title | section | openreview | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control |
Oral |
XEw-cnNsr6 |
Precise arbitrary trajectory tracking for quadrotors is challenging due to unknown nonlinear dynamics, trajectory infeasibility, and actuation limits. To tackle these challenges, we present DATT, a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world. DATT builds on a novel feedforward-feedback-adaptive control structure trained in simulation using reinforcement learning. When deployed on real hardware, DATT is augmented with a disturbance estimator using |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
huang23a |
0 |
DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control |
326 |
340 |
326-340 |
326 |
false |
Huang, Kevin and Rana, Rwik and Spitzer, Alexander and Shi, Guanya and Boots, Byron |
|
2023-12-02 |
Proceedings of The 7th Conference on Robot Learning |
229 |
inproceedings |
|