Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Problem when training on my dataset #64

Open
soul-M-42 opened this issue Jan 23, 2021 · 1 comment
Open

Problem when training on my dataset #64

soul-M-42 opened this issue Jan 23, 2021 · 1 comment

Comments

@soul-M-42
Copy link

When training on my own dataset (8.8k 512*512 images), like this:
suc21

the process goes well at first but collapsed after a while.
When initializing the output of the model like this:
642_init_G0_D0
But as the training continue, the output went strange and lost all the diversity:
1074_gtrns_G43 167999999998514_D0
Could anyone help me out? I cannot determine where the problem is: the scale of dataset, or the training parameters?

The config I use:

`

training parameters.

parser.add_argument('--lr', type=float, default=0.001) # learning rate.
parser.add_argument('--lr_decay', type=float, default=0.87) # learning rate decay at every resolution transition.
parser.add_argument('--eps_drift', type=float, default=0.001) # coeff for the drift loss.
parser.add_argument('--smoothing', type=float, default=0.997) # smoothing factor for smoothed generator.
parser.add_argument('--nc', type=int, default=3) # number of input channel.
parser.add_argument('--nz', type=int, default=512) # input dimension of noise.
parser.add_argument('--ngf', type=int, default=512) # feature dimension of final layer of generator.
parser.add_argument('--ndf', type=int, default=512) # feature dimension of first layer of discriminator.
parser.add_argument('--TICK', type=int, default=1000) # 1 tick = 1000 images = (1000/batch_size) iter.
parser.add_argument('--max_resl', type=int, default=9) # 10-->1024, 9-->512, 8-->256
parser.add_argument('--trns_tick', type=int, default=200) # transition tick
parser.add_argument('--stab_tick', type=int, default=100) # stabilization tick

network structure.

parser.add_argument('--flag_wn', type=bool, default=True) # use of equalized-learning rate.
parser.add_argument('--flag_bn', type=bool, default=False) # use of batch-normalization. (not recommended)
parser.add_argument('--flag_pixelwise', type=bool, default=True) # use of pixelwise normalization for generator.
parser.add_argument('--flag_gdrop', type=bool, default=True) # use of generalized dropout layer for discriminator.
parser.add_argument('--flag_leaky', type=bool, default=True) # use of leaky relu instead of relu.
parser.add_argument('--flag_tanh', type=bool, default=False) # use of tanh at the end of the generator.
parser.add_argument('--flag_sigmoid', type=bool, default=False) # use of sigmoid at the end of the discriminator.
parser.add_argument('--flag_add_noise', type=bool, default=True) # add noise to the real image(x)
parser.add_argument('--flag_norm_latent', type=bool, default=False) # pixelwise normalization of latent vector (z)
parser.add_argument('--flag_add_drift', type=bool, default=True) # add drift loss

optimizer setting.

parser.add_argument('--optimizer', type=str, default='adam') # optimizer type.
parser.add_argument('--beta1', type=float, default=0.0) # beta1 for adam.
parser.add_argument('--beta2', type=float, default=0.99) # beta2 for adam.
`

@lllllllllllll-llll
Copy link

Yes, I have the sample problem.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants