-
Notifications
You must be signed in to change notification settings - Fork 14
/
icml_2020_papers.txt
3263 lines (2176 loc) · 230 KB
/
icml_2020_papers.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Reverse-engineering deep ReLU networks
David Rolnick (University of Pennsylvania) · Konrad Kording (Upenn)
My Fair Bandit: Distributed Learning of Max-Min Fairness with Multi-player Bandits
Ilai Bistritz (Stanford University) · Tavor Baharav (Stanford University) · Amir Leshem (Bar-Ilan University) · Nicholas Bambos ()
Scalable Differentiable Physics for Learning and Control
Yi-Ling Qiao (University of Maryland, College Park) · Junbang Liang (University of Maryland, College Park) · Vladlen Koltun (Intel Labs) · Ming Lin (UMD-CP & UNC-CH )
Generalization to New Actions in Reinforcement Learning
Ayush Jain (University of Southern California) · Andrew Szot (University of Southern California) · Joseph Lim (Univ. of Southern California)
Randomized Block-Diagonal Preconditioning for Parallel Learning
Celestine Mendler-Dünner (University of California, Berkeley) · Aurelien Lucchi (ETH Zurich)
Stochastic Flows and Geometric Optimization on the Orthogonal Group
Krzysztof Choromanski (Google Brain Robotics) · Valerii Likhosherstov (University of Cambridge) · Jared Q Davis (Google Research) · David Cheikhi (Columbia University) · Achille Nazaret (Columbia University) · Xingyou Song (Google Brain) · Achraf Bahamou (Columbia University) · Jack Parker-Holder (University of Oxford) · Mrugank Akarte (Columbia University) · YUAN GAO (Columbia University) · Jacob Bergquist (Columbia University) · Aldo Pacchiano (UC Berkeley) · Vikas Sindhwani (Google) · Tamas Sarlos (Google) · Adrian Weller (University of Cambridge, Alan Turing Institute)
PackIt: A Virtual Environment for Geometric Planning
Ankit Goyal (Princeton University) · Jia Deng (Princeton University)
Soft Threshold Weight Reparameterization for Learnable Sparsity
Aditya Kusupati (University of Washington) · Vivek Ramanujan (Allen Institute for Artificial Intelligence) · Raghav Somani (University of Washington) · Mitchell Wortsman (University of Washington) · Prateek Jain (Microsoft Research) · Sham Kakade (University of Washington) · Ali Farhadi (University of Washington, Allen Institue for AI)
Stochastic Latent Residual Video Prediction
Jean-Yves Franceschi (Sorbonne Université) · Edouard Delasalles (Sorbonne Université) · Mickael Chen (Sorbonne Université) · Sylvain Lamprier (LIP6 - Sorbonne Universités) · Patrick Gallinari (LIP6, Sorbonne Universite)
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise
Umut Simsekli (Institut Polytechnique de Paris / University of Oxford) · Lingjiong Zhu (FSU) · Yee Whye Teh (Oxford and DeepMind) · Mert Gurbuzbalaban (Rutgers University)
Context Aware Local Differential Privacy
Jayadev Acharya (Cornell University) · Keith Bonawitz (Google) · Peter Kairouz (Google) · Daniel Ramage (Google) · Ziteng Sun (Cornell/Google)
Privately Learning Markov Random Fields
Gautam Kamath (University of Waterloo) · Janardhan Kulkarni (Microsoft Research, Redmond) · Steven Wu (University of Minnesota) · Huanyu Zhang (Cornell University)
A Mean Field Analysis Of Deep ResNet And Beyond: Towards Provably Optimization Via Overparameterization From Depth
Yiping Lu (Stanford University) · Chao Ma (Princeton University) · Yulong Lu (Duke University) · Jianfeng Lu (Duke University) · Lexing Ying (Stanford University)
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke (University of Massachusetts, Amherst)
Enhancing Simple Models by Exploiting What They Already Know
Amit Dhurandhar (IBM Research) · Karthikeyan Shanmugam (IBM Research, T. J. Watson Research Center) · Ronny Luss (IBM Research)
Fiduciary Bandits
Gal Bahar (Technion – Israel Institute of Technology) · Omer Ben-Porat (Technion--Israel Institute of Technology) · Kevin Leyton-Brown (University of British Columbia) · Moshe Tennenholtz (Technion – Israel Institute of Technology)
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu (Stanford University) · Yang Song (Stanford University) · Jiaming Song (Stanford) · Stefano Ermon (Stanford University)
Progressive Graph Learning for Open-Set Domain Adaptation
Yadan Luo (University of Queensland) · Zijian Wang (University of Queensland) · Mahsa Baktashmotlagh (University of Queensland) · Zi Huang (University of Queensland)
Learning De-biased Representations with Biased Representations
Hyojin Bahng (Korea University) · SANGHYUK CHUN (Naver corp.) · Sangdoo Yun ( Clova AI Research, NAVER Corp.) · Jaegul Choo (Korea University) · Seong Joon Oh (Clova AI Research, NAVER Corp.)
Generalized Neural Policies for Relational MDPs
Sankalp Garg (Indian Institute of Technology Delhi) · Aniket Bajpai (Indian Institute of Technology, Delhi) · Mausam (IIT Delhi)
Feature-map-level Online Adversarial Knowledge Distillation
Inseop Chung (Seoul National University) · Seonguk Park (Seoul National University) · Kim Jangho (Seoul National University) · NOJUN KWAK (Seoul National University)
DRWR: A Differentiable Renderer without Rendering for Unsupervised 3D Structure Learning from Silhouette Images
Zhizhong Han (University of Maryland, College Park) · Chao Chen (Tsinghua University) · Yu-Shen Liu (Tsinghua University) · Matthias Zwicker (University of Maryland)
Towards Accurate Post-training Network Quantization via Bit-Split and Stitching
Peisong Wang (Institute of Automation, Chinese Academy of Sciences) · Qiang Chen (CASIA) · Xiangyu He (CASIA) · Jian Cheng ("Chinese Academy of Sciences, China")
Hybrid Stochastic-Deterministic Minibatch Proximal Gradient: Less-Than-Single-Pass Optimization with Nearly Optimal Generalization
Pan Zhou (Salesforce) · Xiao-Tong Yuan (Nanjing University of Information Science & Technology)
Reserve Pricing in Repeated Second-Price Auctions with Strategic Bidders
Alexey Drutsa (Yandex)
On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems
Tianyi Lin (UC Berkeley) · Chi Jin (Princeton University) · Michael Jordan (UC Berkeley)
Learning Binary Neurons with Noisy Supervision
Kai Han (Noah’s Ark Lab, Huawei Technologies) · Yunhe Wang (Peking University) · Yixing Xu (Huawei Technologies) · Chunjing Xu (Huawei Noah's Ark Lab) · Enhua Wu (CAS) · Chang Xu (University of Sydney)
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar (UC Berkeley) · Gideon Dresdner (ETH Zürich) · Alicia Yi-Ting Tsai (University of California, Berkeley) · Laurent El Ghaoui (UC Berkeley) · Francesco Locatello (ETH Zurich - Max Planck Institute) · Fabian Pedregosa (Google)
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
Jian Liang (NUS) · Dapeng Hu (NUS) · Jiashi Feng (National University of Singapore)
Acceleration through spectral density estimation
Fabian Pedregosa (Google) · Damien Scieur (INRIA - ENS)
Graph Structure of Neural Networks
Jiaxuan You (Stanford University) · Kaiming He (Facebook AI Research) · Jure Leskovec (Stanford University) · Saining Xie (Facebook AI Research)
Optimal Continual Learning has Perfect Memory and is NP-hard
Jeremias Knoblauch (Warwick University) · Hisham Husain (Australian National University) · Tom Diethe (Amazon)
Clinician-in-the-Loop Decision Making: Reinforcement Learning with Near-Optimal Set-Valued Policies
Shengpu Tang (University of Michigan) · Aditya Modi (University of Michigan) · Michael Sjoding (University of Michigan) · Jenna Wiens (University of Michigan)
Computational and Statistical Tradeoffs in Inferring Combinatorial Structures of Ising Model
Ying Jin (Stanford University) · Zhaoran Wang (Northwestern) · Junwei Lu ()
On the Number of Linear Regions of Convolutional Neural Networks
Huan Xiong (Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)) · Lei Huang (Inception Institute of Artificial Intelligence) · Mengyang Yu (Inception Institute of Artificial Intelligence) · Li Liu (the inception institute of artificial intelligence) · Fan Zhu (Inception Institute of Artificial Intelligence) · Ling Shao (Inception Institute of Artificial Intelligence)
Deep Streaming Label Learning
Zhen Wang (University of Sydney) · Liu Liu (The University of Sydney) · Dacheng Tao (The University of Sydney)
From Importance Sampling to Doubly Robust Policy Gradient
Jiawei Huang (University of Illinois at Urbana-Champaign) · Nan Jiang (University of Illinois at Urbana-Champaign)
Loss Function Search for Face Recognition
Xiaobo Wang (JD AI Research) · Shuo Wang (JD AI Research) · Shifeng Zhang (CBSR, NLPR, CASIA) · Cheng Chi (University of Chinese Academy of Sciences) · Tao Mei (AI Research of JD.com)
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search
Yong Guo (South China University of Technology) · Yaofo Chen (South China University of Technology) · Yin Zheng (Tencent AI Lab) · Peilin Zhao (Artificial Intelligence Department, Ant Financial) · Jian Chen ("South China University of Technology, China") · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab) · Mingkui Tan (South China University of Technology)
Automatic Reparameterisation of Probabilistic Programs
Maria Gorinova (University of Edinburgh) · Dave Moore (Google) · Matthew Hoffman (Google)
Kernel Methods for Cooperative Multi-Agent Learning with Delays
Abhimanyu Dubey (Massachusetts Institute of Technology) · Alex `Sandy' Pentland (MIT)
Robust Multi-Agent Decision-Making with Heavy-Tailed Payoffs
Abhimanyu Dubey (Massachusetts Institute of Technology) · Alex `Sandy' Pentland (MIT)
Learning the Valuations of a k-demand Agent
Hanrui Zhang (Duke University) · Vincent Conitzer (Duke)
Rigging the Lottery: Making All Tickets Winners
Utku Evci (Google) · Trevor Gale (Google Brain) · Jacob Menick (DeepMind) · Pablo Samuel Castro (Google Brain) · Erich Elsen (Google)
Active Learning on Attributed Graphs via Graph Cognizant Logistic Regression and Preemptive Query Generation
Florence Regol (McGill University) · Soumyasundar Pal (McGill University) · Yingxue Zhang (Huawei Technologies Canada) · Mark Coates (McGill University)
Performative Prediction
Juan Perdomo (University of California, Berkeley) · Tijana Zrnic (University of California, Berkeley) · Celestine Mendler-Dünner (University of California, Berkeley) · University of California Moritz Hardt (University of California, Berkeley)
On Layer Normalization in the Transformer Architecture
Ruinbin Xiong (Institute of Computing Technology) · Yunchang Yang (Peking University) · Di He (Peking University) · Kai Zheng (Peking University) · Shuxin Zheng (microsoft.com) · Chen Xing (Nankai University) · Huishuai Zhang (Microsoft) · Yanyan Lan ( Institute of Computing Technology) · Liwei Wang (Peking University) · Tie-Yan Liu (Microsoft Research Asia)
The many Shapley values for model explanation
Mukund Sundararajan (Google Inc.) · Amir Najmi (Google)
Linear Convergence of Randomized Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex Programming
Daoli Zhu (Shanghai Jiao Tong University) · Lei Zhao (Shanghai Jiao Tong University)
New Oracle-Efficient Algorithms for Private Synthetic Data Release
Giuseppe Vietri (University of Minnesota) · Steven Wu (University of Minnesota) · Mark Bun (Princeton University) · Thomas Steinke (IBM, Almaden) · Grace Tian (Harvard)
Oracle Efficient Private Non-Convex Optimization
Seth Neel (University of Pennsylvania) · Aaron Roth (University of Pennsylvania) · Giuseppe Vietri (University of Minnesota) · Steven Wu (University of Minnesota)
Universal Asymptotic Optimality of Polyak Momentum
Damien Scieur (INRIA - ENS) · Fabian Pedregosa (Google)
Adversarial Robustness via Runtime Masking and Cleansing
Yi-Hsuan Wu (National Tsing Hua University) · Chia-Hung Yuan (National Tsing Hua University) · Shan-Hung (Brandon) Wu (National Tsing Hua University)
Implicit Euler Skip Connections: Enhancing Adversarial Robustness via Numerical Stability
Mingjie Li (Peking University) · Lingshen He (Peking University) · Zhouchen Lin (Peking University)
Best Arm Identification for Cascading Bandits in the Fixed Confidence Setting
Zixin Zhong (NUS) · Wang Chi Cheung (National University of Singapore) · Vincent Tan (National University of Singapore)
Robustness to Programmable String Transformations via Augmented Abstract Training
Yuhao Zhang (University of Wisconsin-Madison) · Aws Albarghouthi (University of Wisconsin-Madison) · Loris D'Antoni (University of Wisconsin-Madison)
The Complexity of Finding Stationary Points with Stochastic Gradient Descent
Yoel Drori (Google Research) · Ohad Shamir (Weizmann Institute of Science)
Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors
Zhaoqiang Liu (NUS) · Selwyn Gomes (BITS Pilani, K K Birla Goa Campus) · Avtansh Tiwari (IIT Kanpur ) · Jonathan Scarlett (National University of Singapore)
Class-Weighted Classification: Trade-offs and Robust Approaches
Ziyu Xu (Carnegie Mellon University) · Chen Dan (Carnegie Mellon University) · Justin Khim (Carnegie Mellon University) · Pradeep Ravikumar (Carnegie Mellon University)
Neural Architecture Search in a Proxy Validation Loss Landscape
Yanxi Li (University of Sydney) · Minjing Dong (The University of Sydney) · Yunhe Wang (Huawei Noah's Ark Lab) · Chang Xu (University of Sydney)
Almost Tune-Free Variance Reduction
Bingcong Li (University of Minnesota) · Lingda Wang (University of Illinois at Urbana-Champaign) · Georgios B. Giannakis (University of Minnesota)
Uniform Convergence of Rank-weighted Learning
Liu Leqi (Carnegie Mellon University) · Justin Khim (Carnegie Mellon University) · Adarsh Prasad (Carnegie Mellon University) · Pradeep Ravikumar (Carnegie Mellon University)
Parallel Machine Translation with Disentangled Context Transformer
Jungo Kasai (University of Washington) · James Cross (Facebook) · Marjan Ghazvininejad (Facebook AI Research) · Jiatao Gu (Facebook AI Research)
More Information Supervised Probabilistic Deep Face Embedding Learning
Ying Huang (huya dopamine team) · Shangfeng Qiu (Guangzhou Huya Information Technologies Co., Limited) · Wenwei Zhang (Guangzhou Huya Information Technologies Co., Limited) · Xianghui Luo (Guangzhou Huya Information Technologies Co., Limited) · Jinzhuo Wang (University of Oxford)
Parameter-Free Learning for Evolving Markov Decision Processes: The Blessing of (More) Optimism
Wang Chi Cheung (National University of Singapore) · David Simchi-Levi (MIT) · Ruihao Zhu (MIT)
Improved Sleeping Bandits with Stochastic Action Sets and Adversarial Rewards
Aadirupa Saha (Indian Institute of Science (IISc), Bangalore) · Pierre Gaillard () · Michal Valko (DeepMind)
From PAC to Instance-Optimal Sample Complexity in the Plackett-Luce Model
Aadirupa Saha (Indian Institute of Science (IISc), Bangalore) · Aditya Gopalan (Indian Institute of Science)
Reliable Fidelity and Diversity Metrics for Generative Models
Muhammad Ferjad Naeem (Technical University of Munich) · Seong Joon Oh (Clova AI Research, NAVER Corp.) · Yunjey Choi (Clova AI Research, NAVER Corp.) · Youngjung Uh (Clova AI Research, NAVER Corp.) · Jaejun Yoo (EPFL)
Learning Factorized Weight Matrix for Joint Image Filtering
Xiangyu Xu (Tsinghua University) · Yongrui Ma (SenseTime) · Wenxiu Sun (SenseTime Research)
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans (University of Liège) · Volodimir Begy (CERN) · Gilles Louppe (University of Liège)
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang (National University of Singapore) · XU Xilie (Shandong University) · Bo Han (HKBU / RIKEN) · Gang Niu (RIKEN) · Lizhen Cui (ShanDong University) · Masashi Sugiyama (RIKEN / The University of Tokyo) · Mohan Kankanhalli (National University of Singapore,)
GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values
Shangtong Zhang (University of Oxford) · Bo Liu (Auburn University) · Shimon Whiteson (University of Oxford)
Provably Convergent Two-Timescale Off-Policy Actor-Critic with Function Approximation
Shangtong Zhang (University of Oxford) · Bo Liu (Auburn University) · Hengshuai Yao (Huawei Technologies) · Shimon Whiteson (University of Oxford)
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Raphaël Dang-Nhu (ETH Zürich) · Gagandeep Singh (ETH Zurich) · Pavol Bielik (ETH Zurich) · Martin Vechev (ETH Zurich)
Informative Dropout for Robust Representation Learning: A Shape-bias Perspective
Baifeng Shi (Peking University) · Dinghuai Zhang (Peking University) · Qi Dai (Microsoft Research) · Jingdong Wang (Microsoft) · Zhanxing Zhu (Peking University) · Yadong Mu (Peking University)
Graph Convolutional Network for Recommendation with Low-pass Collaborative Filters
Wenhui Yu (Tsinghua University) · Zheng Qin (Tsinghua University)
SoftSort: A Differantiable Continuous Relaxation of the argsort Operator
Sebastian Prillo (UC Berkeley) · Julian Eisenschlos (Google)
Too Relaxed to Be Fair
Michael Lohaus (Universität Tübingen) · Michael Perrot (Université Jean Monnet) · Ulrike von Luxburg (University of Tübingen)
Lorentz Group Equivariant Neural Network for Particle Physics
Alexander Bogatskiy (University of Chicago) · Brandon Anderson (University of Chicago) · Jan Offermann (University of Chicago) · Marwah Roussi (University of Chicago) · David Miller (University of Chicago) · Risi Kondor (The University of Chicago)
One-shot distributed ridge regression in high dimensions
Yue Sheng (University of Pennsylvania) · Edgar Dobriban (University of Pennsylvania)
Streaming k-Submodular Maximization under Noise subject to Size Constraint
Lan Nguyen (University of Florida) · My Thai (University of Florida)
Variational Imitation Learning with Diverse-quality Demonstrations
Voot Tangkaratt (RIKEN AIP) · Bo Han (HKBU / RIKEN) · Mohammad Emtiyaz Khan (RIKEN) · Masashi Sugiyama (RIKEN / The University of Tokyo)
Task Understanding from Confusing Mulit-task Data
Xin Su (Tsinghua University) · yizhou Jiang (Tsinghua University) · Shangqi Guo (Tsinghua University) · Feng Chen (Tsinghua University)
Cost-effective Interactive Attention Learning with Neural Attention Process
Jay Heo (KAIST) · Junhyeon Park (KAIST) · Hyewon Jeong (KAIST) · Kwang Joon Kim (Yonsei University College of Medicine) · Juho Lee (AITRICS) · Eunho Yang (KAIST,AITRICS) · Sung Ju Hwang (KAIST, AITRICS)
Channel Equilibrium Networks for Learning Deep Representation
Wenqi Shao (The Chinese University of HongKong) · Shitao Tang (Simon Fraser University) · Xingang Pan (The Chinese University of Hong Kong) · Ping Tan (Simon Fraser University) · Xiaogang Wang (Chinese University of Hong Kong, Hong Kong) · Ping Luo (The University of Hong Kong)
Optimal Non-parametric Learning in Repeated Contextual Auctions with Strategic Buyer
Alexey Drutsa (Yandex)
Topological Autoencoders
Michael Moor (ETH Zurich) · Max Horn (MLCB, D-BSSE, ETH Zurich) · Bastian Rieck (ETH Zurich) · Karsten Borgwardt (ETH Zurich)
An Accelerated DFO Algorithm for Finite-sum Convex Functions
Yuwen Chen (ETH Zurich) · Antonio Orvieto (ETH Zurich) · Aurelien Lucchi (ETH Zurich)
The Shapley Taylor Interaction Index
Mukund Sundararajan (Google Inc.) · Kedar Dhamdhere (Google LLC) · Ashish Agarwal (Google Brain)
Privately detecting changes in unknown distributions
Rachel Cummings (Georgia Tech) · Sara Krehbiel (Santa Clara University) · Yuliia Lut (Georgia Institute of Technology) · Wanrong Zhang (Georgia Institute of Technology)
CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods
Wei Zhang (University of Wisconsin-Madison) · Thomas Panum (Aalborg University) · Somesh Jha (University of Wisconsin, Madison) · Prasad Chalasani (MediaMath) · David Page (Duke)
Efficient Continuous Pareto Exploration in Multi-Task Learning
Pingchuan Ma (MIT) · Tao Du (MIT) · Wojciech Matusik (MIT)
WaveFlow: A Compact Flow-based Model for Raw Audio
Wei Ping (Baidu Research) · Kainan Peng (Baidu Research) · Kexin Zhao (Baidu) · Zhao Song (Baidu Research)
Multi-Agent Determinantal Q-Learning
Yaodong Yang (AIG) · Ying Wen (UCL) · Jun Wang (UCL) · Liheng Chen (Shanghai Jiao Tong University) · Kun Shao (Huawei Noah's Ark Lab) · David Mguni (Noah's Ark Laboratory, Huawei) · Weinan Zhang (Shanghai Jiao Tong University)
Revisiting Spatial Invariance with Low-Rank Local Connectivity
Gamaleldin Elsayed (Google Brain) · Prajit Ramachandran (Google) · Jon Shlens (Google Brain) · Simon Kornblith (Google Brain)
Minimax Weight and Q-Function Learning for Off-Policy Evaluation
Masatoshi Uehara (Harvard University) · Jiawei Huang (University of Illinois at Urbana-Champaign) · Nan Jiang (University of Illinois at Urbana-Champaign)
Tensor denoising and completion based on ordinal observations
Chanwoo Lee (University of Wisconsin - Madison) · Miaoyan Wang (University of Wisconsin - Madison)
Learning Human Objectives by Evaluating Hypothetical Behavior
Siddharth Reddy (University of California, Berkeley) · EECS Anca Dragan (EECS Department, University of California, Berkeley) · Sergey Levine (UC Berkeley) · Shane Legg (DeepMind) · Jan Leike (DeepMind)
Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models
Yuta Saito (Tokyo Institute of Technology.) · Shota Yasui (Cyberagent)
Learning Efficient Multi-agent Communication: An Information Bottleneck Approach
Rundong Wang (Nanyang Technological University) · Xu He (Nanyang Technological University) · Runsheng Yu (Nanyang Technological University) · Wei Qiu (Nanyang Technological University) · Bo An (Nanyang Technological University) · Zinovi Rabinovich (Nanyang Technological University)
MoNet3D: Towards Accurate Monocular 3D Object Localization in Real Time
XICHUAN ZHOU (Chongqing University) · YiChong Peng (Chongqing University) · Chunqiao Long (Chongqing University) · Fengbo Ren (Arizona State University) · Cong Shi (Chongqing University)
S2GA: Robust Deep Learning with Noisy Labels without Early Stopping
Bo Han (HKBU / RIKEN) · Gang Niu (RIKEN) · Xingrui Yu (University of Technology Sydney) · QUANMING YAO (4Paradigm) · Miao Xu (University of Queensland/ RIKEN AIP) · Ivor Tsang (University of Technology Sydney) · Masashi Sugiyama (RIKEN / The University of Tokyo)
Multinomial Logit Bandit with Low Switching Cost
Kefan Dong (Tsinghua University) · Yingkai Li (Northwestern University) · Qin Zhang (Indiana University Bloomington) · Yuan Zhou (UIUC)
Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint Reasoning
Di Chen (Cornell University) · Yiwei Bai (Cornell University) · Wenting Zhao (Cornell University) · Sebastian Ament (Cornell University) · John Gregoire (Caltech) · Carla Gomes (Cornell University)
Uncertainty-Aware Lookahead Factor Models for Improved Quantitative Investing
Lakshay Chauhan (University of Michigan) · John Alberg (Euclidean Technologies) · Zachary Lipton (Carnegie Mellon University)
On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness
Sebastian Pokutta (ZIB) · Mohit Singh (Georgia Institute of Technology) · Alfredo Torrico (Polytechnique Montreal)
Stronger and Faster Wasserstein Adversarial Attacks
Kaiwen Wu (University of Waterloo) · Allen Wang (University of Waterloo) · Yaoliang Yu (University of Waterloo)
Optimizing Multiagent Cooperation via Policy Evolution and Shared Experiences
Somdeb Majumdar (Intel AI Lab) · Shauharda Khadka (Intel AI) · Santiago Miret (Intel AI Products Group) · Stephen Mcaleer (UC Irvine) · Kagan Tumer (Oregon State University US)
Why are learned indexes so effective?
Paolo Ferragina (Università di Pisa) · Fabrizio Lillo (Università di Bologna) · Giorgio Vinciguerra (University of Pisa)
Fast OSCAR and OWL with Safe Screening Rules
Runxue Bao (University of Pittsburgh) · Bin Gu (Nanjing University of Information Science & Technology) · Heng Huang (University of Pittsburgh)
Which Tasks Should Be Learned Together in Multi-task Learning?
Trevor Standley (Stanford University) · Amir Zamir (Stanford, UC Berkeley) · Dawn Chen (Google) · Leonidas Guibas (Stanford University) · Jitendra Malik (University of California at Berkeley) · Silvio Savarese (Stanford University)
Inertial Block Proximal Methods for Non-Convex Non-Smooth Optimization
Hien Le (University of Mons, Belgium.) · Nicolas Gillis (Université de Mons) · Panagiotis Patrinos (KU Leuven)
Adversarial Neural Pruning with Latent Vulnerability Suppression
Divyam Madaan (KAIST) · Jinwoo Shin (KAIST, AITRICS) · Sung Ju Hwang (KAIST, AITRICS)
Lifted Disjoint Paths with Application in Multiple Object Tracking
Andrea Hornakova (Max Planck Institute for Informatics) · Roberto Henschel (Leibniz University of Hannover) · Bodo Rosenhahn (Leibniz University Hannover) · Paul Swoboda (MPI fuer Informatik, Saarbruecken)
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi (University of Tuebingen) · Matthias Hein (University of Tübingen) · Philipp Hennig (University of Tuebingen)
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Reddy Karimireddy (EPFL) · Satyen Kale (Google) · Mehryar Mohri (Google Research and Courant Institute of Mathematical Sciences) · Sashank Jakkam Reddi (Google) · Sebastian Stich (EPFL) · Ananda Theertha Suresh (Google Research)
Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization
Hadrien Hendrikx (INRIA) · Lin Xiao (Microsoft Research) · Sebastien Bubeck (Microsoft Research) · Francis Bach (INRIA - Ecole Normale Supérieure) · Laurent Massoulié (MSR-INRIA Joint Center)
Pretrained Generalized Autoregressive Model with Adaptive Probabilistic Label Cluster for Extreme Multi-label Text Classification
Hui Ye (Lehigh University) · Zhiyu Chen (Lehigh University) · Da-Han Wang (Xiamen University of Technology) · Brian Davison (Lehigh University)
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions
Ahmed Alaa (UCLA) · M van der Schaar (UCLA)
Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao (Google Brain) · Jeffrey Pennington (Google Brain) · Samuel Schoenholz (Google Brain)
Moniqua: Modulo Quantized Communication in Decentralized SGD
Yucheng Lu (Cornell University) · Christopher De Sa (Cornell)
Expectation Maximization with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation
Amr Mohamed Alexandari (Stanford University) · Anshul Kundaje (Stanford University) · Avanti Shrikumar (Stanford University)
Expert Learning through Generalized Inverse Multiobjective Optimization: Models, Insights and Algorithms
Chaosheng Dong (Amazon) · Bo Zeng (University of Pittsburgh)
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures
Mohamed El Amine Seddik (CEA) · Cosme Louart (CEA) · Mohamed Tamaazousti (CEA Saclay) · Romain COUILLET (CentraleSupélec)
Optimizing Data Usage via Differentiable Rewards
Xinyi Wang (Carnegie Mellon University) · Hieu Pham (Carnegie Mellon University) · Paul Michel (Carnegie Mellon University) · Antonios Anastasopoulos (Carnegie Mellon University) · Jaime Carbonell (Carnegie Mellon University) · Graham Neubig (Carnegie Mellon University)
Optimistic Policy Optimization with Bandit Feedback
Lior Shani (Technion) · Yonathan Efroni (Technion) · Aviv Rosenberg (Tel Aviv University) · Shie Mannor (Technion)
Maximum-and-Concatenation Networks
Xingyu Xie (Peking Unversity) · Hao Kong (Peking University) · Jianlong Wu (Peking University) · Wayne Zhang (SenseTime Research) · Guangcan Liu (Nanjing University of Information Science and Technology) · Zhouchen Lin (Peking University)
Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition
Chi Jin (Princeton University) · Tiancheng Jin (University of Southern California) · Haipeng Luo (University of Southern California) · Suvrit Sra (MIT) · Tiancheng Yu (MIT )
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data
Wenkai Xu (Gatsby Unit,UCL) · Tamara Fernandez (University College London) · Nicolas Rivera (University of Cambridge) · Arthur Gretton (Gatsby Computational Neuroscience Unit)
Efficient Intervention Design for Causal Discovery with Latents
Raghavendra Addanki (University of Massachusetts Amherst) · Shiva Kasiviswanathan (Amazon) · Andrew McGregor (University of Massachusetts Amherst) · Cameron Musco (UMass)
Certified Data Removal from Machine Learning Models
Chuan Guo (Cornell University) · Tom Goldstein (University of Maryland) · Awni Hannun (Facebook AI Research) · Laurens van der Maaten (Facebook)
One Size Fits All: Can We Train One Denoiser for All Noise Levels?
Abhiram Gnanasambandam (Purdue University) · Stanley Chan (Purdue University, USA)
GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation
Marc Brockschmidt (Microsoft Research)
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir (PROWLER.io) · Nicolas Durrande (PROWLER.io) · James Hensman (PROWLER.io)
Asynchronous Coagent Networks
James Kostas (University of Massachusetts Amherst) · Chris Nota (University of Massachusetts Amherst) · Philip Thomas (University of Massachusetts Amherst)
Adaptive Checkpoint Adjoint Method for Gradient Estimation in Neural ODE
Juntang Zhuang (Yale University) · Nicha Dvornek (Yale University) · Xiaoxiao Li (Yale University) · Sekhar Tatikonda (Yale) · Xenophon Papademetris (Yale University) · James Duncan (Yale University)
Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling
Yao Liu (Stanford University) · Pierre-Luc Bacon (Stanford University) · Emma Brunskill (Stanford University)
Taylor Expansion Policy Optimization
Yunhao Tang (Columbia University) · Michal Valko (DeepMind) · Remi Munos (DeepMind)
Reinforcement Learning for Integer Programming: Learning to Cut
Yunhao Tang (Columbia University) · Shipra Agrawal (Columbia University) · Yuri Faenza (Columbia University)
Safe Reinforcement Learning in Constrained Markov Decision Processes
Akifumi Wachi (IBM Research AI) · Yanan Sui (Tsinghua University)
Layered Sampling for Robust Optimization Problems
Hu Ding (University of Science and Technology of China) · Zixiu Wang (University of Science and Technology of China)
Learning to Encode Position for Transformer with Continuous Dynamical Model
Xuanqing Liu (University of California Los Angeles) · Hsiang-Fu Yu (Amazon) · Inderjit Dhillon (UT Austin & Amazon) · Cho-Jui Hsieh (UCLA)
Do RNN and LSTM have Long Memory?
Jingyu Zhao (The University of Hong Kong) · Feiqing Huang (University of Hong Kong) · Jia Lv (Huawei Noah's Ark Lab) · Yanjie Duan (Huawei Noah’s Ark Lab) · Zhen Qin (Huawei Noah's Ark Lab) · Guodong Li (University of Hong Kong) · Guangjian Tian (Huawei Noah’s Ark Lab)
Training Linear Neural Networks: Non-Local Convergence and Complexity Results
Armin Eftekhari (Umea University)
On Validation and Planning of An Optimal Decision Rule with Application in Healthcare Studies
Hengrui Cai (North Carolina State University) · Wenbin Lu () · Rui Song ()
Graph Optimal Transport for Cross-Domain Alignment
Liqun Chen (Duke University) · Zhe Gan (Microsoft) · Yu Cheng (Microsoft) · Linjie Li (Microsoft) · Lawrence Carin (Duke) · Jingjing Liu (Microsoft)
Approximation Capabilities of Neural ODEs and Invertible Residual Networks
Han Zhang (Virginia Commonwealth University) · Xi Gao (Virginia Commonwealth University) · Jacob Unterman (Virginia Commonwealth University) · Tomasz Arodz (Virginia Commonwealth University)
Refined bounds for algorithm configuration: The knife-edge of dual class approximability
Nina Balcan (Carnegie Mellon University) · Tuomas Sandholm (Carnegie Mellon University) · Ellen Vitercik (Carnegie Mellon University)
Teaching with Limited Information on the Learner's Behaviour
Ferdinando Cicalese (University of Verona) · Sergio Filho (PUC-RIO) · Eduardo Laber (PUC-RIO) · Marco Molinaro (PUC-RIO)
Interpretations are Useful: Penalizing Explanations to Align Neural Networks with Prior Knowledge
Laura Rieger (Technical University of Denmark) · Chandan Singh (UC Berkeley) · William Murdoch (UC Berkeley) · Bin Yu (University of California, Berkeley)
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu (university of pennsylvania) · Edgar Dobriban (University of Pennsylvania) · Susan Davidson (University of Pennsylvania)
The Cost-free Nature of Optimally Tuning Tikhonov Regularizers and Other Ordered Smoothers
Pierre Bellec (rutgers) · Dana Yang (Duke University)
Approximation Guarantees of Local Search Algorithms via Localizability of Set Functions
Kaito Fujii (National Institute of Informatics)
Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent
Yunwen Lei (University of Kaiserslautern) · Yiming Ying (SUNY Albany)
Online Dense Subgraph Discovery via Blurred-Graph Feedback
Yuko Kuroki (The University of Tokyo /RIKEN) · Atsushi Miyauchi (University of Tokyo) · Junya Honda (University of Tokyo / RIKEN) · Masashi Sugiyama (RIKEN / The University of Tokyo)
LazyIter: A Fast Algorithm for Counting Markov Equivalent DAGs and Designing Experiments
Ali AhmadiTeshnizi (Sharif University of Technology) · Saber Salehkaleybar (Sharif University of Technology) · Negar Kiyavash (École Polytechnique Fédérale de Lausanne)
Perceptual Generative Autoencoders
Zijun Zhang (University of Calgary) · Ruixiang ZHANG (Mila/UdeM) · Zongpeng Li (Wuhan University) · Yoshua Bengio (Mila / U. Montreal) · Liam Paull (Université de Montréal)
Towards Understanding the Regularization of Adversarial Robustness on Neural Networks
Yuxin Wen (South China University of Technology) · Shuai Li (South China University of Technology) · Kui Jia (South China University of Technology)
Stochastic Gradient and Langevin Processes
Xiang Cheng (UC Berkeley) · Dong Yin (UC Berkeley) · Peter Bartlett (Berkeley) · Michael Jordan (UC Berkeley)
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
Tonghan Wang (Tsinghua University) · Heng Dong (Tsinghua) · Victor Lesser (UMASS) · Chongjie Zhang (Tsinghua University)
Minimax Pareto Fairness: A Multi Objective Perspective
Martin Bertran (Duke University) · Natalia Martinez (Duke University) · Guillermo Sapiro (Duke University)
Online Pricing with Offline Data: Phase Transition and Inverse Square Law
Jinzhi Bu (MIT) · David Simchi-Levi (MIT) · Yunzong Xu (MIT)
Explicit Gradient Learning for Black-Box Optimization
Elad Sarafian (Bar-Ilan University) · Mor Sinay (Bar-Ilan University) · yoram louzoun (Bar Ilan University) · Noa Agmon (Bar-Ilan University) · Sarit Kraus (Bar-Ilan University)
Optimization and Analysis of the pAp@k Metric for Recommender Systems
Gaurush Hiranandani (University of Illinois at Urbana-Champaign) · Warut Vijitbenjaronk (University of Illinois, Urbana-Champaign) · Sanmi Koyejo (Illinois / Google) · Prateek Jain (Microsoft Research)
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt (Frei Universität Berlin) · Maximilian Granz (Freie Universität Berlin) · Tim Landgraf (Freie Universität Berlin)
Naive Exploration is Optimal for Online LQR
Max Simchowitz (UC Berkeley) · Dylan Foster (MIT)
Learning Structured Latent Factors from Dependent Data:A Generative Model Framework from Information-Theoretic Perspective
Ruixiang ZHANG (Mila/UdeM) · Katsuhiko Ishiguro (NTT Docomo) · Masanori Koyama (Preferred Networks Inc. )
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff (Oregon State University) · Qinxun Bai (Horizon Robotics) · Fuxin Li (Oregon State University) · Wei Xu (Horizon Robotics)
Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control
Jie Xu (Massachusetts Institute of Technology) · Yunsheng Tian (Massachusetts Institute of Technology) · Pingchuan Ma (MIT) · Daniela Rus (MIT CSAIL) · Shinjiro Sueda (Texas A&M University) · Wojciech Matusik (MIT)
Goodness-of-Fit Tests for Inhomogeneous Random Graphs
Soham Dan (University of Pennsylvania) · Bhaswar B. Bhattacharya (University of Pennsylvania)
Few-shot Domain Adaptation by Causal Mechanism Transfer
Takeshi Teshima (The University of Tokyo / RIKEN) · Issei Sato (University of Tokyo / RIKEN) · Masashi Sugiyama (RIKEN / The University of Tokyo)
Adaptive Adversarial Multi-task Representation Learning
YUREN MAO (School of Computer Science and Engineering, University of New South Wales) · Weiwei Liu (Wuhan University) · Xuemin Lin (University of New South Wales)
Streaming Submodular Maximization under a k-Set System Constraint
Ran Haba (Open University of Israel) · Ehsan Kazemi (Yale) · Moran Feldman (University of Haifa) · Amin Karbasi (Yale)
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
Risheng Liu (Dalian University of Technology) · Pan Mu (Dalian University of Technology) · Xiaoming Yuan (The University of Hong Kong) · Shangzhi Zeng (The University of Hong Kong) · Jin Zhang (Southern University of Science and Technology)
Optimal approximation for unconstrained non-submodular minimization
Marwa El Halabi (MIT) · Stefanie Jegelka (Massachusetts Institute of Technology)
Generating Programmatic Referring Expressions via Program Synthesis
Jiani Huang (University of Pennsylvania ) · Calvin Smith (University of Wisconsin at Madison) · Osbert Bastani (University of Pennsylvania) · Rishabh Singh (Google Brain) · Aws Albarghouthi (University of Wisconsin-Madison) · Mayur Naik (University of Pennsylvania)
Nearly Linear Row Sampling Algorithm for Quantile Regression
Yi Li (Nanyang Technological University) · Ruosong Wang (Carnegie Mellon University) · Lin Yang (UCLA) · Hanrui Zhang (Duke University)
On Leveraging Pretrained GANs for Limited-Data Generation
Miaoyun Zhao (Duke University) · Yulai Cong (Duke University) · Lawrence Carin (Duke)
More Data Can Expand The Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen (Yale University) · Yifei Min (Yale University) · Mingrui Zhang (Yale University) · Amin Karbasi (Yale)
Double Reinforcement Learning for Efficient and Robust Off-Policy Evaluation
Nathan Kallus (Cornell University) · Masatoshi Uehara (Harvard University)
Statistically Efficient Off-Policy Policy Gradients
Nathan Kallus (Cornell University) · Masatoshi Uehara (Harvard University)
Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training
Xuxi Chen (University of Science and Technology of China) · Wuyang Chen (Texas A&M University) · Tianlong Chen (Texas A&M University) · Ye Yuan (Texas A&M University) · Chen Gong (Nanjing University of Science and Technology) · Kewei Chen (Green Valley Pharmaceutical LLC) · Zhangyang Wang (Texas A&M University)
When Does Self-Supervision Help Graph Convolutional Networks?
Yuning You (Texas A&M University) · Tianlong Chen (Texas A&M University) · Zhangyang Wang (Texas A&M University) · Yang Shen (Texas A&M University)
On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data
Di Wang (State University of New York at Buffalo) · Hanshen Xiao (MIT CSAIL) · Srinivas Devadas (MIT) · Jinhui Xu (SUNY Buffalo)
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely (KAUST) · Dmitry Kovalev (KAUST) · Peter Richtarik (KAUST)
Stochastic Subspace Cubic Newton Method
Filip Hanzely (KAUST) · Nikita Doikov (Université catholique de Louvain) · Yurii Nesterov (Universite catholique de Louvain) · Peter Richtarik (KAUST)
Ready Policy One: World Building Through Active Learning
Philip Ball (University of Oxford) · Jack Parker-Holder (University of Oxford) · Aldo Pacchiano (UC Berkeley) · Krzysztof Choromanski (Google) · Stephen Roberts (University of Oxford)
Structural Language Models of Code
Uri Alon (Technion) · Roy Sadaka (Technion) · Omer Levy (University of Washington) · Eran Yahav (Technion)
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
Jingqing Zhang (Imperial College London) · Yao Zhao (Google) · Mohammad Saleh (Google) · Peter Liu (Google Brain)
Aggregation of Multiple Knockoffs
Tuan-Binh Nguyen (INRIA Saclay Ile-de-France) · Jerome-Alexis Chevalier (INRIA Saclay Ile-de-France) · Sylvain Arlot (University Paris Sud) · Thirion Bertrand (inria)
Off-Policy Actor-Critic with Shared Experience Replay
Simon Schmitt (DeepMind) · Matteo Hessel (Deep Mind) · Karen Simonyan (DeepMind)
Graph-based Nearest Neighbor Search: From Practice to Theory
Liudmila Prokhorenkova (Yandex) · Aleksandr Shekhovtsov (Yandex)
Policy Teaching via Environment Poisoning: Training-time Adversarial Attacks against Reinforcement Learning
Amin Rakhsha (MPI-SWS) · Goran Radanovic (Max Planck Institute for Software Systems) · Rati Devidze (Max Planck Institute for Software Systems) · Jerry Zhu (University of Wisconsin-Madison) · Adish Singla (Max Planck Institute (MPI-SWS))
Semismooth Newton Algorithm for Efficient Projections onto ℓ1-norm Ball
Dejun Chu (Tsinghua University) · Changshui Zhang (Tsinghua University) · Shiliang Sun (East China Normal University) · Qing Tao (Army Academy of Artillery and Air Defense)
Influenza forecasting framework based on Gaussian processes
Christoph Zimmer (Bosch Center for Artificial Intelligence BCAI) · Reza Yaesoubi (Health Policy and Management, Yale School of Public Health)
Unique Properties of Wide Minima in Deep Networks
Rotem Mulayoff (Technion) · Tomer Michaeli (Technion)
Does the Markov Decision Process Fit the Data: Testing for the Markov Property in Sequential Decision Making
Chengchun Shi (London School of Economics and Political Science) · Runzhe Wan (North Carolina State University) · Rui Song () · Wenbin Lu () · Ling Leng (Amazon)
LTF: A Label Transformation Framework for Correcting Label Shift
Jiaxian Guo (The University of Sydney) · Mingming Gong (University of Melbourne) · Tongliang Liu (The University of Sydney) · Kun Zhang (Carnegie Mellon University) · Dacheng Tao (The University of Sydney)
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuan Zhou (University of Oxford) · Hongseok Yang (KAIST) · Yee Whye Teh (Oxford and DeepMind) · Tom Rainforth (University of Oxford)
Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses
Pierre Laforgue (Télécom ParisTech) · Alex Lambert (Télécom ParisTech) · Luc Brogat-Motte (Télécom Paris) · Florence d'Alche-Buc (Télécom ParisTech, Université Paris-Saclay,Paris, France)
Causal Effect Estimation and Optimal Dose Suggestions in Mobile Health
Liangyu Zhu (North Carolina State University) · Wenbin Lu () · Rui Song ()
Towards Understanding the Dynamics of the First-Order Adversaries
Zhun Deng (Harvard) · Hangfeng He (University of Pennsylvania) · Jiaoyang Huang (Institute of Advanced Study) · Weijie Su (University of Pennsylvania)
Interpreting Robust Optimization via Adversarial Influence Functions
Zhun Deng (Harvard) · Cynthia Dwork (Harvard) · Jialiang Wang (Harvard University) · Linjun Zhang (Rutgers University)
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos (Imperial College London) · Grigorios Chrysos (Imperial College London) · Yannis Panagakis (Imperial College London) · Maja Pantic (Samsung AI Centre Cambridge/ Imperial College London )
No-Regret Exploration in Goal-Oriented Reinforcement Learning
Jean Tarbouriech (Facebook AI Research Paris & Inria Lille) · Evrard Garcelon (Facebook AI Research ) · Michal Valko (DeepMind) · Matteo Pirotta (Facebook AI Research) · Alessandro Lazaric (Facebook AI Research)
OPtions as REsponses: Grounding behavioural hierarchies in multi-agent reinforcement learning
Alexander Vezhnevets (DeepMind) · Yuhuai Wu (University of Toronto) · Maria Eckstein (UC Berkeley) · Rémi Leblond (DeepMind) · Joel Z Leibo (DeepMind)
Feature Noise Induces Loss Discrepancy Across Groups
Fereshte Khani (Stanford University) · Percy Liang (Stanford University)
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
Gregor Simm (Cambridge University) · Robert Pinsler (University of Cambridge) · Jose Hernandez-Lobato (University of Cambridge)
Small-GAN: Speeding up GAN Training using Core-Sets
Samrath Sinha (University of Toronto) · Han Zhang (Google) · Anirudh Goyal (Université de Montréal) · Yoshua Bengio (Mila / U. Montreal) · Hugo Larochelle (Google Brain) · Augustus Odena (Google Brain)
Conditional gradient methods for stochastically constrained convex minimization
Maria-Luiza Vladarean (EPFL) · Ahmet Alacaoglu (EPFL) · Ya-Ping Hsieh (EPFL) · Volkan Cevher (EPFL)
Undirected Graphical Models as Approximate Posteriors
Arash Vahdat (NVIDIA) · Evgeny Andriyash (D-Wave Systems Inc.) · William Macready (D-Wave)
Dynamics of Deep Neural Networks and Neural Tangent Hierarchy
Jiaoyang Huang (IAS) · Horng-Tzer Yau (Harvard)
Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics
Debjani Saha (University of Maryland) · Candice Schumann (University of Maryland) · Duncan McElfresh (University of Maryland) · John P Dickerson (University of Maryland) · Michelle Mazurek (University of Maryland) · Michael Tschantz (International Computer Science Institute)
Encoding Musical Style with Transformer Autoencoders
Kristy Choi (Stanford University) · Curtis Hawthorne (Google Brain) · Ian Simon (Google Brain) · Monica Dinculescu (Google Brain) · Jesse Engel (Google Brain)
Min-Max Optimization without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning Attacks
Sijia Liu (MIT-IBM Watson AI Lab) · Songtao Lu (IBM Research) · XIANGYI CHEN (University of Minnesota) · Yao Feng (Tsinghua University) · Kaidi Xu (Northeastern University) · Abdullah Al-Dujaili (CSAIL) · Mingyi Hong (University of Minnesota) · Una-May O'Reilly (MIT)
ConQUR: Mitigating Delusional Bias in Deep Q-Learning
DiJia Su (Princeton University) · Jayden Ooi (Google) · Tyler Lu (Google) · Dale Schuurmans (Google / University of Alberta) · Craig Boutilier (Google)
Self-Modulating Nonparametric Event-Tensor Factorization
Zheng Wang (University of Utah) · Xinqi Chu (Xjera Labs, Pte.Ltd) · Shandian Zhe (University of Utah)
Extreme Multi-label Classification from Aggregated Labels
Yanyao Shen (UT Austin) · Hsiang-Fu Yu (Amazon) · Sujay Sanghavi (UT Austin) · Inderjit Dhillon (UT Austin & Amazon)
Full Law Identification In Graphical Models Of Missing Data: Completeness Results
Razieh Nabi (Johns Hopkins University) · Rohit Bhattacharya (Johns Hopkins University) · Ilya Shpitser (Johns Hopkins University)
Self-Attentive Associative Memory
Hung Le (Deakin University) · Truyen Tran (Deakin University) · Svetha Venkatesh (Deakin University)
Imputer: Sequence Modelling via Imputation and Dynamic Programming
William Chan (Google Brain) · Chitwan Saharia (Google) · Geoffrey Hinton (Google) · Mohammad Norouzi (Google Brain) · Navdeep Jaitly (D. E. Shaw)
Continuously Indexed Domain Adaptation
Hao Wang (MIT) · Hao He (Massachusetts Institute of Technology) · Dina Katabi (MIT)
Evolving Machine Learning Algorithms From Scratch
Esteban Real (Google Inc.) · Chen Liang (Google Brain) · David So (Google Brain) · Quoc Le (Google Brain)
Self-Attentive Hawkes Process
Qiang Zhang (University College London) · Aldo Lipani (University College London) · Omer Kirnap (University College London) · Emine Yilmaz (University College London)
On hyperparameter tuning in general clustering problemsm
Xinjie Fan (UT Austin) · Yuguang Yue (University of Texas at Austin) · Purnamrita Sarkar (UT Austin) · Y. X. Rachel Wang (University of Sydney)
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo (The University of Iowa) · Mingrui Liu (The University of Iowa) · Zhuoning Yuan (The University of Iowa) · Li Shen (Tencent AI Lab) · Wei Liu (Tencent AI Lab) · Tianbao Yang (The University of Iowa)
Adaptive Region-Based Active Learning
Corinna Cortes (Google Research) · Giulia DeSalvo (Google Research) · Claudio Gentile (INRIA and Google) · Mehryar Mohri (Google Research and Courant Institute of Mathematical Sciences) · Ningshan Zhang (New York University)
Robust Outlier Arm Identification
Yinglun Zhu (University of Wisconsin-Madison) · Sumeet Katariya (UW-Madison and Amazon) · Robert Nowak (University of Wisconsion-Madison)
Provably Efficient Exploration in Policy Optimization
Qi Cai (Northwestern University) · Zhuoran Yang (Princeton University) · Chi Jin (Princeton University) · Zhaoran Wang (Northwestern U)
Striving for simplicity and performance in off-policy DRL: Output Normalization and Non-Uniform Sampling
Che Wang (New York University) · Yanqiu Wu (New York University) · Quan Vuong (University of California San Diego) · Keith Ross (New York University Shanghai)
Multidimensional Shape Constraints
Maya Gupta (Google) · Erez Louidor (Google, Inc.) · Oleksandr Mangylov (Google Research) · Nobu Morioka (Google Research) · Tamann Narayan (Google) · Sen Zhao (Google Research)
Fast Deterministic CUR Matrix Decomposition with Accuracy Assurance
Yasutoshi Ida (NTT) · Sekitoshi Kanai (NTT Software Innovation Center) · Yasuhiro Fujiwara (NTT Communication Science Laboratories) · Tomoharu Iwata (NTT) · Koh Takeuchi (NTT) · Hisashi Kashima (Kyoto University/RIKEN Center for AIP)
Operation-Aware Soft Channel Pruning using Differentiable Masks
Minsoo Kang (Seoul National University) · Bohyung Han (Seoul National University)
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma (The University of Melbourne) · Hanxun Huang (University of Melbourne) · Yisen Wang (Tsinghua University) · Simone Romano (University of Melbourne) · Sarah Erfani (University of Melbourne) · James Bailey (The University of Melbourne)
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu (UTS/UCL) · Wenkai Xu (Gatsby Unit,UCL) · Jie Lu (University of Technology Sydney) · Guangquan Zhang (University of Technology Sydney) · Arthur Gretton (Gatsby Computational Neuroscience Unit) · D.J. Sutherland (TTI-Chicago)
DeBayes: a Bayesian method for debiasing network embeddings
Maarten Buyl (Ghent University) · Tijl De Bie (Ghent University)
Principled learning method for Wasserstein distributionally robust optimization with local perturbations
Yongchan Kwon (Stanford University) · Wonyoung Kim (Seoul National University) · Joong-Ho Won (Seoul National University) · Myunghee Cho Paik (Seoul National University)
Low-Variance and Zero-Variance Baselines for Extensive-Form Games
Trevor Davis (University of Alberta) · Martin Schmid (DeepMind) · Michael Bowling (DeepMind)
Converging to Team-Maxmin Equilibria in Zero-Sum Multiplayer Games
Youzhi Zhang (Nanyang Technological University) · Bo An (Nanyang Technological University)
Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks
Alexander Shevchenko (IST Austria) · Marco Mondelli (IST Austria)
Leveraging Frequency Analysis for Deep Fake Image Recognition
Joel Frank (Ruhr-University Bochum) · Thorsten Eisenhofer (Ruhr University Bochum) · Lea Schönherr (Ruhr-Universität Bochum) · Dorothea Kolossa (Ruhr University Bochum) · Thorsten Holz (Ruhr-Universität Bochum) · Asja Fischer (Ruhr University Bochum)
Tails of Lipschitz Triangular Flows
Priyank Jaini (University of Waterloo, Vector Institute) · Ivan Kobyzev (Borealis AI) · Yaoliang Yu (University of Waterloo) · Marcus Brubaker (Borealis AI)
Deep Coordination Graphs
Wendelin Boehmer (University of Oxford) · Vitaly Kurin (University of Oxford) · Shimon Whiteson (University of Oxford)
Voice Separation with an Unknown Number of Multiple Speakers
Eliya Nachmani (Tel-Aviv University & Facebook AI Research) · Yossi Adi (Bar-Ilan University) · Lior Wolf (Facebook AI Research and Tel Aviv University)
Predicting Choice with Set-Dependent Aggregation
Nir Rosenfeld (Harvard University) · Kojin Oshiba (Harvard University) · Yaron Singer (Harvard)
Thompson Sampling Algorithms for Mean-Variance Bandits
Qiuyu Zhu (National University of Singapore) · Vincent Tan (National University of Singapore)
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting (University of Tuebingen) · Nicholas Krämer (University of Tübingen) · Martin Schiegg (Bosch Center for Artificial Intelligence) · Christian Daniel (Bosch Center for Artificial Intelligence) · Michael Schober (Bosch Center for Artificial Intelligence) · Philipp Hennig (University of Tuebingen)
Debiased Sinkhorn barycenters
Hicham Janati (INRIA) · Marco Cuturi (Google and CREST/ENSAE) · Alexandre Gramfort (Inria)
Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime
Stéphane d'Ascoli (ENS) · Maria Refinetti (Laboratoire de Physique de l’Ecole Normale Supérieure Paris) · Giulio Biroli (ENS) · Florent Krzakala (ENS)
Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills
Victor Campos (Barcelona Supercomputing Center) · Alexander Trott (Salesforce Research) · Caiming Xiong (Salesforce) · Richard Socher (Salesforce) · Xavier Giro-i-Nieto (Universitat Politecnica de Catalunya) · Jordi Torres (Barcelona Supercomputing Center)
Sparsified Linear Programming for Zero-Sum Equilibrium Finding
Brian Zhang (Carnegie Mellon University) · Tuomas Sandholm (Carnegie Mellon University)
Extra-gradient with player sampling for faster convergence in n-player games
Samy Jelassi (Princeton University) · Carles Domingo-Enrich (NYU) · Damien Scieur (INRIA - ENS) · Arthur Mensch (ENS) · Joan Bruna (New York University)
Entropy Minimization In Emergent Languages
Evgeny Kharitonov (FAIR) · Rahma Chaabouni (Facebook/ENS/INRIA) · Diane Bouchacourt (Facebook AI) · Marco Baroni (Facebook Artificial Intelligence Research)
Spectral Clustering with Graph Neural Networks for Graph Pooling
Filippo Maria Bianchi (NORCE) · Daniele Grattarola (Università della Svizzera Italiana) · Cesare Alippi (Università della Svizzera Italiana)
VFlow: More Expressive Generative Flows with Variational Data Augmentation
Jianfei Chen (University of California, Berkeley) · Cheng Lu (Tsinghua University) · Biqi Chenli (Tsinghua University) · Jun Zhu (Tsinghua University) · Tian Tian (RealAI)
Fully Parallel Hyperparameter Search: Reshaped Space-Filling
Marie-Liesse Cauwet (Université Paris-Est, LIGM (UMR 8049), CNRS, ESIEE Paris) · Camille Couprie (FAIR) · Julien Dehos (LISIC, Université du Littoral Côte d'Opale) · Pauline Luc (Facebook AI Research) · Jeremy Rapin (Facebook AI Research) · Morgane Riviere (Facebook Artificial Intelligence Research) · Fabien Teytaud (LISIC, Université du Littoral Côte d'Opale) · Olivier Teytaud (Facebook) · Nicolas Usunier (Facebook AI Research)
Discount Factor as a Regularizer in Reinforcement Learning
Ron Amit (Technion – Israel Institute of Technology) · Kamil Ciosek (Microsoft) · Ron Meir (Technion Israeli Institute of Technology)
On Learning Sets of Symmetric Elements
Haggai Maron (Weizmann Institute of Science) · Or Litany (Stanford University) · Gal Chechik (NVIDIA / Bar-Ilan University) · Ethan Fetaya (Bar Ilan University)
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
Wei Deng (Purdue University) · Qi Feng (University of Southern California) · Liyao Gao (Purdue University) · Faming Liang (Purdue University) · Guang Lin (Purdue University)
Learning Similarity Metrics for Numerical Simulations
Georg Kohl (Technical University of Munich) · Kiwon Um (Technical University of Munich) · Nils Thuerey (Technical University of Munich)
FR-Train: A mutual information-based approach to fair and robust training
Yuji Roh (KAIST) · Kangwook Lee (UW Madison) · Steven Whang (KAIST) · Changho Suh (KAIST)
Real-Time Optimisation for Online Learning in Auctions
Lorenzo Croissant (Criteo) · Marc Abeille (Criteo) · Clement Calauzenes (Criteo)
Graph Random Neural Features for Distance-Preserving Graph Representations
Daniele Zambon (Università della Svizzera Italiana) · Cesare Alippi (Università della Svizzera Italiana) · Lorenzo Livi (University of Manitoba)
Modulating Surrogates for Bayesian Optimization
Erik Bodin (University of Bristol) · Markus Kaiser (Technical University Munich) · Ieva Kazlauskaite (University of Bath) · Zhenwen Dai (Spotify) · Neill Campbell (University of Bath) · Carl Henrik Ek (University of Bristol)
Convolutional Kernel Networks for Graph-Structured Data
Dexiong Chen (Inria) · Laurent Jacob (CNRS) · Julien Mairal (Inria)
Improving the Sample and Communication Complexity for Decentralized Non-Convex Optimization: Joint Gradient Estimation and Tracking
Haoran Sun (University of Minnesota) · Songtao Lu (IBM Research) · Mingyi Hong (University of Minnesota)
Proper Network Interpretability Helps Adversarial Robustness in Classification
Akhilan Boopathy (MIT) · Sijia Liu (MIT-IBM Watson AI Lab) · Gaoyuan Zhang (IBM Research) · Cynthia Liu (1998) · Pin-Yu Chen (IBM Research AI) · Shiyu Chang (MIT-IBM Watson AI Lab) · Luca Daniel (Massachusetts Institute of Technology)
Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features
Liang Ding (Texas A&M University) · Rui Tuo (Texas A&M University) · Shahin Shahrampour (Texas A&M University)
Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle
Shaocong Ma (University of Utah) · Yi Zhou (University of Utah)
Calibration, Entropy Rates, and Memory in Language Models
Mark Braverman (Princeton University) · Xinyi Chen () · Sham Kakade (University of Washington) · Karthik Narasimhan (Princeton) · Cyril Zhang (Princeton University) · Yi Zhang (Princeton University)
Learning Opinions in Social Networks
Vincent Conitzer (Duke) · Debmalya Panigrahi (Duke University) · Hanrui Zhang (Duke University)
Latent Variable Modelling with Hyperbolic Normalizing Flows
Joey Bose (McGill/Mila) · Ariella Smofsky (McGill University and Mila) · Renjie Liao (University of Toronto) · Prakash Panangaden () · Will Hamilton (McGill University and Mila)
StochasticRank: Global Optimization of Scale-Free Discrete Functions
Aleksei Ustimenko (Yandex) · Liudmila Prokhorenkova (Yandex)
Working Memory Graphs
Ricky Loynd (Microsoft Research) · Roland Fernandez (Microsoft Research) · Asli Celikyilmaz (Microsoft Research) · Adith Swaminathan (Microsoft Research) · Matthew Hausknecht (Microsoft Research)
Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules
Sarthak Mittal (Uber ATG) · Alex Lamb (Universite de Montreal) · Anirudh Goyal (Université de Montréal) · Vikram Voleti (Mila, University of Montreal) · Murray Shanahan (DeepMind / Imperial College London) · Guillaume Lajoie (Mila, Université de Montréal) · Michael Mozer (Google Research / University of Colorado) · Yoshua Bengio (Mila / U. Montreal)
Spread Divergence
Mingtian Zhang (UCL) · Peter Hayes (University College London) · Thomas Bird (UCL) · Raza Habib (UCL) · David Barber (University College London)
Optimizing Black-box Metrics with Adaptive Surrogates
Qijia Jiang (Stanford University) · Olaoluwa Adigun (University of Southern California Los Angeles) · Harikrishna Narasimhan (Google Research) · Mahdi Milani Fard (Google) · Maya Gupta (Google)
Domain Adaptive Imitation Learning
Kuno Kim (Stanford University) · Yihong Gu (Tsinghua University) · Jiaming Song (Stanford) · Shengjia Zhao (Stanford University) · Stefano Ermon (Stanford University)
A general recurrent state space framework for modeling neural dynamics during decision-making
David Zoltowski (Princeton University) · Jonathan Pillow (Princeton University) · Scott Linderman (Stanford)
An Imitation Learning Approach for Cache Replacement
Evan Liu (Google) · Milad Hashemi (Google) · Kevin Swersky (Google Brain) · Parthasarathy Ranganathan (Google, USA) · Junwhan Ahn (Google)
Revisiting Training Strategies and Generalization Performance in Deep Metric Learning
Karsten Roth (Heidelberg University) · Timo Milbich (Heidelberg University) · Samrath Sinha (University of Toronto) · Prateek Gupta (University of Oxford) · Bjorn Ommer (Heidelberg University) · Joseph Paul Cohen (Montreal Institute for Learning Algorithms ShortScience.org)
Temporal Phenotyping using Deep Predicting Clustering of Disease Progression
Changhee Lee (UCLA) · M van der Schaar (UCLA)
Countering Language Drift with Seeded Iterated Learning
Yuchen Lu (Mila & University of Montreal) · Soumye Singhal (Mila, University of Montreal) · Florian Strub (DeepMind) · Aaron Courville (Université de Montréal) · Olivier Pietquin (Google Brain)
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
Quoc Tran-Dinh (The University of North Carolina at Chapel Hill) · Nhan H Pham (University of North Carolina at Chapel Hill) · Lam Nguyen (IBM Research, Thomas J. Watson Research Center)
Strategyproof Mean Estimation from Multiple-Choice Questions
Anson Kahng (Carnegie Mellon University) · Gregory Kehne (Carnegie Mellon University) · Ariel Procaccia (Harvard University)
Sequential Cooperative Bayesian Inference
Junqi Wang (Rutgers University-Newark) · Pei Wang (Rutgers University-Newark) · Patrick Shafto (Rutgers University-Newark)
Spectral Graph Matching and Regularized Quadratic Relaxations: Algorithm and Theory
Zhou Fan (Yale Univ) · Cheng Mao (Georgia Institute of Technology) · Yihong Wu (Yale University) · Jiaming Xu (Duke University)
Zeno++: Robust Fully Asynchronous SGD
Cong Xie (UIUC) · Sanmi Koyejo (Illinois / Google) · Indranil Gupta (UIUC)
Network Pruning by Greedy Subnetwork Selection
Mao Ye (PURDUE UNIVERSITY) · Chengyue Gong (university of texas at austin) · Lizhen Nie (The University of Chicago) · Denny Zhou (Google Brain) · Adam Klivans (University of Texas at Austin) · Qiang Liu (UT Austin)
Logarithmic Regret for Learning Linear Quadratic Regulators Efficiently
Asaf Cassel (Tel Aviv University) · Alon Cohen (Technion, Google) · Tomer Koren (Google Brain)
Hierarchical Verification for Adversarial Robustness
Cong Han Lim (Uber ATG) · Raquel Urtasun (Uber ATG) · Ersin Yumer (Uber ATG)
BINOCULARS for efficient, nonmyopic sequential experimental design
Shali Jiang (Washington University in St. Louis) · Henry Chai (Washington University in St. Louis) · Javier Gonzalez (Microsoft Research) · Roman Garnett (Washington University in St. Louis)
On the Global Optimality of Model-Agnostic Meta-Learning
Lingxiao Wang (Northwestern University) · Qi Cai (Northwestern University) · Zhuoran Yang (Princeton University) · Zhaoran Wang (Northwestern U)
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang (Northwestern University) · Zhuoran Yang (Princeton University) · Zhaoran Wang (Northwestern U)
Learning with Bounded Instance- and Label-dependent Label Noise
Jiacheng Cheng (University of California, San Diego) · Tongliang Liu (The University of Sydney) · Kotagiri Ramamohanarao (The University of Melbourne) · Dacheng Tao (The University of Sydney)
Transparency Promotion with Model-Agnostic Linear Competitors
Hassan Rafique (The University of Iowa) · Tong Wang (University of Iowa) · Qihang Lin (University of Iowa) · Arshia Singhani (BASIS Independent Silicon Valley)
Learning Mixtures of Graphs from Epidemic Cascades
Jessica Hoffmann (University of Texas at Austin) · Soumya Basu (University of Texas at Austin) · Surbhi Goel (UT Austin) · Constantine Caramanis (University of Texas)
Implicit differentiation of Lasso-type models for hyperparameter optimization
Quentin Bertrand (INRIA) · Quentin Klopfenstein (Université de Bourgogne) · Mathieu Blondel (NTT) · Samuel Vaiter (CNRS) · Alexandre Gramfort (Inria) · Joseph Salmon (Université de Montpellier)
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
Xiao Li (University of Aberdeen) · Chenghua Lin (University of Sheffield) · Ruizhe Li (The University of Sheffield) · Chaozheng Wang (University of Aberdeen) · Frank Guerin (University of Surrey)
Active World Model Learning in Agent-rich Environments with Progress Curiosity
Kuno Kim (Stanford University) · Megumi Sano (Stanford University) · Julian De Freitas (Harvard University) · Nick Haber (Stanford University) · Daniel Yamins (Stanford University)
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong (Georgia Institute of Technoloy) · Jimeng Sun (UIUC) · Chao Zhang (Georgia Institute of Technology)
GANs May Have No Nash Equilibria
Farzan Farnia (Massachusetts Institute of Technology) · Asuman Ozdaglar (MIT)
Gradient Temporal-Difference Learning with Regularized Corrections
Sina Ghiassian (University of Alberta) · Andrew Patterson (University of Alberta) · Shivam Garg (University of alberta) · Dhawal Gutpa (University of Alberta) · Adam White (University of Alberta) · Martha White (University of Alberta)
Online mirror descent and dual averaging: keeping pace in the dynamic case
Huang Fang (University of British Columbia) · Victor Sanches Portella (University of British Columbia) · Nick Harvey (University of British Columbia) · Michael Friedlander (University of British Columbia)
Choice Set Optimization Under Discrete Choice Models of Group Decisions
Kiran Tomlinson (Cornell University) · Austin Benson (Cornell University)
Complexity of Finding Stationary Points of Nonconvex Nonsmooth Functions
Jingzhao Zhang (MIT) · Hongzhou Lin (MIT) · Stefanie Jegelka (Massachusetts Institute of Technology) · Suvrit Sra (MIT) · Ali Jadbabaie (Massachusetts Institute of Technology)
Multi-Agent Routing Value Iteration Network
Quinlan Sykora (Uber ATG) · Mengye Ren (Uber ATG / University of Toronto) · Raquel Urtasun (Uber ATG)
Adversarial Attacks on Copyright Detection Systems
Parsa Saadatpanah (University of Maryland) · Ali Shafahi (University of Maryland) · Tom Goldstein (University of Maryland)
Differentiating through the Fréchet Mean
Aaron Lou (Cornell University) · Isay Katsman (Cornell University) · Qingxuan Jiang (Cornell University) · Serge Belongie (Cornell University) · Ser Nam Lim (Facebook) · Christopher De Sa (Cornell)
Online Learning for Active Cache Synchronization
Andrey Kolobov (Microsoft Research) · Sebastien Bubeck (Microsoft Research) · Julian Zimmert (University of Copenhagen)
PoKED: A Semi-Supervised System for Word Sense Disambiguation
Feng Wei (York University)
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation
Pan Xu (University of California, Los Angeles) · Quanquan Gu (University of California, Los Angeles)
Understanding and Stabilizing GANs' Training Dynamics Using Control Theory
Kun Xu (Tsinghua University) · Chongxuan Li (Tsinghua University) · Jun Zhu (Tsinghua University) · Bo Zhang (Tsinghua University)
Scalable Nearest Neighbor Search for Optimal Transport
Arturs Backurs (TTIC) · Yihe Dong (Microsoft Research) · Piotr Indyk (MIT) · Ilya Razenshteyn (Microsoft Research Redmond) · Tal Wagner (MIT)
Supervised learning: no loss no cry
Richard Nock (Data61, The Australian National University and the University of Sydney) · Aditya Menon (Google Research)
Label-Noise Robust Domain Adaptation
Xiyu Yu (Baidu Inc.) · Tongliang Liu (The University of Sydney) · Mingming Gong (University of Melbourne) · Kun Zhang (Carnegie Mellon University) · Kayhan Batmanghelich (University of Pittsburgh) · Dacheng Tao (The University of Sydney)
Description Based Text Classification with Reinforcement Learning
Wei Wu (Shannon.AI) · Duo Chai (Shannon.AI) · Qinghong Han (Shannon.AI) · Fei Wu (Zhejiang University, China) · Jiwei Li (Shannon.AI)
Bandits for BMO Functions
Tianyu Wang (Duke University) · Cynthia Rudin (Duke)
Cost-effectively Identifying Causal Effect When Only Response Variable Observable
Tian-Zuo Wang (Nanjing University) · Xi-Zhu Wu (Nanjing University) · Sheng-Jun Huang (Nanjing University of Aeronautics and Astronautics) · Zhi-Hua Zhou (Nanjing University)
Learning with Multiple Complementary Labels
LEI FENG (Nanyang Technological University) · Takuo Kaneko (The University of Tokyo) · Bo Han (HKBU / RIKEN) · Gang Niu (RIKEN) · Bo An (Nanyang Technological University) · Masashi Sugiyama (RIKEN / The University of Tokyo)
Graph Representation Learning by Maximizing Mutual Information Between Spatial and Spectral Views
Kaveh Hassani (Autodesk) · Amir Hosein Khasahmadi (University of Toronto)
A Chance-Constrained Generative Framework for Sequence Optimization
Liu Xianggen (Tsinghua University) · Jian Peng (UIUC) · Qiang Liu (UT Austin) · Sen Song (Tsinghua University )
dS^2LBI: Exploring Structural Sparsity on Deep Network via Differential Inclusion Paths
Yanwei Fu (Fudan university) · Chen Liu (Fudan University) · Donghao Li (HKUST) · Xinwei Sun (MSRA) · Jinshan ZENG (Hongkong University of Science and Technology) · Yuan Yao (HongKong University of Science and Technology)
Sparse Subspace Clustering with Entropy-Norm
Liang Bai (Shanxi University, China) · Jiye Liang (Shanxi University)
On the Generalization Effects of Linear Transformations in Data Augmentation
Sen Wu (Stanford University) · Hongyang Zhang (University of Pennsylvania) · Gregory Valiant (Stanford University) · Christopher Re (Stanford)
Sparse Shrunk Additive Models
Hong Chen (Huazhong Agricultural University) · guodong liu (university of Pittsburgh) · Heng Huang (University of Pittsburgh)
Unsupervised Discovery of Interpretable Directions in the GAN Latent Space
Andrey Voynov (Yandex) · Artem Babenko (Yandex)
DropNet: Reducing Neural Network Complexity via Iterative Pruning
Chong Min John Tan (National University of Singapore) · Mehul Motani (NUS)
Self-supervised Label Augmentation via Input Transformations
Hankook Lee (KAIST) · Sung Ju Hwang (KAIST, AITRICS) · Jinwoo Shin (KAIST, AITRICS)
Mapping natural-language problems to formal-language solutions using structured neural representations
Kezhen Chen (Northwestern University) · Qiuyuan Huang (Microsoft Research, Redmond) · Hamid Palangi (Microsoft Research) · Paul Smolensky (Microsoft Research) · Ken Forbus (Northwestern University) · Jianfeng Gao (Microsoft Research AI)
Transformation of ReLU-based recurrent neural networks from discrete-time to continuous-time
Zahra Monfared (ZI Mannheim) · Daniel Durstewitz (ZI Mannheim)
Implicit Geometric Regularization for Learning Shapes
Amos Gropp (Weizmann Institute of Science) · Lior Yariv (Weizmann Institute of Science) · Niv Haim (Weizmann Institute of Science) · Matan Atzmon (Weizmann Institute of Science) · Yaron Lipman (Weizmann Institute of Science)
Influence Diagram Bandits
Tong Yu (Carnegie Mellon University) · Branislav Kveton (Google Research) · Zheng Wen (DeepMind) · Ruiyi Zhang (Duke University) · Ole J. Mengshoel (Carnegie Mellon University)
Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains