You can compress, decompress, inspect, and benchmark standalone .pco files using the CLI. Follow this setup:
- Install Rust: https://www.rust-lang.org/tools/install
- (optional but recommended for best performance on x86) Configure the instruction sets available
cargo install pco_cli
This provides you with the pcodec
command.
You can always get help, e.g. pcodec
, pcodec compress --help
.
This command runs benchmarks, taking in data you provide and printing out compression time, decompression time, and compression ratio for whatever codecs you request.
pcodec bench -i my_input_data.parquet
pcodec bench \
-i my_input_data.csv \
--csv-has-header \
--codecs pco:level=9,parquet:compression=zstd4 \
--dtypes f32 \
--datasets foo,bar \
--iters 7 \
--limit 999999 \
--save-dir ./tmp
pcodec bench --binary-dir ./data
One way to generate test data from a wide variety of processes and
distributions is from the generate_randoms.py
script in the pcodec
repository.
To run it, set up a python3 environment with numpy
installed.
In that environment, cd
'd in to the root of the repo,
run python pco_cli/generate_randoms.py
.
This will populate some human-readable data in data/txt/
and
the exact same numerical data as bytes in data/binary/
.
Unless other input is provided, pcodec bench
will search the
./data/binary/
path.
This command compresses a single column of a .csv or .parquet file into a .pco file.
Examples:
pcodec compress --csv my.csv --col-name my_column out.pco
pcodec compress --parquet my.snappy.parquet --col-name my_column out.pco
pcodec compress \
--csv my.csv \
--col-idx 0 \
--csv-has-header \
--dtype u32 \
--level 7 \
--overwrite \
out.pco
pcodec compress \
--csv time_series.csv \
--col-name temperature \
--dtype f32 \
--delta-order 3 \
out.pco
This command prints numbers in a .pco file to stdout.
Examples:
pcodec decompress --limit 256 in.pco
This command prints out information about a .pco file.
Examples:
% pcodec inspect in.pco