-
Notifications
You must be signed in to change notification settings - Fork 116
/
junk.go
431 lines (381 loc) · 12.6 KB
/
junk.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
package main
/*
note: these testdata paths are not in the repo, you should gather some of your
own ham/spam emails.
./mox junk train testdata/train/ham testdata/train/spam
./mox junk train -sent-dir testdata/sent testdata/train/ham testdata/train/spam
./mox junk check 'testdata/check/ham/mail1'
./mox junk test testdata/check/ham testdata/check/spam
./mox junk analyze testdata/train/ham testdata/train/spam
./mox junk analyze -top-words 10 -train-ratio 0.5 -spam-threshold 0.85 -max-power 0.01 -sent-dir testdata/sent testdata/train/ham testdata/train/spam
./mox junk play -top-words 10 -train-ratio 0.5 -spam-threshold 0.85 -max-power 0.01 -sent-dir testdata/sent testdata/train/ham testdata/train/spam
*/
import (
"context"
"flag"
"fmt"
"log"
mathrand "math/rand"
"os"
"path/filepath"
"sort"
"time"
"github.com/mjl-/mox/junk"
"github.com/mjl-/mox/message"
"github.com/mjl-/mox/mlog"
"github.com/mjl-/mox/mox-"
)
type junkArgs struct {
params junk.Params
spamThreshold float64
trainRatio float64
seed bool
sentDir string
databasePath, bloomfilterPath string
debug bool
}
func (a junkArgs) SetLogLevel() {
mox.Conf.Log[""] = mlog.LevelInfo
if a.debug {
mox.Conf.Log[""] = mlog.LevelDebug
}
mlog.SetConfig(mox.Conf.Log)
}
func junkFlags(fs *flag.FlagSet) (a junkArgs) {
fs.BoolVar(&a.params.Onegrams, "one-grams", false, "use 1-grams, i.e. single words, for scoring")
fs.BoolVar(&a.params.Twograms, "two-grams", true, "use 2-grams, i.e. word pairs, for scoring")
fs.BoolVar(&a.params.Threegrams, "three-grams", false, "use 3-grams, i.e. word triplets, for scoring")
fs.Float64Var(&a.params.MaxPower, "max-power", 0.05, "maximum word power, e.g. min 0.05/max 0.95")
fs.Float64Var(&a.params.IgnoreWords, "ignore-words", 0.1, "ignore words with ham/spaminess within this distance from 0.5")
fs.IntVar(&a.params.TopWords, "top-words", 10, "number of top spam and number of top ham words from email to use")
fs.IntVar(&a.params.RareWords, "rare-words", 1, "words are rare if encountered this number during training, and skipped for scoring")
fs.BoolVar(&a.debug, "debug", false, "print debug logging when calculating spam probability")
fs.Float64Var(&a.spamThreshold, "spam-threshold", 0.95, "probability where message is seen as spam")
fs.Float64Var(&a.trainRatio, "train-ratio", 0.5, "part of data to use for training versus analyzing (for analyze only)")
fs.StringVar(&a.sentDir, "sent-dir", "", "directory with sent mails, for training")
fs.BoolVar(&a.seed, "seed", false, "seed prng before analysis")
fs.StringVar(&a.databasePath, "dbpath", "filter.db", "database file for ham/spam words")
fs.StringVar(&a.bloomfilterPath, "bloompath", "filter.bloom", "bloom filter for ignoring unique strings")
return
}
func listDir(dir string) (l []string) {
files, err := os.ReadDir(dir)
xcheckf(err, "listing directory %q", dir)
for _, f := range files {
l = append(l, f.Name())
}
return l
}
func must(f *junk.Filter, err error) *junk.Filter {
xcheckf(err, "filter")
return f
}
func cmdJunkTrain(c *cmd) {
c.unlisted = true
c.params = "hamdir spamdir"
c.help = "Train a junk filter with messages from hamdir and spamdir."
a := junkFlags(c.flag)
args := c.Parse()
if len(args) != 2 {
c.Usage()
}
a.SetLogLevel()
f := must(junk.NewFilter(context.Background(), c.log, a.params, a.databasePath, a.bloomfilterPath))
defer func() {
if err := f.Close(); err != nil {
log.Printf("closing junk filter: %v", err)
}
}()
hamFiles := listDir(args[0])
spamFiles := listDir(args[1])
var sentFiles []string
if a.sentDir != "" {
sentFiles = listDir(a.sentDir)
}
err := f.TrainDirs(args[0], a.sentDir, args[1], hamFiles, sentFiles, spamFiles)
xcheckf(err, "train")
}
func cmdJunkCheck(c *cmd) {
c.unlisted = true
c.params = "mailfile"
c.help = "Check an email message against a junk filter, printing the probability of spam on a scale from 0 to 1."
a := junkFlags(c.flag)
args := c.Parse()
if len(args) != 1 {
c.Usage()
}
a.SetLogLevel()
f := must(junk.OpenFilter(context.Background(), c.log, a.params, a.databasePath, a.bloomfilterPath, false))
defer func() {
if err := f.Close(); err != nil {
log.Printf("closing junk filter: %v", err)
}
}()
prob, _, _, _, err := f.ClassifyMessagePath(context.Background(), args[0])
xcheckf(err, "testing mail")
fmt.Printf("%.6f\n", prob)
}
func cmdJunkTest(c *cmd) {
c.unlisted = true
c.params = "hamdir spamdir"
c.help = "Check a directory with hams and one with spams against the junk filter, and report the success ratio."
a := junkFlags(c.flag)
args := c.Parse()
if len(args) != 2 {
c.Usage()
}
a.SetLogLevel()
f := must(junk.OpenFilter(context.Background(), c.log, a.params, a.databasePath, a.bloomfilterPath, false))
defer func() {
if err := f.Close(); err != nil {
log.Printf("closing junk filter: %v", err)
}
}()
testDir := func(dir string, ham bool) (int, int) {
ok, bad := 0, 0
files, err := os.ReadDir(dir)
xcheckf(err, "readdir %q", dir)
for _, fi := range files {
path := filepath.Join(dir, fi.Name())
prob, _, _, _, err := f.ClassifyMessagePath(context.Background(), path)
if err != nil {
log.Printf("classify message %q: %s", path, err)
continue
}
if ham && prob < a.spamThreshold || !ham && prob > a.spamThreshold {
ok++
} else {
bad++
}
if ham && prob > a.spamThreshold {
fmt.Printf("ham %q: %.4f\n", path, prob)
}
if !ham && prob < a.spamThreshold {
fmt.Printf("spam %q: %.4f\n", path, prob)
}
}
return ok, bad
}
nhamok, nhambad := testDir(args[0], true)
nspamok, nspambad := testDir(args[1], false)
fmt.Printf("total ham, ok %d, bad %d\n", nhamok, nhambad)
fmt.Printf("total spam, ok %d, bad %d\n", nspamok, nspambad)
fmt.Printf("specifity (true negatives, hams identified): %.6f\n", float64(nhamok)/(float64(nhamok+nhambad)))
fmt.Printf("sensitivity (true positives, spams identified): %.6f\n", float64(nspamok)/(float64(nspamok+nspambad)))
fmt.Printf("accuracy: %.6f\n", float64(nhamok+nspamok)/float64(nhamok+nhambad+nspamok+nspambad))
}
func cmdJunkAnalyze(c *cmd) {
c.unlisted = true
c.params = "hamdir spamdir"
c.help = `Analyze a directory with ham messages and one with spam messages.
A part of the messages is used for training, and remaining for testing. The
messages are shuffled, with optional random seed.`
a := junkFlags(c.flag)
args := c.Parse()
if len(args) != 2 {
c.Usage()
}
a.SetLogLevel()
f := must(junk.NewFilter(context.Background(), c.log, a.params, a.databasePath, a.bloomfilterPath))
defer func() {
if err := f.Close(); err != nil {
log.Printf("closing junk filter: %v", err)
}
}()
hamDir := args[0]
spamDir := args[1]
hamFiles := listDir(hamDir)
spamFiles := listDir(spamDir)
var seed int64
if a.seed {
seed = time.Now().UnixMilli()
}
// Still at math/rand (v1 instead of v2) for potential comparison to earlier test results.
rand := mathrand.New(mathrand.NewSource(seed))
shuffle := func(l []string) {
count := len(l)
for i := range l {
n := rand.Intn(count)
l[i], l[n] = l[n], l[i]
}
}
shuffle(hamFiles)
shuffle(spamFiles)
ntrainham := int(a.trainRatio * float64(len(hamFiles)))
ntrainspam := int(a.trainRatio * float64(len(spamFiles)))
trainHam := hamFiles[:ntrainham]
trainSpam := spamFiles[:ntrainspam]
testHam := hamFiles[ntrainham:]
testSpam := spamFiles[ntrainspam:]
var trainSent []string
if a.sentDir != "" {
trainSent = listDir(a.sentDir)
}
err := f.TrainDirs(hamDir, a.sentDir, spamDir, trainHam, trainSent, trainSpam)
xcheckf(err, "train")
testDir := func(dir string, files []string, ham bool) (ok, bad, malformed int) {
for _, name := range files {
path := filepath.Join(dir, name)
prob, _, _, _, err := f.ClassifyMessagePath(context.Background(), path)
if err != nil {
// log.Infof("%s: %s", path, err)
malformed++
continue
}
if ham && prob < a.spamThreshold || !ham && prob > a.spamThreshold {
ok++
} else {
bad++
}
if ham && prob > a.spamThreshold {
fmt.Printf("ham %q: %.4f\n", path, prob)
}
if !ham && prob < a.spamThreshold {
fmt.Printf("spam %q: %.4f\n", path, prob)
}
}
return
}
nhamok, nhambad, nmalformedham := testDir(args[0], testHam, true)
nspamok, nspambad, nmalformedspam := testDir(args[1], testSpam, false)
fmt.Printf("training done, nham %d, nsent %d, nspam %d\n", ntrainham, len(trainSent), ntrainspam)
fmt.Printf("total ham, ok %d, bad %d, malformed %d\n", nhamok, nhambad, nmalformedham)
fmt.Printf("total spam, ok %d, bad %d, malformed %d\n", nspamok, nspambad, nmalformedspam)
fmt.Printf("specifity (true negatives, hams identified): %.6f\n", float64(nhamok)/(float64(nhamok+nhambad)))
fmt.Printf("sensitivity (true positives, spams identified): %.6f\n", float64(nspamok)/(float64(nspamok+nspambad)))
fmt.Printf("accuracy: %.6f\n", float64(nhamok+nspamok)/float64(nhamok+nhambad+nspamok+nspambad))
}
func cmdJunkPlay(c *cmd) {
c.unlisted = true
c.params = "hamdir spamdir"
c.help = "Play messages from ham and spam directory according to their time of arrival and report on junk filter performance."
a := junkFlags(c.flag)
args := c.Parse()
if len(args) != 2 {
c.Usage()
}
a.SetLogLevel()
f := must(junk.NewFilter(context.Background(), c.log, a.params, a.databasePath, a.bloomfilterPath))
defer func() {
if err := f.Close(); err != nil {
log.Printf("closing junk filter: %v", err)
}
}()
// We'll go through all emails to find their dates.
type msg struct {
dir, filename string
ham, sent bool
t time.Time
}
var msgs []msg
var nbad, nnodate, nham, nspam, nsent int
scanDir := func(dir string, ham, sent bool) {
for _, name := range listDir(dir) {
path := filepath.Join(dir, name)
mf, err := os.Open(path)
xcheckf(err, "open %q", path)
fi, err := mf.Stat()
xcheckf(err, "stat %q", path)
p, err := message.EnsurePart(c.log.Logger, false, mf, fi.Size())
if err != nil {
nbad++
if err := mf.Close(); err != nil {
log.Printf("closing message file: %v", err)
}
continue
}
if p.Envelope.Date.IsZero() {
nnodate++
if err := mf.Close(); err != nil {
log.Printf("closing message file: %v", err)
}
continue
}
if err := mf.Close(); err != nil {
log.Printf("closing message file: %v", err)
}
msgs = append(msgs, msg{dir, name, ham, sent, p.Envelope.Date})
if sent {
nsent++
} else if ham {
nham++
} else {
nspam++
}
}
}
hamDir := args[0]
spamDir := args[1]
scanDir(hamDir, true, false)
scanDir(spamDir, false, false)
if a.sentDir != "" {
scanDir(a.sentDir, true, true)
}
// Sort the messages, earliest first.
sort.Slice(msgs, func(i, j int) bool {
return msgs[i].t.Before(msgs[j].t)
})
// Play all messages as if they are coming in. We predict their spaminess, check if
// we are right. And we train the system with the result.
var nhamok, nhambad, nspamok, nspambad int
play := func(msg msg) {
var words map[string]struct{}
path := filepath.Join(msg.dir, msg.filename)
if !msg.sent {
var prob float64
var err error
prob, words, _, _, err = f.ClassifyMessagePath(context.Background(), path)
if err != nil {
nbad++
return
}
if msg.ham {
if prob < a.spamThreshold {
nhamok++
} else {
nhambad++
}
} else {
if prob > a.spamThreshold {
nspamok++
} else {
nspambad++
}
}
} else {
mf, err := os.Open(path)
xcheckf(err, "open %q", path)
defer func() {
if err := mf.Close(); err != nil {
log.Printf("closing message file: %v", err)
}
}()
fi, err := mf.Stat()
xcheckf(err, "stat %q", path)
p, err := message.EnsurePart(c.log.Logger, false, mf, fi.Size())
if err != nil {
log.Printf("bad sent message %q: %s", path, err)
return
}
words, err = f.ParseMessage(p)
if err != nil {
log.Printf("bad sent message %q: %s", path, err)
return
}
}
if err := f.Train(context.Background(), msg.ham, words); err != nil {
log.Printf("train: %s", err)
}
}
for _, m := range msgs {
play(m)
}
err := f.Save()
xcheckf(err, "saving filter")
fmt.Printf("completed, nham %d, nsent %d, nspam %d, nbad %d, nwithoutdate %d\n", nham, nsent, nspam, nbad, nnodate)
fmt.Printf("total ham, ok %d, bad %d\n", nhamok, nhambad)
fmt.Printf("total spam, ok %d, bad %d\n", nspamok, nspambad)
fmt.Printf("specifity (true negatives, hams identified): %.6f\n", float64(nhamok)/(float64(nhamok+nhambad)))
fmt.Printf("sensitivity (true positives, spams identified): %.6f\n", float64(nspamok)/(float64(nspamok+nspambad)))
fmt.Printf("accuracy: %.6f\n", float64(nhamok+nspamok)/float64(nhamok+nhambad+nspamok+nspambad))
}