forked from Vaibhavdixit02/MSML21_BayesianNODE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
BayesiaNUDE_PSGLD_LV.jl
301 lines (217 loc) · 9.31 KB
/
BayesiaNUDE_PSGLD_LV.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
cd("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural ODE")
Pkg.activate(".")
using DiffEqFlux, DifferentialEquations, Flux, Optim, Plots, AdvancedHMC, Serialization
using JLD, StatsPlots
using Random
function lotka_volterra!(du, u, p, t)
x, y = u
α, β, δ, γ = p
du[1] = dx = α*x - β*x*y
du[2] = dy = -δ*y + γ*x*y
end
# Initial condition
u0 = [1.0, 1.0]
# Simulation interval and intermediary points
tspan = (0.0, 2.0)
tsteps = 0.0:0.1:2.0
# LV equation parameter. p = [α, β, δ, γ]
p = [1.5, 1.0, 3.0, 1.0]
# Setup the ODE problem, then solve
prob_ode = ODEProblem(lotka_volterra!, u0, tspan, p)
sol_ode = solve(prob_ode, Tsit5(), saveat = tsteps)
ode_data = hcat([sol_ode[:,i] for i in 1:size(sol_ode,2)]...)
global α, β, δ, γ = [1.5, 1.0, 3.0, 1.0]
function lotka_volterra_ude!(du, u, p, t)
global α, β, δ, γ
ucollect = [u[1]; u[2]]
NN1 = abs(re(p[1:81])(ucollect)[1])
x, y = u
du[1] = α*x -NN1
du[2] = -δ*y + γ*x*y
end
# Initial condition
u0 = [1.0, 1.0]
# Simulation interval and intermediary points
tspan = (0.0, 2.0)
tsteps = 0.0:0.1:2.0
ann = Chain(Dense(2,20,tanh), Dense(20,1))
p1,re = Flux.destructure(ann)
# Setup the ODE problem, then solve
prob_ude = ODEProblem(lotka_volterra_ude!, u0, tspan, p1)
function train_neuralsir(steps, a, b, γ)
θ = p1
predict(p) = Array(concrete_solve(prob_ude,Tsit5(),u0,p,saveat = tsteps))
loss(p) = sum(abs2, ode_data .- predict(p))
trainlosses = [loss(p1); zeros(steps)]
weights = [p1'; zeros(steps, length(p1))]
for t in 1:steps
##########DEFINE########################
beta = 0.9;
λ =1e-8;
precond = zeros(length(θ))
################GRADIENT CALCULATIONS
x,lambda = Flux.Zygote.pullback(loss,θ)
∇L = first(lambda(1))
#ϵ = 0.0001
ϵ = a*(b + t)^-γ
###############PRECONDITIONING#####################
if t == 1
precond[:] = ∇L.*∇L
else
precond *= beta
precond += (1-beta)*(∇L .*∇L)
end
#m = λ .+ sqrt.(precond/((1-(beta)^t)))
m = λ .+ sqrt.(precond)
###############DESCENT###############################
for i in 1:length(∇L)
noise = ϵ*randn()
θ[i] = θ[i] - (0.5*ϵ*∇L[i]/m[i] + noise)
end
#################BOOKKEEPING############################
weights[t+1, :] = p1
trainlosses[t+1] = loss(p1)
println(loss(p1))
end
print("Final loss is $(trainlosses[end])")
trainlosses, weights
end
#results = train_neuralsir(6000, 0.0000006)
#results = train_neuralsir(6000, 0.0000006, 10, 1e-6, 0.9)
results = train_neuralsir(20000, 0.0001, 0.085, 0.001)
trainlosses, parameters = results;
println(trainlosses[end])
p = plot(trainlosses, scale =:log10)
savefig(p, "lossesSGLD_LV_UDE") #loss is around ~7, no visible sampling phase, more iters needed
################################PLOT RETRODICTED DATA ##########################
function predict_neuralode(p)
Array(concrete_solve(prob_ude,Tsit5(),u0,p,saveat = tsteps))
end
pl = Plots.scatter(tsteps, ode_data[1,:], color = :red, label = "Data: Var1", xlabel = "t", title = "Spiral Neural ODE")
Plots.scatter!(tsteps, ode_data[2,:], color = :blue, label = "Data: Var2")
for k in 1:500
resol = predict_neuralode(parameters[end-rand(1:600), :])
plot!(tsteps,resol[1,:], alpha=0.04, color = :red, label = "")
plot!(tsteps,resol[2,:], alpha=0.04, color = :blue, label = "")
end
idx = findmin(trainlosses[end-400:end])[2]
prediction = predict_neuralode(parameters[end- 400 + idx, :])
plot!(tsteps,prediction[1,:], color = :black, w = 2, label = "")
plot!(tsteps,prediction[2,:], color = :black, w = 2, label = "Best fit prediction", ylims = (0, 9))
Plots.savefig("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural UDE/SGLD_ADAM_LV_Plots1.pdf")
################################CONTOUR PLOTS##########################
pl = Plots.scatter(ode_data[1,:], ode_data[2,:], color = :red, label = "Data", xlabel = "Var1", ylabel = "Var2", title = "Spiral Neural ODE")
for k in 1:300
resol = predict_neuralode(parameters[end-rand(1:300), :])
plot!(resol[1,:],resol[2,:], alpha=0.04, color = :red, label = "")
end
plot!(prediction[1,:], prediction[2,:], color = :black, w = 2, label = "Best fit prediction", ylims = (0, 2.5) )
Plots.savefig("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural UDE/SGLD_ADAM_LV_Plots2.pdf")
########################PLOTS OF THE RECOVERED TERM: A#####################
Actual_Term = 1* ode_data[1,:] .* ode_data[2,:]
UDE_SGLD= zeros(Float64, length(Actual_Term), 1)
function UDE_term(UDE_SGLD, idx)
prediction = predict_neuralode(parameters[end-idx, :])
x_sol = prediction[1, :]
y_sol = prediction[2, :]
for i = 1:length(x_sol)
UDE_SGLD[i] = abs(re(parameters[end-idx, :][1:81])([x_sol[i],y_sol[i]])[1])
end
return x_sol, y_sol, UDE_SGLD
end
pl = Plots.scatter(tsteps, Actual_Term, color = :red, label = "Data", xlabel = "Var1", ylabel = "Var2", title = "Lotka Volterra UDE")
for k in 1:300
x_sol, y_sol, UDE_SGLD = UDE_term(UDE_SGLD, rand(1:300))
plot!(tsteps,UDE_SGLD[1:end], alpha=0.04, color = :red, label = "")
end
idx = findmin(trainlosses[end-400:end])[2]
prediction = predict_neuralode(parameters[end- 400 + idx, :])
x_sol = prediction[1, :]
y_sol = prediction[2, :]
for i = 1:length(x_sol)
UDE_SGLD[i] = abs(re(parameters[end- 400 + idx, :][1:81])([x_sol[i],y_sol[i]])[1])
end
plot!(tsteps,UDE_SGLD[1:end], color = :black, w = 2, label = "Best fit prediction")
Plots.savefig("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural UDE/SGLD_ADAM_LV_Plots3.pdf")
########################PLOTS OF THE RECOVERED TERM: B#####################
#=
plotlyjs()
pl = scatter3d(x = ode_data[1,:], y = ode_data[2,:], z = Actual_Term, mode="markers",opacity=0.8,
marker_size=6, marker_line_width=0.5,
marker_line_color="rgba(217, 217, 217, 0.14)")
plot(pl)
=#
gr()
Plots.scatter(ode_data[1,:], ode_data[2,:], Actual_Term, xlabel = "x", ylabel = "y", title = "Lotka Volterra UDE")
for k in 1:300
x_sol, y_sol, UDE_SGLD = UDE_term(UDE_SGLD, rand(1:300))
plot!(x_sol, y_sol,UDE_SGLD[1:end], alpha=0.04, color = :red, label = "")
end
idx = findmin(trainlosses[end-400:end])[2]
prediction = predict_neuralode(parameters[end- 400 + idx, :])
x_sol = prediction[1, :]
y_sol = prediction[2, :]
for i = 1:length(x_sol)
UDE_SGLD[i] = abs(re(parameters[end- 400 + idx, :][1:81])([x_sol[i],y_sol[i]])[1])
end
plot!(x_sol, y_sol, UDE_SGLD[1:end], color = :black, w =2, label = "Best fit prediction", ylims = (0, 15))
Plots.savefig("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural UDE/SGLD_ADAM_LV_Plots4.pdf")
save("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural UDE/SGLD_ADAM_LV_NeuralUDE.jld", "parameters",parameters, "trainlosses", trainlosses, "ode_data", ode_data)
D = load("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural UDE/SGLD_ADAM_LV_NeuralUDE.jld")
parameters = D["parameters"]
trainlosses = D["trainlosses"]
### Universal ODE Part 2: SInDy to Equations
using DataDrivenDiffEq
using ModelingToolkit
# Create a Basis
@variables u[1:2]
# Lots of polynomials
polys = Operation[]
for i ∈ 0:2, j ∈ 0:2
push!(polys, u[1]^i * u[2]^j )
end
h = [unique(polys)...]
basis = Basis(h, u)
#opt = SR3() #STRRidge(1e-3)
#opt = SR3(0.5) works good, but maybe is too sparse
#opt = SR3(0.5)
opt = STRRidge(3)
# Create the thresholds which should be used in the search process
#thresholds = exp10.(-6:0.1:0)
for k in 1:300
x_sol, y_sol, UDE_SGLD = UDE_term(UDE_SGLD, rand(1:300))
Ψ = SInDy(ode_data[1:2, 1:end], UDE_SGLD[1:end], basis, opt = opt, maxiter = 10000, normalize = true, denoise = true) # Suceed
plot!(x_sol, y_sol,UDE_SGLD[1:end], alpha=0.04, color = :red, label = "")
end
aicc_store = zeros(1, 100)
for i in 1:100
x_sol, y_sol, UDE_SGLD = UDE_term(UDE_SGLD, i)
Ψ = SInDy(vcat(x_sol', y_sol'), UDE_SGLD[1:end], basis, opt = opt, maxiter = 1000, normalize = true, denoise = true) # Suceed
aicc_store[i] = Ψ.aicc[1]
end
###5 -- -1.02
####3 - 4.095
####2 - 7.236
####1 - 21.63
####0.1 - 35
####0.01 - 40.4
x_sol, y_sol, UDE_SGLD = UDE_term(UDE_SGLD, findmin(aicc_store)[2][2])
Ψ = SInDy(vcat(x_sol', y_sol'), UDE_SGLD[1:end], basis, opt, maxiter = 10000, normalize = true, denoise = true) # Suceed
print_equations(Ψ, show_parameter = true)
########STRRIDGE PLOTS######################
using LaTeXStrings
x=[0.01; 0.1; 1; 2; 3; 5]
y=[9; 9; 5; 2; 1; 1]
z=[76; 76; 77; 63; 70; 100]
plot([0.01, 1.5], [80, 80], xscale = :log, fill=(0, :lightpink), markeralpha=0, label = "")
plot!([3.5, 5.5], [80, 80],xscale = :log,fill=(0,:lightpink), markeralpha=0, label = "", framestyle = :box, ylims = (0, 10))
plot!([1.5, 3.5], [80, 80],xscale = :log, fill=(0,:aliceblue), markeralpha=0, label = "", framestyle = :box, ylims = (0, 10))
scatter(x,y,marker_z=z, label = "", xlabel = L"\lambda", xscale = :log, ylabel = "Number of Active terms",framestyle = :box, color = :algae, ylims = (0, 10), markersize = 8, colorbar_title = "100* Error")
Plots.savefig("C:/Users/16174/Desktop/Julia Lab/Bayesian Neural UDE/SGLD_ADAM_LV_Plots5_SINDY.pdf")
#= GET ERROR SIMULATION###########
u1 = x_sol
u2 = y_sol
Term1 = 0.0169 * u1.^2 + 0.839*u2 + 0.075*(u1.^2) .* u2 + 0.2555* u1 .* u2
scatter(Term1)
scatter!(UDE_SGLD)
norm(Term1 .- UDE_SGLD)