;
while (i < HLIT + HDIST)
{
unsigned long code = huffmanDecodeSymbol(in, bp, codelengthcodetree, inlength); if (error) return;
if (code <= 15) { if (i < HLIT) bitlen[i++] = code; else bitlenD[i++ - HLIT] = code; } //a length code
else if (code == 16) //repeat previous
{
if (bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory
replength = 3 + readBitsFromStream(bp, in, 2);
unsigned long value; //set value to the previous code
if ((i - 1) < HLIT) value = bitlen[i - 1];
else value = bitlenD[i - HLIT - 1];
for (size_t n = 0; n < replength; n++) //repeat this value in the next lengths
{
if (i >= HLIT + HDIST) { error = 13; return; } //error: i is larger than the amount of codes
if (i < HLIT) bitlen[i++] = value; else bitlenD[i++ - HLIT] = value;
}
}
else if (code == 17) //repeat "0" 3-10 times
{
if (bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory
replength = 3 + readBitsFromStream(bp, in, 3);
for (size_t n = 0; n < replength; n++) //repeat this value in the next lengths
{
if (i >= HLIT + HDIST) { error = 14; return; } //error: i is larger than the amount of codes
if (i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0;
}
}
else if (code == 18) //repeat "0" 11-138 times
{
if (bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory
replength = 11 + readBitsFromStream(bp, in, 7);
for (size_t n = 0; n < replength; n++) //repeat this value in the next lengths
{
if (i >= HLIT + HDIST) { error = 15; return; } //error: i is larger than the amount of codes
if (i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0;
}
}
else { error = 16; return; } //error: somehow an unexisting code appeared. This can never happen.
}
if (bitlen[256] == 0) { error = 64; return; } //the length of the end code 256 must be larger than 0
error = tree.makeFromLengths(bitlen, 15); if (error) return; //now we've finally got HLIT and HDIST, so generate the code trees, and the function is done
error = treeD.makeFromLengths(bitlenD, 15); if (error) return;
}
void inflateHuffmanBlock(std::vector<unsigned char>& out, const unsigned char* in, size_t& bp, size_t& pos, size_t inlength, unsigned long btype)
{
if (btype == 1) { generateFixedTrees(codetree, codetreeD); }
else if (btype == 2) { getTreeInflateDynamic(codetree, codetreeD, in, bp, inlength); if (error) return; }
for (;;)
{
unsigned long code = huffmanDecodeSymbol(in, bp, codetree, inlength); if (error) return;
if (code == 256) return; //end code
else if (code <= 255) //literal symbol
{
if (pos >= out.size()) out.resize((pos + 1) * 2); //reserve more room
out[pos++] = (unsigned char)(code);
}
else if (code >= 257 && code <= 285) //length code
{
size_t length = LENBASE[code - 257], numextrabits = LENEXTRA[code - 257];
if ((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory
length += readBitsFromStream(bp, in, numextrabits);
unsigned long codeD = huffmanDecodeSymbol(in, bp, codetreeD, inlength); if (error) return;
if (codeD > 29) { error = 18; return; } //error: invalid dist code (30-31 are never used)
unsigned long dist = DISTBASE[codeD], numextrabitsD = DISTEXTRA[codeD];
if ((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory
dist += readBitsFromStream(bp, in, numextrabitsD);
size_t start = pos, back = start - dist; //backwards
if (pos + length >= out.size()) out.resize((pos + length) * 2); //reserve more room
for (size_t i = 0; i < length; i++) { out[pos++] = out[back++]; if (back >= start) back = start - dist; }
}
}
}
void inflateNoCompression(std::vector<unsigned char>& out, const unsigned char* in, size_t& bp, size_t& pos, size_t inlength)
{
while ((bp & 0x7) != 0) bp++; //go to first boundary of byte
size_t p = bp / 8;
if (p >= inlength - 4) { error = 52; return; } //error, bit pointer will jump past memory
unsigned long LEN = in[p] + 256 * in[p + 1], NLEN = in[p + 2] + 256 * in[p + 3]; p += 4;
if (LEN + NLEN != 65535) { error = 21; return; } //error: NLEN is not one's complement of LEN
if (pos + LEN >= out.size()) out.resize(pos + LEN);
if (p + LEN > inlength) { error = 23; return; } //error: reading outside of in buffer
for (unsigned long n = 0; n < LEN; n++) out[pos++] = in[p++]; //read LEN bytes of literal data
bp = p * 8;
}
};
int decompress(std::vector<unsigned char>& out, const std::vector<unsigned char>& in) //returns error value
{
Inflator inflator;
if (in.size() < 2) { return 53; } //error, size of zlib data too small
if ((in[0] * 256 + in[1]) % 31 != 0) { return 24; } //error: 256 * in[0] + in[1] must be a multiple of 31, the FCHECK value is supposed to be made that way
unsigned long CM = in[0] & 15, CINFO = (in[0] >> 4) & 15, FDICT = (in[1] >> 5) & 1;
if (CM != 8 || CINFO > 7) { return 25; } //error: only compression method 8: inflate with sliding window of 32k is supported by the PNG spec
if (FDICT != 0) { return 26; } //error: the specification of PNG says about the zlib stream: "The additional flags shall not specify a preset dictionary."
inflator.inflate(out, in, 2);
return inflator.error; //note: adler32 checksum was skipped and ignored
}
};
struct PNG //nested functions for PNG decoding
{
struct Info
{
unsigned long width, height, colorType, bitDepth, compressionMethod, filterMethod, interlaceMethod, key_r, key_g, key_b;
bool key_defined; //is a transparent color key given?
std::vector<unsigned char> palette;
} info;
int error;
void decode(std::vector<unsigned char>& out, const unsigned char* in, size_t size, bool convert_to_rgba32)
{
error = 0;
if (size == 0 || in == 0) { error = 48; return; } //the given data is empty
readPngHeader(&in[0], size); if (error) return;
size_t pos = 33; //first byte of the first chunk after the header
std::vector<unsigned char> idat; //the data from idat chunks
bool IEND = false, known_type = true;
info.key_defined = false;
while (!IEND) //loop through the chunks, ignoring unknown chunks and stopping at IEND chunk. IDAT data is put at the start of the in buffer
{
if (pos + 8 >= size) { error = 30; return; } //error: size of the in buffer too small to contain next chunk
size_t chunkLength = read32bitInt(&in[pos]); pos += 4;
if (chunkLength > 2147483647) { error = 63; return; }
if (pos + chunkLength >= size) { error = 35; return; } //error: size of the in buffer too small to contain next chunk
if (in[pos + 0] == 'I' && in[pos + 1] == 'D' && in[pos + 2] == 'A' && in[pos + 3] == 'T') //IDAT chunk, containing compressed image data
{
idat.insert(idat.end(), &in[pos + 4], &in[pos + 4 + chunkLength]);
pos += (4 + chunkLength);
}
else if (in[pos + 0] == 'I' && in[pos + 1] == 'E' && in[pos + 2] == 'N' && in[pos + 3] == 'D') { pos += 4; IEND = true; }
else if (in[pos + 0] == 'P' && in[pos + 1] == 'L' && in[pos + 2] == 'T' && in[pos + 3] == 'E') //palette chunk (PLTE)
{
pos += 4; //go after the 4 letters
info.palette.resize(4 * (chunkLength / 3));
if (info.palette.size() > (4 * 256)) { error = 38; return; } //error: palette too big
for (size_t i = 0; i < info.palette.size(); i += 4)
{
for (size_t j = 0; j < 3; j++) info.palette[i + j] = in[pos++]; //RGB
info.palette[i + 3] = 255; //alpha
}
}
else if (in[pos + 0] == 't' && in[pos + 1] == 'R' && in[pos + 2] == 'N' && in[pos + 3] == 'S') //palette transparency chunk (tRNS)
{
pos += 4; //go after the 4 letters
if (info.colorType == 3)
{
if (4 * chunkLength > info.palette.size()) { error = 39; return; } //error: more alpha values given than there are palette entries
for (size_t i = 0; i < chunkLength; i++) info.palette[4 * i + 3] = in[pos++];
}
else if (info.colorType == 0)
{
if (chunkLength != 2) { error = 40; return; } //error: this chunk must be 2 bytes for greyscale image
info.key_defined = 1; info.key_r = info.key_g = info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2;
}
else if (info.colorType == 2)
{
if (chunkLength != 6) { error = 41; return; } //error: this chunk must be 6 bytes for RGB image
info.key_defined = 1;
info.key_r = 256 * in[pos] + in[pos + 1]; pos += 2;
info.key_g = 256 * in[pos] + in[pos + 1]; pos += 2;
info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2;
}
else { error = 42; return; } //error: tRNS chunk not allowed for other color models
}
else //it's not an implemented chunk type, so ignore it: skip over the data
{
if (!(in[pos + 0] & 32)) { error = 69; return; } //error: unknown critical chunk (5th bit of first byte of chunk type is 0)
pos += (chunkLength + 4); //skip 4 letters and uninterpreted data of unimplemented chunk
known_type = false;
}
pos += 4; //step over CRC (which is ignored)
}
unsigned long bpp = getBpp(info);
std::vector<unsigned char> scanlines(((info.width * (info.height * bpp + 7)) / 8) + info.height); //now the out buffer will be filled
Zlib zlib; //decompress with the Zlib decompressor
error = zlib.decompress(scanlines, idat); if (error) return; //stop if the zlib decompressor returned an error
size_t bytewidth = (bpp + 7) / 8, outlength = (info.height * info.width * bpp + 7) / 8;
out.resize(outlength); //time to fill the out buffer
unsigned char* out_ = outlength ? &out[0] : 0; //use a regular pointer to the std::vector for faster code if compiled without optimization
if (info.interlaceMethod == 0) //no interlace, just filter
{
size_t linestart = 0, linelength = (info.width * bpp + 7) / 8; //length in bytes of a scanline, excluding the filtertype byte
if (bpp >= 8) //byte per byte
for (unsigned long y = 0; y < info.height; y++)
{
unsigned long filterType = scanlines[linestart];
const unsigned char* prevline = (y == 0) ? 0 : &out_[(y - 1) * info.width * bytewidth];
unFilterScanline(&out_[linestart - y], &scanlines[linestart + 1], prevline, bytewidth, filterType, linelength); if (error) return;
linestart += (1 + linelength); //go to start of next scanline
}
else //less than 8 bits per pixel, so fill it up bit per bit
{
std::vector<unsigned char> templine((info.width * bpp + 7) >> 3); //only used if bpp < 8
for (size_t y = 0, obp = 0; y < info.height; y++)
{
unsigned long filterType = scanlines[linestart];
const unsigned char* prevline = (y == 0) ? 0 : &out_[(y - 1) * info.width * bytewidth];
unFilterScanline(&templine[0], &scanlines[linestart + 1], prevline, bytewidth, filterType, linelength); if (error) return;
for (size_t bp = 0; bp < info.width * bpp;) setBitOfReversedStream(obp, out_, readBitFromReversedStream(bp, &templine[0]));
linestart += (1 + linelength); //go to start of next scanline
}
}
}
else //interlaceMethod is 1 (Adam7)
{
size_t passw[7] = { (info.width + 7) / 8, (info.width + 3) / 8, (info.width + 3) / 4, (info.width + 1) / 4, (info.width + 1) / 2, (info.width + 0) / 2, (info.width + 0) / 1 };
size_t passh[7] = { (info.height + 7) / 8, (info.height + 7) / 8, (info.height + 3) / 8, (info.height + 3) / 4, (info.height + 1) / 4, (info.height + 1) / 2, (info.height + 0) / 2 };
size_t passstart[7] = { 0 };
size_t pattern[28] = { 0, 4, 0, 2, 0, 1, 0, 0, 0, 4, 0, 2, 0, 1, 8, 8, 4, 4, 2, 2, 1, 8, 8, 8, 4, 4, 2, 2 }; //values for the adam7 passes
for (int i = 0; i < 6; i++) passstart[i + 1] = passstart[i] + passh[i] * ((passw[i] ? 1 : 0) + (passw[i] * bpp + 7) / 8);
std::vector<unsigned char> scanlineo((info.width * bpp + 7) / 8), scanlinen((info.width * bpp + 7) / 8); //"old" and "new" scanline
for (int i = 0; i < 7; i++)
adam7Pass(&out_[0], &scanlinen[0], &scanlineo[0], &scanlines[passstart[i]], info.width, pattern[i], pattern[i + 7], pattern[i + 14], pattern[i + 21], passw[i], passh[i], bpp);
}
if (convert_to_rgba32 && (info.colorType != 6 || info.bitDepth != 8)) //conversion needed
{
std::vector<unsigned char> data = out;
error = convert(out, &data[0], info, info.width, info.height);
}
}
void readPngHeader(const unsigned char* in, size_t inlength) //read the information from the header and store it in the Info
{
if (inlength < 29) { error = 27; return; } //error: the data length is smaller than the length of the header
if (in[0] != 137 || in[1] != 80 || in[2] != 78 || in[3] != 71 || in[4] != 13 || in[5] != 10 || in[6] != 26 || in[7] != 10) { error = 28; return; } //no PNG signature
if (in[12] != 'I' || in[13] != 'H' || in[14] != 'D' || in[15] != 'R') { error = 29; return; } //error: it doesn't start with a IHDR chunk!
info.width = read32bitInt(&in[16]); info.height = read32bitInt(&in[20]);
info.bitDepth = in[24]; info.colorType = in[25];
info.compressionMethod = in[26]; if (in[26] != 0) { error = 32; return; } //error: only compression method 0 is allowed in the specification
info.filterMethod = in[27]; if (in[27] != 0) { error = 33; return; } //error: only filter method 0 is allowed in the specification
info.interlaceMethod = in[28]; if (in[28] > 1) { error = 34; return; } //error: only interlace methods 0 and 1 exist in the specification
error = checkColorValidity(info.colorType, info.bitDepth);
}
void unFilterScanline(unsigned char* recon, const unsigned char* scanline, const unsigned char* precon, size_t bytewidth, unsigned long filterType, size_t length)
{
switch (filterType)
{
case 0: for (size_t i = 0; i < length; i++) recon[i] = scanline[i]; break;
case 1:
for (size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i];
for (size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth];
break;
case 2:
if (precon) for (size_t i = 0; i < length; i++) recon[i] = scanline[i] + precon[i];
else for (size_t i = 0; i < length; i++) recon[i] = scanline[i];
break;
case 3:
if (precon)
{
for (size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i] + precon[i] / 2;
for (size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + ((recon[i - bytewidth] + precon[i]) / 2);
}
else
{
for (size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i];
for (size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth] / 2;
}
break;
case 4:
if (precon)
{
for (size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i] + paethPredictor(0, precon[i], 0);
for (size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + paethPredictor(recon[i - bytewidth], precon[i], precon[i - bytewidth]);
}
else
{
for (size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i];
for (size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + paethPredictor(recon[i - bytewidth], 0, 0);
}
break;
default: error = 36; return; //error: unexisting filter type given
}
}
void adam7Pass(unsigned char* out, unsigned char* linen, unsigned char* lineo, const unsigned char* in, unsigned long w, size_t passleft, size_t passtop, size_t spacex, size_t spacey, size_t passw, size_t passh, unsigned long bpp)
{ //filter and reposition the pixels into the output when the image is Adam7 interlaced. This function can only do it after the full image is already decoded. The out buffer must have the correct allocated memory size already.
if (passw == 0) return;
size_t bytewidth = (bpp + 7) / 8, linelength = 1 + ((bpp * passw + 7) / 8);
for (unsigned long y = 0; y < passh; y++)
{
unsigned char filterType = in[y * linelength], *prevline = (y == 0) ? 0 : lineo;
unFilterScanline(linen, &in[y * linelength + 1], prevline, bytewidth, filterType, (w * bpp + 7) / 8); if (error) return;
if (bpp >= 8) for (size_t i = 0; i < passw; i++) for (size_t b = 0; b < bytewidth; b++) //b = current byte of this pixel
out[bytewidth * w * (passtop + spacey * y) + bytewidth * (passleft + spacex * i) + b] = linen[bytewidth * i + b];
else for (size_t i = 0; i < passw; i++)
{
size_t obp = bpp * w * (passtop + spacey * y) + bpp * (passleft + spacex * i), bp = i * bpp;
for (size_t b = 0; b < bpp; b++) setBitOfReversedStream(obp, out, readBitFromReversedStream(bp, &linen[0]));
}
unsigned char* temp = linen; linen = lineo; lineo = temp; //swap the two buffer pointers "line old" and "line new"
}
}
static unsigned long readBitFromReversedStream(size_t& bitp, const unsigned char* bits) { unsigned long result = (bits[bitp >> 3] >> (7 - (bitp & 0x7))) & 1; bitp++; return result; }
static unsigned long readBitsFromReversedStream(size_t& bitp, const unsigned char* bits, unsigned long nbits)
{
unsigned long result = 0;
for (size_t i = nbits - 1; i < nbits; i--) result += ((readBitFromReversedStream(bitp, bits)) << i);
return result;
}
void setBitOfReversedStream(size_t& bitp, unsigned char* bits, unsigned long bit) { bits[bitp >> 3] |= (bit << (7 - (bitp & 0x7))); bitp++; }
unsigned long read32bitInt(const unsigned char* buffer) { return (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3]; }
int checkColorValidity(unsigned long colorType, unsigned long bd) //return type is a LodePNG error code
{
if ((colorType == 2 || colorType == 4 || colorType == 6)) { if (!(bd == 8 || bd == 16)) return 37; else return 0; }
else if (colorType == 0) { if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8 || bd == 16)) return 37; else return 0; }
else if (colorType == 3) { if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8)) return 37; else return 0; }
else return 31; //unexisting color type
}
unsigned long getBpp(const Info& info)
{
if (info.colorType == 2) return (3 * info.bitDepth);
else if (info.colorType >= 4) return (info.colorType - 2) * info.bitDepth;
else return info.bitDepth;
}
int convert(std::vector<unsigned char>& out, const unsigned char* in, Info& infoIn, unsigned long w, unsigned long h)
{ //converts from any color type to 32-bit. return value = LodePNG error code
size_t numpixels = w * h, bp = 0;
out.resize(numpixels * 4);
unsigned char* out_ = out.empty() ? 0 : &out[0]; //faster if compiled without optimization
if (infoIn.bitDepth == 8 && infoIn.colorType == 0) //greyscale
for (size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[i];
out_[4 * i + 3] = (infoIn.key_defined && in[i] == infoIn.key_r) ? 0 : 255;
}
else if (infoIn.bitDepth == 8 && infoIn.colorType == 2) //RGB color
for (size_t i = 0; i < numpixels; i++)
{
for (size_t c = 0; c < 3; c++) out_[4 * i + c] = in[3 * i + c];
out_[4 * i + 3] = (infoIn.key_defined == 1 && in[3 * i + 0] == infoIn.key_r && in[3 * i + 1] == infoIn.key_g && in[3 * i + 2] == infoIn.key_b) ? 0 : 255;
}
else if (infoIn.bitDepth == 8 && infoIn.colorType == 3) //indexed color (palette)
for (size_t i = 0; i < numpixels; i++)
{
if (4U * in[i] >= infoIn.palette.size()) return 46;
for (size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * in[i] + c]; //get rgb colors from the palette
}
else if (infoIn.bitDepth == 8 && infoIn.colorType == 4) //greyscale with alpha
for (size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i + 0];
out_[4 * i + 3] = in[2 * i + 1];
}
else if (infoIn.bitDepth == 8 && infoIn.colorType == 6) for (size_t i = 0; i < numpixels; i++) for (size_t c = 0; c < 4; c++) out_[4 * i + c] = in[4 * i + c]; //RGB with alpha
else if (infoIn.bitDepth == 16 && infoIn.colorType == 0) //greyscale
for (size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i];
out_[4 * i + 3] = (infoIn.key_defined && 256U * in[i] + in[i + 1] == infoIn.key_r) ? 0 : 255;
}
else if (infoIn.bitDepth == 16 && infoIn.colorType == 2) //RGB color
for (size_t i = 0; i < numpixels; i++)
{
for (size_t c = 0; c < 3; c++) out_[4 * i + c] = in[6 * i + 2 * c];
out_[4 * i + 3] = (infoIn.key_defined && 256U * in[6 * i + 0] + in[6 * i + 1] == infoIn.key_r && 256U * in[6 * i + 2] + in[6 * i + 3] == infoIn.key_g && 256U * in[6 * i + 4] + in[6 * i + 5] == infoIn.key_b) ? 0 : 255;
}
else if (infoIn.bitDepth == 16 && infoIn.colorType == 4) //greyscale with alpha
for (size_t i = 0; i < numpixels; i++)
{
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[4 * i]; //most significant byte
out_[4 * i + 3] = in[4 * i + 2];
}
else if (infoIn.bitDepth == 16 && infoIn.colorType == 6) for (size_t i = 0; i < numpixels; i++) for (size_t c = 0; c < 4; c++) out_[4 * i + c] = in[8 * i + 2 * c]; //RGB with alpha
else if (infoIn.bitDepth < 8 && infoIn.colorType == 0) //greyscale
for (size_t i = 0; i < numpixels; i++)
{
unsigned long value = (readBitsFromReversedStream(bp, in, infoIn.bitDepth) * 255) / ((1 << infoIn.bitDepth) - 1); //scale value from 0 to 255
out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = (unsigned char)(value);
out_[4 * i + 3] = (infoIn.key_defined && value && ((1U << infoIn.bitDepth) - 1U) == infoIn.key_r && ((1U << infoIn.bitDepth) - 1U)) ? 0 : 255;
}
else if (infoIn.bitDepth < 8 && infoIn.colorType == 3) //palette
for (size_t i = 0; i < numpixels; i++)
{
unsigned long value = readBitsFromReversedStream(bp, in, infoIn.bitDepth);
if (4 * value >= infoIn.palette.size()) return 47;
for (size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * value + c]; //get rgb colors from the palette
}
return 0;
}
unsigned char paethPredictor(short a, short b, short c) //Paeth predicter, used by PNG filter type 4
{
short p = a + b - c, pa = p > a ? (p - a) : (a - p), pb = p > b ? (p - b) : (b - p), pc = p > c ? (p - c) : (c - p);
return (unsigned char)((pa <= pb && pa <= pc) ? a : pb <= pc ? b : c);
}
};
PNG decoder; decoder.decode(out_image, in_png, in_size, convert_to_rgba32);
image_width = decoder.info.width; image_height = decoder.info.height;
return decoder.error;
}
}