-
Notifications
You must be signed in to change notification settings - Fork 100
/
il2m.py
129 lines (113 loc) · 6.95 KB
/
il2m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import numpy as np
from .incremental_learning import Inc_Learning_Appr
from datasets.exemplars_dataset import ExemplarsDataset
class Appr(Inc_Learning_Appr):
"""Class implementing the Class Incremental Learning With Dual Memory (IL2M) approach described in
https://openaccess.thecvf.com/content_ICCV_2019/papers/Belouadah_IL2M_Class_Incremental_Learning_With_Dual_Memory_ICCV_2019_paper.pdf
"""
def __init__(self, model, device, nepochs=100, lr=0.1, lr_min=1e-4, lr_factor=3, lr_patience=10, clipgrad=10000,
momentum=0.9, wd=0.0001, multi_softmax=False, wu_nepochs=0, wu_lr_factor=1, fix_bn=False,
eval_on_train=False, logger=None, exemplars_dataset=None):
super(Appr, self).__init__(model, device, nepochs, lr, lr_min, lr_factor, lr_patience, clipgrad, momentum, wd,
multi_softmax, wu_nepochs, wu_lr_factor, fix_bn, eval_on_train, logger,
exemplars_dataset)
self.init_classes_means = []
self.current_classes_means = []
self.models_confidence = []
# FLAG to not do scores rectification while finetuning training
self.ft_train = False
have_exemplars = self.exemplars_dataset.max_num_exemplars + self.exemplars_dataset.max_num_exemplars_per_class
assert (have_exemplars > 0), 'Error: IL2M needs exemplars.'
@staticmethod
def exemplars_dataset_class():
return ExemplarsDataset
def il2m(self, t, trn_loader):
"""Compute and store statistics for score rectification"""
old_classes_number = sum(self.model.task_cls[:t])
classes_counts = [0 for _ in range(sum(self.model.task_cls))]
models_counts = 0
# to store statistics for the classes as learned in the current incremental state
self.current_classes_means = [0 for _ in range(old_classes_number)]
# to store statistics for past classes as learned in their initial states
for cls in range(old_classes_number, old_classes_number + self.model.task_cls[t]):
self.init_classes_means.append(0)
# to store statistics for model confidence in different states (i.e. avg top-1 pred scores)
self.models_confidence.append(0)
# compute the mean prediction scores that will be used to rectify scores in subsequent tasks
with torch.no_grad():
self.model.eval()
for images, targets in trn_loader:
outputs = self.model(images.to(self.device))
scores = np.array(torch.cat(outputs, dim=1).data.cpu().numpy(), dtype=np.float)
for m in range(len(targets)):
if targets[m] < old_classes_number:
# computation of class means for past classes of the current state.
self.current_classes_means[targets[m]] += scores[m, targets[m]]
classes_counts[targets[m]] += 1
else:
# compute the mean prediction scores for the new classes of the current state
self.init_classes_means[targets[m]] += scores[m, targets[m]]
classes_counts[targets[m]] += 1
# compute the mean top scores for the new classes of the current state
self.models_confidence[t] += np.max(scores[m, ])
models_counts += 1
# Normalize by corresponding number of images
for cls in range(old_classes_number):
self.current_classes_means[cls] /= classes_counts[cls]
for cls in range(old_classes_number, old_classes_number + self.model.task_cls[t]):
self.init_classes_means[cls] /= classes_counts[cls]
self.models_confidence[t] /= models_counts
def train_loop(self, t, trn_loader, val_loader):
"""Contains the epochs loop"""
# add exemplars to train_loader
if len(self.exemplars_dataset) > 0 and t > 0:
trn_loader = torch.utils.data.DataLoader(trn_loader.dataset + self.exemplars_dataset,
batch_size=trn_loader.batch_size,
shuffle=True,
num_workers=trn_loader.num_workers,
pin_memory=trn_loader.pin_memory)
# FINETUNING TRAINING -- contains the epochs loop
self.ft_train = True
super().train_loop(t, trn_loader, val_loader)
self.ft_train = False
# IL2M outputs rectification
self.il2m(t, trn_loader)
# EXEMPLAR MANAGEMENT -- select training subset
self.exemplars_dataset.collect_exemplars(self.model, trn_loader, val_loader.dataset.transform)
def calculate_metrics(self, outputs, targets):
"""Contains the main Task-Aware and Task-Agnostic metrics"""
if self.ft_train:
# no score rectification while training
hits_taw, hits_tag = super().calculate_metrics(outputs, targets)
else:
# Task-Aware Multi-Head
pred = torch.zeros_like(targets.to(self.device))
for m in range(len(pred)):
this_task = (self.model.task_cls.cumsum(0) <= targets[m]).sum()
pred[m] = outputs[this_task][m].argmax() + self.model.task_offset[this_task]
hits_taw = (pred == targets.to(self.device)).float()
# Task-Agnostic Multi-Head
if self.multi_softmax:
outputs = [torch.nn.functional.log_softmax(output, dim=1) for output in outputs]
# Eq. 1: rectify predicted scores
old_classes_number = sum(self.model.task_cls[:-1])
for m in range(len(targets)):
rectified_outputs = torch.cat(outputs, dim=1)
pred[m] = rectified_outputs[m].argmax()
if old_classes_number:
# if the top-1 class predicted by the network is a new one, rectify the score
if int(pred[m]) >= old_classes_number:
for o in range(old_classes_number):
o_task = int((self.model.task_cls.cumsum(0) <= o).sum())
rectified_outputs[m, o] *= (self.init_classes_means[o] / self.current_classes_means[o]) * \
(self.models_confidence[-1] / self.models_confidence[o_task])
pred[m] = rectified_outputs[m].argmax()
# otherwise, rectification is not done because an old class is directly predicted
hits_tag = (pred == targets.to(self.device)).float()
return hits_taw, hits_tag
def criterion(self, t, outputs, targets):
"""Returns the loss value"""
if len(self.exemplars_dataset) > 0:
return torch.nn.functional.cross_entropy(torch.cat(outputs, dim=1), targets)
return torch.nn.functional.cross_entropy(outputs[t], targets - self.model.task_offset[t])