Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "Syncing to Develop" #12

Merged
merged 1 commit into from
Nov 15, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 44 additions & 26 deletions uf3/representation/angles.py
Original file line number Diff line number Diff line change
Expand Up @@ -416,44 +416,58 @@ def generate_triplets(i_where: np.ndarray,
i_groups = np.array_split(j_where, np.cumsum(group_sizes)[:-1])
# generate j-k combinations
for i in range(len(i_groups)):
j_arr, k_arr = np.meshgrid(i_groups[i], i_groups[i])

# Pick out unique neighbor pairs of central atom i
# ex: With center atom 0 and its neighbors [2, 1, 3],
# j_arr = [[2, 1, 3],
# [2, 1, 3],
# [2, 1, 3]]
# k_arr = [[2, 2, 2],
# [1, 1, 1],
# [3, 3, 3]]
# j_indices = [1, 2, 1]
# k_indices = [2, 3, 3]
# => unique pairs: (1, 2), (2, 3), (1, 3)
# The unique_pair_mask has filtered out pairs like (1, 1), (2, 1), (3, 2), etc.
unique_pair_mask = (j_arr < k_arr)
j_indices = j_arr[unique_pair_mask]
k_indices = k_arr[unique_pair_mask]
tuples = np.vstack((i_values[i] * np.ones(len(j_indices), dtype=int),
j_indices, k_indices)).T # array of unique triplets

tuples = np.array(np.meshgrid(i_groups[i],
i_groups[i])).T.reshape(-1, 2)
tuples = np.insert(tuples, 0, i_values[i], axis=1)
comp_tuples = sup_composition[tuples]

sort_indices = np.argsort(comp_tuples[:, 1:],axis=1) # to sort by atomic number
sort_indices = np.argsort(comp_tuples[:, 1:],axis=1)
comp_tuples_slice = np.take_along_axis(comp_tuples[:, 1:],sort_indices,axis=1)
tuples_slice = np.take_along_axis(tuples[:, 1:],sort_indices,axis=1)

# sort comp_tuples and tuples the same way

comp_tuples = np.hstack((comp_tuples[:, [0]], comp_tuples_slice))
tuples = np.hstack((tuples[:, [0]], tuples_slice))

ijk_hash = composition.get_szudzik_hash(comp_tuples)

grouped_triplets = [None] * n_hashes
for j, hash_ in enumerate(hashes):
ituples = tuples[ijk_hash == hash_]
icomp_tuples = comp_tuples[ijk_hash == hash_]
if len(ituples) == 0:
grouped_triplets[j] = None
continue

# Check if same neighbouring elements
if icomp_tuples[0][1] == icomp_tuples[0][2]:
# element at j and k are same;
# remove redundant interactions
comparison_mask = (ituples[:, 1] < ituples[:, 2])
ituples = ituples[comparison_mask]
icomp_tuples = icomp_tuples[comparison_mask]

else:
# Elements at j and k not same
# cordinates of j and k are same; filter eg 011, 022, 033
# this comparison mask is redundant
comparison_mask = (ituples[:, 1] != ituples[:, 2])

ituples = ituples[comparison_mask]
icomp_tuples = icomp_tuples[comparison_mask]

if len(ituples) > 0:
# Remove repetitive interactions
ituples = np.unique(ituples,axis=0)
icomp_tuples = np.unique(icomp_tuples,axis=0)

# sort by electro-negativity as the interaction tuple is always
# sorted by electro-negativity
en_j = composition.reference_X[ase_symbols.chemical_symbols[icomp_tuples[0][1]]]
en_k = composition.reference_X[ase_symbols.chemical_symbols[icomp_tuples[0][2]]]
if en_k < en_j:
# Interchange columns 1 and 2
ituples[:, [1, 2]] = ituples[:, [2, 1]]

# extract distance tuples
r_l = distance_matrix[ituples[:, 0], ituples[:, 1]]
r_m = distance_matrix[ituples[:, 0], ituples[:, 2]]
Expand All @@ -470,7 +484,11 @@ def generate_triplets(i_where: np.ndarray,
r_m = r_m[dist_mask]
r_n = r_n[dist_mask]
ituples = ituples[dist_mask]
grouped_triplets[j] = i, r_l, r_m, r_n, ituples

if len(ituples) == 0:
grouped_triplets[j] = None
else:
grouped_triplets[j] = i, r_l, r_m, r_n, ituples
yield grouped_triplets


Expand Down
Loading