-
Notifications
You must be signed in to change notification settings - Fork 34
/
tasks.py
135 lines (111 loc) · 4.53 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import logging
import numpy as np
import theano
import theano.tensor as T
from blocks.filter import VariableFilter
from fuel.streams import DataStream
from fuel.schemes import ShuffledScheme, SequentialScheme
from fuel import transformers
import emitters
logger = logging.getLogger(__name__)
# have the same sources for all tasks
CANONICAL_SOURCES = tuple("features shapes targets".split())
class Canonicalize(transformers.Transformer):
produces_examples = False
def __init__(self, stream, mapping, **kwargs):
super(Canonicalize, self).__init__(stream, **kwargs)
self.mapping = mapping
@property
def sources(self):
return CANONICAL_SOURCES
def transform_batch(self, batch):
return self.mapping(batch)
class Classification(object):
def __init__(self, batch_size, hidden_dim, shrink_dataset_by=1, **kwargs):
self.shrink_dataset_by = shrink_dataset_by
self.batch_size = batch_size
self.datasets = self.load_datasets()
def load_datasets(self):
raise NotImplementedError()
def apply_default_transformers(self, stream):
return stream
def get_stream_num_examples(self, which_set, monitor):
return (self.datasets[which_set].num_examples
/ self.shrink_dataset_by)
def get_stream(self, which_set, shuffle=True, monitor=False, num_examples=None, center=True):
scheme_klass = ShuffledScheme if shuffle else SequentialScheme
if num_examples is None:
num_examples = self.get_stream_num_examples(which_set, monitor=monitor)
scheme = scheme_klass(num_examples, self.batch_size)
stream = DataStream.default_stream(
dataset=self.datasets[which_set],
iteration_scheme=scheme)
stream = self.apply_default_transformers(stream)
stream = Canonicalize(stream, mapping=self.preprocess)
if center:
stream = transformers.Mapping(stream, mapping=self.center)
return stream
def get_variables(self):
variables = []
test_batch = self.get_stream("valid").get_epoch_iterator(as_dict=True).next()
for key in CANONICAL_SOURCES:
value = test_batch[key]
variable = T.TensorType(
broadcastable=[False]*value.ndim,
dtype=value.dtype)(key)
variable.tag.test_value = value[:11]
variables.append(variable)
return variables
def get_emitter(self, input_dim, batch_normalize, **kwargs):
return emitters.SingleSoftmax(input_dim, self.n_classes,
batch_normalize=batch_normalize)
def monitor_channels(self, graph):
return [VariableFilter(name=name)(graph.auxiliary_variables)[0]
for name in "cross_entropy error_rate".split()]
def plot_channels(self):
return [["%s_%s" % (which_set, name) for which_set in self.datasets.keys()]
for name in "cross_entropy error_rate".split()]
def center(self, data):
x, x_shape, y = data
mean = self.get_mean()
masks = np.zeros_like(x)
for i, shape in enumerate(x_shape):
masks[np.index_exp[i, :] + tuple(map(slice, shape))] = 1
x_centered = x - masks * mean
return x_centered, x_shape, y
def get_mean(self):
cache_dir = os.environ["PREPROCESS_CACHE"]
try:
os.mkdir(cache_dir)
except OSError:
# directory already exists. surely the end of the world.
pass
cache = os.path.join(cache_dir, "%s.npz" % self.name)
try:
data = np.load(cache)
mean = data["mean"]
except IOError:
print "taking mean"
mean = self.compute_mean()
print "mean taken"
try:
np.savez(cache, mean=mean)
except IOError, e:
logger.error("couldn't save preprocessing cache: %s" % e)
import ipdb; ipdb.set_trace()
return mean
def compute_mean(self):
mean = 0
n = 0
for batch in (self.get_stream("train", center=False)
.get_epoch_iterator(as_dict=True)):
x, x_shape = batch["features"], batch["shapes"]
k = x.shape[0]
mean = (n/float(n+k) * mean +
k/float(n+k) * self.compute_batch_mean(x, x_shape))
n += k
mean = mean.astype(np.float32)
return mean
def compute_batch_mean(self, x, x_shape):
return x.mean(axis=0, keepdims=True)