From b5e8cac7190cb58298562bbc9227b095c81efe68 Mon Sep 17 00:00:00 2001 From: Ajinkya Hire <48733363+monk-04@users.noreply.github.com> Date: Wed, 15 Nov 2023 15:48:41 -0500 Subject: [PATCH] Revert "Syncing to Develop" --- uf3/representation/angles.py | 70 ++++++++++++++++++++++-------------- 1 file changed, 44 insertions(+), 26 deletions(-) diff --git a/uf3/representation/angles.py b/uf3/representation/angles.py index 6eac2d5e..f51500f1 100644 --- a/uf3/representation/angles.py +++ b/uf3/representation/angles.py @@ -416,44 +416,58 @@ def generate_triplets(i_where: np.ndarray, i_groups = np.array_split(j_where, np.cumsum(group_sizes)[:-1]) # generate j-k combinations for i in range(len(i_groups)): - j_arr, k_arr = np.meshgrid(i_groups[i], i_groups[i]) - - # Pick out unique neighbor pairs of central atom i - # ex: With center atom 0 and its neighbors [2, 1, 3], - # j_arr = [[2, 1, 3], - # [2, 1, 3], - # [2, 1, 3]] - # k_arr = [[2, 2, 2], - # [1, 1, 1], - # [3, 3, 3]] - # j_indices = [1, 2, 1] - # k_indices = [2, 3, 3] - # => unique pairs: (1, 2), (2, 3), (1, 3) - # The unique_pair_mask has filtered out pairs like (1, 1), (2, 1), (3, 2), etc. - unique_pair_mask = (j_arr < k_arr) - j_indices = j_arr[unique_pair_mask] - k_indices = k_arr[unique_pair_mask] - tuples = np.vstack((i_values[i] * np.ones(len(j_indices), dtype=int), - j_indices, k_indices)).T # array of unique triplets - + tuples = np.array(np.meshgrid(i_groups[i], + i_groups[i])).T.reshape(-1, 2) + tuples = np.insert(tuples, 0, i_values[i], axis=1) comp_tuples = sup_composition[tuples] - - sort_indices = np.argsort(comp_tuples[:, 1:],axis=1) # to sort by atomic number + + sort_indices = np.argsort(comp_tuples[:, 1:],axis=1) comp_tuples_slice = np.take_along_axis(comp_tuples[:, 1:],sort_indices,axis=1) tuples_slice = np.take_along_axis(tuples[:, 1:],sort_indices,axis=1) - - # sort comp_tuples and tuples the same way + comp_tuples = np.hstack((comp_tuples[:, [0]], comp_tuples_slice)) tuples = np.hstack((tuples[:, [0]], tuples_slice)) - + ijk_hash = composition.get_szudzik_hash(comp_tuples) grouped_triplets = [None] * n_hashes for j, hash_ in enumerate(hashes): ituples = tuples[ijk_hash == hash_] + icomp_tuples = comp_tuples[ijk_hash == hash_] if len(ituples) == 0: grouped_triplets[j] = None continue + + # Check if same neighbouring elements + if icomp_tuples[0][1] == icomp_tuples[0][2]: + # element at j and k are same; + # remove redundant interactions + comparison_mask = (ituples[:, 1] < ituples[:, 2]) + ituples = ituples[comparison_mask] + icomp_tuples = icomp_tuples[comparison_mask] + + else: + # Elements at j and k not same + # cordinates of j and k are same; filter eg 011, 022, 033 + # this comparison mask is redundant + comparison_mask = (ituples[:, 1] != ituples[:, 2]) + + ituples = ituples[comparison_mask] + icomp_tuples = icomp_tuples[comparison_mask] + + if len(ituples) > 0: + # Remove repetitive interactions + ituples = np.unique(ituples,axis=0) + icomp_tuples = np.unique(icomp_tuples,axis=0) + + # sort by electro-negativity as the interaction tuple is always + # sorted by electro-negativity + en_j = composition.reference_X[ase_symbols.chemical_symbols[icomp_tuples[0][1]]] + en_k = composition.reference_X[ase_symbols.chemical_symbols[icomp_tuples[0][2]]] + if en_k < en_j: + # Interchange columns 1 and 2 + ituples[:, [1, 2]] = ituples[:, [2, 1]] + # extract distance tuples r_l = distance_matrix[ituples[:, 0], ituples[:, 1]] r_m = distance_matrix[ituples[:, 0], ituples[:, 2]] @@ -470,7 +484,11 @@ def generate_triplets(i_where: np.ndarray, r_m = r_m[dist_mask] r_n = r_n[dist_mask] ituples = ituples[dist_mask] - grouped_triplets[j] = i, r_l, r_m, r_n, ituples + + if len(ituples) == 0: + grouped_triplets[j] = None + else: + grouped_triplets[j] = i, r_l, r_m, r_n, ituples yield grouped_triplets